Science.gov

Sample records for affect downstream signaling

  1. Targeting the cis-dimerization of LINGO-1 with low MW compounds affects its downstream signalling

    PubMed Central

    Cobret, L; De Tauzia, M L; Ferent, J; Traiffort, E; Hénaoui, I; Godin, F; Kellenberger, E; Rognan, D; Pantel, J; Bénédetti, H; Morisset-Lopez, S

    2015-01-01

    Background and Purpose The transmembrane protein LINGO-1 is a negative regulator in the nervous system mainly affecting axonal regeneration, neuronal survival, oligodendrocyte differentiation and myelination. However, the molecular mechanisms regulating its functions are poorly understood. In the present study, we investigated the formation and the role of LINGO-1 cis-dimers in the regulation of its biological activity. Experimental Approach LINGO-1 homodimers were identified in both HEK293 and SH-SY5Y cells using co-immunoprecipitation experiments and BRET saturation analysis. We performed a hypothesis-driven screen for identification of small-molecule protein–protein interaction modulators of LINGO-1 using a BRET-based assay, adapted for screening. The compound identified was further assessed for effects on LINGO-1 downstream signalling pathways using Western blotting analysis and AlphaScreen technology. Key Results LINGO-1 was present as homodimers in primary neuronal cultures. LINGO-1 interacted homotypically in cis-orientation and LINGO-1 cis-dimers were formed early during LINGO-1 biosynthesis. A BRET-based assay allowed us to identify phenoxybenzamine as the first conformational modulator of LINGO-1 dimers. In HEK-293 cells, phenoxybenzamine was a positive modulator of LINGO-1 function, increasing the LINGO-1-mediated inhibition of EGF receptor signalling and Erk phosphorylation. Conclusions and Implications Our data suggest that LINGO-1 forms constitutive cis-dimers at the plasma membrane and that low MW compounds affecting the conformational state of these dimers can regulate LINGO-1 downstream signalling pathways. We propose that targeting the LINGO-1 dimerization interface opens a new pharmacological approach to the modulation of its function and provides a new strategy for drug discovery. PMID:25257685

  2. Serine-71 phosphorylation of Rac1 modulates downstream signaling.

    PubMed

    Schwarz, Janett; Proff, Julia; Hävemeier, Anika; Ladwein, Markus; Rottner, Klemens; Barlag, Britta; Pich, Andreas; Tatge, Helma; Just, Ingo; Gerhard, Ralf

    2012-01-01

    The Rho GTPases Rac1 and Cdc42 regulate a variety of cellular functions by signaling to different signal pathways. It is believed that the presence of a specific effector at the location of GTPase activation determines the route of downstream signaling. We previously reported about EGF-induced Ser-71 phosphorylation of Rac1/Cdc42. By using the phosphomimetic S71E-mutants of Rac1 and Cdc42 we investigated the impact of Ser-71 phosphorylation on binding to selected effector proteins. Binding of the constitutively active (Q61L) variants of Rac1 and Cdc42 to their specific interaction partners Sra-1 and N-WASP, respectively, as well as to their common effector protein PAK was abrogated when Ser-71 was exchanged to glutamate as phosphomimetic substitution. Interaction with their common effector proteins IQGAP1/2/3 or MRCK alpha was, however, hardly affected. This ambivalent behaviour was obvious in functional assays. In contrast to Rac1 Q61L, phosphomimetic Rac1 Q61L/S71E was not able to induce increased membrane ruffling. Instead, Rac1 Q61L/S71E allowed filopodia formation, which is in accordance with abrogation of the dominant Sra-1/Wave signalling pathway. In addition, in contrast to Rac1 transfected cells Rac1 S71E failed to activate PAK1/2. On the other hand, Rac1 Q61L/S71E was as effective in activation of NF-kappaB as Rac1 Q61L, illustrating positive signal transduction of phosphorylated Rac1. Together, these data suggest that phosphorylation of Rac1 and Cdc42 at serine-71 represents a reversible mechanism to shift specificity of GTPase/effector coupling, and to preferentially address selected downstream pathways. PMID:22970203

  3. The VSV Polymerase can initiate at mRNA start sites located either up or downstream of a transcription termination signal but size of the intervening intergenic region affects efficiency of initiation

    PubMed Central

    Barr, J.N.; Tang, Xiaoling; Hinzman, Edward; Shen, Ruizhong; Wertz, Gail W.

    2008-01-01

    Transcription by the vesicular stomatitis virus (VSV) polymerase has been characterized as obligatorily sequential with transcription of each downstream gene dependant on termination of the gene immediately upstream. In studies described here we investigated the ability of the VSV RNA-dependant RNA polymerase (RdRp) to access mRNA initiation sites located at increasing distances either downstream or upstream of a transcription termination signal. Bicistronic subgenomic replicons were constructed containing progressively extended intergenic regions preceding the initiation site of a downstream gene. The ability of the RdRp to access the downstream sites was progressively reduced as the length of the intergenic region increased. Alternatively, bicistronic replicons were constructed containing a mRNA start signal located at increasing distances upstream of a termination site. Analysis of transcription of these "overlapped" genes showed that for an upstream mRNA start site to be recognized it had to contain not only the canonical 3'-UUGUCnnUAG-5' gene start signal, but that signal needed also to be preceded by a U7 tract. Access of these upstream mRNA initiation sites by the VSV RdRp was proportionately reduced with increasing distance between the termination site and the overlapped initiation signal. Possible mechanisms for how the RdRp accesses these upstream start sites are discussed. PMID:18241907

  4. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors

    PubMed Central

    Karlsson, Hannah; Svensson, Emma; Gigg, Camilla; Jarvius, Malin; Olsson-Strömberg, Ulla; Savoldo, Barbara; Dotti, Gianpietro; Loskog, Angelica

    2015-01-01

    CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs. PMID:26700307

  5. Oxidative stress and its downstream signaling in aging eyes

    PubMed Central

    Pinazo-Durán, María Dolores; Gallego-Pinazo, Roberto; García-Medina, Jose Javier; Zanón-Moreno, Vicente; Nucci, Carlo; Dolz-Marco, Rosa; Martínez-Castillo, Sebastián; Galbis-Estrada, Carmen; Marco-Ramírez, Carla; López-Gálvez, Maria Isabel; Galarreta, David J; Díaz-Llópis, Manuel

    2014-01-01

    Background Oxidative stress (OS) and its biomarkers are the biochemical end point of the imbalance between reactive oxygen species (ROS) production and the ability of the antioxidant (AOX) biological systems to fight against oxidative injury. Objective We reviewed the role of OS and its downstream signaling in aging eyes. Methods A search of the literature and current knowledge on the physiological and pathological mechanisms of OS were revisited in relation to the eyes and the aging process. Most prevalent ocular diseases have been analyzed herein in relation to OS and nutraceutic supplements, such as dry-eye disorders, glaucoma, age-related macular degeneration, and diabetic retinopathy. Results Clinical, biochemical, and molecular data from anterior and posterior eye segment diseases point to OS as the common pathogenic mechanism in the majority of these ocular disorders, many of which are pathologies causing visual impairment, blindness, and subsequent loss of life quality. Studies with nutraceutic supplements in aging eye-related pathologies have also been reviewed. Conclusion OS, nutritional status, and nutraceutic supplements have to be considered within the standards of care of older ophthalmologic patients. OS biomarkers and surrogate end points may help in managing the aging population with ocular diseases. PMID:24748782

  6. Alternative Activation Mechanisms of Protein Kinase B Trigger Distinct Downstream Signaling Responses*

    PubMed Central

    Balzano, Deborah; Fawal, Mohamad-Ali; Velázquez, Jose V.; Santiveri, Clara M.; Yang, Joshua; Pastor, Joaquín; Campos-Olivas, Ramón; Djouder, Nabil; Lietha, Daniel

    2015-01-01

    Protein kinase B (PKB/Akt) is an important mediator of signals that control various cellular processes including cell survival, growth, proliferation, and metabolism. PKB promotes these processes by phosphorylating many cellular targets, which trigger distinct downstream signaling events. However, how PKB is able to selectively target its substrates to induce specific cellular functions remains elusive. Here we perform a systematic study to dissect mechanisms that regulate intrinsic kinase activity versus mechanisms that specifically regulate activity toward specific substrates. We demonstrate that activation loop phosphorylation and the C-terminal hydrophobic motif are essential for high PKB activity in general. On the other hand, we identify membrane targeting, which for decades has been regarded as an essential step in PKB activation, as a mechanism mainly affecting substrate selectivity. Further, we show that PKB activity in cells can be triggered independently of PI3K by initial hydrophobic motif phosphorylation, presumably through a mechanism analogous to other AGC kinases. Importantly, different modes of PKB activation result in phosphorylation of distinct downstream targets. Our data indicate that specific mechanisms have evolved for signaling nodes, like PKB, to select between various downstream events. Targeting such mechanisms selectively could facilitate the development of therapeutics that might limit toxic side effects. PMID:26286748

  7. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    PubMed

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

  8. Constitutive and ligand-induced EGFR signaling triggers distinct and mutually exclusive downstream signaling networks

    PubMed Central

    Chakraborty, Sharmistha; Li, Li; Puliyappadamba, VineshkumarThidil; Guo, Gao; Hatanpaa, Kimmo J.; Mickey, Bruce; Souza, Rhonda F.; Vo, Peggy; Herz, Joachim; Chen, Mei-Ru; Boothman, David A.; Pandita, Tej K.; Wang, David H.; Sen, Ganes C.; Habib, Amyn A.

    2014-01-01

    EGFR overexpression plays an important oncogenic role in cancer. Regular EGFR protein levels are increased in cancer cells and the receptor then becomes constitutively active. However, downstream signals generated by constitutively activated EGFR are unknown. Here we report that the overexpressed EGFR oscillates between two distinct and mutually exclusive modes of signaling. Constitutive or non-canonical EGFR signaling activates the transcription factor IRF3 leading to expression of IFI27, IFIT1, and TRAIL. Ligand-mediated activation of EGFR switches off IRF3 dependent transcription, activates canonical ERK and Akt signals, and confers sensitivity to chemotherapy and virus-induced cell death. Mechanistically, the distinct downstream signals result from a switch of EGFR associated proteins. EGFR constitutively complexes with IRF3 and TBK1 leading to TBK1 and IRF3 phosphorylation. Addition of EGF dissociates TBK1, IRF3, and EGFR leading to a loss of IRF3 activity, Shc-EGFR association and ERK activation. Finally, we provide evidence for non-canonical EGFR signaling in glioblastoma. PMID:25503978

  9. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  10. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis. PMID:26237312

  11. Misoprostol Reverse Hippocampal Neuron Cyclooxygenase-2 Downstream Signaling Imbalance in Aluminum-Overload Rats

    PubMed Central

    Guo, Yuanxin; Lei, Wenjuan; Wang, Jianfeng; Hu, Xinyue; Wei, Yuling; Ji, Chaonan; Yang, Junqing

    2016-01-01

    Although COX-2 inhibition in animal models of neurodegenerative diseases has shown neuroprotection, recent studies have revealed some serious side effects (ulcers, bleeding, fatal cerebrovascular diseases etc.) and the limited benefits of COX-2 inhibitors. A more focused approach is necessary to explore the therapeutic effect of the COX downstream signaling pathway in neurological research. The aim of this study was to explore the alterations of the PGES-PGE2-EP signal pathway and the effect of misoprostol on neurodegeneration by chronic aluminum-overload in rats. Adult rats were treated by intragastric administration of aluminum gluconate. The PGE2 content and expression of PGES and EPs in the hippocampi of rats were detected using ELISA, q-PCR and Western blot analysis, respectively. The content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in the rat hippocampi were also detected. The misoprostol treatment dose-dependently improved spatial learning and memory function as well as healing after hippocampal neuron damage induced by chronic aluminum-overload in rats. Meanwhile, the administration of misoprostol resulted in a decrease in the PGE2 level and down-regulation of the mPGES-1, EP2 and EP4 expression levels, while there was a dose-dependent up-regulation of EP3 expression. These results suggest that misoprostol possesses a neuroprotective property, and the mechanism involves affecting the EP3 level and reducing the endogenous production of PGE2 through a negative feedback mechanism, increasing the EP3 expression level, decreasing the EP2 and EP4 expression levels, and rebuilding the mPGES-1-PGE2-EP1-4 signal pathway balance. In this way, misoprostol has a counteractive effect on oxidant stress and inflammation in the central nervous system. The PGES-PGE2-EPs signaling pathway is a potential therapeutic strategy for treating neurodegeneration in patients. PMID:27033056

  12. Misoprostol Reverse Hippocampal Neuron Cyclooxygenase-2 Downstream Signaling Imbalance in Aluminum-Overload Rats.

    PubMed

    Guo, Yuanxin; Lei, Wenjuan; Wang, Jianfeng; Hu, Xinyue; Wei, Yuling; Ji, Chaonan; Yang, Junqing

    2016-01-01

    Although COX-2 inhibition in animal models of neurodegenerative diseases has shown neuroprotection, recent studies have revealed some serious side effects (ulcers, bleeding, fatal cerebrovascular diseases etc.) and the limited benefits of COX-2 inhibitors. A more focused approach is necessary to explore the therapeutic effect of the COX downstream signaling pathway in neurological research. The aim of this study was to explore the alterations of the PGES-PGE2-EP signal pathway and the effect of misoprostol on neurodegeneration by chronic aluminum-overload in rats. Adult rats were treated by intragastric administration of aluminum gluconate. The PGE2 content and expression of PGES and EPs in the hippocampi of rats were detected using ELISA, q-PCR and Western blot analysis, respectively. The content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in the rat hippocampi were also detected. The misoprostol treatment dose-dependently improved spatial learning and memory function as well as healing after hippocampal neuron damage induced by chronic aluminum-overload in rats. Meanwhile, the administration of misoprostol resulted in a decrease in the PGE2 level and down-regulation of the mPGES-1, EP2 and EP4 expression levels, while there was a dosedependent up-regulation of EP3 expression. These results suggest that misoprostol possesses a neuroprotective property, and the mechanism involves affecting the EP3 level and reducing the endogenous production of PGE2 through a negative feedback mechanism, increasing the EP3 expression level, decreasing the EP2 and EP4 expression levels, and rebuilding the mPGES-1-PGE2-EP1-4 signal pathway balance. In this way, misoprostol has a counteractive effect on oxidant stress and inflammation in the central nervous system. The PGES-PGE2-EPs signaling pathway is a potential therapeutic strategy for treating neurodegeneration in patients. PMID:27033056

  13. Re-modulated technology of WDM-PON employing different DQPSK downstream signals

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu

    2012-11-01

    This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.

  14. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    SciTech Connect

    Kim, Kyung-Chang; Kim, Hyeon Guk; Roh, Tae-Young; Park, Jihwan; Jung, Kyung-Min; Lee, Joo-Shil; Choi, Sang-Yun; Kim, Sung Soon; Choi, Byeong-Sun

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  15. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling

    SciTech Connect

    Wang, Yelin; Hu, Chen; Cheng, Jun; Chen, Binquan; Ke, Qinghong; Lv, Zhen; Wu, Jian; Zhou, Yanfeng

    2014-04-18

    Highlights: • MiR-145 expression is down-regulated in HCC tissues and inversely related with IRS1 levels. • MiR-145 directly targets IRS1 in HCC cells. • Restored expression of miR-145 suppressed HCC cell proliferation and growth. • MiR-145 induced IRS1 under-expression potentially reduced downstream AKT signaling. - Abstract: Accumulating evidences have proved that dysregulation of microRNAs (miRNAs) is involved in cancer initiation and progression. In this study, we showed that miRNA-145 level was significantly decreased in hepatocellular cancer (HCC) tissues and cell lines, and its low expression was inversely associated with the abundance of insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling. We verified IRS1 as a direct target of miR-145 using Western blotting and luciferase reporter assay. Further, the restoration of miR-145 in HCC cell lines suppressed cancer cell growth, owing to down-regulated IRS1 expression and its downstream Akt/FOXO1 signaling. Our results demonstrated that miR-145 could inhibit HCC through targeting IRS1 and its downstream signaling, implicating the loss of miR-145 regulation may be a potential molecular mechanism causing aberrant oncogenic signaling in HCC.

  16. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling

    PubMed Central

    Miller, Evan W.; Dickinson, Bryan C.; Chang, Christopher J.

    2010-01-01

    Hydrogen peroxide (H2O2) produced by cell-surface NADPH Oxidase (Nox) enzymes is emerging as an important signaling molecule for growth, differentiation, and migration processes. However, how cells spatially regulate H2O2 to achieve physiological redox signaling over nonspecific oxidative stress pathways is insufficiently understood. Here we report that the water channel Aquaporin-3 (AQP3) can facilitate the uptake of H2O2 into mammalian cells and mediate downstream intracellular signaling. Molecular imaging with Peroxy Yellow 1 Methyl-Ester (PY1-ME), a new chemoselective fluorescent indicator for H2O2, directly demonstrates that aquaporin isoforms AQP3 and AQP8, but not AQP1, can promote uptake of H2O2 specifically through membranes in mammalian cells. Moreover, we show that intracellular H2O2 accumulation can be modulated up or down based on endogenous AQP3 expression, which in turn can influence downstream cell signaling cascades. Finally, we establish that AQP3 is required for Nox-derived H2O2 signaling upon growth factor stimulation. Taken together, our findings demonstrate that the downstream intracellular effects of H2O2 can be regulated across biological barriers, a discovery that has broad implications for the controlled use of this potentially toxic small molecule for beneficial physiological functions. PMID:20724658

  17. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.

    PubMed

    Xie, Q; Frugis, G; Colgan, D; Chua, N H

    2000-12-01

    Auxin plays a key role in lateral root formation, but the signaling pathway for this process is poorly understood. We show here that NAC1, a new member of the NAC family, is induced by auxin and mediates auxin signaling to promote lateral root development. NAC1 is a transcription activator consisting of an N-terminal conserved NAC-domain that binds to DNA and a C-terminal activation domain. This factor activates the expression of two downstream auxin-responsive genes, DBP and AIR3. Transgenic plants expressing sense or antisense NAC1 cDNA show an increase or reduction of lateral roots, respectively. Finally, TIR1-induced lateral root development is blocked by expression of antisense NAC1 cDNA, and NAC1 overexpression can restore lateral root formation in the auxin-response mutant tir1, indicating that NAC1 acts downstream of TIR1.

  18. Electrical Motor Current Signal Analysis using a Modulation Signal Bispectrum for the Fault Diagnosis of a Gearbox Downstream

    NASA Astrophysics Data System (ADS)

    Haram, M.; Wang, T.; Gu, F.; Ball, A. D.

    2012-05-01

    Motor current signal analysis has been an effective way for many years of monitoring electrical machines themselves. However, little work has been carried out in using this technique for monitoring their downstream equipment because of difficulties in extracting small fault components in the measured current signals. This paper investigates the characteristics of electrical current signals for monitoring the faults from a downstream gearbox using a modulation signal bispectrum (MSB), including phase effects in extracting small modulating components in a noisy measurement. An analytical study is firstly performed to understand amplitude, frequency and phase characteristics of current signals due to faults. It then explores the performance of MSB analysis in detecting weak modulating components in current signals. Experimental study based on a 10kw two stage gearbox, driven by a three phase induction motor, shows that MSB peaks at different rotational frequencies can be based to quantify the severity of gear tooth breakage and the degrees of shaft misalignment. In addition, the type and location of a fault can be recognized based on the frequency at which the change of MSB peak is the highest among different frequencies.

  19. Distinct G protein-coupled receptor recycling pathways allow spatial control of downstream G protein signaling.

    PubMed

    Bowman, Shanna Lynn; Shiwarski, Daniel John; Puthenveedu, Manojkumar A

    2016-09-26

    G protein-coupled receptors (GPCRs) are recycled via a sequence-dependent pathway that is spatially and biochemically distinct from bulk recycling. Why there are two distinct recycling pathways from the endosome is a fundamental question in cell biology. In this study, we show that the separation of these two pathways is essential for normal spatial encoding of GPCR signaling. The prototypical β-2 adrenergic receptor (B2AR) activates Gα stimulatory protein (Gαs) on the endosome exclusively in sequence-dependent recycling tubules marked by actin/sorting nexin/retromer tubular (ASRT) microdomains. B2AR was detected in an active conformation in bulk recycling tubules, but was unable to activate Gαs. Protein kinase A phosphorylation of B2AR increases the fraction of receptors localized to ASRT domains and biases the downstream transcriptional effects of B2AR to genes controlled by endosomal signals. Our results identify the physiological relevance of separating GPCR recycling from bulk recycling and suggest a mechanism to tune downstream responses of GPCR signaling by manipulating the spatial origin of G protein signaling. PMID:27646272

  20. Distinct G protein-coupled receptor recycling pathways allow spatial control of downstream G protein signaling.

    PubMed

    Bowman, Shanna Lynn; Shiwarski, Daniel John; Puthenveedu, Manojkumar A

    2016-09-26

    G protein-coupled receptors (GPCRs) are recycled via a sequence-dependent pathway that is spatially and biochemically distinct from bulk recycling. Why there are two distinct recycling pathways from the endosome is a fundamental question in cell biology. In this study, we show that the separation of these two pathways is essential for normal spatial encoding of GPCR signaling. The prototypical β-2 adrenergic receptor (B2AR) activates Gα stimulatory protein (Gαs) on the endosome exclusively in sequence-dependent recycling tubules marked by actin/sorting nexin/retromer tubular (ASRT) microdomains. B2AR was detected in an active conformation in bulk recycling tubules, but was unable to activate Gαs. Protein kinase A phosphorylation of B2AR increases the fraction of receptors localized to ASRT domains and biases the downstream transcriptional effects of B2AR to genes controlled by endosomal signals. Our results identify the physiological relevance of separating GPCR recycling from bulk recycling and suggest a mechanism to tune downstream responses of GPCR signaling by manipulating the spatial origin of G protein signaling.

  1. mTOR Signaling Feedback Modulates Mammary Epithelial Differentiation and Restrains Invasion Downstream of PTEN Loss

    PubMed Central

    Ghosh, Susmita; Varela, Lidenys; Sood, Akshay; Park, Ben Ho; Lotan, Tamara L.

    2013-01-01

    Oncogenic signaling pathways are tightly regulated by negative feedback circuits and relief of these circuits represents a common mechanism of tumor drug resistance. Although the significance of these feedback pathways for signal transduction is evident, their relevance for cellular differentiation and morphogenesis in a genetically-defined context is unclear. In this study, we used isogenic benign mammary organotypic cultures to interrogate the role of mTOR-mediated negative feedback in the specific setting of PTEN inactivation. We found that mTOR signaling promoted basal-like differentiation and repressed nuclear hormone receptor expression after short-term PTEN loss in murine cell cultures analyzed ex vivo. Unexpectedly, we found that PTEN inactivation inhibited growth factor-induced epithelial invasion, and that downstream mTOR-mediated signaling feedback was both necessary and sufficient for this effect. Mechanistically, using isogenic MCF10A cells with and without somaticPTEN deletion, we showed that mTOR inhibition promoted EGF-mediated epithelial invasion by de-repressing upstream EGFR, SRC and PI3K signaling. In addition to offering new signal transduction insights, these results bring to light a number of important and potentially clinically relevant cellular consequences of mTOR inhibition in the specific context of PTEN loss, including modulation of hormone and growth factor responsiveness and promotion of epithelial invasion. Our findings prompt future investigations of the possibility that mTOR inhibitor therapy may not only be ineffective but even deleterious in tumors with PTEN loss. PMID:23774212

  2. Activation of the Syk tyrosine kinase is insufficient for downstream signal transduction in B lymphocytes

    PubMed Central

    Hsueh, Robert C; Hammill, Adrienne M; Lee, Jamie A; Uhr, Jonathan W; Scheuermann, Richard H

    2002-01-01

    Background Immature B lymphocytes and certain B cell lymphomas undergo apoptotic cell death following activation of the B cell antigen receptor (BCR) signal transduction pathway. Several biochemical changes occur in response to BCR engagement, including activation of the Syk tyrosine kinase. Although Syk activation appears to be necessary for some downstream biochemical and cellular responses, the signaling events that precede Syk activation remain ill defined. In addition, the requirements for complete activation of the Syk-dependent signaling step remain to be elucidated. Results A mutant form of Syk carrying a combination of a K395A substitution in the kinase domain and substitutions of three phenylalanines (3F) for the three C-terminal tyrosines was expressed in a murine B cell lymphoma cell line, BCL1.3B3 to interfere with normal Syk regulation as a means to examine the Syk activation step in BCR signaling. Introduction of this kinase-inactive mutant led to the constitutive activation of the endogenous wildtype Syk enzyme in the absence of receptor engagement through a 'dominant-positive' effect. Under these conditions, Syk kinase activation occurred in the absence of phosphorylation on Syk tyrosine residues. Although Syk appears to be required for BCR-induced apoptosis in several systems, no increase in spontaneous cell death was observed in these cells. Surprisingly, although the endogenous Syk kinase was enzymatically active, no enhancement in the phosphorylation of cytoplasmic proteins, including phospholipase Cγ2 (PLCγ2), a direct Syk target, was observed. Conclusion These data indicate that activation of Syk kinase enzymatic activity is insufficient for Syk-dependent signal transduction. This observation suggests that other events are required for efficient signaling. We speculate that localization of the active enzyme to a receptor complex specifically assembled for signal transduction may be the missing event. PMID:12470302

  3. Transduction of Functionally Contrasting Signals by Two Mycobacterial PPE Proteins Downstream of TLR2 Receptors.

    PubMed

    Udgata, Atul; Qureshi, Rahila; Mukhopadhyay, Sangita

    2016-09-01

    As pathogen-associated molecular pattern sensors, the TLRs can detect diverse ligands to elicit either proinflammatory or anti-inflammatory responses, but the mechanism that dictates such contrasting immune responses is not well understood. In this work, we demonstrate that proline-proline-glutamic acid (PPE)17 protein of Mycobacterium tuberculosis induces TLR1/2 heterodimerization to elicit proinflammatory-type response, whereas PPE18-induced homodimerization of TLR2 triggers anti-inflammatory type responses. Ligation of TLR1/2 caused an increased recruitment of IL-1R-associated kinase (IRAK)1, MyD88, and protein kinase C (PKC)ε to the downstream TLR-signaling complex that translocated PKCε into the nucleus in an IRAK1-dependent manner. PKCε-mediated phosphorylation allowed the nuclear IRAK3 to be exported to the cytoplasm, leading to increased activation of ERK1/2, stabilization of MAPK phosphatase 1 (MKP-1), and induction of TNF-α with concomitant downregulation of p38MAPK. Silencing of TLR1 inhibited PPE17-triggered cytoplasmic export of IRAK3 as well as TNF-α induction, suggesting an important role of TLR1/2 heterodimer in regulating proinflammatory responses via the IRAK3-signaling pathway. In contrast, PPE18-mediated homodimerization of TLR2 caused poorer cytoplasmic export of nuclear IRAK3 and MKP-1 stabilization, resulting in increased p38MAPK activation. Our study hints to a novel mechanism that implicates PKCε-IRAK3-MKP-1 signaling in the regulation of MAPK activity and inflammatory cascades downstream of TLR2 in tuberculosis. PMID:27481848

  4. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK.

    PubMed

    Khatiwala, Chirag B; Kim, Peter D; Peyton, Shelly R; Putnam, Andrew J

    2009-05-01

    The compliance of the extracellular matrix (ECM) regulates osteogenic differentiation by modulating extracellular signal-regulated kinase (ERK) activity. However, the molecular mechanism linking ECM compliance to the ERK-mitogen-activated protein kinase (MAPK) pathway remains unclear. Furthermore, RhoA has been widely implicated in integrin-mediated signaling and mechanotransduction. We studied the relationship between RhoA and ERK-MAPK signaling to determine their roles in the regulation of osteogenesis by ECM compliance. Inhibition of RhoA and ROCK in MC3T3-E1 pre-osteoblasts cultured on substrates of varying compliance reduced ERK activity, whereas constitutively active RhoA enhanced it. The expression of RUNX2, a potent osteogenic transcription factor, was increased on stiffer matrices and correlated with elevated ERK activity. Inhibition of RhoA, ROCK, or the MAPK pathway diminished RUNX2 activity and delayed the onset of osteogenesis as shown by altered osteocalcin (OCN) and bone sialoprotein (BSP) gene expression, alkaline phosphatase (ALP) activity, and matrix mineralization. These data establish that one possible mechanism by which ECM rigidity regulates osteogenic differentiation involves MAPK activation downstream of the RhoA-ROCK signaling pathway.

  5. mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish

    PubMed Central

    Koltowska, Katarzyna; Paterson, Scott; Bower, Neil I.; Baillie, Gregory J.; Lagendijk, Anne K.; Astin, Jonathan W.; Chen, Huijun; Francois, Mathias; Crosier, Philip S.; Taft, Ryan J.; Simons, Cas; Smith, Kelly A.; Hogan, Benjamin M.

    2015-01-01

    The lymphatic vasculature plays roles in tissue fluid balance, immune cell trafficking, fatty acid absorption, cancer metastasis, and cardiovascular disease. Lymphatic vessels form by lymphangiogenesis, the sprouting of new lymphatics from pre-existing vessels, in both development and disease contexts. The apical signaling pathway in lymphangiogenesis is the VEGFC/VEGFR3 pathway, yet how signaling controls cellular transcriptional output remains unknown. We used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. We found that mafba is required for the migration of lymphatic precursors after their initial sprouting from the posterior cardinal vein. mafba expression is enriched in sprouts emerging from veins, and we show that mafba functions cell-autonomously during lymphatic vessel development. Mechanistically, Vegfc signaling increases mafba expression to control downstream transcription, and this regulatory relationship is dependent on the activity of SoxF transcription factors, which are essential for mafba expression in venous endothelium. Here we identify an indispensable Vegfc–SoxF–Mafba pathway in lymphatic development. PMID:26253536

  6. Nordihydroguaiaretic Acid Inhibits an Activated FGFR3 Mutant, and Blocks Downstream Signaling in Multiple Myeloma Cells

    PubMed Central

    Meyer, April N.; McAndrew, Christopher W.; Donoghue, Daniel J.

    2008-01-01

    Activating mutations within Fibroblast Growth Factor Receptor 3 (FGFR3), a receptor tyrosine kinase, are responsible for human skeletal dysplasias including achondroplasia and the neonatal lethal syndromes, Thanatophoric Dysplasia (TD) type I and II. Several of these same FGFR3 mutations have also been identified somatically in human cancers, including multiple myeloma, bladder carcinoma and cervical cancer. Based on reports that strongly activated mutants of FGFR3 such as the TDII (K650E) mutant signal preferentially from within the secretory pathway, the inhibitory properties of nordihydroguaiaretic acid (NDGA), which blocks protein transport through the Golgi, were investigated. NDGA was able to inhibit FGFR3 autophosphorylation both in vitro and in vivo. In addition, signaling molecules downstream of FGFR3 activation such as STAT1, STAT3 and MAPK were inhibited by NDGA treatment. Using HEK293 cells expressing activated FGFR3-TDII, together with several multiple myeloma cell lines expressing activated forms of FGFR3, NDGA generally resulted in a decrease in MAPK activation by 1 hour, and resulted in increased apoptosis over 24 hours. The effects of NDGA on activated FGFR3 derivatives targeted either to the plasma membrane or the cytoplasm were also examined. These results suggest that inhibitory small molecules such as NDGA that target a specific subcellular compartment may be beneficial in the inhibition of activated receptors such as FGFR3 that signal from the same compartment. PMID:18794123

  7. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor

    PubMed Central

    Shah, Neel H; Wang, Qi; Yan, Qingrong; Karandur, Deepti; Kadlecek, Theresa A; Fallahee, Ian R; Russ, William P; Ranganathan, Rama; Weiss, Arthur; Kuriyan, John

    2016-01-01

    The sequence of events that initiates T cell signaling is dictated by the specificities and order of activation of the tyrosine kinases that signal downstream of the T cell receptor. Using a platform that combines exhaustive point-mutagenesis of peptide substrates, bacterial surface-display, cell sorting, and deep sequencing, we have defined the specificities of the first two kinases in this pathway, Lck and ZAP-70, for the T cell receptor ζ chain and the scaffold proteins LAT and SLP-76. We find that ZAP-70 selects its substrates by utilizing an electrostatic mechanism that excludes substrates with positively-charged residues and favors LAT and SLP-76 phosphosites that are surrounded by negatively-charged residues. This mechanism prevents ZAP-70 from phosphorylating its own activation loop, thereby enforcing its strict dependence on Lck for activation. The sequence features in ZAP-70, LAT, and SLP-76 that underlie electrostatic selectivity likely contribute to the specific response of T cells to foreign antigens. DOI: http://dx.doi.org/10.7554/eLife.20105.001 PMID:27700984

  8. PTHrP promotes malignancy of human oral cancer cell downstream of the EGFR signaling

    SciTech Connect

    Yamada, Tamaki; Tsuda, Masumi; Ohba, Yusuke Kawaguchi, Hideaki; Totsuka, Yasunori; Shindoh, Masanobu

    2008-04-11

    Parathyroid hormone-related protein (PTHrP) is detected in many aggressive tumors and involved in malignant conversion; however, the underlying mechanism remains obscure. Here, we identified PTHrP as a mediator of epidermal growth factor receptor (EGFR) signaling to promote the malignancies of oral cancers. PTHrP mRNA was abundantly expressed in most of the quiescent oral cancer cells, and was significantly upregulated by EGF stimulation via ERK and p38 MAPK. PTHrP silencing by RNA interference, as well as EGFR inhibitor AG1478 treatment, significantly suppressed cell proliferation, migration, and invasiveness. Furthermore, combined treatment of AG1478 and PTHrP knockdown achieved synergistic inhibition of malignant phenotypes. Recombinant PTHrP substantially promoted cell motility, and rescued the inhibition by PTHrP knockdown, suggesting the paracrine/autocrine function of PTHrP. These data indicate that PTHrP contributes to the malignancy of oral cancers downstream of EGFR signaling, and may thus provide a therapeutic target for oral cancer.

  9. An experimental demonstration for carrier reused bidirectional PON system with adaptive modulation DDO-OFDM downstream and QPSK upstream signals.

    PubMed

    Yan, Jhih-Heng; Chen, You-Wei; Shen, Kuan-Heng; Feng, Kai-Ming

    2013-11-18

    A light source centralized bidirectional passive optical network (PON) system based on multiband direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) downstream and quadrature phase-shift keying (QPSK) upstream is experimentally demonstrated. By introducing a simple optical single-side band (SSB) filter at the optical network unit (ONU), all the desired signal bands will be immune from the deleterious signal-signal beating interference (SSBI) noise with only single-end direct-detection scheme. An adaptive modulation configuration is employed to enhance the entire downstream throughput which results in a 150-Gbps downstream data rate with a single optical carrier. In the upstream direction, by recycling the clean downstream optical carrier, a 12.5 Gb/s QPSK format with coherent receiving mechanism in central office is adopted for better receiving sensitivity and dispersion tolerance. With the power enhancement by the long-reach PON architecture, the downstream splitting ratio can achieve as high as 1:1024.

  10. Ape1/Ref-1 Stimulates GDNF/GFRalpha1-mediated Downstream Signaling and Neuroblastoma Proliferation.

    PubMed

    Kang, Mi-Young; Kim, Kweon Young; Yoon, Young; Kang, Yoonsung; Kim, Hong Beum; Youn, Cha Kyung; Kim, Dong-Hui; Kim, Mi-Hwa

    2009-10-01

    We previously reported that glial cell line-derived neurotropic factor (GDNF) receptor alpha1 (GFRalpha1) is a direct target of apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1). In the present study, we further analyzed the physiological roles of Ape1/Ref-1-induced GFRalpha1 expression in Neuro2a mouse neuroblastoma cells. Ape1/Ref-1 expression caused the clustering of GFRalpha1 immunoreactivity in lipid rafts in response to GDNF. We also found that Ret, a downstream target of GFRalpha1, was functionally activated by GDNF in Ape1/Ref-1-expressing cells. Moreover, GDNF promoted the proliferation of Ape1/Ref-1-expressing Neuro2a cells. Furthermore, GFRalpha1-specific RNA experiments demonstrated that the downregulation of GFRalpha1 by siRNA in Ape1/Ref-1-expressing cells impaired the ability of GDNF to phosphorylate Akt and PLCgamma-1 and to stimulate cellular proliferation. These results show an association between Ape1/Ref-1 and GDNF/GFRalpha signaling, and suggest a potential molecular mechanism for the involvement of Ape1/Ref-1 in neuronal proliferation.

  11. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling.

    PubMed

    Groen, Christopher M; Spracklen, Andrew J; Fagan, Tiffany N; Tootle, Tina L

    2012-12-01

    Although prostaglandins (PGs)-lipid signals produced downstream of cyclooxygenase (COX) enzymes-regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. Here we provide the first link between Fascin (Drosophila Singed, Sn), an actin-bundling protein, and PGs. Loss of either pxt or fascin results in similar actin defects. Fascin interacts, both pharmacologically and genetically, with PGs, as reduced Fascin levels enhance the effects of COX inhibition and synergize with reduced Pxt levels to cause both parallel bundle and cortical actin defects. Conversely, overexpression of Fascin in the germline suppresses the effects of COX inhibition and genetic loss of Pxt. These data lead to the conclusion that PGs regulate Fascin to control actin remodeling. This novel interaction has implications beyond Drosophila, as both PGs and Fascin-1, in mammalian systems, contribute to cancer cell migration and invasion.

  12. Dystroglycan is involved in skin morphogenesis downstream of the Notch signaling pathway.

    PubMed

    Sirour, Cathy; Hidalgo, Magdalena; Bello, Valérie; Buisson, Nicolas; Darribère, Thierry; Moreau, Nicole

    2011-08-15

    Dystroglycan (Dg) is a transmembrane protein involved both in the assembly and maintenance of basement membrane structures essential for tissue morphogenesis, and the transmission of signals across the plasma membrane. We used a morpholino knockdown approach to investigate the function of Dg during Xenopus laevis skin morphogenesis. The loss of Dg disrupts epidermal differentiation by affecting the intercalation of multiciliated cells, deposition of laminin, and organization of fibronectin in the extracellular matrix (ECM). Depletion of Dg also affects cell-cell adhesion, as shown by the reduction of E-cadherin expression at the intercellular contacts, without affecting the distribution of β(1) integrins. This was associated with a decrease of cell proliferation, a disruption of multiciliated-cell intercalation, and the down-regulation of the transcription factor P63, a marker of differentiated epidermis. In addition, we demonstrated that inhibition or activation of the Notch pathway prevents and promotes transcription of X-dg. Our study showed for the first time in vivo that Dg, in addition to organizing laminin in the ECM, also acts as a key signaling component in the Notch pathway. PMID:21680717

  13. Frequency of alcohol consumption in humans; the role of metabotropic glutamate receptors and downstream signaling pathways.

    PubMed

    Meyers, J L; Salling, M C; Almli, L M; Ratanatharathorn, A; Uddin, M; Galea, S; Wildman, D E; Aiello, A E; Bradley, B; Ressler, K; Koenen, K C

    2015-01-01

    Rodent models implicate metabotropic glutamate receptors (mGluRs) and downstream signaling pathways in addictive behaviors through metaplasticity. One way mGluRs can influence synaptic plasticity is by regulating the local translation of AMPA receptor trafficking proteins via eukaryotic elongation factor 2 (eEF2). However, genetic variation in this pathway has not been examined with human alcohol use phenotypes. Among a sample of adults living in Detroit, Michigan (Detroit Neighborhood Health Study; n = 788; 83% African American), 206 genetic variants across the mGluR-eEF2-AMPAR pathway (including GRM1, GRM5, HOMER1, HOMER2, EEF2K, MTOR, EIF4E, EEF2, CAMK2A, ARC, GRIA1 and GRIA4) were found to predict number of drinking days per month (corrected P-value < 0.01) when considered as a set (set-based linear regression conducted in PLINK). In addition, a CpG site located in the 3'-untranslated region on the north shore of EEF2 (cg12255298) was hypermethylated in those who drank more frequently (P < 0.05). Importantly, the association between several genetic variants within the mGluR-eEF2-AMPAR pathway and alcohol use behavior (i.e., consumption and alcohol-related problems) replicated in the Grady Trauma Project (GTP), an independent sample of adults living in Atlanta, Georgia (n = 1034; 95% African American), including individual variants in GRM1, GRM5, EEF2, MTOR, GRIA1, GRIA4 and HOMER2 (P < 0.05). Gene-based analyses conducted in the GTP indicated that GRM1 (empirical P < 0.05) and EEF2 (empirical P < 0.01) withstood multiple test corrections and predicted increased alcohol consumption and related problems. In conclusion, insights from rodent studies enabled the identification of novel human alcohol candidate genes within the mGluR-eEF2-AMPAR pathway. PMID:26101849

  14. Frequency of alcohol consumption in humans; the role of metabotropic glutamate receptors and downstream signaling pathways

    PubMed Central

    Meyers, J L; Salling, M C; Almli, L M; Ratanatharathorn, A; Uddin, M; Galea, S; Wildman, D E; Aiello, A E; Bradley, B; Ressler, K; Koenen, K C

    2015-01-01

    Rodent models implicate metabotropic glutamate receptors (mGluRs) and downstream signaling pathways in addictive behaviors through metaplasticity. One way mGluRs can influence synaptic plasticity is by regulating the local translation of AMPA receptor trafficking proteins via eukaryotic elongation factor 2 (eEF2). However, genetic variation in this pathway has not been examined with human alcohol use phenotypes. Among a sample of adults living in Detroit, Michigan (Detroit Neighborhood Health Study; n=788; 83% African American), 206 genetic variants across the mGluR–eEF2–AMPAR pathway (including GRM1, GRM5, HOMER1, HOMER2, EEF2K, MTOR, EIF4E, EEF2, CAMK2A, ARC, GRIA1 and GRIA4) were found to predict number of drinking days per month (corrected P-value <0.01) when considered as a set (set-based linear regression conducted in PLINK). In addition, a CpG site located in the 3′-untranslated region on the north shore of EEF2 (cg12255298) was hypermethylated in those who drank more frequently (P<0.05). Importantly, the association between several genetic variants within the mGluR–eEF2–AMPAR pathway and alcohol use behavior (i.e., consumption and alcohol-related problems) replicated in the Grady Trauma Project (GTP), an independent sample of adults living in Atlanta, Georgia (n=1034; 95% African American), including individual variants in GRM1, GRM5, EEF2, MTOR, GRIA1, GRIA4 and HOMER2 (P<0.05). Gene-based analyses conducted in the GTP indicated that GRM1 (empirical P<0.05) and EEF2 (empirical P<0.01) withstood multiple test corrections and predicted increased alcohol consumption and related problems. In conclusion, insights from rodent studies enabled the identification of novel human alcohol candidate genes within the mGluR–eEF2–AMPAR pathway. PMID:26101849

  15. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity.

    PubMed

    Wu, Zong-Sian; Liu, Che Fu; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-09-01

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs.

  16. A simple feature construction method for predicting upstream/downstream signal flow in human protein-protein interaction networks

    PubMed Central

    Mei, Suyu; Zhu, Hao

    2015-01-01

    Signaling pathways play important roles in understanding the underlying mechanism of cell growth, cell apoptosis, organismal development and pathways-aberrant diseases. Protein-protein interaction (PPI) networks are commonly-used infrastructure to infer signaling pathways. However, PPI networks generally carry no information of upstream/downstream relationship between interacting proteins, which retards our inferring the signal flow of signaling pathways. In this work, we propose a simple feature construction method to train a SVM (support vector machine) classifier to predict PPI upstream/downstream relations. The domain based asymmetric feature representation naturally embodies domain-domain upstream/downstream relations, providing an unconventional avenue to predict the directionality between two objects. Moreover, we propose a semantically interpretable decision function and a macro bag-level performance metric to satisfy the need of two-instance depiction of an interacting protein pair. Experimental results show that the proposed method achieves satisfactory cross validation performance and independent test performance. Lastly, we use the trained model to predict the PPIs in HPRD, Reactome and IntAct. Some predictions have been validated against recent literature. PMID:26648121

  17. Downstream signaling pathways in mouse adipose tissues following acute in vivo administration of fibroblast growth factor 21.

    PubMed

    Muise, Eric S; Souza, Sandra; Chi, An; Tan, Yejun; Zhao, Xuemei; Liu, Franklin; Dallas-Yang, Qing; Wu, Margaret; Sarr, Tim; Zhu, Lan; Guo, Hongbo; Li, Zhihua; Li, Wenyu; Hu, Weiwen; Jiang, Guoqiang; Paweletz, Cloud P; Hendrickson, Ronald C; Thompson, John R; Mu, James; Berger, Joel P; Mehmet, Huseyin

    2013-01-01

    FGF21 is a novel secreted protein with robust anti-diabetic, anti-obesity, and anti-atherogenic activities in preclinical species. In the current study, we investigated the signal transduction pathways downstream of FGF21 following acute administration of the growth factor to mice. Focusing on adipose tissues, we identified FGF21-mediated downstream signaling events and target engagement biomarkers. Specifically, RNA profiling of adipose tissues and phosphoproteomic profiling of adipocytes, following FGF21 treatment revealed several specific changes in gene expression and post-translational modifications, specifically phosphorylation, in several relevant proteins. Affymetrix microarray analysis of white adipose tissues isolated from both C57BL/6 (fed either regular chow or HFD) and db/db mice identified over 150 robust potential RNA transcripts and over 50 potential secreted proteins that were changed greater than 1.5 fold by FGF21 acutely. Phosphoprofiling analysis identified over 130 phosphoproteins that were modulated greater than 1.5 fold by FGF21 in 3T3-L1 adipocytes. Bioinformatic analysis of the combined gene and phosphoprotein profiling data identified a number of known metabolic pathways such as glucose uptake, insulin receptor signaling, Erk/Mapk signaling cascades, and lipid metabolism. Moreover, a number of novel events with hitherto unknown links to FGF21 signaling were observed at both the transcription and protein phosphorylation levels following treatment. We conclude that such a combined "omics" approach can be used not only to identify robust biomarkers for novel therapeutics but can also enhance our understanding of downstream signaling pathways; in the example presented here, novel FGF21-mediated signaling events in adipose tissue have been revealed that warrant further investigation.

  18. Downstream Signaling Pathways in Mouse Adipose Tissues Following Acute In Vivo Administration of Fibroblast Growth Factor 21

    PubMed Central

    Chi, An; Tan, Yejun; Zhao, Xuemei; Liu, Franklin; Dallas-yang, Qing; Wu, Margaret; Sarr, Tim; Zhu, Lan; Guo, Hongbo; Li, Zhihua; Li, Wenyu; Hu, Weiwen; Jiang, Guoqiang; Paweletz, Cloud P.; Hendrickson, Ronald C.; Thompson, John R.; Mu, James; Berger, Joel P.; Mehmet, Huseyin

    2013-01-01

    FGF21 is a novel secreted protein with robust anti-diabetic, anti-obesity, and anti-atherogenic activities in preclinical species. In the current study, we investigated the signal transduction pathways downstream of FGF21 following acute administration of the growth factor to mice. Focusing on adipose tissues, we identified FGF21-mediated downstream signaling events and target engagement biomarkers. Specifically, RNA profiling of adipose tissues and phosphoproteomic profiling of adipocytes, following FGF21 treatment revealed several specific changes in gene expression and post-translational modifications, specifically phosphorylation, in several relevant proteins. Affymetrix microarray analysis of white adipose tissues isolated from both C57BL/6 (fed either regular chow or HFD) and db/db mice identified over 150 robust potential RNA transcripts and over 50 potential secreted proteins that were changed greater than 1.5 fold by FGF21 acutely. Phosphoprofiling analysis identified over 130 phosphoproteins that were modulated greater than 1.5 fold by FGF21 in 3T3-L1 adipocytes. Bioinformatic analysis of the combined gene and phosphoprotein profiling data identified a number of known metabolic pathways such as glucose uptake, insulin receptor signaling, Erk/Mapk signaling cascades, and lipid metabolism. Moreover, a number of novel events with hitherto unknown links to FGF21 signaling were observed at both the transcription and protein phosphorylation levels following treatment. We conclude that such a combined "omics" approach can be used not only to identify robust biomarkers for novel therapeutics but can also enhance our understanding of downstream signaling pathways; in the example presented here, novel FGF21-mediated signaling events in adipose tissue have been revealed that warrant further investigation. PMID:24039848

  19. pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila.

    PubMed

    Brunner, E; Peter, O; Schweizer, L; Basler, K

    1997-02-27

    Members of the Wnt/Wingless (Wg) family of signalling proteins organize many aspects of animal development by regulating the expression of particular target genes in responding cells. Recent biochemical studies indicate that the vertebrate HMG-domain proteins Lef-1 and XTcf-3 can physically interact with beta-catenin, a homologue of Drosophila Armadillo (Arm), the most downstream component known in the Wnt signal transduction pathway. However, these studies do not address whether the endogenous Lef/Tcf family members are required in vivo to transduce Wnt signals. Using genetic methods in Drosophila, we define a new segment polarity gene, pangolin (pan), and show that its product is required in vivo for Wg signal transduction in embryos and in developing adult tissues. In addition, we show that pan encodes a Lef/Tcf homologue and provide evidence that its protein product binds to the beta-catenin homologue Armadillo in vivo. Finally, we demonstrate that Pan functions downstream of Arm to transduce the Wg signal. Thus, our results indicate that Pan is an essential component of the Wg transduction pathway and suggest that it acts directly to regulate gene transcription in response to Wg signalling.

  20. Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants

    PubMed Central

    Walker, Robin K.; Zhao, Yichen; Berkowitz, Gerald A.

    2012-01-01

    Little is known about molecular steps linking perception of pathogen invasion by cell surface sentry proteins acting as pattern recognition receptors (PRRs) to downstream cytosolic Ca2+ elevation, a critical step in plant immune signaling cascades. Some PRRs recognize molecules (such as flagellin) associated with microbial pathogens (pathogen-associated molecular patterns, PAMPs), whereas others bind endogenous plant compounds (damage-associated molecular patterns, DAMPs) such as peptides released from cells upon attack. This work focuses on the Arabidopsis DAMPs plant elicitor peptides (Peps) and their receptors, PEPR1 and PEPR2. Pep application causes in vivo cGMP generation and downstream signaling that is lost when the predicted PEPR receptor guanylyl cyclase (GC) active site is mutated. Pep-induced Ca2+ elevation is attributable to cGMP activation of a Ca2+ channel. Some differences were identified between Pep/PEPR signaling and the Ca2+-dependent immune signaling initiated by the flagellin peptide flg22 and its cognate receptor Flagellin-sensing 2 (FLS2). FLS2 signaling may have a greater requirement for intracellular Ca2+ stores and inositol phosphate signaling, whereas Pep/PEPR signaling requires extracellular Ca2+. Maximal FLS2 signaling requires a functional Pep/PEPR system. This dependence was evidenced as a requirement for functional PEPR receptors for maximal flg22-dependent Ca2+ elevation, H2O2 generation, defense gene [WRKY33 and Plant Defensin 1.2 (PDF1.2)] expression, and flg22/FLS2-dependent impairment of pathogen growth. In a corresponding fashion, FLS2 loss of function impaired Pep signaling. In addition, a role for PAMP and DAMP perception in bolstering effector-triggered immunity (ETI) is reported; loss of function of either FLS2 or PEPR receptors impaired the hypersensitive response (HR) to an avirulent pathogen. PMID:23150556

  1. Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants.

    PubMed

    Ma, Yi; Walker, Robin K; Zhao, Yichen; Berkowitz, Gerald A

    2012-11-27

    Little is known about molecular steps linking perception of pathogen invasion by cell surface sentry proteins acting as pattern recognition receptors (PRRs) to downstream cytosolic Ca(2+) elevation, a critical step in plant immune signaling cascades. Some PRRs recognize molecules (such as flagellin) associated with microbial pathogens (pathogen-associated molecular patterns, PAMPs), whereas others bind endogenous plant compounds (damage-associated molecular patterns, DAMPs) such as peptides released from cells upon attack. This work focuses on the Arabidopsis DAMPs plant elicitor peptides (Peps) and their receptors, PEPR1 and PEPR2. Pep application causes in vivo cGMP generation and downstream signaling that is lost when the predicted PEPR receptor guanylyl cyclase (GC) active site is mutated. Pep-induced Ca(2+) elevation is attributable to cGMP activation of a Ca(2+) channel. Some differences were identified between Pep/PEPR signaling and the Ca(2+)-dependent immune signaling initiated by the flagellin peptide flg22 and its cognate receptor Flagellin-sensing 2 (FLS2). FLS2 signaling may have a greater requirement for intracellular Ca(2+) stores and inositol phosphate signaling, whereas Pep/PEPR signaling requires extracellular Ca(2+). Maximal FLS2 signaling requires a functional Pep/PEPR system. This dependence was evidenced as a requirement for functional PEPR receptors for maximal flg22-dependent Ca(2+) elevation, H(2)O(2) generation, defense gene [WRKY33 and Plant Defensin 1.2 (PDF1.2)] expression, and flg22/FLS2-dependent impairment of pathogen growth. In a corresponding fashion, FLS2 loss of function impaired Pep signaling. In addition, a role for PAMP and DAMP perception in bolstering effector-triggered immunity (ETI) is reported; loss of function of either FLS2 or PEPR receptors impaired the hypersensitive response (HR) to an avirulent pathogen.

  2. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    PubMed

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. PMID:27066976

  3. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    PubMed

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor.

  4. Mechanisms of Biased β-Arrestin-Mediated Signaling Downstream from the Cannabinoid 1 Receptor

    PubMed Central

    Delgado-Peraza, Francheska; Ahn, Kwang H.; Nogueras-Ortiz, Carlos; Mungrue, Imran N.; Mackie, Ken; Kendall, Debra A.

    2016-01-01

    Activation of G protein-coupled receptors results in multiple waves of signaling that are mediated by heterotrimeric G proteins and the scaffolding proteins β-arrestin 1/2. Ligands can elicit full or subsets of cellular responses, a concept defined as ligand bias or functional selectivity. However, our current understanding of β-arrestin-mediated signaling is still very limited. Here we provide a comprehensive view of β-arrestin-mediated signaling from the cannabinoid 1 receptor (CB1R). By using a signaling biased receptor, we define the cascades, specific receptor kinases, and molecular mechanism underlying β-arrestin-mediated signaling: We identify the interaction kinetics of CB1R and β-arrestin 1 during their endocytic trafficking as directly proportional to its efficacy. Finally, we demonstrate that signaling results in the control of genes clustered around prosurvival and proapoptotic functions among others. Together, these studies constitute a comprehensive description of β-arrestin-mediated signaling from CB1Rs and suggest modulation of receptor endocytic trafficking as a therapeutic approach to control β-arrestin-mediated signaling. PMID:27009233

  5. PI3K-AKT signaling is a downstream effector of retinoid prevention of murine basal cell carcinogenesis

    PubMed Central

    So, Po-Lin; Wang, Grace Y.; Wang, Kevin; Chuang, Mindy; Calinisan Chiueh, Venice; Kenny, Paraic A.; Epstein, Ervin H.

    2014-01-01

    Basal cell carcinoma (BCC) is the most common human cancer. We have demonstrated previously that topical application of the retinoid prodrug tazarotene profoundly inhibits murine BCC carcinogenesis via RARγ-mediated regulation of tumor cell transcription. Since topical retinoids can cause adverse cutaneous effects and since tumors can develop resistance to retinoids, we have investigated mechanisms downstream of tazarotene’s anti-tumor effect in this model. Specifically we have used (i) global expression profiling to identify and (ii) functional cell-based assays to validate the PI3K/AKT/mTOR pathway as a downstream target pathway of tazarotene’s action. Crucially, we have demonstrated that pharmacologic inhibition of this downstream pathway profoundly reduces murine BCC cell proliferation and tumorigenesis both in vitro and in vivo. These data identify PI3K/AKT/mTOR signaling as a highly attractive target for BCC chemoprevention and indicate more generally that this pathway may be, in some contexts, an important mediator of retinoid anti-cancer effects. PMID:24449057

  6. PI3K-AKT signaling is a downstream effector of retinoid prevention of murine basal cell carcinogenesis.

    PubMed

    So, Po-Lin; Wang, Grace Y; Wang, Kevin; Chuang, Mindy; Chiueh, Venice Calinisan; Kenny, Paraic A; Epstein, Ervin H

    2014-04-01

    Basal cell carcinoma (BCC) is the most common human cancer. We have demonstrated previously that topical application of the retinoid prodrug tazarotene profoundly inhibits murine BCC carcinogenesis via retinoic acid receptor γ-mediated regulation of tumor cell transcription. Because topical retinoids can cause adverse cutaneous effects and because tumors can develop resistance to retinoids, we have investigated mechanisms downstream of tazarotene's antitumor effect in this model. Specifically we have used (i) global expression profiling to identify and (ii) functional cell-based assays to validate the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway as a downstream target pathway of tazarotene's action. Crucially, we have demonstrated that pharmacologic inhibition of this downstream pathway profoundly reduces murine BCC cell proliferation and tumorigenesis both in vitro and in vivo. These data identify PI3K/AKT/mTOR signaling as a highly attractive target for BCC chemoprevention and indicate more generally that this pathway may be, in some contexts, an important mediator of retinoid anticancer effects.

  7. Amphiregulin Is a Critical Downstream Effector of Estrogen Signaling in ERα-Positive Breast Cancer.

    PubMed

    Peterson, Esther A; Jenkins, Edmund C; Lofgren, Kristopher A; Chandiramani, Natasha; Liu, Hui; Aranda, Evelyn; Barnett, Maryia; Kenny, Paraic A

    2015-11-15

    Estrogen stimulation promotes epithelial cell proliferation in estrogen receptor (ERα)-positive breast cancer. Many ERα target genes have been enumerated, but the identities of the key effectors mediating the estrogen signal remain obscure. During mouse mammary gland development, the estrogen growth factor receptor (EGFR) ligand amphiregulin acts as an important stage-specific effector of estrogen signaling. In this study, we investigated the role of amphiregulin in breast cancer cell proliferation using human tissue samples and tumor xenografts in mice. Amphiregulin was enriched in ERα-positive human breast tumor cells and required for estrogen-dependent growth of MCF7 tumor xenografts. Furthermore, amphiregulin levels were suppressed in patients treated with endocrine therapy. Suppression of EGF receptor signaling appeared necessary for the therapeutic response in this setting. Our findings implicate amphiregulin as a critical mediator of the estrogen response in ERα-positive breast cancer, emphasizing the importance of EGF receptor signaling in breast tumor pathogenesis and therapeutic response. PMID:26527289

  8. Functional Consequences of Differential O-glycosylation of MUC1, MUC4, and MUC16 (Downstream Effects on Signaling)

    PubMed Central

    Hanson, Ryan L.; Hollingsworth, Michael A.

    2016-01-01

    Glycosylation is one of the most abundant post-translational modifications that occur within the cell. Under normal physiological conditions, O-linked glycosylation of extracellular proteins is critical for both structure and function. During the progression of cancer, however, the expression of aberrant and truncated glycans is commonly observed. Mucins are high molecular weight glycoproteins that contain numerous sites of O-glycosylation within their extracellular domains. Transmembrane mucins also play a functional role in monitoring the surrounding microenvironment and transducing these signals into the cell. In cancer, these mucins often take on an oncogenic role and promote a number of pro-tumorigenic effects, including pro-survival, migratory, and invasive behaviors. Within this review, we highlight both the processes involved in the expression of aberrant glycan structures on mucins, as well as the potential downstream impacts on cellular signaling. PMID:27483328

  9. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling

    PubMed Central

    Lori, Martina; van Verk, Marcel C.; Hander, Tim; Schatowitz, Hendrik; Klauser, Dominik; Flury, Pascale; Gehring, Christoph A.; Boller, Thomas; Bartels, Sebastian

    2015-01-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologues in maize were also identified and characterized in more detail. Here, the presence of PROPEPs, the Pep precursors, and PEPRs, the Pep receptors, was investigated within the plant kingdom. PROPEPs and PEPRs were identified in most sequenced species of the angiosperms. The conservation and compatibility of the Pep-PEPR-system was analysed by using plants of two distantly related dicot families, Brassicaceae and Solanaceae, and a representative family of monocot plants, the Poaceae. All three plant families contain important crop plants, including maize, rice, tomato, potato, and canola. Peps were not recognized by species outside of their plant family of origin, apparently because of a divergence of the Pep sequences. Three family-specific Pep motifs were defined and the integration of such a motif into the Pep sequence of an unrelated Pep enabled its perception. Transient transformation of Nicotiana benthamiana with the coding sequences of the AtPEPR1 and ZmPEPR1a led to the recognition of Pep peptides of Brassicaceae or Poaceae origin, respectively, and to the proper activation of downstream signalling. It was concluded that signalling machinery downstream of the PEPRs is highly conserved whereas the leucine-rich repeat domains of the PEPRs co-evolved with the Peps, leading to distinct motifs and, with it, interfamily incompatibility. PMID:26002971

  10. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling.

    PubMed

    Lori, Martina; van Verk, Marcel C; Hander, Tim; Schatowitz, Hendrik; Klauser, Dominik; Flury, Pascale; Gehring, Christoph A; Boller, Thomas; Bartels, Sebastian

    2015-08-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologues in maize were also identified and characterized in more detail.Here, the presence of PROPEPs, the Pep precursors, and PEPRs, the Pep receptors, was investigated within the plant kingdom. PROPEPs and PEPRs were identified in most sequenced species of the angiosperms. The conservation and compatibility of the Pep-PEPR-system was analysed by using plants of two distantly related dicot families, Brassicaceae and Solanaceae, and a representative family of monocot plants, the Poaceae. All three plant families contain important crop plants, including maize, rice, tomato, potato, and canola. Peps were not recognized by species outside of their plant family of origin, apparently because of a divergence of the Pep sequences. Three family-specific Pep motifs were defined and the integration of such a motif into the Pep sequence of an unrelated Pep enabled its perception. Transient transformation of Nicotiana benthamiana with the coding sequences of the AtPEPR1 and ZmPEPR1a led to the recognition of Pep peptides of Brassicaceae or Poaceae origin, respectively, and to the proper activation of downstream signalling. It was concluded that signalling machinery downstream of the PEPRs is highly conserved whereas the leucine-rich repeat domains of the PEPRs co-evolved with the Peps, leading to distinct motifs and, with it, interfamily incompatibility. PMID:26002971

  11. Bitter, sweet and umami taste receptors and downstream signaling effectors: Expression in embryonic and growing chicken gastrointestinal tract.

    PubMed

    Cheled-Shoval, Shira L; Druyan, Shelly; Uni, Zehava

    2015-08-01

    Taste perception is a crucial biological mechanism affecting food and water choices and consumption in the animal kingdom. Bitter taste perception is mediated by a G-protein-coupled receptor (GPCR) family-the taste 2 receptors (T2R)-and their downstream proteins, whereas sweet and umami tastes are mediated by the GPCR family -taste 1 receptors (T1R) and their downstream proteins. Taste receptors and their downstream proteins have been identified in extra-gustatory tissues in mammals, such as the lungs and gastrointestinal tract (GIT), and their GIT activation has been linked with different metabolic and endocrinic pathways in the GIT. The chicken genome contains three bitter taste receptors termed ggTas2r1, ggTas2r2, and ggTas2r7, and the sweet/umami receptors ggTas1r1 and ggTas1r3, but it lacks the sweet receptor ggTas1r2. The aim of this study was to identify and determine the expression of genes related to taste perception in the chicken GIT, both at the embryonic stage and in growing chickens. The results of this study demonstrate for the first time, using real-time PCR, expression of the chicken taste receptor genes ggTas2r1, ggTas2r2, ggTas2r7, ggTas1r1, and ggTas1r3 and of their downstream protein-encoding genes TRPM5, α-gustducin, and PLCβ2 in both gustatory tissues-the palate and tongue, and extra-gustatory tissues-the proventriculus, duodenum, jejunum, ileum, cecum, and colon of embryonic day 19 (E19) and growing (21 d old) chickens. Expression of these genes suggests the involvement of taste pathways for sensing carbohydrates, amino acids and bitter compounds in the chicken GIT.

  12. Fn14, a Downstream Target of the TGF-β Signaling Pathway, Regulates Fibroblast Activation

    PubMed Central

    Yang, Min; Lai, Wen; Ye, Litong; Chen, Jing; Hou, Xinghua; Ding, Hong; Zhang, Wenwei; Wu, Yueheng; Liu, Xiaoying; Huang, Shufang; Yu, Xiyong; Xiao, Dingzhang

    2015-01-01

    Fibrosis, the hallmark of human injuries and diseases such as serious burns, is characterized by excessive collagen synthesis and myofibroblast accumulation. Transforming growth factor-β (TGF-β), a potent inducer of collagen synthesis, has been implicated in fibrosis in animals. In addition to TGF-β, fibroblast growth factor-inducible molecule 14 (Fn14) has been reported to play an important role in fibrotic diseases, such as cardiac fibrosis. However, the function and detailed regulatory mechanism of Fn14 in fibrosis are unclear. Here, we investigated the effect of Fn14 on the activation of human dermal fibroblasts. In normal dermal fibroblasts, TGF-β signaling increased collagen production and Fn14 expression. Furthermore, Fn14 siRNA blocked extracellular matrix gene expression; even when TGF-β signaling was activated by TGF-β1, fibroblast activation remained blocked in the presence of Fn14 siRNA. Overexpressing Fn14 increased extracellular matrix gene expression. In determining the molecular regulatory mechanism, we discovered that SMAD4, an important TGF-β signaling co-mediator, bound to the Fn14 promoter and activated Fn14 transcription. Taken together, these results indicate that the TGF-β signaling pathway activates Fn14 expression through the transcription factor SMAD4 and that activated Fn14 expression increases extracellular matrix synthesis and fibroblast activation. Therefore, Fn14 may represent a promising approach to preventing the excessive accumulation of collagen or ECM in skin fibrosis. PMID:26625141

  13. Methylation dependent expression of the mom gene of bacteriophage Mu: deletions downstream from the methylation sites affect expression.

    PubMed Central

    Adley, C C; Bukhari, A I

    1984-01-01

    The expression of the DNA modification gene (mom) of bacteriophage Mu requires the cellular deoxyadenosine methylase (dam) and a transactivation factor from the phage. By hypothesis, the transcription of mom is activated by methylation of three GATC sequences upstream from the mom gene. We have introduced small deletions at a fourth GATC site located about 140 base pairs downstream from the primary methylation region. Some of the deletions severely affect the mom gene expression. We propose from this analysis that (1) some important elements, possibly the promoter, concerned with the expression of mom are located between nucleotides 840 and 880 from the right end of Mu and (2) the mom protein starts with the codon GTG located at position 810. We favor the hypothesis that methylation turns off transcription upstream, thereby allowing the main mom promoter to function. Images PMID:6328425

  14. Differential subcellular membrane recruitment of Src may specify its downstream signalling

    SciTech Connect

    Diesbach, Philippe de; Medts, Thierry; Carpentier, Sarah; D'Auria, Ludovic; Van Der Smissen, Patrick; Platek, Anna; Mettlen, Marcel; Caplanusi, Adrian; Hove, Marie-France van den; Tyteca, Donatienne; Courtoy, Pierre J.

    2008-04-15

    Most Src family members are diacylated and constitutively associate with membrane 'lipid rafts' that coordinate signalling. Whether the monoacylated Src, frequently hyperactive in carcinomas, also localizes at 'rafts' remains controversial. Using polarized MDCK cells expressing the thermosensitive v-Src/tsLA31 variant, we here addressed how Src tyrosine-kinase activation may impact on its (i) membrane recruitment, in particular to 'lipid rafts'; (ii) subcellular localization; and (iii) signalling. The kinetics of Src-kinase thermoactivation correlated with its recruitment from the cytosol to sedimentable membranes where Src largely resisted solubilisation by non-ionic detergents at 4 deg. C and floated into sucrose density gradients like caveolin-1 and flotillin-2, i.e. 'lipid rafts'. By immunofluorescence, activated Src showed a dual localization, at apical endosomes/macropinosomes and at the apical plasma membrane. The plasma membrane Src pool did not colocalize with caveolin-1 and flotillin-2, but extensively overlapped GM1 labelling by cholera toxin. Severe ({approx} 70%) cholesterol extraction with methyl-{beta}-cyclodextrin (M{beta}CD) did not abolish 'rafts' floatation, but strongly decreased Src association with floating 'rafts' and abolished its localization at the apical plasma membrane. Src activation independently activated first the MAP-kinase - ERK1/2 pathway, then the PI3-kinase - Akt pathway. MAP-kinase - ERK1/2 activation was insensitive to M{beta}CD, which suppressed Akt phosphorylation and apical endocytosis induced by Src, both depending on the PI3-kinase pathway. We therefore suggest that activated Src is recruited at two membrane compartments, allowing differential signalling, first via ERK1/2 at 'non-raft' domains on endosomes, then via PI3-kinase-Akt on a distinct set of 'rafts' at the apical plasma membrane. Whether this model is applicable to c-Src remains to be examined.

