Sample records for affect drinking water

  1. Your Drinking Water Source | Drinking Water in New England ...

    EPA Pesticide Factsheets

    2017-07-06

    Local communities are responsible for protecting their community's drinking water, and as a citizen, you can directly affect the success or failure of your community's drinking water protection efforts.

  2. Change of water consumption and its potential influential factors in Shanghai: A cross-sectional study

    PubMed Central

    2012-01-01

    Background Different water choices affect access to drinking water with different quality. Previous studies suggested social-economic status may affect the choice of domestic drinking water. The aim of this study is to investigate whether recent social economic changes in China affect residents’ drinking water choices. Methods We conducted a cross-sectional survey to investigate residents’ water consumption behaviour in 2011. Gender, age, education, personal income, housing condition, risk perception and personal preference of a certain type of water were selected as potential influential factors. Univariate and backward stepwise logistic regression analyses were performed to analyse the relation between these factors and different drinking water choices. Basic information was compared with that of a historical survey in the same place in 2001. Self-reported drinking-water-related diarrhoea was found correlated with different water choices and water hygiene treatment using chi-square test. Results The percentage of tap water consumption remained relatively stable and a preferred choice, with 58.99% in 2001 and 58.25% in 2011. The percentage of bottled/barrelled water consumption was 36.86% in 2001 and decreased to 25.75% in 2011. That of household filtrated water was 4.15% in 2001 and increased to 16.00% in 2011. Logistic regression model showed strong correlation between one’s health belief and drinking water choices (P < 0.001). Age, personal income, education, housing condition, risk perception also played important roles (P < 0.05) in the models. Drinking-water-related diarrhoea was found in all types of water and improper water hygiene behaviours still existed among residents. Conclusions Personal health belief, housing condition, age, personal income, education, taste and if worm ever founded in tap water affected domestic drinking water choices in Shanghai. PMID:22708830

  3. Change of water consumption and its potential influential factors in Shanghai: a cross-sectional study.

    PubMed

    Chen, Hanyi; Zhang, Yaying; Ma, Linlin; Liu, Fangmin; Zheng, Weiwei; Shen, Qinfeng; Zhang, Hongmei; Wei, Xiao; Tian, Dajun; He, Gengsheng; Qu, Weidong

    2012-06-18

    Different water choices affect access to drinking water with different quality. Previous studies suggested social-economic status may affect the choice of domestic drinking water. The aim of this study is to investigate whether recent social economic changes in China affect residents' drinking water choices. We conducted a cross-sectional survey to investigate residents' water consumption behaviour in 2011. Gender, age, education, personal income, housing condition, risk perception and personal preference of a certain type of water were selected as potential influential factors. Univariate and backward stepwise logistic regression analyses were performed to analyse the relation between these factors and different drinking water choices. Basic information was compared with that of a historical survey in the same place in 2001. Self-reported drinking-water-related diarrhoea was found correlated with different water choices and water hygiene treatment using chi-square test. The percentage of tap water consumption remained relatively stable and a preferred choice, with 58.99% in 2001 and 58.25% in 2011. The percentage of bottled/barrelled water consumption was 36.86% in 2001 and decreased to 25.75% in 2011. That of household filtrated water was 4.15% in 2001 and increased to 16.00% in 2011. Logistic regression model showed strong correlation between one's health belief and drinking water choices (P < 0.001). Age, personal income, education, housing condition, risk perception also played important roles (P < 0.05) in the models. Drinking-water-related diarrhoea was found in all types of water and improper water hygiene behaviours still existed among residents. Personal health belief, housing condition, age, personal income, education, taste and if worm ever founded in tap water affected domestic drinking water choices in Shanghai.

  4. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    EPA Science Inventory

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  5. Measuring sporadic gastrointestinal illness associated with drinking water - an overview of methodologies.

    PubMed

    Bylund, John; Toljander, Jonas; Lysén, Maria; Rasti, Niloofar; Engqvist, Jannes; Simonsson, Magnus

    2017-06-01

    There is an increasing awareness that drinking water contributes to sporadic gastrointestinal illness (GI) in high income countries of the northern hemisphere. A literature search was conducted in order to review: (1) methods used for investigating the effects of public drinking water on GI; (2) evidence of possible dose-response relationship between sporadic GI and drinking water consumption; and (3) association between sporadic GI and factors affecting drinking water quality. Seventy-four articles were selected, key findings and information gaps were identified. In-home intervention studies have only been conducted in areas using surface water sources and intervention studies in communities supplied by ground water are therefore needed. Community-wide intervention studies may constitute a cost-effective alternative to in-home intervention studies. Proxy data that correlate with GI in the community can be used for detecting changes in the incidence of GI. Proxy data can, however, not be used for measuring the prevalence of illness. Local conditions affecting water safety may vary greatly, making direct comparisons between studies difficult unless sufficient knowledge about these conditions is acquired. Drinking water in high-income countries contributes to endemic levels of GI and there are public health benefits for further improvements of drinking water safety.

  6. Analytical Modeling of Aquifer Decontamination by Pulsed Pumping When Contaminant Transport is Affected by Rate-Limited Sorption and Desorption

    DTIC Science & Technology

    1993-09-01

    CONTAMINANT TRANSPORT IS AFFECTED BY RATE-LIMITED SORPTION AND DESORPTION IgIntroduction Groundwater is the source of drinking water for...depend upon groundwater as their drinking water source [Wentz, 1989:271] . Historically, groundwater has been considered an unlimited and safe source...of drinking water. However, the widespread contamination of groundwater due to years of accidental or deliberate dumping of various synthetic organic

  7. Arsenic in Drinking Water in Bangladesh: Factors Affecting Child Health

    PubMed Central

    Aziz, Sonia N.; Aziz, Khwaja M. S.; Boyle, Kevin J.

    2014-01-01

    The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people’s individuals’ time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children’s health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854

  8. [Self-perception of fluorosis due to fluoride exposure to drinking water and dentifrice].

    PubMed

    de Menezes, Léa Maria Bezerra; de Sousa, Maria da Luz Rosário; Rodrigues, Lidiany Karla Azevedo; Cury, Jaime Aparecido

    2002-12-01

    The impact of dental fluorosis in children exposed to fluoride in drinking water and dentifrice was evaluated. Dental fluorosis was found in 72% of the children, but the children's well-being was not affected. It was concluded that although dental fluorosis due to the intake of optimally fluoridated drinking water and dentifrice did not affect the dental aesthetics of this studied population sample, there is a need of further studies on the subject.

  9. METHOD DEVELOPMENT FOR THE LOW-LEVEL DETERMINATION OF PERCHLORATE IN DRINKING WATER

    EPA Science Inventory

    Perchlorate anion has been found in numerous drinking water supplies at concentrations that recent studies indicate may adversely affect human health. In order to measure perchlorate at levels of health concern in drinking water, there is a need to be able to quantify perchlorat...

  10. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    PubMed

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Utilisation of drinking water treatment sludge for the manufacturing of ceramic products

    NASA Astrophysics Data System (ADS)

    Kizinievič, O.; Kizinievič, V.

    2017-10-01

    The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.

  12. Emergency Response Planning to Reduce the Impact of Contaminated Drinking Water during Natural Disasters

    EPA Science Inventory

    Natural disasters can be devastating to local water supplies affecting millions of people. Disaster recovery plans and water industry collaboration during emergencies protect consumers from contaminated drinking water supplies and help facilitate the repair of public water system...

  13. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    PubMed

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to maintain good drinking water microbial quality up to consumer's tap. A new definition and methodological approach for biological stability is proposed.

  14. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    PubMed Central

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to maintain good drinking water microbial quality up to consumer’s tap. A new definition and methodological approach for biological stability is proposed. PMID:26870010

  15. Degradation of Nicotine in Chlorinated Water: Pathways and ...

    EPA Pesticide Factsheets

    Report The objective of the study is to illustrate how drinking water would affect alkaloid pesticides, and to address the issue by (a) investigating the fate of nicotine in chlorinated drinking water and deionized water, (b) determining the reaction rate and pathway of the reaction between nicotine and aqueous chlorine, (c) identifying nicotine’s degradation products, and (d) providing data that can be used to assess the potential threat from nicotine in drinking water.

  16. DETERMINATION OF PERCHLORATE IN INDUSTRIAL AND FOODGRADE CHEMICALS

    EPA Science Inventory

    Perchlorate anion has been found in numerous drinking water supplies at concentrations that recent studies indicate may adversely affect human health. In collaboration with the Office of Ground Water and Drinking Water (OGWDW) and Dionex Corporation, the National Exposure Resea...

  17. INTERACTIVE WORKSHOP ON ARSENIC REMOVAL FROM DRINKING WATER

    EPA Science Inventory

    In 2005, EPA's Office of Water and Office of Research and Development collaborated to present eleven arsenic training events. The workshops provided in-depth treatment technology training to help those affected; state drinking water staff, design engineers, system owners and cert...

  18. 75 FR 8697 - Notice of Availability of Class Deviation; Disputes Resolution Procedures Related to Clean Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Resolution Procedures Related to Clean Water and Drinking Water State Revolving Fund (CWSRF and DWSRF... funds appropriated * * * for the Clean and Drinking Water State Revolving Funds (Revolving Funds) where... Order 13211, ``Actions Concerning Regulations that Significantly Affect Energy Supply, Distribution, or...

  19. Factors Affecting Atrazine Concentration and Quantitative Determination in Chlorinated Water

    EPA Science Inventory

    Although the herbicide atrazine has been reported to not react measurably with free chlorine during drinking water treatment, this work demonstrates that at contact times consistent with drinking water distribution system residence times, a transformation of atrazine can be obser...

  20. Drinking water for dairy cattle: always a benefit or a microbiological risk?

    PubMed

    Van Eenige, M J E M; Counotte, G H M; Noordhuizen, J P T M

    2013-02-01

    Drinking water can be considered an essential nutrient for dairy cattle. However, because it comes from different sources, its chemical and microbiological quality does not always reach accepted standards. Moreover, water quality is not routinely assessed on dairy farms. The microecology of drinking water sources and distribution systems is rather complex and still not fully understood. Water quality is adversely affected by the formation of biofilms in distribution systems, which form a persistent reservoir for potentially pathogenic bacteria. Saprophytic microorganisms associated with such biofilms interact with organic and inorganic matter in water, with pathogens, and even with each other. In addition, the presence of biofilms in water distribution systems makes cleaning and disinfection difficult and sometimes impossible. This article describes the complex dynamics of microorganisms in water distribution systems. Water quality is diminished primarily as a result of faecal contamination and rarely as a result of putrefaction in water distribution systems. The design of such systems (with/ without anti-backflow valves and pressure) and the materials used (polyethylene enhances biofilm; stainless steel does not) affect the quality of water they provide. The best option is an open, funnel-shaped galvanized drinking trough, possibly with a pressure system, air inlet, and anti-backflow valves. A poor microbiological quality of drinking water may adversely affect feed intake, and herd health and productivity. In turn, public health may be affected because cattle can become a reservoir of microorganisms hazardous to humans, such as some strains of E. coli, Yersinia enterocolitica, and Campylobacter jejuni. A better understanding of the biological processes in water sources and distribution systems and of the viability of microorganisms in these systems may contribute to better advice on herd health and productivity at a farm level. Certain on-farm risk factors for water quality have been identified. A practical approach will facilitate the control and management of these risks, and thereby improve herd health and productivity.

  1. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  2. Methyl tert-butyl ether (MTBE) in finished drinking water in Germany.

    PubMed

    Kolb, Axel; Püttmann, Wilhelm

    2006-03-01

    In the present study 83 finished drinking water samples from 50 cities in Germany were analyzed for methyl tert-butyl ether (MTBE) content with a detection limit of 10 ng/L. The detection frequency was 46% and the concentrations ranged between 17 and 712 ng/L. Highest concentrations were found in the community water systems (CWSs) of Leuna and Spergau in Saxony-Anhalt. These CWSs are supplied with water possibly affected by MTBE contaminated groundwater. MTBE was detected at concentrations lower than 100 ng/L in drinking water supplied by CWSs using bank filtered water from Rhine and Main Rivers. The results from Leuna and Spergau show that large groundwater contaminations in the vicinity of CWSs pose the highest risk for MTBE contamination in drinking water. CWSs using bank filtered water from Rhine and Main Rivers are susceptible to low MTBE contaminations in finished drinking water. All measured MTBE concentrations were below proposed limit values for drinking water.

  3. Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July-September 2013.

    PubMed

    Aktas, Dilber; Celebi, Bekir; Isik, Mehmet Emirhan; Tutus, Celal; Ozturk, Huseyin; Temel, Fehminaz; Kizilaslan, Mecit; Zhu, Bao-Ping

    2015-12-01

    In 2013, an oropharyngeal tularemia outbreak in Turkey affected 55 persons. Drinking tap water during the likely exposure period was significantly associated with illness (attack rate 27% vs. 11% among non-tap water drinkers). Findings showed the tap water source had been contaminated by surface water, and the chlorination device malfunctioned.

  4. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  5. Availability of water affects renewal of tissues in migratory blackcaps during stopover.