  15. Peroxisome proliferation in Arabidopsis: The challenging identification of ligand perception and downstream signaling is closer.

    PubMed

    León, José

    2008-09-01

    Peroxisomes are subcellular organelles with multiple functions mediated by their plasticity and dynamic behavior in plants. Changes in their shape, size, number and enzyme content occur in response to developmental and metabolic cues as well as environmental conditions. The number of peroxisomes per cell is thus mainly determined by its capacity to proliferate. In mammals, peroxisome proliferators such as the hypolipidemic drug clofibrate are perceived by the Peroxisome Proliferator-Activated Receptors (PPARs) nuclear receptors. Therein, activated transcription of the peroxisome biogenesis PEX11 genes and the recruitment of dynamin-related proteins lead to peroxisome proliferation. We recently reported that Arabidopsis thaliana, despite of lacking a PPAR homolog protein, activated the proliferation of peroxisomes in response to clofibrate. Concomitantly, clofibrate activated the expression of wound-responsive genes through the jasmonic acid signaling master regulator COI1 F-box protein. Besides, wounding activated the expression of the peroxisome biogenesis-related PEX1 and PEX14 genes, but not of PEX11 or DRP3A, which analogously to mammals, code for the main regulators of peroxisome proliferation in Arabidopsis. Thus, wounding did not activate peroxisome proliferation. Noteworthy, jasmonic acid-treated plants contained fewer but larger peroxisomes. Despite of the cross-talk between clofibrate- and wound-induced signaling, the proliferation of peroxisomes and the wound-activated defense remained uncoupled.

  16. An essential role for Grk2 in Hedgehog signalling downstream of Smoothened.

    PubMed

    Zhao, Zhonghua; Lee, Raymond Teck Ho; Pusapati, Ganesh V; Iyu, Audrey; Rohatgi, Rajat; Ingham, Philip W

    2016-05-01

    The G-protein-coupled receptor kinase 2 (adrbk2/GRK2) has been implicated in vertebrate Hedgehog (Hh) signalling based on the effects of its transient knock-down in mammalian cells and zebrafish embryos. Here, we show that the response to Hh signalling is effectively abolished in the absence of Grk2 activity. Zebrafish embryos lacking all Grk2 activity are refractory to both Sonic hedgehog (Shh) and oncogenic Smoothened (Smo) activity, but remain responsive to inhibition of cAMP-dependent protein kinase (PKA) activity. Mutation of the kinase domain abrogates the rescuing activity of grk2 mRNA, suggesting that Grk2 acts in a kinase-dependent manner to regulate the response to Hh. Previous studies have suggested that Grk2 potentiates Smo activity by phosphorylating its C-terminal tail (CTT). In the zebrafish embryo, however, phosphomimetic Smo does not display constitutive activity, whereas phospho-null mutants retain activity, implying phosphorylation is neither sufficient nor necessary for Smo function. Since Grk2 rescuing activity requires the integrity of domains essential for its interaction with GPCRs, we speculate that Grk2 may regulate Hh pathway activity by downregulation of a GPCR. PMID:27113758

  17. Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling.

    PubMed Central

    Yamauchi, K; Milarski, K L; Saltiel, A R; Pessin, J E

    1995-01-01

    SHPTP2 is a ubiquitously expressed tyrosine-specific protein phosphatase that contains two amino-terminal Src homology 2 (SH2) domains responsible for its association with tyrosine-phosphorylated proteins. In this study, expression of dominant interfering mutants of SHPTP2 was found to inhibit insulin stimulation of c-fos reporter gene expression and activation of the 42-kDa (Erk2) and 44-kDa (Erk1) mitogen-activated protein kinases. Cotransfection of dominant interfering SHPTP2 mutants with v-Ras or Grb2 indicated that SHPTP2 regulated insulin signaling either upstream of or in parallel to Ras function. Furthermore, phosphotyrosine blotting and immunoprecipitation identified the 125-kDa focal adhesion kinase (pp125FAK) as a substrate for insulin-dependent tyrosine dephosphorylation. These data demonstrate that SHPTP2 functions as a positive regulator of insulin action and that insulin signaling results in the dephosphorylation of tyrosine-phosphorylated pp125FAK. Images Fig. 2 Fig. 4 Fig. 5 PMID:7531337

  18. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil.

    PubMed

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Leitão, Rafael P; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2014-01-21

    The river downstream from a dam can be more contaminated by mercury than the reservoir itself. However, it is not clear how far the contamination occurs downstream. We investigated the seasonal variation of methylmercury levels in the Balbina reservoir and how they correlated with the levels encountered downstream from the dam. Water, plankton, and fishes were collected upstream and at sites between 0.5 and 250 km downstream from the dam during four expeditions in 2011 and 2012. Variations in thermal stratification of the reservoir influenced the methylmercury levels in the reservoir and in the river downstream. Uniform depth distributions of methylmercury and oxygen encountered in the poorly stratified reservoir during the rainy season collections coincided with uniformly low methylmercury levels along the river downstream from the dam. During dry season collections, the reservoir was strongly stratified, and anoxic hypolimnion water with high methylmercury levels was exported downstream. Methylmercury levels declined gradually to 200 km downstream. In general, the methylmercury levels in plankton and fishes downstream from the dam were higher than those upstream. Higher methylmercury levels observed 200-250 km downstream from the dam during flooding season campaigns may reflect the greater inflow from tributaries and flooding of natural wetlands that occurred at this time.

  19. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis.

    PubMed

    Bahl, Martin Iain; Bergström, Anders; Licht, Tine Rask

    2012-04-01

    Freezing stool samples prior to DNA extraction and downstream analysis is widely used in metagenomic studies of the human microbiota but may affect the inferred community composition. In this study, DNA was extracted either directly or following freeze storage of three homogenized human fecal samples using three different extraction methods. No consistent differences were observed in DNA yields between extractions on fresh and frozen samples; however, differences were observed between extraction methods. Quantitative PCR analysis was subsequently performed on all DNA samples using six different primer pairs targeting 16S rRNA genes of significant bacterial groups, and the community composition was evaluated by comparing specific ratios of the calculated abundances. In seven of nine cases, the Firmicutes to Bacteroidetes 16S rRNA gene ratio was significantly higher in fecal samples that had been frozen compared to identical samples that had not. This effect was further supported by qPCR analysis of bacterial groups within these two phyla. The results demonstrate that storage conditions of fecal samples may adversely affect the determined Firmicutes to Bacteroidetes ratio, which is a frequently used biomarker in gut microbiology.

  20. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma.

    PubMed

    Ge, Xuecai; Milenkovic, Ljiljana; Suyama, Kaye; Hartl, Tom; Purzner, Teresa; Winans, Amy; Meyer, Tobias; Scott, Matthew P

    2015-01-01

    Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors. PMID:26371509

  1. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma

    PubMed Central

    Ge, Xuecai; Milenkovic, Ljiljana; Suyama, Kaye; Hartl, Tom; Purzner, Teresa; Winans, Amy; Meyer, Tobias; Scott, Matthew P

    2015-01-01

    Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors. DOI: http://dx.doi.org/10.7554/eLife.07068.001 PMID:26371509

  2. Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling

    PubMed Central

    Aldiri, Issam; Moore, Kathryn B.; Hutcheson, David A.; Zhang, Jianmin; Vetter, Monica L.

    2013-01-01

    The histone methyltransferase complex PRC2 controls key steps in developmental transitions and cell fate choices; however, its roles in vertebrate eye development remain unknown. Here, we report that in Xenopus, PRC2 regulates the progression of retinal progenitors from proliferation to differentiation. We show that the PRC2 core components are enriched in retinal progenitors and downregulated in differentiated cells. Knockdown of the PRC2 core component Ezh2 leads to reduced retinal progenitor proliferation, in part due to upregulation of the Cdk inhibitor p15Ink4b. In addition, although PRC2 knockdown does not alter eye patterning, retinal progenitor gene expression or expression of the neural competence factor Sox2, it does cause suppression of proneural bHLH gene expression, indicating that PRC2 is crucial for the initiation of neural differentiation in the retina. Consistent with this, knocking down or blocking PRC2 function constrains the generation of most retinal neural cell types and promotes a Müller glial cell fate decision. We also show that Wnt/β-catenin signaling acting through the receptor Frizzled 5, but independent of Sox2, regulates expression of key PRC2 subunits in the developing retina. This is consistent with a role for this pathway in coordinating proliferation and the transition to neurogenesis in the Xenopus retina. Our data establish PRC2 as a regulator of proliferation and differentiation during eye development. PMID:23739135

  3. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis

    PubMed Central

    Martin, Katherine; Pritchett, James; Llewellyn, Jessica; Mullan, Aoibheann F.; Athwal, Varinder S.; Dobie, Ross; Harvey, Emma; Zeef, Leo; Farrow, Stuart; Streuli, Charles; Henderson, Neil C.; Friedman, Scott L.; Hanley, Neil A.; Piper Hanley, Karen

    2016-01-01

    Fibrosis due to extracellular matrix (ECM) secretion from myofibroblasts complicates many chronic liver diseases causing scarring and organ failure. Integrin-dependent interaction with scar ECM promotes pro-fibrotic features. However, the pathological intracellular mechanism in liver myofibroblasts is not completely understood, and further insight could enable therapeutic efforts to reverse fibrosis. Here, we show that integrin beta-1, capable of binding integrin alpha-11, regulates the pro-fibrotic phenotype of myofibroblasts. Integrin beta-1 expression is upregulated in pro-fibrotic myofibroblasts in vivo and is required in vitro for production of fibrotic ECM components, myofibroblast proliferation, migration and contraction. Serine/threonine-protein kinase proteins, also known as P21-activated kinase (PAK), and the mechanosensitive factor, Yes-associated protein 1 (YAP-1) are core mediators of pro-fibrotic integrin beta-1 signalling, with YAP-1 capable of perpetuating integrin beta-1 expression. Pharmacological inhibition of either pathway in vivo attenuates liver fibrosis. PAK protein inhibition, in particular, markedly inactivates the pro-fibrotic myofibroblast phenotype, limits scarring from different hepatic insults and represents a new tractable therapeutic target for treating liver fibrosis. PMID:27535340

  4. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    SciTech Connect

    Inadera, Hidekuni Shimomura, Akiko; Tachibana, Shinjiro

    2009-02-20

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein {delta} expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor {gamma} expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-{alpha} did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  5. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation.

    PubMed

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-02-20

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein delta expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor gamma expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-alpha did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  6. Some Factors Affecting Time Reversal Signal Reconstruction

    NASA Astrophysics Data System (ADS)

    Prevorovsky, Z.; Kober, J.

    Time reversal (TR) ultrasonic signal processing is now broadly used in a variety of applications, and also in NDE/NDT field. TR processing is used e.g. for S/N ratio enhancement, reciprocal transducer calibration, location, identification, and reconstruction of unknown sources, etc. TR procedure in con-junction with nonlinear elastic wave spectroscopy NEWS is also useful for sensitive detection of defects (nonlinearity presence). To enlarge possibilities of acoustic emission (AE) method, we proposed the use of TR signal reconstruction ability for detected AE signals transfer from a structure with AE source onto a similar remote model of the structure (real or numerical), which allows easier source analysis under laboratory conditions. Though the TR signal reconstruction is robust regarding the system variations, some small differences and changes influence space-time TR focus and reconstruction quality. Experiments were performed on metallic parts of both simple and complicated geometry to examine effects of small changes of temperature or configuration (body shape, dimensions, transducers placement, etc.) on TR reconstruction quality. Results of experiments are discussed in this paper. Considering mathematical similarity between TR and Coda Wave Interferometry (CWI), prediction of signal reconstruction quality was possible using only the direct propagation. The results show how some factors like temperature or stress changes may deteriorate the TR reconstruction quality. It is also shown that sometimes the reconstruction quality is not enhanced using longer TR signal (S/N ratio may decrease).

  7. Symmetric 10 Gb/s wavelength reused bidirectional RSOA based WDM-PON with DPSK modulated downstream and OFDM modulated upstream signals

    NASA Astrophysics Data System (ADS)

    Choudhury, Pallab K.; Khan, Tanvir Zaman

    2016-08-01

    A 10 Gb/s bidirectional wavelength division multiplexing passive optical network (WDM-PON) with reflective semiconductor optical amplifier (RSOA) based colorless optical network unit (ONU) is proposed and analyzed for next generation gigabit class optical access network. Differential phase shift keying (DPSK) modulated signal is used in downstream and further reused as a seeding wavelength for upstream data modulation. By exploiting the constant envelope property of DPSK seed signal, the re-modulation noise in upstream receiver is effectively minimized without employing any constraint on extinction ratio of downstream signal. Orthogonal frequency division multiplexing (OFDM) signal is used in upstream transmission to overcome the limited bandwidth (∼1 GHz) response of RSOA remodulation. The results show that the proposed 10 Gb/s symmetric WDM-PON can achieve good performance over 25 km fiber transmission with error free operation in downstream and bit error rate (BER) lower than forward error correction (FEC) limit in upstream.

  8. Zebrafish cdx1b regulates expression of downstream factors of Nodal signaling during early endoderm formation.

    PubMed

    Cheng, Pei-Yi; Lin, Chia-Chi; Wu, Chun-Shiu; Lu, Yu-Fen; Lin, Che Yi; Chung, Chih-Ching; Chu, Cheng-Ying; Huang, Chang-Jen; Tsai, Chun-Yen; Korzh, Svetlana; Wu, Jen-Leih; Hwang, Sheng-Ping L

    2008-03-01

    We identified a zebrafish caudal-related homeobox (cdx1b) gene, which shares syntenic conservation with both human and mouse Cdx1. Zebrafish cdx1b transcripts are maternally deposited. cdx1b is uniformly expressed in both epiblast and hypoblast cells from late gastrulation to the 1-2s stages and can be identified in the retinas, brain and somites during 18-22 hpf stages. After 28 hours of development, cdx1b is exclusively expressed in the developing intestine. Both antisense morpholino oligonucleotide-mediated knockdown and overexpression experiments were conducted to analyze cdx1b function. Hypoplastic development of the liver and pancreas and intestinal abnormalities were observed in 96 hpf cdx1b morphants. In 85% epiboly cdx1b morphants, twofold decreases in the respective numbers of gata5-, cas-, foxa2- and sox17-expressing endodermal precursors were identified. Furthermore, ectopic cdx1b expression caused substantial increases in the respective numbers of gata5-, cas-, foxa2- and sox17-expressing endodermal precursors and altered their distribution patterns in 85% epiboly injected embryos. Conserved Cdx1-binding motifs were identified in both gata5 and foxa2 genes by interspecific sequence comparisons. Cdx1b can bind to the Cdx1-binding motif located in intron 1 of the foxa2 gene based on an electrophoretic mobility shift assay. Co-injection of either zebrafish or mouse foxa2 mRNA with the cdx1b MO rescued the expression domains of ceruloplasmin in the liver of 53 hpf injected embryos. These results indicate that zebrafish cdx1b regulates foxa2 expression and may also modulate gata5 expression, thus affecting early endoderm formation. This study underscores a novel role of zebrafish cdx1b in the development of different digestive organs compared with its mammalian homologs. PMID:18234726

  9. Identification of Candidate Downstream Targets of TGFβ Signaling During Palate Development by Genome-Wide Transcript Profiling

    PubMed Central

    Suzuki, Akiko; Chai, Yang; Hacia, Joseph G.

    2013-01-01

    Nonsyndromic orofacial clefts are common birth defects whose etiology is influenced by complex genetic and environmental factors and gene–environment interactions. Although these risk factors are not yet fully elucidated, it is known that alterations in transforming growth factor-beta (TGFβ) signaling can cause craniofacial abnormalities, including cleft palate, in mammals. To elucidate the downstream targets of TGFβ signaling in palatogenesis, we analyzed the gene expression profiles of Tgfbr2fl/fl;Wnt1-Cre mouse embryos with cleft palate and other craniofacial deformities resulting from the targeted inactivation of the Tgfbr2 gene in their cranial neural crest (CNC) cells. Relative to controls, palatal tissues obtained from Tgfbr2fl/fl;Wnt1-Cre mouse embryos at embryonic day 14.5 (E14.5) of gestation have a robust gene expression signature reflective of known defects in CNC-derived mesenchymal cell proliferation. Groups of differentially expressed genes (DEGs) were involved in diverse cellular processes and components associated with orofacial clefting, including the extracellular matrix, cholesterol metabolism, ciliogenesis, and multiple signaling pathways. A subset of the DEGs are known or suspected to be associated with an increased risk of orofacial clefting in humans and/or genetically engineered mice. Based on bioinformatics analyses, we highlight the functional relationships among differentially expressed transcriptional regulators of palatogenesis as well as transcriptional factors not previously associated with this process. We suggest that gene expression profiling studies of mice with TGFβ signaling defects provide a valuable approach for identifying candidate mechanisms by which this pathway controls cell fate during palatogenesis and its role in the etiology of human craniofacial abnormalities. PMID:23060211

  10. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity.

    PubMed

    Bours, Ralph; Kohlen, Wouter; Bouwmeester, Harro J; van der Krol, Alexander

    2015-02-01

    We show that antiphase light-temperature cycles (negative day-night temperature difference [-DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under -DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under -DIF. Both auxin biosynthesis and auxin signaling were reduced during -DIF. In addition, expression of several ACC Synthase was reduced under -DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under -DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under -DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls.

  11. beta-Arrestin mediates beta1-adrenergic receptor-epidermal growth factor receptor interaction and downstream signaling.

    PubMed

    Tilley, Douglas G; Kim, Il-Man; Patel, Priyesh A; Violin, Jonathan D; Rockman, Howard A

    2009-07-24

    beta1-Adrenergic receptor (beta1AR) stimulation confers cardioprotection via beta-arrestin-de pend ent transactivation of epidermal growth factor receptors (EGFRs), however, the precise mechanism for this salutary process is unknown. We tested the hypothesis that the beta1AR and EGFR form a complex that differentially directs intracellular signaling pathways. beta1AR stimulation and EGF ligand can each induce equivalent EGFR phosphorylation, internalization, and downstream activation of ERK1/2, but only EGF ligand causes translocation of activated ERK to the nucleus, whereas beta1AR-stimulated/EGFR-transactivated ERK is restricted to the cytoplasm. beta1AR and EGFR are shown to interact as a receptor complex both in cell culture and endogenously in human heart, an interaction that is selective and undergoes dynamic regulation by ligand stimulation. Although catecholamine stimulation mediates the retention of beta1AR-EGFR interaction throughout receptor internalization, direct EGF ligand stimulation initiates the internalization of EGFR alone. Continued interaction of beta1AR with EGFR following activation is dependent upon C-terminal tail GRK phosphorylation sites of the beta1AR and recruitment of beta-arrestin. These data reveal a new signaling paradigm in which beta-arrestin is required for the maintenance of a beta1AR-EGFR interaction that can direct cytosolic targeting of ERK in response to catecholamine stimulation.

  12. miR-326 is downstream of Sonic hedgehog signaling and regulates the expression of Gli2 and smoothened.

    PubMed

    Jiang, Zhihua; Cushing, Leah; Ai, Xingbin; Lü, Jining

    2014-08-01

    Sonic hedgehog (Shh) is expressed and secreted from the embryonic lung epithelium and acts on the adjacent mesenchymal cells via its receptor Patched (Ptch)/Smoothened (Smo) and transcriptional effectors Gli proteins. Genetic studies showed that the Shh pathway plays critical roles in mouse lung development. However, little is known about microRNAs (miRNAs) downstream of Shh in embryonic lungs. Here we profiled miRNAs in embryonic lung cultures treated with cyclopamine, a specific Smo antagonist or with Smo agonist by next-generation of sequencing. We then performed functional screening to examine whether some of these miRNAs can modulate the induction of Gli-responsive luciferase by Shh treatment. These analyses revealed that expression of miR-326 and its host gene, Arrestin β1, is selectively enriched in embryonic lung mesenchymal cells and is specifically influenced by Shh activity. Furthermore, functional analyses showed that miR-326 acts as a negative modulator for Shh signaling by directly targeting Smo and Gli2. Together, these findings suggest a novel miR-326-negative feedback loop in regulating the activity of Shh signaling.

  13. H2O2 is required for UVB-induced EGF receptor and downstream signaling pathway activation.

    PubMed

    Peus, D; Meves, A; Vasa, R A; Beyerle, A; O'Brien, T; Pittelkow, M R

    1999-12-01

    Ultraviolet radiation (UVR)-induced receptor phosphorylation is increasingly recognized as a widely occurring phenomenon. However, the mechanisms, mediators, and sequence of events involved in this process remain ill-defined. We have recently shown that exposure of human keratinocytes to physiologic doses of ultraviolet B radiation (UVB) activates epidermal growth factor receptor (EGFR)/extracellular-regulated kinase 1 and 2 (ERK1/2), and p38 signaling pathways via reactive oxygen species. Here we demonstrate that UVB exposure increased intra- and extracellular H2O2 production rapidly in a time-dependent manner. An EGFR-specific monoclonal antibody abrogated EGFR autophosphorylation and markedly decreased the phosphorylation of ERK1/2 whereas p38 activation was unaffected. Overexpression of catalase strongly inhibited UVB-induced EGFR/ERK1/2 pathway activation. These findings establish the sequence of events after UVB irradiation: (i) H2O2 generation, (ii) EGFR phosphorylation, and (iii) ERK activation. Our results identify UVB-induced H2O2 as a second messenger that is required for EGFR and dependent downstream signaling pathways activation.

  14. Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59[C][W][OA

    PubMed Central

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C.; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P.; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C.M.; Pieterse, Corné M.J.

    2013-01-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCFCOI1, which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCFCOI1-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59. PMID:23435661

  15. T3-induced liver AMP-activated protein kinase signaling: Redox dependency and upregulation of downstream targets

    PubMed Central

    Videla, Luis A; Fernández, Virginia; Cornejo, Pamela; Vargas, Romina; Morales, Paula; Ceballo, Juan; Fischer, Alvaro; Escudero, Nicolás; Escobar, Oscar

    2014-01-01

    AIM: To investigate the redox dependency and promotion of downstream targets in thyroid hormone (T3)-induced AMP-activated protein kinase (AMPK) signaling as cellular energy sensor to limit metabolic stresses in the liver. METHODS: Fed male Sprague-Dawley rats were given a single ip dose of 0.1 mg T3/kg or T3 vehicle (NaOH 0.1 N; controls) and studied at 8 or 24 h after treatment. Separate groups of animals received 500 mg N-acetylcysteine (NAC)/kg or saline ip 30 min prior T3. Measurements included plasma and liver 8-isoprostane and serum β-hydroxybutyrate levels (ELISA), hepatic levels of mRNAs (qPCR), proteins (Western blot), and phosphorylated AMPK (ELISA). RESULTS: T3 upregulates AMPK signaling, including the upstream kinases Ca2+-calmodulin-dependent protein kinase kinase-β and transforming growth factor-β-activated kinase-1, with T3-induced reactive oxygen species having a causal role due to its suppression by pretreatment with the antioxidant NAC. Accordingly, AMPK targets acetyl-CoA carboxylase and cyclic AMP response element binding protein are phosphorylated, with the concomitant carnitine palmitoyltransferase-1α (CPT-1α) activation and higher expression of peroxisome proliferator-activated receptor-γ co-activator-1α and that of the fatty acid oxidation (FAO)-related enzymes CPT-1α, acyl-CoA oxidase 1, and acyl-CoA thioesterase 2. Under these conditions, T3 induced a significant increase in the serum levels of β-hydroxybutyrate, a surrogate marker for hepatic FAO. CONCLUSION: T3 administration activates liver AMPK signaling in a redox-dependent manner, leading to FAO enhancement as evidenced by the consequent ketogenic response, which may constitute a key molecular mechanism regulating energy dynamics to support T3 preconditioning against ischemia-reperfusion injury. PMID:25516653

  16. A Triple Helix-Loop-Helix/Basic Helix-Loop-Helix Cascade Controls Cell Elongation Downstream of Multiple Hormonal and Environmental Signaling Pathways in Arabidopsis[C][W

    PubMed Central

    Bai, Ming-Yi; Fan, Min; Oh, Eunkyoo; Wang, Zhi-Yong

    2012-01-01

    Environmental and endogenous signals, including light, temperature, brassinosteroid (BR), and gibberellin (GA), regulate cell elongation largely by influencing the expression of the paclobutrazol-resistant (PRE) family helix-loop-helix (HLH) factors, which promote cell elongation by interacting antagonistically with another HLH factor, IBH1. However, the molecular mechanism by which PREs and IBH1 regulate gene expression has remained unknown. Here, we show that IBH1 interacts with and inhibits a DNA binding basic helix-loop-helix (bHLH) protein, HBI1, in Arabidopsis thaliana. Overexpression of HBI1 increased hypocotyl and petiole elongation, whereas dominant inactivation of HBI1 and its homologs caused a dwarf phenotype, indicating that HBI1 is a positive regulator of cell elongation. In vitro and in vivo experiments showed that HBI1 directly bound to the promoters and activated two EXPANSIN genes encoding cell wall–loosening enzymes; HBI1’s DNA binding and transcriptional activities were inhibited by IBH1, but the inhibitory effects of IBH1 were abolished by PRE1. The results indicate that PREs activate the DNA binding bHLH factor HBI1 by sequestering its inhibitor IBH1. Altering each of the three factors affected plant sensitivities to BR, GA, temperature, and light. Our study demonstrates that PREs, IBH1, and HBI1 form a chain of antagonistic switches that regulates cell elongation downstream of multiple external and endogenous signals. PMID:23221598

  17. Human sperm liver receptor homolog-1 (LRH-1) acts as a downstream target of the estrogen signaling pathway.

    PubMed

    Montanaro, Daniela; Santoro, Marta; Carpino, Amalia; Perrotta, Ida; De Amicis, Francesca; Sirianni, Rosa; Rago, Vittoria; Gervasi, Serena; Aquila, Saveria

    2015-10-01

    In the last decade, the study of human sperm anatomy, at molecular level, has revealed the presence of several nuclear protein receptors. In this work, we examined the expression profile and the ultrastructural localization of liver receptor homolog-1 (LRH-1) in human spermatozoa. We evidenced the presence of the receptor by Western blotting and real time-RT-PCR. Furthermore, we used immunogold electron microscopy to investigate the sperm anatomical regions containing LRH-1. The receptor was mainly located in the sperm head, whereas its expression was reduced in the neck and across the tail. Interestingly, we observed the presence of LRH-1 in different stages of testicular germ cell development by immunohistochemistry. In somatic cells, it has been suggested that the LRH-1 pathway is tightly linked with estrogen signaling and the important role of estradiol has been widely studied in sperm cells. To assess the significance of LRH-1 in male gametes and to deepen understanding of the role of estrogens in these cells, we investigated important sperm features such as motility, survival and capacitation. Spermatozoa were treated with 10 nm estradiol and the inhibition of LRH-1 reversed the estradiol stimulatory action. From our data, we discovered that human spermatozoa can be considered a new site of expression for LRH-1, evidencing its role in sperm motility, survival and cholesterol efflux. Furthermore, we may presume that in spermatozoa the LRH-1 effects are closely integrated with the estrogen signaling, supporting LRH-1 as a downstream effector of the estradiol pathway on some sperm functions.

  18. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target

    PubMed Central

    Juhász, Tamás; Matta, Csaba; Katona, Éva; Somogyi, Csilla; Takács, Roland; Gergely, Pál; Csernoch, László; Panyi, Gyorgy; Tóth, Gábor; Reglődi, Dóra; Tamás, Andrea; Zákány, Róza

    2014-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2) were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote cartilage regeneration

  19. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to downstream signalling components.

    PubMed Central

    Leberer, E; Dignard, D; Harcus, D; Thomas, D Y; Whiteway, M

    1992-01-01

    In the yeast Saccharomyces cerevisiae the G-protein beta gamma subunits have been shown to trigger downstream events of the pheromone response pathway. We have identified a new gene, designated STE20, which encodes a protein kinase homologue with sequence similarity to protein kinase C, which is required to transmit the pheromone signal from G beta gamma to downstream components of the signalling pathway. Overproduction of the kinase suppresses the mating defect of dominant-negative G beta mutations providing genetic evidence for an interaction with G beta, and epistasis experiments show that this kinase functions after or at the same point as G beta gamma, but before any of the other currently identified components of the signalling pathway. This points to a potentially new mechanism of G-protein mediated signal transduction, the activation of a protein kinase through G beta gamma. Images PMID:1464311

  20. Mixtures of xenoestrogens disrupt estradiol-induced non-genomic signaling and downstream functions in pituitary cells

    PubMed Central

    2013-01-01

    Background Our study examines the effects of xenoestrogen mixtures on estradiol-induced non-genomic signaling and associated functional responses. Bisphenol-A, used to manufacture plastic consumer products, and nonylphenol, a surfactant, are estrogenic by a variety of assays, including altering many intracellular signaling pathways; bisphenol-S is now used as a bisphenol-A substitute. All three compounds contaminate the environment globally. We previously showed that bisphenol-S, bisphenol-A, and nonylphenol alone rapidly activated several kinases at very low concentrations in the GH3/B6/F10 rat pituitary cell line. Methods For each assay we compared the response of individual xenoestrogens at environmentally relevant concentrations (10-15 -10-7 M), to their mixture effects on 10-9 M estradiol-induced responses. We used a medium-throughput plate immunoassay to quantify phosphorylations of extracellular signal-regulated kinases (ERKs) and c-Jun-N-terminal kinases (JNKs). Cell numbers were assessed by crystal violet assay to compare the proliferative effects. Apoptosis was assessed by measuring caspase 8 and 9 activities via the release of the fluorescent product 7-amino-4-trifluoromethylcoumarin. Prolactin release was measured by radio-immunoassay after a 1 min exposure to all individual and combinations of estrogens. Results Individual xenoestrogens elicited phospho-activation of ERK in a non-monotonic dose- (fM-nM) and mostly oscillating time-dependent (2.5-60 min) manner. When multiple xenoestrogens were combined with nM estradiol, the physiologic estrogen’s response was attenuated. Individual bisphenol compounds did not activate JNK, while nonylphenol did; however, the combination of two or three xenoestrogens with estradiol generated an enhanced non-monotonic JNK dose–response. Estradiol and all xenoestrogen compounds induced cell proliferation individually, while the mixtures of these compounds with estradiol suppressed proliferation below that of the

  1. The β-catenin Axis Integrates Multiple Signals Downstream From RET/PTC and Leads to Cell Proliferation

    PubMed Central

    Castellone, Maria Domenica; De Falco, Valentina; Rao, Deva Magendra; Bellelli, Roberto; Muthu, Magesh; Basolo, Fulvio; Fusco, Alfredo; Gutkind, J. Silvio; Santoro, Massimo

    2009-01-01

    RET/PTC (RET/papillary thyroid carcinoma) oncoproteins result from the in-frame fusion of the RET receptor tyrosine kinase domain with protein dimerization motifs encoded by heterologous genes. Here we show that RET/PTC stimulates the β-catenin pathway. By stimulating PI3K/AKT and Ras/ERK, RET/PTC promotes GSK3β phosphorylation, thereby reducing GSK3β-mediated N-terminal β-catenin (Ser33/Ser37/Thr41) phosphorylation. In addition, RET/PTC physically interacts with β-catenin, and increases its phosphotyrosine content. The increased free pool of S/T(nonphospho)/Y(phospho)β-catenin is stabilized as a result of the reduced binding affinity for the Axin/GSK3β complex and activates the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factor. Moreover, through the ERK pathway, RET/PTC stimulates cAMP-responsive element binding protein (CREB) phosphorylation and promotes the formation of a β-catenin-CREB-CBP/p300 transcriptional complex. Transcriptional complexes containing β-catenin are recruited to the cyclin D1 promoter and a cyclin D1 gene promoter reporter is active in RET/PTC expressing cells. Silencing of β-catenin by siRNA inhibits proliferation of RET/PTC transformed PC thyrocytes, whereas a constitutively active form of β-catenin stimulates autonomous proliferation of thyroid cells. Thus, multiple signaling events downstream from RET/PTC converge on β-catenin to stimulate cell proliferation. PMID:19223551

  2. The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways.

    PubMed

    Kovacevic, Zaklina; Menezes, Sharleen V; Sahni, Sumit; Kalinowski, Danuta S; Bae, Dong-Hun; Lane, Darius J R; Richardson, Des R

    2016-01-15

    N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-β pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors. PMID:26534963

  3. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Song, Xiaojing; Zhang, Wen; Wang, Tiancheng; Jiang, Haichao; Zhang, Zecai; Fu, Yunhe; Yang, Zhengtao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Geniposide is a medicine isolated from Gardenia jasminoides Ellis, which is a traditional Chinese herb that is widely used in Asia for the treatment of inflammation, brain diseases, and hepatic disorders. Mastitis is a highly prevalent and important infectious disease. In this study, we used a lipopolysaccharide (LPS)-induced mouse mastitis model and LPS-stimulated primary mouse mammary epithelial cells (mMECs) to explore the anti-inflammatory effect and the mechanism of action of geniposide. Using intraductal injection of LPS as a mouse model of mastitis, we found that geniposide significantly reduced the infiltration of inflammatory cells and downregulated the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). To further investigate the anti-inflammatory mechanism, we used LPS-stimulated mMECs as an in vitro mastitis model. The results of enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) showed that geniposide inhibited the expression of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. Western blot analysis demonstrated that geniposide could suppress the phosphorylation of inhibitory kappa B (IκBα), nuclear factor-κB (NF-κB), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Geniposide also inhibited the expression of toll-like receptor 4 (TLR4) in the LPS-stimulated mMECs. In conclusion, geniposide exerted its anti-inflammatory effect by regulating TLR4 expression, which affected the downstream NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, geniposide may be a potential drug for mastitis therapy.

  4. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Song, Xiaojing; Zhang, Wen; Wang, Tiancheng; Jiang, Haichao; Zhang, Zecai; Fu, Yunhe; Yang, Zhengtao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Geniposide is a medicine isolated from Gardenia jasminoides Ellis, which is a traditional Chinese herb that is widely used in Asia for the treatment of inflammation, brain diseases, and hepatic disorders. Mastitis is a highly prevalent and important infectious disease. In this study, we used a lipopolysaccharide (LPS)-induced mouse mastitis model and LPS-stimulated primary mouse mammary epithelial cells (mMECs) to explore the anti-inflammatory effect and the mechanism of action of geniposide. Using intraductal injection of LPS as a mouse model of mastitis, we found that geniposide significantly reduced the infiltration of inflammatory cells and downregulated the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). To further investigate the anti-inflammatory mechanism, we used LPS-stimulated mMECs as an in vitro mastitis model. The results of enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) showed that geniposide inhibited the expression of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. Western blot analysis demonstrated that geniposide could suppress the phosphorylation of inhibitory kappa B (IκBα), nuclear factor-κB (NF-κB), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Geniposide also inhibited the expression of toll-like receptor 4 (TLR4) in the LPS-stimulated mMECs. In conclusion, geniposide exerted its anti-inflammatory effect by regulating TLR4 expression, which affected the downstream NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, geniposide may be a potential drug for mastitis therapy. PMID:24771071

  5. Examining the critical roles of human CB2 receptor residues Valine 3.32 (113) and Leucine 5.41 (192) in ligand recognition and downstream signaling activities.

    PubMed

    Alqarni, Mohammed; Myint, Kyaw Zeyar; Tong, Qin; Yang, Peng; Bartlow, Patrick; Wang, Lirong; Feng, Rentian; Xie, Xiang-Qun

    2014-09-26

    We performed molecular modeling and docking to predict a putative binding pocket and associated ligand-receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor.

  6. Effects of angiotensin II on leptin and downstream leptin signaling in the carotid body during acute intermittent hypoxia.

    PubMed

    Moreau, J M; Messenger, S A; Ciriello, J

    2015-12-01

    Angiotensin II (ANG II) is known to promote leptin production and secretion. Although ANG II type 1 receptors (AT1Rs) and leptin are expressed within the carotid body, it is not known whether AT1R and leptin are co-expressed in the same glomus cells nor if these peptides are affected within the carotid body by intermittent hypoxia (IH). This study was done to investigate whether ANG II modulated leptin signaling in the carotid body during IH. Rats were treated with captopril (Capt) or the AT1R blocker losartan (Los) in the drinking water for 3days prior to being exposed to IH (8h) or normoxia (8h). IH induced increases in plasma ANG II and leptin compared to normoxic controls. Capt treatment abolished the plasma leptin changes to IH, whereas Los treatment had no effect on the IH induced increase in plasma leptin. Additionally, carotid body glomus cells containing both leptin and the long form of the leptin receptor (OB-Rb) were found to co-express AT1R protein, and IH increased the expression of only AT1R protein within the carotid body in both Capt- and non-Capt-treated animals. On the other hand, Los treatment did not modify AT1R protein expression to IH. Additionally, Capt and Los treatment eliminated the elevated carotid body leptin protein expression, and the changes in phosphorylated signal transducer and activator of transcription three protein, the short form of the leptin receptor (OB-R100), suppressor of cytokine signaling 3, and phosphorylated extracellular-signal-regulated kinase 1/2 protein expression induced by IH. However, Capt elevated the expression of OB-Rb protein, whereas Los abolished the changes in OB-Rb protein to IH. These findings, taken together with the previous observation that ANG II modifies carotid body chemosensitivity, suggest that the increased circulating levels of ANG II and leptin induced by IH act at the carotid body to alter leptin signaling within the carotid body which in turn may influence chemoreceptor function.

  7. Tumor-related alternatively spliced Rac1b is not regulated by Rho-GDP dissociation inhibitors and exhibits selective downstream signaling.

    PubMed

    Matos, Paulo; Collard, John G; Jordan, Peter

    2003-12-12

    Rac1 is a member of the Rho family of small GTPases, which control signaling pathways that regulate actin cytoskeletal dynamics and gene transcription. Rac1 is activated by guanine nucleotide exchange factors and inactivated by GTPase-activating proteins. In addition, Rho-GDP dissociation inhibitors (Rho-GDIs) can inhibit Rac1 by sequestering it in the cytoplasm. We have found previously that colorectal tumors express an alternatively spliced variant, Rac1b, containing 19 additional amino acids following the switch II region. Here we characterized the regulation and downstream signaling of Rac1b. Although little Rac1b protein is expressed in cells, the amount of activated Rac1b protein often exceeds that of activated Rac1, suggesting that Rac1b contributes significantly to the downstream signaling of Rac in cells. The regulation of both Rac1 and Rac1b activities is dependent on guanine nucleotide exchange factors and GTPase-activating proteins, but the difference in their activation is mainly determined by the inability of Rac1b to interact with Rho-GDI. As a consequence, most Rac1b remains bound to the plasma membrane and is not sequestered by Rho-GDI in the cytoplasm. Unlike Rac1, activated Rac1b is unable to induce lamellipodia formation and is unable to bind and activate p21-activated protein kinase nor activate the downstream protein kinase JNK. However, both Rac1 and Rac1b are able to activate NFkappaB to the same extent. These data suggest that alternative splicing of Rac1 leads to a highly active Rac variant that differs in regulation and downstream signaling.

  8. Twist induces epithelial-mesenchymal transition and cell motility in breast cancer via ITGB1-FAK/ILK signaling axis and its associated downstream network.

    PubMed

    Yang, Jiajia; Hou, Yixuan; Zhou, Mingli; Wen, Siyang; Zhou, Jian; Xu, Liyun; Tang, Xi; Du, Yan-e; Hu, Ping; Liu, Manran

    2016-02-01

    Twist, a highly conserved basic Helix-Loop-Helix transcription factor, functions as a major regulator of epithelial-mesenchymal transition (EMT) and tumor metastasis. In different cell models, signaling pathways such as TGF-β, MAPK/ERK, WNT, AKT, JAK/STAT, Notch, and P53 have also been shown to play key roles in the EMT process, yet little is known about the signaling pathways regulated by Twist in tumor cells. Using iTRAQ-labeling combined with 2D LC-MS/MS analysis, we identified 194 proteins with significant changes of expression in MCF10A-Twist cells. These proteins reportedly play roles in EMT, cell junction organization, cell adhesion, and cell migration and invasion. ECM-receptor interaction, MAPK, PI3K/AKT, P53 and WNT signaling were found to be aberrantly activated in MCF10A-Twist cells. Ingenuity Pathways Analysis showed that integrin β1 (ITGB1) acts as a core regulator in linking integrin-linked kinase (ILK), Focal-adhesion kinase (FAK), MAPK/ERK, PI3K/AKT, and WNT signaling. Increased Twist and ITGB1 are associated with breast tumor progression. Twist transcriptionally regulates ITGB1 expression. Over-expression of ITGB1 or Twist in MCF10A led to EMT, activation of FAK/ILK, MAPK/ERK, PI3K/AKT, and WNT signaling. Knockdown of Twist or ITGB1 in BT549 and Hs578T cells decreased activity of FAK, ILK, and their downstream signaling, thus specifically impeding EMT and cell invasion. Knocking down ILK or inhibiting FAK, MAPK/ERK, or PI3K/AKT signaling also suppressed Twist-driven EMT and cell invasion. Thus, the Twist-ITGB1-FAK/ILK pathway and their downstream signaling network dictate the Twist-induced EMT process in human mammary epithelial cells and breast cancer cells. PMID:26693891

  9. The murine IgM secretory poly(A) site contains dual upstream and downstream elements which affect polyadenylation.

    PubMed Central

    Phillips, C; Virtanen, A

    1997-01-01

    Regulation of polyadenylation efficiency at the secretory poly(A) site plays an essential role in gene expression at the immunoglobulin (IgM) locus. At this poly(A) site the consensus AAUAAA hexanucleotide sequence is embedded in an extended AU-rich region and there are two downstream GU-rich regions which are suboptimally placed. As these sequences are involved in formation of the polyadenylation pre-initiation complex, we examined their function in vivo and in vitro . We show that the upstream AU-rich region can function in the absence of the consensus hexanucleotide sequence both in vivo and in vitro and that both GU-rich regions are necessary for full polyadenylation activity in vivo and for formation of polyadenylation-specific complexes in vitro . Sequence comparisons reveal that: (i) the dual structure is distinct for the IgM secretory poly(A) site compared with other immunoglobulin isotype secretory poly(A) sites; (ii) the presence of an AU-rich region close to the consensus hexanucleotide is evolutionarily conserved for IgM secretory poly(A) sites. We propose that the dual structure of the IgM secretory poly(A) site provides a flexibility to accommodate changes in polyadenylation complex components during regulation of polyadenylation efficiency. PMID:9171084

  10. Power Budget Analysis of Colorless Hybrid WDM/TDM-PON Scheme Using Downstream DPSK and Re-modulated Upstream OOK Data Signals

    NASA Astrophysics Data System (ADS)

    Khan, Yousaf; Afridi, Muhammad Idrees; Khan, Ahmed Mudassir; Rehman, Waheed Ur; Khan, Jahanzeb

    2014-09-01

    Hybrid wavelength-division multiplexed/time-division multiplexed passive optical access networks (WDM/TDM-PONs) combine the advance features of both WDM and TDM PONs to provide a cost-effective access network solution. We demonstrate and analyze the transmission performances and power budget issues of a colorless hybrid WDM/TDM-PON scheme. A 10-Gb/s downstream differential phase shift keying (DPSK) and remodulated upstream on/off keying (OOK) data signals are transmitted over 25 km standard single mode fiber. Simulation results show error free transmission having adequate power margins in both downstream and upstream transmission, which prove the applicability of the proposed scheme to future passive optical access networks. The power budget confines both the PON splitting ratio and the distance between the Optical Line Terminal (OLT) and Optical Network Unit (ONU).

  11. Common and Diverging Integrin Signals Downstream of Adhesion and Mechanical Stimuli and Their Interplay with Reactive Oxygen Species

    NASA Astrophysics Data System (ADS)

    Zeller, Kathrin Stephanie; Johansson, Staffan

    The integrin family of adhesion receptors regulates basic functions of cells, and the signals they induce are altered in tumor cells. In this review we discuss how different integrindependent signals are generated during cell adhesion and by physical forces acting on cells. We also describe how reactive oxygen species are integral parts of integrin signaling and highlight a few important questions in the field. Answers to those may improve our understanding of integrins and their role in the development of cancer.

  12. Analysis of signal transduction pathways during anoxia exposure in a marine snail: a role for p38 MAP kinase and downstream signaling cascades.

    PubMed

    Larade, Kevin; Storey, Kenneth B

    2006-01-01

    The responses of members of the three main MAPK families (ERK, JNK/SAPK, p38 MAPK), as well as selected peripheral pathways, were examined in hepatopancreas of the marine periwinkle, Littorina littorea, to determine if anoxia exposure influenced the total protein content or the phosphorylation status of any key components. The content of active phospho-p38 MAPK was 2-fold higher in hepatopancreas from anoxic snails relative to controls. A 1.7-fold increase in the amount of phospho-Hsp27 and a 1.3-fold increase in phospho-CREB correlated well with the changes in p38 MAPK phosphorylation. Activation of these factors via p38 MAPK may be vital to the reorganization of metabolic responses to anoxia in hepatopancreas. No changes in components of the JNK/SAPK and ERK pathways occurred and transcription factors involved in lipid metabolism did not appear to be affected by anoxia. The present analysis of a variety of signaling pathways has implicated the p38 MAPK pathway as a key anoxia-responsive signal transduction pathway in L. littorea. PMID:16326124

  13. Fusarium oxysporum f.sp. ciceri Race 1 Induced Redox State Alterations Are Coupled to Downstream Defense Signaling in Root Tissues of Chickpea (Cicer arietinum L.)

    PubMed Central

    Chatterjee, Moniya; Das, Sampa

    2013-01-01

    Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1) induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea–Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes. PMID:24058463

  14. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.).

    PubMed

    Gupta, Sumanti; Bhar, Anirban; Chatterjee, Moniya; Das, Sampa

    2013-01-01

    Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1) induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea-Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes.

  15. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos.

    PubMed

    Li, Junbo; Yue, Yunyun; Zhao, Qingshun

    2016-02-01

    Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.

  16. Reg-2, A Downstream Signaling Protein in the Ciliary Neurotrophic Factor Survival Pathway, Alleviates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Jiang, Hong; Tian, Ke-Wei; Zhang, Fan; Wang, Beibei; Han, Shu

    2016-01-01

    Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis (MS). PMID:27242448

  17. Effect of Redox Balance Alterations on Cellular Localization of LAT and Downstream T-Cell Receptor Signaling Pathways

    PubMed Central

    Gringhuis, Sonja I.; Papendrecht-van der Voort, Ellen A. M.; Leow, Angela; Levarht, E. W. Nivine; Breedveld, Ferdinand C.; Verweij, Cornelis L.

    2002-01-01

    The integral membrane protein linker for activation of T cells (LAT) is a central adapter protein in the T-cell receptor (TCR)-mediated signaling pathways. The cellular localization of LAT is extremely sensitive to intracellular redox balance alterations. Reduced intracellular levels of the antioxidant glutathione (GSH), a hallmark of chronic oxidative stress, resulted in the membrane displacement of LAT, abrogated TCR-mediated signaling and consequently hyporesponsiveness of T lymphocytes. The membrane displacement of LAT is accompanied by a considerable difference in the mobility of LAT upon native and nonreducing denaturing polyacrylamide gel electrophoresis analysis, a finding indicative of a conformational change. Targeted mutation of redox-sensitive cysteine residues within LAT created LAT mutants which remain membrane anchored under conditions of chronic oxidative stress. The expression of redox-insensitive LAT mutants allows for restoration of TCR-mediated signal transduction, whereas CD28-mediated signaling pathways remained impaired. These results are indicative that the membrane displacement of LAT as a result of redox balance alterations is a consequence of a conformational change interfering with the insertion of LAT into the plasma membrane. Conclusively, the data suggest a role for LAT as a crucial intermediate in the sensitivity of TCR signaling and hence T lymphocytes toward chronic oxidative stress. PMID:11756537

  18. Na(+)/H(+) exchanger 1 directly binds to calcineurin A and activates downstream NFAT signaling, leading to cardiomyocyte hypertrophy.

    PubMed

    Hisamitsu, Takashi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2012-08-01

    The calcineurin A (CaNA) subunit was identified as a novel binding partner of plasma membrane Na(+)/H(+) exchanger 1 (NHE1). CaN is a Ca(2+)-dependent phosphatase involved in many cellular functions, including cardiac hypertrophy. Direct binding of CaN to the (715)PVITID(720) sequence of NHE1, which resembles the consensus CaN-binding motif (PXIXIT), was observed. Overexpression of NHE1 promoted serum-induced CaN/nuclear factor of activated T cells (NFAT) signaling in fibroblasts, as indicated by enhancement of NFAT promoter activity and nuclear translocation, which was attenuated by NHE1 inhibitor. In neonatal rat cardiomyocytes, NHE1 stimulated hypertrophic gene expression and the NFAT pathway, which were inhibited by a CaN inhibitor, FK506. Importantly, CaN activity was strongly enhanced with increasing pH, so NHE1 may promote CaN/NFAT signaling via increased intracellular pH. Indeed, Na(+)/H(+) exchange activity was required for NHE1-dependent NFAT signaling. Moreover, interaction of CaN with NHE1 and clustering of NHE1 to lipid rafts were also required for this response. Based on these results, we propose that NHE1 activity may generate a localized membrane microdomain with higher pH, thereby sensitizing CaN to activation and promoting NFAT signaling. In cardiomyocytes, such signaling can be a pathway of NHE1-dependent hypertrophy.

  19. Comparative analyses of downstream signal transduction targets modulated after activation of the AT1 receptor by two β-arrestin-biased agonists.

    PubMed

    Santos, Geisa A; Duarte, Diego A; Parreiras-E-Silva, Lucas T; Teixeira, Felipe R; Silva-Rocha, Rafael; Oliveira, Eduardo B; Bouvier, Michel; Costa-Neto, Claudio M

    2015-01-01

    G protein-coupled receptors (GPCRs) are involved in essentially all physiological processes in mammals. The classical GPCR signal transduction mechanism occurs by coupling to G protein, but it has recently been demonstrated that interaction with β-arrestins leads to activation of pathways that are independent of the G protein pathway. Also, it has been reported that some ligands can preferentially activate one of these signaling pathways; being therefore called biased agonists for G protein or β-arrestin pathways. The angiotensin II (AngII) AT1 receptor is a prototype GPCR in the study of biased agonism due to the existence of well-known β-arrestin-biased agonists, such as [Sar(1), Ile(4), Ile(8)]-AngII (SII), and [Sar(1), D-Ala(8)]-AngII (TRV027). The aim of this study was to comparatively analyze the two above mentioned β-arrestin-biased agonists on downstream phosphorylation events and gene expression profiles. Our data reveal that activation of AT1 receptor by each ligand led to a diversity of activation profiles that is far broader than that expected from a simple dichotomy between "G protein-dependent" and "β-arrestin-dependent" signaling. We observed clusters of activation profiles common to AngII, SII, and TRV027, as well as downstream effector activation that are unique to AngII, SII, or TRV027. Analyses of β-arrestin conformational changes after AT1 receptor stimulation with SII or TRV027 suggests that the observed differences could account, at least partially, for the diversity of modulated targets observed. Our data reveal that, although the categorization "G protein-dependent" vs. "β-arrestin-dependent" signaling can be of pharmacological relevance, broader analyses of signaling pathways and downstream targets are necessary to generate an accurate activation profile for a given ligand. This may bring relevant information for drug development, as it may allow more refined comparison of drugs with similar mechanism of action and effects, but with

  20. Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling.

    PubMed

    Liu, Jessica A J; Wu, Ming-Hoi; Yan, Carol H; Chau, Bolton K H; So, Henry; Ng, Alvis; Chan, Alan; Cheah, Kathryn S E; Briscoe, James; Cheung, Martin

    2013-02-19

    Coordination of neural crest cell (NCC) induction and delamination is orchestrated by several transcription factors. Among these, Sry-related HMG box-9 (Sox9) and Snail2 have been implicated in both the induction of NCC identity and, together with phoshorylation, NCC delamination. How phosphorylation effects this function has not been clear. Here we show, in the developing chick neural tube, that phosphorylation of Sox9 on S64 and S181 facilitates its SUMOylation, and the phosphorylated forms of Sox9 are essential for trunk neural crest delamination. Both phosphorylation and to a lesser extent SUMOylation, of Sox9 are required to cooperate with Snail2 to promote delamination. Moreover, bone morphogenetic protein and canonical Wnt signaling induce phosphorylation of Sox9, thereby connecting extracellular signals with the delamination of NCCs. Together the data suggest a model in which extracellular signals initiate phosphorylation of Sox9 and its cooperation with Snail2 to induce NCC delamination. PMID:23382206

  1. Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling

    PubMed Central

    Liu, Jessica A. J.; Wu, Ming-Hoi; Yan, Carol H.; Chau, Bolton K. H.; So, Henry; Chan, Alan; Cheah, Kathryn S. E.; Briscoe, James; Cheung, Martin

    2013-01-01

    Coordination of neural crest cell (NCC) induction and delamination is orchestrated by several transcription factors. Among these, Sry-related HMG box-9 (Sox9) and Snail2 have been implicated in both the induction of NCC identity and, together with phoshorylation, NCC delamination. How phosphorylation effects this function has not been clear. Here we show, in the developing chick neural tube, that phosphorylation of Sox9 on S64 and S181 facilitates its SUMOylation, and the phosphorylated forms of Sox9 are essential for trunk neural crest delamination. Both phosphorylation and to a lesser extent SUMOylation, of Sox9 are required to cooperate with Snail2 to promote delamination. Moreover, bone morphogenetic protein and canonical Wnt signaling induce phosphorylation of Sox9, thereby connecting extracellular signals with the delamination of NCCs. Together the data suggest a model in which extracellular signals initiate phosphorylation of Sox9 and its cooperation with Snail2 to induce NCC delamination. PMID:23382206

  2. LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1.

    PubMed

    Zhang, Yanxiang; von Behrens, Inga; Zimmermann, Roman; Ludwig, Yvonne; Hey, Stefan; Hochholdinger, Frank

    2015-07-01

    Only little is known about target genes of auxin signalling downstream of the Aux/IAA-ARF module. In the present study, it has been demonstrated that maize lateral root primordia 1 (lrp1) encodes a transcriptional activator that is directly regulated by the Aux/IAA protein ROOTLESS WITH UNDETECTABLE MERISTEM 1 (RUM1). Expression of lrp1 is confined to early root primordia and meristems and is auxin-inducible. Based on its primary protein structure, LRP1 is predicted to be a transcription factor. This notion is supported by exclusive LRP1 localization in the nucleus and its ability to activate downstream gene activity. Based on the observation that lrp1 transcription is completely repressed in the semi-dominant gain of function mutant rum1, it was demonstrated that the lrp1 promoter is a direct target of RUM1 proteins. Subsequently, promoter activation assays indicated that RUM1 represses the expression of a GFP reporter fused to the native promoter of lrp1. Constitutive repression of lrp1 in rum1 mutants is a consequence of the stability of mutated rum1 proteins which cannot be degraded by the proteasome and thus constitutively bind to the lrp1 promoter and repress transcription. Taken together, the repression of the transcriptional activator lrp1 by direct binding of RUM1 to its promoter, together with specific expression of lrp1 in root meristems, suggests a function in maize root development via the RUM1-dependent auxin signalling pathway. PMID:25911745

  3. LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.

    PubMed

    Klermund, Carina; Ranftl, Quirin L; Diener, Julia; Bastakis, Emmanouil; Richter, René; Schwechheimer, Claus

    2016-03-01

    Stomata are pores that regulate the gas and water exchange between the environment and aboveground plant tissues, including hypocotyls, leaves, and stems. Here, we show that mutants of Arabidopsis thaliana LLM-domain B-GATA genes are defective in stomata formation in hypocotyls. Conversely, stomata formation is strongly promoted by overexpression of various LLM-domain B-class GATA genes, most strikingly in hypocotyls but also in cotyledons. Genetic analyses indicate that these B-GATAs act upstream of the stomata formation regulators SPEECHLESS(SPCH), MUTE, and SCREAM/SCREAM2 and downstream or independent of the patterning regulators TOO MANY MOUTHS and STOMATAL DENSITY AND DISTRIBUTION1 The effects of the GATAs on stomata formation are light dependent but can be induced in dark-grown seedlings by red, far-red, or blue light treatments. PHYTOCHROME INTERACTING FACTOR(PIF) mutants form stomata in the dark, and in this genetic background, GATA expression is sufficient to induce stomata formation in the dark. Since the expression of the LLM-domain B-GATAs GNC(GATA, NITRATE-INDUCIBLE, CARBON METABOLISM-INVOLVED) and GNC-LIKE/CYTOKININ-RESPONSIVE GATA FACTOR1 as well as that of SPCH is red light induced but the induction of SPCH is compromised in a GATA gene mutant background, we hypothesize that PIF- and light-regulated stomata formation in hypocotyls is critically dependent on LLM-domain B-GATA genes. PMID:26917680

  4. Nicotine enhances invasion and metastasis of human colorectal cancer cells through the nicotinic acetylcholine receptor downstream p38 MAPK signaling pathway.

    PubMed

    Xiang, Tao; Fei, Rushan; Wang, Zhe; Shen, Zhonglei; Qian, Jing; Chen, Wenbin

    2016-01-01

    Nicotine as a cigarette component is an established risk factor for colorectal cancer tumorigenesis. The downstream signaling pathways of nicotinic acetylcholine receptors (nAchRs) are believed to be responsible for the cellular effects. In the present study, we evaluated the effects and novel mechanisms for nicotine on the capacity for colorectal cancer cell invasion and metastasis. LOVO and SW620 colorectal cancer cells were stimulated with nicotine in vitro. A Transwell chamber model was applied to detect the capacity for tumor cell invasion. Assays for gelatin zymography and western blotting were applied to detect the activity and expression of metastasis-related matrix metalloproteinases (MMPs), respectively. Signal transduction was assessed by immunoblotting for the phosphorylation of relevant signal molecules and the application of pharmaceutical inhibitors. We showed that nicotine increased LOVO and SW620 colorectal cancer cell invasion along with enhanced activity and expression of MMP-1, -2 and -9. Nicotine increased phosphorylation of p38, ERK, Akt and PI3K p85 but had no effect on phosphorylation of JNK, or NF-κB. Of the pharmaceutical inhibitors of U0126 (ERK1/2 inhibitor), LY294002 (Akt activation inhibitor), SB239063 (p38 MAPK activation inhibitor) and hexamethonium (Hex) (nAchRs inhibitor), the cellular and molecular effects were reduced by the applications of SB239063 and Hex. We concluded that nicotine stimulates the invasion and metastasis of colon cancer cells in vitro via activation of the nAchRs and the p38 MAPK downstream signaling pathway. Therefore, p38 MAPK may have potential as a therapeutic target for smoking-related human colorectal cancer metastasis.

  5. Fyn is a downstream target of the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta-signaling pathway: regulation of tyrosine phosphorylation of Fyn by pleiotrophin.

    PubMed

    Pariser, Harold; Ezquerra, Laura; Herradon, Gonzalo; Perez-Pinera, Pablo; Deuel, Thomas F

    2005-07-01

    Pleiotrophin (PTN the protein, Ptn the gene) signals downstream targets through inactivation of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, disrupting the balanced activity of RPTPbeta/zeta and the activity of a constitutively active tyrosine kinase. As a consequence of the inactivation of RPTPbeta/zeta, PTN stimulates a sharp increase in the levels of tyrosine phosphorylation of the substrates of RPTPbeta/zeta in PTN-stimulated cells. We now report that the Src family member Fyn interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system. We further demonstrate that Fyn is a substrate of RPTPbeta/zeta, and that tyrosine phosphorylation of Fyn is sharply increased in PTN-stimulated cells. In previous studies, we demonstrated that beta-catenin and beta-adducin are targets of the PTN/RPTPbeta/zeta-signaling pathway and defined the mechanisms through which tyrosine phosphorylation of beta-catenin and beta-adducin disrupts cytoskeletal protein complexes. We conclude that Fyn is a downstream target of the PTN/RPTPbeta/zeta-signaling pathway and suggest that PTN coordinately regulates tyrosine phosphorylation of beta-catenin, beta-adducin, and Fyn through the PTN/RPTPbeta/zeta-signaling pathway and that together Fyn, beta-adducin, and beta-catenin may be effectors of the previously described PTN-stimulated disruption of cytoskeletal stability, increased cell plasticity, and loss of cell-cell adhesion that are characteristic of PTN-stimulated cells and a feature of many human malignant cells in which mutations have established constitutive expression of the Ptn gene.

  6. The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development

    PubMed Central

    Ducibella, Tom; Fissore, Rafael

    2008-01-01

    Reviews in Developmental Biology have covered the pathways that generate the all-important intracellular calcium (Ca2+) signal at fertilization (Miyazaki et al., 1993a; Runft et al., 2002) and the different temporal responses of Ca2+ in many organisms (Stricker, 1999). Those reviews raise the importance of identifying how Ca2+ causes the events of egg activation (EEA) and to what extent these temporal Ca2+ responses encode developmental information. This review covers recent studies that have analyzed how these Ca2+ signals are interpreted by specific proteins, and how these proteins regulate various EEA responsible for the onset of development. Many of these proteins are protein kinases (CaMKII, PKC, MPF, MAPK, MLCK) whose activity is directly or indirectly regulated by Ca2+, and whose amount increases during late oocyte maturation. We cover biochemical progress in defining the signaling pathways between Ca2+ and the EEA, as well as discuss how oscillatory or multiple Ca2+ signals are likely to have specific advantages biochemically and/or developmentally. These emerging concepts are put into historical context, emphasizing that key contributions have come from many organisms. The intricate interdependence of Ca2+, Ca2+-dependent proteins, and the EEA raise many new questions for future investigations that will provide insight into the extent to which fertilization-associated signaling has long-range implications for development. In addition, answers to these questions should be beneficial to establishing parameters of egg quality for human and animal IVF, as well as improving egg activation protocols for somatic cell nuclear transfer to generate stem cells and save endangered species. PMID:18255053

  7. cis-acting sequences located downstream of the human immunodeficiency virus type 1 promoter affect its chromatin structure and transcriptional activity.

    PubMed

    el Kharroubi, A; Martin, M A

    1996-06-01

    We have examined the roles of AP-1, AP-3-like, DBF1, and Sp1 binding sites, which are located downstream of the human immunodeficiency virus type 1 (HIV-1) promoter, in regulating basal transcriptional activity directed by the integrated viral long terminal repeat (LTR). Point mutations affecting all four of these elements functionally inactivated the HIV-1 LTR when it was constrained in a chromatin configuration. Analyses of the chromatin structures of the transcriptionally active wild-type and inactive mutated HIV-1 promoters revealed several differences. In the active promoter, the 3' half of the U3 region, including the basal promoter, the enhancer, and the putative upstream regulatory sequences are situated within a nuclease-hypersensitive region. However, the far upstream U3 region appears to be packaged into a nuclease-resistant nucleosomal structure, whereas the R, U5, and gag leader sequences are associated with a region of altered chromatin that is sensitive to restriction endonucleases. In the inactive template, only the basal promoter and enhancer element remain sensitive to nucleases, and the adjacent upstream and downstream regions are incorporated into nuclease-resistant nucleosomal structures. Taken together, these results indicate that the chromatin structure of the integrated HIV-1 LTR plays a critical role in modulating basal transcriptional activity. PMID:8649407

  8. The transcriptional repressor Blimp-1 acts downstream of BMP signaling to generate primordial germ cells in the cricket Gryllus bimaculatus.

    PubMed

    Nakamura, Taro; Extavour, Cassandra G

    2016-01-15

    Segregation of the germ line from the soma is an essential event for transmission of genetic information across generations in all sexually reproducing animals. Although some well-studied systems such as Drosophila and Xenopus use maternally inherited germ determinants to specify germ cells, most animals, including mice, appear to utilize zygotic inductive cell signals to specify germ cells during later embryogenesis. Such inductive germ cell specification is thought to be an ancestral trait of Bilateria, but major questions remain as to the nature of an ancestral mechanism to induce germ cells, and how that mechanism evolved. We previously reported that BMP signaling-based germ cell induction is conserved in both the mouse Mus musculus and the cricket Gryllus bimaculatus, which is an emerging model organism for functional studies of induction-based germ cell formation. In order to gain further insight into the functional evolution of germ cell specification, here we examined the Gryllus ortholog of the transcription factor Blimp-1 (also known as Prdm1), which is a widely conserved bilaterian gene known to play a crucial role in the specification of germ cells in mice. Our functional analyses of the Gryllus Blimp-1 ortholog revealed that it is essential for Gryllus primordial germ cell development, and is regulated by upstream input from the BMP signaling pathway. This functional conservation of the epistatic relationship between BMP signaling and Blimp-1 in inductive germ cell specification between mouse and cricket supports the hypothesis that this molecular mechanism regulated primordial germ cell specification in a last common bilaterian ancestor.

  9. Src-Like adaptor protein (SLAP) binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling.

    PubMed

    Kazi, Julhash U; Rönnstrand, Lars

    2012-01-01

    Fms-like tyrosine kinase 3 (Flt3) is an important growth factor receptor in hematopoiesis. Gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia (AML). Src-like adaptor protein (SLAP) is an interaction partner of the E3 ubiquitin ligase Cbl that can regulate receptor tyrosine kinases-mediated signal transduction. In this study, we analyzed the role of SLAP in signal transduction downstream of the type III receptor tyrosine kinase Flt3. The results show that upon ligand stimulation SLAP stably associates with Flt3 through multiple phosphotyrosine residues in Flt3. SLAP constitutively interacts with oncogenic Flt3-ITD and co-localizes with Flt3 near the cell membrane. This association initiates Cbl-dependent receptor ubiquitination and degradation. Depletion of SLAP expression by shRNA in Flt3-transfected Ba/F3 cells resulted in a weaker activation of FL-induced PI3K-Akt and MAPK signaling. Meta-analysis of microarray data from patient samples suggests that SLAP mRNA is differentially expressed in different cancers and its expression was significantly increased in patients carrying the Flt3-ITD mutation. Thus, our data suggest a novel role of SLAP in different cancers and in modulation of receptor tyrosine kinase signaling apart from its conventional role in regulation of receptor stability.

  10. The Osr1 and Osr2 genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of Wnt2b to maintain pectoral fin development.

    PubMed

    Neto, Ana; Mercader, Nadia; Gómez-Skarmeta, José Luis

    2012-01-01

    Vertebrate odd-skipped related genes (Osr) have an essential function during the formation of the intermediate mesoderm (IM) and the kidney structures derived from it. Here, we show that these genes are also crucial for limb bud formation in the adjacent lateral plate mesoderm (LPM). Reduction of zebrafish Osr function impairs fin development by the failure of tbx5a maintenance in the developing pectoral fin bud. Osr morphant embryos show reduced wnt2b expression, and increasing Wnt signaling in Osr morphant embryos partially rescues tbx5a expression. Thus, Osr genes control limb bud development in a non-cell-autonomous manner, probably through the activation of Wnt2b. Finally, we demonstrate that Osr genes are downstream targets of retinoic acid (RA) signaling. Therefore, Osr genes act as a relay within the genetic cascade of fin bud formation: by controlling the expression of the signaling molecule Wnt2ba in the IM they play an essential function transmitting the RA signaling originated in the somites to the LPM.