    PubMed

    Mizrahy, Ortal; Bauchinger, Ulf; Aamidor, Sarah E; McWilliams, Scott R; Pinshow, Berry

    2011-09-01

    Migrating blackcaps (Sylvia atricapilla) were used to test the predictions that (1) the rebuilding of the digestive tract, as reflected by mass-specific consumption of food on the first 2-3 days of a stopover, is faster in birds with access to drinking water than in birds without, and (2) that adipose tissue and pectoral muscles grow faster and to a greater extent in birds with unlimited access to water. We simulated migratory stopover in two experiments. In Experiment I, each of 31 birds was randomly assigned to one of three experimental groups for 6 days. Along with mealworms (∼64% water) ad libitum, Group 1 received drinking water ad libitum; Group 2 had 0.5 h/day access to water; and Group 3 had no access to water. In Experiment II, 30 birds were offered a mixed diet for insectivorous birds (∼33% water) ad libitum for 6 days, while randomly assigned to two groups: (1) Water ad libitum-control; and (2) 30 min access to water twice a day. We measured lean mass and fat mass using dual energy X-ray absorptiometry, as well as body mass (m(b)), pectoral muscle index (PMI), and daily intake of food and water. Mean daily water intake was significantly different among the groups in both experiments. However, the availability of drinking water positively affected the rates of gain of lean and fat mass only in birds fed with the mixed, relatively dry diet. Furthermore, mass-specific daily food intake was affected by the availability of drinking water only in the mixed diet experiment, in which birds with unlimited access to drinking water reached an asymptote, 1 day earlier than birds in the water-restricted group. We suggest that in birds consuming diets with low water content, the lack of sufficient drinking water may result in slower rebuilding of the digestive tract, or may influence biochemical processes in the gut that result in slower growth of tissue. Although blackcaps obtained sufficient water from preformed and metabolic water to renew lost tissues when eating mealworms, given access to water, the birds drank prodigiously. Our results also suggest that if drinking water is unavailable to migrating blackcaps, their choices are restricted to water-rich foods, which may constrain their rate of feeding and thus the rate at which they deposit fat. Consequently, drinking water may have an important influence on birds' migratory strategies with respect to habitat selection, use of energy, and the saving of time.

  6. Effects Of Haloacetic Acid Mixtures in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    EPA Science Inventory

    The haloacetic acids (HAAs) are a class of chemicals produced as byproducts of drinking water disinfection. Source water characteristics (such as level of bromide) affects which HAAs are present in drinking water and their concentration. For example, high bromide-source water wil...

  7. ALUMINUM BIOAVAILABILITY FROM DRINKING WATER IS VERY LOW AND IS NOT APPRECIABLY INFLUENCED BY STOMACH CONTENTS OR WATER HARDNESS. (R825357)

    EPA Science Inventory

    The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intra...

  8. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    PubMed

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Urinary fluoride as a monitoring tool for assessing successful intervention in the provision of safe drinking water supply in five fluoride-affected villages in Dhar district, Madhya Pradesh, India.

    PubMed

    Srikanth, R; Gautam, Anil; Jaiswal, Suresh Chandra; Singh, Pavitra

    2013-03-01

    Endemic fluorosis was detected in 31 villages in the Dhar district of Madhya Pradesh, Central India. Out of the 109 drinking water sources that were analyzed, about 67 % were found to contain high concentration of fluoride above the permissible level of 1.0 mg/l. Dental fluorosis among the primary school children in the age between 8 and 15 served as primary indicator for fluoride intoxication among the children. Urinary fluoride levels among the adults were found to be correlated with drinking water fluoride in 10 villages affected by fluoride. Intervention in the form of alternate safe water supply in five villages showed significant reduction in the urinary fluoride concentration when compared to the control village. Urinary fluoride serves as an excellent marker for assessing the effectiveness of intervention program in the fluoride-affected villages.

  10. LIQUID CHROMATOGRAPHY/MASS SPECTROMETRY LIBRARY AND STRATEGY FOR IDENTIFYING HARMFUL ORGANICS IN DRINKING WATER

    EPA Science Inventory

    This project will demonstrate ways to detect contaminants by LC/MS technologies in order to protect water systems and environments. Contaminants can affect drinking water usage and limit acceptable sources of ground and reservoir supplies. The analytical method to enhance the s...

  11. Problems with provision: barriers to drinking water quality and public health in rural Tasmania, Australia.

    PubMed

    Whelan, Jessica J; Willis, Karen

    2007-01-01

    Access to safe drinking water is essential to human life and wellbeing, and is a key public health issue. However, many communities in rural and regional parts of Australia are unable to access drinking water that meets national standards for protecting human health. The aim of this research was to identify the key issues in and barriers to the provision and management of safe drinking water in rural Tasmania, Australia. Semi-structured interviews were conducted with key local government employees and public health officials responsible for management of drinking water in rural Tasmania. Participants were asked about their core public health duties, regulatory responsibilities, perceptions and management of risk, as well as the key barriers that may be affecting the provision of safe drinking water. This research highlights the effect of rural locality on management and safety of fresh water in protecting public health. The key issues contributing to problems with drinking water provision and quality identified by participants included: poor and inadequate water supply infrastructure; lack of resources and staffing; inadequate catchment monitoring; and the effect of competing land uses, such as forestry, on water supply quality. This research raises issues of inequity in the provision of safe drinking water in rural communities. It highlights not only the increasing need for greater funding by state and commonwealth government for basic services such as drinking water, but also the importance of an holistic and integrated approach to managing drinking water resources in rural Tasmania.

  12. Toxicological relevance of emerging contaminants for drinking water quality.

    PubMed

    Schriks, Merijn; Heringa, Minne B; van der Kooi, Margaretha M E; de Voogt, Pim; van Wezel, Annemarie P

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values were available. Provisional drinking water guideline values were based upon toxicological literature data. The maximum concentration levels reported in surface waters, groundwater and/or drinking water were compared to the (provisional) guideline values of the contaminants thus obtained, and expressed as Benchmark Quotient (BQ) values. We focused on occurrence data in the downstream parts of the Rhine and Meuse river basins. The results show that for the majority of compounds a substantial margin of safety exists between the maximum concentration in surface water, groundwater and/or drinking water and the (provisional) guideline value. The present assessment therefore supports the conclusion that the majority of the compounds evaluated pose individually no appreciable concern to human health. (c) 2009 Elsevier Ltd. All rights reserved.

  13. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles?

    PubMed

    Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David

    2015-11-15

    Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide.

    PubMed

    Sazakli, Eleni; Zouvelou, Stavroula V; Kalavrouziotis, Ioannis; Leotsinidis, Michalis

    2015-01-01

    Arsenic and antimony occur in drinking water due to natural weathering or anthropogenic activities. There has been growing concern about their impact on health. The aim of this study was to assess the efficiency of a granular ferric oxide adsorbent medium to remove arsenic and antimony from drinking water via rapid small-scale column tests (RSSCTs). Three different water matrices - deionized, raw water treated with a reverse osmosis domestic device and raw water - were spiked with arsenic and/or antimony to a concentration of 100 μg L⁻¹. Both elements were successfully adsorbed onto the medium. The loadings until the guideline value was exceeded in the effluent were found to be 0.35-1.63 mg g⁻¹ for arsenic and 0.12-2.11 mg g⁻¹ for antimony, depending on the water matrix. Adsorption of one element was not substantially affected by the presence of the other. Aeration did not affect significantly the adsorption capacity. Granular ferric oxide could be employed for the simultaneous removal of arsenic and antimony from drinking water, whereas full-scale systems should be assessed via laboratory tests before their implementation.

  15. Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan.

    PubMed

    Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2017-06-01

    Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population.

  16. Arsenic in drinking water and peripheral nerve conduction velocity among residents of a chronically arsenic-affected area in Inner Mongolia.

    PubMed

    Fujino, Yoshihisa; Guo, Xiaojuan; Shirane, Kiyoyumi; Liu, Jun; Wu, Kegong; Miyatake, Munetoshi; Tanabe, Kimiko; Kusuda, Tetsuya; Yoshimura, Takesumi

    2006-09-01

    It remains unclear whether chronic ingestion of arsenic in drinking water affects the peripheral nervous system. We examined the effects of arsenic exposure on nerve conduction velocity using electromyography. A cross-sectional study was conducted of a population living in an arsenic-affected village in Hetao Plain, Inner Mongolia, China. A total of 134 (93.7%) of 143 inhabitants took part in the study, and 36 (76.6%) of 47 inhabitants in a low-arsenic exposed village were recruited as a control group. Of the participants, 109 inhabitants in the arsenic-affected village and 32 in the low-arsenic exposed village aged > or =18 years were used for the analyses. An expert physician performed skin examinations, and median nerve conduction velocity was examined by electromyography. Arsenic levels in tube-well water and urine were measured. A mean level of arsenic in tube-well water in the arsenic-affected village was 158.3 microg/L, while that in the low-arsenic exposed village was 5.3 microg/L. No significant differences in the means of the motor nerve conduction velocity (MCV) and sensory nerve conduction velocity (SCV) were observed in relation to arsenic levels in tube wells, urine, and the duration of tube-well use. Further, no differences in mean MCV or SCV were found between the subjects with and without arsenic dermatosis, with mean SCV of 52.8 m/s (SD 6.3) in those without and 54.6 m/s (5.2) in subjects with arsenic dermatosis (p=0.206). These findings suggest that chronic arsenic poisoning from drinking water is unlikely to affect nerve conduction velocity, at least within the range of arsenic in drinking water examined in the present study.

  17. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water.

    PubMed

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2012-10-15

    Water lice, Asellus aquaticus (isopoda), frequently occur in drinking water distribution systems where they are a nuisance to consumers and water utilities. Whether they are solely an aesthetic problem or also affect the microbial water quality is a matter of interest. We studied the influence of A. aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni decreased over time, following a first order decay with half lives of 5.3, 18.4 and 1.3 days, respectively. A. aquaticus did not affect survival of indicators and pathogens substantially whereas HPC were influenced by presence of dead A. aquaticus. Growth rates increased with an average of 48% for bacteria grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were A. aquaticus associated heterotrophic bacteria (>1.8*10(4) CFU per living and >6*10(4) CFU per dead A. aquaticus). A. aquaticus did not serve as an optimised habitat that increased survival of indicators and pathogens, since A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were only measured as long as the bacteria were also present in the water and sediment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Public perception and economic implications of bottled water consumption in underprivileged urban areas.

    PubMed

    Massoud, M A; Maroun, R; Abdelnabi, H; Jamali, I I; El-Fadel, M

    2013-04-01

    This paper presents a comparative assessment of public perception of drinking water quality in two underprivileged urban areas in Lebanon and Jordan with nearly similar cultural and demographic characteristics. It compares the quality of bottled water to the quality of the drinking water supplied through the public network and examines the economic implications of bottled water consumption in the two study areas. Participants' perception of the quality of drinking water provided via the public network was generally negative, and bottled water was perceived to be of better quality in both areas, thus affecting drinking water preferences and consumption patterns. The results reveal that the quality of bottled water is questionable in areas that lack enforcement of water quality standards, thus adding to the burden of an already disadvantaged community. Both areas demonstrated a considerable cost incurred for purchasing bottled water in low income communities reaching up to 26 % of total income.

  19. Drinking water incidents due to chemical contamination in England and Wales, 2006-2008.

    PubMed

    Paranthaman, Karthikeyan; Harrison, Henrietta

    2010-12-01

    Contamination of drinking water by microbiological and chemical agents can lead to adverse health effects. In England and Wales, the Chemicals Hazards and Poisons Division (CHaPD) of the Health Protection Agency provides expert advice on the consequences to public health of chemical contamination incidents affecting drinking water. In this study, we extracted data from the National Database on the type and nature of drinking water contamination events reported to the CHaPD between 2006 and 2008. Eighty-two incidents with confirmed chemical contamination were identified. Among the 70 incidents where data was available, 40% (28/70) of incidents related to contamination of drinking water provided by private suppliers, 31% (22/70) were due to contamination occurring close to the point of consumption (i.e. near consumer) and 29% (20/70) related to incidents where public water supplies were identified as the contaminated source. For the majority of incidents, little or no information was available on the critical exposure variables such as duration of contamination and actual or estimates of the population affected. Reassuringly, the levels of exposure in most incidents were considered unlikely to cause serious immediate or long term ill health effects. Recording of exposure data for reported contamination incidents needs to be improved.

  20. THE EFFECTS OF SCALE, DISTANCE AND TIME ON DRINKING WATER SYSTEMS RESEARCH

    EPA Science Inventory

    This presentation introduces and describes many components related to what generates and/or controls the concentrations of metals and other constituents in drinking water. Emphasis is placed on ways in which sampling protocol affects apparent levels of constituents, and the magn...

  1. A REVIEW OF EPIDEMIOOGICAL STUDIES ON DRINKING WATER HARDNESS AND CARDIOVASCULAR DISEASES

    EPA Science Inventory

    Major risk factors do not entirely explain the worldwide variability of morbidity and mortality due to

    cardiovascular disease. Several environmental factors, including the hardness of drinking water may

    affect cardiovascular disease risks. We conducted a qualitative...

  2. The U.S. Geological Survey Drinking Water Initiative

    USGS Publications Warehouse

    ,

    1997-01-01

    Safe drinking-water supplies are critical to maintaining and preserving public health. Although the Nation's drinking water is generally safe, natural and introduced contaminants in water supplies throughout the country have adversely affected human health. This new U.S. Geological Survey (USGS) initiative will provide information on the vulnerability of water supplies to be used by water-supply and regulatory agencies who must balance water-supply protection with the wise use of public funds. Using the results of the initiative, they will be better able to focus on the supplies most at risk and the variability of contaminants of most concern, and so address the mandates of the Safe Drinking Water Act. With its store of geologic, hydrologic, and land use and land cover data and its network of information in every State, the USGS can help to identify potential sources of contamination, delineate source areas, determine the vulnerability of waters to potential contamination, and evaluate strategies being used to protect source waters in light of the scientific information available. Many recent and ongoing studies by the USGS concern drinking-water issues. This fact sheet highlights four particular studies begun under the Drinking Water Initiative.

  3. Review of epidemiological studies on drinking water hardness and cardiovascular diseases.

    PubMed

    Monarca, Silvano; Donato, Francesco; Zerbini, Ilaria; Calderon, Rebecca L; Craun, Gunther F

    2006-08-01

    Major risk factors do not entirely explain the worldwide variability of morbidity and mortality due to cardiovascular disease. Environmental exposures, including drinking water minerals may affect cardiovascular disease risks. We conducted a qualitative review of the epidemiological studies of cardiovascular disease and drinking water hardness and calcium and magnesium levels. Many but not all ecological studies found an inverse (i.e., protective) association between cardiovascular disease mortality and water hardness, calcium, or magnesium levels; but results are not consistent. Some case-control studies and one cohort study found either a reduced cardiovascular disease mortality risk with increased drinking water magnesium levels or an increased risk with low magnesium levels. However, the analytical studies provide little evidence that cardiovascular risks are associated with drinking water hardness or calcium levels. Information from epidemiological and other studies supports the hypothesis that a low intake of magnesium may increase the risk of dying from, and possibly developing, cardiovascular disease or stroke. Thus, not removing magnesium from drinking water, or in certain situations increasing the magnesium intake from water, may be beneficial, especially for populations with an insufficient dietary intake of the mineral.

  4. Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries.

    PubMed

    Bain, Rob E S; Gundry, Stephen W; Wright, Jim A; Yang, Hong; Pedley, Steve; Bartram, Jamie K

    2012-03-01

    To determine how data on water source quality affect assessments of progress towards the 2015 Millennium Development Goal (MDG) target on access to safe drinking-water. Data from five countries on whether drinking-water sources complied with World Health Organization water quality guidelines on contamination with thermotolerant coliform bacteria, arsenic, fluoride and nitrates in 2004 and 2005 were obtained from the Rapid Assessment of Drinking-Water Quality project. These data were used to adjust estimates of the proportion of the population with access to safe drinking-water at the MDG baseline in 1990 and in 2008 made by the Joint Monitoring Programme for Water Supply and Sanitation, which classified all improved sources as safe. Taking account of data on water source quality resulted in substantially lower estimates of the percentage of the population with access to safe drinking-water in 2008 in four of the five study countries: the absolute reduction was 11% in Ethiopia, 16% in Nicaragua, 15% in Nigeria and 7% in Tajikistan. There was only a slight reduction in Jordan. Microbial contamination was more common than chemical contamination. The criterion used by the MDG indicator to determine whether a water source is safe can lead to substantial overestimates of the population with access to safe drinking-water and, consequently, also overestimates the progress made towards the 2015 MDG target. Monitoring drinking-water supplies by recording both access to water sources and their safety would be a substantial improvement.

  5. A Drinking Water Sensor for Lead and Other Heavy Metals.

    PubMed

    Lin, Wen-Chi; Li, Zhongrui; Burns, Mark A

    2017-09-05

    Leakage of lead and other heavy metals into drinking water is a significant health risk and one that is not easily detected. We have developed simple sensors containing only platinum electrodes for the detection of heavy metal contamination in drinking water. The two-electrode sensor can identify the existence of a variety of heavy metals in drinking water, and the four-electrode sensor can distinguish lead from other heavy metals in solution. No false-positive response is generated when the sensors are placed in simulated and actual tap water contaminated by heavy metals. Lead detection on the four-electrode sensor is not affected by the presence of common ions in tap water. Experimental results suggest the sensors can be embedded in water service lines for long-time use until lead or other heavy metals are detected. With its low cost (∼$0.10/sensor) and the possibility of long-term operation, the sensors are ideal for heavy metal detection of drinking water.

  6. Challenges in Addressing Variability Of Lead in Domestic Plumbing

    EPA Science Inventory

    Current data indicate that lead exposure is of concern even at low concentrations. Corrosion is an important problem in drinking water because it can affect public health due to leaching of lead or other metals into the drinking water. For this reason, a corrosion control program...

  7. Influence of the subfornical organ on meal-associated drinking in rats.

    PubMed

    Starbuck, E M; Fitts, D A

    2001-03-01

    A lesion of the subfornical organ (SFO) may disrupt drinking after a meal of dry chow as it does drinking after intragastric administration of hypertonic saline. Food and water intakes of SFO-lesioned (SFOX) and sham-lesioned rats were measured during 90-min tests following various lengths of food deprivation. During the tests, all rats began eating before they began drinking. After 20-24 h of food deprivation, latency to begin drinking after eating had started was longer for SFOX than for sham-lesioned rats. Plasma osmolality was elevated by 2-3% in both lesion groups at 12 min, the latency for sham-lesioned rats to drink, but SFOX rats nevertheless continued eating and delayed drinking. Eating after shorter 4-h food deprivations and ad libitum feeding produced more variable drinking latencies and less consistent effects of SFO lesion. During 24 h of water deprivation, SFO lesion had no effect on the suppression of food intake and did not affect food or water intakes during the first 2 h of subsequent rehydration. These findings indicate that the SFO is involved in initiating water intake during eating and in determining drinking patterns and the amount of water ingested during a meal.

  8. The Perspective of Riverbank Filtration in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China. Additionally, the experience has demonstrated a number of water quality improvements associated with riverbank filtration. It is important to stress that the fate and behavior of emerging organic contaminants during riverbank filtration should be taken into special consideration.

  9. Comparison of culture and qPCR methods in detection of mycobacteria from drinking waters.

    PubMed

    Räsänen, Noora H J; Rintala, Helena; Miettinen, Ilkka T; Torvinen, Eila

    2013-04-01

    Environmental mycobacteria are common bacteria in man-made water systems and may cause infections and hypersensitivity pneumonitis via exposure to water. We compared a generally used cultivation method and a quantitative polymerase chain reaction (qPCR) method to detect mycobacteria in 3 types of drinking waters: surface water, ozone-treated surface water, and groundwater. There was a correlation between the numbers of mycobacteria obtained by cultivation and qPCR methods, but the ratio of the counts obtained by the 2 methods varied among the types of water. The qPCR counts in the drinking waters produced from surface or groundwater were 5 to 34 times higher than culturable counts. In ozone-treated surface waters, both methods gave similar counts. The ozone-treated drinking waters had the highest concentration of assimilable organic carbon, which may explain the good culturability. In warm tap waters, qPCR gave 43 times higher counts than cultivation, but both qPCR counts and culturable counts were lower than those in the drinking waters collected from the same sites. The TaqMan qPCR method is a rapid and sensitive tool for total quantitation of mycobacteria in different types of clean waters. The raw water source and treatments affect both culturability and total numbers of mycobacteria in drinking waters.

  10. An assessment of drinking-water quality post-Haiyan.

    PubMed

    Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.

  11. An assessment of drinking-water quality post-Haiyan

    PubMed Central

    Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136

  12. Factors affecting the water odor caused by chloramines during drinking water disinfection.

    PubMed

    Wang, An-Qi; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Gao, Ze-Chen; Liu, Zhi; Cao, Tong-Cheng; Gao, Nai-Yun

    2018-10-15

    Chloramine disinfection is one of the most common disinfection methods in drinking water treatment. In this study, the temporal variability of water odors during monochloramine auto-decomposition was investigated to elucidate the characteristics of odor problems caused by adopting chloramine disinfection in tap water. Odor intensities and dominant odorant contributions were determined using the flavor profile analysis (FPA) and odor active value (OAV), respectively. During auto-decomposition of monochloramine, Cl 2 /N molar ratio, pH, temperature, and the presence of NOM all affected odor intensity and odor temporal variation in drinking water. In general, decreasing pH from 8.5 to 6.0 led to increasing perceived odor intensity due to the formation of dichloramine. The major odorants responsible for chlorinous odor under acidic and non-acidic conditions were dichloramine and monochloramine, respectively. Chloraminated water with a Cl 2 /N molar ratio of 0.6 or NOM concentration <2 mg-C L -1 inhibited odor intensity. Furthermore, the influence of rechlorination on chlorinous odor intensity for chloraminated water should not be neglected. The results of this study will be beneficial for the control of chlorinous odors caused by chloramine disinfection in drinking water. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Gastrointestinal illness linked to incidents in drinking water distribution networks in Sweden.

    PubMed

    Säve-Söderbergh, Melle; Bylund, John; Malm, Annika; Simonsson, Magnus; Toljander, Jonas

    2017-10-01

    During recent years, knowledge gaps on drinking water-related gastrointestinal illness have been identified, especially for non-epidemic cases. Pathogen contamination of drinking water during distribution has been suggested to contribute to these cases, but the risk factors are not yet fully understood. During 2014-2015, we conducted an epidemiological study in five municipalities in Sweden, to assess whether incidents in the drinking water distribution system influence the risk of gastrointestinal illness. Telephone interviews were conducted in the affected areas and in reference areas 7-14 days after a reported incident. Symptoms of gastrointestinal illness occurring during the period were documented for each household member. The results showed a significantly elevated risk of vomiting and acute gastrointestinal illness (AGI) in the affected areas, compared to the reference areas (OR vom.  = 2.0, 95% CI: 1.2-3.3; OR AGI  = 1.9, 95% CI: 1.2-3.0). Certain conditions, or risk factors, during the incidents, such as sewage and drinking water pipelines at the same level in the trench, were associated with an elevated risk of AGI and vomiting. Safety measures taken during repair work, like flushing, were also associated with an elevated risk of AGI and vomiting. These results show that incidents in the drinking water distribution network contribute to endemic gastrointestinal illness, especially AGI and vomiting, and that external pathogen contamination of the drinking water is a likely cause of these cases of gastrointestinal illness. The results also indicate that safety measures used today may not be sufficient for eliminating the risk of gastrointestinal illness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. [Assessment of non-carcinogenic risk for the health of the child population under the consumption of drinking water].

    PubMed

    Stepanova, N V; Valeeva, E R; Fomina, S F; Ziyatdinova, A I

    In the article there are given results of the evaluation of non-carcinogenic risks for the health of the child population residing in different areas (districts) of the city of Kazan with the aim of the subsequent comprehensive assessment of the pollutants in drinking water. Assessment of the risk for the human health was performed correspondingly to with the P 2.1.10.1920-04 for oral route of exposure in accordance to the chemical composition of drinking water with account for the standard and regional factors of the exposure. The results of the risk assessment under the consumption of drinking tap water by the child population with localized place of residence permit to reveal areas with a high level of health risk in the city. The screening assessment of carcinogenic risk due to the consumption of chemicals with drinking water revealed differences in regional and standard values of the exposure factors. This affects both on the value of the chronic average daily intake of chemical contaminants in drinking water and the level of risk under the consumption of drinking water by the child population.

  15. Arsenic in Drinking Water—A Global Environmental Problem

    NASA Astrophysics Data System (ADS)

    Shaofen Wang, Joanna; Wai, Chien M.

    2004-02-01

    Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.

  16. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi.

    PubMed

    Kayser, Georgia L; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E

    2015-04-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries-Brazil, Ecuador, and Malawi-as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers.

  17. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi

    PubMed Central

    Kayser, Georgia L.; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E.

    2015-01-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries—Brazil, Ecuador, and Malawi—as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers. PMID:25798068

  18. Changes in mouse gut bacterial community in response to different types of drinking water.

    PubMed

    Dias, Marcela F; Reis, Mariana P; Acurcio, Leonardo B; Carmo, Anderson O; Diamantino, Cristiane F; Motta, Amanda M; Kalapothakis, Evanguedes; Nicoli, Jacques R; Nascimento, Andréa M A

    2018-04-01

    Gut microbiota exerts a fundamental role on host physiology, and how extrinsic perturbations influence its composition has been increasingly examined. However, the effect of drinking water on gut microbiota is still poorly understood. In this study, we explored the response of mouse gut bacterial community (fecal and mucosa-adhered) to the ingestion of different types of drinking water. The experimental cohort was divided according to different water sources into four groups of mice that consumed autoclaved tap water (control group), water collected directly from a drinking water treatment plant, tap water, and commercial bottled mineral water. Differences among groups were observed, especially related to control group, which exhibited the smallest intra-group variation, and the largest distance from test groups on the last experimental day. Clinically important taxa, such as Acinetobacter and Staphylococcus, increased in feces of mice that drank tap water and in mucosa-adhered samples of animals from disinfected and tap water groups. Furthermore, statistical analyses showed that both time elapsed between samplings and water type significantly influenced the variation observed in the samples. Our results reveal that drinking water potentially affects gut microbiota composition. Additionally, the increase of typical drinking water clinically relevant and antibiotic resistance-associated bacteria in gut microbiota is a cause of concern. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION EVALUATIONS OF ARSENIC REDUCTION SYSTEMS FOR DRINKING WATER

    EPA Science Inventory

    Arsenic in drinking water is a known carcinogen with additional adverse human health impacts. For the 4,100 affected systems, 37 to 55 cancer cases per year are estimated, with about half projected to result in deaths if treatment solutions are not implemented. The Environmenta...

  20. Differences in staining intensities affect reported occurrences and concentrations of Giardia spp. in surface drinking water sources

    EPA Science Inventory

    Aim USEPA Method 1623, or its equivalent, is currently used to monitor for protozoan contamination of surface drinking water sources worldwide. At least three approved staining kits used for detecting Cryptosporidium and Giardia are commercially available. This study focuses on ...

  1. Occurrence of fibrates and their metabolites in source and drinking water in Shanghai and Zhejiang, China.

    PubMed

    Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi

    2017-04-12

    Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography-tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important.

  2. Occurrence of fibrates and their metabolites in source and drinking water in Shanghai and Zhejiang, China

    PubMed Central

    Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi

    2017-01-01

    Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography–tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important. PMID:28401920

  3. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review.

    PubMed

    Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B

    2014-03-01

    This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Occurrence of fibrates and their metabolites in source and drinking water in Shanghai and Zhejiang, China

    NASA Astrophysics Data System (ADS)

    Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi

    2017-04-01

    Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography-tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important.

  5. Flow Contribution and Water Quality with Depth in a Test Hole and Public-Supply Wells: Implications for Arsenic Remediation Through Well Modification, Norman, OK 2003-2006.

    EPA Science Inventory

    The City of Norman, Oklahoma, is one municipality affected by a change in the Environmental Protection Agency’s National Primary Drinking Water Regulation for arsenic. In 2006, the maximum contaminant level for arsenic in drinking-water was lowered from 50 to 10 micrograms per li...