  11. Spargel/dPGC-1 is a new downstream effector in the insulin-TOR signaling pathway in Drosophila.

    PubMed

    Mukherjee, Subhas; Duttaroy, Atanu

    2013-10-01

    Insulin and target of rapamycin (TOR) signaling pathways converge to maintain growth so a proportionate body form is attained. Insufficiency in either insulin or TOR results in developmental growth defects due to low ATP level. Spargel is the Drosophila homolog of PGC-1, which is an omnipotent transcriptional coactivator in mammals. Like its mammalian counterpart, Spargel/dPGC-1 is recognized for its role in energy metabolism through mitochondrial biogenesis. An earlier study demonstrated that Spargel/dPGC-1 is involved in the insulin-TOR signaling, but a comprehensive analysis is needed to understand exactly which step of this pathway Spargel/PGC-1 is essential. Using genetic epistasis analysis, we demonstrated that a Spargel gain of function can overcome the TOR and S6K mediated cell size and cell growth defects in a cell autonomous manner. Moreover, the tissue-restricted phenotypes of TOR and S6k mutants are rescued by Spargel overexpression. We have further elucidated that Spargel gain of function sets back the mitochondrial numbers in growth-limited TOR mutant cell clones, which suggests a possible mechanism for Spargel action on cells and tissue to attain normal size. Finally, excess Spargel can ameliorate the negative effect of FoxO overexpression only to a limited extent, which suggests that Spargel does not share all of the FoxO functions and consequently cannot significantly rescue the FoxO phenotypes. Together, our observation established that Spargel/dPGC-1 is indeed a terminal effector in the insulin-TOR pathway operating below TOR, S6K, Tsc, and FoxO. This led us to conclude that Spargel should be incorporated as a new member of this growth-signaling pathway.

  12. FOXM1 is a downstream target of LPA and YAP oncogenic signaling pathways in high grade serous ovarian cancer.

    PubMed

    Fan, Qipeng; Cai, Qingchun; Xu, Yan

    2015-09-29

    Lysophosphatidic acid (LPA), a prototypical ligand for G protein coupled receptors, and Forkhead box protein M1 (FOXM1), a transcription factor that regulates expression of a wide array of genes involved in cancer initiation and progression, are two important oncogenic signaling molecules in human epithelial ovarian cancers (EOC). We conducted in vitro mechanistic studies using pharmacological inhibitors, genetic forms of the signaling molecules, and RNAi-mediated gene knock-down to uncover the molecular mechanisms of how these two molecules interact in EOC cells. Additionally, in vivo mouse studies were performed to confirm the functional involvement of FOXM1 in EOC tumor formation and progression. We show for the first time that LPA up-regulates expression of active FOXM1 splice variants in a time- and dose-dependent manner in the human EOC cell lines OVCA433, CAOV3, and OVCAR5. Gi-PI3K-AKT and G12/13-Rho-YAP signaling pathways were both involved in the LPA receptor (LPA1-3) mediated up-regulation of FOXM1 at the transcriptional level. In addition, down-regulation of FOXM1 in CAOV3 xenografts significantly reduced tumor and ascites formation, metastasis, and expression of FOXM1 target genes involved in cell proliferation, migration, or invasion. Collectively, our data link the oncolipid LPA, the oncogene YAP, and the central regulator of cell proliferation/mutagenesis FOXM1 in EOC cells. Moreover, these results provide further support for the importance of these pathways as potential therapeutic targets in EOC. PMID:26299613

  13. Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF.

    PubMed

    Tamm, Christoffer; Böwer, Nathalie; Annerén, Cecilia

    2011-04-01

    The cytoplasmic tyrosine kinase Yes has previously been shown to have an important role in maintaining mouse and human embryonic stem (ES) self-renewal through an unknown pathway downstream of leukemia inhibitory factor (LIF) and one or more factors in serum. Here, we show that TEAD2 and its transcriptional co-activator, the Yes-associated protein YAP, co-operate in a signaling pathway downstream of Yes. We show that YAP, TEAD2 and Yes are highly expressed in self-renewing ES cells, are activated by LIF and serum, and are downregulated when cells are induced to differentiate. We also demonstrate that kinase-active Yes binds and phosphorylates YAP, and activates YAP-TEAD2-dependent transcription. We found that TEAD2 associates directly with the Oct-3/4 promoter. Moreover, activation of the Yes pathway induced activity of the Oct-3/4 and Nanog promoters, whereas suppression of this pathway inhibited promoter activity. Nanog, in turn, suppressed TEAD2-dependent promoter activity, whereas siRNA-mediated knockdown of Nanog induced it, suggesting a negative regulatory feedback loop. Episomal supertransfection of cells with inhibitory TEAD2-EnR induced endodermal differentiation, which suggests that this pathway is necessary for ES cell maintenance.

  14. Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth

    PubMed Central

    Boisson-Dernier, Aurélien; Franck, Christina Maria; Lituiev, Dmytro S.; Grossniklaus, Ueli

    2015-01-01

    Growing plant cells need to rigorously coordinate external signals with internal processes. For instance, the maintenance of cell wall (CW) integrity requires the coordination of CW sensing with CW remodeling and biosynthesis to avoid growth arrest or integrity loss. Despite the involvement of receptor-like kinases (RLKs) of the Catharanthus roseus RLK1-like (CrRLK1L) subfamily and the reactive oxygen species-producing NADPH oxidases, it remains largely unknown how this coordination is achieved. ANXUR1 (ANX1) and ANX2, two redundant members of the CrRLK1L subfamily, are required for tip growth of the pollen tube (PT), and their closest homolog, FERONIA, controls root-hair tip growth. Previously, we showed that ANX1 overexpression mildly inhibits PT growth by oversecretion of CW material, whereas pollen tubes of anx1 anx2 double mutants burst spontaneously after germination. Here, we report the identification of suppressor mutants with improved fertility caused by the rescue of anx1 anx2 pollen tube bursting. Mapping of one these mutants revealed an R240C nonsynonymous substitution in the activation loop of a receptor-like cytoplasmic kinase (RLCK), which we named MARIS (MRI). We show that MRI is a plasma membrane-localized member of the RLCK-VIII subfamily and is preferentially expressed in both PTs and root hairs. Interestingly, mri-knockout mutants display spontaneous PT and root-hair bursting. Moreover, expression of the MRIR240C mutant, but not its wild-type form, partially rescues the bursting phenotypes of anx1 anx2 PTs and fer root hairs but strongly inhibits wild-type tip growth. Thus, our findings identify a novel positive component of the CrRLK1L-dependent signaling cascade that coordinates CW integrity and tip growth. PMID:26378127

  15. Trastuzumab as a preoperative monotherapy does not inhibit HER2 downstream signaling in HER2-positive breast cancer

    PubMed Central

    Lion, Maëva; Harlé, Alexandre; Salleron, Julia; Ramacci, Carole; Campone, Mario; Merlin, Jean-Louis

    2016-01-01

    Human epidermal growth factor 2 (HER2) is overexpressed in 15–20% of breast carcinomas. The overexpression of HER2 was previously associated with a poor prognosis until the development of the first anti-HER2 therapy, trastuzumab, which drastically improves the prognosis of HER2-overexpressing breast cancers. However, its mechanism of action remains not fully understood. Several studies have proposed that the behavior and mechanism of action of trastuzumab may be drastically altered in vitro and in vivo. The present study assesses the ability of trastuzumab to inhibit the phosphorylation of the key-proteins of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin and Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways in vitro, in breast cancer cell lines and in tumor biopsies obtained from patients treated with trastuzumab preoperative monotherapy as part of the Unicancer GEP04 RADHER phase II clinical trial. HER2-positive SKBR3 and HER2-negative MCF-7 cell lines were exposed to trastuzumab for 72 h. In total, 41 patients received trastuzumab alone for 6 weeks of preoperative treatment. Biopsies were collected at the baseline and at surgery. A total of 19 pairs of associated baseline and surgery tumor specimens were eligible for protein extraction and comparative phosphoprotein expression analysis, prior to and subsequent to treatment. The expression of phosphoproteins was quantitatively assessed using a multiplex immunoassay. In the SKBR3 cell line, a statistically significant decrease of the expression level of phosphorylated (p-)AKT, p-ribosomal protein S6 kinase B1, p-extracellular signal regulated kinase 1/2 and p-mitogen-activated protein kinase kinase 1 was observed after exposure to trastuzumab. In contrast, no statistically significant variations for levels expression of these phosphoproteins were observed in patients following treatment. The lack of downregulation of PI3K and MAPK pathways could probably

  16. Trastuzumab as a preoperative monotherapy does not inhibit HER2 downstream signaling in HER2-positive breast cancer

    PubMed Central

    Lion, Maëva; Harlé, Alexandre; Salleron, Julia; Ramacci, Carole; Campone, Mario; Merlin, Jean-Louis

    2016-01-01

    Human epidermal growth factor 2 (HER2) is overexpressed in 15–20% of breast carcinomas. The overexpression of HER2 was previously associated with a poor prognosis until the development of the first anti-HER2 therapy, trastuzumab, which drastically improves the prognosis of HER2-overexpressing breast cancers. However, its mechanism of action remains not fully understood. Several studies have proposed that the behavior and mechanism of action of trastuzumab may be drastically altered in vitro and in vivo. The present study assesses the ability of trastuzumab to inhibit the phosphorylation of the key-proteins of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin and Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways in vitro, in breast cancer cell lines and in tumor biopsies obtained from patients treated with trastuzumab preoperative monotherapy as part of the Unicancer GEP04 RADHER phase II clinical trial. HER2-positive SKBR3 and HER2-negative MCF-7 cell lines were exposed to trastuzumab for 72 h. In total, 41 patients received trastuzumab alone for 6 weeks of preoperative treatment. Biopsies were collected at the baseline and at surgery. A total of 19 pairs of associated baseline and surgery tumor specimens were eligible for protein extraction and comparative phosphoprotein expression analysis, prior to and subsequent to treatment. The expression of phosphoproteins was quantitatively assessed using a multiplex immunoassay. In the SKBR3 cell line, a statistically significant decrease of the expression level of phosphorylated (p-)AKT, p-ribosomal protein S6 kinase B1, p-extracellular signal regulated kinase 1/2 and p-mitogen-activated protein kinase kinase 1 was observed after exposure to trastuzumab. In contrast, no statistically significant variations for levels expression of these phosphoproteins were observed in patients following treatment. The lack of downregulation of PI3K and MAPK pathways could probably

  17. Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a.

    PubMed

    Falgout, B; Chanock, R; Lai, C J

    1989-05-01

    Expression of dengue virus gene products involves specific proteolytic cleavages of a precursor polyprotein. To study the flanking sequences required for expression of the dengue virus nonstructural glycoprotein NS1, we constructed a series of recombinant vaccinia viruses that contain the coding sequence for NS1 in combination with various lengths of upstream and downstream sequences. The NS1 products expressed by these viruses in infected CV-1 cells were immune precipitated and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The data show that the 24-residue hydrophobic sequence preceding NS1 was necessary and sufficient for the production of glycosylated NS1 and that this sequence was cleaved from NS1 in the absence of most dengue virus proteins. This finding is consistent with previous proposals that this hydrophobic sequence serves as an N-terminal signal sequence that is cleaved by signal peptidase. The cleavage between the C terminus of NS1 and the downstream protein NS2a occurred when the complete NS2a was present. Recombinant viruses containing NS1 plus 15 or 49% of NS2a produced proteins larger than authentic NS1, indicating that the cleavage between NS1 and NS2a had not occurred. Failure of cleavage was not corrected by coinfection with a recombinant virus capable of cleavage. These results suggest that NS2a may be a cis-acting protease that cleaves itself from NS1, or NS2a may provide sequences for recognition by a specific cellular protease that cleaves at the NS1-NS2a junction.

  18. NRG1 and KITL signal downstream of retinoic acid in the germline to support soma-free syncytial growth of differentiating spermatogonia

    PubMed Central

    Chapman, KM; Medrano, GA; Chaudhary, J; Hamra, FK

    2015-01-01

    Defined culture systems supporting spermatogonial differentiation will provide experimental platforms to study spermatogenesis. However, germline-intrinsic signaling mechanisms sufficient to support spermatogonial differentiation without somatic cells remain largely undefined. Here we analyzed EGF superfamily receptor and ligand diversity in rat testis cells and delineated germline-intrinsic signaling via an ERBB3 co-transducer, ERBB2, as essential for retinoic acid-induced syncytial growth by differentiating spermatogonia. Similar to the ERBB2/3 agonist NRG1, we found that KIT Ligand (KITL) robustly supported spermatogonial differentiation without serum or somatic cells. ERBB2 inhibitors failed to disrupt KITL-dependent spermatogonial development, and KITL prevented ERBB3-deficient spermatogonial degeneration upon differentiation. Thus we report that NRG1 and KITL activate alternative pathways downstream of retinoic acid signaling in the germline that are essential for stem cells to undergo premeiotic steps of spermatogenesis in culture. Robust serum/soma-free spermatogonial differentiation opens new doors to study mammalian germ cell biology in culture and to discover factors that can drive meiotic progression in vitro. PMID:26500786

  19. Aquaporin-3 Controls Breast Cancer Cell Migration by Regulating Hydrogen Peroxide Transport and Its Downstream Cell Signaling.

    PubMed

    Satooka, Hiroki; Hara-Chikuma, Mariko

    2016-04-01

    Most breast cancer mortality is due to clinical relapse associated with metastasis. CXCL12/CXCR4-dependent cell migration is a critical process in breast cancer progression; however, its underlying mechanism remains to be elucidated. Here, we show that the water/glycerol channel protein aquaporin-3 (AQP3) is required for CXCL12/CXCR4-dependent breast cancer cell migration through a mechanism involving its hydrogen peroxide (H2O2) transport function. Extracellular H2O2, produced by CXCL12-activated membrane NADPH oxidase 2 (Nox2), was transported into breast cancer cells via AQP3. Transient H2O2 accumulation was observed around the membrane during CXCL12-induced migration, which may be facilitated by the association of AQP3 with Nox2. Intracellular H2O2 then oxidized PTEN and protein tyrosine phosphatase 1B (PTP1B) followed by activation of the Akt pathway. This contributed to directional cell migration. The expression level of AQP3 in breast cancer cells was related to their migration ability both in vitro and in vivo through CXCL12/CXCR4- or H2O2-dependent pathways. Coincidentally, spontaneous metastasis of orthotopic xenografts to the lung was reduced upon AQP3 knockdown. These findings underscore the importance of AQP3-transported H2O2 in CXCL12/CXCR4-dependent signaling and migration in breast cancer cells and suggest that AQP3 has potential as a therapeutic target for breast cancer.

  20. Id4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development.

    PubMed

    Ahuja, Suchit; Dogra, Deepika; Stainier, Didier Y R; Reischauer, Sven

    2016-04-01

    The atrioventricular canal (AVC) connects the atrial and ventricular chambers of the heart and its formation is critical for the development of the cardiac valves, chamber septation and formation of the cardiac conduction system. Consequently, problems in AVC formation can lead to congenital defects ranging from cardiac arrhythmia to incomplete cardiac septation. While our knowledge about early heart tube formation is relatively comprehensive, much remains to be investigated about the genes that regulate AVC formation. Here we identify a new role for the basic helix-loop-helix factor Id4 in zebrafish AVC valve development and function. id4 is first expressed in the AVC endocardium and later becomes more highly expressed in the atrial chamber. TALEN induced inactivation of id4 causes retrograde blood flow at the AV canal under heat induced stress conditions, indicating defects in AV valve function. At the molecular level, we found that id4 inactivation causes misexpression of several genes important for AVC and AV valve formation including bmp4 and spp1. We further show that id4 appears to control the number of endocardial cells that contribute to the AV valves by regulating Wnt signaling in the developing AVC endocardium. PMID:26892463

  1. Gbx2 is required for the morphogenesis of the mouse inner ear: a downstream candidate of hindbrain signaling.

    PubMed

    Lin, Zhengshi; Cantos, Raquel; Patente, Maria; Wu, Doris K

    2005-05-01

    Gbx2 is a homeobox-containing transcription factor that is related to unplugged in Drosophila. In mice, Gbx2 and Otx2 negatively regulate each other to establish the mid-hindbrain boundary in the neural tube. Here, we show that Gbx2 is required for the development of the mouse inner ear. Absence of the endolymphatic duct and swelling of the membranous labyrinth are common features in Gbx2-/- inner ears. More severe mutant phenotypes include absence of the anterior and posterior semicircular canals, and a malformed saccule and cochlear duct. However, formation of the lateral semicircular canal and its ampulla is usually unaffected. These inner ear phenotypes are remarkably similar to those reported in kreisler mice, which have inner ear defects attributed to defects in the hindbrain. Based on gene expression analyses, we propose that activation of Gbx2 expression within the inner ear is an important pathway whereby signals from the hindbrain regulate inner ear development. In addition, our results suggest that Gbx2 normally promotes dorsal fates such as the endolymphatic duct and semicircular canals by positively regulating genes such as Wnt2b and Dlx5. However, Gbx2 promotes ventral fates such as the saccule and cochlear duct, possibly by restricting Otx2 expression. PMID:15829521

  2. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling.

    PubMed

    Villalonga, P; López-Alcalá, C; Bosch, M; Chiloeches, A; Rocamora, N; Gil, J; Marais, R; Marshall, C J; Bachs, O; Agell, N

    2001-11-01

    Activation of Ras induces a variety of cellular responses depending on the specific effector activated and the intensity and amplitude of this activation. We have previously shown that calmodulin is an essential molecule in the down-regulation of the Ras/Raf/MEK/extracellularly regulated kinase (ERK) pathway in cultured fibroblasts and that this is due at least in part to an inhibitory effect of calmodulin on Ras activation. Here we show that inhibition of calmodulin synergizes with diverse stimuli (epidermal growth factor, platelet-derived growth factor, bombesin, or fetal bovine serum) to induce ERK activation. Moreover, even in the absence of any added stimuli, activation of Ras by calmodulin inhibition was observed. To identify the calmodulin-binding protein involved in this process, calmodulin affinity chromatography was performed. We show that Ras and Raf from cellular lysates were able to bind to calmodulin. Furthermore, Ras binding to calmodulin was favored in lysates with large amounts of GTP-bound Ras, and it was Raf independent. Interestingly, only one of the Ras isoforms, K-RasB, was able to bind to calmodulin. Furthermore, calmodulin inhibition preferentially activated K-Ras. Interaction between calmodulin and K-RasB is direct and is inhibited by the calmodulin kinase II calmodulin-binding domain. Thus, GTP-bound K-RasB is a calmodulin-binding protein, and we suggest that this binding may be a key element in the modulation of Ras signaling.

  3. Gbx2 is required for the morphogenesis of the mouse inner ear: a downstream candidate of hindbrain signaling.

    PubMed

    Lin, Zhengshi; Cantos, Raquel; Patente, Maria; Wu, Doris K

    2005-05-01

    Gbx2 is a homeobox-containing transcription factor that is related to unplugged in Drosophila. In mice, Gbx2 and Otx2 negatively regulate each other to establish the mid-hindbrain boundary in the neural tube. Here, we show that Gbx2 is required for the development of the mouse inner ear. Absence of the endolymphatic duct and swelling of the membranous labyrinth are common features in Gbx2-/- inner ears. More severe mutant phenotypes include absence of the anterior and posterior semicircular canals, and a malformed saccule and cochlear duct. However, formation of the lateral semicircular canal and its ampulla is usually unaffected. These inner ear phenotypes are remarkably similar to those reported in kreisler mice, which have inner ear defects attributed to defects in the hindbrain. Based on gene expression analyses, we propose that activation of Gbx2 expression within the inner ear is an important pathway whereby signals from the hindbrain regulate inner ear development. In addition, our results suggest that Gbx2 normally promotes dorsal fates such as the endolymphatic duct and semicircular canals by positively regulating genes such as Wnt2b and Dlx5. However, Gbx2 promotes ventral fates such as the saccule and cochlear duct, possibly by restricting Otx2 expression.

  4. Isolation of Fully Human Antagonistic RON Antibodies Showing Efficient Block of Downstream Signaling and Cell Migration1

    PubMed Central

    Gunes, Zeynep; Zucconi, Adriana; Cioce, Mario; Meola, Annalisa; Pezzanera, Monica; Acali, Stefano; Zampaglione, Immacolata; De Pratti, Valeria; Bova, Luca; Talamo, Fabio; Demartis, Anna; Monaci, Paolo; La Monica, Nicola; Ciliberto, Gennaro; Vitelli, Alessandra

    2011-01-01

    RON belongs to the c-MET family of receptor tyrosine kinases. As its well-known family member MET, RON and its ligand macrophage-stimulating protein have been implicated in the progression and metastasis of tumors and have been shown to be overexpressed in cancer. We generated and tested a large number of human monoclonal antibodies (mAbs) against human RON. Our screening yielded three high-affinity antibodies that efficiently block ligand-dependent intracellular AKT and MAPK signaling. This effect correlates with the strong reduction of ligand-activated migration of T47D breast cancer cell line. By cross-competition experiments, we showed that the antagonistic antibodies fall into three distinct epitope regions of the RON extracellular Sema domain. Notably, no inhibition of tumor growth was observed in different epithelial tumor xenografts in nude mice with any of the antibodies. These results suggest that distinct properties beside ligand antagonism are required for anti-RON mAbs to exert antitumor effects in vivo. PMID:21286376

  5. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress

    PubMed Central

    YOSHIDA, TAKUYA; FUJITA, YASUNARI; MARUYAMA, KYONOSHIN; MOGAMI, JUNRO; TODAKA, DAISUKE; SHINOZAKI, KAZUO; YAMAGUCHI-SHINOZAKI, KAZUKO

    2015-01-01

    Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth. Abscisic acid (ABA) plays important roles in osmotic stress-responsive gene expression mainly through three bZIP transcription factors, AREB1, AREB2, and ABF3, which are activated by SnRK2s such as SRK2D, SRK2E, and SRK2I (SRK2D/E/I). However, transcription factors other than the three AREB/ABFs that function downstream of SRK2D/E/I remain obscure. Here, we report that ABF1 is a functional homolog of AREB1, AREB2, and ABF3 in ABA-dependent gene expression from a comparative analysis between the areb1 areb2 abf3 abf1 and areb1 areb2 abf3 mutants. Moreover, genome

  6. GPR30 Promotes Prostate Stromal Cell Activation via Suppression of ERα Expression and Its Downstream Signaling Pathway.

    PubMed

    Jia, Bona; Gao, Yu; Li, Mingming; Shi, Jiandang; Peng, Yanfei; Du, Xiaoling; Klocker, Helmut; Sampson, Natalie; Shen, Yongmei; Liu, Mengyang; Zhang, Ju

    2016-08-01

    Cancer-associated fibroblasts (CAFs) play a vital role in malignant transformation and progression of prostate cancer (PCa), and accumulating evidence suggests an enhancing effect of estrogens on PCa. The present study aimed to investigate the possible origin of prostate CAFs and the effects of estrogen receptors, G protein-coupled receptor 30 (GPR30) and estrogen receptor (ER)-α, on stromal cell activation. High expression of fibroblast activation protein (FAP), CD44, and nonmuscle myosin heavy chain B (SMemb) accompanied by low expression of smooth muscle differentiation markers was found in the stromal cells of PCa tissues and in cultured human prostate CAFs. Additionally, SMemb expression, which is coupled to cell phenotype switching and proliferation, was coexpressed with FAP, a marker of activated stromal cells, and with the stem cell marker CD44 in the stromal cells of PCa tissue. Prostate CAFs showed high GPR30 and low ERα expression. Moreover, GPR30 was coexpressed with FAP, CD44, and SMemb. Furthermore, the study demonstrated that the overexpression of GPR30 or the knockdown of ERα in prostate stromal cells induced the up-regulation of FAP, CD44, Smemb, and the down-regulation of smooth muscle markers. The conditioned medium from these cells promoted the proliferation and migration of LNCaP and PC3 PCa cells. GPR30 knockdown or ERα overexpression showed opposite effects. Finally, we present a novel mechanism whereby GPR30 limits ERα expression via inhibition of the cAMP/protein kinase A signaling pathway. These results suggest that stem-like cells within the stroma are a possible source of prostate CAFs and that the negative regulation of ERα expression by GPR30 is centrally involved in prostate stromal cell activation. PMID:27163843

  7. Hydrogen peroxide signals E. coli phagocytosis by human polymorphonuclear cells; up-stream and down-stream pathway.

    PubMed

    Petropoulos, Michalis; Karamolegkou, Georgia; Rosmaraki, Eleftheria; Tsakas, Sotiris

    2015-12-01

    Hydrogen peroxide (Η2Ο2) is produced during a variety of cellular procedures. In this paper, the regulatory role of Η2Ο2, in Escherichia coli phagocytosis by the human polymorphonuclears, was investigated. White blood cells were incubated with dihydrorhodamine (DHR) in order to study H2O2 synthesis and E. coli-FITC to study phagocytosis. Flow cytometry revealed increased synthesis of H2O2 in polymorphonuclears which incorporated E. coli-FITC. The blocking of H2O2 synthesis by specific inhibitors, N-ethylmaleimide (ΝΕΜ) for NADPH oxidase and diethyldithiocarbamate (DDC) for superoxide dismutase (SOD), decreased E. coli phagocytosis, as well. Immunoblot analysis of white blood cell protein extracts revealed that the blocking of NADPH oxidase and SOD decreased ERK-1/2 phosphorylation, while it had no effect on JNK and p38. Confocal microscopy showed that phosphorylation of MAPKs and phagocytosis solely occur in the polymorphonuclear and not in mononuclear cells. The use of specific MAPKs inhibitors showed that all of them are necessary for phagocytosis, but only phospho-p38 affects H2O2 synthesis. The blocking of JNK phosphorylation, in the presence of E. coli, evoked a further decrease of cytoplasmic p47 thus increasing its translocation onto the plasma membrane for the assembly of NADPH oxidase. It appears that newly synthesised H2O2 invigorates the phosphorylation and action of ERK-1/2 in E. coli phagocytosis, while phospho-JNK and phospho-p38 appear to regulate H2O2 production.

  8. Thermoperiodic Control of Hypocotyl Elongation Depends on Auxin-Induced Ethylene Signaling That Controls Downstream PHYTOCHROME INTERACTING FACTOR3 Activity1

    PubMed Central

    Bours, Ralph; Kohlen, Wouter; Bouwmeester, Harro J.

    2015-01-01

    We show that antiphase light-temperature cycles (negative day-night temperature difference [−DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under −DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under −DIF. Both auxin biosynthesis and auxin signaling were reduced during −DIF. In addition, expression of several ACC Synthase was reduced under −DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under −DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under −DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls. PMID:25516603

  9. Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFβ in claudin-low breast tumor cells.

    PubMed

    Patsialou, A; Wang, Y; Pignatelli, J; Chen, X; Entenberg, D; Oktay, M; Condeelis, J S

    2015-05-21

    Patient data suggest that colony-stimulating factor-1 (CSF1) and its receptor (CSF1R) have critical roles during breast cancer progression. We have previously shown that in human breast tumors expressing both CSF1 and CSF1R, invasion in vivo is dependent both on a paracrine interaction with tumor-associated macrophages and an autocrine regulation of CSF1R in the tumor cells themselves. Although the role of the paracrine interaction between tumor cells and macrophages has been extensively studied, very little is known about the mechanism by which the autocrine CSF1R signaling contributes to tumor progression. We show here that breast cancer patients of the claudin-low subtype have significantly increased expression of CSF1R. Using a panel of breast cancer cell lines, we confirm that CSF1R expression is elevated and regulated by TGFβ specifically in claudin-low cell lines. Abrogation of autocrine CSF1R signaling in MDA-MB-231 xenografts (a claudin-low cell line) leads to increased tumor size by enhanced proliferation, but significantly reduced invasion, dissemination and metastasis. Indeed, we show that proliferation and invasion are oppositely regulated by CSF1R downstream of TGFβ only in claudin-low cell lines. Intravital multiphoton imaging revealed that inhibition of CSF1R in the tumor cells leads to decreased in vivo motility and a more cohesive morphology. We show that, both in vitro and in vivo, CSF1R inhibition results in a reversal of claudin-low marker expression by significant upregulation of luminal keratins and tight-junction proteins such as claudins. Finally, we show that artificial overexpression of claudins in MDA-MB-231 cells is sufficient to tip the cells from an invasive state to a proliferative state. Our results suggest that autocrine CSF1R signaling is essential in maintaining low claudin expression and that it mediates a switch between the proliferative and the invasive state in claudin-low tumor cells downstream of TGFβ.

  10. Comparison of the Gene Expression Profiles from Normal and Fgfrl1 Deficient Mouse Kidneys Reveals Downstream Targets of Fgfrl1 Signaling

    PubMed Central

    Gerber, Simon D.; Amann, Ruth; Wyder, Stefan; Trueb, Beat

    2012-01-01

    Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron. PMID:22432025

  11. APASdb: a database describing alternative poly(A) sites and selection of heterogeneous cleavage sites downstream of poly(A) signals.

    PubMed

    You, Leiming; Wu, Jiexin; Feng, Yuchao; Fu, Yonggui; Guo, Yanan; Long, Liyuan; Zhang, Hui; Luan, Yijie; Tian, Peng; Chen, Liangfu; Huang, Guangrui; Huang, Shengfeng; Li, Yuxin; Li, Jie; Chen, Chengyong; Zhang, Yaqing; Chen, Shangwu; Xu, Anlong

    2015-01-01

    Increasing amounts of genes have been shown to utilize alternative polyadenylation (APA) 3'-processing sites depending on the cell and tissue type and/or physiological and pathological conditions at the time of processing, and the construction of genome-wide database regarding APA is urgently needed for better understanding poly(A) site selection and APA-directed gene expression regulation for a given biology. Here we present a web-accessible database, named APASdb (http://mosas.sysu.edu.cn/utr), which can visualize the precise map and usage quantification of different APA isoforms for all genes. The datasets are deeply profiled by the sequencing alternative polyadenylation sites (SAPAS) method capable of high-throughput sequencing 3'-ends of polyadenylated transcripts. Thus, APASdb details all the heterogeneous cleavage sites downstream of poly(A) signals, and maintains near complete coverage for APA sites, much better than the previous databases using conventional methods. Furthermore, APASdb provides the quantification of a given APA variant among transcripts with different APA sites by computing their corresponding normalized-reads, making our database more useful. In addition, APASdb supports URL-based retrieval, browsing and display of exon-intron structure, poly(A) signals, poly(A) sites location and usage reads, and 3'-untranslated regions (3'-UTRs). Currently, APASdb involves APA in various biological processes and diseases in human, mouse and zebrafish.

  12. Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia.

    PubMed

    Mizukawa, Benjamin; Wei, Junping; Shrestha, Mahesh; Wunderlich, Mark; Chou, Fu-Sheng; Griesinger, Andrea; Harris, Chad E; Kumar, Ashish R; Zheng, Yi; Williams, David A; Mulloy, James C

    2011-11-10

    The Rac family of small Rho GTPases coordinates diverse cellular functions in hematopoietic cells including adhesion, migration, cytoskeleton rearrangements, gene transcription, proliferation, and survival. The integrity of Rac signaling has also been found to critically regulate cellular functions in the initiation and maintenance of hematopoietic malignancies. Using an in vivo gene targeting approach, we demonstrate that Rac2, but not Rac1, is critical to the initiation of acute myeloid leukemia in a retroviral expression model of MLL-AF9 leukemogenesis. However, loss of either Rac1 or Rac2 is sufficient to impair survival and growth of the transformed MLL-AF9 leukemia. Rac2 is known to positively regulate expression of Bcl-2 family proteins toward a prosurvival balance. We demonstrate that disruption of downstream survival signaling through antiapoptotic Bcl-2 proteins is implicated in mediating the effects of Rac2 deficiency in MLL-AF9 leukemia. Indeed, overexpression of Bcl-xL is able to rescue the effects of Rac2 deficiency and MLL-AF9 cells are exquisitely sensitive to direct inhibition of Bcl-2 family proteins by the BH3-mimetic, ABT-737. Furthermore, concurrent exposure to NSC23766, a small-molecule inhibitor of Rac activation, increases the apoptotic effect of ABT-737, indicating the Rac/Bcl-2 survival pathway may be targeted synergistically.

  13. APASdb: a database describing alternative poly(A) sites and selection of heterogeneous cleavage sites downstream of poly(A) signals

    PubMed Central

    You, Leiming; Wu, Jiexin; Feng, Yuchao; Fu, Yonggui; Guo, Yanan; Long, Liyuan; Zhang, Hui; Luan, Yijie; Tian, Peng; Chen, Liangfu; Huang, Guangrui; Huang, Shengfeng; Li, Yuxin; Li, Jie; Chen, Chengyong; Zhang, Yaqing; Chen, Shangwu; Xu, Anlong

    2015-01-01

    Increasing amounts of genes have been shown to utilize alternative polyadenylation (APA) 3′-processing sites depending on the cell and tissue type and/or physiological and pathological conditions at the time of processing, and the construction of genome-wide database regarding APA is urgently needed for better understanding poly(A) site selection and APA-directed gene expression regulation for a given biology. Here we present a web-accessible database, named APASdb (http://mosas.sysu.edu.cn/utr), which can visualize the precise map and usage quantification of different APA isoforms for all genes. The datasets are deeply profiled by the sequencing alternative polyadenylation sites (SAPAS) method capable of high-throughput sequencing 3′-ends of polyadenylated transcripts. Thus, APASdb details all the heterogeneous cleavage sites downstream of poly(A) signals, and maintains near complete coverage for APA sites, much better than the previous databases using conventional methods. Furthermore, APASdb provides the quantification of a given APA variant among transcripts with different APA sites by computing their corresponding normalized-reads, making our database more useful. In addition, APASdb supports URL-based retrieval, browsing and display of exon-intron structure, poly(A) signals, poly(A) sites location and usage reads, and 3′-untranslated regions (3′-UTRs). Currently, APASdb involves APA in various biological processes and diseases in human, mouse and zebrafish. PMID:25378337

  14. De novo whole transcriptome analysis of the fish louse, Argulus siamensis: first molecular insights into characterization of Toll downstream signalling molecules of crustaceans.

    PubMed

    Sahoo, Pramoda Kumar; Kar, Banya; Mohapatra, Amruta; Mohanty, Jyotirmaya

    2013-11-01

    Argulus siamensis is a major ectoparasitic pathogen of freshwater fish capable of causing substantial economic loss. None of the available control measures have been able to address the problem of argulosis resourcefully. To combat this pathogen effectively, it is necessary to have a comprehensive understanding of its life processes with information on various genes involved. The transcriptome studies can generate introductory information about genes participating in physiological processes of the parasite which could be targeted for their control. In this study, the transcriptome sequencing of A. siamensis was performed on Illumina HiSeq 2000 platform which generated 75,126,957 high quality reads. A total of 46,352 transcript contigs were assembled with average length of 1211bp and N50 length of 2302bp. In total, 19,290 CDS including 184 novel CDS and 59,019 open reading frames (ORFs) were identified from the assembled contigs. Gene ontology and Kyoto Encylopedia of Genes and Genomes pathway analysis were performed to classify contigs into their functional categories and regulation pathways. Additionally, 1171 simple sequence repeats were identified from the assembled contigs. Further, twelve contigs with high similarity with downstream molecules of the mammalian toll like receptor (TLR) pathway were validated by their inductive expressions in response to lipopolysaccharide (LPS) of Gram negative bacteria, Escherichia coli and Gram positive bacteria, Staphylococcus aureus. The transcriptome of an ectoparasite A. siamensis was sequenced, assembled, annotated, and the downstream signalling molecules of Toll pathway characterized. The transcriptome data generated will facilitate studies on functional genomics that will subsequently be applied for vaccine development and other control strategies against the parasite.

  15. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress.

    PubMed

    Yoshida, Takuya; Fujita, Yasunari; Maruyama, Kyonoshin; Mogami, Junro; Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth.

  16. Thorium induced cytoproliferative effect in human liver cell HepG2: role of insulin-like growth factor 1 receptor and downstream signaling.

    PubMed

    Ali, Manjoor; Kumar, Amit; Pandey, Badri N

    2014-03-25

    Thorium-232 ((232)Th), a naturally-occurring actinide has gained significant attention due to its immense potential as a nuclear fuel for advanced reactors. Understanding the biological effects of (232)Th would significantly impact its efficient utilization with adequate health protection. Humans administered with (232)Th (thorotrast patients) or experimental animal models showed that liver is one of the major sites of (232)Th accumulation. Present study reports cellular effects of (232)Th-nitrate in a human-derived liver cell (HepG2). Results showed that the low concentration of (232)Th (0.1-10 μM) induced proliferation of HepG2 cells which was inhibited by the pre-treatment of cells with neutralizing antibody against insulin-like growth factor 1 receptor (IGF-1R). Consistently, (232)Th treatment was found to increase the phosphorylated level of IGF-1R-associated molecule, IRS1 which serves to activate PI3K and MAPK signaling pathways. Pre-treatment with specific inhibitors of PI3K (LY294002) or JNK-MAPK (SP600125) significantly abrogated the cytoproliferative effect of (232)Th. Immunofluorescence analysis showed increased levels of phospho-Akt and phospho-JNK, downstream kinases of IGF-1R, in (232)Th-treated HepG2 cells suggesting the role of IGF-1R-mediated signaling in (232)Th-stimulated cell proliferation. The cell cycle analysis showed that (232)Th increased S and G2-M cell fractions concomitant to the increase of cyclin-E level. Thus, the present investigation highlights the role of IGF-1R-mediated signaling in the cytoproliferative effect of (232)Th in human liver cells at low concentration. PMID:24462957

  17. Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal.

    PubMed

    Ma, Yi; Zhao, Yichen; Walker, Robin K; Berkowitz, Gerald A

    2013-11-01

    Endogenous plant elicitor peptides (Peps) can act to facilitate immune signaling and pathogen defense responses. Binding of these peptides to the Arabidopsis (Arabidopsis thaliana) plasma membrane-localized Pep receptors (PEPRs) leads to cytosolic Ca(2+) elevation, an early event in a signaling cascade that activates immune responses. This immune response includes the amplification of signaling evoked by direct perception of pathogen-associated molecular patterns by plant cells under assault. Work included in this report further characterizes the Pep immune response and identifies new molecular steps in the signal transduction cascade. The PEPR coreceptor BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 contributes to generation of the Pep-activated Ca(2+) signal and leads to increased defense gene expression and resistance to a virulent bacterial pathogen. Ca(2+)-dependent protein kinases (CPKs) decode the Ca(2+) signal, also facilitating defense gene expression and enhanced resistance to the pathogen. Nitric oxide and reduced nicotinamide adenine dinucleotide phosphate oxidase-dependent reactive oxygen species generation (due to the function of Respiratory Burst Oxidase Homolog proteins D and F) are also involved downstream from the Ca(2+) signal in the Pep immune defense signal transduction cascade, as is the case with BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 and CPK5, CPK6, and CPK11. These steps of the pathogen defense response are required for maximal Pep immune activation that limits growth of a virulent bacterial pathogen in the plant. We find a synergism between function of the PEPR and Flagellin Sensing2 receptors in terms of both nitric oxide and reactive oxygen species generation. Presented results are also consistent with the involvement of the secondary messenger cyclic GMP and a cyclic GMP-activated Ca(2+)-conducting channel in the Pep immune signaling pathway.

  18. Individual differences affect honest signalling in a songbird.

    PubMed

    Akçay, Caglar; Campbell, S Elizabeth; Beecher, Michael D

    2014-01-22

    Research in the past decade has established the existence of consistent individual differences or 'personality' in animals and their important role in many aspects of animal behaviour. At the same time, research on honest signalling of aggression has revealed that while some of the putative aggression signals are reliable, they are only imperfectly so. This study asks whether a significant portion of the variance in the aggression-signal regression may be explained by individual differences in signalling strategies. Using the well-studied aggressive signalling system of song sparrows (Melospiza melodia), we carried out repeated assays to measure both aggressive behaviours and aggressive signalling of territorial males. Through these assays, we found that aggressive behaviours and aggressive signalling were both highly repeatable, and moreover that aggressive behaviours in 2009-2010 predicted whether the birds would attack a taxidermic mount over a year later. Most significantly, we found that residual variation in signalling behaviours, after controlling for aggressive behaviour, was individually consistent, suggesting there may be a second personality trait determining the level of aggressive signalling. We term this potential personality trait 'communicativeness' and discuss these results in the context of honest signalling theories and recent findings reporting prevalence of 'under-signalling'.

  19. AKT-STAT3 Pathway as a Downstream Target of EGFR Signaling to Regulate PD-L1 Expression on NSCLC cells

    PubMed Central

    Abdelhamed, Sherif; Ogura, Keisuke; Yokoyama, Satoru; Saiki, Ikuo; Hayakawa, Yoshihiro

    2016-01-01

    While cancer development and progression can be controlled by cytotoxic T cells, it is also known that tumor-specific CD8+T cells become functionally impaired by acquiring a group of inhibitory receptors known as immune checkpoints. Amongst those, programmed death-1 (PD-1) is one of the most recognized negative regulators of T cell function. In non-small lung cancers (NSCLCs), the aberrant activation of epidermal growth factor receptor (EGFR) is known to induce PD-L1 expression and further the treatment with gefitinib, a tyrosine kinase inhibitor (TKI) for EGFR, decrease the expression of PD-L1 on NSCLC. Given the acquired resistance to gefitinib treatment frequently observed by developing secondary-site mutations limiting its efficacy, it is important to understand the downstream mechanism of activated-EGFR signaling for regulating PD-L1 in NSCLC. In this study, we demonstrated that AKT-STAT3 pathway could be a potential target for regulating the surface expression of PD-L1 on NSCLCs with aberrant EGFR activity and, further, the inhibition of AKT or STAT3 activity could down-regulate the expression of PD-L1 even in gefitinib-resistant NSCLCs. These results highlight an importance of AKT-STAT3 pathway as a promising target for potentiating anti-tumor immune responses by regulating PD-L1 expression on cancer cells with aberrant EGFR activity.

  20. Unique Effects of Acute Aripiprazole Treatment on the Dopamine D2 Receptor Downstream cAMP-PKA and Akt-GSK3β Signalling Pathways in Rats.

    PubMed

    Pan, Bo; Chen, Jiezhong; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2015-01-01

    Aripiprazole is a wide-used antipsychotic drug with therapeutic effects on both positive and negative symptoms of schizophrenia, and reduced side-effects. Although aripiprazole was developed as a dopamine D2 receptor (D2R) partial agonist, all other D2R partial agonists that aimed to mimic aripiprazole failed to exert therapeutic effects in clinic. The present in vivo study aimed to investigate the effects of aripiprazole on the D2R downstream cAMP-PKA and Akt-GSK3β signalling pathways in comparison with a D2R antagonist--haloperidol and a D2R partial agonist--bifeprunox. Rats were injected once with aripiprazole (0.75 mg/kg, i.p.), bifeprunox (0.8 mg/kg, i.p.), haloperidol (0.1 mg/kg, i.p.) or vehicle. Five brain regions--the prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), ventral tegmental area (VTA) and substantia nigra (SN) were collected. The protein levels of PKA, Akt and GSK3β were measured by Western Blotting; the cAMP levels were examined by ELISA tests. The results showed that aripiprazole presented similar acute effects on PKA expression to haloperidol, but not bifeprunox, in the CPU and VTA. Additionally, aripiprazole was able to increase the phosphorylation of GSK3β in the PFC, NAc, CPu and SN, respectively, which cannot be achieved by bifeprunox and haloperidol. These results suggested that acute treatment of aripiprazole had differential effects on the cAMP-PKA and Akt-GSK3β signalling pathways from haloperidol and bifeprunox in these brain areas. This study further indicated that, by comparison with bifeprunox, the unique pharmacological profile of aripiprazole may be attributed to the relatively lower intrinsic activity at D2R.

  1. Effects of mutant human Ki-ras{sup G12C} gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    SciTech Connect

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.; Moore, Joseph E.; Mosley, Libyadda J.; D'Agostino, Ralph B.; Pettenati, Mark J.; Miller, Mark Steven

    2008-08-15

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras{sup G12C} allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 {mu}g/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras{sup G12C} allele in the lung, and resulted in the development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 {mu}g/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 {mu}g/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 {mu}g/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras{sup G12C} expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models.

  2. Does Signal Degradation Affect Top-Down Processing of Speech?

    PubMed

    Wagner, Anita; Pals, Carina; de Blecourt, Charlotte M; Sarampalis, Anastasios; Başkent, Deniz

    2016-01-01

    Speech perception is formed based on both the acoustic signal and listeners' knowledge of the world and semantic context. Access to semantic information can facilitate interpretation of degraded speech, such as speech in background noise or the speech signal transmitted via cochlear implants (CIs). This paper focuses on the latter, and investigates the time course of understanding words, and how sentential context reduces listeners' dependency on the acoustic signal for natural and degraded speech via an acoustic CI simulation.In an eye-tracking experiment we combined recordings of listeners' gaze fixations with pupillometry, to capture effects of semantic information on both the time course and effort of speech processing. Normal-hearing listeners were presented with sentences with or without a semantically constraining verb (e.g., crawl) preceding the target (baby), and their ocular responses were recorded to four pictures, including the target, a phonological (bay) competitor and a semantic (worm) and an unrelated distractor.The results show that in natural speech, listeners' gazes reflect their uptake of acoustic information, and integration of preceding semantic context. Degradation of the signal leads to a later disambiguation of phonologically similar words, and to a delay in integration of semantic information. Complementary to this, the pupil dilation data show that early semantic integration reduces the effort in disambiguating phonologically similar words. Processing degraded speech comes with increased effort due to the impoverished nature of the signal. Delayed integration of semantic information further constrains listeners' ability to compensate for inaudible signals. PMID:27080670

  3. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings.

    PubMed

    Li, Zhong-Guang; Xie, Lin-Run; Li, Xiao-Juan

    2015-04-01

    Salicylic acid (SA), 2-hydroxy benzoic acid, is a small phenolic compound with multifunction that is involved in plant growth, development, and the acquisition of stress tolerance. In recent years, hydrogen sulfide (H2S) has been found to have similar functions, but cross talk between SA and H2S in the acquisition of heat tolerance is not clear. In this study, pretreatment of maize seedlings with SA improved the survival percentage of seedlings under heat stress, indicating that SA pretreatment could improve the heat tolerance of maize seedlings. In addition, treatment with SA enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, which in turn induced accumulation of endogenous H2S. Interestingly, SA-induced heat tolerance was enhanced by addition of NaHS, a H2S donor, but weakened by specific inhibitors of H2S biosynthesis DL-propargylglycine (PAG) and its scavenger hydroxylamine (HT). Furthermore, pretreatment with paclobutrazol (PAC) and 2-aminoindan-2-phosphonic acid (AIP), inhibitors of SA biosynthesis, had no significant effect on NaHS-induced heat tolerance of maize seedlings. Similarly, significant change in the activities of phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H), the key enzymes in SA biosynthesis, and the content of endogenous SA, was not observed in maize seedlings by NaHS treatment. All of the above-mentioned results suggest that SA pretreatment could improve the heat tolerance of maize seedlings, and H2S might be a novel downstream signal molecule in SA-induced heat tolerance.

  4. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response

    PubMed Central

    Lukas, Simone; Zenger, Marion; Reitberger, Tobias; Danzer, Daniela; Übner, Theresa; Munday, Diane C.; Paulus, Christina

    2016-01-01

    The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication. PMID:27387064

  5. A hub for ABA signaling to the nucleus: significance of a cytosolic and nuclear dual-localized PPR protein SOAR1 acting downstream of Mg-chelatase H subunit.

    PubMed

    Jiang, Shang-Chuan; Mei, Chao; Wang, Xiao-Fang; Zhang, Da-Peng

    2014-01-01

    SOAR1 is a cytosol-nucleus dual-localized pentatricopeptide repeat (PPR) protein, which we indentified recently as a crucial regulator in the CHLH/ABAR (Mg-chelatase H subunit /putative ABA receptor)-mediated signaling pathway, acting downstream of CHLH/ABAR and upstream of a nuclear ABA-responsive bZIP transcription factor ABI5. Downregulation and upregulation of SOAR1 expression alter dramatically both ABA sensitivity and expression of a subset of key, nuclear ABA-responsive genes, suggesting that SOAR1 is a hub for ABA signaling to the nucleus, and CHLH/ABAR mediates a central signaling pathway to regulate downstream gene expression through SOAR1.

  6. Reelin signaling directly affects radial glia morphology and biochemical maturation.

    PubMed

    Hartfuss, Eva; Förster, Eckart; Bock, Hans H; Hack, Michael A; Leprince, Pierre; Luque, Juan M; Herz, Joachim; Frotscher, Michael; Götz, Magdalena

    2003-10-01

    Radial glial cells are characterized, besides their astroglial properties, by long radial processes extending from the ventricular zone to the pial surface, a crucial feature for the radial migration of neurons. The molecular signals that regulate this characteristic morphology, however, are largely unknown. We show an important role of the secreted molecule reelin for the establishment of radial glia processes. We describe a significant reduction in ventricular zone cells with long radial processes in the absence of reelin in the cortex of reeler mutant mice. These defects were correlated to a decrease in the content of brain lipid-binding protein (Blbp) and were detected exclusively in the cerebral cortex, but not in the basal ganglia of reeler mice. Conversely, reelin addition in vitro increased the Blbp content and process extension of radial glia from the cortex, but not the basal ganglia. Isolation of radial glia by fluorescent-activated cell sorting showed that these effects are due to direct signaling of reelin to radial glial cells. We could further demonstrate that this signaling requires Dab1, as the increase in Blbp upon reelin addition failed to occur in Dab1-/- mice. Taken together, these results unravel a novel role of reelin signaling to radial glial cells that is crucial for the regulation of their Blbp content and characteristic morphology in a region-specific manner.

  7. Signal type and signal-to-noise ratio interact to affect cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; Grush, Leslie D

    2016-08-01

    Use of speech signals and background noise is emerging in cortical auditory evoked potential (CAEP) studies; however, the interaction between signal type and noise level remains unclear. Two experiments determined the interaction between signal type and signal-to-noise ratio (SNR) on CAEPs. Three signals (syllable /ba/, 1000-Hz tone, and the /ba/ envelope with 1000-Hz fine structure) with varying SNRs were used in two experiments, demonstrating signal-by-SNR interactions due to both envelope and spectral characteristics. When using real-world stimuli such as speech to evoke CAEPs, temporal and spectral complexity leads to differences with traditional tonal stimuli, especially when presented in background noise. PMID:27586784

  8. Mutations on the Switch III region and the alpha3 helix of Galpha16 differentially affect receptor coupling and regulation of downstream effectors

    PubMed Central

    Yu, May YM; Ho, Maurice KC; Liu, Andrew MF; Wong, Yung H

    2008-01-01

    Background Gα16 can activate phospholipase Cβ (PLCβ) directly like Gαq. It also couples to tetratricopeptide repeat 1 (TPR1) which is linked to Ras activation. It is unknown whether PLCβ and TPR1 interact with the same regions on Gα16. Previous studies on Gαq have defined two minimal clusters of amino acids that are essential for the coupling to PLCβ. Cognate residues in Gα16 might also be essential for interacting with PLCβ, and possibly contribute to TPR1 interaction and other signaling events. Results Alanine mutations were introduced to the two amino acid clusters (246–248 and 259–260) in the switch III region and α3 helix of Gα16. Regulations of PLCβ and STAT3 were partially weakened by each cluster mutant. A mutant harboring mutations at both clusters generally produced stronger suppressions. Activation of Jun N-terminal kinase (JNK) by Gα16 was completely abolished by mutating either clusters. Contrastingly, phosphorylations of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) were not significantly affected by these mutations. The interactions between the mutants and PLCβ2 and TPR1 were also reduced in co-immunoprecipitation assays. Coupling between G16 and different categories of receptors was impaired by the mutations, with the effect of switch III mutations being more pronounced than those in the α3 helix. Mutations of both clusters almost completely abolished the receptor coupling and prevent receptor-induced Gβγ release. Conclusion The integrity of the switch III region and α3 helix of Gα16 is critical for the activation of PLCβ, STAT3, and JNK but not ERK or NF-κB. Binding of Gα16 to PLCβ2 or TPR1 was reduced by the mutations of either cluster. The same region could also differentially affect the effectiveness of receptor coupling to G16. The studied region was shown to bear multiple functionally important roles of G16. PMID:19025606

  9. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.

    PubMed

    Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E

    2016-07-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. PMID:27189965

  10. Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli

    PubMed Central

    Daniels, Ruth; Reynaert, Sven; Hoekstra, Hans; Verreth, Christel; Janssens, Joost; Braeken, Kristien; Fauvart, Maarten; Beullens, Serge; Heusdens, Christophe; Lambrichts, Ivo; De Vos, Dirk E.; Vanderleyden, Jos; Vermant, Jan; Michiels, Jan

    2006-01-01

    Swarming motility is suggested to be a social phenomenon that enables groups of bacteria to coordinately and rapidly move atop solid surfaces. This multicellular behavior, during which the apparently organized bacterial populations are embedded in an extracellular slime layer, has previously been linked with biofilm formation and virulence. Many population density-controlled activities involve the activation of complex signaling pathways using small diffusible molecules, also known as autoinducers. In Gram-negative bacteria, quorum sensing (QS) is achieved primarily by means of N-acylhomoserine lactones (AHLs). Here, we report on a dual function of AHL molecules in controlling swarming behavior of Rhizobium etli, the bacterial symbiotic partner of the common bean plant. The major swarming regulator of R. etli is the cinIR QS system, which is specifically activated in swarming cells by its cognate AHL and other long-chain AHLs. This signaling role of long-chain AHLs is required for high-level expression of the cin and rai QS systems. Besides this signaling function, the long-chain AHLs also have a direct role in surface movement of swarmer cells as these molecules possess significant surface activity and induce liquid flows, known as Marangoni flows, as a result of gradients in surface tension at biologically relevant concentrations. These results point to an as-yet-undisclosed direct role of long-chain AHL molecules as biosurfactants. PMID:16990436

  11. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  12. Monoterpene (-)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor.

    PubMed

    Maßberg, Désirée; Simon, Annika; Häussinger, Dieter; Keitel, Verena; Gisselmann, Günter; Conrad, Heike; Hatt, Hanns

    2015-01-15

    Terpenes are the major constituents of essential oils in plants. In recent years, terpenes have become of clinical relevance due to their ability to suppress cancer development. Their effect on cellular proliferation has made them promising agents in the prevention or treatment of many types of cancer. In the present study, a subset of different monoterpenes was investigated for their molecular effects on the hepatocellular carcinoma cell line Huh7. Using fluorometric calcium imaging, acyclic monoterpene (-)-citronellal was found to induce transient Ca(2+) signals in Huh7 cells by activating a cAMP-dependent signaling pathway. Moreover, we detected the (-)-citronellal-activated human olfactory receptor OR1A2 at the mRNA and protein levels and demonstrated its potential involvement in (-)-citronellal-induced calcium signaling in Huh7 cells. Furthermore, activation of OR1A2 results in phosphorylation of p38 MAPK and reduced cell proliferation, indicating an effect on hepatocellular carcinoma progression. Here, we provide for the first time data on the molecular mechanism evoked by (-)-citronellal in human hepatocellular carcinoma cells. The identified olfactory receptor could serve as a potential therapeutic target for cancer diagnosis and treatment.

  13. Increasing Phosphatidylinositol (4,5)-Bisphosphate Biosynthesis Affects Basal Signaling and Chloroplast Metabolism in Arabidopsis thaliana

    PubMed Central

    Im, Yang Ju; Smith, Caroline M.; Phillippy, Brian Q.; Strand, Deserah; Kramer, David M.; Grunden, Amy M.; Boss, Wendy F.

    2014-01-01

    One challenge in studying the second messenger inositol(1,4,5)-trisphosphate (InsP3) is that it is present in very low amounts and increases only transiently in response to stimuli. To identify events downstream of InsP3, we generated transgenic plants constitutively expressing the high specific activity, human phosphatidylinositol 4-phosphate 5-kinase Iα (HsPIPKIα). PIP5K is the enzyme that synthesizes phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2); this reaction is flux limiting in InsP3 biosynthesis in plants. Plasma membranes from transgenic Arabidopsis expressing HsPIPKIα had 2–3 fold higher PIP5K specific activity, and basal InsP3 levels in seedlings and leaves were >2-fold higher than wild type. Although there was no significant difference in photosynthetic electron transport, HsPIPKIα plants had significantly higher starch (2–4 fold) and 20% higher anthocyanin compared to controls. Starch content was higher both during the day and at the end of dark period. In addition, transcripts of genes involved in starch metabolism such as SEX1 (glucan water dikinase) and SEX4 (phosphoglucan phosphatase), DBE (debranching enzyme), MEX1 (maltose transporter), APL3 (ADP-glucose pyrophosphorylase) and glucose-6-phosphate transporter (Glc6PT) were up-regulated in the HsPIPKIα plants. Our results reveal that increasing the phosphoinositide (PI) pathway affects chloroplast carbon metabolism and suggest that InsP3 is one component of an inter-organelle signaling network regulating chloroplast metabolism. PMID:27135490

  14. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  15. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  16. Animal signals and emotion in music: coordinating affect across groups.

    PubMed

    Bryant, Gregory A

    2013-01-01

    Researchers studying the emotional impact of music have not traditionally been concerned with the principled relationship between form and function in evolved animal signals. The acoustic structure of musical forms is related in important ways to emotion perception, and thus research on non-human animal vocalizations is relevant for understanding emotion in music. Musical behavior occurs in cultural contexts that include many other coordinated activities which mark group identity, and can allow people to communicate within and between social alliances. The emotional impact of music might be best understood as a proximate mechanism serving an ultimately social function. Recent work reveals intimate connections between properties of certain animal signals and evocative aspects of human music, including (1) examinations of the role of nonlinearities (e.g., broadband noise) in non-human animal vocalizations, and the analogous production and perception of these features in human music, and (2) an analysis of group musical performances and possible relationships to non-human animal chorusing and emotional contagion effects. Communicative features in music are likely due primarily to evolutionary by-products of phylogenetically older, but still intact communication systems. But in some cases, such as the coordinated rhythmic sounds produced by groups of musicians, our appreciation and emotional engagement might be driven by an adaptive social signaling system. Future empirical work should examine human musical behavior through the comparative lens of behavioral ecology and an adaptationist cognitive science. By this view, particular coordinated sound combinations generated by musicians exploit evolved perceptual response biases - many shared across species - and proliferate through cultural evolutionary processes.

  17. Animal signals and emotion in music: coordinating affect across groups.

    PubMed

    Bryant, Gregory A

    2013-01-01

    Researchers studying the emotional impact of music have not traditionally been concerned with the principled relationship between form and function in evolved animal signals. The acoustic structure of musical forms is related in important ways to emotion perception, and thus research on non-human animal vocalizations is relevant for understanding emotion in music. Musical behavior occurs in cultural contexts that include many other coordinated activities which mark group identity, and can allow people to communicate within and between social alliances. The emotional impact of music might be best understood as a proximate mechanism serving an ultimately social function. Recent work reveals intimate connections between properties of certain animal signals and evocative aspects of human music, including (1) examinations of the role of nonlinearities (e.g., broadband noise) in non-human animal vocalizations, and the analogous production and perception of these features in human music, and (2) an analysis of group musical performances and possible relationships to non-human animal chorusing and emotional contagion effects. Communicative features in music are likely due primarily to evolutionary by-products of phylogenetically older, but still intact communication systems. But in some cases, such as the coordinated rhythmic sounds produced by groups of musicians, our appreciation and emotional engagement might be driven by an adaptive social signaling system. Future empirical work should examine human musical behavior through the comparative lens of behavioral ecology and an adaptationist cognitive science. By this view, particular coordinated sound combinations generated by musicians exploit evolved perceptual response biases - many shared across species - and proliferate through cultural evolutionary processes. PMID:24427146

  18. Animal signals and emotion in music: coordinating affect across groups

    PubMed Central

    Bryant, Gregory A.

    2013-01-01

    Researchers studying the emotional impact of music have not traditionally been concerned with the principled relationship between form and function in evolved animal signals. The acoustic structure of musical forms is related in important ways to emotion perception, and thus research on non-human animal vocalizations is relevant for understanding emotion in music. Musical behavior occurs in cultural contexts that include many other coordinated activities which mark group identity, and can allow people to communicate within and between social alliances. The emotional impact of music might be best understood as a proximate mechanism serving an ultimately social function. Recent work reveals intimate connections between properties of certain animal signals and evocative aspects of human music, including (1) examinations of the role of nonlinearities (e.g., broadband noise) in non-human animal vocalizations, and the analogous production and perception of these features in human music, and (2) an analysis of group musical performances and possible relationships to non-human animal chorusing and emotional contagion effects. Communicative features in music are likely due primarily to evolutionary by-products of phylogenetically older, but still intact communication systems. But in some cases, such as the coordinated rhythmic sounds produced by groups of musicians, our appreciation and emotional engagement might be driven by an adaptive social signaling system. Future empirical work should examine human musical behavior through the comparative lens of behavioral ecology and an adaptationist cognitive science. By this view, particular coordinated sound combinations generated by musicians exploit evolved perceptual response biases – many shared across species – and proliferate through cultural evolutionary processes. PMID:24427146

  19. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling

    PubMed Central

    Braccini, Laura; Ciraolo, Elisa; Campa, Carlo C.; Perino, Alessia; Longo, Dario L.; Tibolla, Gianpaolo; Pregnolato, Marco; Cao, Yanyan; Tassone, Beatrice; Damilano, Federico; Laffargue, Muriel; Calautti, Enzo; Falasca, Marco; Norata, Giuseppe D.; Backer, Jonathan M.; Hirsch, Emilio

    2015-01-01

    In the liver, insulin-mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is at the core of metabolic control. Multiple PI3K and Akt isoenzymes are found in hepatocytes and whether isoform-selective interplays exist is currently unclear. Here we report that insulin signalling triggers the association of the liver-specific class II PI3K isoform γ (PI3K-C2γ) with Rab5-GTP, and its recruitment to Rab5-positive early endosomes. In these vesicles, PI3K-C2γ produces a phosphatidylinositol-3,4-bisphosphate pool specifically required for delayed and sustained endosomal Akt2 stimulation. Accordingly, loss of PI3K-C2γ does not affect insulin-dependent Akt1 activation as well as S6K and FoxO1-3 phosphorylation, but selectively reduces Akt2 activation, which specifically inhibits glycogen synthase activity. As a consequence, PI3K-C2γ-deficient mice display severely reduced liver accumulation of glycogen and develop hyperlipidemia, adiposity as well as insulin resistance with age or after consumption of a high-fat diet. Our data indicate PI3K-C2γ supports an isoenzyme-specific forking of insulin-mediated signal transduction to an endosomal pool of Akt2, required for glucose homeostasis. PMID:26100075

  20. Radiofrequency signal affects alpha band in resting electroencephalogram.

    PubMed

    Ghosn, Rania; Yahia-Cherif, Lydia; Hugueville, Laurent; Ducorps, Antoine; Lemaréchal, Jean-Didier; Thuróczy, György; de Seze, René; Selmaoui, Brahim

    2015-04-01

    The aim of the present work was to investigate the effects of the radiofrequency (RF) electromagnetic fields (EMFs) on human resting EEG with a control of some parameters that are known to affect alpha band, such as electrode impedance, salivary cortisol, and caffeine. Eyes-open and eyes-closed resting EEG data were recorded in 26 healthy young subjects under two conditions: sham exposure and real exposure in double-blind, counterbalanced, crossover design. Spectral power of EEG rhythms was calculated for the alpha band (8-12 Hz). Saliva samples were collected before and after the study. Salivary cortisol and caffeine were assessed by ELISA and HPLC, respectively. The electrode impedance was recorded at the beginning of each run. Compared with the sham session, the exposure session showed a statistically significant (P < 0.0001) decrease of the alpha band spectral power during closed-eyes condition. This effect persisted in the postexposure session (P < 0.0001). No significant changes were detected in electrode impedance, salivary cortisol, and caffeine in the sham session compared with the exposure one. These results suggest that GSM-EMFs of a mobile phone affect the alpha band within spectral power of resting human EEG.

  1. Radiofrequency signal affects alpha band in resting electroencephalogram.

    PubMed

    Ghosn, Rania; Yahia-Cherif, Lydia; Hugueville, Laurent; Ducorps, Antoine; Lemaréchal, Jean-Didier; Thuróczy, György; de Seze, René; Selmaoui, Brahim

    2015-04-01

    The aim of the present work was to investigate the effects of the radiofrequency (RF) electromagnetic fields (EMFs) on human resting EEG with a control of some parameters that are known to affect alpha band, such as electrode impedance, salivary cortisol, and caffeine. Eyes-open and eyes-closed resting EEG data were recorded in 26 healthy young subjects under two conditions: sham exposure and real exposure in double-blind, counterbalanced, crossover design. Spectral power of EEG rhythms was calculated for the alpha band (8-12 Hz). Saliva samples were collected before and after the study. Salivary cortisol and caffeine were assessed by ELISA and HPLC, respectively. The electrode impedance was recorded at the beginning of each run. Compared with the sham session, the exposure session showed a statistically significant (P < 0.0001) decrease of the alpha band spectral power during closed-eyes condition. This effect persisted in the postexposure session (P < 0.0001). No significant changes were detected in electrode impedance, salivary cortisol, and caffeine in the sham session compared with the exposure one. These results suggest that GSM-EMFs of a mobile phone affect the alpha band within spectral power of resting human EEG. PMID:25695646

  2. Ethylene signalling affects susceptibility of tomatoes to Salmonella

    PubMed Central

    Marvasi, Massimiliano; Noel, Jason T; George, Andrée S; Farias, Marcelo A; Jenkins, Keith T; Hochmuth, George; Xu, Yimin; Giovanonni, Jim J; Teplitski, Max

    2014-01-01

    Fresh fruits and vegetables are increasingly recognized as important reservoirs of human pathogens, and therefore, significant attention has been directed recently to understanding mechanisms of the interactions between plants and enterics, like Salmonella. A screen of tomato cultivars for their susceptibility to Salmonella revealed significant differences in the ability of this human pathogen to multiply within fruits; expression of the Salmonella genes (cysB, agfB, fadH) involved in the interactions with tomatoes depended on the tomato genotype and maturity stage. Proliferation of Salmonella was strongly reduced in the tomato mutants with defects in ethylene synthesis, perception and signal transduction. While mutation in the ripening-related ethylene receptor Nr resulted only in a modest reduction in Salmonella numbers within tomatoes, strong inhibition of the Salmonella proliferation was observed in rin and nor tomato mutants. RIN and NOR are regulators of ethylene synthesis and ripening. A commercial tomato variety heterozygous for rin was less susceptible to Salmonella under the greenhouse conditions but not when tested in the field over three production seasons. PMID:24888884

  3. Effects of signaling invasive procedures on a hospitalized infant's affective behaviors.

    PubMed Central

    Derrickson, J G; Neef, N A; Cataldo, M F

    1993-01-01

    We report the effects of using a visual and auditory stimulus signaling impending painful medical procedures versus "safe" periods on the affective behavior of a hospitalized infant. The results of a reversal design suggested that the signaling procedures increased positive behaviors and decreased negative behaviors during both noninvasive and invasive caregiver events. PMID:8473252

  4. Wogonin inhibits the proliferation and invasion, and induces the apoptosis of HepG2 and Bel7402 HCC cells through NF‑κB/Bcl-2, EGFR and EGFR downstream ERK/AKT signaling.

    PubMed

    Liu, Xiaodong; Tian, Shuo; Liu, Mei; Jian, Lingyan; Zhao, Limei

    2016-10-01

    The anticancer effects of the natural flavonoid, wogonin, have been reported. However, its molecular mechanisms of action have not yet been fully explored. In the present study, we aimed to examine the molecular mechanisms of action of wogonin and its effects on the biological behavior of the HepG2 and Bel7402 hepatocellular carcinoma (HCC) cell lines. We also examined the effects of wogonin on nuclear factor-κB (NF-κB)/Bcl-2 and epidermal growth factor receptor (EGFR) signaling, as well as on downstream pathways of EGFR, namely extracellular signal-regulated kinase (ERK)/AKT signaling. We found that treatment with wogonin inhibited the proliferation and invasion, and induced the apoptosis of the HepG2 and Bel7402 cells. In addition, treatment with wogonin decreased cyclin D1, cyclin E, CDK4/6, Bcl-2 and matrix metalloproteinase 2 (MMP2) expression, and promoted the cleavage of caspase-3 and caspase-9 in a concentration-dependent manner. Further experiments revealed that wogonin inhibited NF-κB/Bcl-2 signaling by decreasing the IκB and p65 phosphorylation levels. Wogonin also inhibited the activation of the EGFR (Tyr845) signaling pathway, and that of downstream pathways of EGFR, namely ERK/AKT/MMP2 signaling. The depletion of EGFR by siRNA partly abolished the inhibitory effects of wogonin on cyclin D1, MMP2 expression. On the whole, our our findings demonstrate that wogonin effectively suppresses the proliferation, invasion and survival of HCC cells through the modulation of the NF-κB and EGFR signaling pathways.

  5. Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions.

    PubMed

    Kashio, Makiko; Sokabe, Takaaki; Shintaku, Kenji; Uematsu, Takayuki; Fukuta, Naomi; Kobayashi, Noritada; Mori, Yasuo; Tominaga, Makoto

    2012-04-24

    The ability to sense temperature is essential for organism survival and efficient metabolism. Body temperatures profoundly affect many physiological functions, including immunity. Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive, Ca(2+)-permeable cation channel expressed in a wide range of immunocytes. TRPM2 is activated by adenosine diphosphate ribose and hydrogen peroxide (H(2)O(2)), although the activation mechanism by H(2)O(2) is not well understood. Here we report a unique activation mechanism in which H(2)O(2) lowers the temperature threshold for TRPM2 activation, termed "sensitization," through Met oxidation and adenosine diphosphate ribose production. This sensitization is completely abolished by a single mutation at Met-214, indicating that the temperature threshold of TRPM2 activation is regulated by redox signals that enable channel activity at physiological body temperatures. Loss of TRPM2 attenuates zymosan-evoked macrophage functions, including cytokine release and fever-enhanced phagocytic activity. These findings suggest that redox signals sensitize TRPM2 downstream of NADPH oxidase activity and make TRPM2 active at physiological body temperature, leading to increased cytosolic Ca(2+) concentrations. Our results suggest that TRPM2 sensitization plays important roles in macrophage functions.

  6. Inhibitory mechanisms of two Uncaria tomentosa extracts affecting the Wnt-signaling pathway.

    PubMed

    Gurrola-Díaz, Carmen Magdalena; García-López, Pedro Macedonio; Gulewicz, Krzysztof; Pilarski, Radoslaw; Dihlmann, Susanne

    2011-06-15

    Uncaria tomentosa ("uña de gato"; "cat's claw"), a woody vine native to the Amazon rainforest, is commonly used in South American traditional medicine to treat a broad spectrum of diseases. Although recent studies have reported anti-inflammatory and anti-proliferative properties of different alkaloids extracted from this plant, the underlying molecular mechanisms of these effects have not been elucidated yet. Our study investigates the inhibitory mechanisms of Uncaria tomentosa extracts on the Wnt-signaling pathway, a central regulator of development and tissue homoeostasis. A modified cell-based luciferase assay for screening inhibitors of the Wnt-pathway was used for analysis. Three cancer cell lines displaying different levels of aberrant Wnt-signaling activity were transfected with Wnt-signaling responsive Tcf-reporter plasmids and treated with increasing concentrations of two Uncaria tomentosa bark extracts. Wnt-signaling activity was assessed by luciferase activity and by expression of Wnt-responsive target genes. We show that both, an aqueous and an alkaloid-enriched extract specifically inhibit Wnt-signaling activity in HeLa, HCT116 and SW480 cancer cells resulting in reduced expression of the Wnt-target gene: c-Myc. The alkaloid-enriched extract (B/S(rt)) was found to be more effective than the aqueous extract (B/W(37)). The strongest effect was observed in SW480 cells, displaying the highest endogenous Wnt-signaling activity. Downregulation of Wnt-signaling by a dominant negative-TCF-4 variant in non-cancer cells rendered the cells insensitive towards treatment with B/S(rt). B/Srt was less toxic in non-cancer cells than in cancer cells. Our data suggest that the broad spectrum of pharmacological action of Uncaria tomentosa involves inhibition of the Wnt-signaling pathway, downstream of beta-Catenin activity.

  7. Inhibitory mechanisms of two Uncaria tomentosa extracts affecting the Wnt-signaling pathway.

    PubMed

    Gurrola-Díaz, Carmen Magdalena; García-López, Pedro Macedonio; Gulewicz, Krzysztof; Pilarski, Radoslaw; Dihlmann, Susanne

    2011-06-15

    Uncaria tomentosa ("uña de gato"; "cat's claw"), a woody vine native to the Amazon rainforest, is commonly used in South American traditional medicine to treat a broad spectrum of diseases. Although recent studies have reported anti-inflammatory and anti-proliferative properties of different alkaloids extracted from this plant, the underlying molecular mechanisms of these effects have not been elucidated yet. Our study investigates the inhibitory mechanisms of Uncaria tomentosa extracts on the Wnt-signaling pathway, a central regulator of development and tissue homoeostasis. A modified cell-based luciferase assay for screening inhibitors of the Wnt-pathway was used for analysis. Three cancer cell lines displaying different levels of aberrant Wnt-signaling activity were transfected with Wnt-signaling responsive Tcf-reporter plasmids and treated with increasing concentrations of two Uncaria tomentosa bark extracts. Wnt-signaling activity was assessed by luciferase activity and by expression of Wnt-responsive target genes. We show that both, an aqueous and an alkaloid-enriched extract specifically inhibit Wnt-signaling activity in HeLa, HCT116 and SW480 cancer cells resulting in reduced expression of the Wnt-target gene: c-Myc. The alkaloid-enriched extract (B/S(rt)) was found to be more effective than the aqueous extract (B/W(37)). The strongest effect was observed in SW480 cells, displaying the highest endogenous Wnt-signaling activity. Downregulation of Wnt-signaling by a dominant negative-TCF-4 variant in non-cancer cells rendered the cells insensitive towards treatment with B/S(rt). B/Srt was less toxic in non-cancer cells than in cancer cells. Our data suggest that the broad spectrum of pharmacological action of Uncaria tomentosa involves inhibition of the Wnt-signaling pathway, downstream of beta-Catenin activity. PMID:21156346

  8. Venous pooling and drainage affects photoplethysmographic signals at different vertical hand positions

    NASA Astrophysics Data System (ADS)

    Hickey, Michelle; Phillips, Justin P.; Kyriacou, Panayiotis

    2015-03-01

    The aim of the current work is to investigate the possibility of augmenting pulse oximetry algorithms to enable the estimation of venous parameters in peripheral tissues. In order to further understand the contribution of venous blood to the photoplethysmographic (PPG) signal, recordings were made from six healthy volunteer subjects during an exercise in which the right hand was placed in various positions above and below heart level. The left hand was kept at heart level as a control while the right hand was moved. A custom-made two-channel dual wavelength PPG instrumentation system was used to obtain the red and infrared plethysmographic signals from both the right and left index fingers simultaneously using identical sensors. Laser Doppler flowmetry signals were also recorded from an adjacent fingertip on the right hand. Analysis of all acquired PPG signals indicated changes in both ac and dc amplitude of the right hand when the position was changed, while those obtained from the left (control) hand remained relatively constant. Most clearly, in the change from heart level to 50cm below heart level there is a substantial decrease in both dc and ac amplitudes. This decrease in dc amplitude most likely corresponds to increased venous pooling, and hence increased absorption of light. It is speculated that the decrease in ac PPG amplitude is due to reduced arterial emptying during diastole due to increased downstream resistance due to venous pooling.

  9. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    PubMed

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities.

  10. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    PubMed

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities. PMID:26702834

  11. Chronic ethanol ingestion in rats decreases granulocyte-macrophage colony-stimulating factor receptor expression and downstream signaling in the alveolar macrophage.

    PubMed

    Joshi, Pratibha C; Applewhite, Lisa; Ritzenthaler, Jeffrey D; Roman, Jesse; Fernandez, Alberto L; Eaton, Douglas C; Brown, Lou Ann S; Guidot, David M

    2005-11-15

    Although it is well recognized that alcohol abuse impairs alveolar macrophage immune function and renders patients susceptible to pneumonia, the mechanisms are incompletely understood. Alveolar macrophage maturation and function requires priming by GM-CSF, which is produced and secreted into the alveolar space by the alveolar epithelium. In this study, we determined that although chronic ethanol ingestion (6 wk) in rats had no effect on GM-CSF expression within the alveolar space, it significantly decreased membrane expression of the GM-CSF receptor in alveolar macrophages. In parallel, ethanol ingestion decreased cellular expression and nuclear binding of PU.1, the master transcription factor that activates GM-CSF-dependent macrophage functions. Furthermore, treatment of ethanol-fed rats in vivo with rGM-CSF via the upper airway restored GM-CSF receptor membrane expression as well as PU.1 protein expression and nuclear binding in alveolar macrophages. Importantly, GM-CSF treatment also restored alveolar macrophage function in ethanol-fed rats, as reflected by endotoxin-stimulated release of TNF-alpha and bacterial phagocytosis. We conclude that ethanol ingestion dampens alveolar macrophage immune function by decreasing GM-CSF receptor expression and downstream PU.1 nuclear binding and that these chronic defects can be reversed relatively quickly with rGM-CSF treatment in vivo.

  12. DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix.

    PubMed

    Zhang, Chao; Liu, Hong-He; Zheng, Ke-Wei; Hao, Yu-Hua; Tan, Zheng

    2013-08-01

    G-quadruplexes, four-stranded structures formed by Guanine-rich nucleic acids, are implicated in many physiological and pathological processes. G-quadruplex-forming sequences are abundant in genomic DNA, and G-quadruplexes have recently been shown to exist in the genome of mammalian cells. However, how G-quadruplexes are formed in the genomes remains largely unclear. Here, we show that G-quadruplex formation can be remotely induced by downstream transcription events that are thousands of base pairs away. The induced G-quadruplexes alter protein recognition and cause transcription termination at the local region. These results suggest that a G-quadruplex-forming sequence can serve as a sensor or receiver to sense remote DNA tracking activity in response to the propagation of mechanical torsion in a DNA double helix. We propose that the G-quadruplex formation may provide a mean for long-range sensing and communication between distal genomic locations to coordinate regulatory transactions in genomic DNA. PMID:23716646

  13. Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP(+))-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway.

    PubMed

    Yu, Song; Wang, Xu; He, Xingliang; Wang, Yue; Gao, Sujie; Ren, Lu; Shi, Yan

    2016-07-01

    Neuroinflammation is closely associated with the pathophysiology of neurodegenerative diseases including Parkinson's disease (PD). Recent evidence indicates that astrocytes also play pro-inflammatory roles in the central nervous system (CNS) by activation with toll-like receptor (TLR) ligands. Therefore, targeting anti-inflammation may provide a promising therapeutic strategy for PD. Curcumin, a polyphenolic compound isolated from Curcuma longa root, has been commonly used for the treatment of neurodegenerative diseases. However, the details of how curcumin exerts neuroprotection remain uncertain. Here, we investigated the protective effect of curcumin on 1-methyl-4-phenylpyridinium ion-(MPP(+)-) stimulated primary astrocytes. Our results showed that MPP(+) stimulation resulted in significant production of tumor necrosis factor (TNF)-α, interleukin (IL-6), and reactive oxygen species (ROS) in primary mesencephalic astrocytes. Curcumin pretreatment decreased the levels of these pro-inflammatory cytokines while increased IL-10 expression in MPP(+)-stimulated astrocytes. In addition, curcumin increased the levels of antioxidant glutathione (GSH) and reduced ROS production. Our results further showed that curcumin decreased the levels of TLR4 and its downstream effectors including NF-κB, IRF3, MyD88, and TIRF that are induced by MPP(+) as well as inhibited the immunoreactivity of TLR4 and morphological activation in MPP(+)-stimulated astrocytes. Together, data suggest that curcumin might exert a beneficial effect on neuroinflammation in the pathophysiology of PD. PMID:27164829

  14. Prolonged hyperinsulinemia affects metabolic signal transduction markers in a tissue specific manner.

    PubMed

    Campolo, A; de Laat, M A; Keith, L; Gruntmeir, K J; Lacombe, V A

    2016-04-01

    Insulin dysregulation is common in horses although the mechanisms of metabolic dysfunction are poorly understood. We hypothesized that insulin signaling in striated (cardiac and skeletal) muscle and lamellae may be mediated through different receptors as a result of receptor content, and that transcriptional regulation of downstream signal transduction and glucose transport may also differ between tissues sites during hyperinsulinemia. Archived samples from horses treated with a prolonged insulin infusion or a balanced electrolyte solution were used. All treated horses developed marked hyperinsulinemia and clinical laminitis. Protein expression was compared across tissues for the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) by immunoblotting. Gene expression of metabolic insulin-signaling markers (insulin receptor substrate 1, Akt2, and glycogen synthase kinase 3 beta [GSK-3β]) and glucose transport (basal glucose transporter 1 and insulin-sensitive glucose transporter 4) was evaluated using real-time reverse transcription polymerase chain reaction. Lamellar tissue contained significantly more IGF-1R protein than skeletal muscle, indicating the potential significance of IGF-1R signaling for this tissue. Gene expression of the selected markers of insulin signaling and glucose transport in skeletal muscle and lamellar tissues was unaffected by prolonged hyperinsulinemia. In contrast, the significant upregulation of Akt2, GSK-3β, GLUT1, and GLUT4 gene expression in cardiac tissue suggested that the prolonged hyperinsulinemia induced an increase in insulin sensitivity and a transcriptional activation of glucose transport. Responses to insulin are tissue-specific, and extrapolation of data across tissue sites is inappropriate. PMID:26773366

  15. Microgravity and Signaling Molecules in Rat Osteoblasts: Downstream of Receptor Tyrosine Kinase, G-Protein-Coupled Receptor, and Small GTP-Binding Proteins

    NASA Technical Reports Server (NTRS)

    Kumel, Yasuhiro; Shimokawa, Hitoyata; Morita, Sadao; Katano, Hisako; Akiyama, Hideo; Hirano, Masahiko; Ohya, Keiichi; Sams, Clarence F.; Whitson, Peggy A.

    2005-01-01

    Rat osteoblasts were cultured for 4 and 5 days aboard Space Shuttle and solubilized on board. The mRNA levels of the post-receptor signaling molecules were analyzed by quantitative RT-PCR. The G-protein alpha subunit G(alpha)q mRNA levels were elevated 3-fold by microgravity. G(alpha)q stimulates PLC(beta), and then PKC. PKC(delta) and PKC(theta) mRNA levels were increased 2- to 5-fold by microgravity The mRNA levels of SOS and Ras GRF were increased 4 to 5-fold by microgravity, while Ras GAP was not altered. Spaceflight-induced bone loss might be attributed to microgravity modulation of the signaling pathway in osteoblasts.

  16. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors

    PubMed Central

    Dai, Xiaoqing; Barrett, Amy; Grey, Caleb; Li, Lei; Bennett, Amanda J.; Johnson, Paul R.; Rajotte, Raymond V.; Gaulton, Kyle J.; Dermitzakis, Emmanouil T.; MacDonald, Patrick E.; McCarthy, Mark I.; Gloyn, Anna L.

    2015-01-01

    The intersection of genome-wide association analyses with physiological and functional data indicates that variants regulating islet gene transcription influence type 2 diabetes (T2D) predisposition and glucose homeostasis. However, the specific genes through which these regulatory variants act remain poorly characterized. We generated expression quantitative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped active islet chromatin signatures and were coincident with established T2D and/or glycemic trait associations. ‎At some, these data provide an experimental link between GWAS signals and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate genes with no prior connection to islet biology, including WARS and ZMIZ1. At the ZMIZ1 locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the maintenance of glucose homeostasis. Together, these findings provide a significant advance in the mechanistic insights of T2D and glycemic trait association loci. PMID:26624892

  17. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors.

    PubMed

    van de Bunt, Martijn; Manning Fox, Jocelyn E; Dai, Xiaoqing; Barrett, Amy; Grey, Caleb; Li, Lei; Bennett, Amanda J; Johnson, Paul R; Rajotte, Raymond V; Gaulton, Kyle J; Dermitzakis, Emmanouil T; MacDonald, Patrick E; McCarthy, Mark I; Gloyn, Anna L

    2015-12-01

    The intersection of genome-wide association analyses with physiological and functional data indicates that variants regulating islet gene transcription influence type 2 diabetes (T2D) predisposition and glucose homeostasis. However, the specific genes through which these regulatory variants act remain poorly characterized. We generated expression quantitative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped active islet chromatin signatures and were coincident with established T2D and/or glycemic trait associations. ‎At some, these data provide an experimental link between GWAS signals and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate genes with no prior connection to islet biology, including WARS and ZMIZ1. At the ZMIZ1 locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the maintenance of glucose homeostasis. Together, these findings provide a significant advance in the mechanistic insights of T2D and glycemic trait association loci. PMID:26624892

  18. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors.

    PubMed

    van de Bunt, Martijn; Manning Fox, Jocelyn E; Dai, Xiaoqing; Barrett, Amy; Grey, Caleb; Li, Lei; Bennett, Amanda J; Johnson, Paul R; Rajotte, Raymond V; Gaulton, Kyle J; Dermitzakis, Emmanouil T; MacDonald, Patrick E; McCarthy, Mark I; Gloyn, Anna L

    2015-12-01

    The intersection of genome-wide association analyses with physiological and functional data indicates that variants regulating islet gene transcription influence type 2 diabetes (T2D) predisposition and glucose homeostasis. However, the specific genes through which these regulatory variants act remain poorly characterized. We generated expression quantitative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped active islet chromatin signatures and were coincident with established T2D and/or glycemic trait associations. ‎At some, these data provide an experimental link between GWAS signals and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate genes with no prior connection to islet biology, including WARS and ZMIZ1. At the ZMIZ1 locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the maintenance of glucose homeostasis. Together, these findings provide a significant advance in the mechanistic insights of T2D and glycemic trait association loci.

  19. Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways

    PubMed Central

    2013-01-01

    Background myo-Inositol (Ins) metabolism during early stages of seed development plays an important role in determining the distributional relationships of some seed storage components such as the antinutritional factors, sucrose galactosides (also known as raffinose oligosaccharides) and phytic acid (PhA) (myo-inositol 1,2,3,4,5,6-hexakisphosphate). The former is a group of oligosaccharides, which plays a role in desiccation at seed maturation. They are not easily digested by monogastric animals, hence their flatulence-causing properties. Phytic acid is highly negatively charged, which chelates positive ions of essential minerals and decreases their bioavailability. It is also a major cause of phosphate-related water pollution. Our aim was to investigate the influence of competitive diversion of Ins as common substrate on the biosynthesis of phytate and sucrose galactosides. Results We have studied the initial metabolic patterns of Ins in developing seeds of Brassica napus and determined that early stages of seed development are marked by rapid deployment of Ins into a variety of pathways, dominated by interconversion of polar (Ins phosphates) and non-polar (phospholipids) species. In a time course experiment at early stages of seed development, we show Ins to be a highly significant constituent of the endosperm and seed coat, but with no phytate biosynthesis occurring in either tissue. Phytate accumulation appears to be confined mainly within the embryo throughout seed development and maturation. In our approach, the gene for myo-inositol methyltransferase (IMT), isolated from Mesembryanthemum crystallinum (ice plant), was transferred to B. napus under the control of the seed-specific promoters, napin and phaseolin. Introduction of this new metabolic step during seed development prompted Ins conversion to the corresponding monomethyl ether, ononitol, and affected phytate accumulation. We were able to produce homozygous transgenic lines with 19% - 35% average

  20. Retroactive Signaling in Short Signaling Pathways

    PubMed Central

    Sepulchre, Jacques-Alexandre; Merajver, Sofía D.; Ventura, Alejandra C.

    2012-01-01

    In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles. PMID:22848403

  1. An offspring signal of quality affects the timing of future parental reproduction

    PubMed Central

    Mas, Flore; Kölliker, Mathias

    2011-01-01

    Solicitation signals by offspring are well known to influence parental behaviour, and it is commonly assumed that this behavioural effect translates into an effect on residual reproduction of parents. However, this equivalence assumption concerning behavioural and reproductive effects caused by offspring signals remains largely untested. Here, we tested the effect of a chemical offspring signal of quality on the relative timing and amount of future reproduction in the European earwig (Forficula auricularia). We manipulated the nutritional condition of earwig nymphs and exposed females to their extract, or to solvent as a control. There were no significant main effects of exposure treatment on 2nd clutch production, but exposure to extracts of well-fed nymphs induced predictable timing of the 2nd relative to the 1st clutch. This result demonstrates for the first time that an offspring signal per se, in the absence of any maternal behaviour, affects maternal reproductive timing, possibly through an effect on maternal reproductive physiology. PMID:21208942

  2. Vangl1 protein acts as a downstream effector of intestinal trefoil factor (ITF)/TFF3 signaling and regulates wound healing of intestinal epithelium.

    PubMed

    Kalabis, Jiri; Rosenberg, Ian; Podolsky, Daniel K

    2006-03-10

    The intestinal trefoil factor (ITF/TFF3) protects intestinal epithelia from a range of insults and contributes to mucosal repair. However, the signaling events that mediate healing responses are only partially understood. To identify ITF signaling pathways, proteins that were Ser/Thr phosphorylated in response to ITF stimulation were immunoprecipitated from human colon carcinoma cell lines and identified by mass spectrometry. We demonstrated that Van Gogh-like protein 1 (also designated Vang-like 1 or Vangl1), a protein with four transmembrane domains, was Ser/Thr phosphorylated in response to ITF stimulation. Vangl1 was present in normal human colon and all intestinal epithelial cell lines (IEC) tested. In transfected IEC, FLAG-Vangl1 was mostly present in the Nonidet P-40 soluble fraction as detected by Western blotting, corresponding to the localization of endogenous protein in cytoplasmic vesicular structures by confocal microscopy with rabbit polyclonal anti-human Vangl1 antibody (alpha-Vangl1). Vangl1 cell membrane association increased with differentiation, as demonstrated by co-localization with E-cadherin in differentiated IEC. Increased Vangl1 phosphorylation after stimulation with ITF corresponded to decreased cell membrane association with E-cadherin. Functionally, Vangl1 overexpression enhanced ITF unstimulated and stimulated wound closure of IEC, whereas siRNA directed against Vangl1 inhibited the migratory response to ITF. Vangl1 protein may serve as an effector mediating the ITF healing response of the intestinal mucosa.

  3. Noise affects the shape of female preference functions for acoustic signals.

    PubMed

    Reichert, Michael S; Ronacher, Bernhard

    2015-02-01

    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise.

  4. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells

    SciTech Connect

    Rodriguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G.; Lauer, Fredine T.; Burchiel, Scott W.

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-{gamma}1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 {mu}M), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-{gamma}1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-{gamma}1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-{gamma}1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.

  5. Factors Affecting the Timing of Signal Detection of Adverse Drug Reactions.

    PubMed

    Hashiguchi, Masayuki; Imai, Shungo; Uehara, Keiko; Maruyama, Junya; Shimizu, Mikiko; Mochizuki, Mayumi

    2015-01-01

    We investigated factors affecting the timing of signal detection by comparing variations in reporting time of known and unknown ADRs after initial drug release in the USA. Data on adverse event reactions (AERs) submitted to U.S. FDA was used. Six ADRs associated with 6 drugs (rosuvastatin, aripiprazole, teriparatide, telithromycin, exenatide, varenicline) were investigated: Changes in the proportional reporting ratio, reporting odds ratio, and information component as indexes of signal detection were followed every 3 months after each drugs release, and the time for detection of signals was investigated. The time for the detection of signal to be detected after drug release in the USA was 2-10 months for known ADRs and 19-44 months for unknown ones. The median lag time for known and unknown ADRs was 99.0-122.5 days and 185.5-306.0 days, respectively. When the FDA released advisory information on rare but potentially serious health risks of an unknown ADR, the time lag to report from the onset of ADRs to the FDA was shorter. This study suggested that one factor affecting signal detection time is whether an ADR was known or unknown at release. PMID:26641634

  6. Carotenoid Supplementation Positively Affects the Expression of a Non-Visual Sexual Signal

    PubMed Central

    Van Hout, Alain J.-M.; Eens, Marcel; Pinxten, Rianne

    2011-01-01

    Carotenoids are a class of pigments which are widely used by animals for the expression of yellow-to-red colour signals, such as bill or plumage colour. Since they also have been shown to promote immunocompetence and to function as antioxidants, many studies have investigated a potential allocation trade-off with respect to carotenoid-based signals within the context of sexual selection. Although an effect of carotenoids on non-visual (e.g. acoustic) signals involved in sexual selection has been hypothesized, this has to date not been investigated. First, we examined a potential effect of dietary carotenoid supplementation on overall song rate during the non-breeding season in captive male European starlings (Sturnus vulgaris). After only 3–7 days, we found a significant (body-mass independent) positive effect of carotenoid availability on overall song rate. Secondly, as a number of studies suggest that carotenoids could affect the modulation of sexual signals by plasma levels of the steroid hormone testosterone (T), we used the same birds to subsequently investigate whether carotenoid availability affects the increase in (nestbox-oriented) song rate induced by experimentally elevated plasma T levels. Our results suggest that carotenoids may enhance the positive effect of elevated plasma T levels on nestbox-oriented song rate. Moreover, while non-supplemented starlings responded to T-implantation with an increase in both overall song rate and nestbox-oriented song, carotenoid-supplemented starlings instead shifted song production towards (reproductively relevant) nestbox-oriented song, without increasing overall song rate. Given that song rate is an acoustic signal rather than a visual signal, our findings therefore indicate that the role of carotenoids in (sexual) signalling need not be dependent on their function as pigments. PMID:21283591

  7. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment.

    PubMed

    Filippou, Panagiota; Antoniou, Chrystalla; Obata, Toshihiro; Van Der Kelen, Katrien; Harokopos, Vaggelis; Kanetis, Loukas; Aidinis, Vassilis; Van Breusegem, Frank; Fernie, Alisdair R; Fotopoulos, Vasileios

    2016-03-01

    Biotic and abiotic stresses, such as fungal infection and drought, cause major yield losses in modern agriculture. Kresoxim-methyl (KM) belongs to the strobilurins, one of the most important classes of agricultural fungicides displaying a direct effect on several plant physiological and developmental processes. However, the impact of KM treatment on salt and drought stress tolerance is unknown. In this study we demonstrate that KM pre-treatment of Medicago truncatula plants results in increased protection to drought and salt stress. Foliar application with KM prior to stress imposition resulted in improvement of physiological parameters compared with stressed-only plants. This protective effect was further supported by increased proline biosynthesis, modified reactive oxygen and nitrogen species signalling, and attenuation of cellular damage. In addition, comprehensive transcriptome analysis identified a number of transcripts that are differentially accumulating in drought- and salinity-stressed plants (646 and 57, respectively) after KM pre-treatment compared with stressed plants with no KM pre-treatment. Metabolomic analysis suggests that the priming role of KM in drought- and to a lesser extent in salinity-stressed plants can be attributed to the regulation of key metabolites (including sugars and amino acids) resulting in protection against abiotic stress factors. Overall, the present study highlights the potential use of this commonly used fungicide as a priming agent against key abiotic stress conditions. PMID:26712823

  8. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment

    PubMed Central

    Filippou, Panagiota; Antoniou, Chrystalla; Obata, Toshihiro; Van Der Kelen, Katrien; Harokopos, Vaggelis; Kanetis, Loukas; Aidinis, Vassilis; Van Breusegem, Frank; Fernie, Alisdair R; Fotopoulos, Vasileios

    2016-01-01

    Biotic and abiotic stresses, such as fungal infection and drought, cause major yield losses in modern agriculture. Kresoxim-methyl (KM) belongs to the strobilurins, one of the most important classes of agricultural fungicides displaying a direct effect on several plant physiological and developmental processes. However, the impact of KM treatment on salt and drought stress tolerance is unknown. In this study we demonstrate that KM pre-treatment of Medicago truncatula plants results in increased protection to drought and salt stress. Foliar application with KM prior to stress imposition resulted in improvement of physiological parameters compared with stressed-only plants. This protective effect was further supported by increased proline biosynthesis, modified reactive oxygen and nitrogen species signalling, and attenuation of cellular damage. In addition, comprehensive transcriptome analysis identified a number of transcripts that are differentially accumulating in drought- and salinity-stressed plants (646 and 57, respectively) after KM pre-treatment compared with stressed plants with no KM pre-treatment. Metabolomic analysis suggests that the priming role of KM in drought- and to a lesser extent in salinity-stressed plants can be attributed to the regulation of key metabolites (including sugars and amino acids) resulting in protection against abiotic stress factors. Overall, the present study highlights the potential use of this commonly used fungicide as a priming agent against key abiotic stress conditions. PMID:26712823

  9. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators.

    PubMed

    Maurya, Shailendra Kumar; Mishra, Juhi; Abbas, Sabiya; Bandyopadhyay, Sanghamitra

    2016-03-01

    Pesticide exposure is recognized as a risk factor for Alzheimer's disease (AD). We investigated early signs of AD-like pathology upon exposure to a pyrethroid pesticide, cypermethrin, reported to impair neurodevelopment. We treated weanling rats with cypermethrin (10 and 25 mg/kg) and detected dose-dependent increase in the key proteins of AD, amyloid beta (Aβ), and phospho-tau, in frontal cortex and hippocampus as early as postnatal day 45. Upregulation of Aβ pathway involved an increase in amyloid precursor protein (APP) and its pro-amyloidogenic processing through beta-secretase (BACE) and gamma-secretase. Tau pathway entailed elevation in tau and glycogen-synthase kinase-3-beta (GSK3β)-dependent, phospho-tau. GSK3β emerged as a molecular link between the two pathways, evident from reduction in phospho-tau as well as BACE upon treating GSK3β inhibitor, lithium chloride. Exploring the mechanism revealed an attenuated heparin-binding epidermal growth factor (HB-EGF) signaling and downstream astrogliosis-mediated neuroinflammation to be responsible for inducing Aβ and phospho-tau. Cypermethrin caused a proximal reduction in HB-EGF, which promoted astrocytic nuclear factor kappa B signaling and astroglial activation close to Aβ and phospho-tau. Glial activation stimulated generation of interleukin-1 (IL-1), which upregulated GSK3β, and APP and tau as well, resulting in co-localization of Aβ and phospho-tau with IL-1 receptor. Intracerebral insertion of exogenous HB-EGF restored its own signaling and suppressed neuroinflammation and thereby Aβ and phospho-tau in cypermethrin-exposed rats, proving a central role of reduced HB-EGF signaling in cypermethrin-mediated neurodegeneration. Furthermore, cypermethrin stimulated cognitive impairments, which could be prevented by exogenous HB-EGF. Our data demonstrate that cypermethrin induces premature upregulation of GSK3β-dependent Aβ and tau pathways, where HB-EGF signaling and neuroinflammation serve as

  10. Using neurophysiological signals that reflect cognitive or affective state: six recommendations to avoid common pitfalls.

    PubMed

    Brouwer, Anne-Marie; Zander, Thorsten O; van Erp, Jan B F; Korteling, Johannes E; Bronkhorst, Adelbert W

    2015-01-01

    Estimating cognitive or affective state from neurophysiological signals and designing applications that make use of this information requires expertise in many disciplines such as neurophysiology, machine learning, experimental psychology, and human factors. This makes it difficult to perform research that is strong in all its aspects as well as to judge a study or application on its merits. On the occasion of the special topic "Using neurophysiological signals that reflect cognitive or affective state" we here summarize often occurring pitfalls and recommendations on how to avoid them, both for authors (researchers) and readers. They relate to defining the state of interest, the neurophysiological processes that are expected to be involved in the state of interest, confounding factors, inadvertently "cheating" with classification analyses, insight on what underlies successful state estimation, and finally, the added value of neurophysiological measures in the context of an application. We hope that this paper will support the community in producing high quality studies and well-validated, useful applications.

  11. Label-Free Protein-RNA Interactome Analysis Identifies Khsrp Signaling Downstream of the p38/Mk2 Kinase Complex as a Critical Modulator of Cell Cycle Progression

    PubMed Central

    Schmitt, Anna; Riabinska, Arina; Thelen, Lisa; Peifer, Martin; Leeser, Uschi; Nuernberg, Peter; Altmueller, Janine; Gaestel, Matthias; Dieterich, Christoph; Reinhardt, H. Christian

    2015-01-01

    Growing evidence suggests a key role for RNA binding proteins (RBPs) in genome stability programs. Additionally, recent developments in RNA sequencing technologies, as well as mass-spectrometry techniques, have greatly expanded our knowledge on protein-RNA interactions. We here use full transcriptome sequencing and label-free LC/MS/MS to identify global changes in protein-RNA interactions in response to etoposide-induced genotoxic stress. We show that RBPs have distinct binding patterns in response to genotoxic stress and that inactivation of the RBP regulator module, p38/MK2, can affect the entire spectrum of protein-RNA interactions that take place in response to stress. In addition to validating the role of known RBPs like Srsf1, Srsf2, Elavl1 in the genotoxic stress response, we add a new collection of RBPs to the DNA damage response. We identify Khsrp as a highly regulated RBP in response to genotoxic stress and further validate its role as a driver of the G1/S transition through the suppression of Cdkn1aP21 transcripts. Finally, we identify KHSRP as an indicator of overall survival, as well as disease free survival in glioblastoma multiforme. PMID:25993413

  12. Sex Affects Bone Morphogenetic Protein Type II Receptor Signaling in Pulmonary Artery Smooth Muscle Cells

    PubMed Central

    Mair, Kirsty M.; Yang, Xu Dong; Long, Lu; White, Kevin; Wallace, Emma; Ewart, Marie-Ann; Docherty, Craig K.; Morrell, Nicholas W.

    2015-01-01

    Rationale: Major pulmonary arterial hypertension (PAH) registries report a greater incidence of PAH in women; mutations in the bone morphogenic protein type II receptor (BMPR-II) occur in approximately 80% of patients with heritable PAH (hPAH). Objectives: We addressed the hypothesis that women may be predisposed to PAH due to normally reduced basal BMPR-II signaling in human pulmonary artery smooth muscle cells (hPASMCs). Methods: We examined the BMPR-II signaling pathway in hPASMCs derived from men and women with no underlying cardiovascular disease (non-PAH hPASMCs). We also determined the development of pulmonary hypertension in male and female mice deficient in Smad1. Measurements and Main Results: Platelet-derived growth factor, estrogen, and serotonin induced proliferation only in non-PAH female hPASMCs. Female non-PAH hPASMCs exhibited reduced messenger RNA and protein expression of BMPR-II, the signaling intermediary Smad1, and the downstream genes, inhibitors of DNA binding proteins, Id1 and Id3. Induction of phospho-Smad1/5/8 and Id protein by BMP4 was also reduced in female hPASMCs. BMP4 induced proliferation in female, but not male, hPASMCs. However, small interfering RNA silencing of Smad1 invoked proliferative responses to BMP4 in male hPASMCs. In male hPASMCs, estrogen decreased messenger RNA and protein expression of Id genes. The estrogen metabolite 4-hydroxyestradiol decreased phospho-Smad1/5/8 and Id expression in female hPASMCs while increasing these in males commensurate with a decreased proliferative effect in male hPASMCs. Female Smad1+/− mice developed pulmonary hypertension (reversed by ovariectomy). Conclusions: We conclude that estrogen-driven suppression of BMPR-II signaling in non-PAH hPASMCs derived from women contributes to a pro-proliferative phenotype in hPASMCs that may predispose women to PAH. PMID:25608111

  13. Combining S-cone and luminance signals adversely affects discrimination of objects within backgrounds

    PubMed Central

    Jennings, Ben J.; Tsattalios, Konstantinos; Chakravarthi, Ramakrishna; Martinovic, Jasna

    2016-01-01

    The visual system processes objects embedded in complex scenes that vary in both luminance and colour. In such scenes, colour contributes to the segmentation of objects from backgrounds, but does it also affect perceptual organisation of object contours which are already defined by luminance signals, or are these processes unaffected by colour’s presence? We investigated if luminance and chromatic signals comparably sustain processing of objects embedded in backgrounds, by varying contrast along the luminance dimension and along the two cone-opponent colour directions. In the first experiment thresholds for object/non-object discrimination of Gaborised shapes were obtained in the presence and absence of background clutter. Contrast of the component Gabors was modulated along single colour/luminance dimensions or co-modulated along multiple dimensions simultaneously. Background clutter elevated discrimination thresholds only for combined S-(L + M) and L + M signals. The second experiment replicated and extended this finding by demonstrating that the effect was dependent on the presence of relatively high S-(L + M) contrast. These results indicate that S-(L + M) signals impair spatial vision when combined with luminance. Since S-(L + M) signals are characterised by relatively large receptive fields, this is likely to be due to an increase in the size of the integration field over which contour-defining information is summed. PMID:26856308

  14. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields.

    PubMed

    Golbach, Lieke A; Philippi, John G M; Cuppen, Jan J M; Savelkoul, Huub F J; Verburg-van Kemenade, B M Lidy

    2015-09-01

    We are increasingly exposed to low-frequency electromagnetic fields (LF EMFs) by electrical devices and power lines, but if and how these fields interact with living cells remains a matter of debate. This study aimed to investigate the potential effect of LF EMF exposure on calcium signalling in neutrophils. In neutrophilic granulocytes, activation of G-protein coupled receptors leads to efflux of calcium from calcium stores and influx of extracellular calcium via specialised calcium channels. The cytoplasmic rise of calcium induces cytoskeleton rearrangements, modified gene expression patterns, and cell migration. If LF EMF modulates intracellular calcium signalling, this will influence cellular behaviour and may eventually lead to health problems. We found that calcium mobilisation upon chemotactic stimulation was not altered after a short 30 min or long-term LF EMF exposure in human neutrophil-like cell lines HL-60 or PLB-985. Neither of the two investigated wave forms (Immunent and 50 Hz sine wave) at three magnetic flux densities (5 μT, 300 μT, and 500 μT) altered calcium signalling in vitro. Gene-expression patterns of calcium-signalling related genes also did not show any significant changes after exposure. Furthermore, analysis of the phenotypical appearance of microvilli by scanning electron microscopy revealed no alterations induced by LF EMF exposure. The findings above indicate that exposure to 50 Hz sinusoidal or Immunent LF EMF will not affect calcium signalling in neutrophils in vitro.

  15. Parasites and health affect multiple sexual signals in male common wall lizards, Podarcis muralis

    NASA Astrophysics Data System (ADS)

    Martín, José; Amo, Luisa; López, Pilar

    2008-04-01

    Multiple advertising sexual traits may either advertise different characteristics of male condition or be redundant to reinforce reliability of signals. Research has focused on multiple visual traits. However, in animals that use different multiple additional sensory systems, such as chemoreception, different types of traits might have evolved to signal similar characteristics of a male quality using different sensory channels. We examined whether ventral coloration and chemicals in femoral gland secretions of male common wall lizards, Podarcis muralis, are affected by their health state (blood-parasite load and cell-mediated immune response). Our results indicated that less parasitized lizards had brighter and more yellowish ventral colorations and also femoral secretions with higher proportions of two esters of octadecenoic acid. In addition, lizards with a greater immune response had more saturated coloration and secretions with higher proportions of octadecenoic acid methyl ester. We suggest that these signals would be reliable because only healthier males seemed able to allocate more carotenoids to coloration and presumably costly chemicals to secretions. The use of multiple sensory channels may provide more opportunities to signal a male quality under different circumstances, but also may reinforce the reliability of the signal when both types of traits may be perceived simultaneously.

  16. Neuropeptide F peptides act through unique signaling pathways to affect cardiac activity.

    PubMed

    Setzu, M; Biolchini, M; Lilliu, A; Manca, M; Muroni, P; Poddighe, S; Bass, C; Angioy, A M; Nichols, R

    2012-02-01

    Elucidating how neuropeptides affect physiology may result in delineating peptidergic mechanisms and identifying antagonists for application in basic and translational science. Human neuropeptide Y (NPY) regulates cardiac activity; frequently invertebrates contain orthologs of vertebrate peptides. We report invertebrate NPY-like neuropeptide F (NPF) arrested the signal frequency of the slow phase of the cardiac cycle (EC50 = 1 pM); however, signal frequency of the fast phase was affected only minimally. Neuropeptide F decreased the duration of the slow phase by ~70% (EC50 = 0.6 pM), but increased the duration of the fast phase by ~57% (EC50 = 10nM). Short NPF-1 (sNPF-1) decreased the signal frequency of the slow phase by ~70% (EC50 = 9 nM); yet, signal frequency of the fast phase was unaffected. Short NPF-1 decreased the duration of the slow phase ~55% (EC50 ~50 nM), but increased the duration of the fast phase ~20% without dose dependency. Neuropeptide F and sNPF-1 increased isoelectric period duration. This novel report demonstrated NPY-like peptides are cardioactive but functionally unique. These data contribute to understanding how invertebrate orthologs affect cardiovascular activity. Dipteran fast and slow phases may be generated from separate pacemakers in the abdominal heart and in the anterior thoracocephalic aorta, respectively. Thus, our research suggests NPF and sNPF-1 act through different mechanisms to regulate cardiac activity. Invertebrate NPY-like peptides act in olfaction and feeding yet mechanisms which are associated with their cardioactive effects remain unknown; our work may provide evidence linking their roles in sensory response and cardiac activity.

  17. Neuropeptide F peptides act through unique signaling pathways to affect cardiac activity

    PubMed Central

    Setzu, M.; Biolchini, M.; Lilliu, A.; Manca, M.; Muroni, P.; Poddighe, S.; Bass, C.; Angioy, A.M.; Nichols, R.

    2012-01-01

    Elucidating how neuropeptides affect physiology may result in delineating peptidergic mechanisms and identifying antagonists for application in basic and translational science. Human neuropeptide Y (NPY) regulates cardiac activity; frequently invertebrates contain orthologs of vertebrate peptides. We report invertebrate NPY-like neuropeptide F (NPF) arrested the signal frequency of the slow phase of the cardiac cycle (EC50 = 1 pM); however, signal frequency of the fast phase was affected only minimally. Neuropeptide F decreased the duration of the slow phase by ~70% (EC50 = 0.6 pM), but increased the duration of the fast phase by ~57% (EC50 = 10 nM). Short NPF-1 (sNPF-1) decreased the signal frequency of the slow phase by ~70% (EC50 = 9 nM); yet, signal frequency of the fast phase was unaffected. Short NPF-1 decreased the duration of the slow phase ~55% (EC50 ~ 50 nM), but increased the duration of the fast phase ~20% without dose dependency. Neuropeptide F and sNPF-1 increased isoelectric period duration. This novel report demonstrated NPY-like peptides are cardioactive but functionally unique. These data contribute to understanding how invertebrate orthologs affect cardiovascular activity. Dipteran fast and slow phases may be generated from separate pacemakers in the abdominal heart and in the anterior thoracocephalic aorta, respectively. Thus, our research suggests NPF and sNPF-1 act through different mechanisms to regulate cardiac activity. Invertebrate NPY-like peptides act in olfaction and feeding yet mechanisms which are associated with their cardioactive effects remain unknown; our work may provide evidence linking their roles in sensory response and cardiac activity. PMID:22289500

  18. Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 (vIRF4/K10) is a novel interaction partner of CSL/CBF1, the major downstream effector of Notch signaling.

    PubMed

    Heinzelmann, Katharina; Scholz, Barbara A; Nowak, Agnes; Fossum, Even; Kremmer, Elisabeth; Haas, Juergen; Frank, Ronald; Kempkes, Bettina

    2010-12-01

    In cells infected with the Kaposi's sarcoma-associated herpesvirus (KSHV), CSL/CBF1 signaling is essential for viral replication and promotes the survival of KSHV-infected cells. CSL/CBF1 is a DNA adaptor molecule which recruits coactivator and corepressor complexes to regulate viral and cellular gene transcription and which is a major downstream effector molecule of activated Notch. The interaction of KSHV RTA and LANA with CSL/CBF1 has been shown to balance the lytic and latent viral life cycle. Here we report that a third KSHV protein, viral interferon regulatory factor 4 (vIRF4/K10), but none of the three other KSHV-encoded vIRFs, interacts with CSL/CBF1. Two regions of vIRF4 with dissimilar affinities contribute to CSL/CBF1 binding. Similar to Notch, vIRF4 targets the hydrophobic pocket in the beta trefoil domain of CSL/CBF1 through a short peptide motif which closely resembles a motif found in Notch but does not strictly follow the ΦWΦP consensus conserved in human and mouse Notch proteins. Our results suggest that vIRF4 might compete with Notch for CSL/CBF1 binding and signaling. PMID:20861242

  19. Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling.

    PubMed

    Wangpu, Xiongzhi; Lu, Jiaoyang; Xi, Ruxing; Yue, Fei; Sahni, Sumit; Park, Kyung Chan; Menezes, Sharleen; Huang, Michael L H; Zheng, Minhua; Kovacevic, Zaklina; Richardson, Des R

    2016-05-01

    Metastasis is a complex process that is regulated by multiple signaling pathways, with the focal adhesion kinase (FAK)/paxillin pathway playing a major role in the formation of focal adhesions and cell motility. N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor in many solid tumor types, including prostate and colon cancer. Considering the antimetastatic effect of NDRG1 and the crucial involvement of the FAK/paxillin pathway in cellular migration and cell-matrix adhesion, we assessed the effects of NDRG1 on this important oncogenic pathway. In the present study, NDRG1 overexpression and silencing models of HT29 colon cancer and DU145 prostate cancer cells were used to examine the activation of FAK/paxillin signaling and the formation of focal adhesions. The expression of NDRG1 resulted in a marked and significant decrease in the activating phosphorylation of FAK and paxillin, whereas silencing of NDRG1 resulted in an opposite effect. The expression of NDRG1 also inhibited the formation of focal adhesions as well as cell migration and cell-collagen adhesion. Incubation of cells with novel thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, that upregulate NDRG1 also resulted in decreased phosphorylation of FAK and paxillin. The ability of these thiosemicarbazones to inhibit cell migration and metastasis could be mediated, at least in part, through the FAK/paxillin pathway. PMID:26895766

  20. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model.

    PubMed

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region. PMID:22837740

  1. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model

    PubMed Central

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region. PMID:22837740

  2. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model.

    PubMed

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region.

  3. Disruption of insulin signalling affects the neuroendocrine stress reaction in Drosophila females.

    PubMed

    Rauschenbach, Inga Y; Karpova, Evgenia K; Adonyeva, Natalya V; Andreenkova, Olga V; Faddeeva, Natalya V; Burdina, Elena V; Alekseev, Alexander A; Menshanov, Petr N; Gruntenko, Nataly E

    2014-10-15

    Juvenile hormone (JH) and dopamine are involved in the stress response in insects. The insulin/insulin-like growth factor signalling pathway has also recently been found to be involved in the regulation of various processes, including stress tolerance. However, the relationships between the JH, dopamine and insulin signalling pathways remain unclear. Here, we study the role of insulin signalling in the regulation of JH and dopamine metabolism under normal and heat stress conditions in Drosophila melanogaster females. We show that suppression of the insulin-like receptor (InR) in the corpus allatum, a specialised endocrine gland that synthesises JH, causes an increase in dopamine level and JH-hydrolysing activity and alters the activities of enzymes that produce as well as those that degrade dopamine [alkaline phosphatase (ALP), tyrosine hydroxylase (TH) and dopamine-dependent arylalkylamine N-acetyltransferase (DAT)]. We also found that InR suppression in the corpus allatum modulates dopamine, ALP, TH and JH-hydrolysing activity in response to heat stress and that it decreases the fecundity of the flies. JH application restores dopamine metabolism and fecundity in females with decreased InR expression in the corpus allatum. Our data provide evidence that the insulin/insulin-like growth factor signalling pathway regulates dopamine metabolism in females of D. melanogaster via the system of JH metabolism and that it affects the development of the neuroendocrine stress reaction and interacts with JH in the control of reproduction in this species.

  4. Attention enhances stimulus representations in macaque visual cortex without affecting their signal-to-noise level.

    PubMed

    Daliri, Mohammad Reza; Kozyrev, Vladislav; Treue, Stefan

    2016-01-01

    The magnitude of the attentional modulation of neuronal responses in visual cortex varies with stimulus contrast. Whether the strength of these attentional influences is similarly dependent on other stimulus properties is unknown. Here we report the effect of spatial attention on responses in the medial-temporal area (MT) of macaque visual cortex to moving random dots pattern of various motion coherences, i.e. signal-to-noise ratios. Our data show that allocating spatial attention causes a gain change in MT neurons. The magnitude of this attentional modulation is independent of the attended stimulus' motion coherence, creating a multiplicative scaling of the neuron's coherence-response function. This is consistent with the characteristics of gain models of attentional modulation and suggests that attention strengthens the neuronal representation of behaviorally relevant visual stimuli relative to unattended stimuli, but without affecting their signal-to-noise ratios. PMID:27283275

  5. Attention enhances stimulus representations in macaque visual cortex without affecting their signal-to-noise level

    PubMed Central

    Daliri, Mohammad Reza; Kozyrev, Vladislav; Treue, Stefan

    2016-01-01

    The magnitude of the attentional modulation of neuronal responses in visual cortex varies with stimulus contrast. Whether the strength of these attentional influences is similarly dependent on other stimulus properties is unknown. Here we report the effect of spatial attention on responses in the medial-temporal area (MT) of macaque visual cortex to moving random dots pattern of various motion coherences, i.e. signal-to-noise ratios. Our data show that allocating spatial attention causes a gain change in MT neurons. The magnitude of this attentional modulation is independent of the attended stimulus’ motion coherence, creating a multiplicative scaling of the neuron’s coherence-response function. This is consistent with the characteristics of gain models of attentional modulation and suggests that attention strengthens the neuronal representation of behaviorally relevant visual stimuli relative to unattended stimuli, but without affecting their signal-to-noise ratios. PMID:27283275

  6. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies.

    PubMed

    Patil, Basavaprabhu L; Fauquet, Claude M

    2015-06-01

    RNA silencing is a sequence-specific post-transcriptional gene inactivation mechanism that operates in diverse organisms and that can extend beyond its site of initiation, owing to the movement of the silencing signal, called non-autonomous gene silencing. Previous studies have shown that several factors manifest the movement of the silencing signal, such as the size (21 or 24 nucleotides) of the secondary small interfering RNA (siRNA) produced, the steady-state concentration of siRNAs and their cognate messenger RNA (mRNA) or a change in the sink-source status of plant parts affecting phloem translocation. Our study shows that both light intensity and temperature have a significant impact on the systemic movement of the silencing signal in transient agroinfiltration studies in Nicotiana benthamiana. At higher light intensities (≥ 450 μE/m(2)/s) and higher temperatures (≥ 30 °C), gene silencing was localized to leaf tissue that was infiltrated, without any systemic spread. Interestingly, in these light and temperature conditions (≥ 450 μE/m(2) /s and ≥ 30 °C), the N. benthamiana plants showed recovery from the viral symptoms. However, the reduced systemic silencing and reduced viral symptom severity at higher light intensities were caused by a change in the sink-source status of the plant, ultimately affecting the phloem translocation of small RNAs or the viral genome. In contrast, at lower light intensities (<300 μE/m(2)/s) with a constant temperature of 25 °C, there was strong systemic movement of the silencing signal in the N. benthamiana plants and reduced recovery from virus infections. The accumulation of gene-specific siRNAs was reduced at higher temperature as a result of a reduction in the accumulation of transcript on transient agroinfiltration of RNA interference (RNAi) constructs, mostly because of poor T-DNA transfer activity of Agrobacterium, possibly also accompanied by reduced phloem translocation.

  7. The Size of Activating and Inhibitory Killer Ig-like Receptor Nanoclusters Is Controlled by the Transmembrane Sequence and Affects Signaling.

    PubMed

    Oszmiana, Anna; Williamson, David J; Cordoba, Shaun-Paul; Morgan, David J; Kennedy, Philippa R; Stacey, Kevin; Davis, Daniel M

    2016-05-31

    Super-resolution microscopy has revealed that immune cell receptors are organized in nanoscale clusters at cell surfaces and immune synapses. However, mechanisms and functions for this nanoscale organization remain unclear. Here, we used super-resolution microscopy to compare the surface organization of paired killer Ig-like receptors (KIR), KIR2DL1 and KIR2DS1, on human primary natural killer cells and cell lines. Activating KIR2DS1 assembled in clusters two-fold larger than its inhibitory counterpart KIR2DL1. Site-directed mutagenesis established that the size of nanoclusters is controlled by transmembrane amino acid 233, a lysine in KIR2DS1. Super-resolution microscopy also revealed two ways in which the nanoscale clustering of KIR affects signaling. First, KIR2DS1 and DAP12 nanoclusters are juxtaposed in the resting cell state but coalesce upon receptor ligation. Second, quantitative super-resolution microscopy revealed that phosphorylation of the kinase ZAP-70 or phosphatase SHP-1 is favored in larger KIR nanoclusters. Thus, the size of KIR nanoclusters depends on the transmembrane sequence and affects downstream signaling.

  8. The Size of Activating and Inhibitory Killer Ig-like Receptor Nanoclusters Is Controlled by the Transmembrane Sequence and Affects Signaling.

    PubMed

    Oszmiana, Anna; Williamson, David J; Cordoba, Shaun-Paul; Morgan, David J; Kennedy, Philippa R; Stacey, Kevin; Davis, Daniel M

    2016-05-31

    Super-resolution microscopy has revealed that immune cell receptors are organized in nanoscale clusters at cell surfaces and immune synapses. However, mechanisms and functions for this nanoscale organization remain unclear. Here, we used super-resolution microscopy to compare the surface organization of paired killer Ig-like receptors (KIR), KIR2DL1 and KIR2DS1, on human primary natural killer cells and cell lines. Activating KIR2DS1 assembled in clusters two-fold larger than its inhibitory counterpart KIR2DL1. Site-directed mutagenesis established that the size of nanoclusters is controlled by transmembrane amino acid 233, a lysine in KIR2DS1. Super-resolution microscopy also revealed two ways in which the nanoscale clustering of KIR affects signaling. First, KIR2DS1 and DAP12 nanoclusters are juxtaposed in the resting cell state but coalesce upon receptor ligation. Second, quantitative super-resolution microscopy revealed that phosphorylation of the kinase ZAP-70 or phosphatase SHP-1 is favored in larger KIR nanoclusters. Thus, the size of KIR nanoclusters depends on the transmembrane sequence and affects downstream signaling. PMID:27210755

  9. Positive and negative gustatory inputs affect Drosophila lifespan partly in parallel to dFOXO signaling

    PubMed Central

    Ostojic, Ivan; Boll, Werner; Waterson, Michael J.; Chan, Tammy; Chandra, Rashmi; Pletcher, Scott D.; Alcedo, Joy

    2014-01-01

    In Caenorhabditis elegans, a subset of gustatory neurons, as well as olfactory neurons, shortens lifespan, whereas a different subset of gustatory neurons lengthens it. Recently, the lifespan-shortening effect of olfactory neurons has been reported to be conserved in Drosophila. Here we show that the Drosophila gustatory system also affects lifespan in a bidirectional manner. We find that taste inputs shorten lifespan through inhibition of the insulin pathway effector dFOXO, whereas other taste inputs lengthen lifespan in parallel to this pathway. We also note that the gustatory influence on lifespan does not necessarily depend on food intake levels. Finally, we identify the nature of some of the taste inputs that could shorten versus lengthen lifespan. Together our data suggest that different gustatory cues can modulate the activities of distinct signaling pathways, including different insulin-like peptides, to promote physiological changes that ultimately affect lifespan. PMID:24847072

  10. Using neurophysiological signals that reflect cognitive or affective state: six recommendations to avoid common pitfalls

    PubMed Central

    Brouwer, Anne-Marie; Zander, Thorsten O.; van Erp, Jan B. F.; Korteling, Johannes E.; Bronkhorst, Adelbert W.

    2015-01-01

    Estimating cognitive or affective state from neurophysiological signals and designing applications that make use of this information requires expertise in many disciplines such as neurophysiology, machine learning, experimental psychology, and human factors. This makes it difficult to perform research that is strong in all its aspects as well as to judge a study or application on its merits. On the occasion of the special topic “Using neurophysiological signals that reflect cognitive or affective state” we here summarize often occurring pitfalls and recommendations on how to avoid them, both for authors (researchers) and readers. They relate to defining the state of interest, the neurophysiological processes that are expected to be involved in the state of interest, confounding factors, inadvertently “cheating” with classification analyses, insight on what underlies successful state estimation, and finally, the added value of neurophysiological measures in the context of an application. We hope that this paper will support the community in producing high quality studies and well-validated, useful applications. PMID:25983676

  11. Mutations in TSPEAR, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis

    PubMed Central

    Samuelov, Liat; Bertolini, Marta; Weissglas-Volkov, Daphna; Eskin-Schwartz, Marina; Malchin, Natalia; Bochner, Ron; Fainberg, Gilad; Goldberg, Ilan; Sugawara, Koji; Tsuruta, Daisuke; Morasso, Maria; Shalev, Stavit; Gallo, Richard L.; Shomron, Noam; Paus, Ralf; Sprecher, Eli

    2016-01-01

    Despite recent advances in our understanding of the pathogenesis of ectodermal dysplasias (EDs), the molecular basis of many of these disorders remains unknown. In the present study, we aimed at elucidating the genetic basis of a new form of ED featuring facial dysmorphism, scalp hypotrichosis and hypodontia. Using whole exome sequencing, we identified 2 frameshift and 2 missense mutations in TSPEAR segregating with the disease phenotype in 3 families. TSPEAR encodes the thrombospondin-type laminin G domain and EAR repeats (TSPEAR) protein, whose function is poorly understood. TSPEAR knock-down resulted in altered expression of genes known to be regulated by NOTCH and to be involved in murine hair and tooth development. Pathway analysis confirmed that down-regulation of TSPEAR in keratinocytes is likely to affect Notch signaling. Accordingly, using a luciferase-based reporter assay, we showed that TSPEAR knock-down is associated with decreased Notch signaling. In addition, NOTCH1 protein expression was reduced in patient scalp skin. Moreover, TSPEAR silencing in mouse hair follicle organ cultures was found to induce apoptosis in follicular epithelial cells, resulting in decreased hair bulb diameter. Collectively, these observations indicate that TSPEAR plays a critical, previously unrecognized role in human tooth and hair follicle morphogenesis through regulation of the Notch signaling pathway. PMID:27736875

  12. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    PubMed

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  13. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    PubMed

    Medina, Izarne; Casal, José; Fabre, Caroline C G

    2015-01-01

    Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations. PMID:26519517

  14. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    PubMed Central

    Medina, Izarne; Casal, José; Fabre, Caroline C. G.

    2015-01-01

    ABSTRACT Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations. PMID:26519517

  15. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    PubMed

    Medina, Izarne; Casal, José; Fabre, Caroline C G

    2015-01-01

    Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations.

  16. Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime

    NASA Astrophysics Data System (ADS)

    Caré, Bertrand R.; Soula, Hédi A.

    2013-01-01

    Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors’ spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.

  17. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    PubMed

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway.

  18. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  19. IL-9 signaling affects central nervous system resident cells during inflammatory stimuli.

    PubMed

    Ding, Xiaoli; Cao, Fang; Cui, Langjun; Ciric, Bogoljub; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2015-12-01

    Interleukin (IL) 9, a dominant cytokine in Th9 cells, has been proven to play a pathogenic role in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), by augmenting T cell activation and differentiation; however, whether IL-9 signaling affects central nervous system (CNS)-resident cells during CNS autoimmunity remains unknown. In the present study, we found that the IL-9 receptor (IL-9R) was highly expressed in astrocytes, oligodendrocyte progenitor cells (OPCs), oligodendrocytes and microglia cells, and that its expression was significantly upregulated in brain and spinal cord during EAE. In addition, IL-9 increased chemokine expression, including CXCL9, CCL20 and MMP3, in primary astrocytes. Although IL-9 had no effect on the proliferation of microglia cells, it decreased OPC proliferation and differentiation when in combination with other pro-inflammatory cytokines, but not with IFN-γ. IL-9 plus IFN-γ promoted OPC proliferation and differentiation. These findings indicate that CNS-restricted IL-9 signaling may be involved in the pathogenesis of MS/EAE, thus providing a potential therapeutic target for future MS/EAE treatment through disruption of CNS cell-specific IL-9 signaling.

  20. Thailand's downstream projects proliferate

    SciTech Connect

    Not Available

    1991-06-03

    Thailand continues to press expansion and modernization of its downstream sector. Among recent developments: Construction of an olefins unit at Thailand's second major petrochemical complex and a worldscale aromatics unit in Thailand is threatened by rising costs. Thailand's National Petrochemical Corp (NPC) let a 9 billion yen contract to Mitsui Engineering and Shipbuilding Co. and C. Itoh and Co. for a dual fuel cogeneration power plant at its Mab Ta Phud, Rayong province, petrochemical complex. Financing is in place to flash a green light for a $530 million Belgian-Thai joint venture sponsoring a worldscale polyvinyl chloride/vinyl chloride monomer plant in Thailand. Work is more than 50% complete on the $345 million second phase expansion of Thai Oil's Sri Racha refinery in Chon Buri province. Petroleum Authority of Thailand (PTT) endorsed a plan to install two more natural gas processing plants in Thailand to meet rapidly growing domestic demand for petroleum gas.

  1. Novel Evidence That Attributing Affectively Salient Signal to Random Noise Is Associated with Psychosis

    PubMed Central

    Catalan, Ana; Simons, Claudia J. P.; Bustamante, Sonia; Drukker, Marjan; Madrazo, Aranzazu; de Artaza, Maider Gonzalez; Gorostiza, Iñigo; van Os, Jim; Gonzalez-Torres, Miguel A.

    2014-01-01

    We wished to replicate evidence that an experimental paradigm of speech illusions is associated with psychotic experiences. Fifty-four patients with a first episode of psychosis (FEP) and 150 healthy subjects were examined in an experimental paradigm assessing the presence of speech illusion in neutral white noise. Socio-demographic, cognitive function and family history data were collected. The Positive and Negative Syndrome Scale (PANSS) was administered in the patient group and the Structured Interview for Schizotypy-Revised (SIS-R), and the Community Assessment of Psychic Experiences (CAPE) in the control group. Patients had a much higher rate of speech illusions (33.3% versus 8.7%, ORadjusted: 5.1, 95% CI: 2.3–11.5), which was only partly explained by differences in IQ (ORadjusted: 3.4, 95% CI: 1.4–8.3). Differences were particularly marked for signals in random noise that were perceived as affectively salient (ORadjusted: 9.7, 95% CI: 1.8–53.9). Speech illusion tended to be associated with positive symptoms in patients (ORadjusted: 3.3, 95% CI: 0.9–11.6), particularly affectively salient illusions (ORadjusted: 8.3, 95% CI: 0.7–100.3). In controls, speech illusions were not associated with positive schizotypy (ORadjusted: 1.1, 95% CI: 0.3–3.4) or self-reported psychotic experiences (ORadjusted: 1.4, 95% CI: 0.4–4.6). Experimental paradigms indexing the tendency to detect affectively salient signals in noise may be used to identify liability to psychosis. PMID:25020079

  2. The diatom-derived aldehyde decadienal affects life cycle transition in the ascidian Ciona intestinalis through nitric oxide/ERK signalling

    PubMed Central

    Castellano, Immacolata; Ercolesi, Elena; Romano, Giovanna; Ianora, Adrianna; Palumbo, Anna

    2015-01-01

    Polyunsaturated aldehydes (PUAs) are fatty-acid-derived metabolites produced by some microalgae, including different diatom species. PUAs are mainly produced as a wound-activated defence mechanism against microalgal predators or released from senescent cells at the end of a bloom. PUAs, including 2,4-trans-decadienal (DD), induce deleterious effects on embryonic and larval development of several planktonic and benthic organisms. Here, we report on the effects of DD on larval development and metamorphosis of the ascidian Ciona intestinalis. Ciona larval development is regulated by the cross-talking of different molecular events, including nitric oxide (NO) production, ERK activation and caspase 3-dependent apoptosis. We report that treatment with DD at the competence larval stage results in a delay in metamorphosis. DD affects redox balance by reducing total glutathione and NO levels. By biochemical and quantitative gene expression analysis, we identify the NO-signalling network affected by DD, including the upregulation of ERK phosphatase mkp1 and consequent reduction of ERK phosphorylation, with final changes in the expression of downstream ERK target genes. Overall, these results give new insights into the molecular pathways induced in marine organisms after exposure to PUAs during larval development, demonstrating that this aldehyde affects key checkpoints of larval transition from the vegetative to the reproductive life stage. PMID:25788553

  3. Prepubertal tamoxifen treatment affects development of heifer reproductive tissues and related signaling pathways.

    PubMed

    Al Naib, A; Tucker, H L M; Xie, G; Keisler, D H; Bartol, F F; Rhoads, R P; Akers, R M; Rhoads, M L

    2016-07-01

    Prepubertal exposure of the developing ovaries and reproductive tract (RT) to estrogen or xenoestrogens can have acute and long-term consequences that compromise the reproductive performance of cattle. This research examined effects of the selective estrogen receptor modulator tamoxifen (TAM) on gene and protein abundance in prepubertal ovaries and RT, with a particular focus on signaling pathways that affect morphology. Tamoxifen was administered to Holstein heifer calves (n=8) daily (0.3mg/kg subcutaneously) from 28 to 120 d of age, when tissues were collected. Control calves (n=7) received an equal volume of excipient. Weight, gross measurements, and samples of reproductive tissues were collected, and protein and mRNA were extracted from snap-frozen samples of vagina, cervix, uterus, oviduct, ovary, and liver. Neither estradiol nor insulin-like growth factor I (IGFI) concentrations in the serum were affected by TAM treatment. Tamoxifen treatment reduced ovarian weight independently from effects on antral follicle populations, as there was no difference in visible antral follicle numbers on the day of collection. Estrogen receptor α (ESR1) and β (ESR2) mRNA, ESR1 protein, IGFI, progesterone receptor, total growth hormone receptor, WNT4, WNT5A, and WNT7A mRNA, in addition to mitogen-activated protein kinase (MAPK) and phosphorylated MAPK proteins were affected differently depending on the tissue examined. However, neither IGFI receptor mRNA nor protein abundance were affected by TAM treatment. Results indicate that reproductive development in prepubertal Holstein heifer calves is TAM-sensitive, and that bovine RT and ovarian development are supported, in part, by estrogen receptor-dependent mechanisms during the period studied here. Potential long-term consequences of such developmental disruption remain to be defined. PMID:27085397

  4. Metabolic stressors and signals differentially affect energy allocation between reproduction and immune function.

    PubMed

    Carlton, Elizabeth D; Cooper, Candace L; Demas, Gregory E

    2014-11-01

    Most free-living animals have finite energy stores that they must allocate to different physiological and behavioral processes. In times of energetic stress, trade-offs in energy allocation among these processes may occur. The manifestation of trade-offs may depend on the source (e.g., glucose, lipids) and severity of energy limitation. In this study, we investigated energetic trade-offs between the reproductive and immune systems by experimentally limiting energy availability to female Siberian hamsters (Phodopus sungorus) with 2-deoxy-d-glucose, a compound that disrupts cellular utilization of glucose. We observed how glucoprivation at two levels of severity affected allocation to reproduction and immunity. Additionally, we treated a subset of these hamsters with leptin, an adipose hormone that provides a direct signal of available fat stores, in order to determine how increasing this signal of fat stores influences glucoprivation-induced trade-offs. We observed trade-offs between the reproductive and immune systems and that these trade-offs depended on the severity of energy limitation and exogenous leptin signaling. The majority of the animals experiencing mild glucoprivation entered anestrus, whereas leptin treatment restored estrous cycling in these animals. Surprisingly, virtually all animals experiencing more severe glucoprivation maintained normal estrous cycling throughout the experiment; however, exogenous leptin resulted in lower antibody production in this group. These data suggest that variation in these trade-offs may be mediated by shifts between glucose and fatty acid utilization. Collectively, the results of the present study highlight the context-dependent nature of these trade-offs, as trade-offs induced by the same metabolic stressor can manifest differently depending on its intensity.