  6. Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan

    PubMed Central

    Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2017-01-01

    ABSTRACT Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population. PMID:28591260

  7. The genetic basis of novel water utilisation and drinking behaviour traits and their relationship with biological performance in turkeys.

    PubMed

    Rusakovica, Julija; Kremer, Valentin D; Plötz, Thomas; Rohlf, Paige; Kyriazakis, Ilias

    2017-09-29

    There is increasing interest in the definition, measurement and use of traits associated with water use and drinking behaviour, mainly because water is a finite resource and its intake is an important part of animal health and well-being. Analysis of such traits has received little attention, due in part to the lack of appropriate technology to measure drinking behaviour. We exploited novel equipment to collect water intake data in two lines of turkey (A: 27,415 and B: 12,956 birds). The equipment allowed continuous recording of individual visits to the water station in a group environment. Our aim was to identify drinking behaviour traits of biological relevance, to estimate their genetic parameters and their genetic relationships with performance traits, and to identify drinking behaviour strategies among individuals. Visits to the drinkers were clustered into bouts, i.e. time intervals spent in drinking-related activity. Based on this, biologically relevant traits were defined: (1) number of visits per bout, (2) water intake per bout, (3) drinking time per bout, (4) drinking rate, (5) daily bout frequency, (6) daily bout duration, (7) daily drinking time and (8) daily water intake. Heritability estimates for most drinking behaviour traits were moderate to high and the most highly heritable traits were drinking rate (0.49 and 0.50) and daily drinking time (0.35 and 0.46 in lines A and B, respectively). Genetic correlations between drinking behaviour and performance traits were low except for moderate correlations between daily water intake and weight gain (0.46 and 0.47 in lines A and B, respectively). High estimates of breeding values for weight gain were found across the whole range of estimated breeding values for daily water intake, daily drinking time and water intake per bout. We show for the first time that drinking behaviour traits are moderately to highly heritable. Low genetic and phenotypic correlations with performance traits suggest that current breeding goals have not and will not affect normal water drinking behaviour. Birds express a wide range of different drinking behaviour strategies, which can be suitable to a wide range of environments and production systems.

  8. Dose-dependent Na and Ca in fluoride-rich drinking water--another major cause of chronic renal failure in tropical arid regions.

    PubMed

    Chandrajith, Rohana; Dissanayake, C B; Ariyarathna, Thivanka; Herath, H M J M K; Padmasiri, J P

    2011-01-15

    Endemic occurrence of chronic kidney disease with unknown etiology is reported in certain parts of the north central dry zone of Sri Lanka and has become a new and emerging health issue. The disease exclusively occurs in settlements where groundwater is the main source of drinking water and is more common among low socio-economic groups, particularly among the farming community. Due to its remarkable geographic distribution and histopathological evidence, the disease is believed to be an environmentally induced problem. This paper describes a detailed hydrogeochemical study that has been carried out covering endemic and non-endemic regions. Higher fluoride levels are common in drinking water from both affected and non-affected regions, whereas Ca-bicarbonate type water is more common in the affected regions. In terms of the geochemical composition of drinking water, affected households were rather similar to control regions, but there is a large variation in the Na/Ca ratio within each of the two groups. Fluoride as shown in this study causes renal tubular damage. However it does not act alone and in certain instances it is even cytoprotective. The fine dividing line between cytotoxicity and cytoprotectivity of fluoride appears to be the effect of Ca(2+) and Na(+) of the ingested water on the F(-) metabolism. This study illustrates a third major cause (the other two being hypertension and diabetes) of chronic kidney diseases notably in tropical arid regions such as the dry zone of Sri Lanka. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries

    PubMed Central

    Bain, Rob ES; Wright, Jim A; Yang, Hong; Pedley, Steve; Bartram, Jamie K

    2012-01-01

    Abstract Objective To determine how data on water source quality affect assessments of progress towards the 2015 Millennium Development Goal (MDG) target on access to safe drinking-water. Methods Data from five countries on whether drinking-water sources complied with World Health Organization water quality guidelines on contamination with thermotolerant coliform bacteria, arsenic, fluoride and nitrates in 2004 and 2005 were obtained from the Rapid Assessment of Drinking-Water Quality project. These data were used to adjust estimates of the proportion of the population with access to safe drinking-water at the MDG baseline in 1990 and in 2008 made by the Joint Monitoring Programme for Water Supply and Sanitation, which classified all improved sources as safe. Findings Taking account of data on water source quality resulted in substantially lower estimates of the percentage of the population with access to safe drinking-water in 2008 in four of the five study countries: the absolute reduction was 11% in Ethiopia, 16% in Nicaragua, 15% in Nigeria and 7% in Tajikistan. There was only a slight reduction in Jordan. Microbial contamination was more common than chemical contamination. Conclusion The criterion used by the MDG indicator to determine whether a water source is safe can lead to substantial overestimates of the population with access to safe drinking-water and, consequently, also overestimates the progress made towards the 2015 MDG target. Monitoring drinking-water supplies by recording both access to water sources and their safety would be a substantial improvement. PMID:22461718

  10. Impact of Past Land Use Changes on Drinking Water Quantity and Quality in Ljubljana Aquifer

    NASA Astrophysics Data System (ADS)

    Bracic Zeleznik, Branka; Cencur Curk, Barbara

    2010-05-01

    Most of the practical problems that we face today with the on-site management of drinking water sources and distribution of healthy drinking water, originate from past actions, interventions and political decisions. In Ljubljana, the capital of the Republic of Slovenia, underlying groundwater is the main drinking water source. The main threat to drinking water sources is constant input of pollutant loads from roads, roofs, sewers, industry and agricultural areas. The main problems are directly and indirectly related to the significant decrease of groundwater level and deterioration of groundwater quality observed in the last decades as an effect of land use practices under varying climate conditions. The Vodovod-Kanalizacija Public Utility is responsible for water supply of the city residents as well as for management of the water supply system, its surveillance and maintenance. In the past, the Ljubljana Municipality was responsible for the protection of water resources and the first delineation of groundwater protection areas was issued in Decree in 1955. In 2004 a Decree on the water protection zones for the aquifer of Ljubljansko polje on the state level was issued and passed the competences of proclamation of the water protection zones to the state. Spatial planning is a domain of The Municipality and land use is limited according to water protection legislation. For several observation wells long-time data sets about groundwater levels and quality are available, which enable us to analyse changes in groundwater quantity and quality parameters. From the data it is obvious that climate variations are affecting groundwater recharge. In addition, changing of land use affects groundwater quality. In spite of the Decree on the water protection there is a heavy pressure of investors to change land use plans and regulations on protection zones, which causes every day problems in managing the drinking water source. Groundwater management in Ljubljana demands strong and effective co-operation between state, municipality, public water supply company and consumers.

  11. Drinking Water Sodium and Elevated Blood Pressure of Healthy Pregnant Women in Salinity-Affected Coastal Areas.

    PubMed

    Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo

    2016-08-01

    Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies. © 2016 American Heart Association, Inc.

  12. Differences in dissolved organic matter between reclaimed water source and drinking water source.

    PubMed

    Hu, Hong-Ying; Du, Ye; Wu, Qian-Yuan; Zhao, Xin; Tang, Xin; Chen, Zhuo

    2016-05-01

    Dissolved organic matter (DOM) significantly affects the quality of reclaimed water and drinking water. Reclaimed water potable reuse is an effective way to augment drinking water source and de facto reuse exists worldwide. Hence, when reclaimed water source (namely secondary effluent) is blended with drinking water source, understanding the difference in DOM between drinking water source (dDOM) and reclaimed water source (rDOM) is essential. In this study, composition, transformation, and potential risk of dDOM from drinking water source and rDOM from secondary effluent were compared. Generally, the DOC concentration of rDOM and dissolved organic nitrogen (DON) content in reclaimed water source were higher but rDOM exhibited a lower aromaticity. Besides, rDOM comprises a higher proportion of hydrophilic fractions and more low-molecular weight compounds, which are difficult to be removed during coagulation. Although dDOM exhibited higher specific disinfection byproducts formation potential (SDBPFP), rDOM formed more total disinfection byproducts (DBPs) during chlorination including halomethanes (THMs) and haloacetic acids (HAAs) due to high DOC concentration. Likewise, in consideration of DOC basis, rDOM contained more absolute assimilable organic carbon (AOC) despite showing a lower specific AOC (normalized AOC per unit of DOC). Besides, rDOM exhibited higher biotoxicity including genotoxicity and endocrine disruption. Therefore, rDOM presents a greater potential risk than dDOM does. Reclaimed water source needs to be treated carefully when it is blended with drinking water source. Copyright © 2015. Published by Elsevier B.V.

  13. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    PubMed

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to < 3μg/L, well below the MCL. Moreover, the amount of total dissolved solids or competing ions did not affect the ability of the ZeroWater® filter to remove arsenic below the MCL. Thus, the ZeroWater® pitcher filter is a cost effective and short-term solution to remove arsenic from drinking water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Effectiveness of Table Top Water Pitcher Filters to Remove Arsenic from Drinking Water

    PubMed Central

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P.; Hampton, Thomas H.; Stanton, Bruce A.

    2017-01-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10 μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As3+ and As5+, from 1,000 μg/L to < 3 μg/L, well below the MCL. Moreover, the amount of total dissolved solids or competing ions did not affect the ability of the ZeroWater® filter to remove arsenic below the MCL. Thus, the ZeroWater® pitcher filter is a cost effective and short-term solution to remove arsenic from drinking water and its use reduces plastic waste associated with bottled water. PMID:28719869

  15. 49 CFR 194.103 - Significant and substantial harm; operator's statement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a stress level greater than 50 percent of the specified minimum yield strength of the pipe, (4) Is located within a 5 mile (8 kilometer) radius of potentially affected public drinking water intakes and could reasonably be expected to reach public drinking water intakes, or (5) Is located within a 1 mile...

  16. 49 CFR 194.103 - Significant and substantial harm; operator's statement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a stress level greater than 50 percent of the specified minimum yield strength of the pipe, (4) Is located within a 5 mile (8 kilometer) radius of potentially affected public drinking water intakes and could reasonably be expected to reach public drinking water intakes, or (5) Is located within a 1 mile...

  17. INFLUENCE OF THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID ON RAT ESTROUS CYCLICITY AND OVARIAN FOLLICULAR STEROID RELEASE IN VITRO

    EPA Science Inventory

    The drinking water disinfection by-product, dibromoacetic acid (DBA) has been reported to affect gonadal functions in the male rat. However, there is little information regarding its influence on female reproductive activity. Consequently, the present study investigated the eff...

  18. Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (External Review Draft)

    EPA Science Inventory

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity o...

  19. Stability of florfenicol in drinking water.

    PubMed

    Hayes, John M; Eichman, Jonathan; Katz, Terry; Gilewicz, Rosalia

    2003-01-01

    Florfenicol, a broad-spectrum antibiotic, is being developed for veterinary application as an oral concentrate intended for dilution with drinking water. When a drug product is dosed via drinking water in a farm setting, a number of variables, including pH, chlorine content, hardness of the water used for dilution, and container material, may affect its stability, leading to a decrease in drug potency. The stability of florfenicol after dilution of Florfenicol Drinking Water Concentrate Oral Solution, 23 mg/mL, with drinking water was studied. A stability-indicating, validated liquid chromatographic method was used to evaluate florfenicol stability at 25 degrees C at 5, 10, and 24 h after dilution. The results indicate that florfenicol is stable under a range of simulated field conditions, including various pipe materials and conditions of hard or soft and chlorinated or nonchlorinated water at low or high pH. Significant degradation (> 10%) was observed only for isolated combinations in galvanized pipes. Analysis indicated that the florfenicol concentration in 8 of the 12 water samples stored in galvanized pipes remained above 90% of the initial concentration (100 mg/L) for 24 h after dilution.

  20. An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water

    PubMed Central

    Caldwell, Daniel J.; Mastrocco, Frank; Nowak, Edward; Johnston, James; Yekel, Harry; Pfeiffer, Danielle; Hoyt, Marilyn; DuPlessie, Beth M.; Anderson, Paul D.

    2010-01-01

    Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that prescribed and total estrogens that may potentially be present in drinking water in the United States are not causing adverse effects in U.S. residents, including sensitive subpopulations. PMID:20194073

  1. Correlation between Fluoride in Drinking Water and Its Levels in Breast Milk in Golestan Province, Northern Iran.

    PubMed

    Faraji, Hossein; Mohammadi, Ali Akbar; Akbari-Adergani, Behrouz; Vakili Saatloo, Naimeh; Lashkarboloki, Gholamreza; Mahvi, Amir Hossein

    2014-12-01

    Fluoride is an essential element for human health. However, excess fluoride in drinking water may cause dental and/or skeletal fluorosis. Drinking water is the main route of fluoride intake. The aim of the present study was to measure fluoride levels in human breast milk collected from two regions of Golestan Province, northern Iran with different amount of fluoride concentration of drinking water in Bandar Gaz and Nokande cities and to correlate it with fluoride concentrations in drinking water used by mothers living in these two areas. Twenty samples of water were collected from seven drinking water wells during 2012 from Bandar Gaz and Nokande in Iran during 2012. Fluoride concentration of water samples was measured using SPADNS method. Sixty breast milk samples were collected from lactating mothers of Bandar Gaz and Nokande cities. Content in breast milk was determined using standard F ion-selective electrode. Spearman's rho correlation analysis was used to assess any possible relationship between fluoride levels in breast milk and in drinking water. The means and standard deviation for F concentration in breast milk and drinking water were 0.002188±0.00026224 ppm and 0.5850±0.22542 ppm, respectively. Analysis of data showed that the variables were not normally distributed so the Spearman correlation coefficient between two variables calculated (ρ S = 0.65) and it was significant (P=0.002). Fluoride concentration in water can directly act on its concentration in breast milk. We speculate that modifying F concentration in water can affect accessibility of fluoride for infants.