  5. Methoxychlor affects multiple hormone signaling pathways in the largemouth bass (Micropterus salmoides) liver.

    PubMed

    Martyniuk, Christopher J; Spade, Daniel J; Blum, Jason L; Kroll, Kevin J; Denslow, Nancy D

    2011-02-01

    Methoxychlor (MXC) is an organochlorine pesticide that has been shown to have estrogenic activity by activating estrogen receptors and inducing vitellogenin production in male fish. Previous studies report that exposure to MXC induces changes in mRNA abundance of reproductive genes in the liver and testes of largemouth bass (Micropterus salmoides). The objective of the present study was to better characterize the mode of action of MXC by measuring the global transcriptomic response in the male largemouth liver using an oligonucleotide microarray. Microarray analysis identified highly significant changes in the expression of 37 transcripts (p<0.001) (20 induced and 17 decreased) in the liver after MXC injection and a total of 900 expression changes (p<0.05) in transcripts with high homology to known genes. Largemouth bass estrogen receptor alpha (esr1) and androgen receptor (ar) were among the transcripts that were increased in the liver after MXC treatment. Functional enrichment analysis identified the molecular functions of steroid binding and androgen receptor activity as well as steroid hormone receptor activity as being significantly over-represented gene ontology terms. Pathway analysis identified c-fos signaling as being putatively affected through both estrogen and androgen signaling. This study provides evidence that MXC elicits transcriptional effects through the estrogen receptor as well as androgen receptor-mediated pathways in the liver.

  6. Temperature affects c-di-GMP signalling and biofilm formation in Vibrio cholerae.

    PubMed

    Townsley, Loni; Yildiz, Fitnat H

    2015-11-01

    Biofilm formation is crucial to the environmental survival and transmission of Vibrio cholerae, the facultative human pathogen responsible for the disease cholera. During its infectious cycle, V. cholerae experiences fluctuations in temperature within the aquatic environment and during the transition between human host and aquatic reservoirs. In this study, we report that biofilm formation is induced at low temperatures through increased levels of the signalling molecule, cyclic diguanylate (c-di-GMP). Strains harbouring in frame deletions of all V. cholerae genes that are predicted to encode diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) were screened for their involvement in low-temperature-induced biofilm formation and Vibrio polysaccharide gene expression. Of the 52 mutants tested, deletions of six DGCs and three PDEs were found to affect these phenotypes at low temperatures. Unlike wild type, a strain lacking all six DGCs did not exhibit a low-temperature-dependent increase in c-di-GMP, indicating that these DGCs are required for temperature modulation of c-di-GMP levels. We also show that temperature modulates c-di-GMP levels in a similar fashion in the Gram-negative pathogen Pseudomonas aeruginosa but not in the Gram-positive pathogen Listeria monocytogenes. This study uncovers the role of temperature in environmental regulation of biofilm formation and c-di-GMP signalling.

  7. Methoxychlor affects multiple hormone signaling pathways in the largemouth bass (Micropterus salmoides) liver

    PubMed Central

    Martyniuk, Christopher J.; Spade, Daniel J.; Blum, Jason L.; Kroll, Kevin J.; Denslow, Nancy D.

    2011-01-01

    Methoxychlor (MXC) is an organochlorine pesticide that has been shown to have estrogenic activity by activating estrogen receptors and inducing vitellogenin production in male fish. Previous studies report that exposure to MXC induces changes in mRNA abundance of reproductive genes in the liver and testes of largemouth bass (Micropterus salmoides). The objective of the present study was to better characterize the mode of action of MXC by measuring the global transcriptomic response in the male largemouth liver using an oligonucleotide microarray. Microarray analysis identified highly significant changes in the expression of 37 transcripts (p<0.001) (20 induced and 17 decreased) in the liver after MXC injection and a total of 900 expression changes (p<0.05) in transcripts with high homology to known genes. Largemouth bass estrogen receptor alpha (esr1) and androgen receptor (ar) were among the transcripts that were increased in the liver after MXC treatment. Functional enrichment analysis identified the molecular functions of steroid binding and androgen receptor activity as well as steroid hormone receptor activity as being significantly over-represented gene ontology terms. Pathway analysis identified c-fos signaling as being putatively affected through both estrogen and androgen signaling. This study provides evidence that MXC elicits transcriptional effects through the estrogen receptor as well as androgen receptor-mediated pathways in the liver. PMID:21276474

  8. Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date.

    PubMed

    Sami, Musa Basser; Rabiner, Eugenii A; Bhattacharyya, Sagnik

    2015-08-01

    A significant body of epidemiological evidence has linked psychotic symptoms with both acute and chronic use of cannabis. Precisely how these effects of THC are mediated at the neurochemical level is unclear. While abnormalities in multiple pathways may lead to schizophrenia, an abnormality in dopamine neurotransmission is considered to be the final common abnormality. One would thus expect cannabis use to be associated with dopamine signaling alterations. This is the first systematic review of all studies, both observational as well as experimental, examining the acute as well as chronic effect of cannabis or its main psychoactive ingredient, THC, on the dopamine system in man. We aimed to review all studies conducted in man, with any reported neurochemical outcomes related to the dopamine system after cannabis, cannabinoid or endocannabinoid administration or use. We identified 25 studies reporting outcomes on over 568 participants, of which 244 participants belonged to the cannabis/cannabinoid exposure group. In man, there is as yet little direct evidence to suggest that cannabis use affects acute striatal dopamine release or affects chronic dopamine receptor status in healthy human volunteers. However some work has suggested that acute cannabis exposure increases dopamine release in striatal and pre-frontal areas in those genetically predisposed for, or at clinical high risk of psychosis. Furthermore, recent studies are suggesting that chronic cannabis use blunts dopamine synthesis and dopamine release capacity. Further well-designed studies are required to definitively delineate the effects of cannabis use on the dopaminergic system in man.

  9. Retinal pigment epithelium (RPE) exosomes contain signaling phosphoproteins affected by oxidative stress.

    PubMed

    Biasutto, Lucia; Chiechi, Antonella; Couch, Robin; Liotta, Lance A; Espina, Virginia

    2013-08-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss and blindness among the elderly population in the industrialized world. One of the typical features of this pathology is the gradual death of retinal pigment epithelial (RPE) cells, which are essential for maintaining photoreceptor functions and survival. The etiology is multifactorial, and oxidative stress is clearly one of the key factors involved in disease pathogenesis (Plafker, Adv. Exp. Med. Biol. 664 (2010) 447-56; Qin, Drug Dev. Res. 68 (2007) 213-225). Recent work has revealed the presence of phosphorylated signaling proteins in the vitreous humour of patients affected by AMD or other retinal diseases. While the location of these signaling proteins is typically the cell membrane or intracellular compartments, vitreous samples were proven to be cell-free (Davuluri et al., Arch. Ophthalmol. 127 (2009) 613-21). To gain a better understanding of how these proteins can be shed into the vitreous, we used reverse phase protein arrays (RPMA) to analyze the protein and phosphoprotein content of exosomes shed by cultured ARPE-19 cells under oxidative stress conditions. Seventy two proteins were shown to be released by ARPE-19 cells and compartmentalized within exosomes. Forty one of them were selectively detected in their post-translationally modified form (i.e., phosphorylated or cleaved) for the first time in exosomes. Sets of these proteins were linked together reflecting activation of pathway units within exosomes. A subset of (phospho)proteins were altered in exosomes secreted by ARPE-19 cells subjected to oxidative stress, compared to that secreted by control/non stressed cells. Stress-altered exosome proteins were found to be involved in pathways regulating apoptosis/survival (i.e, Bak, Smac/Diablo, PDK1 (S241), Akt (T308), Src (Y416), Elk1 (S383), ERK 1/2 (T202/Y204)) and cell metabolism (i.e., AMPKα1 (S485), acetyl-CoA carboxylase (S79), LDHA). Exosomes may thus represent the conduit

  10. Inductive expression of toll-like receptor 5 (TLR5) and associated downstream signaling molecules following ligand exposure and bacterial infection in the Indian major carp, mrigal (Cirrhinus mrigala).

    PubMed

    Basu, M; Swain, B; Maiti, N K; Routray, P; Samanta, M

    2012-01-01

    Toll-like receptors (TLRs) are one of the key components of innate immunity. Among various types of TLRs, TLR5 is involved in recognizing bacterial flagellin and after binding, it triggers myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway to induce pro-inflammatory cytokines. In this report, we analyzed the expression profile of TLR5 and its associated downstream signaling molecules like MyD88 and tumor necrosis factor (TNF) receptor-associated factor (TRAF) 6 in the Indian major carp (IMC), mrigal (Cirrhinus mrigala) which is highly commercially important fish species in the Indian subcontinent. Ontogeny analysis of TLR5, MyD88 and TRAF6 revealed constitutive expression of these genes in all embryonic developmental stages, and highlighted the importance of embryonic innate immune defense system in fish. Tissue specific expression analysis of these genes by quantitative real-time PCR (qRT-PCR) revealed their wide distribution in various organs and tissues; highest expression of TLR5 and MyD88 was in liver and TRAF6 was in kidney. Modulation of TLR5, MyD88 and TRAF6 gene expression, and the induction of interleukin (IL)-8 and TNF-α were analyzed in various organs by qRT-PCR following flagellin stimulation, and Aeromonas hydrophila and Edwardsiella tarda infection. In the treated fish, majority of the tested tissues exhibited significant induction of these genes, although with varied intensity among the tissues and with the types of treatments. Among the examined tissues, a significant relationship of TLR5 induction, MyD88 and TRAF6 up-regulation, and enhanced expression of IL-8 and TNF-α gene transcripts was observed in the blood and intestine of both flagellin stimulated and bacteria infected fish. These findings may indicate the involvement of TLR5 in inducing IL-8 and TNF-α, and suggest the important role of TLR5 in augmenting innate immunity in fish in response to pathogenic invasion. This study will enrich the information

  11. View of downstream debris field at the Merry Generator House, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of downstream debris field at the Merry Generator House, showing possible concrete generator seats, looking south - Arthur Holmes Merry Generator House, Signal Lake North of Range Road, Fort Gordon, Richmond County, GA

  12. Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling

    PubMed Central

    1996-01-01

    Cells of the mucosal mast cell line, RBL-2H3, are normally stimulated to degranulate after aggregation of high affinity receptors for IgE (Fc epsilon RI) by soluble cross-linking ligands. This cellular degranulation process requires sustained elevation of cytoplasmic Ca2+. In this study, we investigated the response of RBL-2H3 cells to 6- micron beads coated with IgE-specific ligands. These ligand-coated beads cause only small, transient Ca2+ responses, even though the same ligands added in soluble form cause larger, more sustained Ca2+ responses. The ligand-coated 6-micron beads also fail to stimulate significant degranulation of RBL-2H3 cells, whereas much larger ligand- coated Sepharose beads stimulate ample degranulation. Confocal fluorescence microscopy shows that the 6-micron beads (but not the Sepharose beads) are phagocytosed by RBL-2H3 cells and that, beginning with the initial stages of bead engulfment, there is exclusion of many plasma membrane components from the 6-micron bead/cell interface, including p53/56lyn and several other markers for detergent-resistant membrane domains, as well as an integrin and unliganded IgE-Fc epsilon RI. The fluorescent lipid probe DiIC16 is a marker for the membrane domains that is excluded from the cell/bead interface, whereas a structural analogue, fast DiI, which differs from DiIC16 by the presence of unsaturated acyl chains, is not substantially excluded from the interface. None of these components are excluded from the interface of RBL-2H3 cells and the large Sepharose beads. Additional confocal microscopy analysis indicates that microfilaments are involved in the exclusion of plasma membrane components from the cell/bead interface. These results suggest that initiation of phagocytosis diverts normal signaling pathways in a cytoskeleton-driven membrane clearance process that alters the physiological response of the cells. PMID:8830772

  13. Upstream/Downstream

    ERIC Educational Resources Information Center

    Slack, Amy

    2014-01-01

    In our increasingly digital world, students are often disconnected from the natural environment and may not understand how human actions affect it. One of the most significant human impacts on ecosystems is water pollution. Measuring the water quality of a local stream, river, or lake can be a valuable learning experience but is often impractical.…

  14. Downstream in Mawrth Valles

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image is from further downstream in Mawrth Valles than yesterday's image. The channel here is at the end of the vallis. This image was collected during the Northern Spring season.

    Image information: VIS instrument. Latitude 26.7, Longitude 340.2 East (19.8 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages

  15. Sonic Hedgehog Signaling Affected by Promoter Hypermethylation Induces Aberrant Gli2 Expression in Spina Bifida.

    PubMed

    Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting

    2016-10-01

    GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding. PMID:26446020

  16. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells.

    PubMed

    Gu, Zhennan; Wu, Jiansheng; Wang, Shihua; Suburu, Janel; Chen, Haiqin; Thomas, Michael J; Shi, Lihong; Edwards, Iris J; Berquin, Isabelle M; Chen, Yong Q

    2013-09-01

    AKT is a serine-threonine protein kinase that plays important roles in cell growth, proliferation and apoptosis. It is activated after binding to phosphatidylinositol phosphates (PIPs) with phosphate groups at positions 3,4 and 3,4,5 on the inositol ring. In spite of extensive research on AKT, one aspect has been largely overlooked, namely the role of the fatty acid chains on PIPs. PIPs are phospholipids composed of a glycerol backbone with fatty acids at the sn-1 and sn-2 position and inositol at the sn-3 position. Here, we show that polyunsaturated fatty acids (PUFAs) modify phospholipid content. Docosahexaenoic acid (DHA), an ω3 PUFA, can replace the fatty acid at the sn-2 position of the glycerol backbone, thereby changing the species of phospholipids. DHA also inhibits AKT(T308) but not AKT(S473) phosphorylation, alters PI(3,4,5)P3 (PIP3) and phospho-AKT(S473) protein localization, decreases pPDPK1(S241)-AKT and AKT-BAD interaction and suppresses prostate tumor growth. Our study highlights a potential novel mechanism of cancer inhibition by ω3 PUFA through alteration of PIP3 and AKT localization and affecting the AKT signaling pathway.

  17. The iron chelator deferasirox affects redox signalling in haematopoietic stem/progenitor cells.

    PubMed

    Tataranni, Tiziana; Agriesti, Francesca; Mazzoccoli, Carmela; Ruggieri, Vitalba; Scrima, Rosella; Laurenzana, Ilaria; D'Auria, Fiorella; Falzetti, Franca; Di Ianni, Mauro; Musto, Pellegrino; Capitanio, Nazzareno; Piccoli, Claudia

    2015-07-01

    The iron chelator deferasirox (DFX) prevents complications related to transfusional iron overload in several haematological disorders characterized by marrow failure. It is also able to induce haematological responses in a percentage of treated patients, particularly in those affected by myelodysplastic syndromes. The underlying mechanisms responsible for this feature, however, are still poorly understood. In this study, we investigated the effect of DFX-treatment in human haematopoietic/progenitor stem cells, focussing on its impact on the redox balance, which proved to control the interplay between stemness maintenance, self-renewal and differentiation priming. Here we show, for the first time, that DFX treatment induces a significant diphenyleneiodonium-sensitive reactive oxygen species (ROS) production that leads to the activation of POU5F1 (OCT4), SOX2 and SOX17 gene expression, relevant in reprogramming processes, and the reduction of the haematopoietic regulatory proteins CTNNB1 (β-Catenin) and BMI1. These DFX-mediated events were accompanied by decreased CD34 expression, increased mitochondrial mass and up-regulation of the erythropoietic marker CD71 (TFRC) and were compound-specific, dissimilar to deferoxamine. Our findings would suggest a novel mechanism by which DFX, probably independently on its iron-chelating property but through ROS signalling activation, may influence key factors involved in self-renewal/differentiation of haematopoietic stem cells.

  18. The function of EHD2 in endocytosis and defense signaling is affected by SUMO.

    PubMed

    Bar, Maya; Schuster, Silvia; Leibman, Meirav; Ezer, Ran; Avni, Adi

    2014-03-01

    Post-translational modification of target proteins by the small ubiquitin-like modifier protein (SUMO) regulates many cellular processes. SUMOylation has been shown to regulate cellular localization and function of a variety of proteins, in some cases affecting nuclear import or export. We have previously characterized two EHDs (EH domain containing proteins) in Arabidospis and showed their involvement in plant endocytosis. AtEHD2 has an inhibitory effect on endocytosis of transferrin, FM-4-64, and the leucine rich repeat receptor like protein LeEix2, an effect that requires and intact coiled-coil domain. Inhibition of endocytosis of LeEix2 by EHD2 is effective in inhibiting defense responses mediated by the LeEix2 receptor in response to its ligand EIX. In the present work we demonstrate that SUMOylation of EHD2 appears to be required for EHD2-induced inhibition of LeEix2 endocytosis. Indeed, we found that a mutant form of EHD2, possessing a defective SUMOylation site, has an increased nuclear abundance, can no longer be SUMOylated and is no longer effective in inhibiting LeEix2 endocytosis or defense signaling in response to EIX. PMID:24154852

  19. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia

    PubMed Central

    Bendinelli, Paola; Maroni, Paola; Matteucci, Emanuela; Desiderio, Maria Alfonsina

    2016-01-01

    Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine), and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients. PMID:27187355

  20. Surface loading affects internal pressure source characteristics derived from volcano deformation signals

    NASA Astrophysics Data System (ADS)

    Grapenthin, Ronni; Sigmundsson, Freysteinn; Ofeigsson, Benedikt; Sturkell, Erik

    2010-05-01

    InSAR observations prior to the Hekla 2000 eruption that show circular pattern of near field subsidence and far field inflation. We compare these data to the deformation pattern expected from pressure changes in a hypothetical, shallow magma reservoir. We estimate surface loading at the volcano to account for a displacement of 13.5mm-yr based on a comparison of expected Mogi source and observed InSAR line of sight velocity. From this we estimate an effective relaxation time of tr = 100yrs for this region. We infer an elastic plate thickness of H = 3.5km which controls the 15 - 20km radius of subsidence. We find that surface load signals in volcanic regions affect magmatic source model estimates significantly ; to the point of changing the preferred source model. This effect should be considered in virtually any volcanic region that shows lava flow emplacement, glacier dynamics, or sudden load removal (i.e., lateral blasts). Deformation data that remains uncorrected will most likely result in an overestimation of depth and volume of a magma reservoir. We find that the ratio of displacements aids the identification of composite signals and suggest that the ratio for GPS data be employed more rigorously in future studies since this allows volume independent source depth estimates.

  1. Protein v. carbohydrate intake differentially affects liking- and wanting-related brain signalling.

    PubMed

    Born, Jurriaan M; Martens, Mieke J I; Lemmens, Sofie G T; Goebel, Rainer; Westerterp-Plantenga, Margriet S

    2013-01-28

    Extreme macronutrient intakes possibly lead to different brain signalling. The aim of the present study was to determine the effects of ingesting high-protein v. high-carbohydrate food on liking and wanting task-related brain signalling (TRS) and subsequent macronutrient intake. A total of thirty female subjects (21.6 (SD 2.2) years, BMI 25.0 (SD 3.7) kg/m²) completed four functional MRI scans: two fasted and two satiated on two different days. During the scans, subjects rated all food items for liking and wanting, thereby choosing the subsequent meal. The results show that high-protein (PROT) v. high-carbohydrate (CARB) conditions were generated using protein or carbohydrate drinks at the first meal. Energy intake and hunger were recorded. PROT (protein: 53.7 (SD 2.1) percentage of energy (En%); carbohydrate: 6.4 (SD 1.3) En%) and CARB conditions (protein: 11.8 (SD 0.6) En%; carbohydrate: 70.0 (SD 2.4) En%) were achieved during the first meal, while the second meals were not different between the conditions. Hunger, energy intake, and behavioural liking and wanting ratings were decreased after the first meal (P< 0.001). Comparing the first with the second meal, the macronutrient content changed: carbohydrate -26.9 En% in the CARB condition, protein -37.8 En% in the PROT condition. After the first meal in the CARB condition, wanting TRS was increased in the hypothalamus. After the first meal in the PROT condition, liking TRS was decreased in the putamen (P< 0.05). The change in energy intake from the first to the second meal was inversely related to the change in liking TRS in the striatum and hypothalamus in the CARB condition and positively related in the PROT condition (P< 0.05). In conclusion, wanting and liking TRS were affected differentially with a change in carbohydrate or protein intake, underscoring subsequent energy intake and shift in macronutrient composition. PMID:22643242

  2. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition

    PubMed Central

    Wong, M-L; Inserra, A; Lewis, M D; Mastronardi, C A; Leong, L; Choo, J; Kentish, S; Xie, P; Morrison, M; Wesselingh, S L; Rogers, G B; Licinio, J

    2016-01-01

    The inflammasome is hypothesized to be a key mediator of the response to physiological and psychological stressors, and its dysregulation may be implicated in major depressive disorder. Inflammasome activation causes the maturation of caspase-1 and activation of interleukin (IL)-1β and IL-18, two proinflammatory cytokines involved in neuroimmunomodulation, neuroinflammation and neurodegeneration. In this study, C57BL/6 mice with genetic deficiency or pharmacological inhibition of caspase-1 were screened for anxiety- and depressive-like behaviors, and locomotion at baseline and after chronic stress. We found that genetic deficiency of caspase-1 decreased depressive- and anxiety-like behaviors, and conversely increased locomotor activity and skills. Caspase-1 deficiency also prevented the exacerbation of depressive-like behaviors following chronic stress. Furthermore, pharmacological caspase-1 antagonism with minocycline ameliorated stress-induced depressive-like behavior in wild-type mice. Interestingly, chronic stress or pharmacological inhibition of caspase-1 per se altered the fecal microbiome in a very similar manner. When stressed mice were treated with minocycline, the observed gut microbiota changes included increase in relative abundance of Akkermansia spp. and Blautia spp., which are compatible with beneficial effects of attenuated inflammation and rebalance of gut microbiota, respectively, and the increment in Lachnospiracea abundance was consistent with microbiota changes of caspase-1 deficiency. Our results suggest that the protective effect of caspase-1 inhibition involves the modulation of the relationship between stress and gut microbiota composition, and establishes the basis for a gut microbiota–inflammasome–brain axis, whereby the gut microbiota via inflammasome signaling modulate pathways that will alter brain function, and affect depressive- and anxiety-like behaviors. Our data also suggest that further elucidation of the gut microbiota

  3. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition.

    PubMed

    Wong, M-L; Inserra, A; Lewis, M D; Mastronardi, C A; Leong, L; Choo, J; Kentish, S; Xie, P; Morrison, M; Wesselingh, S L; Rogers, G B; Licinio, J

    2016-06-01

    The inflammasome is hypothesized to be a key mediator of the response to physiological and psychological stressors, and its dysregulation may be implicated in major depressive disorder. Inflammasome activation causes the maturation of caspase-1 and activation of interleukin (IL)-1β and IL-18, two proinflammatory cytokines involved in neuroimmunomodulation, neuroinflammation and neurodegeneration. In this study, C57BL/6 mice with genetic deficiency or pharmacological inhibition of caspase-1 were screened for anxiety- and depressive-like behaviors, and locomotion at baseline and after chronic stress. We found that genetic deficiency of caspase-1 decreased depressive- and anxiety-like behaviors, and conversely increased locomotor activity and skills. Caspase-1 deficiency also prevented the exacerbation of depressive-like behaviors following chronic stress. Furthermore, pharmacological caspase-1 antagonism with minocycline ameliorated stress-induced depressive-like behavior in wild-type mice. Interestingly, chronic stress or pharmacological inhibition of caspase-1 per se altered the fecal microbiome in a very similar manner. When stressed mice were treated with minocycline, the observed gut microbiota changes included increase in relative abundance of Akkermansia spp. and Blautia spp., which are compatible with beneficial effects of attenuated inflammation and rebalance of gut microbiota, respectively, and the increment in Lachnospiracea abundance was consistent with microbiota changes of caspase-1 deficiency. Our results suggest that the protective effect of caspase-1 inhibition involves the modulation of the relationship between stress and gut microbiota composition, and establishes the basis for a gut microbiota-inflammasome-brain axis, whereby the gut microbiota via inflammasome signaling modulate pathways that will alter brain function, and affect depressive- and anxiety-like behaviors. Our data also suggest that further elucidation of the gut microbiota

  4. Cell surface localization of importin α1/KPNA2 affects cancer cell proliferation by regulating FGF1 signalling

    PubMed Central

    Yamada, Kohji; Miyamoto, Yoichi; Tsujii, Akira; Moriyama, Tetsuji; Ikuno, Yudai; Shiromizu, Takashi; Serada, Satoshi; Fujimoto, Minoru; Tomonaga, Takeshi; Naka, Tetsuji; Yoneda, Yoshihiro; Oka, Masahiro

    2016-01-01

    Importin α1 is involved in nuclear import as a receptor for proteins with a classical nuclear localization signal (cNLS). Here, we report that importin α1 is localized to the cell surface in several cancer cell lines and detected in their cultured medium. We also found that exogenously added importin α1 is associated with the cell membrane via interaction with heparan sulfate. Furthermore, we revealed that the cell surface importin α1 recognizes cNLS-containing substrates. More particularly, importin α1 bound directly to FGF1 and FGF2, secreted cNLS-containing growth factors, and addition of exogenous importin α1 enhanced the activation of ERK1/2, downstream targets of FGF1 signalling, in FGF1-stimulated cancer cells. Additionally, anti-importin α1 antibody treatment suppressed the importin α1−FGF1 complex formation and ERK1/2 activation, resulting in decreased cell growth. This study provides novel evidence that functional importin α1 is located at the cell surface, where it accelerates the proliferation of cancer cells. PMID:26887791

  5. Zebrafish ift57, ift88, and ift172 intraflagellar transport mutants disrupt cilia but do not affect hedgehog signaling.

    PubMed

    Lunt, Shannon C; Haynes, Tony; Perkins, Brian D

    2009-07-01

    Cilia formation requires intraflagellar transport (IFT) proteins. Recent studies indicate that mammalian Hedgehog (Hh) signaling requires cilia. It is unclear, however, if the requirement for cilia and IFT proteins in Hh signaling represents a general rule for all vertebrates. Here we examine zebrafish ift57, ift88, and ift172 mutants and morphants for defects in Hh signaling. Although ift57 and ift88 mutants and morphants contained residual maternal protein, the cilia were disrupted. In contrast to previous genetic studies in mouse, mutations in zebrafish IFT genes did not affect the expression of Hh target genes in the neural tube and forebrain and had no quantitative effect on Hh target gene expression. Zebrafish IFT mutants also exhibited no dramatic changes in the craniofacial skeleton, somite formation, or motor neuron patterning. Thus, our data indicate the requirement for cilia in the Hh signal transduction pathway may not represent a universal mechanism in vertebrates.

  6. TrkB reduction exacerbates Alzheimer's disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice.

    PubMed

    Devi, L; Ohno, M

    2015-05-05

    Accumulating evidence shows that brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) significantly decrease early in Alzheimer's disease (AD). However, it remains unclear whether BDNF/TrkB reductions may be mechanistically involved in the pathogenesis of AD. To address this question, we generated 5XFAD transgenic mice with heterozygous TrkB knockout (TrkB(+/-)·5XFAD), and tested the effects of TrkB reduction on AD-like features in this mouse model during an incipient stage that shows only modest amyloid-β (Aβ) pathology and retains normal mnemonic function. TrkB(+/-) reduction exacerbated memory declines in 5XFAD mice at 4-5 months of age as assessed by the hippocampus-dependent spontaneous alternation Y-maze task, while the memory performance was not affected in TrkB(+/-) mice. Meanwhile, TrkB(+/-)·5XFAD mice were normal in nest building, a widely used measure for social behavior, suggesting the memory-specific aggravation of AD-associated behavioral impairments. We found no difference between TrkB(+/-)·5XFAD and 5XFAD control mice in cerebral plaque loads, Aβ concentrations including total Aβ42 and soluble oligomers and β-amyloidogenic processing of amyloid precursor protein. Interestingly, reductions in hippocampal expression of AMPA/NMDA glutamate receptor subunits as well as impaired signaling pathways downstream to TrkB such as CREB (cAMP response element-binding protein) and Akt/GSK-3β (glycogen synthase kinase-3β) were observed in TrkB(+/-)·5XFAD mice but not in 5XFAD mice. Among these signaling aberrations, only Akt/GSK-3β dysfunction occurred in TrkB(+/-) mice, while others were synergistic consequences between TrkB reduction and subthreshold levels of Aβ in TrkB(+/-)·5XFAD mice. Collectively, our results indicate that reduced TrkB does not affect β-amyloidosis but exacerbates the manifestation of hippocampal mnemonic and signaling dysfunctions in early AD.

  7. Inbreeding affects sexual signalling in males but not females of Tenebrio molitor.

    PubMed

    Pölkki, Mari; Krams, Indrikis; Kangassalo, Katariina; Rantala, Markus J

    2012-06-23

    In many species of animals, individuals advertise their quality with sexual signals to obtain mates. Chemical signals such as volatile pheromones are species specific, and their primary purpose is to influence mate choice by carrying information about the phenotypic and genetic quality of the sender. The deleterious effects of consanguineous mating on individual quality are generally known, whereas the effect of inbreeding on sexual signalling is poorly understood. Here, we tested whether inbreeding reduces the attractiveness of sexual signalling in the mealworm beetle, Tenebrio molitor, by testing the preferences for odours of inbred and outbred (control) individuals of the opposite sex. Females were more attracted to the odours produced by outbred males than the odours produced by inbred males, suggesting that inbreeding reduces the attractiveness of male sexual signalling. However, we did not find any difference between the attractiveness of inbred and outbred female odours, which may indicate that the quality of females is either irrelevant for T. molitor males or quality is not revealed through female odours. PMID:22237501

  8. A chemical signal of offspring quality affects maternal care in a social insect

    PubMed Central

    Mas, Flore; Haynes, Kenneth F.; Kölliker, Mathias

    2009-01-01

    Begging signals of offspring are condition-dependent cues that are usually predicted to display information about the short-term need (i.e. hunger) to which parents respond by allocating more food. However, recent models and experiments have revealed that parents, depending on the species and context, may respond to signals of quality (i.e. offspring reproductive value) rather than need. Despite the critical importance of this distinction for life history and conflict resolution theory, there is still limited knowledge of alternative functions of offspring signals. In this study, we investigated the communication between offspring and caring females of the common earwig, Forficula auricularia, hypothesizing that offspring chemical cues display information about nutritional condition to which females respond in terms of maternal food provisioning. Consistent with the prediction for a signal of quality we found that mothers exposed to chemical cues from well-fed nymphs foraged significantly more and allocated food to more nymphs compared with females exposed to solvent (control) or chemical cues from poorly fed nymphs. Chemical analysis revealed significant differences in the relative quantities of specific cuticular hydrocarbon compounds between treatments. To our knowledge, this study demonstrates for the first time that an offspring chemical signal reflects nutritional quality and influences maternal care. PMID:19439438

  9. Peripheral and central blockade of interleukin-6 trans-signaling differentially affects sleep architecture.

    PubMed

    Oyanedel, Carlos N; Kelemen, Eduard; Scheller, Jürgen; Born, Jan; Rose-John, Stefan

    2015-11-01

    The immune system is known to essentially contribute to the regulation of sleep. Whereas research in this regard focused on the pro-inflammatory cytokines interleukin-1 and tumor necrosis factor, the role of interleukin-6 (IL-6) in sleep regulation has been less intensely studied, probably due to the so far seemingly ambiguous results. Yet, this picture might simply reflect that the effects of IL-6 are conveyed via two different pathways (with possibly different actions), i.e., in addition to the 'classical' signaling pathway via the membrane bound IL-6 receptor (IL-6R), IL-6 stimulates cells through the alternative 'trans-signaling' pathway via the soluble IL-6R. Here, we concentrated on the contributions of the trans-signaling pathway to sleep regulation. To characterize this contribution, we compared the effect of blocking IL-6 trans-signaling (by the soluble gp130Fc fusion protein) in the brain versus body periphery. Thus, we compared sleep in transgenic mice expressing the soluble gp130Fc protein only in the brain (GFAP mice) or in the body periphery (PEPCK mice), and in wild type mice (WT) during a 24-h period of undisturbed conditions and during 18 h following a 6-h period of sleep deprivation. Compared with WT mice, PEPCK mice displayed less sleep, particularly during the late light phase, and this was accompanied by decreases in slow wave sleep (SWS) and rapid eye movement (REM) sleep. Following sleep deprivation PEPCK mice primarily recovered REM sleep rather than SWS. GFAP mice showed a slight decrease in REM sleep in combination with a profound and persistent increase in EEG theta activity. In conclusion, peripheral and central nervous IL-6 trans-signaling differentially influences brain activity. Peripheral IL-6 trans-signaling appears to more profoundly contribute to sleep regulation, mainly by supporting SWS. PMID:26144889

  10. Peripheral and central blockade of interleukin-6 trans-signaling differentially affects sleep architecture.

    PubMed

    Oyanedel, Carlos N; Kelemen, Eduard; Scheller, Jürgen; Born, Jan; Rose-John, Stefan

    2015-11-01

    The immune system is known to essentially contribute to the regulation of sleep. Whereas research in this regard focused on the pro-inflammatory cytokines interleukin-1 and tumor necrosis factor, the role of interleukin-6 (IL-6) in sleep regulation has been less intensely studied, probably due to the so far seemingly ambiguous results. Yet, this picture might simply reflect that the effects of IL-6 are conveyed via two different pathways (with possibly different actions), i.e., in addition to the 'classical' signaling pathway via the membrane bound IL-6 receptor (IL-6R), IL-6 stimulates cells through the alternative 'trans-signaling' pathway via the soluble IL-6R. Here, we concentrated on the contributions of the trans-signaling pathway to sleep regulation. To characterize this contribution, we compared the effect of blocking IL-6 trans-signaling (by the soluble gp130Fc fusion protein) in the brain versus body periphery. Thus, we compared sleep in transgenic mice expressing the soluble gp130Fc protein only in the brain (GFAP mice) or in the body periphery (PEPCK mice), and in wild type mice (WT) during a 24-h period of undisturbed conditions and during 18 h following a 6-h period of sleep deprivation. Compared with WT mice, PEPCK mice displayed less sleep, particularly during the late light phase, and this was accompanied by decreases in slow wave sleep (SWS) and rapid eye movement (REM) sleep. Following sleep deprivation PEPCK mice primarily recovered REM sleep rather than SWS. GFAP mice showed a slight decrease in REM sleep in combination with a profound and persistent increase in EEG theta activity. In conclusion, peripheral and central nervous IL-6 trans-signaling differentially influences brain activity. Peripheral IL-6 trans-signaling appears to more profoundly contribute to sleep regulation, mainly by supporting SWS.

  11. Phosphorylation of Glutathione S-Transferase P1 (GSTP1) by Epidermal Growth Factor Receptor (EGFR) Promotes Formation of the GSTP1-c-Jun N-terminal kinase (JNK) Complex and Suppresses JNK Downstream Signaling and Apoptosis in Brain Tumor Cells.

    PubMed

    Okamura, Tatsunori; Antoun, Gamil; Keir, Stephen T; Friedman, Henry; Bigner, Darell D; Ali-Osman, Francis

    2015-12-25

    Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs.

  12. Overexpression of the Arabidopsis thaliana signalling peptide TAXIMIN1 affects lateral organ development

    PubMed Central

    Colling, Janine; Tohge, Takayuki; De Clercq, Rebecca; Brunoud, Geraldine; Vernoux, Teva; Fernie, Alisdair R.; Makunga, Nokwanda P.; Goossens, Alain; Pauwels, Laurens

    2015-01-01

    Lateral organ boundary formation is highly regulated by transcription factors and hormones such as auxins and brassinosteroids. However, in contrast to many other developmental processes in plants, no role for signalling peptides in the regulation of this process has been reported yet. The first characterization of the secreted cysteine-rich TAXIMIN (TAX) signalling peptides in Arabidopsis is presented here. TAX1 overexpression resulted in minor alterations in the primary shoot and root metabolome, abnormal fruit morphology, and fusion of the base of cauline leaves to stems forming a decurrent leaf attachment. The phenotypes at the paraclade junction match TAX1 promoter activity in this region and are similar to loss of LATERAL ORGAN FUSION (LOF) transcription factor function. Nevertheless, TAX1 expression was unchanged in lof1lof2 paraclade junctions and, conversely, LOF gene expression was unchanged in TAX1 overexpressing plants, suggesting TAX1 may act independently. This study identifies TAX1 as the first plant signalling peptide influencing lateral organ separation and implicates the existence of a peptide signal cascade regulating this process in Arabidopsis. PMID:26071531

  13. Overexpression of the Arabidopsis thaliana signalling peptide TAXIMIN1 affects lateral organ development.

    PubMed

    Colling, Janine; Tohge, Takayuki; De Clercq, Rebecca; Brunoud, Geraldine; Vernoux, Teva; Fernie, Alisdair R; Makunga, Nokwanda P; Goossens, Alain; Pauwels, Laurens

    2015-08-01

    Lateral organ boundary formation is highly regulated by transcription factors and hormones such as auxins and brassinosteroids. However, in contrast to many other developmental processes in plants, no role for signalling peptides in the regulation of this process has been reported yet. The first characterization of the secreted cysteine-rich TAXIMIN (TAX) signalling peptides in Arabidopsis is presented here. TAX1 overexpression resulted in minor alterations in the primary shoot and root metabolome, abnormal fruit morphology, and fusion of the base of cauline leaves to stems forming a decurrent leaf attachment. The phenotypes at the paraclade junction match TAX1 promoter activity in this region and are similar to loss of LATERAL ORGAN FUSION (LOF) transcription factor function. Nevertheless, TAX1 expression was unchanged in lof1lof2 paraclade junctions and, conversely, LOF gene expression was unchanged in TAX1 overexpressing plants, suggesting TAX1 may act independently. This study identifies TAX1 as the first plant signalling peptide influencing lateral organ separation and implicates the existence of a peptide signal cascade regulating this process in Arabidopsis. PMID:26071531

  14. Covalent Inhibition of Ubc13 Affects Ubiquitin Signaling and Reveals Active Site Elements Important for Targeting.

    PubMed

    Hodge, Curtis D; Edwards, Ross A; Markin, Craig J; McDonald, Darin; Pulvino, Mary; Huen, Michael S Y; Zhao, Jiyong; Spyracopoulos, Leo; Hendzel, Michael J; Glover, J N Mark

    2015-07-17

    Ubc13 is an E2 ubiquitin conjugating enzyme that functions in nuclear DNA damage signaling and cytoplasmic NF-κB signaling. Here, we present the structures of complexes of Ubc13 with two inhibitors, NSC697923 and BAY 11-7082, which inhibit DNA damage and NF-κB signaling in human cells. NSC697923 and BAY 11-7082 both inhibit Ubc13 by covalent adduct formation through a Michael addition at the Ubc13 active site cysteine. The resulting adducts of both compounds exploit a binding groove unique to Ubc13. We developed a Ubc13 mutant which resists NSC697923 inhibition and, using this mutant, we show that the inhibition of cellular DNA damage and NF-κB signaling by NSC697923 is largely due to specific Ubc13 inhibition. We propose that unique structural features near the Ubc13 active site could provide a basis for the rational development and design of specific Ubc13 inhibitors. PMID:25909880

  15. Covalent Inhibition of Ubc13 Affects Ubiquitin Signaling and Reveals Active Site Elements Important for Targeting.

    PubMed

    Hodge, Curtis D; Edwards, Ross A; Markin, Craig J; McDonald, Darin; Pulvino, Mary; Huen, Michael S Y; Zhao, Jiyong; Spyracopoulos, Leo; Hendzel, Michael J; Glover, J N Mark

    2015-07-17

    Ubc13 is an E2 ubiquitin conjugating enzyme that functions in nuclear DNA damage signaling and cytoplasmic NF-κB signaling. Here, we present the structures of complexes of Ubc13 with two inhibitors, NSC697923 and BAY 11-7082, which inhibit DNA damage and NF-κB signaling in human cells. NSC697923 and BAY 11-7082 both inhibit Ubc13 by covalent adduct formation through a Michael addition at the Ubc13 active site cysteine. The resulting adducts of both compounds exploit a binding groove unique to Ubc13. We developed a Ubc13 mutant which resists NSC697923 inhibition and, using this mutant, we show that the inhibition of cellular DNA damage and NF-κB signaling by NSC697923 is largely due to specific Ubc13 inhibition. We propose that unique structural features near the Ubc13 active site could provide a basis for the rational development and design of specific Ubc13 inhibitors.

  16. Covalent Inhibition of Ubc13 Affects Ubiquitin Signaling and Reveals Active Site Elements Important for Targeting

    PubMed Central

    Hodge, Curtis D.; Edwards, Ross A.; Markin, Craig J.; McDonald, Darin; Pulvino, Mary; Huen, Michael S. Y.; Zhao, Jiyong; Spyracopoulos, Leo; Hendzel, Michael J.; Glover, J.N. Mark

    2015-01-01

    Ubc13 is an E2 ubiquitin conjugating enzyme that functions in nuclear DNA damage signaling and cytoplasmic NF-κB signaling. Here we present the structures of complexes of Ubc13 with two inhibitors, NSC697923 and BAY 11-7082, which inhibit DNA damage and NF-κB signaling in human cells. NSC697923 and BAY 11-7082 both inhibit Ubc13 by covalent adduct formation through a Michael addition at the Ubc13 active site cysteine. The resulting adducts of both compounds exploit a binding groove unique to Ubc13. We developed a Ubc13 mutant which resists NSC697923 inhibition and, using this mutant, we show that the inhibition of cellular DNA damage and NF-κB signaling by NSC697923 is largely due to specific Ubc13 inhibition. We propose that unique structural features near the Ubc13 active site could provide a basis for the rational development and design of specific Ubc13 inhibitors. PMID:25909880

  17. Inhibition of gamma-secretase affects proliferation of leukemia and hepatoma cell lines through Notch signaling.

    PubMed

    Suwanjunee, Saipin; Wongchana, Wipawee; Palaga, Tanapat

    2008-06-01

    Notch signaling is a well-conserved pathway playing crucial roles in regulating cell fate decision, proliferation, and apoptosis during the development of multiple cell lineages. Aberration in Notch signaling is associated with tumorigenesis of tissues from various origins. To investigate the role Notch signaling plays in the proliferation of cancer cell lines, the expression profiles of Notch1 in six human cancer cell lines (Jurkat, HepG2, SW620, KATOIII, A375, BT474) were examined. All cell lines differentially expressed Notch1, and only Jurkat and SW620 expressed cleaved Notch1 (Val1744). Among the six cell lines tested, only Jurkat and HepG2 showed a decrease in cell proliferation during 4 days of treatment with a gamma-secretase inhibitor (GSI). This is the first report on the anti-proliferative effects of GSI on a human hepatoma cell line. These two cell lines expressed Notch1-3, Jagged1, Jagged2, Dlk1 and Hes1. GSI treatment led to a decrease in Hes1 expression in both cell lines. Surprisingly, GSI treatment resulted in the accumulation of Notch1 protein upon treatment. During this period, GSI treatment did not induce apoptosis, but caused cell cycle arrest in both cell lines. This was also correlated with decreased c-myc expression. Forced expression of activated intracellular Notch1 completely abrogated GSI sensitivity in both cell lines. These results clearly demonstrate that Notch signaling positively regulates cell proliferation in Jurkat and HepG2 cell lines and that GSI treatment inhibits tumor cell proliferation through the suppression of Notch signaling. PMID:18418214

  18. Widespread Inducible Transcription Downstream of Human Genes

    PubMed Central

    Vilborg, Anna; Passarelli, Maria C.; Yario, Therese A.; Tycowski, Kazimierz T.; Steitz, Joan A.

    2015-01-01

    Summary Pervasive transcription of the human genome generates RNAs whose mode of formation and functions are largely uncharacterized. Here, we combine RNA-Seq with detailed mechanistic studies to describe a transcript type derived from protein-coding genes. The resulting RNAs, which we call DoGs for downstream of gene containing transcripts, possess long non-coding regions (often >45 kb) and remain chromatin bound. DoGs are inducible by osmotic stress through an IP3 receptor signaling-dependent pathway, indicating active regulation. DoG levels are increased by decreased termination of the upstream transcript, a previously undescribed mechanism for rapid transcript induction. Relative depletion of polyA signals in DoG regions correlates with increased levels of DoGs after osmotic stress. We detect DoG transcription in several human cell lines and provide evidence for thousands of DoGs genome-wide. PMID:26190259

  19. Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-β/Smad2/3 signaling.

    PubMed

    Zhang, Lichao; Li, Zongwei; Fan, Yongsheng; Li, Hanqing; Li, Zhouyu; Li, Yaoping

    2015-07-01

    Glucose-regulated protein of 78kD (GRP78) is a multifunctional protein belonging to the heat shock protein 70 family. Overexpression of GRP78 triggered by environmental and physiological stresses is positively correlated with the occurrence and progression of various tumors, but the molecular mechanisms have not been well established. The present study indicated that overexpression of GRP78 in colon cancer cells could promote cell-matrix adhesion through the upregulation of fibronectin, integrin-β1 and phosphorylated FAK. Meanwhile, it resulted in a visible epithelial-mesenchymal transition in DLD1 cells, and the Snail-2 played the key role during the process. More importantly, the data indicated that GRP78 overexpression facilitated the expression and secretion of TGF-β1, which further activated the downstream Smad2/3 signaling module to effectuate the cell-matrix adhesion and epithelial-mesenchymal transition. Taken together, this study provides a novel molecular mechanism involving in the effects of GRP78 on colon cancer metastasis. PMID:25934251

  20. Sustainable Decisions Signal Sustainable Relationships: How Purchasing Decisions Affect Perceptions and Romantic Attraction.

    PubMed

    DiDonato, Theresa E; Jakubiak, Brittany K

    2016-01-01

    In the pursuit of love, individuals strategically use luxury products to signal status and other attractive attributes. Might eco-friendly products also signal mate-relevant information? The current research examined inferences from eco-friendly purchases and how they predict perceived suitability for short- and long-term romantic relationships. Participants read descriptions of a stranger's eco-friendly or luxury purchase decisions, reported their perceptions of the purchaser, and indicated their potential romantic interest in the purchaser. The influence of the relative price of the chosen product was also investigated. Compared to luxury purchasers, eco-friendly purchasers were ascribed greater warmth, competence, and good partner traits, but less physical appeal, and they were preferred for long-term but not short-term relationships. The social costs and benefits of "going green" are discussed in light of their implications for environmental sustainability efforts. PMID:25695751

  1. Sustainable Decisions Signal Sustainable Relationships: How Purchasing Decisions Affect Perceptions and Romantic Attraction.

    PubMed

    DiDonato, Theresa E; Jakubiak, Brittany K

    2016-01-01

    In the pursuit of love, individuals strategically use luxury products to signal status and other attractive attributes. Might eco-friendly products also signal mate-relevant information? The current research examined inferences from eco-friendly purchases and how they predict perceived suitability for short- and long-term romantic relationships. Participants read descriptions of a stranger's eco-friendly or luxury purchase decisions, reported their perceptions of the purchaser, and indicated their potential romantic interest in the purchaser. The influence of the relative price of the chosen product was also investigated. Compared to luxury purchasers, eco-friendly purchasers were ascribed greater warmth, competence, and good partner traits, but less physical appeal, and they were preferred for long-term but not short-term relationships. The social costs and benefits of "going green" are discussed in light of their implications for environmental sustainability efforts.

  2. An important role of the hepcidin-ferroportin signaling in affecting tumor growth and metastasis.

    PubMed

    Guo, Wenli; Zhang, Shuping; Chen, Yue; Zhang, Daoqiang; Yuan, Lin; Cong, Haibo; Liu, Sijin

    2015-09-01

    Epidemiological and experimental studies have suggested that deregulated hepcidin-ferroportin (FPN) signaling is associated with the increased risk of cancers. However, the effects of deregulated hepcidin-FPN signaling on tumor behaviors such as metastasis and epithelial to mesenchymal transition (EMT) have not been closely investigated. In this study, LL/2 cancer cells were found to exhibit an impaired propensity to home into lungs, and a reduced ability to develop tumors was also demonstrated in lungs of Hamp1(-/-) mice. Moreover, hepatic hepcidin deficiency was found to considerably favor tumor-free survival in Hamp1(-/-) mice, compared with wild-type mice. These data thus underscored a contributive role of hepatic hepcidin in promoting lung cancer cell homing and fostering tumor progression. To explore the role of FPN in regulating tumor progression, we genetically engineered 4T1 cells with FPN over-expression upon induction by doxycycline. With this cell line, it was discovered that increased FPN expression reduced cell division and colony formation in vitro, without eliciting significant cell death. Analogously, FPN over-expression impeded tumor growth and metastasis to lung and liver in mice. At the molecular level, FPN over-expression was identified to undermine DNA synthesis and cell cycle progression. Importantly, FPN over-expression inhibited EMT, as reflected by the significant decrease of representative EMT markers, such as Snail1, Twist1, ZEB2, and vimentin. Additionally, there was also a reduction of lactate production in cells upon induction of FPN over-expression. Together, our results highlighted a crucial role of the hepcidin-FPN signaling in modulating tumor growth and metastasis, providing new evidence to understand the contribution of this signaling in cancers.

  3. Fetal, but not postnatal, deletion of semaphorin-neuropilin-1 signaling affects murine alveolar development.

    PubMed

    Joza, Stephen; Wang, Jinxia; Tseu, Irene; Ackerley, Cameron; Post, Martin

    2013-10-01

    The disruption of angiogenic pathways, whether through genetic predisposition or as a consequence of life-saving interventions, may underlie many pulmonary diseases of infancy, including bronchopulmonary dysplasia. Neuropilin-1 (Nrp1) is a transmembrane receptor that plays essential roles in normal and pathological vascular development and binds two distinct ligand families: vascular endothelial growth factor (Vegf) and class 3 semaphorins (Sema3). Although Nrp1 is critical for systemic vascular development, the importance of Nrp1 in pulmonary vascular morphogenesis is uncertain. We hypothesized that Sema3-Nrp1 and Vegf-Nrp1 interactions are important pathways in the orchestration of pulmonary vascular development during alveolarization. Complete ablation of Nrp1 signaling would therefore lead to interruption of normal angiogenic and vascular maturation processes that are relevant to the pathogenesis of bronchopulmonary dysplasia. We have previously shown that congenital loss of Sema3-Nrp1 signaling in transgenic Nrp1(Sema-) mice resulted in disrupted alveolar-capillary interface formation and high neonatal mortality. Here, pathohistological examination of Nrp1(Sema-) survivors in the alveolar period revealed moderate to severe respiratory distress, alveolar hemorrhaging, abnormally dilated capillaries, and disintegrating alveolar septa, demonstrating continued instability of the alveolar-capillary interface. Moreover, consistent with a reduced capillary density and consequent increases in vascular resistance, hypertensive remodeling was observed. In contrast, conditional Nrp1 deletion beginning at postnatal day 5 had only a transient effect upon alveolar and vascular development or pneumocyte differentiation despite an increase in mortality. Our results demonstrate that although Sema3-Nrp1 signaling is critical during fetal pulmonary development, Nrp1 signaling does not appear to be essential for alveolar development or vascular function in the postnatal period.

  4. No fear no risk! Human risk behavior is affected by chemosensory anxiety signals.

    PubMed

    Haegler, Katrin; Zernecke, Rebekka; Kleemann, Anna Maria; Albrecht, Jessica; Pollatos, Olga; Brückmann, Hartmut; Wiesmann, Martin

    2010-11-01

    An important aspect of cognitive functioning is decision-making, which depends on the correct interpretation of emotional processes. High trait anxiety has been associated with increased risk taking behavior in decision-making tasks. An interesting fact is that anxiety and anxiety-related chemosignals as well as decision-making share similar regions of neuronal activation. In order to ascertain if chemosensory anxiety signals have similar effects on risk taking behavior of healthy participants as high trait anxiety we used a novel computerized decision-making task, called Haegler's Risk Game (HRG). This task measures risk taking behavior based on contingencies and can be played repeatedly without a learning effect. To obtain chemosensory signals the sweat of 21 male donors was collected in a high rope course (anxiety condition). For the chemosensory control condition sweat was collected during an ergometer workout (exercise condition). In a double-blind study, 30 healthy recipients (16 females) had to play HRG while being exposed to sweat samples or empty control samples (control condition) in three sessions of randomized order. Comparison of the risk taking behavior of the three conditions showed significantly higher risk taking behavior in participants for the most risky choices during the anxiety condition compared to the control conditions. Additionally, recipients showed significantly higher latency before making their decision in the most risky choices during the anxiety condition. This experiment gives evidence that chemosensory anxiety signals are communicated between humans thereby increasing participants' risk taking behavior. PMID:20875438

  5. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system

    NASA Astrophysics Data System (ADS)

    Perge, János A.; Homer, Mark L.; Malik, Wasim Q.; Cash, Sydney; Eskandar, Emad; Friehs, Gerhard; Donoghue, John P.; Hochberg, Leigh R.

    2013-06-01

    Objective. Motor neural interface systems (NIS) aim to convert neural signals into motor prosthetic or assistive device control, allowing people with paralysis to regain movement or control over their immediate environment. Effector or prosthetic control can degrade if the relationship between recorded neural signals and intended motor behavior changes. Therefore, characterizing both biological and technological sources of signal variability is important for a reliable NIS. Approach. To address the frequency and causes of neural signal variability in a spike-based NIS, we analyzed within-day fluctuations in spiking activity and action potential amplitude recorded with silicon microelectrode arrays implanted in the motor cortex of three people with tetraplegia (BrainGate pilot clinical trial, IDE). Main results. 84% of the recorded units showed a statistically significant change in apparent firing rate (3.8 ± 8.71 Hz or 49% of the mean rate) across several-minute epochs of tasks performed on a single session, and 74% of the units showed a significant change in spike amplitude (3.7 ± 6.5 µV or 5.5% of mean spike amplitude). 40% of the recording sessions showed a significant correlation in the occurrence of amplitude changes across electrodes, suggesting array micro-movement. Despite the relatively frequent amplitude changes, only 15% of the observed within-day rate changes originated from recording artifacts such as spike amplitude change or electrical noise, while 85% of the rate changes most likely emerged from physiological mechanisms. Computer simulations confirmed that systematic rate changes of individual neurons could produce a directional ‘bias’ in the decoded neural cursor movements. Instability in apparent neuronal spike rates indeed yielded a directional bias in 56% of all performance assessments in participant cursor control (n = 2 participants, 108 and 20 assessments over two years), resulting in suboptimal performance in these sessions

  6. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system

    PubMed Central

    Perge, János A.; Homer, Mark L.; Malik, Wasim Q.; Cash, Sydney; Eskandar, Emad; Friehs, Gerhard; Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Objective Motor Neural Interface Systems (NIS) aim to convert neural signals into motor prosthetic or assistive device control, allowing people with paralysis to regain movement or control over their immediate environment. Effector or prosthetic control can degrade if the relationship between recorded neural signals and intended motor behavior changes. Therefore, characterizing both biological and technological sources of signal variability is important for a reliable NIS. Approach To address the frequency and causes of neural signal variability in a spike-based NIS, we analyzed within-day fluctuations in spiking activity and action potential amplitude recorded with silicon microelectrode arrays implanted in the motor cortex of three people with tetraplegia (BrainGate pilot clinical trial, IDE). Main results Eighty-four percent of the recorded units showed a statistically significant change in apparent firing rate (3.8±8.71Hz or 49% of the mean rate) across several-minute epochs of tasks performed on a single session, and seventy-four percent of the units showed a significant change in spike amplitude (3.7±6.5μV or 5.5% of mean spike amplitude). Forty percent of the recording sessions showed a significant correlation in the occurrence of amplitude changes across electrodes, suggesting array micro-movement. Despite the relatively frequent amplitude changes, only 15% of the observed within-day rate changes originated from recording artifacts such as spike amplitude change or electrical noise, while 85% of the rate changes most likely emerged from physiological mechanisms. Computer simulations confirmed that systematic rate changes of individual neurons could produce a directional “bias” in the decoded neural cursor movements. Instability in apparent neuronal spike rates indeed yielded a directional bias in fifty-six percent of all performance assessments in participant cursor control (n=2 participants, 108 and 20 assessments over two years), resulting in

  7. PI3K-Akt-mTOR signal inhibition affects expression of genes related to endoplasmic reticulum stress.

    PubMed

    Song, Q; Han, C C; Xiong, X P; He, F; Gan, W; Wei, S H; Liu, H H; Li, L; Xu, H Y

    2016-01-01

    PI3K-Akt-mTOR signaling pathway is associated with endoplasmic reticulum (ER) stress. However, it is not clear how this signaling pathway affects the ER stress. The present study aimed to determine whether the PI3K-Akt-mTOR signaling pathway regulates tunicamycin (TM)-induced increases in mRNA levels of genes involved in the ER stress, to help elucidate the mechanism by which this pathway affects the ER stress in primary goose hepatocytes. Primary hepatocytes were isolated from geese and cultured in vitro. After 12 h in a serum-free medium, the hepatocytes were incubated for 24 h in a medium with either no addition (control) or with supplementation of TM or TM together with PI3K-Akt-mTOR signaling pathway inhibitors (LY294002, rapamycin, NVP-BEZ235). Thereafter, the expression levels of genes involved in the ER stress (BIP, EIF2a, ATF6, and XBP1) were assessed. The results indicated that the mRNA level of BIP was up-regulated in 0.2, 2, and 20 μM TM treatment group (P < 0.05), whereas the mRNA levels of EIF2a, ATF6, and XBP1 were up-regulated in the 2 μM TM treatment group (P < 0.05). However, the TM mediated induction of mRNA levels of genes involved in the ER stress (BIP, EIF2a, ATF6, and XBP1) was down-regulated after the treatment with PI3K-Akt-mTOR pathway inhibitors (LY294002, NVP-BEZ235, and rapamycin). Therefore, our results strongly suggest that the PI3K-Akt-mTOR signaling pathway might be involved in the down-regulation of the TM-induced ER stress in primary goose hepatocytes. PMID:27525855

  8. Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.

    PubMed

    Coleman, Matthew A; Sasi, Sharath P; Onufrak, Jillian; Natarajan, Mohan; Manickam, Krishnan; Schwab, John; Muralidharan, Sujatha; Peterson, Leif E; Alekseyev, Yuriy O; Yan, Xinhua; Goukassian, David A

    2015-12-01

    There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers.

  9. Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.

    PubMed

    Coleman, Matthew A; Sasi, Sharath P; Onufrak, Jillian; Natarajan, Mohan; Manickam, Krishnan; Schwab, John; Muralidharan, Sujatha; Peterson, Leif E; Alekseyev, Yuriy O; Yan, Xinhua; Goukassian, David A

    2015-12-01

    There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers. PMID:26408534

  10. A-TWinnipeg: Pathogenesis of rare ATM missense mutation c.6200C>A with decreased protein expression and downstream signaling, early-onset dystonia, cancer, and life-threatening radiotoxicity

    PubMed Central

    Nakamura, Kotoka; Fike, Francesca; Haghayegh, Sara; Saunders-Pullman, Rachel; Dawson, Angelika J; Dörk, Thilo; Gatti, Richard A

    2014-01-01

    We studied 10 Mennonite patients who carry the c.6200C>A missense mutation (p.A2067D) in the ATM gene, all of whom exhibited a phenotypic variant of ataxia-telangiectasia (A-T) that is characterized by early-onset dystonia and late-onset mild ataxia, as previously described. This report provides the pathogenetic evidence for this mutation on cellular functions. Several patients have developed cancer and subsequently experienced life-threatening adverse reactions to radiation (radiotoxicity) and/or chemotherapy. As the c.6200C>A mutation is, thus far, unique to the Mennonite population and is always associated with the same haplotype or haplovariant, it was important to rule out any possible confounding DNA variant on the same haplotype. Lymphoblastoid cells derived from Mennonite patients expressed small amounts of ATM protein, which had no autophosphorylation activity at ATM Ser1981, and trace-to-absent transphosphorylation of downstream ATM targets. A-T lymphoblastoid cells stably transfected with ATM cDNA which had been mutated for c.6200C>A did not show a detectable amount of ATM protein. The same stable cell line with mutated ATM cDNA also showed a trace-to-absent transphosphorylation of downstream ATM targets SMC1pSer966 and KAP1pSer824. From these results, we conclude that c.6200A is the disease-causing ATM mutation on this haplotype. The presence of at least trace amounts of ATM kinase activity on some immunoblots may account for the late-onset, mild ataxia of these patients. The cause of the dystonia remains unclear. Because this dystonia-ataxia phenotype is often encountered in the Mennonite population in association with cancer and adverse reactions to chemotherapy, an early diagnosis is important. PMID:25077176

  11. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  12. Continuous downstream processing of biopharmaceuticals.

    PubMed

    Jungbauer, Alois

    2013-08-01

    Continuous manufacturing has been applied in many different industries but has been pursued reluctantly in biotechnology where the batchwise process is still the standard. A shift to continuous operation can improve productivity of a process and substantially reduce the footprint. Continuous operation also allows robust purification of labile biomolecules. A full set of unit operations is available to design continuous downstream processing of biopharmaceuticals. Chromatography, the central unit operation, is most advanced in respect to continuous operation. Here, the problem of 'batch' definition has been solved. This has also paved the way for implementation of continuous downstream processing from a regulatory viewpoint. Economic pressure, flexibility, and parametric release considerations will be the driving force to implement continuous manufacturing strategies in future.

  13. Continuous downstream processing of biopharmaceuticals.

    PubMed

    Jungbauer, Alois

    2013-08-01

    Continuous manufacturing has been applied in many different industries but has been pursued reluctantly in biotechnology where the batchwise process is still the standard. A shift to continuous operation can improve productivity of a process and substantially reduce the footprint. Continuous operation also allows robust purification of labile biomolecules. A full set of unit operations is available to design continuous downstream processing of biopharmaceuticals. Chromatography, the central unit operation, is most advanced in respect to continuous operation. Here, the problem of 'batch' definition has been solved. This has also paved the way for implementation of continuous downstream processing from a regulatory viewpoint. Economic pressure, flexibility, and parametric release considerations will be the driving force to implement continuous manufacturing strategies in future. PMID:23849674

  14. Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction

    PubMed Central

    Antonelli, Roberta; Pizzarelli, Rocco; Pedroni, Andrea; Fritschy, Jean-Marc; Del Sal, Giannino; Cherubini, Enrico; Zacchi, Paola

    2014-01-01

    The cell adhesion molecule Neuroligin2 (NL2) is localized selectively at GABAergic synapses, where it interacts with the scaffolding protein gephyrin in the post-synaptic density. However, the role of this interaction for formation and plasticity of GABAergic synapses is unclear. Here, we demonstrate that endogenous NL2 undergoes proline-directed phosphorylation at its unique S714-P consensus site, leading to the recruitment of the peptidyl-prolyl cis–trans isomerase Pin1. This signalling cascade negatively regulates NL2’s ability to interact with gephyrin at GABAergic post-synaptic sites. As a consequence, enhanced accumulation of NL2, gephyrin and GABAA receptors was detected at GABAergic synapses in the hippocampus of Pin1-knockout mice (Pin1−/−) associated with an increase in amplitude of spontaneous GABAA-mediated post-synaptic currents. Our results suggest that Pin1-dependent signalling represents a mechanism to modulate GABAergic transmission by regulating NL2/gephyrin interaction. PMID:25297980

  15. Transcriptome Changes Affecting Hedgehog and Cytokine Signalling in the Umbilical Cord: Implications for Disease Risk

    PubMed Central

    Stünkel, Walter; Tng, Emilia; Tan, Jun Hao; Chen, Li; Joseph, Roy; Cheong, Clara Y.; Ong, Mei-Lyn; Lee, Yung Seng; Chong, Yap-Seng; Saw, Seang Mei; Meaney, Michael J.; Kwek, Kenneth; Sheppard, Allan M.; Gluckman, Peter D.; Holbrook, Joanna D.

    2012-01-01

    Background Babies born at lower gestational ages or smaller birthweights have a greater risk of poorer health in later life. Both the causes of these sub-optimal birth outcomes and the mechanism by which the effects are transmitted over decades are the subject of extensive study. We investigated whether a transcriptomic signature of either birthweight or gestational age could be detected in umbilical cord RNA. Methods The gene expression patterns of 32 umbilical cords from Singaporean babies of Chinese ethnicity across a range of birthweights (1698–4151 g) and gestational ages (35–41 weeks) were determined. We confirmed the differential expression pattern by gestational age for 12 genes in a series of 127 umbilical cords of Chinese, Malay and Indian ethnicity. Results We found that the transcriptome is substantially influenced by gestational age; but less so by birthweight. We show that some of the expression changes dependent on gestational age are enriched in signal transduction pathways, such as Hedgehog and in genes with roles in cytokine signalling and angiogenesis. We show that some of the gene expression changes we report are reflected in the epigenome. Conclusions We studied the umbilical cord which is peripheral to disease susceptible tissues. The results suggest that soma-wide transcriptome changes, preserved at the epigenetic level, may be a mechanism whereby birth outcomes are linked to the risk of adult metabolic and arthritic disease and suggest that greater attention be given to the association between premature birth and later disease risk. PMID:22808055

  16. Low power laser irradiation does not affect the generation of signals in a sensory receptor

    SciTech Connect

    Lundeberg, T.; Zhou, J.

    1989-01-01

    The effect of low power Helium-Neon (He-Ne) and Gallium-Arsenide (Ga-As) laser on the slowly adapting crustacean stretch receptor was studied. The results showed that low power laser irradiation did not affect the membrane potential of the stretch receptor. These results are discussed in relation to the use of low power laser irradiation on the skin overlaying acupuncture points in treatment of pain syndrome.

  17. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control

    PubMed Central

    Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-01-01

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. SIGNIFICANCE STATEMENT When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments. PMID:27733607

  18. Emotion affects action: Midcingulate cortex as a pivotal node of interaction between negative emotion and motor signals.

    PubMed

    Pereira, Mirtes Garcia; de Oliveira, Letícia; Erthal, Fátima Smith; Joffily, Mateus; Mocaiber, Izabela F; Volchan, Eliane; Pessoa, Luiz

    2010-03-01

    Affective pictures drive the activity of brain networks and impact behavior. We showed previously that viewing unpleasant pictures interfered in the performance of a basic nonemotional visual detection task. In the present study, we employed functional magnetic resonance imaging to test the hypothesis that behavioral interference may result from the interaction between negatively valenced and motor-related signals in the brain. As in our previous study (Pereira et al., 2006), participants performed a simple target detection task that followed the presentation of unpleasant or neutral pictures. Our results revealed that an unpleasant emotional context modulated evoked responses in several regions engaged by the simple target detection task. In particular, the midcingulate cortex was recruited when participants performed target detection trials during the unpleasant context, and signal responses in this region closely mirrored the pattern of behavioral interference (as revealed via reaction time). Our findings suggest that the midcingulate cortex may be an important site for the interaction between negatively valenced signals and motor signals in the brain and that it may be involved in the implementation of defensive responses, such as freezing.

  19. Reelin Proteolysis Affects Signaling Related to Normal Synapse Function and Neurodegeneration.

    PubMed

    Lussier, April L; Weeber, Edwin J; Rebeck, G William

    2016-01-01

    Reelin is a neurodevelopmental protein important in adult synaptic plasticity and learning and memory. Recent evidence points to the importance for Reelin proteolysis in normal signaling and in cognitive function. Support for the dysfunction of Reelin proteolysis in neurodegeneration and cognitive dysfunction comes from postmortem analysis of Alzheimer's diseases (AD) tissues including cerebral spinal fluid (CSF), showing that levels of Reelin fragments are altered in AD compared to control. Potential key proteases involved in Reelin proteolysis have recently been defined, identifying processes that could be altered in neurodegeneration. Introduction of full-length Reelin and its proteolytic fragments into several mouse models of neurodegeneration and neuropsychiatric disorders quickly promote learning and memory. These findings support a role for Reelin in learning and memory and suggest further understanding of these processes are important to harness the potential of this pathway in treating cognitive symptoms in neuropsychiatric and neurodegenerative diseases. PMID:27065802

  20. Do GSM 900MHz signals affect cerebral blood circulation? A near-infrared spectrophotometry study

    NASA Astrophysics Data System (ADS)

    Wolf, Martin; Haensse, Daniel; Morren, Geert; Froehlich, Juerg

    2006-06-01

    Effects of GSM 900MHz signals (EMF) typical for a handheld mobile phone on the cerebral blood circulation were investigated using near-infrared spectrophotometry (NIRS) in a three armed (12W/kg, 1.2W/kg, sham), double blind, randomized crossover trial in 16 healthy volunteers. During exposure we observed borderline significant short term responses of oxyhemoglobin and deoxyhemoglobin concentration, which correspond to a decrease of cerebral blood flow and volume and were smaller than regular physiological changes. Due to the relatively high number of statistical tests, these responses may be spurious and require further studies. There was no detectable dose-response relation or long term response within 20min. The detection limit was a fraction of the regular physiological changes elicited by functional activation. Compared to previous studies using PET, NIRS provides a much higher time resolution, which allowed investigating the short term effects efficiently, noninvasively, without the use of radioactive tracers and with high sensitivity.

  1. Reelin Proteolysis Affects Signaling Related to Normal Synapse Function and Neurodegeneration

    PubMed Central

    Lussier, April L.; Weeber, Edwin J.; Rebeck, G. William

    2016-01-01

    Reelin is a neurodevelopmental protein important in adult synaptic plasticity and learning and memory. Recent evidence points to the importance for Reelin proteolysis in normal signaling and in cognitive function. Support for the dysfunction of Reelin proteolysis in neurodegeneration and cognitive dysfunction comes from postmortem analysis of Alzheimer’s diseases (AD) tissues including cerebral spinal fluid (CSF), showing that levels of Reelin fragments are altered in AD compared to control. Potential key proteases involved in Reelin proteolysis have recently been defined, identifying processes that could be altered in neurodegeneration. Introduction of full-length Reelin and its proteolytic fragments into several mouse models of neurodegeneration and neuropsychiatric disorders quickly promote learning and memory. These findings support a role for Reelin in learning and memory and suggest further understanding of these processes are important to harness the potential of this pathway in treating cognitive symptoms in neuropsychiatric and neurodegenerative diseases. PMID:27065802

  2. Valid cues for auditory or somatosensory targets affect their perception: a signal detection approach.

    PubMed

    Van Hulle, Lore; Van Damme, Stefaan; Crombez, Geert

    2013-01-01

    We investigated the effects of focusing attention towards auditory or somatosensory stimuli on perceptual sensitivity and response bias using a signal detection task. Participants (N = 44) performed an unspeeded detection task in which weak (individually calibrated) somatosensory or auditory stimuli were delivered. The focus of attention was manipulated by the presentation of a visual cue at the start of each trial. The visual cue consisted of the word "warmth" or the word "tone". This word cue was predictive of the corresponding target on two-thirds of the trials. As hypothesised, the results showed that cueing attention to a specific sensory modality resulted in a higher perceptual sensitivity for validly cued targets than for invalidly cued targets, as well as in a more liberal response criterion for reporting stimuli in the valid modality than in the invalid modality. The value of this experimental paradigm for investigating excessive attentional focus or hypervigilance in various non-clinical and clinical populations is discussed.

  3. Historical contingency affects signaling strategies and competitive abilities in evolving populations of simulated robots.

    PubMed

    Wischmann, Steffen; Floreano, Dario; Keller, Laurent

    2012-01-17

    One of the key innovations during the evolution of life on earth has been the emergence of efficient communication systems, yet little is known about the causes and consequences of the great diversity within and between species. By conducting experimental evolution in 20 independently evolving populations of cooperatively foraging simulated robots, we found that historical contingency in the occurrence order of novel phenotypic traits resulted in the emergence of two distinct communication strategies. The more complex foraging strategy was less efficient than the simpler strategy. However, when the 20 populations were placed in competition with each other, the populations with the more complex strategy outperformed the populations with the less complex strategy. These results demonstrate a tradeoff between communication efficiency and robustness and suggest that stochastic events have important effects on signal evolution and the outcome of competition between distinct populations.

  4. Transcranial alternating current stimulation affects the BOLD signal in a frequency and task‐dependent manner

    PubMed Central

    Cabral‐Calderin, Yuranny; Anne Weinrich, Christiane; Schmidt‐Samoa, Carsten; Poland, Eva; Dechent, Peter; Bähr, Mathias

    2015-01-01

    Abstract Transcranial alternating current stimulation (tACS) has emerged as a promising tool for manipulating ongoing brain oscillations. While previous studies demonstrated frequency‐specific effects of tACS on diverse cognitive functions, its effect on neural activity remains poorly understood. Here we asked how tACS modulates regional fMRI blood oxygenation level dependent (BOLD) signal as a function of frequency, current strength, and task condition. TACS was applied over the posterior cortex of healthy human subjects while the BOLD signal was measured during rest or task conditions (visual perception, passive video viewing and motor task). TACS was applied in a blockwise manner at different frequencies (10, 16, 60 and 80 Hz). The strongest tACS effects on BOLD activity were observed with stimulation at alpha (10 Hz) and beta (16 Hz) frequency bands, while effects of tACS at the gamma range were rather modest. Specifically, we found that tACS at 16 Hz induced BOLD activity increase in fronto‐parietal areas. Overall, tACS effects varied as a function of frequency and task, and were predominantly seen in regions that were not activated by the task. Also, the modulated regions were poorly predicted by current density modeling studies. Taken together, our results suggest that tACS does not necessarily exert its strongest effects in regions below the electrodes and that region specificity might be achieved with tACS due to varying susceptibility of brain regions to entrain to a given frequency. Hum Brain Mapp 37:94–121, 2016. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc PMID:26503692

  5. Atherosclerosis severity is not affected by a deficiency in IL‐33/ST2 signaling

    PubMed Central

    Martin, Praxedis; Palmer, Gaby; Rodriguez, Emiliana; Woldt, Estelle; Mean, Isabelle; James, Richard W.; Smith, Dirk E.; Kwak, Brenda R.

    2015-01-01

    Abstract Interleukin (IL)‐33 is a cytokine of the IL‐1 family, which signals through the ST2 receptor. Previous work demonstrated that the systemic administration of recombinant IL‐33 reduces the development of atherosclerosis in apolipoprotein E‐deficient (ApoE−/−) mice by inducing a Th1‐to‐Th2 shift. The objective of our study was to examine the role of endogenous IL‐33 and ST2 in atherosclerosis. ApoE−/−, IL‐33−/−ApoE−/−, and ST2−/−ApoE−/− mice were fed with a cholesterol‐rich diet for 10 weeks. Additionally, a group of ApoE−/− mice was injected with a neutralizing anti‐ST2 or an isotype control antibody during the period of the cholesterol‐rich diet. Atherosclerotic lesion development was measured by Oil Red O staining in the thoracic‐abdominal aorta and the aortic sinus. There were no significant differences in the lipid‐staining area of IL‐33−/−ApoE−/−, ST2−/−ApoE−/−, or anti‐ST2 antibody‐treated ApoE−/− mice, compared to ApoE−/− controls. The absence of IL‐33 signaling had no major and consistent impact on the Th1/Th2 cytokine responses in the supernatant of in vitro‐stimulated lymph node cells. In summary, deficiency of the endogenously produced IL‐33 and its receptor ST2 does not impact the development of atherosclerosis in ApoE‐deficient mice.

  6. Plasma waves downstream of weak collisionless shocks

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Greenstadt, E. W.; Moses, S. L.; Smith, E. J.; Tsurutani, B. T.

    1993-01-01

    In September 1983 the International Sun Earth Explorer 3 (ISEE 3) International Cometary Explorer (ICE) spacecraft made a long traversal of the distant dawnside flank region of the Earth's magnetosphere and had many encounters with the low Mach number bow shock. These weak shocks excite plasma wave electric field turbulence with amplitudes comparable to those detected in the much stronger bow shock near the nose region. Downstream of quasi-perpendicular (quasi-parallel) shocks, the E field spectra exhibit a strong peak (plateau) at midfrequencies (1 - 3 kHz); the plateau shape is produced by a low-frequency (100 - 300 Hz) emission which is more intense behind downstream of two quasi-perpendicular shocks show that the low frequency signals are polarized parallel to the magnetic field, whereas the midfrequency emissions are unpolarized or only weakly polarized. A new high frequency (10 - 30 kHz) emission which is above the maximum Doppler shift exhibit a distinct peak at high frequencies; this peak is often blurred by the large amplitude fluctuations of the midfrequency waves. The high-frequency component is strongly polarized along the magnetic field and varies independently of the lower-frequency waves.

  7. Quorum sensing signals affect spoilage of refrigerated large yellow croaker (Pseudosciaena crocea) by Shewanella baltica.

    PubMed

    Zhu, Junli; Zhao, Aifei; Feng, Lifang; Gao, Haichun

    2016-01-18

    In this work we investigated the specific spoilage organism (SSO) of large yellow croaker (Pseudosciaena crocea) stored at 4°C and role of quorum sensing (QS) system of SSO isolated from the spoiled fish. According to microbial count and 16S rRNA gene of the isolated pure strains, Shewanella, mainly Shewanella baltica and Shewanella putrefaciens, was predominant genera at the end of shelf-life of P. crocea. Among Shewanella isolates, S.baltica02 was demonstrated as SSO in spoilage potential characteristics by inoculation into sterile fish juice using sensory and chemical analyses. Autoinducer 2 and two cyclic dipeptides (DKPs) including cyclo-(l-Pro-l-Leu) and cyclo-(l-Pro-l-Phe), no any AHLs, were detected in cell-free S. baltica culture. Interestingly, S.baltica02 had the highest QS activity among three spoilers of S. baltica. The production of biofilm, trimethylamines (TMA) and putrescine in these spoilers significantly increased in the presence of cyclo-(l-Pro-l-Leu), rather than cyclo-(l-Pro-l-Phe) and 4,5-dihydroxy-2,3-pentanedione (the AI-2 precursor, DPD). In accordance with the effect of signal molecules on the spoilage phenotype, exposure to exogenous cyclo-(l-Pro-l-Leu) was also showed to up-regulate the transcription levels of luxR, torA and ODC, and no effect of luxS indicated that S. baltica could sense cyclo-(l-Pro-l-Leu). In the fish homogenate, exogenous cyclo-(l-Pro-l-Leu) shortened lag phase durations and enhanced growth rates of the dominant bacteria, H2S producing bacteria, under refrigerated storage, while exogenous DPD retarded growth of competing bacteria, such as Enterobacteriaceae. Meanwhile, cyclo-(l-Pro-l-Leu) also promoted the accumulation of metabolites on the spoilage process of homogenate. S.baltica02 luxS mutant preliminarily proved that AI-2 might not play a signaling role in the spoilage. The present study suggested that the spoilage potential of S. baltica in P. crocea might be regulated by DKP-based quorum sensing.

  8. Quorum sensing signals affect spoilage of refrigerated large yellow croaker (Pseudosciaena crocea) by Shewanella baltica.

    PubMed

    Zhu, Junli; Zhao, Aifei; Feng, Lifang; Gao, Haichun

    2016-01-18

    In this work we investigated the specific spoilage organism (SSO) of large yellow croaker (Pseudosciaena crocea) stored at 4°C and role of quorum sensing (QS) system of SSO isolated from the spoiled fish. According to microbial count and 16S rRNA gene of the isolated pure strains, Shewanella, mainly Shewanella baltica and Shewanella putrefaciens, was predominant genera at the end of shelf-life of P. crocea. Among Shewanella isolates, S.baltica02 was demonstrated as SSO in spoilage potential characteristics by inoculation into sterile fish juice using sensory and chemical analyses. Autoinducer 2 and two cyclic dipeptides (DKPs) including cyclo-(l-Pro-l-Leu) and cyclo-(l-Pro-l-Phe), no any AHLs, were detected in cell-free S. baltica culture. Interestingly, S.baltica02 had the highest QS activity among three spoilers of S. baltica. The production of biofilm, trimethylamines (TMA) and putrescine in these spoilers significantly increased in the presence of cyclo-(l-Pro-l-Leu), rather than cyclo-(l-Pro-l-Phe) and 4,5-dihydroxy-2,3-pentanedione (the AI-2 precursor, DPD). In accordance with the effect of signal molecules on the spoilage phenotype, exposure to exogenous cyclo-(l-Pro-l-Leu) was also showed to up-regulate the transcription levels of luxR, torA and ODC, and no effect of luxS indicated that S. baltica could sense cyclo-(l-Pro-l-Leu). In the fish homogenate, exogenous cyclo-(l-Pro-l-Leu) shortened lag phase durations and enhanced growth rates of the dominant bacteria, H2S producing bacteria, under refrigerated storage, while exogenous DPD retarded growth of competing bacteria, such as Enterobacteriaceae. Meanwhile, cyclo-(l-Pro-l-Leu) also promoted the accumulation of metabolites on the spoilage process of homogenate. S.baltica02 luxS mutant preliminarily proved that AI-2 might not play a signaling role in the spoilage. The present study suggested that the spoilage potential of S. baltica in P. crocea might be regulated by DKP-based quorum sensing. PMID

  9. Estrus synchronization affects WNT signaling in the porcine reproductive tract and embryos.

    PubMed

    Kiewisz, Jolanta; Kaczmarek, Monika M; Morawska, Ewa; Blitek, Agnieszka; Kapelanski, Wojciech; Ziecik, Adam J

    2011-12-01

    The purpose of the study was to investigate an effect of estrus synchronization with prostaglandin (PG) F(2α) and PMSG/hCG on WNT4, WNT5A, WNT7A, β-catenin (CTNNB1) and E-cadherin (CDH1) gene expression. The weight of the uterus, morphometrical parameters of the endometrium and the number of CL were recorded. The analysis of estradiol (E(2)), prostaglandin (PG) F(2α) and E(2) content in the uterine luminal flushings (ULFs) and progesterone (P(4)) level in the blood serum were conducted. RNA was isolated from endometrial, luteal and embryonic tissue of pregnant non-synchronized (Control; n = 15) and pregnant synchronized (PGF(2α)/PMSG/hCG; n = 15) pigs. Whereas there was no change in uterine weight, differences in height of endometrial surface and glandular epithelium were found. However, height of the endometrium, number of the glands and capillaries were unaffected. The total number of the CLs was higher (P < 0.05) in animals treated with PGF(2α)/PMSG/hCG. The amount of E(2) and P(4) was lower (P < 0.05, P < 0.001, respectively) in pregnant gilts administrated with PGF(2α)/PMSG/hCG. The concentration of PGF(2α) in ULFs was not affected by hormonal management, while PGE(2) was higher (P < 0.01) in hormonally in comparison to non-hormonally treated pigs. The content of WNT4 mRNA in conceptuses increased on particular Days studied in Control and PGF(2α)/PMSG/hCG administered animals. WNT7A and CTNNB1 were affected by PGF(2α)/PMSG/hCG treatment in both conceptuses (P < 0.001, P < 0.05) and endometrial tissue (P < 0.001, P < 0.01). The PGF(2α)/PMSG/hCG treatment resulted in elevated expression of WNT4 (P < 0.001) and CTNNB1 (P < 0.05) in luteal tissue in comparison to the Control gilts. Moreover, luteal amount of WNT5A mRNA was higher in PGF(2α)/PMSG/hCG animals in comparison to the Control group (P < 0.05). Presented data show that exogenous hormones administration can affect gene expression in the porcine reproductive tract and embryo.

  10. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure.

    PubMed

    Kristinsson, Hjalti; Bergsten, Peter; Sargsyan, Ernest

    2015-12-01

    Fatty acids affect insulin secretion via metabolism and FFAR1-mediated signaling. Recent reports indicate that these two pathways act synergistically. Still it remains unclear how they interrelate. Taking into account the key role of mitochondria in insulin secretion, we attempted to dissect the metabolic and FFAR1-mediated effects of fatty acids on mitochondrial function. One-hour culture of MIN6 cells with palmitate significantly enhanced mitochondrial respiration. Antagonism or silencing of FFAR1 prevented the palmitate-induced rise in respiration. On the other hand, in the absence of extracellular palmitate FFAR1 agonists caused a modest increase in respiration. Using an agonist of the M3 muscarinic acetylcholine receptor and PKC inhibitor we found that in the presence of the fatty acid mitochondrial respiration is regulated via Gαq protein-coupled receptor signaling. The increase in respiration in palmitate-treated cells was largely due to increased glucose utilization and oxidation. However, glucose utilization was not dependent on FFAR1 signaling. Collectively, these results indicate that mitochondrial respiration in palmitate-treated cells is enhanced via combined action of intracellular metabolism of the fatty acid and the Gαq-coupled FFAR1 signaling. Long-term palmitate exposure reduced ATP-coupling efficiency of mitochondria and deteriorated insulin secretion. The presence of the FFAR1 antagonist during culture did not improve ATP-coupling efficiency, however, it resulted in enhanced mitochondrial respiration and improved insulin secretion after culture. Taken together, our study demonstrates that during palmitate exposure, integrated actions of fatty acid metabolism and fatty acid-induced FFAR1 signaling on mitochondrial respiration underlie the synergistic action of the two pathways on insulin secretion.

  11. Temporal call changes and prior experience affect graded signalling in the cricket frog.

    PubMed

    Burmeister; Wilczynski; Ryan

    1999-03-01

    We investigated how male cricket frogs Acris crepitans, alter their advertisement calls in response to broadcasts of synthetic calls that were either 'attractive' or 'aggressive'. The stimulus calls differed in temporal but not spectral characteristics. Male cricket frogs produced a more aggressive call when presented with the aggressive stimulus, indicating that they perceived the temporal differences between the two call categories. The direction and degree of temporal and spectral changes depended on the relative dominant frequency of the resident and opponent. If the resident's dominant frequency was initially higher than the stimulus frequency, the pattern of change in dominant frequency mirrored that seen for the temporal call characters. In contrast, if the resident's initial dominant frequency was below that of the stimulus, then the temporal and spectral changes were in opposite directions. Furthermore, stimulus order influenced whether males responded differently to playbacks of aggressive and attractive calls; males that received the aggressive call first produced more aggressive calls during the aggressive stimulus, while males that received the attractive call first produced similar calls in response to the two stimuli. This suggests that experience with different types of signals influences the subsequent calling behaviour of male cricket frogs. Copyright 1999 The Association for the Study of Animal Behaviour.

  12. Tripeptide SQL Inhibits Platelet Aggregation and Thrombus Formation by Affecting PI3K/Akt Signaling.

    PubMed

    Su, Xing-li; Su, Wen; He, Zhi-long; Ming, Xin; Kong, Yi

    2015-09-01

    Centipede has been prescribed for the treatment of cardiovascular diseases in Asian countries for several hundred years. Previously, a new antiplatelet tripeptide SQL (H-Ser-Gln-Leu-OH) was isolated and characterized from centipede. In this study, we investigated its antithrombotic activities in vivo and underlying mechanism. It was found that SQL inhibited platelet aggregation induced by adenosine diphosphate, thrombin, epinephrine, and collagen and attenuated thrombus formation in both the ferric chloride-induced arterial thrombosis model and arteriovenous shunt thrombosis model in rats. It did not prolong the bleeding time in mice even at the dose of 10 mg/kg that showed potent antithrombosis effects. Molecular docking revealed that SQL binds PI3Kβ with the binding free energy of -24.341 kcal/mol, which is close to that of cocrystallized ligand (-24.220 kcal/mol). Additionally, SQL displayed inhibition on the late (180 seconds) but did not influence the early (60 seconds) Akt Ser473 phosphorylation in the immunoblot assay. These results suggest that SQL inhibits thrombus formation in vivo and that SQL inhibits PI3K-mediated signaling or even the PI3K itself in platelets. This study may help elucidate the mechanism for centipede treating cardiovascular diseases. PMID:25923322

  13. Tripeptide SQL Inhibits Platelet Aggregation and Thrombus Formation by Affecting PI3K/Akt Signaling.

    PubMed

    Su, Xing-li; Su, Wen; He, Zhi-long; Ming, Xin; Kong, Yi

    2015-09-01

    Centipede has been prescribed for the treatment of cardiovascular diseases in Asian countries for several hundred years. Previously, a new antiplatelet tripeptide SQL (H-Ser-Gln-Leu-OH) was isolated and characterized from centipede. In this study, we investigated its antithrombotic activities in vivo and underlying mechanism. It was found that SQL inhibited platelet aggregation induced by adenosine diphosphate, thrombin, epinephrine, and collagen and attenuated thrombus formation in both the ferric chloride-induced arterial thrombosis model and arteriovenous shunt thrombosis model in rats. It did not prolong the bleeding time in mice even at the dose of 10 mg/kg that showed potent antithrombosis effects. Molecular docking revealed that SQL binds PI3Kβ with the binding free energy of -24.341 kcal/mol, which is close to that of cocrystallized ligand (-24.220 kcal/mol). Additionally, SQL displayed inhibition on the late (180 seconds) but did not influence the early (60 seconds) Akt Ser473 phosphorylation in the immunoblot assay. These results suggest that SQL inhibits thrombus formation in vivo and that SQL inhibits PI3K-mediated signaling or even the PI3K itself in platelets. This study may help elucidate the mechanism for centipede treating cardiovascular diseases.

  14. Translocase and major signal peptidase malfunctions affect aerial mycelium formation in Streptomyces lividans.

    PubMed

    Gullón, Sonia; Palomino, Carmen; Navajas, Rosana; Paradela, Alberto; Mellado, Rafael P

    2012-08-31

    Deficiency in the translocase complex (SecG mutant strain) or in the major type I signal peptidase (SipY mutant strain) function in Streptomyces lividans resulted, as expected, in a drastic reduction of secretory protein production and in a bald phenotype. The transcriptional profiling of both strains showed that the expression of a set of genes involved in the morphological differentiation process was down regulated in both mutant strains (bldG, bldN and bldM), whereas bldA and bldH were only down-regulated in the SipY mutant strain. Consistently, low temperature scanning electron microscopy revealed that the disruption of sipY had a more noticeable effect in the growth/morphological aspect of the mycelium than that of secG, suggesting that in the sipY mutant, the blockage of the export process might have more severe consequences than in the secG mutant. In both cases, the likely degradation of the proteins that cannot be secreted might provide nutrients that might be responsible for the lack of induction of the bald cascade, which is thought to be triggered under conditions of nutritional limitation.

  15. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis

    NASA Technical Reports Server (NTRS)

    Paul, A. L.; Daugherty, C. J.; Bihn, E. A.; Chapman, D. K.; Norwood, K. L.; Ferl, R. J.

    2001-01-01

    The use of plants as integral components of life support systems remains a cornerstone of strategies for long-term human habitation of space and extraterrestrial colonization. Spaceflight experiments over the past few decades have refined the hardware required to grow plants in low-earth orbit and have illuminated fundamental issues regarding spaceflight effects on plant growth and development. Potential incipient hypoxia, resulting from the lack of convection-driven gas movement, has emerged as a possible major impact of microgravity. We developed transgenic Arabidopsis containing the alcohol dehydrogenase (Adh) gene promoter linked to the beta-glucuronidase (GUS) reporter gene to address specifically the possibility that spaceflight induces the plant hypoxia response and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. The staining patterns resulting from a 5-d mission on the orbiter Columbia during mission STS-93 indicate that the Adh/GUS reporter gene was activated in roots during the flight. However, the patterns of expression were not identical to terrestrial control inductions. Moreover, although terrestrial hypoxia induces Adh/GUS expression in the shoot apex, no apex staining was observed in the spaceflight plants. This indicates that either the normal hypoxia response signaling is impaired in spaceflight or that spaceflight inappropriately induces Adh/GUS activity for reasons other than hypoxia.

  16. Inhibition of PI3K Signalling Selectively Affects Medulloblastoma Cancer Stem Cells.

    PubMed

    Frasson, Chiara; Rampazzo, Elena; Accordi, Benedetta; Beggio, Giacomo; Pistollato, Francesca; Basso, Giuseppe; Persano, Luca

    2015-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. Although survival has slowly increased in the past years, the prognosis of these patients remains unfavourable. In this context, it has been recently shown that the intracellular signaling pathways activated during embryonic cerebellar development are deregulated in MDB. One of the most important is PI3K/AKT/mTOR, implicated in cell proliferation, survival, growth, and protein synthesis. Moreover, a fraction of MDB cells has been shown to posses stemlike features, to express typical neuronal precursor markers (Nestin and CD133), and to be maintained by the hypoxic cerebellar microenvironment. This subpopulation of MDB cells is considered to be responsible for treatment resistance and recurrence. In this study, we evaluated the effects of PI3K/AKT pathway inhibition on primary cultures of MDB and particularly on the cancer stem cell (CSC) population (CD133(+)). PI3K inhibition was able to counteract MDB cell growth and to promote differentiation of stemlike MDB cells. Moreover, PI3K/AKT pathway suppression induced dramatic cell death through activation of the mitochondrial proapoptotic cascade. Finally, analysis on the stem cells fraction revealed that the MDB CSC population is more sensitive to PI3K targeting compared to the whole cancerous population and its nonstem cell counterpart.

  17. Increased bone morphogenetic protein 7 signalling in the kidneys of dogs affected with a congenital portosystemic shunt.

    PubMed

    van Dongen, Astrid M; Heuving, Susanne M; Tryfonidou, Marianna A; van Steenbeek, Frank G; Rothuizen, Jan; Penning, Louis C

    2015-05-01

    Dogs with a congenital portosystemic shunt (CPSS) often have enlarged and hyper-filtrating kidneys. Although expression of different growth factors has been well-described in the livers of dogs affected with a CPSS, their expression in the kidneys has yet to be determined. Bone morphogenetic protein 7 (BMP-7), hepatocyte growth factor (HGF) and transforming growth factor (TGF)-β have been implicated in renal development (BMP-7, HGF) or the onset of renal fibrosis (TGF-β). Moreover, BMP-7 and HGF have protective properties in renal fibrosis. In this study, the expression and activity of BMP-7 were investigated in renal biopsies obtained from 13 dogs affected with a CPSS and compared to similar samples from age-matched healthy control dogs. Both quantitative reverse-transcriptase PCR and Western blotting showed up-regulated BMP-7 signalling in kidneys of CPPS-affected dogs. These research findings may help to explain the renal pathology/dysfunction in dogs affected with a CPSS.

  18. Using chromatography in downstream processing.

    PubMed

    Becker, C

    1989-01-01

    This article concludes the series on the use of chromatography for downstream processing. Although it has only scratched the surface when considering the number of parameters involved in process chromatography, it does give a broad overview including the choice of components through process standards. Pharmacia LKB Biotechnology has had more than 15 years experience in the design development and running of large scale chromatographic processes. During this time the company has gathered a vast amount of experience and information on the key points to successful product purification. Pharmacia LKB can advise on the choice of techniques and the development of a separation process up to full production scale.

  19. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata).

    PubMed

    Azizi, Sheida; Nematollahi, Mohammad Ali; Mojazi Amiri, Bagher; Vélez, Emilio J; Lutfi, Esmail; Navarro, Isabel; Capilla, Encarnación; Gutiérrez, Joaquim

    2016-01-01

    Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs). This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates the importance of

  20. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation

    PubMed Central

    Isernhagen, Antje; Malzahn, Dörthe; Viktorova, Elena; Elsner, Leslie; Monecke, Sebastian; von Bonin, Frederike; Kilisch, Markus; Wermuth, Janne Marieke; Walther, Neele; Balavarca, Yesilda; Stahl-Hennig, Christiane; Engelke, Michael; Walter, Lutz; Bickeböller, Heike; Kube, Dieter; Wulf, Gerald; Dressel, Ralf

    2015-01-01

    The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n = 452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR] = 0.77, P = 0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR] = 0.57, P = 0.0400) although homozygous carriers had an increased risk to experience this complication (OR = 1.92, P = 0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR = 0.54, P = 0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon-γ release, and faster co-stimulation of CD8+ T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8+ T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD. PMID:26483398

  1. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata)

    PubMed Central

    Azizi, Sheida; Nematollahi, Mohammad Ali; Mojazi Amiri, Bagher; Vélez, Emilio J.; Lutfi, Esmail; Navarro, Isabel; Capilla, Encarnación; Gutiérrez, Joaquim

    2016-01-01

    Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs). This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates the importance of

  2. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation.

    PubMed

    Isernhagen, Antje; Malzahn, Dörthe; Viktorova, Elena; Elsner, Leslie; Monecke, Sebastian; von Bonin, Frederike; Kilisch, Markus; Wermuth, Janne Marieke; Walther, Neele; Balavarca, Yesilda; Stahl-Hennig, Christiane; Engelke, Michael; Walter, Lutz; Bickeböller, Heike; Kube, Dieter; Wulf, Gerald; Dressel, Ralf

    2015-10-19

    The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n = 452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR] = 0.77, P = 0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR] = 0.57, P = 0.0400) although homozygous carriers had an increased risk to experience this complication (OR = 1.92, P = 0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR = 0.54, P = 0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon-γ release, and faster co-stimulation of CD8(+) T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8(+) T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD.

  3. Downstream activation of NF-κB in the EDA-A1/EDAR signalling in Sjögren's syndrome and its regulation by the ubiquitin-editing enzyme A20.

    PubMed

    Sisto, M; Barca, A; Lofrumento, D D; Lisi, S

    2016-05-01

    Sjögren's syndrome (SS) is an autoimmune disease and the second most common chronic systemic rheumatic disorder. Prevalence of primary SS in the general population has been estimated to be approximately 1-3%, whereas secondary SS has been observed in 10-20% of patients with rheumatoid arthritis, systemic lupus erythematosus (SLE) and scleroderma. Despite this, its exact aetiology and pathogenesis are largely unexplored. Nuclear factor-kappa B (NF-κB) signalling mechanisms provide central controls in SS, but how these pathways intersect the pathological features of this disease is unclear. The ubiquitin-editing enzyme A20 (tumour necrosis factor-α-induced protein 3, TNFAIP3) serves as a critical inhibitor on NF-κB signalling. In humans, polymorphisms in the A20 gene or a deregulated expression of A20 are often associated with several inflammatory disorders, including SS. Because A20 controls the ectodysplasin-A1 (EDA-A1)/ectodysplasin receptor (EDAR) signalling negatively, and the deletion of A20 results in excessive EDA1-induced NF-κB signalling, this work investigates the expression levels of EDA-A1 and EDAR in SS human salivary glands epithelial cells (SGEC) and evaluates the hypothesis that SS SGEC-specific deregulation of A20 results in excessive EDA1-induced NF-κB signalling in SS. Our approach, which combines the use of siRNA-mediated gene silencing and quantitative pathway analysis, was used to elucidate the role of the A20 target gene in intracellular EDA-A1/EDAR/NF-κB pathway in SS SGEC, holding significant promise for compound selection in drug discovery. PMID:26724675

  4. A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections.

    PubMed

    Ayres, Janelle S; Schneider, David S

    2008-12-01

    Organisms evolve two routes to surviving infections-they can resist pathogen growth (resistance) and they can endure the pathogenesis of infection (tolerance). The sum of these two properties together defines the defensive capabilities of the host. Typically, studies of animal defenses focus on either understanding resistance or, to a lesser extent, tolerance mechanisms, thus providing little understanding of the relationship between these two mechanisms. We suggest there are nine possible pairwise permutations of these traits, assuming they can increase, decrease, or remain unchanged in an independent manner. Here we show that by making a single mutation in the gene encoding a protease, CG3066, active in the melanization cascade in Drosophila melanogaster, we observe the full spectrum of changes; these mutant flies show increases and decreases in their resistance and tolerance properties when challenged with a variety of pathogens. This result implicates melanization in fighting microbial infections and shows that an immune response can affect both resistance and tolerance to infections in microbe-dependent ways. The fly is often described as having an unsophisticated and stereotypical immune response where single mutations cause simple binary changes in immunity. We report a level of complexity in the fly's immune response that has strong ecological implications. We suggest that immune responses are highly tuned by evolution, since selection for defenses that alter resistance against one pathogen may change both resistance and tolerance to other pathogens.

  5. Novel Mutations Affecting a Signaling Component for Chemotaxis of Escherichia coli

    PubMed Central

    Parkinson, John S.

    1980-01-01

    The genetic relationship between tsr and cheD mutations, which affect chemotactic ability and map at approximately 99 min on the Escherichia coli chromosome, was investigated. Mutants defective in tsr function typically exhibited wild-type swimming patterns, but were unable to carry out chemotactic responses to a number of attractant and repellent chemicals. In contrast, cheD mutants swam smoothly, with few spontaneous directional changes, and were generally nonchemotactic. In complementation tests, cheD mutations, unlike tsr, proved to be dominant to wild type, suggesting that the cheD defect might be due to an active inhibitor of chemotaxis. Mutations that inactivated the putative inhibitor were obtained by selecting for restoration of chemotactic ability or for loss of cheD dominance. The resultant double mutants were shown to carry the original cheD mutation and a second tightly linked mutation, some of which exhibited nonsense or temperature-sensitive phenotypes, implying that they had occurred in a structural gene for a protein. All such double mutants behaved like typical tsr mutants in all other respects, including complementation pattern, swimming behavior, and chemotactic ability. These findings implied that either overproduction of tsr product or synthesis of an aberrant tsr product was responsible for the chemotaxis defect of cheD strains. Such mutants should be useful in analyzing the role of the tsr product in chemotactic responses. Images PMID:6991496

  6. Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability.

    PubMed

    Murugan, Malavika; Harward, Stephen; Scharff, Constance; Mooney, Richard

    2013-12-18

    Mutations of the FOXP2 gene impair speech and language development in humans and shRNA-mediated suppression of the avian ortholog FoxP2 disrupts song learning in juvenile zebra finches. How diminished FoxP2 levels affect vocal control and alter the function of neural circuits important to learned vocalizations remains unclear. Here we show that FoxP2 knockdown in the songbird striatum disrupts developmental and social modulation of song variability. Recordings in anesthetized birds show that FoxP2 knockdown interferes with D1R-dependent modulation of activity propagation in a corticostriatal pathway important to song variability, an effect that may be partly attributable to reduced D1R and DARPP-32 protein levels. Furthermore, recordings in singing birds reveal that FoxP2 knockdown prevents social modulation of singing-related activity in this pathway. These findings show that reduced FoxP2 levels interfere with the dopaminergic modulation of vocal variability, which may impede song and speech development by disrupting reinforcement learning mechanisms.

  7. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing.

    PubMed

    Tiede, Regina; Krautwald, Karla; Fincke, Anja; Angenstein, Frank

    2012-03-01

    The role of N-methyl-D-aspartate (NMDA) receptor-mediated mechanisms in the formation of a blood oxygen level-dependent (BOLD) response was studied using electrical stimulation of the right perforant pathway. Stimulation of this fiber bundle triggered BOLD responses in the right hippocampal formation and in the left entorhinal cortex. The perforant pathway projects to and activates the dentate gyrus monosynaptically, activation in the contralateral entorhinal cortex is multisynaptic and requires forwarding and processing of signals. Application of the NMDA receptor antagonist MK801 during stimulation had no effect on BOLD responses in the right dentate gyrus, but reduced the BOLD responses in the left entorhinal cortex. In contrast, application of MK801 before the first stimulation train reduced the BOLD response in both regions. Electrophysiological recordings revealed that the initial stimulation trains changed the local processing of the incoming signals in the dentate gyrus. This altered electrophysiological response was not further changed by a subsequent application of MK801, which is in agreement with an unchanged BOLD response. When MK801 was present during the first stimulation train, a dissimilar electrophysiological response pattern was observed and corresponds to an altered BOLD response, indicating that NMDA-dependent mechanisms indirectly affect the BOLD response, mainly via modifying local signal processing and subsequent propagation. PMID:22167232

  8. Transgenic expression of Spi-C impairs B-cell development and function by affecting genes associated with BCR signaling.

    PubMed

    Zhu, Xiang; Schweitzer, Brock L; Romer, Eric J; Sulentic, Courtney E W; DeKoter, Rodney P

    2008-09-01

    Spi-C is an Ets family transcription factor closely related to PU.1 and Spi-B. Expression of Spi-C is developmentally regulated in the B-cell lineage, but its function remains unknown. To determine the function of Spi-C in B-cell development, we generated mice expressing a B-cell-specific Spi-C transgene under the control of the IgH intronic enhancer. Spi-C transgenic mice had 50% fewer B cells than wild-type littermates. Flow cytometric analyses showed that splenic transitional B cells and bone marrow pre-B or immature B cells from transgenic mice were dramatically reduced compared with those of wild type. Both nonspecific and Ag-specific serum IgM levels were significantly increased in transgenic mice, while serum IgG levels were significantly decreased compared with wild type. Spi-C transgenic B cells proliferated poorly after stimulation by anti-IgM or anti-CD40 in vitro, although they responded normally to LPS stimulation. Using real-time RT-PCR, we found that several BCR signaling-related mediators were downregulated at pre-B-cell and mature B-cell stages in transgenic mice, while an inhibitor of BCR signaling was upregulated. Taken together, these data indicate that ectopic expression of Spi-C can impair B-cell development and function by affecting genes associated with BCR signaling.

  9. Disruption of sonic hedgehog signaling in Ellis-van Creveld dwarfism confers protection against bipolar affective disorder.

    PubMed

    Ginns, E I; Galdzicka, M; Elston, R C; Song, Y E; Paul, S M; Egeland, J A

    2015-10-01

    Ellis-van Creveld syndrome, an autosomal recessively inherited chondrodysplastic dwarfism, is frequent among Old Order Amish of Pennsylvania. Decades of longitudinal research on bipolar affective disorder (BPAD) revealed cosegregation of high numbers of EvC and Bipolar I (BPI) cases in several large Amish families descending from the same pioneer. Despite the high prevalence of both disorders in these families, no EvC individual has ever been reported with BPI. The proximity of the EVC gene to our previously reported chromosome 4p16 BPAD locus with protective alleles, coupled with detailed clinical observations that EvC and BPI do not occur in the same individuals, led us to hypothesize that the genetic defect causing EvC in the Amish confers protection from BPI. This hypothesis is supported by a significant negative association of these two disorders when contrasted with absence of disease (P=0.029, Fisher's exact test, two-sided, verified by permutation to estimate the null distribution of the test statistic). As homozygous Amish EVC mutations causing EvC dwarfism do so by disrupting sonic hedgehog (Shh) signaling, our data implicate Shh signaling in the underlying pathophysiology of BPAD. Understanding how disrupted Shh signaling protects against BPI could uncover variants in the Shh pathway that cause or increase risk for this and related mood disorders.

  10. TLR signalling affects sperm mitochondrial function and motility via phosphatidylinositol 3-kinase and glycogen synthase kinase-3α.

    PubMed

    Zhu, Xingxing; Shi, Dongyan; Li, Xiaoqian; Gong, Weijuan; Wu, Fengjiao; Guo, Xuejiang; Xiao, Hui; Liu, Lixin; Zhou, Hong

    2016-03-01

    Infection in male and female genital tracts can lead to infertility. The underlying mechanisms of this process remain unclear. Toll-like receptors (TLRs) recognize conserved structures and respond to pathogens by initiating signals that activate inflammatory gene transcription. Here, we demonstrate that TLR activation in sperm reduces sperm motility via signalling through myeloid differentiation factor 88 (MyD88), phosphatidylinositol 3-kinase (PI3K), and glycogen synthase kinase (GSK)-3α. Upon TLR activation, phosphorylated forms of PI3K and GSK3α were detected in the mitochondria, and the mitochondrial membrane potential was impaired in sperm. In addition, mitochondrial ATP levels were decreased after TLR agonist stimulation. Furthermore, blocking PI3K or GSK3α activation abrogated these effects and reversed the TLR-induced reduction in sperm motility. These results identify a previously unrecognized TLR signalling pathway that leads to dysfunctional sperm mitochondria, which reduce sperm motility. Our study reveals a novel mechanism by which pathogenic infection affects sperm motility and possibly leads to infertility.

  11. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing

    PubMed Central

    Tiede, Regina; Krautwald, Karla; Fincke, Anja; Angenstein, Frank

    2012-01-01

    The role of N-methyl--aspartate (NMDA) receptor-mediated mechanisms in the formation of a blood oxygen level-dependent (BOLD) response was studied using electrical stimulation of the right perforant pathway. Stimulation of this fiber bundle triggered BOLD responses in the right hippocampal formation and in the left entorhinal cortex. The perforant pathway projects to and activates the dentate gyrus monosynaptically, activation in the contralateral entorhinal cortex is multisynaptic and requires forwarding and processing of signals. Application of the NMDA receptor antagonist MK801 during stimulation had no effect on BOLD responses in the right dentate gyrus, but reduced the BOLD responses in the left entorhinal cortex. In contrast, application of MK801 before the first stimulation train reduced the BOLD response in both regions. Electrophysiological recordings revealed that the initial stimulation trains changed the local processing of the incoming signals in the dentate gyrus. This altered electrophysiological response was not further changed by a subsequent application of MK801, which is in agreement with an unchanged BOLD response. When MK801 was present during the first stimulation train, a dissimilar electrophysiological response pattern was observed and corresponds to an altered BOLD response, indicating that NMDA-dependent mechanisms indirectly affect the BOLD response, mainly via modifying local signal processing and subsequent propagation. PMID:22167232

  12. Differences in cell death induction by Phytophthora Elicitins are determined by signal components downstream of MAP kinase kinase in different species of Nicotiana and cultivars of Brassica rapa and Raphanus sativus.

    PubMed

    Takemoto, Daigo; Hardham, Adrienne R; Jones, David A

    2005-07-01

    Elicitins are small, secreted proteins produced by species of the plant-pathogenic oomycete Phytophthora. They induce hypersensitive cell death in most Nicotiana species and in some cultivars of Brassica rapa and Raphanus sativus. In this study, two true-breeding Fast Cycling B. rapa lines were established that showed severe necrosis (line 7-R) or no visible response (line 18-NR) after treatment with elicitin. Unexpectedly, microscopic examination revealed localized cell death in line 18-NR plants, and expression levels of various defense-marker genes were comparable in both lines. These results suggested that both "responsive" and "nonresponsive" plants responded to elicitin but differed in the extent of the cell death response. Expression of a constitutively active form of Arabidopsis (Arabidopsis thaliana) MAP kinase kinase 4 (AtMEK4(DD)) also induced rapid development of confluent cell death in line 7-R, whereas line 18-NR showed no visible cell death. Similarly, elicitin-responsive Nicotiana species and R. sativus cultivars showed significantly stronger cell death responses following expression of AtMEK4(DD) compared with nonresponsive species/cultivars. Line 7-R also showed higher sensitivity to toxin-containing culture filtrates produced by Alternaria brassicicola, and toxin sensitivity cosegregated with elicitin responsiveness, suggesting that the downstream responses induced by elicitin and Alternaria toxin share factors that control the extent of cell death. Interestingly, elicitin responsiveness was shown to correlate with greater susceptibility to A. brassicicola (a necrotroph) in B. rapa but less susceptibility to Phytophthora nicotianae (a hemibiotroph) in Nicotiana, suggesting a more extensive cell death response could cause opposite effects on the outcomes of biotrophic versus necrotrophic plant-pathogen interactions.

  13. Transmission of Duobinary Signal in Optical 40 GHz Millimeter-Wave Radio-Over-Fiber Systems Utilizing Dual-Arm LiNbO3 Mach-Zehnder Modulator for Downstream

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Malekmohammadi, Amin

    2016-06-01

    In this paper, for the first time transmission of 2.5 Gb/s duobinary signal is investigated for the downlink direction in 40 GHz optical millimeter-wave generation or up-conversion, utilizing a dual-arm LiNb{O}_3 Mach-Zehnder modulator based on different modulation schemes, namely double- and single-sideband (DSB and SSB) and optical carrier suppression (OCS). The up-converted optical millimeter-wave employing OCS modulation scheme indicates the highest back-to-back received optical power and the smallest power penalty after long propagation in the single-mode fiber, in comparison to DSB and SSB. Directly modulated laser in association with OCS modulation scheme has been used to generate duobinary optical millimeter-wave signal in order to minimize the cost and complexity of the system.

  14. ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.

    PubMed

    Banerjee, Sayantan; McGee, Dennis W

    2016-09-01

    Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation.

  15. Calcium affects OX1 orexin (hypocretin) receptor responses by modifying both orexin binding and the signal transduction machinery

    PubMed Central

    Putula, Jaana; Pihlajamaa, Tero; Kukkonen, Jyrki P

    2014-01-01

    Background and Purpose One of the major responses upon orexin receptor activation is Ca2+ influx, and this influx seems to amplify the other responses mediated by orexin receptors. However, the reduction in Ca2+, often used to assess the importance of Ca2+ influx, might affect other properties, like ligand−receptor interactions, as suggested for some GPCR systems. Hence, we investigated the role of the ligand−receptor interaction and Ca2+ signal cascades in the apparent Ca2+ requirement of orexin-A signalling. Experimental Approach Receptor binding was assessed in CHO cells expressing human OX1 receptors with [125I]-orexin-A by conventional ligand binding as well as scintillation proximity assays. PLC activity was determined by chromatography. Key Results Both orexin receptor binding and PLC activation were strongly dependent on the extracellular Ca2+ concentration. The relationship between Ca2+ concentration and receptor binding was the same as that for PLC activation. However, when Ca2+ entry was reduced by depolarizing the cells or by inhibiting the receptor-operated Ca2+ channels, orexin-A-stimulated PLC activity was much more strongly inhibited than orexin-A binding. Conclusions and Implications Ca2+ plays a dual role in orexin signalling by being a prerequisite for both ligand−receptor interaction and amplifying orexin signals via Ca2+ influx. Some previous results obtained utilizing Ca2+ chelators have to be re-evaluated based on the results of the current study. From a drug discovery perspective, further experiments need to identify the target for Ca2+ in orexin-A−OX1 receptor interaction and its mechanism of action. PMID:25132134

  16. ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.

    PubMed

    Banerjee, Sayantan; McGee, Dennis W

    2016-09-01

    Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation. PMID:27173611

  17. Mixed signals: combining linguistic and affective functions of eyebrows in questions in sign language of the Netherlands.

    PubMed

    de Vos, Connie; van der Kooij, Els; Crasborn, Onno

    2009-01-01

    The eyebrows are used as conversational signals in face-to-face spoken interaction (Ekman, 1979). In Sign Language of the Netherlands (NGT), the eyebrows are typically furrowed in content questions, and raised in polar questions (Coerts, 1992). On the other hand, these eyebrow positions are also associated with anger and surprise, respectively, in general human communication (Ekman, 1993). This overlap in the functional load of the eyebrow positions results in a potential conflict for NGT signers when combining these functions simultaneously. In order to investigate the effect of the simultaneous realization of both functions on the eyebrow position we elicited instances of both question types with neutral affect and with various affective states. The data were coded using the Facial Action Coding System (FACS: Ekman, Friesen, & Hager, 2002) for type of brow movement as well as for intensity. FACS allows for the coding of muscle groups, which are termed Action Units (AUs) and which produce facial appearance changes. The results show that linguistic and affective functions of eyebrows may influence each other in NGT. That is, in surprised polar questions and angry content question a phonetic enhancement takes place of raising and furrowing, respectively. In the items with contrasting eyebrow movements, the grammatical and affective AUs are either blended (occur simultaneously) or they are realized sequentially. Interestingly, the absence of eyebrow raising (marked by AU 1+2) in angry polar questions, and the presence of eyebrow furrowing (realized by AU 4) in surprised content questions suggests that in general AU 4 may be phonetically stronger than AU 1 and AU 2, independent of its linguistic or affective function.

  18. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond. PMID:23551936

  19. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice

    PubMed Central

    Yu, Qinghui; Teixeira, Cátia M.; Mahadevia, Darshini; Huang, Yung-Yu; Balsam, Daniel; Mann, J John; Gingrich, Jay A; Ansorge, Mark S.

    2014-01-01

    Pharmacologic blockade of monoamine oxidase A (MAOA) or serotonin transporter (5-HTT) has antidepressant and anxiolytic efficacy in adulthood. Yet, genetically conferred MAOA or 5-HTT hypo-activity is associated with altered aggression and increased anxiety/depression. Here we test the hypothesis that increased monoamine signaling during development causes these paradoxical aggressive and affective phenotypes. We find that pharmacologic MAOA blockade during early postnatal development (P2-P21) but not during peri-adolescence (P22-41) increases anxiety- and depression-like behavior in adult (> P90) mice, mimicking the effect of P2-21 5-HTT inhibition. Moreover, MAOA blockade during peri-adolescence, but not P2-21 or P182-201, increases adult aggressive behavior, and 5-HTT blockade from P22-P41 reduced adult aggression. Blockade of the dopamine transporter, but not the norepinephrine transporter, during P22-41 also increases adult aggressive behavior. Thus, P2-21 is a sensitive period during which 5-HT modulates adult anxiety/depression-like behavior, and P22-41 is a sensitive period during which DA and 5-HT bi-directionally modulate adult aggression. Permanently altered DAergic function as a consequence of increased P22-P41 monoamine signaling might underlie altered aggression. In support of this hypothesis, we find altered aggression correlating positively with locomotor response to amphetamine challenge in adulthood. Proving that altered DA function and aggression are causally linked, we demonstrate that optogenetic activation of VTA DAergic neurons increases aggression. It therefore appears that genetic and pharmacologic factors impacting dopamine and serotonin signaling during sensitive developmental periods can modulate adult monoaminergic function and thereby alter risk for aggressive and emotional dysfunction. PMID:24589889

  20. Polyamine metabolism and transforming growth factor-beta signaling are affected in Caco-2 cells by differentially cooked broccoli extracts.

    PubMed

    Furniss, Caroline S M; Bennett, Richard N; Bacon, James R; LeGall, Gwen; Mithen, Richard F

    2008-10-01

    The health benefits of consuming cruciferous vegetables are widely considered to be due to the biological activity of glucosinolate degradation products. However, it is conceivable that other phytochemicals within crucifers may also have biological activity that may contribute to health benefits. In this study, we analyzed global gene expression in Caco-2 cells exposed to extracts derived from broccoli that had been heat treated to different extents to result in contrasting profiles of glucosinolates and their degradation products. Extracts microwaved for 0, 1, and 4 min contained 9.5, 25.5, and 0 micromol/L sulforaphane and induced changes in expression of 381, 1017, and 101 genes, respectively (>2 fold; P < 0.01). Seventy-two genes showed similar changes in expression after treatment with all 3 extracts. These included genes involved in polyamine catabolism and transforming growth factor (TGF)-beta signaling. Consistent with these changes in gene expression, subsequent studies demonstrated that exposing cells to these extracts, including the 4-min extract that contained no glucosinolate degradation products, increased putrescine and N-acetyl-spermine concentration, and suppressed the TGFbeta1-mediated induction of phosphorylated Smad 2. This is the first report, to our knowledge, of phytochemicals from a cruciferous vegetable affecting both a signaling pathway and a catabolic process.

  1. Optimization of parameters affecting signal intensity in an LTQ-orbitrap in negative ion mode: A design of experiments approach.

    PubMed

    Lemonakis, Nikolaos; Skaltsounis, Alexios-Leandros; Tsarbopoulos, Anthony; Gikas, Evagelos

    2016-01-15

    A multistage optimization of all the parameters affecting detection/response in an LTQ-orbitrap analyzer was performed, using a design of experiments methodology. The signal intensity, a critical issue for mass analysis, was investigated and the optimization process was completed in three successive steps, taking into account the three main regions of an orbitrap, the ion generation, the ion transmission and the ion detection regions. Oleuropein and hydroxytyrosol were selected as the model compounds. Overall, applying this methodology the sensitivity was increased more than 24%, the resolution more than 6.5%, whereas the elapsed scan time was reduced nearly to its half. A high-resolution LTQ Orbitrap Discovery mass spectrometer was used for the determination of the analytes of interest. Thus, oleuropein and hydroxytyrosol were infused via the instruments syringe pump and they were analyzed employing electrospray ionization (ESI) in the negative high-resolution full-scan ion mode. The parameters of the three main regions of the LTQ-orbitrap were independently optimized in terms of maximum sensitivity. In this context, factorial design, response surface model and Plackett-Burman experiments were performed and analysis of variance was carried out to evaluate the validity of the statistical model and to determine the most significant parameters for signal intensity. The optimum MS conditions for each analyte were summarized and the method optimum condition was achieved by maximizing the desirability function. Our observation showed good agreement between the predicted optimum response and the responses collected at the predicted optimum conditions.

  2. The pyrrolidinoindoline alkaloid Psm2 inhibits platelet aggregation and thrombus formation by affecting PI3K/Akt signaling

    PubMed Central

    Su, Xing-li; Su, Wen; Wang, Ying; Wang, Yue-hu; Ming, Xin; Kong, Yi

    2016-01-01

    Aim: Psm2, one of the pyrrolidinoindoline alkaloids isolated from whole Selaginella moellendorffii plants, has shown a potent antiplatelet activity. In this study, we further evaluated the antiplatelet effects of Psm2, and elucidated the underlying mechanisms. Methods: Human platelet aggregation in vitro and rat platelet aggregation ex vivo were investigated. Agonist-induced platelet aggregation was measured using a light transmission aggregometer. The antithrombotic effects of Psm2 were evaluated in arteriovenous shunt thrombosis model in rats. To elucidate the mechanisms underlying the antiplatelet activity of Psm2, ELISAs, Western blotting and molecular docking were performed. The bleeding risk of Psm2 administration was assessed in a mouse tail cutting model, and the cytotoxicity of Psm2 was measured with MTT assay in EA.hy926 cells. Results: Psm2 dose-dependently inhibited human platelet aggregation induced by ADP, U4619, thrombin and collagen with IC50 values of 0.64, 0.37, 0.35 and 0.87 mg/mL, respectively. Psm2 (1, 3, 10 mg/kg) administered to rats significantly inhibited platelet aggregation ex vivo induced by ADP. Psm2 (1, 3, 10 mg/mL, iv) administered to rats with the A–V shunt dose-dependently decreased the thrombus formation. Psm2 inhibited platelet adhesion to fibrinogen and collagen with IC50 values of 84.5 and 96.5 mg/mL, respectively, but did not affect the binding of fibrinogen to GPIIb/IIIa. Furthermore, Psm2 inhibited AktSer473 phosphorylation, but did not affect MAPK signaling and Src kinase activation. Molecular docking showed that Psm2 bound to phosphatidylinositol 3-kinase β (PI3Kβ) with a binding free energy of −13.265 kcal/mol. In addition, Psm2 did not cause toxicity in EA.hy926 cells and produced only slight bleeding in a mouse tail cutting model. Conclusion: Psm2 inhibits platelet aggregation and thrombus formation by affecting PI3K/Akt signaling. Psm2 may be a lead compound or drug candidate that could be developed for the

  3. A Downstream voyage with mercury

    USGS Publications Warehouse

    Heinz, Gary

    2016-01-01

    Retrospective essay for the Bulletin of Environmental Contamination and Toxicology.As I look back on my paper, “Effects of Low Dietary Levels of Methyl Mercury on Mallard Reproduction,” published in 1974 in the Bulletin of Environmental Contamination and Toxicology, a thought sticks in my mind. I realize just how much my mercury research was not unlike a leaf in a stream, carried this way and that, sometimes stalled in an eddy, restarted, and carried downstream at a pace and path that was not completely under my control. I was hired in 1969 by the Patuxent Wildlife Research Center to study the effects of environmental pollutants on the behavior of wildlife. A colleague was conducting a study on the reproductive effects of methylmercury on mallards (Anas platyrhynchos), and he offered to give me some of the ducklings. I conducted a pilot study, testing how readily ducklings approached a tape-recorded maternal call. Sample sizes were small, but the results suggested that ducklings from mercury-treated parents behaved differently than controls. That’s how I got into mercury research—pretty much by chance.

  4. A downstream voyage with mercury

    USGS Publications Warehouse

    Heinz, Gary

    2016-01-01

    Retrospective essay for the Bulletin of Environmental Contamination and Toxicology.As I look back on my paper, “Effects of Low Dietary Levels of Methyl Mercury on Mallard Reproduction,” published in 1974 in the Bulletin of Environmental Contamination and Toxicology, a thought sticks in my mind. I realize just how much my mercury research was not unlike a leaf in a stream, carried this way and that, sometimes stalled in an eddy, restarted, and carried downstream at a pace and path that was not completely under my control. I was hired in 1969 by the Patuxent Wildlife Research Center to study the effects of environmental pollutants on the behavior of wildlife. A colleague was conducting a study on the reproductive effects of methylmercury on mallards (Anas platyrhynchos), and he offered to give me some of the ducklings. I conducted a pilot study, testing how readily ducklings approached a tape-recorded maternal call. Sample sizes were small, but the results suggested that ducklings from mercury-treated parents behaved differently than controls. That’s how I got into mercury research—pretty much by chance.

  5. Infection of Female BWF1 Lupus Mice with Malaria Parasite Attenuates B Cell Autoreactivity by Modulating the CXCL12/CXCR4 Axis and Its Downstream Signals PI3K/AKT, NFκB and ERK.

    PubMed

    Badr, Gamal; Sayed, Ayat; Abdel-Maksoud, Mostafa A; Mohamed, Amany O; El-Amir, Azza; Abdel-Ghaffar, Fathy A; Al-Quraishy, Saleh; Mahmoud, Mohamed H

    2015-01-01

    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by abnormal autoreactivity in B cells. Lymphocytes and their soluble mediators contribute to the disease pathogenesis. We recently demonstrated that infecting lupus mice with malaria confers protection against lupus nephritis by attenuating oxidative stress in both liver and kidney tissues. In the current study, we further investigated B cell autoreactivity in female BWF1 lupus mice after infection with either live or gamma-irradiated malaria, using ELISA, flow cytometry and Western blot analysis. The lupus mice exhibited a significant elevation in plasma levels of IL-4, IL-6, IL-7, IL-12, IL-17, IFN-α, IFN-γ, TGF-β, BAFF and APRIL and a marked elevation of IgG2a, IgG3 and ant-dsDNA autoantibodies compared with normal healthy mice. Infecting lupus mice with live but not gamma-irradiated malaria parasite partially and significantly restored the levels of the soluble mediators that contribute to the progression of lupus. Furthermore, the B cells of lupus mice exhibited an increased proliferative capacity; aberrant overexpression of the chemokine receptor CXCR4; and a marked elevation in responsiveness to their cognate ligand (CXCL12) via aberrant activation of the PI3K/AKT, NFκB and ERK signaling pathways. Interestingly, infecting lupus mice with live but not gamma-irradiated malaria parasite restored a normal proliferative capacity, surface expression of CXCR4 and B cell response to CXCL-12. Taken together, our data present interesting findings that clarify, for the first time, the molecular mechanisms of how infection of lupus mice with malaria parasite controls B cell autoreactivity and thus confers protection against lupus severity.

  6. Molecular characterization of toll-like receptor 2 (TLR2), analysis of its inductive expression and associated down-stream signaling molecules following ligands exposure and bacterial infection in the Indian major carp, rohu (Labeo rohita).

    PubMed

    Samanta, Mrinal; Swain, Banikalyan; Basu, Madhubanti; Panda, Padmaja; Mohapatra, Girish B; Sahoo, Bikash R; Maiti, Nikhil K

    2012-03-01

    Toll-like receptors (TLRs) are one of the key components of innate immunity. Among various TLR types, TLR2 is involved in recognizing specific microbial structures such as peptidoglycan (PGN), lipoteichoic acid (LTA), zymosan etc., and after binding them it triggers myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway to induce various cytokines. In this report, TLR2 gene was cloned and characterized in rohu (Labeo rohita), which is highly commercially important fish species in the farming-industry of Indian subcontinent. Full-length rohu TLR2 (rTLR2) cDNA comprised of 2691 bp with a single open reading frame (ORF) of 2379 bp encoding a polypeptide of 792 amino acids (aa) with an estimated molecular mass of 90.74 kDa. Structurally, it comprised of one leucine-rich repeat region (LRR) each at N-terminal (LRR-NT; 44-55 aa) and C-terminal (LRR-CT; 574-590 aa), 21 LRRs in between C and N-terminal, one trans-membrane (TM) domain (595-612 aa), and one TIR domain (645-790 aa). Phylogenetically, rohu TLR2 was closely related to common carp and exhibited significant similarity (93.1%) and identity (88.1%) in their amino acids. During embryogenesis, rTLR2 expression was detected as early as ∼7 h post fertilization indicating its importance in embryonic innate immune defense system in fish. Basal expression analysis of rTLR2 showed its constitutive expression in all the tissues examined, highest was in the spleen and the lowest was in the eye. Inductive expression of TLR2 was observed following zymosan, PGN and LTA exposure and Streptococcus uberis and Edwardsiella tarda infections. Expression of immunoregulatory cytokine interleukin (IL)-8, in various organs was significantly enhanced by ligands exposure and bacterial infections, and was correlated with inductive expression of TLR2. In vitro studies showed that PGN treatment induced TLR2, MyD88 and TRAF6 (TNF receptor associated factor 6) expression, NF-κB (nuclear factor kappa B

  7. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury

    PubMed Central

    Duprey-Díaz, Mildred V.; Blagburn, Jonathan M.; Blanco, Rosa E.

    2016-01-01

    After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins. PMID:27611191

  8. Prolactin and growth hormone affect metaphase-II chromosomes in aging oocytes via cumulus cells using similar signaling pathways

    PubMed Central

    Lebedeva, Irina Y.; Singina, Galina N.; Lopukhov, Alexander V.; Shedova, Ekaterina N.; Zinovieva, Natalia A.

    2015-01-01

    General senescence of the adult organism is closely connected with reproductive one. Meanwhile, the age-related reduction in the female fertility is primarily associated with a decline in the gamete quality. Molecular and cellular changes in oocytes of old mammalian females are very similar to those occurring during aging of matured ova of their young counterparts, suggesting similarities in underlying mechanisms. The aim of the present work was to study actions of two related pituitary hormones, prolactin (PRL) and growth hormone (GH), on age-associated modifications of metaphase-II (M-II) chromosomes in bovine oocytes using a model of the prolonged culture. We analyzed: (1) effects of PRL and GH on abnormal changes in the chromosome morphology in aging matured oocytes and the role of cumulus cells in these effects and (2) signaling pathways involved in the hormone actions. During the prolonged culture of oocytes, a gradual rise in the frequency of destructive modifications of M-II chromosomes was revealed. In the case of cumulus-enclosed oocytes (CEOs), PRL and GH exerted dose-dependent biphasic effects on the frequency of these modifications. Both PRL (50 ng/ml) and GH (10 ng/ml) decelerated the abnormal chromosome changes in CEOs, but did not affect the chromosome configuration in denuded oocytes. Concurrently, the presence of PRL and GH receptors in cumulus cells surrounding matured oocytes was demonstrated. Attenuating effects of both hormones on the chromosome modifications in aging CEOs were abolished by PP2 (an inhibitor of Src-family tyrosine kinases), triciribine (an inhibitor of Akt kinase), and calphostin C (a protein kinase C inhibitor). Our findings indicate that PRL and GH can exert the similar decelerating action on age-associated alterations in the M-II chromosome morphology in bovine ova, which is mediated by cumulus cells and may be related to activation of Src-family tyrosine kinases as well as Akt- and protein kinase C-dependent signal

  9. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury.

    PubMed

    Duprey-Díaz, Mildred V; Blagburn, Jonathan M; Blanco, Rosa E

    2016-01-01

    After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins. PMID:27611191

  10. Enhancement of translation initiation by A/T-rich sequences downstream of the initiation codon in Escherichia coli.

    PubMed

    Qing, Guoliang; Xia, Bing; Inouye, Masayori

    2003-01-01

    The region located downstream of the initiation codon constitutes part of the translation initiation signal, significantly affecting the level of protein expression in E. coli. In order to determine its influence on translation initiation, we inserted random 12-base sequences downstream of the initiation codon of the lacZ gene. A total of 119 random clones showing higher beta-galactosidase activities than the control lacZ gene were isolated and subsequently sequenced. Analysis of these clones revealed that their insertion sequences are strikingly rich in A and T, but poor in G, with no consensus sequences among them. Toeprinting experiments and polysome profile analysis confirmed that the A/T-rich sequences enhance translation at the level of initiation. Collectively, the present data demonstrate that A/T richness of the region following the initiation codon plays a significant role in E. coli gene expression. PMID:15153766

  11. Canine adenovirus downstream processing protocol.

    PubMed

    Puig, Meritxell; Piedra, Jose; Miravet, Susana; Segura, María Mercedes

    2014-01-01

    Adenovirus vectors are efficient gene delivery tools. A major caveat with vectors derived from common human adenovirus serotypes is that most adults are likely to have been exposed to the wild-type virus and exhibit active immunity against the vectors. This preexisting immunity limits their clinical success. Strategies to circumvent this problem include the use of nonhuman adenovirus vectors. Vectors derived from canine adenovirus type 2 (CAV-2) are among the best-studied representatives. CAV-2 vectors are particularly attractive for the treatment of neurodegenerative disorders. In addition, CAV-2 vectors have shown great promise as oncolytic agents in virotherapy approaches and as vectors for recombinant vaccines. The rising interest in CAV-2 vectors calls for the development of scalable GMP compliant production and purification strategies. A detailed protocol describing a complete scalable downstream processing strategy for CAV-2 vectors is reported here. Clarification of CAV-2 particles is achieved by microfiltration. CAV-2 particles are subsequently concentrated and partially purified by ultrafiltration-diafiltration. A Benzonase(®) digestion step is carried out between ultrafiltration and diafiltration operations to eliminate contaminating nucleic acids. Chromatography purification is accomplished in two consecutive steps. CAV-2 particles are first captured and concentrated on a propyl hydrophobic interaction chromatography column followed by a polishing step using DEAE anion exchange monoliths. Using this protocol, high-quality CAV-2 vector preparations containing low levels of contamination with empty viral capsids and other inactive vector forms are typically obtained. The complete process yield was estimated to be 38-45 %. PMID:24132487

  12. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    PubMed

    Xiao, Yu; Karnati, Srikanth; Qian, Guofeng; Nenicu, Anca; Fan, Wei; Tchatalbachev, Svetlin; Höland, Anita; Hossain, Hamid; Guillou, Florian; Lüers, Georg H; Baumgart-Vogt, Eveline

    2012-01-01

    Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  13. Disruption of glucocorticoid signaling in chondrocytes delays metaphyseal fracture healing but does not affect normal cartilage and bone development

    PubMed Central

    Tu, Jinwen; Henneicke, Holger; Zhang, Yaqing; Stoner, Shihani; Cheng, Tegan L.; Schindeler, Aaron; Chen, Di; Tuckermann, Jan; Cooper, Mark S.; Seibel, Markus J.; Zhou, Hong

    2014-01-01

    States of glucocorticoid excess are associated with defects in chondrocyte function. Most prominently there is a reduction in linear growth but delayed healing of fractures that require endochondral ossification to also occur. In contrast, little is known about the role of endogenous glucocorticoids in chondrocyte function. As glucocorticoids exert their cellular actions through the glucocorticoid receptor (GR), we aimed to elucidate the role of endogenous glucocorticoids in chondrocyte function in vivo through characterization of tamoxifen-inducible chondrocyte-specific GR knockout (chGRKO) mice in which the GR was deleted at various post-natal ages. Knee joint architecture, cartilage structure, growth plates, intervertebral discs, long bone length and bone micro-architecture were similar in chGRKO and control mice at all ages. Analysis of fracture healing in chGRKO and control mice demonstrated that in metaphyseal fractures, chGRKO mice formed a larger cartilaginous callus at 1 and 2 week post-surgery, as well as a smaller amount of well-mineralized bony callus at the fracture site 4 week post-surgery, when compared to control mice. In contrast, chondrocyte-specific GR knockout did not affect diaphyseal fracture healing. We conclude that endogenous GC signaling in chondrocytes plays an important role during metaphyseal fracture healing but is not essential for normal long bone growth. PMID:25193158

  14. The lonely mouse - single housing affects serotonergic signaling integrity measured by 8-OH-DPAT-induced hypothermia in male mice.

    PubMed

    Kalliokoski, Otto; Teilmann, A Charlotte; Jacobsen, Kirsten R; Abelson, Klas S P; Hau, Jann

    2014-01-01

    Male BALB/c mice single-housed for a period of three weeks were found to respond with a more marked hypothermia to a challenge with a selective serotonergic agonist (8-OH-DPAT) than their group-housed counterparts. This effect of single housing was verified by screening a genetically heterogeneous population of male mice on a C57BL/6 background from a breeding colony. Enhanced activity of the implicated receptor (5-HT1A) leading to an amplified hypothermic effect is strongly associated with depressive states. We therefore suggest that the 8-OH-DPAT challenge can be used to demonstrate a negative emotional state brought on by e.g. long-term single housing in male laboratory mice. The study emphasizes the importance of social housing, and demonstrates that male mice deprived of social contact respond with altered serotonergic signaling activity. Male mice not only choose social contact when given the option, as has previously been shown, but will also, when it is deprived, be negatively affected by its absence. We propose that the 8-OH-DPAT challenge constitutes a simple, but powerful, tool capable of manifesting the effect of social deprivation in laboratory mice. It potentially allows not only for an unbiased, biochemical evaluation of psychological stressors, but may also allow for determining whether the effect of these can be counteracted.