  2. Correlation between Fluoride in Drinking Water and Its Levels in Breast Milk in Golestan Province, Northern Iran

    PubMed Central

    FARAJI, Hossein; MOHAMMADI, Ali Akbar; AKBARI-ADERGANI, Behrouz; VAKILI SAATLOO, Naimeh; LASHKARBOLOKI, Gholamreza; MAHVI, Amir Hossein

    2014-01-01

    Background: Fluoride is an essential element for human health. However, excess fluoride in drinking water may cause dental and/or skeletal fluorosis. Drinking water is the main route of fluoride intake. The aim of the present study was to measure fluoride levels in human breast milk collected from two regions of Golestan Province, northern Iran with different amount of fluoride concentration of drinking water in Bandar Gaz and Nokande cities and to correlate it with fluoride concentrations in drinking water used by mothers living in these two areas. Methods: Twenty samples of water were collected from seven drinking water wells during 2012 from Bandar Gaz and Nokande in Iran during 2012. Fluoride concentration of water samples was measured using SPADNS method. Sixty breast milk samples were collected from lactating mothers of Bandar Gaz and Nokande cities. Content in breast milk was determined using standard F ion-selective electrode. Spearman’s rho correlation analysis was used to assess any possible relationship between fluoride levels in breast milk and in drinking water. Results: The means and standard deviation for F concentration in breast milk and drinking water were 0.002188±0.00026224 ppm and 0.5850±0.22542 ppm, respectively. Analysis of data showed that the variables were not normally distributed so the Spearman correlation coefficient between two variables calculated (ρS = 0.65) and it was significant (P=0.002). Conclusion: Fluoride concentration in water can directly act on its concentration in breast milk. We speculate that modifying F concentration in water can affect accessibility of fluoride for infants. PMID:26171359

  3. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  4. Relationship between fluorine in drinking water and dental health of residents in some large cities in China.

    PubMed

    Wang, Binbin; Zheng, Baoshan; Zhai, Cheng; Yu, Guangqian; Liu, Xiaojing

    2004-10-01

    In this project, the relationship between fluorine content in drinking water and dental health of residents in some large cities in China was evaluated. The concentration of fluorine in tap water and in urine of local subjects of 28 cities and 4 high fluorine villages in China shows a strong positive correlation (r(2)=0.96, S.E.=0.9881). Our studies indicate that drinking water is the most important source of fluorine intake for Chinese people, and in more than 90% of urban cities, fluorine concentrations in drinking water are below levels recommended by the WHO (approximately 0.5-1.0 mg/l). A 1995 investigation by The National Committee on Oral Health of China (NCOH) shows the relationship between average number of decayed, missing and filled teeth (DMFT) of urban residents and fluorine concentration in drinking water to be negatively correlated but not forming a good linear relationship. Our results, together with the previous study, suggest that: (1) dental caries of the study population can be reduced by drinking water fluoridation and that (2) other factors such as economic level, weather, lifestyle, food habits, living condition, etc., of a city can also affect the incidence of dental caries that cannot be predicted by fluoridation alone. Research on the relation between index of fluorosis (IF) and the fluorine concentration in drinking water for the four high fluorine villages showed that the recommended concentration of fluorine in drinking water can protect from dental fluorosis.

  5. Arsenic in Water Resources of the Southern Pampa Plains, Argentina

    PubMed Central

    Paoloni, Juan D.; Sequeira, Mario E.; Espósito, Martín E.; Fiorentino, Carmen E.; Blanco, María del C.

    2009-01-01

    Confronted with the need for accessible sources of good quality water and in view of the fact that the threat to public health posed by arsenic occurs mainly through the ingestion of contaminated drinking water, the presence and distribution of arsenic was evaluated in the southern Pampa Plains of Bahía Blanca district in Argentina. The findings show variable concentrations of arsenic in a complex distribution pattern. Complementary information is provided on the behavior of the groundwater resource and its salinity in terms of dissolved ions. Groundwater is the most severely affected, 97% of the samples exceeding the guideline value for arsenic in drinking water as recommended by the WHO (Guidelines for Drinking Water Quality, 2004). and showing maximum concentrations of up to 0.30 mg/L. Informing those responsible for preventive medicine and alerting the community at large will facilitate measures to mitigate exposure and ensure the safety of drinking water. PMID:19936127

  6. Availability of drinking water in US public school cafeterias.

    PubMed

    Hood, Nancy E; Turner, Lindsey; Colabianchi, Natalie; Chaloupka, Frank J; Johnston, Lloyd D

    2014-09-01

    This study examined the availability of free drinking water during lunchtime in US public schools, as required by federal legislation beginning in the 2011-2012 school year. Data were collected by mail-back surveys in nationally representative samples of US public elementary, middle, and high schools from 2009-2010 to 2011-2012. Overall, 86.4%, 87.4%, and 89.4% of students attended elementary, middle, and high schools, respectively, that met the drinking water requirement. Most students attended schools with existing cafeteria drinking fountains and about one fourth attended schools with water dispensers. In middle and high schools, respondents were asked to indicate whether drinking fountains were clean, and whether they were aware of any water-quality problems at the school. The vast majority of middle and high school students (92.6% and 90.4%, respectively) attended schools where the respondent perceived drinking fountains to be clean or very clean. Approximately one in four middle and high school students attended a school where the survey respondent indicated that there were water-quality issues affecting drinking fountains. Although most schools have implemented the requirement to provide free drinking water at lunchtime, additional work is needed to promote implementation at all schools. School nutrition staff at the district and school levels can play an important role in ensuring that schools implement the drinking water requirement, as well as promote education and behavior-change strategies to increase student consumption of water at school. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  7. The effect of water contamination and host-related factors on ectoparasite load in an insectivorous bat.

    PubMed

    Korine, Carmi; Pilosof, Shai; Gross, Amit; Morales-Malacara, Juan B; Krasnov, Boris R

    2017-09-01

    We examined the effects of sex, age, and reproductive state of the insectivorous bat Pipistrellus kuhlii on the abundance and prevalence of arthropod ectoparasites (Macronyssidae and Cimicidae) in habitats with either sewage-polluted or natural bodies of water, in the Negev Desert, Israel. We chose water pollution as an environmental factor because of the importance of water availability in desert environments, particularly for P. kuhlii, which needs to drink on a daily basis. We predicted that parasite infestation rates would be affected by both environment and demographic cohort of the host. We found that female bats in the polluted site harbored significantly more mites than female bats in the natural site and that juveniles in the polluted site harbored significantly more cimicid individuals than juveniles in the natural site. We further found that age and sex (host-related factors) affected ectoparasite prevalence and intensity (i.e., the abundance of parasites) in the polluted site. Our results may suggest that the interaction between host-related and environment-related factors affected parasite infestations, with females and young bats being more susceptible to ectoparasites when foraging over polluted water. This effect may be particularly important for bats that must drink or forage above water for other wildlife that depend on drinking water for survival.

  8. Effects of adding liquid DL-methionine hydroxy analogue-free acid to drinking water on growth performance and small intestinal morphology of nursery pigs.

    PubMed

    Kaewtapee, C; Krutthai, N; Poosuwan, K; Poeikhampha, T; Koonawootrittriron, S; Bunchasak, C

    2010-06-01

    This study was conducted to evaluate the effect of adding liquid DL-methionine hydroxy analogue free acid (LMA) to drinking water on growth performance, small intestinal morphology and volatile fatty acids in the caecum of nursery pigs. Twenty-four crossbred pigs (Large White x Landrace, BW approximately 18 kg) were divided into three groups with four replications of two piglets each. The piglets received drinking water without (control), with 0.05 or 0.10% LMA. The results indicated that adding LMA at 0.10% to drinking water significantly increased their weight gain, average daily feed intake (p < 0.05) and tended to improve the feed conversion ratio. Adding LMA to drinking water significantly increased their water intake and significantly reduced the pH of drinking water (p < 0.01), thus total plate count (p < 0.01) and Escherichia coli in drinking water was reduced (p < 0.05), while the total number of bacteria in the caecum was not significantly affected. Liquid DL-methionine hydroxy analogue free acid supplementation in drinking water tended to decrease pH in the stomach, duodenum, jejunum, colon and rectum. Furthermore, adding LMA at 0.10% significantly increased villous height in the duodenum, jejunum and ileum (p < 0.05), and the villous height:crypt depth ratio in the jejunum and ileum (p < 0.01) was higher, whereas acetic acid concentration in the caecum was significantly lower than in the control group. It could be concluded that adding LMA to drinking water improved growth performance of the nursery pigs because of high water quality and high nutrient utilization caused by an improvement of small intestinal morphology (not from nutritional effect of methionine source).

  9. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    PubMed

    Liu, Xiaolu; Wang, Jingqi; Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L(-1) in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5) cells.mL(-1) to 2.6 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.6 mg.L(-1) to 4.8 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.3 mg.L(-1) due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  10. Effects of Assimilable Organic Carbon and Free Chlorine on Bacterial Growth in Drinking Water

    PubMed Central

    Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1×105 cells.mL-1 to 2.6×104 cells.mL-1 at an initial free chlorine dose of 0.6 mg.L-1 to 4.8×104 cells.mL-1 at an initial free chlorine dose of 0.3 mg.L-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network. PMID:26034988

  11. Distribution of polycyclic aromatic hydrocarbons in surface water and sediment near a drinking water reservoir in Northeastern China.

    PubMed

    Liu, Yu; Shen, Jimin; Chen, Zhonglin; Ren, Nanqi; Li, Yifan

    2013-04-01

    The levels of polycyclic aromatic hydrocarbons (PAHs) in the water and the sediment samples collected near the Mopanshan Reservoir-the most important drinking water resource of Harbin City in Northeast China-were examined. A total of 16 PAHs were concurrently identified and quantified in the three water bodies tested (Lalin River, Mangniu River, and Mopanshan Reservoir) and in the Mopanshan drinking water treatment plant during the high- and low water periods. The total PAH concentrations in the water and sediment samples ranged from 122.7 to 639.8 ng/L and from 89.1 to 749.0 ng/g dry weight, respectively. Similar spatial and temporal trends were also found for both samples. The lowest Σ16PAH concentration of the Mopanshan Reservoir was obtained during the high water period; by contrast, the Lalin River had the highest concentration during the low water period. The PAH profiles resembling the three water bodies, with high percentages of low-molecular weight PAHs and dominated by two- to three-ring PAHs (78.4 to 89.0%). Two of the molecular indices used reflected the possible PAH sources, indicating the main input from coal combustion, especially during the low water period. The conventional drinking water treatment operations resulted in a 20.7 to 67.0% decrease in the different-ringed PAHs in the Mopanshan-treated drinking water. These findings indicate that human activities negatively affect the drinking water resource. Without the obvious removal of the PAHs in the waterworks, drinking water poses certain potential health risks to people.

  12. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water.

    PubMed

    Shi, Peng; Jia, Shuyu; Zhang, Xu-Xiang; Zhang, Tong; Cheng, Shupei; Li, Aimin

    2013-01-01

    This study aimed to investigate the chlorination effects on microbial antibiotic resistance in a drinking water treatment plant. Biochemical identification, 16S rRNA gene cloning and metagenomic analysis consistently indicated that Proteobacteria were the main antibiotic resistant bacteria (ARB) dominating in the drinking water and chlorine disinfection greatly affected microbial community structure. After chlorination, higher proportion of the surviving bacteria was resistant to chloramphenicol, trimethoprim and cephalothin. Quantitative real-time PCRs revealed that sulI had the highest abundance among the antibiotic resistance genes (ARGs) detected in the drinking water, followed by tetA and tetG. Chlorination caused enrichment of ampC, aphA2, bla(TEM-1), tetA, tetG, ermA and ermB, but sulI was considerably removed (p < 0.05). Metagenomic analysis confirmed that drinking water chlorination could concentrate various ARGs, as well as of plasmids, insertion sequences and integrons involved in horizontal transfer of the ARGs. Water pipeline transportation tended to reduce the abundance of most ARGs, but various ARB and ARGs were still present in the tap water, which deserves more public health concerns. The results highlighted prevalence of ARB and ARGs in chlorinated drinking water and this study might be technologically useful for detecting the ARGs in water environments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The cleaning method selected for new PEX pipe installation can affect short-term drinking water quality.

    PubMed

    Kelley, Keven M; Stenson, Alexandra C; Cooley, Racheal; Dey, Rajarashi; Whelton, Andrew J

    2015-12-01

    The influence of four different cleaning methods used for newly installed polyethylene (PEX) pipes on chemical and odor quality was determined. Bench-scale testing of two PEX (type b) pipe brands showed that the California Plumbing Code PEX installation method does not maximize total organic carbon (TOC) removal. TOC concentration and threshold odor number values significantly varied between two pipe brands. Different cleaning methods impacted carbon release, odor, as well the level of drinking water odorant ethyl tert-butyl ether. Both pipes caused odor values up to eight times greater than the US federal drinking water odor limit. Unique to this project was that organic chemicals released by PEX pipe were affected by pipe brand, fill/empty cycle frequency, and the pipe cleaning method selected by the installer.

  14. Occurrence and hygienic relevance of fungi in drinking water.

    PubMed

    Kanzler, D; Buzina, W; Paulitsch, A; Haas, D; Platzer, S; Marth, E; Mascher, F

    2008-03-01

    Fungi, above all filamentous fungi, can occur almost everywhere, even in water. They can grow in such a quantity in water that they can affect the health of the population or have negative effects on food production. There are several reports of fungal growth in water from different countries, but to our knowledge none from Austria so far. The aim of this study was to gain an overview of the spectrum of filamentous fungi and yeasts in drinking water systems. Thirty-eight water samples from drinking water and groundwater were analysed. Fungi were isolated by using membrane filtration and plating method with subsequent cultivation on agar plates. The different taxa of fungi were identified using routine techniques as well as molecular methods. Fungi were isolated in all water samples examined. The mean value for drinking water was 9.1 CFU per 100 ml and for groundwater 5400 CFU per 100 ml. Altogether 32 different taxa of fungi were found. The taxa which occurred most frequently were Cladosporium spp., Basidiomycetes and Penicillium spp. (74.6%, 56.4% and 48.7%, respectively). This study shows that drinking water can be a reservoir for fungi, among them opportunists, which can cause infections in immunosuppressed patients.

  15. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter.

    PubMed

    Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang

    2015-01-01

    Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Fluoride in drinking water and diet: the causative factor of chronic kidney diseases in the North Central Province of Sri Lanka.

    PubMed

    Dharmaratne, Ranjith W

    2015-07-01

    A significant number of people in the North Central Province of Sri Lanka suffer from chronic kidney diseases (CKD), and the author revisits existing literature related to CKD to find its causative factor. There is a direct connection between high fluoride levels in drinking water and kidney disease, and there are unhealthy levels of fluoride in the groundwater in Sri Lanka's CKD-affected areas. Based on the following observations, the author believes with confidence that excess fluoride in drinking water and in the locally grown food in the affected areas are the culprits of CKD in Sri Lanka. Fluoride excretion rate is considerably lower in children than adults, leading to renal damage of children living in areas with high fluoride. Adults who had renal damage due to fluoride in childhood are vulnerable to CKD with continued consumption of water from the same source. Patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. High content of fluoride in groundwater paves the way to excess fluoride in local food crops, consequently adding more fluoride to the systems of the consumers. People who work outdoors for prolonged periods consume excess water and tea, and are subjected to additional doses of fluoride in their system. In the mid-1980s, the increase in water table levels of the affected areas due to new irrigation projects paved the way to adding more fluorides to their system through drinking water and locally grown foods.

  17. THE POTENTIAL EFFECT OF AMBIENT ARSENIC IN DRINKING WATER ON ODOR IDENTIFICATION IN AN AGRICULTURAL SAMPLE IN INNER MONGOLIA

    EPA Science Inventory

    There is some evidence that chronic exposure to arsenic (As) can have neuropathic and neurosensory effects in humans. It is unknown if As exposure affects the sense of smell. To determine if the ability to identify odors is impaired by chronic As exposure via drinking water, 15...

  18. An Environmental Sentinel Biomonitor System for Drinking Water Protection

    DTIC Science & Technology

    2008-12-01

    threat chemicals. Potential interferences include chemicals commonly used for drinking water disinfection (chlorine and chloramine ), byproducts of...range. Of the potential interferences tested, the ECIS test was affected only by the disinfectants chlorine and chloramine ; chlorine is typically...Industrial and Potential Interfering Chemicals Used to Evaluate ESB System Toxicity Sensors TICs Potential Interferences Acrylonitrile Chloramine

  19. Succession of Biofilm Microbial Community during Nitrification in Lab-Scale Reactors Simulating Chloraminated Drinking Water Distribution System Conditions: the Impact of Simultaneously Increasing Monochloramine and Chlorine to Nitrogen Mass Ratios

    EPA Science Inventory

    Chloramination has been shown to promote nitrifying bacteria and 30 to 63% of utility plants using secondary chloramine disinfection experience nitrification episodes. Although nitrifying bacteria are not considered human pathogens, nitrification can affect drinking water qualit...

  20. [Fundamental study on effect of high-mineral drinking water for osteogenesis in calciprivia ovariectomized rats].

    PubMed

    Ogata, Fumihiko; Nagai, Noriaki; Ito, Yoshimasa; Kawasaki, Naohito

    2014-01-01

    Since osteoporosis is a major public health problem in Japan, it is important to clarify the effect of high-mineral drinking water consumption on osteogenesis. Therefore, in this study, we investigated the relationship between high-mineral drinking water consumption and osteogenesis in ovariectomized rats that received a low-calcium diet and purified water (PW group) or a low-calcium diet and high-mineral drinking water (CR group). High-mineral drinking water affected the rats' body weight. After 3 months, the bone density of the CR group was higher than that of the PW group (p<0.05). Furthermore, the CR group showed a decrease in the amount of calcium in the bones after 3 months. These results suggest that high-mineral drinking water contributes to the maintenance of bone density and not to the amount of calcium in bone. On the other hand, serum alkaline phosphatase levels in the PW group at 3 months were higher than those in the CR group, which indicates that the blood concentration of calcium in the CR group was maintained. Moreover, the amount of magnesium in the bones and the blood concentration of magnesium in the CR group after 3 months were higher than the corresponding values in the PW group. These results suggest that consumption of high-mineral drinking water could be beneficial for osteogenesis (i.e., for maintaining bone quantity).

  1. Endocrine disrupting compounds in drinking water supply system and human health risk implication.

    PubMed

    Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-09-01

    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Diverse manganese(II)-oxidizing bacteria are prevalent in drinking water systems.

    PubMed

    Marcus, Daniel N; Pinto, Ameet; Anantharaman, Karthik; Ruberg, Steven A; Kramer, Eva L; Raskin, Lutgarde; Dick, Gregory J

    2017-04-01

    Manganese (Mn) oxides are highly reactive minerals that influence the speciation, mobility, bioavailability and toxicity of a wide variety of organic and inorganic compounds. Although Mn(II)-oxidizing bacteria are known to catalyze the formation of Mn oxides, little is known about the organisms responsible for Mn oxidation in situ, especially in engineered environments. Mn(II)-oxidizing bacteria are important in drinking water systems, including in biofiltration and water distribution systems. Here, we used cultivation dependent and independent approaches to investigate Mn(II)-oxidizing bacteria in drinking water sources, a treatment plant and associated distribution system. We isolated 29 strains of Mn(II)-oxidizing bacteria and found that highly similar 16S rRNA gene sequences were present in all culture-independent datasets and dominant in the studied drinking water treatment plant. These results highlight a potentially important role for Mn(II)-oxidizing bacteria in drinking water systems, where biogenic Mn oxides may affect water quality in terms of aesthetic appearance, speciation of metals and oxidation of organic and inorganic compounds. Deciphering the ecology of these organisms and the factors that regulate their Mn(II)-oxidizing activity could yield important insights into how microbial communities influence the quality of drinking water. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Removal naturally occurring radionuclides from drinking water using a filter specifically designed for Drinking Water Treatment Plants.

    PubMed

    Baeza, A; Salas, A; Guillén, J; Muñoz-Serrano, A; Ontalba-Salamanca, M Á; Jiménez-Ramos, M C

    2017-01-01

    The occurrence of naturally occurring radionuclides in drinking water can pose health hazards in some populations, especially taking into account that routine procedures in Drinking Water Treatment Plants (DWTPs) are normally unable to remove them efficiently from drinking water. In fact, these procedures are practically transparent to them, and in particular to radium. In this paper, the characterization and capabilities of a patented filter designed to remove radium from drinking water with high efficiency is described. This filter is based on a sandwich structure of silica and green sand, with a natural high content manganese oxide. Both sands are authorized by Spanish authorities to be used in Drinking Water Treatment Plants. The Mn distribution in the green sand was found to be homogenous, thus providing a great number of adsorption sites for radium. Kinetic studies showed that the 226 Ra adsorption on green sand was influenced by the content of major cations solved in the treated water, but the saturation level, about 96-99%, was not affected by it. The physico-chemical parameters of the treated water were unaltered by the filter. The efficiency of the filter for the removal of 226 Ra remained unchanged with large water volumes passed through it, proving its potential use in DWTP. This filter was also able to remove initially the uranium content due to the presence of Fe 2 O 3 particles in it, although it is saturated faster than radium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Mathematical modeling of systemic factors determining the risk of deterioration of drinking water supply and development of allergic diseases of population

    NASA Astrophysics Data System (ADS)

    Bespalov, Yurii G.; Nosov, Konstantin V.; Vysotska, Olena V.; Porvan, Andrii P.; Omiotek, Zbigniew; Burlibay, Aron; Assembay, Azat; Szatkowska, Małgorzata

    2017-08-01

    This study aims at mathematical modeling of systemic factors threatening the sanitary and hygienic state of sources of water supply. It is well-known, that this state affects health of population consuming water from different water sources (lakes, reservoirs, rivers). In particular, water quality problem may cause allergic reactions that are the important problem of health care. In the paper, the authors present the mathematical model, that enables on the basis of observations of a natural system to predict the system's behavior and determine the risks related to deterioration of drinking water resources. As a case study, we uses supply of drinking water from Lake Sevan, but the approach developed in the study can be applied to wide area of adjacent problems.

  5. [Multilevel model analysis on the relevant factors influencing the total amount of drinking water consumed daily by Beijing residents].

    PubMed

    Zhao, Jinhui; Wei, Jianrong; Chen, Huajie; Liu, Yumin; Li, Tiantian; Sun, Qinghua; Liu, Qiaolan

    2012-09-01

    To investigate the influencing factors for daily water intake of Beijing residents. A multi-stage sampling method was constructed to interview 270 Beijing residents in the winter of 2009 and in the summer of 2010 by using a questionnaire to collect data on daily drinking water consumption. Multilevel models were used to analyze the variation and influencing factors for the amount of water intake. Multilevel model results showed that the average daily water intake of residents living in different villages or neighborhood committees was statistically significant (sigma2 mu0 = = 0.030 (0.009), P < 0.05). The individual variation in the same village or neighborhood committee was also significant (sigma2 e0 = 0.157 (0.010), P < 0.05). Season, gender, and body weight affected the daily water intake (P < 0.05). There were interaction between season and source of water supply. The average daily water intake of residents was affected by several factors. In the health risk assessment of drinking water, it needs considering not only the individual characteristics but also the differences of villages/neighborhood committees and the seasonal variation.

  6. Water resources development and management: an experience in rural hilly area.

    PubMed

    Khadse, G K; Talkhande, A V; Andey, S P; Kelkar, P S

    2010-01-01

    The Himalayan region of Tehri Garhwal in India has scattered habitations in the villages with scanty, non-perennial and unsafe water resources like springs and streams. Poor environmental conditions arising from unsafe drinking water, inadequate sanitary measures, unhygienic disposal of excreta, sullage and accumulation of solid wastes have resulted in poor public health. The experiences gained through water supply and sanitation studies carried out especially in this rural area have been shared in this paper so as to enable adoption of relevant practices and technologies developed by the National Environmental Engineering Research Institute (NEERI, India) in the affected areas. Environmental protection of the streams and springs for sustained water availability and safe drinking water supply was ensured with active public participation, training, and awareness programs. Various surface rainwater harvesting structures were constructed at suitable sites along with ferro-cement roofwater harvesting tanks in selected villages. The activities related to designing and commissioning of a small slow sand filtration unit were carried out at Chhati (Nakot) village for safe drinking water supply. Chlorination pots were demonstrated and installed in rainwater harvesting tanks for disinfection of water for drinking purpose. Water quality assessment and health survey (parasitic and hemoglobin investigation) in the affected villages were carried out before and after technological intervention. The training and awareness programs were organised for people of 23 villages in the study area covering water and sanitation related topics. The beneficiary's opinions, perceptions, apprehensions, as well as expectations reflected positive approach towards the achievement of anticipated benefits and impacts.

  7. Household's willingness to pay for arsenic safe drinking water in Bangladesh.

    PubMed

    Khan, Nasreen Islam; Brouwer, Roy; Yang, Hong

    2014-10-01

    This study examines willingness to pay (WTP) in Bangladesh for arsenic (As) safe drinking water across different As-risk zones, applying a double bound discrete choice value elicitation approach. The study aims to provide a robust estimate of the benefits of As safe drinking water supply, which is compared to the results from a similar study published almost 10 years ago using a single bound estimation procedure. Tests show that the double bound valuation design does not suffer from anchoring or incentive incompatibility effects. Health risk awareness levels are high and households are willing to pay on average about 5 percent of their disposable average annual household income for As safe drinking water. Important factors influencing WTP include the bid amount to construct communal deep tubewell for As safe water supply, the risk zone where respondents live, household income, water consumption, awareness of water source contamination, whether household members are affected by As contamination, and whether they already take mitigation measures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Policy intervention for arsenic mitigation in drinking water in rural habitations in India: achievements and challenges.

    PubMed

    Shrivastava, Brajesh K

    2016-10-01

    This article provides updated status of the arsenic affected rural habitations in India, summarizes the policy initiatives of the Ministry of Drinking Water & Sanitation (Government of India), reviews the technologies for arsenic treatment and analyses the progress made by states in tackling arsenic problems in rural habitations. It also provides a list of constraints based on experiences and recommends suggested measures to tackle arsenic problems in an holistic manner. It is expected that the paper would be useful for policy formulators in states, non-government organizations, researchers of academic and scientific institutions and programme managers working in the area of arsenic mitigation in drinking water, especially in developing countries, as it provides better insights compared to other available information in India on mitigating arsenic problems in drinking water in rural areas.

  9. Value of arsenic-free drinking water to rural households in Bangladesh.

    PubMed

    Ahmad, Junaid; Goldar, Bishwanath; Misra, Smita

    2005-01-01

    Using contingent valuation survey data for about 2700 households in rural Bangladesh, and applying a multinomial logit model, the paper estimates the value of arsenic-free drinking water to the rural people. The estimates indicate that the rural people in arsenic-affected areas of Bangladesh place a low value on arsenic-free drinking water. It is about 10-14 percent of the amount they are willing to pay for piped water and only about 0.2-0.3 percent of the average household income. The implication of the result is that robust but costly arsenic reduction technologies such as activated alumina technology may find little social acceptance, unless heavily subsidized.