  15. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin–focal adhesion kinase signal transduction

    PubMed Central

    Huang, Yu-ting; Zhao, Lan; Fu, Zheng; Zhao, Meng; Song, Xiao-meng; Jia, Jing; Wang, Song; Li, Jin-ping; Zhu, Zhi-feng; Lin, Gang; Lu, Rong; Yao, Zhi

    2016-01-01

    Tyroservatide (YSV) can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin–focal adhesion kinase (FAK) signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin β1 and integrin β3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer. PMID:27041993

  16. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin-focal adhesion kinase signal transduction.

    PubMed

    Huang, Yu-ting; Zhao, Lan; Fu, Zheng; Zhao, Meng; Song, Xiao-meng; Jia, Jing; Wang, Song; Li, Jin-ping; Zhu, Zhi-feng; Lin, Gang; Lu, Rong; Yao, Zhi

    2016-01-01

    Tyroservatide (YSV) can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin-focal adhesion kinase (FAK) signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin β1 and integrin β3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer.

  17. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis.

    PubMed

    Zhang, Da-Wei; Yuan, Shu; Xu, Fei; Zhu, Feng; Yuan, Ming; Ye, Hua-Xun; Guo, Hong-Qing; Lv, Xin; Yin, Yanhai; Lin, Hong-Hui

    2016-01-01

    Although mitochondrial alternative oxidase (AOX) has been proposed to play essential roles in high light stress tolerance, the effects of AOX on chlorophyll synthesis are unclear. Previous studies indicated that during greening, chlorophyll accumulation was largely delayed in plants whose mitochondrial cyanide-resistant respiration was inhibited by knocking out nuclear encoded AOX gene. Here, we showed that this delay of chlorophyll accumulation was more significant under high light condition. Inhibition of cyanide-resistant respiration was also accompanied by the increase of plastid NADPH/NADP(+) ratio, especially under high light treatment which subsequently blocked the import of multiple plastidial proteins, such as some components of the photosynthetic electron transport chain, the Calvin-Benson cycle enzymes and malate/oxaloacetate shuttle components. Overexpression of AOX1a rescued the aox1a mutant phenotype, including the chlorophyll accumulation during greening and plastidial protein import. It thus suggests that light intensity affects chlorophyll synthesis during greening process by a metabolic signal, the AOX-derived plastidial NADPH/NADP(+) ratio change. Further, our results thus revealed a molecular mechanism of chloroplast-mitochondria interactions.

  18. Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway.

    PubMed

    Abbas, S; Wink, M

    2010-09-01

    Epidemiological studies have repeatedly demonstrated that green tea protects against oxidative stress involved in many diseases. Health benefits of green tea are attributed to its principal active constituent, epigallocatechin gallate (EGCG). EGCG was shown to increase the stress resistance and lifespan of Caenorhabditis elegans. The mechanism of this action has been investigated in this study. The expression of hsp-16.1 and hsp-16.2 in EGCG-treated worms (N2), as quantified by real-time PCR, was significantly lower under oxidative stress induced by juglone than in controls without EGCG. In the strain TJ356 (DAF-16::GFP) EGCG treatment induced translocation of DAF-16 from the cytoplasm into the nucleus, suggesting that EGCG may affect the daf-2/insulin-like signaling pathway. EGCG decreased the formation of lipofuscin, an aging related pigment. Also, EGCG reduced beta amyloid (Abeta) deposits and inhibited Abeta oligomerization in transgenic C. elegans (CL2006). Thus, the use of green tea and EGCG is apparently rational alternatives for protecting against ROS-mediated and age-related diseases. PMID:20382008

  19. Stanniocalcin-1 Protects a Mouse Model from Renal Ischemia-Reperfusion Injury by Affecting ROS-Mediated Multiple Signaling Pathways.

    PubMed

    Liu, Dajun; Shang, Huiping; Liu, Ying

    2016-01-01

    Stanniocalcin-1 (STC-1) protects against renal ischemia-reperfusion injury (RIRI). However, the molecular mechanisms remain widely unknown. STC-1 inhibits reactive oxygen species (ROS), whereas most ROS-mediated pathways are associated with ischemic injury. Therefore, to explore the mechanism, the effects of STC-1 on ROS-medicated pathways were studied. Non-traumatic vascular clamps were used to establish RIRI mouse models. The serum levels of STC-1, interleukin-6 (IL-6), interferon (IFN) γ, P53, and capase-3 were measured by ELISA kits. Superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by fluorescence spectrofluorometer. All these molecules changed significantly in a RIRI model mouse when compared with those in a sham control. Kidney cells were isolated from sham and model mice. STC-1 was overexpressed or knockout in these kidney cells. The molecules in ROS-medicated pathways were measured by real-time quantitative PCR and Western blot. The results showed that STC-1 is an effective ROS scavenger. The serum levels of STC-1, MDA and SOD activity were increased while the serum levels of IL-6, iIFN-γ, P53, and capase-3 were decreased in a model group when compared with a sham control (p < 0.05). Furthermore, the levels of STC-1,p53, phosphorylated mitogen-activated protein kinase kinase (p-MEKK-1), c-Jun N-terminal kinase (p-JNK), extracellular signal-regulated kinase (p-ERK), IkB kinase (p-IKK), nuclear factor (NF) κB, apoptosis signal-regulating kinase 1 (ASK-1) and caspase-3 changed significantly in kidney cells isolated from a RIRI model when compared to those isolated from a sham control (p < 0.05). Meanwhile, STC-1 overexpression or silence caused significant changes of the levels of these ROS-mediated molecules. Therefore, STC-1 maybe improve anti-inflammation, anti-oxidant and anti-apoptosis activities by affecting ROS-mediated pathways, especially the phospho-modifications of the respective proteins, resulting in the increase of SOD and

  20. Expression profiling of the RPE in zebrafish smarca4 mutant revealed altered signals that potentially affect RPE and retinal differentiation

    PubMed Central

    Ma, Ping; Collery, Ross; Trowbridge, Sara; Zhong, Wenxuan; Leung, Yuk Fai

    2014-01-01

    retina and the RPE of zebrafish mutants in which both of these tissues are affected by the underlying mutation. Specifically, we have used the method to identify a group of 39 genes that can potentially explain the melanogenesis defect in the smarca4 RPE. In addition, several genes in this group are secreted signaling molecules. Thus, this observation further implicates that the smarca4 RPE might play a role in the retinal dystrophic phenotype in smarca4. PMID:24426776

  1. Stanniocalcin-1 Protects a Mouse Model from Renal Ischemia-Reperfusion Injury by Affecting ROS-Mediated Multiple Signaling Pathways

    PubMed Central

    Liu, Dajun; Shang, Huiping; Liu, Ying

    2016-01-01

    Stanniocalcin-1 (STC-1) protects against renal ischemia-reperfusion injury (RIRI). However, the molecular mechanisms remain widely unknown. STC-1 inhibits reactive oxygen species (ROS), whereas most ROS-mediated pathways are associated with ischemic injury. Therefore, to explore the mechanism, the effects of STC-1 on ROS-medicated pathways were studied. Non-traumatic vascular clamps were used to establish RIRI mouse models. The serum levels of STC-1, interleukin-6 (IL-6), interferon (IFN) γ, P53, and capase-3 were measured by ELISA kits. Superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by fluorescence spectrofluorometer. All these molecules changed significantly in a RIRI model mouse when compared with those in a sham control. Kidney cells were isolated from sham and model mice. STC-1 was overexpressed or knockout in these kidney cells. The molecules in ROS-medicated pathways were measured by real-time quantitative PCR and Western blot. The results showed that STC-1 is an effective ROS scavenger. The serum levels of STC-1, MDA and SOD activity were increased while the serum levels of IL-6, iIFN-γ, P53, and capase-3 were decreased in a model group when compared with a sham control (p < 0.05). Furthermore, the levels of STC-1,p53, phosphorylated mitogen-activated protein kinase kinase (p-MEKK-1), c-Jun N-terminal kinase (p-JNK), extracellular signal-regulated kinase (p-ERK), IkB kinase (p-IKK), nuclear factor (NF) κB, apoptosis signal-regulating kinase 1 (ASK-1) and caspase-3 changed significantly in kidney cells isolated from a RIRI model when compared to those isolated from a sham control (p < 0.05). Meanwhile, STC-1 overexpression or silence caused significant changes of the levels of these ROS-mediated molecules. Therefore, STC-1 maybe improve anti-inflammation, anti-oxidant and anti-apoptosis activities by affecting ROS-mediated pathways, especially the phospho-modifications of the respective proteins, resulting in the increase of SOD and

  2. Ubr3, a Novel Modulator of Hh Signaling Affects the Degradation of Costal-2 and Kif7 through Poly-ubiquitination

    PubMed Central

    Li, Tongchao; Giagtzoglou, Nikolaos; Lin, Guang; Jaiswal, Manish; Chen, Kuchuan; Zhang, Jie; Wei, Wei; Lewis, Michael T.; Groves, Andrew K.; Westerfield, Monte; Jia, Jianhang; Bellen, Hugo J.

    2016-01-01

    Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues. PMID:27195754

  3. Ubr3, a Novel Modulator of Hh Signaling Affects the Degradation of Costal-2 and Kif7 through Poly-ubiquitination.

    PubMed

    Li, Tongchao; Fan, Junkai; Blanco-Sánchez, Bernardo; Giagtzoglou, Nikolaos; Lin, Guang; Yamamoto, Shinya; Jaiswal, Manish; Chen, Kuchuan; Zhang, Jie; Wei, Wei; Lewis, Michael T; Groves, Andrew K; Westerfield, Monte; Jia, Jianhang; Bellen, Hugo J

    2016-05-01

    Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues. PMID:27195754

  4. Downstream targets of WRKY33.

    PubMed

    Petersen, Klaus; Fiil, Berthe Katrine; Mundy, John; Petersen, Morten

    2008-11-01

    Innate immunity signaling pathways in both animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. In a recent publication we show that MPK4 and its substrate MKS1 interact with WRKY33 in vivo, and that WRKY33 is released from complexes with MPK4 upon infection. Transcriptome analysis of a wrky33 loss-of-function mutant identified a subset of defense-related genes as putative targets of WRKY33. These genes include PAD3 and CYP71A13, which encode cytochrome P450 monoxygenases required for synthesis of the antimicrobial phytoalexin camalexin. Chromatin immunoprecipitation confirmed that WRKY33 bound the promoter of PAD3 when plants were inoculated with pathogens. Here we further discuss the involvement of two other targets of WRKY33, NUDT6 and ROF2 in defense responses against invading pathogens.

  5. "Flashes in eyes" at Space Flight are the Signals that Retina is under "Hard" Affecting of Cosmic Charged Particles

    NASA Astrophysics Data System (ADS)

    Trukhanov, Kirill

    "Flashes in eyes" at Space Flight are the Signals that Retina is under "Hard" Affecting of Cosmic Charged Particles K.A. Trukhanov SSC RF - Institute of bio-medical problems RAS, Moscow The report is dedicated to the further development of the hypothesis that seeming streak images are caused by a "hard" action of cosmic ions passing through the multilayer structure of retinal ganglion cell axons. It is suggested that the axons are exсited or are blocked by a passage of charged particles through the retina. The simplified mathematical model has been developed to establish a relation of an exposure conditions and visual images of streaks. The hypothesis explains many peculiarities of streaks remaining without any explanations in the literature. For example, it explains the horizontal orientation of streaks, the sensation (feeling) of fast moving ("spreading") of streaks, etc. The total cross-section of the axon manyfold exceeds cross-section of a photoreceptor. The damage of the multilayer axon structure is equivalent to the damage of the tens of thousands of photoreceptors. The offered mechanism is not linked to photobiological processes and does not demand complete dark adaptation for flash sensations. Taking into account composite processes of visual perception, the necessity of some adaptation time, naturally, remains. Thus, the developed hypothesis requires a specification of retinal damage estimations at long-term flight (for example, to Mars). It is interesting to note that there is the surprising similarity of a loss in the visual field (the scotomata) at traumata of retinal nerve fibers to visual images of some streaks. It is not inconceivable that the retina will turn out to be one of critical structures at long interplanetary flight. Thus, there is return to an idea which belongs to Prof. C.A. Tobias that the visual tract can be one of critical structures in relation to the space radiation. The cataractogenesis must be taken into account too.

  6. Prawn Shell Chitosan Exhibits Anti-Obesogenic Potential through Alterations to Appetite, Affecting Feeding Behaviour and Satiety Signals In Vivo.

    PubMed

    Egan, Áine M; O'Doherty, John V; Vigors, Stafford; Sweeney, Torres

    2016-01-01

    The crustacean shells-derived polysaccharide chitosan has received much attention for its anti-obesity potential. Dietary supplementation of chitosan has been linked with reductions in feed intake, suggesting a potential link between chitosan and appetite control. Hence the objective of this experiment was to investigate the appetite suppressing potential of prawn shell derived chitosan in a pig model. Pigs (70 ± 0.90 kg, 125 days of age, SD 2.0) were fed either T1) basal diet or T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group) for 63 days. The parameter categories which were assessed included performance, feeding behaviour, serum leptin concentrations and expression of genes influencing feeding behaviour in the small intestine, hypothalamus and adipose tissue. Pigs offered chitosan visited the feeder less times per day (P<0.001), had lower intake per visit (P<0.001), spent less time eating per day (P<0.001), had a lower eating rate (P<0.01) and had reduced feed intake and final body weight (P< 0.001) compared to animals offered the basal diet. There was a treatment (P<0.05) and time effect (P<0.05) on serum leptin concentrations in animals offered the chitosan diet compared to animals offered the basal diet. Pigs receiving dietary chitosan had an up-regulation in gene expression of growth hormone receptor (P<0.05), Peroxisome proliferator activated receptor gamma (P<0.01), neuromedin B (P<0.05), neuropeptide Y receptor 5 (P<0.05) in hypothalamic nuclei and neuropeptide Y (P<0.05) in the jejunum. Animals consuming chitosan had increased leptin expression in adipose tissue compared to pigs offered the basal diet (P<0.05). In conclusion, these data support the hypothesis that dietary prawn shell chitosan exhibits anti-obesogenic potential through alterations to appetite, and feeding behaviour affecting satiety signals in vivo.

  7. Prawn Shell Chitosan Exhibits Anti-Obesogenic Potential through Alterations to Appetite, Affecting Feeding Behaviour and Satiety Signals In Vivo

    PubMed Central

    Egan, Áine M.; O’Doherty, John V.; Vigors, Stafford; Sweeney, Torres

    2016-01-01

    The crustacean shells-derived polysaccharide chitosan has received much attention for its anti-obesity potential. Dietary supplementation of chitosan has been linked with reductions in feed intake, suggesting a potential link between chitosan and appetite control. Hence the objective of this experiment was to investigate the appetite suppressing potential of prawn shell derived chitosan in a pig model. Pigs (70 ± 0.90 kg, 125 days of age, SD 2.0) were fed either T1) basal diet or T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group) for 63 days. The parameter categories which were assessed included performance, feeding behaviour, serum leptin concentrations and expression of genes influencing feeding behaviour in the small intestine, hypothalamus and adipose tissue. Pigs offered chitosan visited the feeder less times per day (P<0.001), had lower intake per visit (P<0.001), spent less time eating per day (P<0.001), had a lower eating rate (P<0.01) and had reduced feed intake and final body weight (P< 0.001) compared to animals offered the basal diet. There was a treatment (P<0.05) and time effect (P<0.05) on serum leptin concentrations in animals offered the chitosan diet compared to animals offered the basal diet. Pigs receiving dietary chitosan had an up-regulation in gene expression of growth hormone receptor (P<0.05), Peroxisome proliferator activated receptor gamma (P<0.01), neuromedin B (P<0.05), neuropeptide Y receptor 5 (P<0.05) in hypothalamic nuclei and neuropeptide Y (P<0.05) in the jejunum. Animals consuming chitosan had increased leptin expression in adipose tissue compared to pigs offered the basal diet (P<0.05). In conclusion, these data support the hypothesis that dietary prawn shell chitosan exhibits anti-obesogenic potential through alterations to appetite, and feeding behaviour affecting satiety signals in vivo. PMID:26901760

  8. Downstream Processing of Synechocystis for Biofuel Production

    NASA Astrophysics Data System (ADS)

    Sheng, Jie

    Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without preextraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant

  9. Modeling downstream fining in sand-bed rivers. II: Application

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2005-01-01

    In this paper the model presented in the companion paper, Wright and Parker (2005) is applied to a generic river reach typical of a large, sand-bed river flowing into the ocean in order to investigate the mechanisms controlling longitudinal profile development and downstream fining. Three mechanisms which drive downstream fining are studied: a delta prograding into standing water, sea-level rise, and tectonic subsidence. Various rates of sea-level rise (typical of the late Holocene) and tectonic subsidence are modeled in order to quantify their effects on the degree of profile concavity and downstream fining. Also, several other physical mechanisms which may affect fining are studied, including the relative importance of the suspended versus bed load, the effect of the loss of sediment overbank, and the influence of the delta bottom slope. Finally, sensitivity analysis is used to show that the grain-size distribution at the interface between the active layer and substrate has a significant effect on downstream fining. ?? 2005 International Association of Hydraulic Engineering and Research.

  10. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1.

    PubMed

    Deroover, Sofie; Ghillebert, Ruben; Broeckx, Tom; Winderickx, Joris; Rolland, Filip

    2016-06-01

    Trehalose-6-P (T6P), an intermediate of trehalose biosynthesis, was identified as an important regulator of yeast sugar metabolism and signaling. tps1Δ mutants, deficient in T6P synthesis (TPS), are unable to grow on rapidly fermentable medium with uncontrolled influx in glycolysis, depletion of ATP and accumulation of sugar phosphates. However, the exact molecular mechanisms involved are not fully understood. We show that SNF1 deletion restores the tps1Δ growth defect on glucose, suggesting that lack of TPS hampers inactivation of SNF1 or SNF1-regulated processes. In addition to alternative, non-fermentable carbon metabolism, SNF1 controls two major processes: respiration and gluconeogenesis. The tps1Δ defect appears to be specifically associated with deficient inhibition of gluconeogenesis, indicating more downstream effects. Consistently, Snf1 dephosphorylation and inactivation on glucose medium are not affected, as confirmed with an in vivo Snf1 activity reporter. Detailed analysis shows that gluconeogenic Pck1 and Fbp1 expression, protein levels and activity are not repressed upon glucose addition to tps1Δ cells, suggesting a link between the metabolic defect and persistent gluconeogenesis. While SNF1 is essential for induction of gluconeogenesis, T6P/TPS is required for inactivation of gluconeogenesis in the presence of glucose, downstream and independent of SNF1 activity and the Cat8 and Sip4 transcription factors.

  11. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1.

    PubMed

    Deroover, Sofie; Ghillebert, Ruben; Broeckx, Tom; Winderickx, Joris; Rolland, Filip

    2016-06-01

    Trehalose-6-P (T6P), an intermediate of trehalose biosynthesis, was identified as an important regulator of yeast sugar metabolism and signaling. tps1Δ mutants, deficient in T6P synthesis (TPS), are unable to grow on rapidly fermentable medium with uncontrolled influx in glycolysis, depletion of ATP and accumulation of sugar phosphates. However, the exact molecular mechanisms involved are not fully understood. We show that SNF1 deletion restores the tps1Δ growth defect on glucose, suggesting that lack of TPS hampers inactivation of SNF1 or SNF1-regulated processes. In addition to alternative, non-fermentable carbon metabolism, SNF1 controls two major processes: respiration and gluconeogenesis. The tps1Δ defect appears to be specifically associated with deficient inhibition of gluconeogenesis, indicating more downstream effects. Consistently, Snf1 dephosphorylation and inactivation on glucose medium are not affected, as confirmed with an in vivo Snf1 activity reporter. Detailed analysis shows that gluconeogenic Pck1 and Fbp1 expression, protein levels and activity are not repressed upon glucose addition to tps1Δ cells, suggesting a link between the metabolic defect and persistent gluconeogenesis. While SNF1 is essential for induction of gluconeogenesis, T6P/TPS is required for inactivation of gluconeogenesis in the presence of glucose, downstream and independent of SNF1 activity and the Cat8 and Sip4 transcription factors. PMID:27189362

  12. Artocarpus altilis CG-901 alters critical nodes in the JH1-kinase domain of Janus kinase 2 affecting upstream JAK/STAT3 signaling.

    PubMed

    Nash, Oyekanmi; Omotuyi, Olaposi; Lee, Joonku; Kwon, Byoung-Mog; Ogbadu, Lucy

    2015-11-01

    As a key step in achieving low-cost, easily accessible anti-cancer therapy for low- and middle-income countries, we recently established the scientific basis for the folkloric use of Artocarpus altilis for the treatment of cancer by investigating the geranyl dihydrochalcone (CG-901) content and its interference with signal transducer and activator of transcription 3 (STAT3) phosphorylation and blockage of further downstream signaling. In the current study, the CG-901 upstream target was queried by chemical fingerprinting similarity assessment, semi-empirical (PM6ESCF) QMMM and molecular dynamics (MD) simulation. Moderate (∼0.4) to high (∼0.7) Tanimoto scores were found when the CG-901 scaffold was compared to ligands co-crystallized with Janus kinases (JAK) 1-3. High negative energy values were obtained when the CG-901 was treated semi-empirically (PM6ESCF) within the classical field of JAK (1-3). Multiple nanosecond MD simulations showed that CG-901 did not cause any large structural perturbations in the nucleotide-binding, activation and catalytic loops within the kinase (JH1) domain of JAK (1-3); however, it reduced the energy required to attain metastability along the path to energy minima conformation. In comparison to JAK1 and Apo-state JAK2, JAK2-bound CG-901 exhibited a highly re-organized key intra-domain protein network; indicating atomic level interference with inter-residue communication. In conclusion, CG-901 isolated from A. altilis represents a broad-spectrum JAK inhibitor, which may underlie the mechanism of STAT3 phosphorylation blockage. Graphical abstract Upper panel Janus kinase 2 upstream signaling pathway. Lower panel Apo-JAK2 (left) and CG-901-bound JAK2 (right).

  13. Artocarpus altilis CG-901 alters critical nodes in the JH1-kinase domain of Janus kinase 2 affecting upstream JAK/STAT3 signaling.

    PubMed

    Nash, Oyekanmi; Omotuyi, Olaposi; Lee, Joonku; Kwon, Byoung-Mog; Ogbadu, Lucy

    2015-11-01

    As a key step in achieving low-cost, easily accessible anti-cancer therapy for low- and middle-income countries, we recently established the scientific basis for the folkloric use of Artocarpus altilis for the treatment of cancer by investigating the geranyl dihydrochalcone (CG-901) content and its interference with signal transducer and activator of transcription 3 (STAT3) phosphorylation and blockage of further downstream signaling. In the current study, the CG-901 upstream target was queried by chemical fingerprinting similarity assessment, semi-empirical (PM6ESCF) QMMM and molecular dynamics (MD) simulation. Moderate (∼0.4) to high (∼0.7) Tanimoto scores were found when the CG-901 scaffold was compared to ligands co-crystallized with Janus kinases (JAK) 1-3. High negative energy values were obtained when the CG-901 was treated semi-empirically (PM6ESCF) within the classical field of JAK (1-3). Multiple nanosecond MD simulations showed that CG-901 did not cause any large structural perturbations in the nucleotide-binding, activation and catalytic loops within the kinase (JH1) domain of JAK (1-3); however, it reduced the energy required to attain metastability along the path to energy minima conformation. In comparison to JAK1 and Apo-state JAK2, JAK2-bound CG-901 exhibited a highly re-organized key intra-domain protein network; indicating atomic level interference with inter-residue communication. In conclusion, CG-901 isolated from A. altilis represents a broad-spectrum JAK inhibitor, which may underlie the mechanism of STAT3 phosphorylation blockage. Graphical abstract Upper panel Janus kinase 2 upstream signaling pathway. Lower panel Apo-JAK2 (left) and CG-901-bound JAK2 (right). PMID:26442513

  14. Downstream-migrating fluvial point bars in the rock record

    NASA Astrophysics Data System (ADS)

    Ghinassi, Massimiliano; Ielpi, Alessandro; Aldinucci, Mauro; Fustic, Milovan

    2016-04-01

    Classical models developed for ancient fluvial point bars are based on the assumption that meander bends invariably increase their radius as meander-bend apices migrate in a direction transverse to the channel-belt axis (i.e., meander bend expansion). However, many modern meandering rivers are also characterized by down-valley migration of the bend apex, a mechanism that takes place without a significant change in meander radius and wavelength. Downstream-migrating fluvial point bars (DMFPB) are the dominant architectural element of these types of meander belts. Yet they are poorly known from ancient fluvial-channel belts, since their disambiguation from expansional point bars often requires fully-3D perspectives. This study aims to review DMFPB deposits spanning in age from Devonian to Holocene, and to discuss their main architectural and sedimentological features from published outcrop, borehole and 3D-seismic datasets. Fluvial successions hosting DMFPB mainly accumulated in low accommodation conditions, where channel belts were affected by different degrees of morphological (e.g., valleys) or tectonic (e.g., axial drainage of shortening basins) confinement. In confined settings, bends migrate downstream along the erosion-resistant valley flanks and little or no floodplain deposits are preserved. Progressive floor aggradation (e.g., valley filling) allow meander belts with DMFPB to decrease their degree of confinement. In less confined settings, meander bends migrate downstream mainly after impinging against older, erosion-resistant channel fill mud. By contrast, tectonic confinement is commonly associated with uplifted alluvial plains that prevented meander-bend expansion, in turn triggering downstream translation. At the scale of individual point bars, translational morphodynamics promote the preservation of downstream-bar deposits, whereas the coarser-grained upstream and central beds are less frequently preserved. However, enhanced preservation of upstream

  15. Codon Usage in Signal Sequences Affects Protein Expression and Secretion Using Baculovirus/Insect Cell Expression System

    PubMed Central

    Tao, Shiheng; Chen, Hongying

    2015-01-01

    By introducing synonymous mutations into the coding sequences of GP64sp and FibHsp signal peptides, the influences of mRNA secondary structure and codon usage of signal sequences on protein expression and secretion were investigated using baculovirus/insect cell expression system. The results showed that mRNA structural stability of the signal sequences was not correlated with the protein production and secretion levels, and FibHsp was more tolerable to codon changes than GP64sp. Codon bias analyses revealed that codons for GP64sp were well de-optimized and contained more non-optimal codons than FibHsp. Synonymous mutations in GP64sp sufficiently increased its average codon usage frequency and resulted in dramatic reduction of the activity and secretion of luciferase. Protein degradation inhibition assay with MG-132 showed that higher codon usage frequency in the signal sequence increased the production as well as the degradation of luciferase protein, indicating that the synonymous codon substitutions in the signal sequence caused misfolding of luciferase instead of slowing down the protein production. Meanwhile, we found that introduction of more non-optimal codons into FibHsp could increase the production and secretion levels of luciferase, which suggested a new strategy to improve the production of secretory proteins in insect cells. PMID:26697848

  16. Centrosomal Protein DZIP1 Regulates Hedgehog Signaling by Promoting Cytoplasmic Retention of Transcription Factor GLI3 and Affecting Ciliogenesis*

    PubMed Central

    Wang, Chengbing; Low, Wee-Chuang; Liu, Aimin; Wang, Baolin

    2013-01-01

    The primary cilium is required for Hedgehog signaling. So far, all known ciliogenic proteins regulate Hedgehog signaling through their role in ciliogenesis. Here we show that the mouse DZIP1 regulates Hedgehog signaling through two mechanisms. First, DZIP1 interacts with GLI3, a transcriptional regulator for Hedgehog signaling, and prevents GLI3 from entering the nucleus. Second, DZIP1 is required for ciliogenesis. We show that DZIP1 colocalizes and interacts with CEP164, a protein localizing at appendages of the mother centrioles, and IFT88, a component of the intraflagellar transport (IFT) machinery. Functionally, both CEP164 and Ninein appendage proteins fail to localize to ciliary appendages in Dzip1 mutant cells; IFT components are not recruited to the basal body of cilia. Importantly, the accumulation of GLI3 in the nucleus is independent of loss of primary cilia in Dzip1 mutant cells. Therefore, DZIP1 is the first known ciliogenic protein that regulates Hedgehog signaling through a dual mechanism and that biochemically links IFT machinery with Hedgehog pathway components. PMID:23955340

  17. Using answer set programming to integrate RNA expression with signalling pathway information to infer how mutations affect ageing.

    PubMed

    Papatheodorou, Irene; Ziehm, Matthias; Wieser, Daniela; Alic, Nazif; Partridge, Linda; Thornton, Janet M

    2012-01-01

    A challenge of systems biology is to integrate incomplete knowledge on pathways with existing experimental data sets and relate these to measured phenotypes. Research on ageing often generates such incomplete data, creating difficulties in integrating RNA expression with information about biological processes and the phenotypes of ageing, including longevity. Here, we develop a logic-based method that employs Answer Set Programming, and use it to infer signalling effects of genetic perturbations, based on a model of the insulin signalling pathway. We apply our method to RNA expression data from Drosophila mutants in the insulin pathway that alter lifespan, in a foxo dependent fashion. We use this information to deduce how the pathway influences lifespan in the mutant animals. We also develop a method for inferring the largest common sub-paths within each of our signalling predictions. Our comparisons reveal consistent homeostatic mechanisms across both long- and short-lived mutants. The transcriptional changes observed in each mutation usually provide negative feedback to signalling predicted for that mutation. We also identify an S6K-mediated feedback in two long-lived mutants that suggests a crosstalk between these pathways in mutants of the insulin pathway, in vivo. By formulating the problem as a logic-based theory in a qualitative fashion, we are able to use the efficient search facilities of Answer Set Programming, allowing us to explore larger pathways, combine molecular changes with pathways and phenotype and infer effects on signalling in in vivo, whole-organism, mutants, where direct signalling stimulation assays are difficult to perform. Our methods are available in the web-service NetEffects: http://www.ebi.ac.uk/thornton-srv/software/NetEffects.

  18. Mixed Signals: Combining Linguistic and Affective Functions of Eyebrows in Questions in Sign Language of the Netherlands

    ERIC Educational Resources Information Center

    de Vos, Connie; van der Kooij, Els; Crasborn, Onno

    2009-01-01

    The eyebrows are used as conversational signals in face-to-face spoken interaction (Ekman, 1979). In Sign Language of the Netherlands (NGT), the eyebrows are typically furrowed in content questions, and raised in polar questions (Coerts, 1992). On the other hand, these eyebrow positions are also associated with anger and surprise, respectively, in…

  19. Binding of hydrogen-citrate to photoactive yellow protein is affected by the structural changes related to signaling state formation.

    PubMed

    Hospes, Marijke; Ippel, Johannes H; Boelens, Rolf; Hellingwerf, Klaas J; Hendriks, Johnny

    2012-11-01

    The tricarboxylic acid citric acid is a key intermediary metabolite in organisms from all domains of the tree of life. Surprisingly, this metabolite specifically interacts with the light-induced signaling state of the photoactive yellow protein (PYP), such that, at 30 mM, it retards recovery of this state to the stable ground state of the protein with up to 30%, in the range from pH 4.5 to pH 7. We have performed a detailed UV/vis spectroscopic study of the recovery of the signaling state of wild type (WT) PYP and two mutants, H108F and Δ25-PYP, derived from this protein, as a function of pH and the concentration of citric acid. This revealed that it is the dianionic form of citric acid that binds to the pB state of PYP. Its binding site is located in between the N-terminal cap and central β-sheet of PYP, which is accessible only in the signaling state of the protein. The obtained results show how changes in the distribution of subspecies of the signaling state of PYP influence the rate of ground state recovery.

  20. CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling.

    PubMed

    Zhou, Mingqi; Xu, Ming; Wu, Lihua; Shen, Chen; Ma, Hong; Lin, Juan

    2014-06-01

    Plant cells respond to cold stress via a regulatory mechanism leading to enhanced cold acclimation accompanied by growth retardation. The C-repeat binding factor (CBF) signaling pathway is essential for cold response of flowering plants. Our previously study documented a novel CBF-like gene from the cold-tolerant Capsella bursa-pastoris named CbCBF, which was responsive to chilling temperatures. Here, we show that CbCBF expression is obviously responsive to chilling, freezing, abscisic acid, gibberellic acid (GA), indoleacetic acid or methyl jasmonate treatments and that the CbCBF:GFP fusion protein was localized to the nucleus. In addition, CbCBF overexpression conferred to the cold-sensitive tobacco plants enhanced tolerance to chilling and freezing, as well as dwarfism and delayed flowering. The leaf cells of CbCBF overexpression tobacco lines attained smaller sizes and underwent delayed cell division with reduced expression of cyclin D genes. The dwarfism of CbCBF transformants can be partially restored by GA application. Consistently, CbCBF overexpression reduced the bioactive gibberellin contents and disturbed the expression of gibberellin metabolic genes in tobacco. Meanwhile, cold induced CbCBF expression and cold tolerance in C. bursa-pastoris are reduced by GA. We conclude that CbCBF confers cold resistance and growth inhibition to tobacco cells by interacting with gibberellin and cell cycle pathways, likely through activation of downstream target genes.

  1. IL6/JAK1/STAT3 Signaling Blockade in Endometrial Cancer Affects the ALDHhi/CD126+ Stem-like Component and Reduces Tumor Burden.

    PubMed

    van der Zee, Marten; Sacchetti, Andrea; Cansoy, Medine; Joosten, Rosalie; Teeuwssen, Miriam; Heijmans-Antonissen, Claudia; Ewing-Graham, Patricia C; Burger, Curt W; Blok, Leen J; Fodde, Riccardo

    2015-09-01

    Cancer stem-like cells (CSC) may be critical to maintain the malignant behavior of solid and hematopoietic cancers. Recently, patients with endometrial cancer whose tumors expressed high levels of aldehyde dehydrogenase (ALDH), a detoxifying enzyme characteristic of many progenitor and stem cells, exhibited a relative reduction in survival compared with patients with low levels of ALDH. Given evidence of its role as a CSC marker, we hypothesized that high level of ALDH activity (ALDH(hi)) in a tumor might positively correlate with the presence of stem- and progenitor-like tumor cells in this disease setting. In support of this hypothesis, ALDH could be used to enrich for CSC in endometrial cancer cell lines and primary tumors, as illustrated by the increased tumor-initiating capacity of ALDH(hi) cells in immunodeficient mice. ALDH(hi) cells also exhibited greater clonogenic and organoid-forming capacity compared with ALDH(lo) cells. Notably, the number of ALDH(hi) cells in tumor cell lines and primary tumors inversely correlated with differentiation grade. Expression analysis revealed upregulation of IL6 receptor subunits and signal transducers CD126 and GP130 in ALDH(hi) endometrial cancer cells. Accordingly, targeted inhibition of the IL6 receptor and its downstream effectors JAK1 and STAT3 dramatically reduced tumor cell growth. Overall, our results provide a preclinical rationale to target IL6 or its effector functions as a novel therapeutic option in endometrial cancer.

  2. Philippines' downstream sector poised for growth

    SciTech Connect

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  3. Termination and pausing of RNA polymerase II downstream of yeast polyadenylation sites.

    PubMed Central

    Hyman, L E; Moore, C L

    1993-01-01

    Little is known about the transcriptional events which occur downstream of polyadenylation sites. Although the polyadenylation site of a gene can be easily identified, it has been difficult to determine the site of transcription termination in vivo because of the rapid processing of pre-mRNAs. Using an in vitro approach, we have shown that sequences from the 3' ends of two different Saccharomyces cerevisiae genes, ADH2 and GAL7, direct transcription termination and/or polymerase pausing in yeast nuclear extracts. In the case of the ADH2 sequence, the RNA synthesized in vitro ends approximately 50 to 150 nucleotides downstream of the poly(A) site. This RNA is not polyadenylated and may represent the primary transcript. A similarly sized nonpolyadenylated [poly(A)-] transcript can be detected in vivo from the same transcriptional template. A GAL7 template also directs the in vitro synthesis of an RNA which extends a short distance past the poly(A) site. However, a significant amount of the GAL7 RNA is polyadenylated at or close to the in vivo poly(A) site. Mutations of GAL7 or ADH2 poly(A) signals prevent polyadenylation but do not affect the in vitro synthesis of the extended poly(A)- transcript. Since transcription of the mutant template continues through this region in vivo, it is likely that a strong RNA polymerase II pause site lies within the 3'-end sequences. Our data support the hypothesis that the coupling of this pause site to a functional polyadenylation signal results in transcription termination. Images PMID:8355675

  4. Integrin-linked kinase affects signaling pathways and migration in thyroid cancer cells and is a potential therapeutic target

    PubMed Central

    Shirley, Lawrence A.; McCarty, Samantha; Yang, Ming-Chen; Saji, Motoyasu; Zhang, Xiaoli; Phay, John; Ringel, Matthew D.; Chen, Ching-Shih

    2016-01-01

    Background Integrin-linked kinase (ILK) is a serine-threonine kinase that regulates interactions between the cell and the extracellular matrix. In many cancers, overexpression of ILK leads to increased cell proliferation, motility, and invasion. We hypothesized that ILK functions as a regulator of viability and migration in thyroid cancer cells. Methods Eleven human thyroid cancer cell lines were screened for ILK protein expression. The cell lines with the greatest expression were treated with either ILK small interfering RNA (siRNA) or a novel ILK inhibitor, T315, and the effects were evaluated via Western blot and migration assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assays were performed to assess cell viability. Results siRNA against ILK decreased phosphorylation of downstream effectors Akt and MLC, as well as decreased migration. Treatment with T315 showed a dose-related decrease in both Akt and MLC phosphorylation, as well as decreased migration. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assays showed T315 to have an half maximal inhibitory concentration of less than 1 µM in cell lines with high ILK expression. Conclusion ILK is expressed differentially in thyroid cancer cell lines. Both ILK siRNA and T315 inhibit motility of thyroid cancer cell lines, and T315 is shown to be cytotoxic at low concentrations. Altogether, our study suggests that ILK may represent an important kinase in aggressive thyroid cancers. PMID:26549818

  5. Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis

    PubMed Central

    Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M.; Lang, Jessica K.; Phillips, Matthew C.; Pastorini, Cristhine; Vazquez-Pertejo, Maria T.

    2016-01-01

    Evidence obtained from gene knockout studies supports the role of Toll-like receptor 4 (TLR4) in intestinal inflammation and microbiota recognition. Increased epithelial TLR4 expression is observed in patients with inflammatory bowel disease. However, little is known of the effect of increased TLR4 signaling on intestinal homeostasis. Here, we examined the effect of increased TLR4 signaling on epithelial function and microbiota by using transgenic villin-TLR4 mice that overexpress TLR4 in the intestinal epithelium. Our results revealed that villin-TLR4 mice are characterized by increases in the density of mucosa-associated bacteria and bacterial translocation. Furthermore, increased epithelial TLR4 signaling was associated with an impaired epithelial barrier, altered expression of antimicrobial peptide genes, and altered epithelial cell differentiation. The composition of the colonic luminal and mucosa-associated microbiota differed between villin-TLR4 and wild-type (WT) littermates. Interestingly, WT mice cohoused with villin-TLR4 mice displayed greater susceptibility to acute colitis than singly housed WT mice did. The results of this study suggest that epithelial TLR4 expression shapes the microbiota and affects the functional properties of the epithelium. The changes in the microbiota induced by increased epithelial TLR4 signaling are transmissible and exacerbate dextran sodium sulfate-induced colitis. Together, our findings imply that host innate immune signaling can modulate intestinal bacteria and ultimately the host's susceptibility to colitis. PMID:26755160

  6. Programmed Death-1 Affects Suppressor of Cytokine Signaling-1 Expression in T Cells During Hepatitis C Infection

    PubMed Central

    Frazier, Ashley D.; Zhang, Chun L.; Ni, Lei; Ma, Cheng J.; Zhang, Ying; Wu, Xiao Y.; Atia, Antwan N.; Yao, Zhi Q.

    2010-01-01

    Abstract Chronic hepatitis C virus (HCV) infection is associated with T-cell exhaustion that is mediated through upregulation of the PD-1 negative regulatory pathway. PD-1 expression is induced by HCV core protein, which also induces upregulation of SOCS-1, a key modulator that controls the Jak/STAT pathway regulating cytokine expression. To determine whether these two negative regulatory pathways are linked during T-cell signaling, SOCS-1 expression was examined by blocking the PD-1 pathway in T cells stimulated with anti-CD3/CD28 in the presence of HCV core protein. T cells isolated from healthy subjects or HCV-infected individuals were treated with anti-PD-1 or anti-PDL-1 antibodies in the presence or absence of HCV core protein, and SOCS-1 gene expression was detected by RT-PCR or immunoblotting, while T-cell functions were assayed by flow cytometric analyses. Both PD-1 and SOCS-1 gene expression were upregulated in healthy T cells exposed to HCV core protein, and blocking the PD-1 pathway downregulated SOCS-1 gene expression in these cells. Additionally, T cells isolated from chronically HCV-infected subjects exhibited increased PD-1 and SOCS-1 expression compared to healthy subjects, and SOCS-1 expression in T cells isolated from HCV-infected subjects was also inhibited by blocking PD-1 signaling; this in turn enhanced the phosphorylation of STAT-1, and improved the impaired T-cell proliferation observed in the setting of HCV infection. These data demonstrate that PD-1 and SOCS-1 are linked in dysregulating T-cell signaling during HCV infection, and their cross-talk may coordinately inhibit T-cell signaling pathways that lead to T-cell exhaustion during chronic viral infection. PMID:20883163

  7. Mutations in the WSAWSE and cytosolic domains of the erythropoietin receptor affect signal transduction and ligand binding and internalization.

    PubMed Central

    Quelle, D E; Quelle, F W; Wojchowski, D M

    1992-01-01

    The terminal development of erythroid progenitor cells is promoted in part through the interaction of erythropoietin (EPO) with its cell surface receptor. This receptor and a growing family of related cytokine receptors share homologous extracellular features, including a well-conserved WSXWS motif. To explore the functional significance of this motif in the murine EPO receptor, five WSAWSE mutants were prepared and their signal-transducing, ligand binding, and endocytotic properties were compared. EPO receptors mutated at tryptophan residues (W-232, W-235----G; W-235----G; W-235----F) failed to mediate EPO-induced growth or pp100 phosphorylation, while S-236----T and E-237----K mutants exhibited partial to full activity (50 to 100% of wild-type growth and induced phosphorylation). Ligand affinity was reduced for mutant receptors (two- to fivefold), yet expression at the cell surface for all receptors was nearly equivalent. Also, the ability of mutated receptors to internalize ligand was either markedly reduced or abolished (W-235----F), indicating a role for the WSAWSE region in hormone internalization. Interestingly, receptor forms lacking 97% of the cytosolic domain (no signal-transducing capacity; binding affinity reduced two- to threefold) internalized EPO efficiently. This and all WSAWSE receptor forms studied also mediated specific cross-linking of 125I-EPO to three accessory membrane proteins (M(r)s, 120,000, 105,000, and 93,000). These findings suggest that the WSAWSE domain of the EPO receptor is important for EPO-induced signal transduction and ligand internalization. In contrast, although the cytosolic domain is required for growth signaling, it appears nonessential for efficient endocytosis. Images PMID:1406645

  8. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation.

    PubMed

    Alexander, M S; Kawahara, G; Motohashi, N; Casar, J C; Eisenberg, I; Myers, J A; Gasperini, M J; Estrella, E A; Kho, A T; Mitsuhashi, S; Shapiro, F; Kang, P B; Kunkel, L M

    2013-09-01

    In patients with Duchenne muscular dystrophy (DMD), the absence of a functional dystrophin protein results in sarcolemmal instability, abnormal calcium signaling, cardiomyopathy, and skeletal muscle degeneration. Using the dystrophin-deficient sapje zebrafish model, we have identified microRNAs (miRNAs) that, in comparison to our previous findings in human DMD muscle biopsies, are uniquely dysregulated in dystrophic muscle across vertebrate species. MiR-199a-5p is dysregulated in dystrophin-deficient zebrafish, mdx(5cv) mice, and human muscle biopsies. MiR-199a-5p mature miRNA sequences are transcribed from stem loop precursor miRNAs that are found within the introns of the dynamin-2 and dynamin-3 loci. The miR-199a-2 stem loop precursor transcript that gives rise to the miR-199a-5p mature transcript was found to be elevated in human dystrophic muscle. The levels of expression of miR-199a-5p are regulated in a serum response factor (SRF)-dependent manner along with myocardin-related transcription factors. Inhibition of SRF-signaling reduces miR-199a-5p transcript levels during myogenic differentiation. Manipulation of miR-199a-5p expression in human primary myoblasts and myotubes resulted in dramatic changes in cellular size, proliferation, and differentiation. MiR-199a-5p targets several myogenic cell proliferation and differentiation regulatory factors within the WNT signaling pathway, including FZD4, JAG1, and WNT2. Overexpression of miR-199a-5p in the muscles of transgenic zebrafish resulted in abnormal myofiber disruption and sarcolemmal membrane detachment, pericardial edema, and lethality. Together, these studies identify miR-199a-5p as a potential regulator of myogenesis through suppression of WNT-signaling factors that act to balance myogenic cell proliferation and differentiation.

  9. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; LeBlanc, Carly L.; Honer zu Bentrup, Kerstin; Hammond, Timothy; Pierson, Duane L.

    2003-01-01

    Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.

  10. Adenyl cyclase and interleukin 6 are downstream effectors of parathyroid hormone resulting in stimulation of bone resorption.

    PubMed Central

    Greenfield, E M; Shaw, S M; Gornik, S A; Banks, M A

    1995-01-01

    Parathyroid hormone and other bone resorptive agents function, at least in part, by inducing osteoblasts to secrete cytokines that stimulate both differentiation and resorptive activity of osteoclasts. We previously identified two potentially important cytokines by demonstrating that parathyroid hormone induces expression by osteoblasts of IL-6 and leukemia inhibitory factor without affecting levels of 14 other cytokines. Although parathyroid hormone activates multiple signal transduction pathways, induction of IL-6 and leukemia inhibitory factor is dependent on activation of adenyl cyclase. This study demonstrates that adenyl cyclase is also required for stimulation of osteoclast activity in cultures containing osteoclasts from rat long bones and UMR106-01 rat osteoblast-like osteosarcoma cells. Since the stimulation by parathyroid hormone of both cytokine production and bone resorption depends on the same signal transduction pathway, we hypothesized that IL-6 might be a downstream effector of parathyroid hormone. We found that addition of exogenous IL-6 mimics the ability of parathyroid hormone to stimulate bone resorption. More importantly, an antibody directed against the IL-6 receptor blocks moderate stimulation of osteoclast activity induced by the hormone. Interestingly, strong stimulation of resorption overcomes this dependence on IL-6. Thus, parathyroid hormone likely induces multiple, redundant cytokines that can overcome the IL-6 requirement associated with moderate stimulation. Taken together with studies showing that many other bone resorptive agents also stimulate IL-6 production, our results suggest that IL-6 may be a downstream effector of these agents as well as of parathyroid hormone. Images PMID:7657797

  11. User experience network. Erroneous downstream occlusion alarms may disable Smiths Medical CADD-Solis infusion pumps.

    PubMed

    2010-10-01

    Due to an issue in manufacturing, downstream occlusion (DSO) sensors in some Smiths Medical CADD-Solis infusion pumps may drift out of calibration, potentially resulting in erroneous alarms that disable the units. Hospitals experiencing the problem should return affected units to Smiths Medical for recalibration (free of charge) and should consider testing all their CADD-Solis pumps during routine maintenance to ensure that they alarm appropriately for downstream occlusions.

  12. Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana.

    PubMed

    Tsuzuki, Tomo; Takahashi, Koji; Inoue, Shin-ichiro; Okigaki, Yukiko; Tomiyama, Masakazu; Hossain, Mohammad Anowar; Shimazaki, Ken-ichiro; Murata, Yoshiyuki; Kinoshita, Toshinori

    2011-07-01

    Mg-chelatase H subunit (CHLH) is a multifunctional protein involved in chlorophyll synthesis, plastid-to-nucleus retrograde signaling, and ABA perception. However, whether CHLH acts as an actual ABA receptor remains controversial. Here we present evidence that CHLH affects ABA signaling in stomatal guard cells but is not itself an ABA receptor. We screened ethyl methanesulfonate-treated Arabidopsis thaliana plants with a focus on stomatal aperture-dependent water loss in detached leaves and isolated a rapid transpiration in detached leaves 1 (rtl1) mutant that we identified as a novel missense mutant of CHLH. The rtl1 and CHLH RNAi plants showed phenotypes in which stomatal movements were insensitive to ABA, while the rtl1 phenotype showed normal sensitivity to ABA with respect to seed germination and root growth. ABA-binding analyses using (3)H-labeled ABA revealed that recombinant CHLH did not bind ABA, but recombinant pyrabactin resistance 1, a reliable ABA receptor used as a control, showed specific binding. Moreover, we found that the rtl1 mutant showed ABA-induced stomatal closure when a high concentration of extracellular Ca(2+) was present and that a knockout mutant of Mg-chelatase I subunit (chli1) showed the same ABA-insensitive phenotype as rtl1. These results suggest that the Mg-chelatase complex as a whole affects the ABA-signaling pathway for stomatal movements.

  13. Knockdown of apoptosis signal-regulating kinase 1 affects ischaemia-induced astrocyte activation and glial scar formation.

    PubMed

    Cheon, So Yeong; Cho, Kyoung Joo; Song, Juhyun; Kim, Gyung Whan

    2016-04-01

    Reactive astrocytes play an essential role in determining the tissue response to ischaemia. Formation of a glial scar can block the neuronal outgrowth that is required for restoration of damaged tissue. Therefore, regulation of astrocyte activation is important; however, the mediator of this process has not been fully elucidated. Apoptosis signal-regulating kinase 1 (ASK1) is an early responder to oxidative stress, and plays a pivotal role in the intracellular signalling pathway of apoptosis, inflammation, and differentiation. To confirm whether ASK1 mediates astrocyte activation and leads to glial scar formation after cerebral ischaemia, we conducted in vivo and in vitro experiments. C57BL/6 mice were subjected to occlusion of the middle cerebral artery, and astrocyte cultures were exposed to oxygen-glucose deprivation. After silencing of ASK1 , astrocyte-associated genes were downregulated, as seen with the use of microarrays. The glial fibrillary acidic protein (GFAP) level was decreased, and correlated with the reduction in the ASK1 level. In astrocytes, reduction in the ASK1 level decreased the activity of the p38 pathway, and the levels of transcription factors for GFAP and GFAP transcripts after hypoxia. In the chronic phase, ASK1 depletion reduced glial scar formation and conserved neuronal structure, which may lead to better functional recovery. These data suggest that ASK1 may be an important mediator of ischaemia-induced astrocyte activation and scar formation, and could provide a potential therapeutic target for treatment after ischaemic stroke. PMID:26797817

  14. Zearalenone Mycotoxin Affects Immune Mediators, MAPK Signalling Molecules, Nuclear Receptors and Genome-Wide Gene Expression in Pig Spleen

    PubMed Central

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  15. Nitric Oxide Affects ERK Signaling through Down-Regulation of MAP Kinase Phosphatase Levels during Larval Development of the Ascidian Ciona intestinalis

    PubMed Central

    Palumbo, Anna

    2014-01-01

    In the ascidian Ciona intestinalis larval development and metamorphosis require a complex interplay of events, including nitric oxide (NO) production, MAP kinases (ERK, JNK) and caspase-3 activation. We have previously shown that NO levels affect the rate of metamorphosis, regulate caspase activity and promote an oxidative stress pathway, resulting in protein nitration. Here, we report that NO down-regulates MAP kinase phosphatases (mkps) expression affecting positively ERK signaling. By pharmacological approach, we observed that the reduction of endogenous NO levels caused a decrease of ERK phosphorylation, whereas increasing levels of NO induced ERK activation. We have also identified the ERK gene network affected by NO, including mpk1, mpk3 and some key developmental genes by quantitative gene expression analysis. We demonstrate that NO induces an ERK-independent down-regulation of mkp1 and mkp3, responsible for maintaining the ERK phosphorylation levels necessary for transcription of key metamorphic genes, such as the hormone receptor rev-erb and the van willebrand protein vwa1c. These results add new insights into the role played by NO during larval development and metamorphosis in Ciona, highlighting the cross-talk between different signaling pathways. PMID:25058405

  16. Fra-1 is upregulated in gastric cancer tissues and affects the PI3K/Akt and p53 signaling pathway in gastric cancer.

    PubMed

    He, Junyu; Zhu, Guangchao; Gao, Lu; Chen, Pan; Long, Yuehua; Liao, Shan; Yi, Hong; Yi, Wei; Pei, Zhen; Wu, Minghua; Li, Xiaoling; Xiang, Juanjuan; Peng, Shuping; Ma, Jian; Zhou, Ming; Xiong, Wei; Zeng, Zhaoyang; Xiang, Bo; Tang, Ke; Cao, Li; Li, Guiyuan; Zhou, Yanhong

    2015-11-01

    Gastric cancer is an aggressive disease that continues to have a daunting impact on global health. Fra-1 (FOSL1) plays important roles in oncogenesis in various malignancies. We investigated the expression of Fra-1 in gastric cancer (GC) tissues by qPCR, immunohistochemistry (IHC) and western blot technologies. The results showed that Fra-1 was overexpressed in gastric cancer tissues compared with the adjacent non‑cancerous tissues. To explore the possible mechanism of Fra-1 in GC, we elucidated the effect of Fra-1 in the apoptosis and cell cycle of gastric cancer cells, AGS, and found that a considerable decrease in apoptotic cells and increase of S phase rate were observed for AGS cells with Fra-1 overexpession. We identified and confirmed that Fra-1 affected the expression level of CTTN and EZR in vitro through LC-MS/MS analyses and western blot technology. Furthermore, we found that Fra-1 was correlated with dysregulation PI3K/Akt and p53 signaling pathway in gastric cancer tissues in vitro. Moreover, we found that Fra-1 overexpression affected the expression of PI3K, Akt, MDM2 and p53 in vivo. In summary, our results suggest that Fra-1 is upregulated in gastric cancer tissues and plays its function by affecting the PI3K/Akt and p53 signaling pathway in gastric cancer.

  17. We all live downstream: Disaster, land change and reciprocity in a Haitian watershed

    NASA Astrophysics Data System (ADS)

    Versluis, Anna J.

    Human-environment relations and conditions in one place and time may directly affect those located elsewhere or at some future point in time. If these impacts are negative and especially if the interaction is nonreciprocal, the resulting impacts are registered as "upstream-downstream" problems. The existence of such problems is often rationalized by the lack of reciprocity between upstream and downstream communities. This study addresses the human-environment system of the Fonveret watershed in Haiti regarding the linkages among land change, the May 2004 fatal flash flood disaster, and dynamics of local upstream-downstream relationships. A mixed-methods approach drawing on satellite imagery, field collection of data, and in-person interviews is employed. The study documents the watershed's transition from a mixed pine forest and agriculture landscape in 1979 to one dominated by agriculture by the year 2000. It confirms that local residents consider this deforestation to be the primary contributing factor to the 2004 flash flood disaster, and that reforestation and better soil conservation are necessary to prevent further flood disaster. Few significant differences regarding the 2004 disaster are found between the upstream and downstream communities, perhaps because the majority of the downstream community are also (partial) members of the upstream community Finally, as expected under a reciprocal system in which more responsible actions are promoted by being "downstream" of one's own actions, this study finds that upstream land parcels managed by downstream-residing households tend to possess better soil conservation than parcels managed by upstream-residing households. The study provides an empirical example of how people manage land "upstream" of themselves when there is precedent for downstream disaster. It also demonstrates that problems with land management and flood disasters may occur in a watershed where the downstream and upstream communities are not

  18. Estrogenic xenobiotics affect the intracellular activation signal in mitogen-induced human peripheral blood lymphocytes: immunotoxicological impact.

    PubMed

    Sakabe, K; Okuma, M; Kazuno, M; Yamaguchi, T; Yoshida, T; Furuya, H; Kayama, F; Suwa, Y; Fujii, W; Fresa, K L

    1998-01-01

    The present study was an attempt to elucidate the effect of estrogenic xenobiotics on the proliferation of mitogen-stimulated human peripheral blood lymphocyte (PBL). Our findings follow: (a) the proliferation of PBL in response to phytohemagglutinin (PHA) was mediated by protein kinase C activity, but estrogenic xenobiotics had a strong inhibitory effect on protein kinase C activity of PHA-stimulated PBL; (b) cytoplasmic extracts from PHA-stimulated PBL greatly activated DNA replication, but estrogenic xenobiotics had a strong inhibitory effect on these activities. The results suggest that the cytoplasmic signal-generating system in mitogen-treated PBL is inhibited by estrogenic xenobiotics, and that the defect occurs at all stages in the sequence of events leading to DNA synthesis and cell proliferation. PMID:9730256

  19. Does C5 or C6 Radiculopathy Affect the Signal Intensity of the Brachial Plexus on Magnetic Resonance Neurography?

    PubMed

    Seo, Tae Gyu; Kim, Du Hwan; Kim, In-Soo; Son, Eun Seok

    2016-04-01

    Patients with C5 or C6 radiculopathy complain of shoulder area pain or shoulder girdle weakness. Typical idiopathic neuralgic amyotrophy (INA) is also characterized by severe shoulder pain, followed by paresis of shoulder girdle muscles. Recent studies have demonstrated that magnetic resonance neurography (MRN) of the brachial plexus and magnetic resonance imaging (MRI) of the shoulder in patients with INA show high signal intensity (HSI) or thickening of the brachial plexus and changes in intramuscular denervation of the shoulder girdle. We evaluated the value of brachial plexus MRN and shoulder MRI in four patients with typical C5 or C6 radiculopathy. HSI of the brachial plexus was noted in all patients and intramuscular changes were observed in two patients who had symptoms over 4 weeks. Our results suggest that HSI or thickening of the brachial plexus and changes in intramuscular denervation of the shoulder girdle on MRN and MRI may not be specific for INA. PMID:27152289

  20. Does C5 or C6 Radiculopathy Affect the Signal Intensity of the Brachial Plexus on Magnetic Resonance Neurography?

    PubMed Central

    Seo, Tae Gyu; Kim, In-Soo; Son, Eun Seok

    2016-01-01

    Patients with C5 or C6 radiculopathy complain of shoulder area pain or shoulder girdle weakness. Typical idiopathic neuralgic amyotrophy (INA) is also characterized by severe shoulder pain, followed by paresis of shoulder girdle muscles. Recent studies have demonstrated that magnetic resonance neurography (MRN) of the brachial plexus and magnetic resonance imaging (MRI) of the shoulder in patients with INA show high signal intensity (HSI) or thickening of the brachial plexus and changes in intramuscular denervation of the shoulder girdle. We evaluated the value of brachial plexus MRN and shoulder MRI in four patients with typical C5 or C6 radiculopathy. HSI of the brachial plexus was noted in all patients and intramuscular changes were observed in two patients who had symptoms over 4 weeks. Our results suggest that HSI or thickening of the brachial plexus and changes in intramuscular denervation of the shoulder girdle on MRN and MRI may not be specific for INA. PMID:27152289

  1. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi

    PubMed Central

    Margaryan, Naira V.; Gilgur, Alina; Seftor, Elisabeth A.; Purnell, Chad; Arva, Nicoleta C.; Gosain, Arun K.; Hendrix, Mary J. C.; Strizzi, Luigi

    2016-01-01

    Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro

  2. The Sleeping Beauty: How Reproductive Diapause Affects Hormone Signaling, Metabolism, Immune Response and Somatic Maintenance in Drosophila melanogaster

    PubMed Central

    Kubrak, Olga I.; Kučerová, Lucie; Theopold, Ulrich; Nässel, Dick R.

    2014-01-01

    Some organisms can adapt to seasonal and other environmental challenges by entering a state of dormancy, diapause. Thus, insects exposed to decreased temperature and short photoperiod enter a state of arrested development, lowered metabolism, and increased stress resistance. Drosophila melanogaster females can enter a shallow reproductive diapause in the adult stage, which drastically reduces organismal senescence, but little is known about the physiology and endocrinology associated with this dormancy, and the genes involved in its regulation. We induced diapause in D. melanogaster and monitored effects over 12 weeks on dynamics of ovary development, carbohydrate and lipid metabolism, as well as expression of genes involved in endocrine signaling, metabolism and innate immunity. During diapause food intake diminishes drastically, but circulating and stored carbohydrates and lipids are elevated. Gene transcripts of glucagon- and insulin-like peptides increase, and expression of several target genes of these peptides also change. Four key genes in innate immunity can be induced by infection in diapausing flies, and two of these, drosomycin and cecropin A1, are upregulated by diapause independently of infection. Diapausing flies display very low mortality, extended lifespan and decreased aging of the intestinal epithelium. Many phenotypes induced by diapause are reversed after one week of recovery from diapause conditions. Furthermore, mutant flies lacking specific insulin-like peptides (dilp5 and dilp2-3) display increased diapause incidence. Our study provides a first comprehensive characterization of reproductive diapause in D. melanogaster, and evidence that glucagon- and insulin-like signaling are among the key regulators of the altered physiology during this dormancy. PMID:25393614

  3. The sleeping beauty: how reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster.

    PubMed

    Kubrak, Olga I; Kučerová, Lucie; Theopold, Ulrich; Nässel, Dick R

    2014-01-01

    Some organisms can adapt to seasonal and other environmental challenges by entering a state of dormancy, diapause. Thus, insects exposed to decreased temperature and short photoperiod enter a state of arrested development, lowered metabolism, and increased stress resistance. Drosophila melanogaster females can enter a shallow reproductive diapause in the adult stage, which drastically reduces organismal senescence, but little is known about the physiology and endocrinology associated with this dormancy, and the genes involved in its regulation. We induced diapause in D. melanogaster and monitored effects over 12 weeks on dynamics of ovary development, carbohydrate and lipid metabolism, as well as expression of genes involved in endocrine signaling, metabolism and innate immunity. During diapause food intake diminishes drastically, but circulating and stored carbohydrates and lipids are elevated. Gene transcripts of glucagon- and insulin-like peptides increase, and expression of several target genes of these peptides also change. Four key genes in innate immunity can be induced by infection in diapausing flies, and two of these, drosomycin and cecropin A1, are upregulated by diapause independently of infection. Diapausing flies display very low mortality, extended lifespan and decreased aging of the intestinal epithelium. Many phenotypes induced by diapause are reversed after one week of recovery from diapause conditions. Furthermore, mutant flies lacking specific insulin-like peptides (dilp5 and dilp2-3) display increased diapause incidence. Our study provides a first comprehensive characterization of reproductive diapause in D. melanogaster, and evidence that glucagon- and insulin-like signaling are among the key regulators of the altered physiology during this dormancy. PMID:25393614

  4. Disruption of the ErbB signaling in adolescence increases striatal dopamine levels and affects learning and hedonic-like behavior in the adult mouse.

    PubMed

    Golani, Idit; Tadmor, Hagar; Buonanno, Andres; Kremer, Ilana; Shamir, Alon

    2014-11-01

    The ErbB signaling pathway has been genetically and functionally implicated in schizophrenia. Numerous findings support the dysregulation of Neuregulin (NRG) and epidermal growth factor (EGF) signaling in schizophrenia. However, it is unclear whether alterations of these pathways in the adult brain or during development are involved in the pathophysiology of schizophrenia. Herein we characterized the behavioral profile and molecular changes resulting from pharmacologically blocking the ErbB signaling pathway during a critical period in the development of decision making, planning, judgments, emotions, social cognition and cognitive skills, namely adolescence. We demonstrate that chronic administration of the pan-ErbB kinase inhibitor JNJ-28871063 (JNJ) to adolescent mice elevated striatal dopamine levels and reduced preference for sucrose without affecting locomotor activity and exploratory behavior. In adulthood, adolescent JNJ-treated mice continue to consume less sucrose and needed significantly more correct-response trials to reach the learning criterion during the discrimination phase of the T-maze reversal learning task than their saline-injected controls. In addition, JNJ mice exhibited deficit in reference memory but not in working memory as measured in the radial arm maze. Inhibition of the pathway during adolescence did not affect exploratory behavior and locomotor activity in the open field, social interaction, social memory, and reversal learning in adult mice. Our data suggest that alteration of ErbB signaling during adolescence resulted in changes in the dopaminergic systems that emerge in pathological learning and hedonic behavior in adulthood, and pinpoints the possible role of the pathway in the development of cognitive skills and motivated behavior. PMID:25451700

  5. Downstream Sediment Sorting as a Fractionation Process

    NASA Astrophysics Data System (ADS)

    Paola, C.; Fedele, J. J.

    2007-12-01

    Downstream size segregation in net depositional systems can be thought of as a fractination process in which a well mixed, heterogeneous input is unmixed based on its relative mobility. Although we are accustomed to thinking of the segregation process as hydraulically driven and rather complex, we argue that at large time and length scales size segregation can be substantially simplified. The main controls are the downstream distribution of sediment extraction, which is typically controlled externally (e.g. by subsidence) and the size distribution of the sediment supply. Hydraulics plays a secondary role because of the tendency for river channels to self organize to a shape that maintains a limited range of dimensionless shear stress on the channel bed. The end result of this line of reasoning is a simple method for calculating downstream size segregation in depositional systems that is in good agreement with the limited data available. In terms of local dynamics, we introduce evidence that topographic roughness plays an important role. This is not explicitly incorporated in our analysis, and the best ways to characterize roughness for this purpose are yet to be determined. Finally, to estimate the importance of abrasion effects at large scales, we re-introduce a dimensionless parameter to describe the relative importance of abrasion, which sorts material by durability, and selective transport, which sorts by transportability.

  6. Mutations Modulating Raf Signaling in Drosophila Eye Development

    PubMed Central

    Dickson, B. J.; van-der-Straten, A.; Dominguez, M.; Hafen, E.

    1996-01-01

    The R7 fate is specified during Drosophila eye development by an inductive signal transduced intracellularly via the Raf kinase. We have performed a genetic screen for dominant mutations that alter the efficiency with which cells respond to a constitutively activated Raf kinase. Such mutations may affect genes involved in signal transduction downstream of Raf. We have isolated 44 mutations that define eight genes. One of these encodes a mitogen-activated protein kinase homologue; another is a putative target gene of this signaling pathway. We present the results of this screen in detail, as well as a preliminary genetic analysis of the six loci still to be characterized molecularly. PMID:8770593

  7. Downstream processing of biopharmaceutical proteins produced in plants

    PubMed Central

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-01

    All biological platforms for the manufacture of biopharmaceutical proteins produce an initially turbid extract that must be clarified to avoid fouling sensitive media such as chromatography resins. Clarification is more challenging if the feed stream contains large amounts of dispersed particles, because these rapidly clog the filter media typically used to remove suspended solids. Charged polymers (flocculants) can increase the apparent size of the dispersed particles by aggregation, facilitating the separation of solids and liquids, and thus reducing process costs. However, many different factors can affect the behavior of flocculants, including the pH and conductivity of the medium, the size and charge distribution of the particulates, and the charge density and molecular mass of the polymer. Importantly, these properties can also affect the recovery of the target protein and the overall safety profile of the process. We therefore used a design of experiments approach to establish reliable predictive models that characterize the impact of flocculants during the downstream processing of biopharmaceutical proteins. We highlight strategies for the selection of flocculants during process optimization. These strategies will contribute to the quality by design aspects of process development and facilitate the development of safe and efficient downstream processes for plant-derived pharmaceutical proteins. PMID:24637706

  8. Conditional loss of ErbB3 delays mammary gland hyperplasia induced by mutant PIK3CA without affecting mammary tumor latency, gene expression, or signaling.

    PubMed

    Young, Christian D; Pfefferle, Adam D; Owens, Philip; Kuba, María G; Rexer, Brent N; Balko, Justin M; Sánchez, Violeta; Cheng, Hailing; Perou, Charles M; Zhao, Jean J; Cook, Rebecca S; Arteaga, Carlos L

    2013-07-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K), have been shown to transform mammary epithelial cells (MEC). Studies suggest this transforming activity requires binding of mutant p110α via p85 to phosphorylated YXXM motifs in activated receptor tyrosine kinases (RTK) or adaptors. Using transgenic mice, we examined if ErbB3, a potent activator of PI3K, is required for mutant PIK3CA-mediated transformation of MECs. Conditional loss of ErbB3 in mammary epithelium resulted in a delay of PIK3CA(H1047R)-dependent mammary gland hyperplasia, but tumor latency, gene expression, and PI3K signaling were unaffected. In ErbB3-deficient tumors, mutant PI3K remained associated with several tyrosyl phosphoproteins, potentially explaining the dispensability of ErbB3 for tumorigenicity and PI3K activity. Similarly, inhibition of ErbB RTKs with lapatinib did not affect PI3K signaling in PIK3CA(H1047R)-expressing tumors. However, the p110α-specific inhibitor BYL719 in combination with lapatinib impaired mammary tumor growth and PI3K signaling more potently than BYL719 alone. Furthermore, coinhibition of p110α and ErbB3 potently suppressed proliferation and PI3K signaling in human breast cancer cells harboring PIK3CA(H1047R). These data suggest that PIK3CA(H1047R)-driven tumor growth and PI3K signaling can occur independently of ErbB RTKs. However, simultaneous blockade of p110α and ErbB RTKs results in superior inhibition of PI3K and mammary tumor growth, suggesting a rational therapeutic combination against breast cancers harboring PIK3CA activating mutations.

  9. Ctr9, a key subunit of PAFc, affects global estrogen signaling and drives ERα-positive breast tumorigenesis

    PubMed Central

    Zeng, Hao; Xu, Wei

    2015-01-01

    The human RNA polymerase II (RNAPII)-associated factor complex (hPAFc) and its individual subunits have been implicated in human diseases, including cancer. However, its involvement in breast cancer awaits investigation. Using data mining and human breast cancer tissue microarrays, we found that Ctr9, the key scaffold subunit in hPAFc, is highly expressed in estrogen receptor α-positive (ERα+) luminal breast cancer, and the high expression of Ctr9 correlates with poor prognosis. Knockdown of Ctr9 in ERα+ breast cancer cells almost completely erased estrogen-regulated transcriptional response. At the molecular level, Ctr9 enhances ERα protein stability, promotes recruitment of ERα and RNAPII, and stimulates transcription elongation and transcription-coupled histone modifications. Knockdown of Ctr9, but not other hPAFc subunits, alters the morphology, proliferative capacity, and tamoxifen sensitivity of ERα+ breast cancer cells. Together, our study reveals that Ctr9, a key subunit of hPAFc, is a central regulator of estrogen signaling that drives ERα+ breast tumorigenesis, rendering it a potential target for the treatment of ERα+ breast cancer. PMID:26494790

  10. Dietary Blueberry and Bifidobacteria Attenuate Nonalcoholic Fatty Liver Disease in Rats by Affecting SIRT1-Mediated Signaling Pathway

    PubMed Central

    Ren, Tingting; Huang, Chao; Cheng, Mingliang

    2014-01-01

    NAFLD model rats were established and divided into NAFLD model (MG group), SIRT1 RNAi (SI group), blueberry juice (BJ group), blueberry juice + bifidobacteria (BJB group), blueberry juice + SIRT1 RNAi (BJSI group), and blueberry juice + bifidobacteria + SIRT1 RNAi groups (BJBSI group). A group with normal rats was a control group (CG). BJB group ameliorated NAFLD, which was better than BJ group (P < 0.05). The lipid accumulation was lower in CG, BJ, and BJB groups than that in MG, SI, BJSI, and BJBSI groups (P < 0.05). The levels of SIRT1 and PPAR-α were higher in CG, BJ, and BJB groups than those in MG, SI, BJSI, and BJBSI groups (P < 0.05). The levels of SREBP-1c were lower in CG, BJ, and BJB groups than those in MG, SI, BJSI, and BJBSI groups (P < 0.05). The biochemical indexes SOD, GSH, and HDL-c were improved from CG to BJB group (P < 0.05). Inversely, the levels of AST and ALT, TG, TC, LDL-c, and MDA were decreased from CG to BJB group (P < 0.05). These changes enhance antioxidative capability and biochemical index of rats. Blueberry juice and bifidobacteria improve NAFLD by activating SIRTI-mediating signaling pathway. PMID:25544867

  11. Identification and characterization of a mutation affecting the division arrest signaling of the pheromone response pathway in Saccharomyces cerevisiae

    SciTech Connect

    Fujimura, Hiroaki Hoechst Japan Ltd., Kawagoe )

    1990-02-01

    Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence of pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.

  12. A new variant in signal peptide of the human luteinizing hormone receptor (LHCGR) affects receptor biogenesis causing leydig cell hypoplasia.

    PubMed

    Vezzoli, Valeria; Duminuco, Paolo; Vottero, Alessandra; Kleinau, Gunnar; Schülein, Ralf; Minari, Roberta; Bassi, Ivan; Bernasconi, Sergio; Persani, Luca; Bonomi, Marco

    2015-11-01

    The human luteinizing hormone/chorionic gonadotropin receptor (LHCGR) plays a fundamental role in male and female reproduction. In males, loss-of-function mutations in LHCGR have been associated with distinct degrees of impairment in pre- and postnatal testosterone secretion resulting in a variable phenotypic spectrum, classified as Leydig cell hypoplasia (LCH) type 1 (complete LH resistance and disorder of sex differentiation) and type 2 (partial LH resistance with impaired masculinization and fertility). Here, we report the case of an adolescent who came to the pediatric endocrinologist at the age of 12 years old for micropenis and cryptorchidism. Testis biopsy showed profound LCH and absent germinal line elements (Sertoli-only syndrome). The sequence analysis of the LHCGR gene showed the presence of a compound heterozygosity, being one variation, c.1847C>A p.S616Y, already described in association to Hypergonadotropic Hypogonadism, and the other, c.29 C>T p.L10P, a new identified variant in the putative signal peptide (SP) of LHCGR. Functional and structural studies provide first evidence that LHCGR have a functional and cleavable SP required for receptor biogenesis. Moreover, we demonstrate the pathogenic role of the novel p.L10P allelic variant, which has to be considered a loss-of-function mutation significantly contributing, in compound heterozygosity with p.S616Y, to the LCH type 2 observed in our patient.

  13. Dichamanetin Inhibits Cancer Cell Growth by Affecting ROS-related Signaling Components through Mitochondrial-mediated Apoptosis

    PubMed Central

    Yong, Yeonjoong; Matthew, Susan; Wittwer, Jennifer; Pan, Li; Shen, Qi; Kinghorn, A. Douglas; Swanson, Steven M.; Carcache De Blanco, Esperanza J.

    2014-01-01

    Background/Aim Dichamanetin is a C-benzylated flavanone isolated as a major secondary metabolite from Piper sarmentosum, a plant used as a spice in Southeast Asia. This studied aimed to understand the path through which dichamanetin exerts it antiproliferative effect. Materials and Methods The study of several signaling cellular components, namely, reactive oxygen species (ROS) levels, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor, mitochondrial membrane potential, DNA binding, poly ADP-ribose polymerase (PARP1) inhibition and proteasome inhibition was performed using enzyme-linked immunosorbent (ELISA) assay, cell sorting, and western blot. Results Dichamanetin significantly reduced the cell viability of various types of human cancer cells (HT-29 colon, DU145 prostate, and MDA-MB-231 breast cancer) in a dose- and time-dependent manner and induced G1 arrest of the cell cycle. It was also demonstrated that the selective cytotoxic effect of dichamanetin in cancer cells is mediated by the induction of oxidative stress. Conclusion Our findings suggest that dichamanetin from an edible herb has cancer chemotherapeutic potential. PMID:24324069

  14. Cytokines and signal transduction pathways mediated by anthralin in alopecia areata-affected Dundee experimental balding rats.

    PubMed

    Tang, Liren; Cao, Liping; Pelech, Steven; Lui, Harvey; Shapiro, Jerry

    2003-06-01

    Although many therapeutic modalities have been tested on alopecia areata, patient outcomes have been disappointing. Use of animal models would help to develop more efficient therapies as well as understanding therapeutic mechanisms. We have demonstrated that 0.1% topical anthralin ointment is 100% effective in restoring follicular activity in Dundee experimental balding rats. This is the most promising topical treatment for Dundee experimental balding rats among the therapeutic agents tested on this model. Various cytokines have been shown to be associated with the pathogenesis of alopecia areata. To test whether any of these cytokines might be modulated by anthralin, an RNase protection assay and the real-time polymerase chain reaction were performed to compare their expression between anthralin-treated and control skins. These experiments showed that expression of tumor necrosis factor-alpha and interferon-gamma was inhibited by anthralin, whereas expression of interleukin-1alpha/beta and their receptor antagonist, interleukin-1Ra, and interleukin-10 was stimulated by anthralin. In addition, using an antibody-based multi-immunoblotting technique, we found that certain signaling regulatory proteins were modulated by anthralin. Their potential roles in reversing the autoimmune-arrested follicular activity in Dundee experimental balding rats are discussed.

  15. Data collection and documentation of flooding downstream of a dam failure in Mississippi

    USGS Publications Warehouse

    Van Wilson, Jr.; ,

    2005-01-01

    On March 12, 2004, the Big Bay Lake dam failed, releasing water and affecting lives and property downstream in southern Mississippi. The dam is located near Purvis, Mississippi, on Bay Creek, which flows into Lower Little Creek about 1.9 miles downstream from the dam. Lower Little Creek flows into Pearl River about 16.9 miles downstream from the dam. Knowledge of the hydrology and hydraulics of floods caused by dam breaks is essential to the design of dams. A better understanding of the risks associated with possible dam failures may help limit the loss of life and property that often occurs downstream of a dam failure. The USGS recovered flood marks at the one crossing of Bay Creek and eight crossings of Lower Little Creek. Additional flood marks were also flagged at three other bridges crossing tributaries where backwater occurred. Flood marks were recovered throughout the stream reach of about 3/4 to 15 miles downstream of the dam. Flood marks that were flagged will be surveyed so that a flood profile can be documented downstream of the Big Bay Lake dam failure. Peak discharges are also to be estimated where possible. News reports stated that the peak discharge at the dam was about 67,000 cubic feet per second. Preliminary data suggest the peak discharge from the dam failure attenuated to about 13,000 cubic feet per second at Lower Little Creek at State Highway 43, about 15 miles downstream of the dam.

  16. Heparin-disaccharide affects T cells: inhibition of NF-kappaB activation, cell migration, and modulation of intracellular signaling.

    PubMed

    Hecht, Iris; Hershkoviz, Rami; Shivtiel, Shoham; Lapidot, Tzvi; Cohen, Irun R; Lider, Ofer; Cahalon, Liora

    2004-06-01

    We previously reported that disaccharides (DS), generated by enzymatic degradation of heparin or heparan sulfate, inhibit T cell-mediated immune reactions in rodents and regulate cytokine [tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-8, and IL-1beta] secretion by T cells, macrophages, or intestinal epithelial cells. Here, we investigated the effects of a trisulfated heparin DS (3S-DS) on two aspects of T cell function: secretion of proinflammatory cytokines and migration to an inflamed site. 3S-DS down-regulated nuclear factor-kappaB activity and reduced the secretion of TNF-alpha and interferon-gamma (IFN-gamma) by anti-CD3-activated T cells. In addition, 3S-DS inhibited CXC chemokine ligand 12 (CXCL12; stromal cell-derived factor-1alpha)-dependent migration in vitro and in vivo and decreased CXCL12-induced T cell adhesion to the extracellular matrix glycoprotein, fibronectin (FN). This inhibition was accompanied by attenuation of CXCL12-induced Pyk2 phosphorylation but did not involve internalization of the CXCL12 receptor, CXCR4, or phosphorylation of extracellular-regulated kinase. Despite inhibiting CXCL12-induced adhesion, 3S-DS, on its own, induced T cell adhesion to FN, which was accompanied by phosphorylation of Pyk2. A monosulfated DS showed no effect. Taken together, these data provide evidence that 3S-DS can regulate inflammation by inducing and modulating T cell-signaling events, desensitizing CXCR4, and modulating T cell receptor-induced responses. PMID:15020655

  17. The absence of GH signaling affects the susceptibility to high-fat diet-induced hypothalamic inflammation in male mice.

    PubMed

    Baquedano, Eva; Ruiz-Lopez, Ana M; Sustarsic, Elahu G; Herpy, James; List, Edward O; Chowen, Julie A; Frago, Laura M; Kopchick, John J; Argente, Jesús

    2014-12-01

    GH is important in metabolic control, and mice with disruption of the gene encoding the GH receptor (GHR) and GH binding protein (GHR-/- mice) are dwarf with low serum IGF-1 and insulin levels, high GH levels, and increased longevity, despite their obesity and altered lipid and metabolic profiles. Secondary complications of high-fat diet (HFD)-induced obesity are reported to be associated with hypothalamic inflammation and gliosis. Because GH and IGF-1 can modulate inflammatory processes, our objective was to evaluate the effect of HFD on hypothalamic inflammation/gliosis in the absence of GH signaling and determine how this correlates with changes in systemic metabolism. On normal chow, GHR-/- mice had a higher percentage of fat mass and increased circulating nonesterified free fatty acids levels compared with wild type (WT), and this was associated with increased hypothalamic TNF-α and phospho-JNK levels. After 7 weeks on a HFD, both WT and GHR-/- mice had increased weight gain, with GHR-/- mice having a greater rise in their percentage of body fat. In WT mice, HFD-induced weight gain was associated with increased hypothalamic levels of phospho-JNK and the microglial marker Iba-1 (ionized calcium-binding adapter molecule 1) but decreased cytokine production. Moreover, in GHR-/- mice, the HFD decreased hypothalamic inflammatory markers to WT levels with no indication of gliosis. Thus, the GH/IGF-1 axis is important in determining not only adipose tissue accrual but also the inflammatory response to HFD. However, how hypothalamic inflammation/gliosis is defined will determine whether it can be considered a common feature of HFD-induced obesity.

  18. The absence of GH signaling affects the susceptibility to high-fat diet-induced hypothalamic inflammation in male mice.

    PubMed

    Baquedano, Eva; Ruiz-Lopez, Ana M; Sustarsic, Elahu G; Herpy, James; List, Edward O; Chowen, Julie A; Frago, Laura M; Kopchick, John J; Argente, Jesús

    2014-12-01

    GH is important in metabolic control, and mice with disruption of the gene encoding the GH receptor (GHR) and GH binding protein (GHR-/- mice) are dwarf with low serum IGF-1 and insulin levels, high GH levels, and increased longevity, despite their obesity and altered lipid and metabolic profiles. Secondary complications of high-fat diet (HFD)-induced obesity are reported to be associated with hypothalamic inflammation and gliosis. Because GH and IGF-1 can modulate inflammatory processes, our objective was to evaluate the effect of HFD on hypothalamic inflammation/gliosis in the absence of GH signaling and determine how this correlates with changes in systemic metabolism. On normal chow, GHR-/- mice had a higher percentage of fat mass and increased circulating nonesterified free fatty acids levels compared with wild type (WT), and this was associated with increased hypothalamic TNF-α and phospho-JNK levels. After 7 weeks on a HFD, both WT and GHR-/- mice had increased weight gain, with GHR-/- mice having a greater rise in their percentage of body fat. In WT mice, HFD-induced weight gain was associated with increased hypothalamic levels of phospho-JNK and the microglial marker Iba-1 (ionized calcium-binding adapter molecule 1) but decreased cytokine production. Moreover, in GHR-/- mice, the HFD decreased hypothalamic inflammatory markers to WT levels with no indication of gliosis. Thus, the GH/IGF-1 axis is important in determining not only adipose tissue accrual but also the inflammatory response to HFD. However, how hypothalamic inflammation/gliosis is defined will determine whether it can be considered a common feature of HFD-induced obesity. PMID:25237935

  19. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  20. Study of how hydrological conditions affect the propagation of pseudorandom signals from the shelf in deep water

    NASA Astrophysics Data System (ADS)

    Morgunov, Yu. N.; Bezotvetnykh, V. V.; Burenin, A. V.; Voitenko, E. A.

    2016-05-01

    The paper examines how hydrological conditions affect manifestation of the acoustic "landslide" effect, which consists in focusing of acoustic energy in the near-bottom layer on the shelf and its transition to the axis of an underwater sound channel in deep water. We compare the results of experiments performed in the Sea of Japan in April 2014 and August 2006 on the same acoustic track, where the distance between corresponding points was more than 100 km. In April, the hydrological conditions in the shelf region of the track and in the upper layer of the deep-water part of the sea were characterized by the presence of a relatively weak (~0.35 s-1) negative vertical sound velocity gradient, whereas in August 2006, it was ~1.5 s-1. Experimental and numerical studies showed that the acoustic landslide effect also manifests itself under conditions of a weak negative sound velocity gradient, but the structure of the acoustic field trapped by the underwater sound channel has a more complex character with a time-expanded pulse characteristic. Nevertheless, its ordered, stable, and well-identified structure at all track points chosen for measurements make it possible to reliably create an efficient (with accuracies to hundredths of a percent) underwater navigation systems like GLONASS and GPS for the spring hydrology season.

  1. SCM-198 Ameliorates Cognitive Deficits, Promotes Neuronal Survival and Enhances CREB/BDNF/TrkB Signaling without Affecting Aβ Burden in AβPP/PS1 Mice

    PubMed Central

    Hong, Zhen-Yi; Yu, Shuang-Shuang; Wang, Zhi-Jun; Zhu, Yi-Zhun

    2015-01-01

    SCM-198 is an alkaloid found only in Herba leonuri and it has been reported to possess considerable neuroprotective effects in animal models of ischemic stroke, Parkinson’s disease and Alzheimer’s disease (AD). In this study, we demonstrated for the first time that 3-month oral SCM-198 treatment could significantly improve both recognition and spatial memory, inhibit microgliosis and promote neuronal survival in amyloid-β protein precursor and presenilin-1(AβPP/PS1) double-transgenic mice without affecting amyloid-β (Aβ) burden. In addition, decreases in cAMP-response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) phosphorylation were attenuated by SCM-198 both in vivo and in primary cortical neurons, which could be blocked by protein kinase A (PKA) inhibitors, suggesting the involvement of upstream PKA in enhancing the BDNF/TrkB/CREB signaling by SCM-198. Our results indicate that SCM-198, a drug that could promote neuronal survival and enhance BDNF/TrkB/CREB signaling, has beneficial effects on behavioral and biochemical alterations without affecting Aβ burden in AβPP/PS1 mice and might become a potential drug candidate for AD treatment in the future. PMID:26262618

  2. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling.

    PubMed

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Andò, Sebastiano; Fuqua, Suzanne A W

    2016-06-01

    The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam. PMID:27178332

  3. Transcriptional regulation of kinases downstream of the T cell receptor: another immunomodulatory mechanism of glucocorticoids

    PubMed Central

    2014-01-01

    Background Glucocorticoids affect peripheral immune responses, including modulation of T-cell activation, differentiation, and apoptosis. The quantity and quality of T-cell receptor (TCR)-triggered intracellular signals modulate T-cell function. Thus, glucocorticoids may affect T cells by interfering with the TCR signaling cascade. The purpose of the study was to search for glucocorticoid-modulated kinases downstream of the TCR. Methods Gene modulation in lymphoid cells either treated with glucocorticoids or from glucocorticoid-treated mice was studied using a RNase protection assay, real-time PCR, and western blotting. The sensitivity of genetically modified thymocytes to glucocorticoid-induced apoptosis was studied by performing hypotonic propidium iodide staining and flow cytometry. The Student’s t-test was employed for statistical evaluation. Results We found that transcription of Itk, a non-receptor tyrosine kinase of the Tec family, was up-regulated in a mouse T-cell hybridoma by the synthetic glucocorticoid dexamethasone. In contrast, dexamethasone down-regulated the expression of Txk, a Tec kinase that functions redundantly with Itk, and Lck, the Src kinase immediately downstream of the TCR. We investigated the expression of Itk, Txk, and Lck in thymocytes and mature lymphocytes following in vitro and in vivo dexamethasone treatment at different time points and doses. Kinase expression was differentially modulated and followed distinct kinetics. Itk was up-regulated in all cell types and conditions tested. Txk was strongly up-regulated in mature lymphocytes but only weakly up-regulated or non-modulated in thymocytes in vitro or in vivo, respectively. Conversely, Lck was down-regulated in thymocytes, but not modulated or up-regulated in mature lymphocytes in the different experimental conditions. This complex behaviour correlates with the presence of both positive and negative glucocorticoid responsive elements (GRE and nGRE, respectively) in the Itk, Txk

  4. Phosphorylation Signals in Striatal Medium Spiny Neurons.

    PubMed

    Nagai, Taku; Yoshimoto, Junichiro; Kannon, Takayuki; Kuroda, Keisuke; Kaibuchi, Kozo

    2016-10-01

    Dopamine signaling in the brain is a complex phenomenon that strongly contributes to emotional behaviors. Medium spiny neurons (MSNs) play a major role in dopamine signaling through dopamine D1 receptors (D1Rs) or dopamine D2 receptors (D2Rs) in the striatum. cAMP/protein kinase A (PKA) regulates phosphorylation signals downstream of D1Rs, which affects the excitability of MSNs, leading to reward-associated emotional expression and memory formation. A combination of phosphoproteomic approaches and the curated KANPHOS database can be used to elucidate the physiological and pathophysiological functions of dopamine signaling and other monoamines. Emerging evidence from these techniques suggests that the Rap1 pathway plays a crucial role in the excitability of MSNs, leading to the expression of emotional behaviors. PMID:27546785

  5. Phosphorylation Signals in Striatal Medium Spiny Neurons.

    PubMed

    Nagai, Taku; Yoshimoto, Junichiro; Kannon, Takayuki; Kuroda, Keisuke; Kaibuchi, Kozo

    2016-10-01

    Dopamine signaling in the brain is a complex phenomenon that strongly contributes to emotional behaviors. Medium spiny neurons (MSNs) play a major role in dopamine signaling through dopamine D1 receptors (D1Rs) or dopamine D2 receptors (D2Rs) in the striatum. cAMP/protein kinase A (PKA) regulates phosphorylation signals downstream of D1Rs, which affects the excitability of MSNs, leading to reward-associated emotional expression and memory formation. A combination of phosphoproteomic approaches and the curated KANPHOS database can be used to elucidate the physiological and pathophysiological functions of dopamine signaling and other monoamines. Emerging evidence from these techniques suggests that the Rap1 pathway plays a crucial role in the excitability of MSNs, leading to the expression of emotional behaviors.

  6. Transient and sustained BOLD signal time courses affect the detection of emotion-related brain activation in fMRI.

    PubMed

    Paret, Christian; Kluetsch, Rosemarie; Ruf, Matthias; Demirakca, Traute; Kalisch, Raffael; Schmahl, Christian; Ende, Gabriele

    2014-12-01

    A tremendous amount of effort has been dedicated to unravel the functional neuroanatomy of the processing and regulation of emotion, resulting in a well-described picture of limbic, para-limbic and prefrontal regions involved. Studies applying functional magnetic resonance imaging (fMRI) often use the block-wise presentation of stimuli with affective content, and conventionally model brain activation as a function of stimulus or task duration. However, there is increasing evidence that regional brain responses may not always translate to task duration and rather show stimulus onset-related transient time courses. We assume that brain regions showing transient responses cannot be detected in block designs using a conventional fMRI analysis approach. At the same time, the probability of detecting these regions with conventional analyses may be increased when shorter stimulus timing or a more intense stimulation during a block is used. In a within-subject fMRI study, we presented aversive pictures to 20 healthy subjects and investigated the effect of experimental design (i.e. event-related and block design) on the detection of brain activation in limbic and para-limbic regions of interest of emotion processing. In addition to conventional modeling of sustained activation during blocks of stimulus presentation, we included a second response function into the general linear model (GLM), suited to detect transient time courses at block onset. In the conventional analysis, several regions like the amygdala, thalamus and periaqueductal gray were activated irrespective of design. However, we found a positive BOLD response in the anterior insula (AI) in event-related but not in block-design analyses. GLM analyses suggest that this difference may result from a transient response pattern which cannot be captured by the conventional fMRI analysis approach. Our results indicate that regions with a transient response profile like the AI can be missed in block designs if analyses

  7. Loss of the AE3 Cl−/HCO−3 exchanger in mice affects rate-dependent inotropy and stress-related AKT signaling in heart

    PubMed Central

    Prasad, Vikram; Lorenz, John N.; Lasko, Valerie M.; Nieman, Michelle L.; Al Moamen, Nabeel J.; Shull, Gary E.

    2013-01-01

    Cl−/HCO−3 exchangers are expressed abundantly in cardiac muscle, suggesting that HCO−3 extrusion serves an important function in heart. Mice lacking Anion Exchanger Isoform 3 (AE3), a major cardiac Cl−/HCO−3 exchanger, appear healthy, but loss of AE3 causes decompensation in a hypertrophic cardiomyopathy (HCM) model. Using intra-ventricular pressure analysis, in vivo pacing, and molecular studies we identified physiological and biochemical changes caused by loss of AE3 that may contribute to decompensation in HCM. AE3-null mice had normal cardiac contractility under basal conditions and after β-adrenergic stimulation, but pacing of hearts revealed that frequency-dependent inotropy was blunted, suggesting that AE3-mediated HCO−3 extrusion is required for a robust force-frequency response (FFR) during acute biomechanical stress in vivo. Modest changes in expression of proteins that affect Ca2+-handling were observed, but Ca2+-transient analysis of AE3-null myocytes showed normal twitch-amplitude and Ca2+-clearance. Phosphorylation and expression of several proteins implicated in HCM and FFR, including phospholamban (PLN), myosin binding protein C, and troponin I were not altered in hearts of paced AE3-null mice; however, phosphorylation of Akt, which plays a central role in mechanosensory signaling, was significantly higher in paced AE3-null hearts than in wild-type controls and phosphorylation of AMPK, which is affected by Akt and is involved in energy metabolism and some cases of HCM, was reduced. These data show loss of AE3 leads to impaired rate-dependent inotropy, appears to affect mechanical stress-responsive signaling, and reduces activation of AMPK, which may contribute to decompensation in heart failure. PMID:24427143

  8. Turbocharger with downstream pressure-gain combustor

    SciTech Connect

    Sherikar, S.V.

    1991-05-14

    This patent describes a turbocharger. It comprises: an internal combustion engine; a compressor located upstream of the internal combustion engine for increasing the inlet pressure of the internal combustion engine; a turbine located down stream of the internal combustion engine and mechanically coupled to the compressor for driving the compressor; and a pressure-gain combustor located downstream of the turbine for decreasing the outlet pressure of the internal combustion engineer and thus increasing the turbine power output and improving the starting characteristics of the turbocharger.

  9. Headwater Influences on Downstream Water Quality

    PubMed Central

    Oakes, Robert M.

    2007-01-01

    We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality. PMID:17999108

  10. 9. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM NORTH SIDE OF DOWNSTREAM BANK OF DAM - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  11. Unit 4, downstream from Johns Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 4, downstream from Johns Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  12. Unit 6, downstream from Ferndale Bridge Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 6, downstream from Ferndale Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  13. Unit 3, downstream from Point Park Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, downstream from Point Park - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  14. Unit 3, downstream from Fourth Avenue Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, downstream from Fourth Avenue Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  15. Unit 1, downstream from Laurel Run Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 1, downstream from Laurel Run - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  16. Unit 5, downstream from Haynes Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 5, downstream from Haynes Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  17. Unit 6, downstream from Horner Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 6, downstream from Horner Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  18. Unit 4, downstream from First Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 4, downstream from First Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  19. Unit 5, downstream from Hickory Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 5, downstream from Hickory Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  20. Unit 2, downstream from Coppersdale Bridge Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 2, downstream from Coppersdale Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  1. 7. VIEW DOWNSTREAM FROM THE NEWHALEM INTAKE WITH NO WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW DOWNSTREAM FROM THE NEWHALEM INTAKE WITH NO WATER BEING DIVERTED TO THE POWER TUNNEL, 1989. - Skagit Power Development, Newhalem Powerhouse & Dam, On Skagit River, 0.3 mile downstream from Newhalem, Newhalem, Whatcom County, WA

  2. Laser microdissection and microarray analysis of the hippocampus of Ras-GRF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning.

    PubMed

    Fernández-Medarde, A; Porteros, A; de las Rivas, J; Núñez, A; Fuster, J J; Santos, E

    2007-04-25

    We used manual macrodissection or laser capture microdissection (LCM) to isolate tissue sections of the hippocampus area of Ras-GRF1 wild type and knockout mice brains, and analyzed their transcriptional patterns using commercial oligonucleotide microarrays. Comparison between the transcriptomes of macrodissected and microdissected samples showed that the LCM samples allowed detection of significantly higher numbers of differentially expressed genes, with higher statistical rates of significance. These results validate LCM as a reliable technique for in vivo genomic studies in the brain hippocampus, where contamination by surrounding areas (not expressing Ras-GRF1) increases background noise and impairs identification of differentially expressed genes. Comparison between wild type and knockout LCM hippocampus samples revealed that Ras-GRF1 elimination caused significant gene expression changes, mostly affecting signal transduction and related neural processes. The list of 36 most differentially expressed genes included loci concerned mainly with Ras/G protein signaling and cytoskeletal organization (i.e. 14-3-3gamma/zeta, Kcnj6, Clasp2) or related, cross-talking pathways (i.e. jag2, decorin, strap). Consistent with the phenotypes shown by Ras-GRF1 knockout mice, many of these differentially expressed genes play functional roles in processes such as sensory development and function (i.e. Sptlc1, antiquitin, jag2) and/or neurological development/neurodegeneration processes affecting memory and learning. Indeed, potential links to neurodegenerative diseases such as Alzheimer disease (AD) or Creutzfeldt-Jacobs disease (CJD), have been reported for a number of differentially expressed genes identified in this study (Ptma, Aebp2, Clasp2, Hebp1, 14-3-3gamma/zeta, Csnk1delta, etc.). These data, together with the previously described role of IRS and insulin (known Ras-GRF1 activators) in AD, warrant further investigation of a potential functional link of Ras-GRF1 to

  3. Sex hormone affects the severity of non-alcoholic steatohepatitis through the MyD88-dependent IL-6 signaling pathway

    PubMed Central

    Xin, Guangda; Qin, Shaoyou; Wang, Song; Wang, Xu; Zhang, Yonggui

    2015-01-01

    Recent research has shown that the occurrence of gender disparity in liver cancer associated with sex differences in MyD88-dependent IL-6 production, but the role of this signaling pathway in sex differences of non-alcoholic steatohepatitis (NASH) remains unknown. To investigate the effects of sex hormone-specific intervention on pathology and progression of NASH, and on the inflammatory TLR-MyD88-IL-6 signaling pathway NASH was modeled in C57/BL6 mice by feeding a methionine and choline-deficient (MCD) diet for 4 weeks. Male mice were subjected to sex hormone-related interventions such as orchidectomy, and orchidectomy combined with administration of either testosterone propionate or estradiol benzoate. Next, the degree of non-alcoholic fatty liver disease activity score (NAS), serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and the expression level of MyD88 and IL-6, were compared between these groups. Males developed more serious inflammatory problems and had a higher NAS than the females. Sex-specific intervention in male mice by orchidectomy reduced NAS, ALT, and AST, and the expression level of MyD88 and IL-6. But administration of exogenous androgen had no influence on either NAS or the expression of ALT, AST, MyD88, and IL-6. On the other hand, exogenous estrogen could alleviate the pathological damage caused by NASH, as well as reduce NAS, ALT and AST, and the expression of MyD88 and IL-6. The result show different sex hormone-related interventions affected the severity of NASH, possibly by modulating the level of sex hormones and regulating the TLR-MyD88-IL-6 signaling pathway. PMID:25790822

  4. Alteration of JNK-1 Signaling in Skeletal Muscle Fails to Affect Glucose Homeostasis and Obesity-Associated Insulin Resistance in Mice

    PubMed Central

    Spohn, Gabriele; Brönneke, Hella S.; Schmidt-Supprian, Marc; Wunderlich, F. Thomas

    2013-01-01

    Obesity and associated metabolic disturbances, such as increased circulating fatty acids cause prolonged low grade activation of inflammatory signaling pathways in liver, skeletal muscle, adipose tissue and even in the CNS. Activation of inflammatory pathways in turn impairs insulin signaling, ultimately leading to obesity-associated type 2 diabetes mellitus. Conventional JNK-1 knock out mice are protected from high fat diet-induced insulin resistance, characterizing JNK-1-inhibition as a potential approach to improve glucose metabolism in obese patients. However, the cell type-specific role of elevated JNK-1 signaling as present during the course of obesity has not been fully elucidated yet. To investigate the functional contribution of altered JNK-1 activation in skeletal muscle, we have generated a ROSA26 insertion mouse strain allowing for Cre-activatable expression of a JNK-1 constitutive active construct (JNKC). To examine the consequence of skeletal muscle-restricted JNK-1 overactivation in the development of insulin resistance and glucose metabolism, JNKC mice were crossed to Mck-Cre mice yielding JNKSM-C mice. However, despite increased muscle-specific JNK activation, energy homeostasis and glucose metabolism in JNKSM-C mice remained largely unaltered compared to controls. In line with these findings, obese mice with skeletal muscle specific disruption of JNK-1, did not affect energy and glucose homeostasis. These experiments indicate that JNK-1 activation in skeletal muscle does not account for the major effects on diet-induced, JNK-1-mediated deterioration of insulin action and points towards a so far underappreciated role of JNK-1 in other tissues than skeletal muscle during the development of obesity-associated insulin resistance. PMID:23349837

  5. Downstream Migration of Masu Salmon Smolt at a Diversion Facility of Dam

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Nii, H.; Kasuga, K.; Watanabe, K.

    2014-12-01

    A diversion facility was installed on the upstream of Pirika Dam in Northern Japan that produced a downstream flow into the fishway, thus allowing the fish to migrate to the sea. On the other hand, if the flow rate in the river was more than 7.00 m 3/s (design flow rate of diversion facility), masu salmon smolt were concerned about accessing the dam reservoir, because the smolt can't migrate to the sea through the diversion facility unfortunately. Therefore, the downstream migration of smolt was investigated around the diversion facility. The PIT tag system and radio transmitters as the biotelemetry were used to determine 1) whether masu salmon smolt were able to migrate downstream through the diversion facility and fishway at Pirika Dam, 2) when the smolt started to migrate downstream, 3) whether the downstream migration of smolt were affected by the flow increase in the river. It was clarified that 88% of the smolt were able to enter the diversion facility, and then 81% of the smolt were able to access the fishway. It was also clarified that smolt downstream migration had two peaks in a day (5:00 and 18:00). During the study period, although the flow rate was in the 2.21 m3/s to 30.44 m3/s range (average 6.70 m3/s), it was revealed that the diversion facility has a satisfactory function for the downstream migration of smolt as presented above. The survey clarified the downstream migration behavior of masu salmon by using two types of biotelemetry equipment. PIT tag and radio transmitter were found to be very effective in tracking the behavior of small fish such as smolt. PIT tags, in particular, require very little operating cost, because once they are inserted in the fish, they do not need human labor for tracking. It is desirable to actively introduce the biotelemetry as tracking equipment when surveying the fish migration in the river.

  6. Turbulence decay downstream of an active grid

    NASA Astrophysics Data System (ADS)

    Bewley, Gregory; Bodenschatz, Eberhard

    2015-11-01

    A grid in a wind tunnel stirs up turbulence that has a certain large-scale structure. The moving parts in a so-called ``active grid'' can be programmed to produce different structures. We use a special active grid in which each of 129 paddles on the grid has its own position-controlled servomotor that can move independently of the others. We observe among other things that the anisotropy in the amplitude of the velocity fluctuations and in the correlation lengths can be set and varied with an algorithm that oscillates the paddles in a specified way. The variation in the anisotropies that we observe can be explained by our earlier analysis of anisotropic ``soccer ball'' turbulence (Bewley, Chang and Bodenschatz 2012, Phys. Fluids). We define the influence of this variation in structure on the downstream evolution of the turbulence. with Eberhard Bodenschatz and others.

  7. Channel changes downstream from a dam

    USGS Publications Warehouse

    Hadley, R.F.; Emmett, W.W.

    1998-01-01

    A flood-control dam was completed during 1979 on Bear Creek, a small tributary stream to the South Platte River in the Denver, Colorado, area. Before and after dam closure, repetitive surveys between 1977 and 1992 at five cross sections downstream of the dam documented changes in channel morphology. During this 15-year period, channel width increased slightly, but channel depth increased by more than 40 percent. Within the study reach, stream gradient decreased and median bed material sizes coarsened from sand in the pools and fine gravel on the riffle to a median coarse gravel throughout the reach. The most striking visual change was from a sparse growth of streamside grasses to a dense growth of riparian woody vegetation.

  8. Downstream process options for the ABE fermentation.

    PubMed

    Friedl, Anton

    2016-05-01

    Butanol is a very interesting substance both for the chemical industry and as a biofuel. The classical distillation process for the removal of butanol is far too energy demanding, at a factor of 220% of the energy content of butanol. Alternative separation processes studied are hybrid processes of gas-stripping, liquid-liquid extraction and pervaporation with distillation and a novel adsorption/drying/desorption hybrid process. Compared with the energy content of butanol, the resulting energy demand for butanol separation and concentration of optimized hybrid processes is 11%-22% for pervaporation/distillation and 11%-17% for liquid-liquid extraction/distillation. For a novel adsorption/drying/desorption process, the energy demand is 9.4%. But all downstream process options need further proof of industrial applicability. PMID:27020411

  9. Ammonia downstream from HH 80 North

    NASA Technical Reports Server (NTRS)

    Girart, Jose M.; Rodriguez, Luis F.; Anglada, Guillem; Estalella, Robert; Torrelles, Jose, M.; Marti, Josep; Pena, Miriam; Ayala, Sandra; Curiel, Salvador; Noriega-Crespo, Alberto

    1994-01-01

    HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.

  10. Derivatives of Plant Phenolic Compound Affect the Type III Secretion System of Pseudomonas aeruginosa via a GacS-GacA Two-Component Signal Transduction System

    PubMed Central

    Yamazaki, Akihiro; Li, Jin; Zeng, Quan; Khokhani, Devanshi; Hutchins, William C.; Yost, Angela C.; Biddle, Eulandria; Toone, Eric J.

    2012-01-01

    Antibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability. Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening of exoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers of P. aeruginosa PAO1. These compounds alter exoS transcription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression of exoS through the GacSA-RsmYZ-RsmA-ExsA regulatory pathway. PMID:21968370

  11. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  12. Impairment of fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling and its downstream cognates ras-related C3 botulinum toxin substrate 1, amyloid beta A4 precursor protein, striatal-enriched protein tyrosine phosphatase, and homer 1, in autism: a postmortem study in cerebellar vermis and superior frontal cortex

    PubMed Central

    2013-01-01

    Background Candidate genes associated with idiopathic forms of autism overlap with other disorders including fragile X syndrome. Our laboratory has previously shown reduction in fragile X mental retardation protein (FMRP) and increase in metabotropic glutamate receptor 5 (mGluR5) in cerebellar vermis and superior frontal cortex (BA9) of individuals with autism. Methods In the current study we have investigated expression of four targets of FMRP and mGluR5 signaling - homer 1, amyloid beta A4 precursor protein (APP), ras-related C3 botulinum toxin substrate 1 (RAC1), and striatal-enriched protein tyrosine phosphatase (STEP) - in the cerebellar vermis and superior frontal cortex (BA9) via SDS-PAGE and western blotting. Data were analyzed based on stratification with respect to age (children and adolescents vs. adults), anatomic region of the brain (BA9 vs. cerebellar vermis), and impact of medications (children and adolescents on medications (n = 4) vs. total children and adolescents (n = 12); adults on medications (n = 6) vs. total adults (n = 12)). Results There were significant increases in RAC1, APP 120 kDa and APP 80 kDa proteins in BA9 of children with autism vs. healthy controls. None of the same proteins were significantly affected in cerebellar vermis of children with autism. In BA9 of adults with autism there were significant increases in RAC1 and STEP 46 kDa and a significant decrease in homer 1 vs. controls. In the vermis of adult subjects with autism, RAC1 was significantly increased while APP 120, STEP 66 kDa, STEP 27 kDa, and homer 1 were significantly decreased when compared with healthy controls. No changes were observed in vermis of children with autism. There was a significant effect of anticonvulsant use on STEP 46 kDa/β-actin and a potential effect on homer 1/NSE, in BA9 of adults with autism. However, no other significant confound effects were observed in this study. Conclusions Our findings provide further evidence of abnormalities in FMRP and

  13. Synthesizing oncogenic signal-processing systems that function as both "signal counters" and "signal blockers" in cancer cells.

    PubMed

    Liu, Yuchen; Huang, Weiren; Zhou, Dexi; Han, Yonghua; Duan, Yonggang; Zhang, Xiaoyue; Zhang, Hu; Jiang, Zhimao; Gui, Yaoting; Cai, Zhiming

    2013-07-01

    RNA-protein interaction plays a significant role in regulating eukaryotic translation. This phenomenon raises questions about the ability of artificial biological systems to take the advantage of protein-RNA interaction. Here, we designed an oncogenic signal-processing system expressing both a Renilla luciferase reporter gene controlled by RNA-protein interaction in its 5'-untranslated region (5'-UTR) and a Firefly luciferase normalization gene. To test the ability of the designed system, we then constructed vectors targeting the nuclear factor-κB (NF-κB) or the β-catenin signal. We found that the inhibition (%) of luciferase expression was correlated to the targeted protein content, allowing quantitative measurement of oncogenic signal intensity in cancer cells. The systems inhibited the expression of oncogenic signal downstream genes and induced bladder cancer cell proliferation inhibition and apoptosis without affecting normal urothelial cells. Compared to traditional methods (ELISA and quantitative immunoblotting), the bio-systems provided highly accurate, consistent, and reproducible quantification of protein signals and were able to discriminate between cancerous and non-cancerous cells. In conclusion, the synthetic systems function as both "signal counters" and "signal blockers" in cancer cells. This approach provides a synthetic biology platform for oncogenic signal measurement and cancer treatment.

  14. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus.

    PubMed

    Nováková, Miroslava; Šašek, Vladimír; Trdá, Lucie; Krutinová, Hana; Mongin, Thomas; Valentová, Olga; Balesdent, Marie-HelEne; Rouxel, Thierry; Burketová, Lenka

    2016-08-01

    To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans. PMID:26575525

  15. Developmental exposure of aflatoxin B1 reversibly affects hippocampal neurogenesis targeting late-stage neural progenitor cells through suppression of cholinergic signaling in rats.

    PubMed

    Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Onda, Nobuhiko; Sugita-Konishi, Yoshiko; Yoshida, Toshinori; Shibutani, Makoto

    2015-10-01

    To elucidate the maternal exposure effects of aflatoxin B1 (AFB1) and its metabolite aflatoxin M1, which is transferred into milk, on postnatal hippocampal neurogenesis, pregnant Sprague-Dawley rats were provided a diet containing AFB1 at 0, 0.1, 0.3, or 1.0 ppm from gestational day 6 to day 21 after delivery on weaning. Offspring were maintained through postnatal day (PND) 77 without AFB1 exposure. Following exposure to 1.0 ppm AFB1, offspring showed no apparent systemic toxicity at weaning, whereas dams showed increased liver weight and DNA repair gene upregulation in the liver. In the hippocampal dentate gyrus of male PND 21 offspring, the number of doublecortin(+) progenitor cells were decreased, which was associated with decreased proliferative cell population in the subgranular zone at ≥ 0.3 ppm, although T-box brain 2(+) cells, tubulin beta III(+) cells, gamma-H2A histone family, member X(+) cells, and cyclin-dependent kinase inhibitor 1A(+) cells did not fluctuate in number. AFB1 exposure examined at 1.0 ppm also resulted in transcript downregulation of the cholinergic receptor subunit Chrna7 and dopaminergic receptor Drd2 in the dentate gyrus, although there was no change in transcript levels of DNA repair genes. In the hippocampal dentate hilus, interneurons expressing CHRNA7 or phosphorylated tropomyosin receptor kinase B (TRKB) decreased at ≥ 0.3 ppm. On PND 77, there were no changes in neurogenesis-related parameters. These results suggested that maternal AFB1 exposure reversibly affects hippocampal neurogenesis targeting type-3 progenitor cells. This mechanism likely involves suppression of cholinergic signals on hilar GABAergic interneurons and brain-derived neurotrophic factor-TRKB signaling from granule cells. The no-observed-adverse-effect level for offspring neurogenesis was determined to be 0.1 ppm (7.1-13.6 mg/kg body weight/day).

  16. Factors affecting vocalization in Tengmalm's owl (Aegolius funereus) fledglings during post-fledging dependence period: scramble competition or honest signalling of need?

    PubMed

    Kouba, Marek; Bartoš, Luděk; Št'astný, Karel

    2014-01-01

    Begging behaviour of nestlings has been intensively studied for several decades as a key component of parent-offspring conflict. There are essentially two main theories to account for intensity of food solicitation among offspring: that intensity of begging is related to some form of scramble competition between nest mates or that it offers honest signalling of need to parents. The vast majority of studies which have addressed begging behaviour have been based on observations of, and experiments on, nestlings and have not considered begging behaviour, during the post-fledging period. Begging vocalizations in this post-fledging phase of dependence have rarely been studied, despite the importance of vocalizations as a communication method between offspring and parents, particularly for nocturnal species. We radiotracked 39 fledglings of the Tengmalm's owl (Aegolius funereus) in two years with different availability of prey: 2010 (n = 29 fledglings) and 2011 (n = 10 fledglings) and made 1320 nightly localizations in which we recorded presence or absence of begging calls. Within years, the most important measures related to the probability of vocalization were body condition at fledging, time of night, number of surviving siblings, age and weather conditions. Begging intensity increased with age in both years; however, in the year with low prey availability fledglings vocalized significantly more often. The main factor causing these differences between years was probably the different availability of prey, affecting breeding success, post-fledging behaviour, and thus also both short- and long-term needs of offspring. We believe that our results suggest honest signalling of their fledgling's need.

  17. Factors affecting vocalization in Tengmalm's owl (Aegolius funereus) fledglings during post-fledging dependence period: scramble competition or honest signalling of need?

    PubMed

    Kouba, Marek; Bartoš, Luděk; Št'astný, Karel

    2014-01-01

    Begging behaviour of nestlings has been intensively studied for several decades as a key component of parent-offspring conflict. There are essentially two main theories to account for intensity of food solicitation among offspring: that intensity of begging is related to some form of scramble competition between nest mates or that it offers honest signalling of need to parents. The vast majority of studies which have addressed begging behaviour have been based on observations of, and experiments on, nestlings and have not considered begging behaviour, during the post-fledging period. Begging vocalizations in this post-fledging phase of dependence have rarely been studied, despite the importance of vocalizations as a communication method between offspring and parents, particularly for nocturnal species. We radiotracked 39 fledglings of the Tengmalm's owl (Aegolius funereus) in two years with different availability of prey: 2010 (n = 29 fledglings) and 2011 (n = 10 fledglings) and made 1320 nightly localizations in which we recorded presence or absence of begging calls. Within years, the most important measures related to the probability of vocalization were body condition at fledging, time of night, number of surviving siblings, age and weather conditions. Begging intensity increased with age in both years; however, in the year with low prey availability fledglings vocalized significantly more often. The main factor causing these differences between years was probably the different availability of prey, affecting breeding success, post-fledging behaviour, and thus also both short- and long-term needs of offspring. We believe that our results suggest honest signalling of their fledgling's need. PMID:24760102

  18. Microbial production of scleroglucan and downstream processing.

    PubMed

    Castillo, Natalia A; Valdez, Alejandra L; Fariña, Julia I

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined. PMID:26528259

  19. Upstream/downstream: Issues in environmental ethics

    SciTech Connect

    Scherer, D.

    1991-01-01

    Upstream/Downstream reminds us that there are four issues that are more or less distinctive to environmental ethics. First, and most distinctively, environmental issues involve the standing of nonhuman living things and systems. Thus, environmental politics is only partly a clash among the interest of the parties involved; it often involves actions on behalf of the existence rights of nonhuman life forms. Second, environmental ethics concern the intergenerational distribution of benefits more explicitly than do most other ethical issues, which brings out serious weaknesses in legal frameworks that rely on claims for damages. Third, the complexity and indirectness of many environmental impacts introduces a high degree of uncertainty and thus technical as well as ethical issues of prudent behavior. Specifically, where science may not fully reveal environmental risks, should development proceed; should analysis proceed if it is known to have a Pollyanna bias Fourth, insofar as environmental damage is typically done to common property, and thus its regulation is generally a matter for governmental regulation, the obligations of private actors to make sacrifices beyond what government requires is at issue - an issue that one would expect to be taken up at length in the other volumes.

  20. Microbial production of scleroglucan and downstream processing

    PubMed Central

    Castillo, Natalia A.; Valdez, Alejandra L.; Fariña, Julia I.

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined. PMID:26528259

  1. Importin β1 mediates nuclear factor-κB signal transduction into the nuclei of myeloma cells and affects their proliferation and apoptosis.

    PubMed

    Yan, Wenqing; Li, Rong; He, Jie; Du, Juan; Hou, Jian

    2015-04-01

    Multiple myeloma (MM) is a plasma cell neoplasm that is currently incurable. The activation of nuclear factor-κB (NF-κB) signalling plays a crucial role in the immortalisation of MM cells. As the most important transcription factor of the canonical NF-κB pathway, the p50/p65 heterodimer requires transportation into the nucleus for its successful signal transduction. Importin β1 is the key transport receptor that mediates p50/p65 nuclear import. Currently, it remains unclear whether the regulation of importin β1 function affects the biological behaviour of MM cells. In the present study, we investigated the changes in p65 translocation and the proliferation and apoptosis of MM cells after treatment with small interfering RNA (siRNA) or an importin β1 inhibitor. The underlying mechanisms were also investigated. We found importin β1 over-expression and the excessive nuclear transport of p65 in myeloma cells. Confocal laser scanning microscopy and Western blot analysis results indicated that p65 nuclear transport was blocked after inhibiting importin β1 expression with siRNA and the importin β1-specific inhibitor importazole (IPZ). Importantly, electronic mobility shift assay results also verified that p65 nuclear transport was dramatically reduced. Moreover, the expression of the NF-κB signalling target genes involved in MM cell apoptosis, such as BCL-2, c-IAP1 and XIAP, were markedly reduced, as demonstrated by the RT-PCR results. Furthermore, the proliferation of MM cells was inhibited, as demonstrated by MTT assay results, and the MM cell apoptosis rate was higher, as demonstrated by the annexin V/propidium iodide (PI) double-staining assay results. Additionally, the percentage of S phase cells in the myeloma cell lines treated with IPZ was dramatically reduced. In conclusion, our results clearly show that importin β1 mediates the translocation of NF-κB into the nuclei of myeloma cells, thereby regulating proliferation and blocking apoptosis, which

  2. Protein and energy intakes affected amino acid concentrations in plasma, muscle, and liver, and cell signaling in the liver of growing dairy calves.

    PubMed

    Rius, A G; Weeks, H A; Cyriac, J; Akers, R M; Bequette, B J; Hanigan, M D

    2012-04-01

    The nutrient content of and feeding recommendations for milk replacers (MR) vary widely in North America, and acceleration of growth through manipulation of protein and energy intakes can reduce rearing costs of dairy operations. The effects of varying the protein and energy intake of MR on metabolite concentrations in plasma, liver, and muscle and the phosphorylation activity of protein kinase B (AKT) and ribosomal protein S6 (rpS6) cell signals in liver and muscle were assessed. Twenty-four newborn Holstein calves were fed 1 of 4 MR for 9 wk (n=6/treatment): (1) a 20% crude protein (CP), 20% fat MR fed at 441 g of dry matter (DM)/d (CON); (2) a high-protein, medium-fat MR (HPMF; 28% CP, 20% fat) fed at 951 g of DM/d; (3) a high-protein, high-fat MR (HPHF; 27% CP, 28% fat) fed at 951 g of DM/d; and (4) HPHF fed at 1,431 g of DM/d (HPHF+). Water and starter (20% CP, 1.43% fat) were offered ad libitum and calves were fed MR twice daily. Plasma samples were obtained at 1, 5, and 9 wk of age. Calves were not weaned and were slaughtered after the last blood sampling. Liver and muscle tissues were collected and analyzed for metabolite concentrations and cell signaling activity. Calves fed all treatments had lower plasma concentrations of Phe and Tyr, and a trend for lower Leu, but greater concentrations of Thr relative to calves fed CON. Calves fed all treatments had increased muscle concentrations of Met and muscle to plasma ratios of Phe, Tyr, and branched-chain amino acids compared with CON. All treatments increased liver to plasma ratios of Phe and Tyr but diminished the ratios of Met compared with CON. Phosphorylation of protein kinase B was not affected by treatment; however, relative to calves fed HPHF, HPMF and HPHF+ diets increased phosphorylation ratios of ribosomal protein S6 in the liver. Therefore, the changes in plasma and tissue concentrations and plasma to tissue ratios of amino acids were associated with enhanced growth rates. However, cell signaling

  3. A Copernicus downstream service for surface displacement monitoring in Germany

    NASA Astrophysics Data System (ADS)

    Cahyadi Kalia, Andre; Frei, Michaela; Lege, Thomas

    2016-04-01

    SAR Interferometry is a powerful technique able to detect and monitor various surface displacements caused by e.g. gravitative mass movement, subrosion, groundwater extraction, fluid injection, natural gas extraction. These processes can e.g. cause damage to buildings, infrastructure, affect ecosystems, agriculture and the economic use of the geological underground by influencing the hydro(geo)logical setting. Advanced techniques of interferometric processing (Persistent Scatterer Interferometry, PSI) allow highly precise displacement measurements (mm precision) by analyzing stacks of SAR imagery. The PSI mapping coverage can be increased to entire nations by using several adjacent satellite tracks. In order to assist the operational use of this technique a German-wide, officially approved, PSI dataset is under development. The intention of this presentation is to show i) the concept of the Copernicus downstream service for surface displacement monitoring in Germany and ii) a pilot study to exemplarily demonstrate the workflow and potential products from the Copernicus downstream service. The pilot study is focusing on the built up of an officially approved wide-area PSI dataset. The study area covers an area of more than 30.000 km² and is located in the Northwest German Basin. Several natural processes (e.g. compaction of marine sediments, peat loss) and anthropogenic activities (e.g. natural gas extraction, rock salt mining) are causing surface displacements in the study area. The PSI analysis is based on six ERS-1/-2 data stacks covering the timespan from 1992 until 2001. Each data stack consists of 49 to 73 ERS-1/-2 SAR images. A comparison of the PSI results with thematic data (e.g. volume and location of extracted natural gas) strongly indicates that a part of the detected land subsidence is caused by natural gas extraction. Furthermore, land subsidence caused by e.g. fluid injection and rock salt mining were successfully detected by the PSI analysis.

  4. Conjugated bilirubin affects cytokine profiles in hepatitis A virus infection by modulating function of signal transducer and activator of transcription factors.

    PubMed

    Castro-García, Flor P; Corral-Jara, Karla F; Escobedo-Melendez, Griselda; Sandoval-Hernandez, Monserrat A; Rosenstein, Yvonne; Roman, Sonia; Panduro, Arturo; Fierro, Nora A

    2014-12-01

    Hepatitis A virus (HAV) infection is the major cause of acute liver failure in paediatric patients. The clinical spectrum of infection is variable, and liver injury is determined by altered hepatic enzyme function and bilirubin concentration. We recently reported differences in cytokine profiles between distinct HAV-induced clinical courses, and bilirubin has been recognized as a potential immune-modulator. However, how bilirubin may affect cytokine profiles underlying the variability in the course of infection has not been determined. Herein, we used a transcription factor (TF) binding site identification approach to retrospectively analyse cytokine expression in HAV-infected children and to predict the entire set of TFs associated with the expression of specific cytokine profiles. The results suggested that modulation of the activity of signal transducers and activators of transcription proteins (STATs) may play a central role during HAV infection. This led us to compare the degree of STAT phosphorylation in peripheral blood lymphoid cells (PBLCs) from paediatric patients with distinct levels of conjugated bilirubin (CB). Low CB levels in sera were associated with increased STAT-1 and STAT-5 phosphorylation. A positive correlation was observed between the serum interleukin-6 (IL-6) content and CB values, whereas higher levels of CB correlated with reduced serum IL-8 values and with a reduction in the proportion of PBLCs positive for STAT-5 phosphorylation. When CB was used to stimulate patients' PBLCs in vitro, the levels of IL-6 and tumour necrosis factor-α were increased. The data showed that bilirubin plays a role in STAT function and affects cytokine profile expression during HAV infection.

  5. Effect of drugs affecting microtubular assembly on microtubules, phospholipid synthesis and physiological indices (signalling, growth, motility and phagocytosis) in Tetrahymena pyriformis.

    PubMed

    Kovács, P; Csaba, G

    2006-01-01

    Structural changes of microtubules, incorporation of radioactively labelled components into phospholipids, cell motility, growth and phagocytosis were studied under the effect of four drugs affecting microtubular assembly: colchicine, nocodazole, vinblastine and taxol. Although the first three agents influence microtubules in the direction of depolymerization and the fourth stabilizes them, their effects on the structure of microtubules cannot be explained by this. Using confocal microscopy after an acetylated anti-tubulin label, in nocodazole- and colchicine-treated cells, the basal body cages disappear and longitudinal microtubules (LM) became thinner without changing transversal microtubules (TM). After taxol treatment LM also became thinner, however TM disappeared. Under the effect of vinblastine TM became thinner, without influencing LM. These drugs influence the incorporation of components ([(3)H]-serine, [(3)H]-palmitic acid and (32)P) into phospholipids, however their effect is equivocal and cannot be consequently coupled with the effect on the microtubules. Nocodazole, vinblastine and taxol significantly reduced the cell's motility, however colchicine did so to a lesser degree. Vinblastine and nocodazole totally inhibited, and taxol significantly decreased cell growth, while colchicine in a lower concentration increased the multiplication of cells. Phagocytosis was not significantly influenced after 1 min, but after 5 min all the agents studied (except colchicine) significantly inhibited phagocytosis. After 15 and 30 min each molecule caused highly significant inhibition. The experiments demonstrate that drugs affecting microtubular assembly dynamics influence differently the diverse (longitudinal, transversal etc.) microtubular systems of Tetrahymena and also differently influence microtubule-dependent physiological processes. The latter are more dependent on microtubular dynamics than are changes in phospholipid signalling.

  6. Antibiotic Resistance in Aeromonas Upstream and Downstream of a Water Resource Recovery Facility

    PubMed Central

    Henderson, Samantha K.; Askew, Maegan L.; Risenhoover, Hollie G.; McAndrews, Chrystle R.; Kennedy, S. Dawn; Paine, C. Sue

    2014-01-01

    Aeromonas strains isolated from sediments upstream and downstream of a water resource recovery facility (WRRF) over a two-year time period were tested for susceptibility to thirteen antibiotics. Incidence of resistance to antibiotics, antibiotic resistance phenotypes, and diversity (based on resistance phenotypes) were compared in the two populations. At the beginning of the study, the upstream and downstream Aeromonas populations were different for incidence of antibiotic resistance (p < 0.01), resistance phenotypes (p < 0.005), and diversity. However, these differences declined over time and were not significant at the end of the study. These results (1) indicate that antibiotic resistance in Aeromonas in stream sediments fluctuates considerably over time and (2) suggest that WRRF effluent does not, when examined over the long term, affect antibiotic resistance in Aeromonas in downstream sediment. PMID:25327024

  7. Antibiotic resistance in Aeromonas upstream and downstream of a water resource recovery facility.

    PubMed

    Cisar, Cindy R; Henderson, Samantha K; Askew, Maegan L; Risenhoover, Hollie G; McAndrews, Chrystle R; Kennedy, S Dawn; Paine, C Sue

    2014-09-01

    Aeromonas strains isolated from sediments upstream and downstream of a water resource recovery facility (WRRF) over a two-year time period were tested for susceptibility to 13 antibiotics. Incidence of resistance to antibiotics, antibiotic resistance phenotypes, and diversity (based on resistance phenotypes) were compared in the two populations. At the beginning of the study, the upstream and downstream Aeromonas populations were different for incidence of antibiotic resistance (p < 0.01), resistance phenotypes (p < 0.005), and diversity. However, these differences declined over time and were not significant at the end of the study. These results (1) indicate that antibiotic resistance in Aeromonas in stream sediments fluctuates considerably over time and (2) suggest that WRRF effluent does not, when examined over the long- term, affect antibiotic resistance in Aeromonas in downstream sediment.

  8. Human I-mfa domain proteins specifically interact with KSHV LANA and affect its regulation of Wnt signaling-dependent transcription

    SciTech Connect

    Kusano, Shuichi; Eizuru, Yoshito

    2010-06-04

    Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteins interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.

  9. Circadian rhythms in healthy aging--effects downstream from the pacemaker

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Kupfer, D. J.

    2000-01-01

    Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms "downstream" from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24 h routine, sleeping at night) and unmasking (36 h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men).

  10. Mechanical signal transduction in skeletal muscle growth and adaptation.

    PubMed

    Tidball, James G

    2005-05-01

    The adaptability of skeletal muscle to changes in the mechanical environment has been well characterized at the tissue and system levels, but the mechanisms through which mechanical signals are transduced to chemical signals that influence muscle growth and metabolism remain largely unidentified. However, several findings have suggested that mechanical signal transduction in muscle may occur through signaling pathways that are shared with insulin-like growth factor (IGF)-I. The involvement of IGF-I-mediated signaling for mechanical signal transduction in muscle was originally suggested by the observations that muscle releases IGF-I on mechanical stimulation, that IGF-I is a potent agent for promoting muscle growth and affecting phenotype, and that IGF-I can function as an autocrine hormone in muscle. Accumulating evidence shows that at least two signaling pathways downstream of IGF-I binding can influence muscle growth and adaptation. Signaling via the calcineurin/nuclear factor of activated T-cell pathway has been shown to have a powerful influence on promoting the slow/type I phenotype in muscle but can also increase muscle mass. Neural stimulation of muscle can activate this pathway, although whether neural activation of the pathway can occur independent of mechanical activation or independent of IGF-I-mediated signaling remains to be explored. Signaling via the Akt/mammalian target of rapamycin pathway can also increase muscle growth, and recent findings show that activation of this pathway can occur as a response to mechanical stimulation applied directly to muscle cells, independent of signals derived from other cells. In addition, mechanical activation of mammalian target of rapamycin, Akt, and other downstream signals is apparently independent of autocrine factors, which suggests that activation of the mechanical pathway occurs independent of muscle-mediated IGF-I release.

  11. Do calcium-mediated cellular signalling pathways, prostaglandin E2 (PGE2), estrogen or progesterone receptor antagonists, or bacterial endotoxins affect bovine placental function in vitro?

    PubMed

    Weems, Y S; Randel, R D; Carstens, G E; Welsh, T H; Weems, C W

    2004-04-01

    media treated with RU-486 increased (P < or = 0.05) at 4 and 8 h compared to vehicle controls and was not affected by other treatments (P > or = 0.05). Concentrations of PGE2 in media at 4 and 8 h were lower (P < or = 0.05) when compared to controls except treatment with PGE2 at 4 and 8h and RU-486 at 8h (P > or = 0.05). PGF2alpha was increased (P < or = 0.05) by RU-486 at 8h and no other treatment affected PGF2alpha at 4 or 8 h (P < or = 0.05). In conclusion, modulators of cellular calcium signalling pathways given alone do not affect bovine placental progesterone secretion at the days studied and progesterone receptor-mediated events appear to suppress placental progesterone, PGF2alpha, and PGE2 secretion in cattle. In addition, PGE2 does not appear to regulate bovine placental progesterone secretion when the corpus luteum is functional and bacterial endotoxin does not appear to affect bovine placental secretion of PGF2alpha or PGE2. PMID:15287156

  12. AERIAL VIEW FACING NORTH. DOWNSTREAM VIEW OF FABRIC BUILDING, STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW FACING NORTH. DOWNSTREAM VIEW OF FABRIC BUILDING, STRUCTURAL WAREHOUSE, RAIL MILL, & OPEN HEARTH COMPLEX. - Pittsburgh Steel Company, Monessen Works, Donner Avenue, Monessen, Westmoreland County, PA

  13. 7. STONE PIER OF ORIGINAL WATERWHEEL INSTALLATION DOWNSTREAM FROM MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. STONE PIER OF ORIGINAL WATERWHEEL INSTALLATION DOWNSTREAM FROM MILL William E. Barrett, photographer, 1973 (copy negative) - Thomas Shepherd's Grist Mill, High Street Vicinity, Shepherdstown, Jefferson County, WV

  14. 5. DOWNSTREAM ELEVATION OF BRIDGE AND SUBSTRUCTURE (with graduated meter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DOWNSTREAM ELEVATION OF BRIDGE AND SUBSTRUCTURE (with graduated meter pole); VIEW TO NORTH-NORTHEAST. - Auwaiakeakua Bridge, Spanning Auwaiakekua Gulch at Mamalahoa Highway, Waikoloa, Hawaii County, HI

  15. eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs.

    PubMed

    Li, Haiquan; Pouladi, Nima; Achour, Ikbel; Gardeux, Vincent; Li, Jianrong; Li, Qike; Zhang, Hao Helen; Martinez, Fernando D; 'Skip' Garcia, Joe G N; Lussier, Yves A

    2015-12-01

    The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large

  16. eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs.

    PubMed

    Li, Haiquan; Pouladi, Nima; Achour, Ikbel; Gardeux, Vincent; Li, Jianrong; Li, Qike; Zhang, Hao Helen; Martinez, Fernando D; Garcia, Joe G N 'Skip'; Lussier, Yves A

    2015-12-01

    The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large

  17. Extremely Low-Frequency Electromagnetic Fields Affect the miRNA-Mediated Regulation of Signaling Pathways in the GC-2 Cell Line

    PubMed Central

    Liu, Kai-jun; Ao, Lin; Cao, Jia; Zhong, Julia Li; Liu, Jin-yi

    2015-01-01

    Extremely low-frequency electromagnetic fields (ELF-EMFs) can affect male reproductive function, but the underlying mechanism of this effect remains unknown. miRNA-mediated regulation has been implicated as an important epigenetic mechanism for regulatory pathways. Herein, we profiled miRNA expression in response to ELF-EMFs in vitro. Mouse spermatocyte-derived GC–2 cells were intermittently exposed to a 50 Hz ELF-EMF for 72 h (5 min on/10 min off) at magnetic field intensities of 1 mT, 2 mT and 3 mT. Cell viability was assessed using the CCK–8 assay. Apoptosis and the cell cycle were analyzed with flow cytometry. miRNA expression was profiled using Affymetrix Mouse Genechip miRNA 3.0 arrays. Our data showed that the growth, apoptosis or cell cycle arrest of GC–2 cells exposed to the 50 Hz ELF-EMF did not significantly change. However, we identified a total of 55 miRNAs whose expression significantly changed compared with the sham group, including 19 differentially expressed miRNAs (7 miRNAs were upregulated, and 12 were downregulated) in the 1 mT exposure group and 36 (9 miRNAs were upregulated, and 27 were downregulated) in the 3 mT exposure group. The changes in the expression of 15 selected miRNAs measured by real-time PCR were consistent with the microarray results. A network analysis was used to predict core miRNAs and target genes, including miR-30e-5p, miR-210-5p, miR-196b-5p, miR-504-3p, miR-669c-5p and miR-455-3p. We found that these miRNAs were differentially expressed in response to different magnetic field intensities of ELF-EMFs. GO term and KEGG pathway annotation based on the miRNA expression profiling results showed that miRNAs may regulate circadian rhythms, cytokine-cytokine receptor interactions and the p53 signaling pathway. These results suggested that miRNAs could serve as potential biomarkers, and the miRNA-mediated regulation of signaling pathways might play significant roles in the biological effects of ELF-EMFs. PMID:26439850

  18. Corrosion impact of reductant on DWPF and downstream facilities

    SciTech Connect

    Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.; Murphy, T. H.; Wilderman, J. E.

    2014-12-01

    , components and piping were not impacted with the presence of glycolic acid or the impact is not expected to affect the service life. However, the presence of the glycolate anion was found to affect corrosion susceptibility of some materials of construction in the DWPF and downstream facilities, especially at elevated temperatures. The following table summarizes the results of the electrochemical and hot wall testing and indicates expected performance in service with the glycolate anion present.

  19. Elevated Peritoneal Fluid TNF-α Incites Ovarian Early Growth Response Factor 1 Exp