  10. Updating national standards for drinking-water: a Philippine experience.

    PubMed

    Lomboy, M; Riego de Dios, J; Magtibay, B; Quizon, R; Molina, V; Fadrilan-Camacho, V; See, J; Enoveso, A; Barbosa, L; Agravante, A

    2017-04-01

    The latest version of the Philippine National Standards for Drinking-Water (PNSDW) was issued in 2007 by the Department of Health (DOH). Due to several issues and concerns, the DOH decided to make an update which is relevant and necessary to meet the needs of the stakeholders. As an output, the water quality parameters are now categorized into mandatory, primary, and secondary. The ten mandatory parameters are core parameters which all water service providers nationwide are obligated to test. These include thermotolerant coliforms or Escherichia coli, arsenic, cadmium, lead, nitrate, color, turbidity, pH, total dissolved solids, and disinfectant residual. The 55 primary parameters are site-specific and can be adopted as enforceable parameters when developing new water sources or when the existing source is at high risk of contamination. The 11 secondary parameters include operational parameters and those that affect the esthetic quality of drinking-water. In addition, the updated PNSDW include new sections: (1) reporting and interpretation of results and corrective actions; (2) emergency drinking-water parameters; (3) proposed Sustainable Development Goal parameters; and (4) standards for other drinking-water sources. The lessons learned and insights gained from the updating of standards are likewise incorporated in this paper.

  11. Development of an Escherichia coli K12-specific quantitative polymerase chain reaction assay and DNA isolation suited to biofilms associated with iron drinking water pipe corrosion products

    EPA Science Inventory

    Escherichia coli is one of the most commonly used fecal indicator organisms for drinking water and groundwater systems. In order to understand various biogeochemical and biophysical factors affecting its interactions with biofilms, E. coli K12 was chosen as a model organism. A Ta...

  12. Nitrates in drinking water: relation with intensive livestock production.

    PubMed

    Giammarino, M; Quatto, P

    2015-01-01

    An excess of nitrates causes environmental pollution in receiving water bodies and health risk for human, if contaminated water is source of drinking water. The directive 91/676/ CEE [1] aims to reduce the nitrogen pressure in Europe from agriculture sources and identifies the livestock population as one of the predominant sources of surplus of nutrients that could be released in water and air. Directive is concerned about cattle, sheep, pigs and poultry and their territorial loads, but it does not deal with fish farms. Fish farms effluents may contain pollutants affecting ecosystem water quality. On the basis of multivariate statistical analysis, this paper aims to establish what types of farming affect the presence of nitrates in drinking water in the province of Cuneo, Piedmont, Italy. In this regard, we have used data from official sources on nitrates in drinking water and data Arvet database, concerning the presence of intensive farming in the considered area. For model selection we have employed automatic variable selection algorithm. We have identified fish farms as a major source of nitrogen released into the environment, while pollution from sheep and poultry has appeared negligible. We would like to emphasize the need to include in the "Nitrate Vulnerable Zones" (as defined in Directive 91/676/CEE [1]), all areas where there are intensive farming of fish with open-system type of water use. Besides, aquaculture open-system should be equipped with adequate downstream system of filtering for removing nitrates in the wastewater.

  13. Environmentally friendly chitosan/PEI-grafted magnetic gelatin for the highly effective removal of heavy metals from drinking water

    PubMed Central

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2017-01-01

    The development of environmentally friendly sorbents with a high adsorption capacity is an essential problem in the removal of heavy metals from drinking water. In this study, magnetic gelatin was prepared using transglutaminase as a cross-linker, which could only catalyze an acyl-transfer reaction between lysine and glutamine residues of the gelatin and not affect other amino groups. Therefore, it was beneficial for the further modification based on the amino groups, and did not affect the spatial structure of gelatin, which can effectively prevent the embedding of active sites in the polymer matrix. After modification with the chitosan/polyethylenimine copolymers, the numbers of amino groups was greatly increased, and the magnetic composites exhibited a high adsorption capacity, excellent water compatibility and simple magnetic separation. The adsorption capacities of lead and cadmium were 341 mg g−1 and 321 mg g−1, respectively, which could be used for the removal of metal ions in drinking water. PMID:28225082

  14. Environmentally friendly chitosan/PEI-grafted magnetic gelatin for the highly effective removal of heavy metals from drinking water

    NASA Astrophysics Data System (ADS)

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2017-02-01

    The development of environmentally friendly sorbents with a high adsorption capacity is an essential problem in the removal of heavy metals from drinking water. In this study, magnetic gelatin was prepared using transglutaminase as a cross-linker, which could only catalyze an acyl-transfer reaction between lysine and glutamine residues of the gelatin and not affect other amino groups. Therefore, it was beneficial for the further modification based on the amino groups, and did not affect the spatial structure of gelatin, which can effectively prevent the embedding of active sites in the polymer matrix. After modification with the chitosan/polyethylenimine copolymers, the numbers of amino groups was greatly increased, and the magnetic composites exhibited a high adsorption capacity, excellent water compatibility and simple magnetic separation. The adsorption capacities of lead and cadmium were 341 mg g-1 and 321 mg g-1, respectively, which could be used for the removal of metal ions in drinking water.

  15. Trihalomethanes in Comerio Drinking Water and Their Reduction by Nanostructured Materials

    DOE PAGES

    Bourdon, Jorge Hernandez; Linares, Francisco Marquez

    2014-01-01

    The formation of disinfection by-products (DBPs) during chlorination of drinking water is an issue which has drawn significant scientific attention due to the possible adverse effects that these compounds have on human health and the formation of another DBPs. Some factors that affect the formation of DBPs include: chlorine dose and residue, contact time, temperature, pH and natural organic matter (NOM). The most frequently detected DBPs in drinking water are trihalomethanes (THMs) and haloacetic acids (HAAs). The MCLs are standards established by the United States Environmental Protection Agency (USEPA) for drinking water quality established in Stage 1, Disinfectants and Disinfectionmore » Byproducts Rule (DBPR), and they limit the amount of potentially hazardous substances that are allowed in drinking water. The water quality data for THMs were evaluated in the Puerto Rico Aqueduct and Sewer Authority (PRASA). During this evaluation, the THMs exceeded the maximum contamination limit (MCLs) for the Comerio Water Treatment Plant (CWTP). USEPA classified the THMs as Group B2 carcinogens (shown to cause cancer in laboratory animals). This research evaluated the THMs concentrations in the following sampling sites: CWTP, Río Hondo and Piñas Abajo schools, Comerio Health Center (CDT), and the Vázquez Ortiz family, in the municipality of Comerio Puerto Rcio. The results show that the factors affecting the formation of THMs occur in different concentrations across the distribution line. Furthermore, there are not specific ranges to determine the formation of THMs in drinking water when the chemical and physical parameters were evaluated. Three different nanostructured materials (graphene, mordenite (MOR) and multiwalled carbon nanotubes (MWCNTs)) were used in this research, to reduce the THMs formation by adsorption in specific contact times. The results showed that graphene is the best nanomaterial to reduce THMs in drinking water. Graphene can reduce 80 parts per billion (ppb) of THMs in about 2 hours. In addition mordenite can reduce approximately 80 ppb of THMs and MWCNTs adsorbs 71 ppb of THMs in the same period of time respectively. Finally, in order to complement the adsorption results previously obtained, total organic carbon (TOC) analyses were measured, after different contact times with the nanomaterials.« less

  16. Toxicological and chemical insights into representative source and drinking water in eastern China.

    PubMed

    Shi, Peng; Zhou, Sicong; Xiao, Hongxia; Qiu, Jingfan; Li, Aimin; Zhou, Qing; Pan, Yang; Hollert, Henner

    2018-02-01

    Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00-129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38-84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Occurrence of organophosphate flame retardants in drinking water from China.

    PubMed

    Li, Jun; Yu, Nanyang; Zhang, Beibei; Jin, Ling; Li, Meiying; Hu, Mengyang; Zhang, Xiaowei; Wei, Si; Yu, Hongxia

    2014-05-01

    Several organophosphate flame retardants (OPFRs) have been identified as known or suspected carcinogens or neurotoxic substances. Given the potential health risks of these compounds, we conducted a comprehensive survey of nine OPFRs in drinking water in China. We found total concentrations of OPFRs in tap water ranging from 85.1 ng/L to 325 ng/L, and tris(2-butoxyethyl) phosphate (TBEP), triphenyl phosphate (TPP), and tris(2-chloroisopropyl) phosphate (TCPP) were the most common components. Similar OPFR concentrations and profiles were observed in water samples processed through six different waterworks in Nanjing, China. However, boiling affected OPFR levels in drinking water by either increasing (e.g., TBEP) or decreasing (e.g., tributyl phosphate, TBP) concentrations depending on the particular compound and the state of the indoor environment. We also found that bottled water contained many of the same major OPFR compounds with concentrations 10-25% lower than those in tap water, although TBEP contamination in bottled water remained a concern. Finally, we concluded that the risk of ingesting OPFRs through drinking water was not a major health concern for either adults or children in China. Nevertheless, drinking water ingestion represents an important exposure pathway for OPFRs. Copyright © 2014. Published by Elsevier Ltd.

  18. Lack of effect of drinking water barium on cardiovascular risk factors.

    PubMed Central

    Wones, R G; Stadler, B L; Frohman, L A

    1990-01-01

    Higher cardiovascular mortality has been associated in a single epidemiological study with higher levels of barium in drinking water. The purpose of this study was to determine whether drinking water barium at levels found in some U.S. communities alters the known risk factors for cardiovascular disease. Eleven healthy men completed a 10-week dose-response protocol in which diet was controlled (600 mg cholesterol; 40% fat, 40% carbohydrate, 20% protein; sodium and potassium controlled at the subject's pre-protocol estimated intake). Other aspects of the subjects' lifestyles known to affect cardiac risk factors were controlled, and the barium content (as barium chloride) of the drinking water (1.5 L/day) was varied from 0 (first 2 weeks), to 5 ppm (next 4 weeks), to 10 ppm (last 4 weeks). Multiple blood and urine samples, morning and evening blood pressure measurements, and 48-hr electrocardiographic monitoring were performed at each dose of barium. There were no changes in morning or evening systolic or diastolic blood pressures, plasma cholesterol or lipoprotein or apolipoprotein levels, serum potassium or glucose levels, or urine catecholamine levels. There were no arrhythmias related to barium exposure detected on continuous electrocardiographic monitoring. A trend was seen toward increased total serum calcium levels with exposure to barium, which was of borderline statistical significance and of doubtful clinical significance. In summary, drinking water barium at levels of 5 and 10 ppm did not appear to affect any of the known modifiable cardiovascular risk factors. PMID:2384067

  19. Validity of indicators of dehydration in working horses: a longitudinal study of changes in skin tent duration, mucous membrane dryness and drinking behaviour.

    PubMed

    Pritchard, J C; Burn, C C; Barr, A R S; Whay, H R

    2008-09-01

    Dehydration is a serious welfare concern in horses working in developing countries. Identification of a valid and practical indicator of dehydration would enable more rapid treatment and prevention. To examine changes in bodyweight, clinical and blood parameters during rehydration of working horses, identify a 'gold standard' criterion for dehydration and use this to validate a standardised skin tent test, drinking behaviour and mucous membrane dryness as potential field indicators. Fifty horses with a positive skin tent test, working in environmental temperatures of 30-44 degrees C in Pakistan, were rested and offered water to drink ad libitum. Bodyweight, clinical and blood parameters, mucous membrane dryness, drinking behaviour and skin tent duration at 6 anatomical locations were measured at 0, 30, 60, 120, 180, 240 and 300 min. Skin tent duration was affected by side of animal (P = 0.008), anatomical location and coat moisture (both P < 0.001). Younger animals had shorter skin tents at all time points (P = 0.007). There was no significant association between plasma osmolality (P(osm)) or water intake and skin tent duration. Horses with a higher P(osm) drank significantly more water (P < 0.001), and had longer (P < 0.001) and more frequent (P = 0.001) drinking bouts. Neither P(osm) nor water intake affected qualitative and semi-quantitative measurements of mucous membrane dryness significantly. The standardised skin tent test and measures of mucous membrane dryness investigated in this study were not valid or repeatable indicators of dehydration when compared with P(osm) as a 'gold standard' criterion. The volume of water consumed and the number and duration of drinking bouts were the most reliable guide to hydration status currently available for mature working horses. Offering palatable water to drink ad libitum provides both the diagnosis and the remedy for dehydration in working horses.

  20. Catchment process affecting drinking water quality, including the significance of rainfall events, using factor analysis and event mean concentrations.

    PubMed

    Cinque, Kathy; Jayasuriya, Niranjali

    2010-12-01

    To ensure the protection of drinking water an understanding of the catchment processes which can affect water quality is important as it enables targeted catchment management actions to be implemented. In this study factor analysis (FA) and comparing event mean concentrations (EMCs) with baseline values were techniques used to asses the relationships between water quality parameters and linking those parameters to processes within an agricultural drinking water catchment. FA found that 55% of the variance in the water quality data could be explained by the first factor, which was dominated by parameters usually associated with erosion. Inclusion of pathogenic indicators in an additional FA showed that Enterococcus and Clostridium perfringens (C. perfringens) were also related to the erosion factor. Analysis of the EMCs found that most parameters were significantly higher during periods of rainfall runoff. This study shows that the most dominant processes in an agricultural catchment are surface runoff and erosion. It also shows that it is these processes which mobilise pathogenic indicators and are therefore most likely to influence the transport of pathogens. Catchment management efforts need to focus on reducing the effect of these processes on water quality.

  1. Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms.

    PubMed

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-01-01

    While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories.

  2. Unintentional drinking-water contamination events of unknown origin: surrogate for terrorism preparedness.

    PubMed

    Winston, Gary; Leventhal, Alex

    2008-01-01

    Drinking-water is a direct conduit to many human receptors. An intentional attack (e.g. terrorism) on drinking-water systems can shock and disrupt elements of national infrastructures. We report on an unintentional drinking-water contamination event that occurred in Tel Aviv, Israel in July, 2001. Initially of unknown origin, this event involved risk management strategies used by the Ministry of Health for abating a potential public health crisis as might be envisaged of water contamination due to terrorism. In an abrupt event of unknown origin, public health officials need to be responsible for the same level of preparedness and risk communication. This is emphasized by comparison of management strategies between the Tel Aviv event and one of dire consequences that occurred in Camelford, England in 1988. From the onset of the Tel Aviv incident, the public health strategy was to employ the precautionary principle by warning residents of the affected region to not drink tap water, even if boiled. This strategy was in contrast to an earlier crisis that occurred in Camelford, England in 1988. An outcome of this event was heightened awareness that a water crisis can occur in peacetime and not only in association with terrorism. No matter how minor the contamination event or short-term the disruption of delivery of safe drinking-water, psychological, medical and public health impact could be significant.

  3. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    PubMed

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  4. Effects of drinking water monochloramine on lipid and thyroid metabolism in healthy men.

    PubMed Central

    Wones, R G; Deck, C C; Stadler, B; Roark, S; Hogg, E; Frohman, L A

    1993-01-01

    The purpose of this study was to determine whether a 4-week consumption of 1.5L per day of drinking water containing monochloramine at a concentration of 2 ppm (ppm = mg/L) or 15 ppm under controlled conditions would alter parameters of lipid or thyroid metabolism in healthy men. Forty-eight men completed an 8-week protocol during which diet (600 mg cholesterol per day, 40% calories as fat) and other factors known to affect lipid metabolism were controlled. During the first 4 weeks of the protocol, all subjects consumed distilled water. During the second 4 weeks, one-third of the subjects were assigned randomly to drink 1.5 L per day of water containing 2 ppm of monochloramine, to drink 1.5 L per day of water containing 15 ppm monochloramine, or to continue drinking distilled water. Four blood samples were collected from each subject at the end of each 4-week study period. Subjects drinking monochloramine at a concentration of 2 ppm showed no significant changes in total cholesterol, triglycerides, HDL cholesterol, LDL cholesterol, apolipoproteins A1, A2, or B when compared to the distilled water group. Parameters of thyroid function also were unchanged by exposure to monochloramine at this concentration. However, subjects drinking monochloramine at a concentration of 15 ppm experienced an increase in the level of apolipoprotein B. Other parameters of lipid and thyroid metabolism did not change. We conclude that consumption of drinking water containing 2 ppm of monochloramine does not alter parameters of lipid and thyroid metabolism in healthy men. Consumption of water containing 15 ppm monochloramine may be associated with increased levels of plasma apolipoprotein B. PMID:8319653

  5. New methods to monitor emerging chemicals in the drinking water production chain.

    PubMed

    van Wezel, Annemarie; Mons, Margreet; van Delft, Wouter

    2010-01-01

    New techniques enable a shift in monitoring chemicals that affect water quality from mainly at the end product, tap water, towards monitoring during the whole process along the production chain. This is congruent with the 'HACCP' system (hazard analysis of critical control points) that is fairly well integrated into food production but less well in drinking water production. This shift brings about more information about source quality, the efficiency of treatment and distribution, and understanding of processes within the production chain, and therefore can lead to a more pro-active management of drinking water production. At present, monitoring is focused neither on emerging chemicals, nor on detection of compounds with chronic toxicity. We discuss techniques to be used, detection limits compared to quality criteria, data interpretation and possible interventions in production.

  6. Preliminary post-tsunami water quality survey in Phang-Nga province, southern Thailand.

    PubMed

    Tharnpoophasiam, Prapin; Suthisarnsuntorn, Usanee; Worakhunpiset, Suwalee; Charoenjai, Prasasana; Tunyong, Witawat; Phrom-In, Suvannee; Chattanadee, Siriporn

    2006-01-01

    This preliminary water quality survey was performed eight weeks after the tsunami hit Phang-Nga Province on 26 December 2004. Water samples collected from the affected area, 10 km parallel to the seaside, were compared with water samples from the control area approximately 4 km from the seaside, which the tsunami waves could not reach. These samples included 18 surface-water samples, 37 well-water samples, and 8 drinking-water samples, which were examined for microbiology and physical-chemical properties. The microbiological examinations focused on enteric bacteria, which were isolated by culture method, while physical-chemical properties comprised on-site testing for pH, salinity, dissolved oxygen (DO), conductivity and total dissolved solids (TDS) by portable electrochemical meter (Sens Ion 156). The results of the microbiological examinations showed that water samples in the affected areas were more contaminated with enteric bacteria than the control area: 45.4% of surface-water samples in the affected area, and 40.0% in the control; 19.0% of well-water samples in the affected area, and 7.7% in the control. All eight drinking-water samples were clear of enteric bacteria. Tests for physical-chemical properties showed that the salinity, pH, conductivity, and TDS of surface-water samples from the affected area were significantly higher than the control. The salinity, conductivity, and TDS of the well-water samples from the affected areas were also significantly greater than those from the control area. The surface and well water in the tsunami-affected area have been changed greatly and need improvement.

  7. Wildland Fire Research: Water Supply and Ecosystem Protection

    EPA Pesticide Factsheets

    Research is critical to better understand how fires affect water quality and supply and the overall health of an ecosystem. This information can be used to protect the safety of drinking water and assess the vulnerability of water supplies.

  8. Qualitative and quantitative aspects of drinking water supply in Sardinia, Italy. A descriptive analysis of the ordinances and public notices issued during the years 2010-2015.

    PubMed

    Dettori, M; Piana, A; Castiglia, P; Loria, E; Azara, A

    2016-01-01

    The aim of the study is to analyze the regional district ordinances and the warnings regarding qualitative and quantitavive drinking water abnormalities discovered by the Sardinian Municipalities and the Water Managing Authority between 2010 and 2015 in order to describe and identify the causes leading to an interruption or a limitation of the drinking water supply. We carefully reviewed all ordinances and warnings of non-potable water and service interruption published between 2010 and 2015 by the websites of 377 Sardinian Municipalities and by the main regional newspapers, the Water Managing Authority and the Regional Health Trusts. From 2010 to 2015, 738 warnings/ordinances regarding drinking water supply limitation or interruption were issued. The warnings involved more than half (n. 191, 50.7%) of the 377 Sardinian Municipalities. Considering that these Municipalities included the main Sardinian cities we estimated that 80.3% of the population was affected by the issue. During the 6 years we observed a progressive increase of Municipalities involved beginning with 25 and reaching up 110 in 2014. The initial 29 warnings rose to 256 in 2014 along with an increased number of abnormal values, parameters and standards of the drinking water. Regarding the ordinances issued by the 191 Mayors we noticed that the legal limits were exceeded in 23 cases. Among those, we underline the abnormal levels of chlorites and trihalomethanes (22% of cases), the turbidity, the abnormal concentration of total chemical substances and the abnormal level of coliforms, Escherichia coli, manganese, aluminum, nitrites and iron. According to our observations, the Sardinian drinking water supply system is affected by a major inconvenience and the data suggest that qualitative abnormalities are mainly due to water purification treatments used in addition to the poor water supply network in existence. Considering these results, a cooperation between all Authorities involved would be desirable in order to analyze official data and provide a careful evaluation of population exposure and real risks related to the level of every parameter considered.

  9. Diminished disease progression rate in a chronic kidney disease population following the replacement of dietary water source with quality drinking water: A pilot study.

    PubMed

    Siriwardhana, Edirisinghe Arachchige Ranga Iroshanie Edirisinghe; Perera, Ponnamperuma Aratchige Jayasumana; Sivakanesan, Ramiah; Abeysekara, Tilak; Nugegoda, Danaseela Bandara; Weerakoon, Kosala; Siriwardhana, Dunusingha Asitha Surandika

    2018-05-01

    Environmental toxin/s is alleged to be the contributory factor for the chronic kidney disease of unknown aetiology (CKDu) in Sri Lanka. The potential of drinking water as a medium for the nephrotoxic agents in the affected subjects has been comprehensively discoursed in the recent past. The present study was aimed to assess the effect of replacing the habitual drinking water on the kidney function of CKDu patients residing in the North Central Province of Sri Lanka: METHODS: An interventional study was carried out to assess the disease progression rate of a CKDu population whose habitual drinking water was replaced by bottled spring water certified by Sri Lanka Standard (SLS) for a period of 18 month along with a population of CKDu patients who continued with their usual drinking water. Kidney function of subjects in both groups were monitored in terms of blood pressure, serum creatinine, serum calcium, serum phosphorus, hemoglobin, estimated glomerular filtration rate and urinary protein at 6 months intervals during the intervention and follow up periods. Diminished disease progression rate was observed in CKDu patients in the intervention group when compared with the non- intervention group based on serum creatinine, Hb, estimated glomerular filtration rate and urinary protein levels. Extensive interventional studies are required to generalize effect of drinking water on CKDu population. The habitual drinking water is likely to be a contributory factor towards the progression of the disease. © 2017 Asian Pacific Society of Nephrology.

  10. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh

    PubMed Central

    Chowdhury, Muhammad A.H.; Haines, Andy; Alam, Dewan S.; Hoque, Mohammad A.; Butler, Adrian P.; Khan, Aneire E.; Mojumder, Sontosh K.; Blangiardo, Marta A.G.; Elliott, Paul; Vineis, Paolo

    2017-01-01

    Background: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. Objectives: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. Methods: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from “conventional” ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. Results: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. Conclusions: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in “real-life” salinity-affected settings. https://doi.org/10.1289/EHP659 PMID:28599268

  11. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    PubMed

    Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo

    2017-05-30

    Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.

  12. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    PubMed

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Global assessment of exposure to faecal contamination through drinking water based on a systematic review.

    PubMed

    Bain, Robert; Cronk, Ryan; Hossain, Rifat; Bonjour, Sophie; Onda, Kyle; Wright, Jim; Yang, Hong; Slaymaker, Tom; Hunter, Paul; Prüss-Ustün, Annette; Bartram, Jamie

    2014-08-01

    To estimate exposure to faecal contamination through drinking water as indicated by levels of Escherichia coli (E. coli) or thermotolerant coliform (TTC) in water sources. We estimated coverage of different types of drinking water source based on household surveys and censuses using multilevel modelling. Coverage data were combined with water quality studies that assessed E. coli or TTC including those identified by a systematic review (n = 345). Predictive models for the presence and level of contamination of drinking water sources were developed using random effects logistic regression and selected covariates. We assessed sensitivity of estimated exposure to study quality, indicator bacteria and separately considered nationally randomised surveys. We estimate that 1.8 billion people globally use a source of drinking water which suffers from faecal contamination, of these 1.1 billion drink water that is of at least 'moderate' risk (>10 E. coli or TTC per 100 ml). Data from nationally randomised studies suggest that 10% of improved sources may be 'high' risk, containing at least 100 E. coli or TTC per 100 ml. Drinking water is found to be more often contaminated in rural areas (41%, CI: 31%-51%) than in urban areas (12%, CI: 8-18%), and contamination is most prevalent in Africa (53%, CI: 42%-63%) and South-East Asia (35%, CI: 24%-45%). Estimates were not sensitive to the exclusion of low quality studies or restriction to studies reporting E. coli. Microbial contamination is widespread and affects all water source types, including piped supplies. Global burden of disease estimates may have substantially understated the disease burden associated with inadequate water services. © 2014 The Authors. Tropical Medicine and International Health published by John Wiley & Sons Ltd.

  14. Global assessment of exposure to faecal contamination through drinking water based on a systematic review

    PubMed Central

    Bain, Robert; Cronk, Ryan; Hossain, Rifat; Bonjour, Sophie; Onda, Kyle; Wright, Jim; Yang, Hong; Slaymaker, Tom; Hunter, Paul; Prüss-Ustün, Annette; Bartram, Jamie

    2014-01-01

    Objectives To estimate exposure to faecal contamination through drinking water as indicated by levels of Escherichia coli (E. coli) or thermotolerant coliform (TTC) in water sources. Methods We estimated coverage of different types of drinking water source based on household surveys and censuses using multilevel modelling. Coverage data were combined with water quality studies that assessed E. coli or TTC including those identified by a systematic review (n = 345). Predictive models for the presence and level of contamination of drinking water sources were developed using random effects logistic regression and selected covariates. We assessed sensitivity of estimated exposure to study quality, indicator bacteria and separately considered nationally randomised surveys. Results We estimate that 1.8 billion people globally use a source of drinking water which suffers from faecal contamination, of these 1.1 billion drink water that is of at least ‘moderate’ risk (>10 E. coli or TTC per 100 ml). Data from nationally randomised studies suggest that 10% of improved sources may be ‘high’ risk, containing at least 100 E. coli or TTC per 100 ml. Drinking water is found to be more often contaminated in rural areas (41%, CI: 31%–51%) than in urban areas (12%, CI: 8–18%), and contamination is most prevalent in Africa (53%, CI: 42%–63%) and South-East Asia (35%, CI: 24%–45%). Estimates were not sensitive to the exclusion of low quality studies or restriction to studies reporting E. coli. Conclusions Microbial contamination is widespread and affects all water source types, including piped supplies. Global burden of disease estimates may have substantially understated the disease burden associated with inadequate water services. PMID:24811893

  15. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry

    USGS Publications Warehouse

    Ye, Z.; Weinberg, H.S.; Meyer, M.T.

    2007-01-01

    A multirun analytical method has been developed and validated for trace determination of 24 antibiotics including 7 sulfonamides, 3 macrolides, 7 quinolones, 6 tetracyclines, and trimethoprim in chlorine-disinfected drinking water using a single solid-phase extraction method coupled to liquid chromatography with positive electrospray tandem mass spectrometry detection. The analytes were extracted by a hydrophilic-lipophilic balanced resin and eluted with acidified methanol (0.1% formic acid), resulting in analyte recoveries generally above 90%. The limits of quantitation were mostly below 10 ng/L in drinking water. Since the concentrated sample matrix typically caused ion suppression during electrospray ionization, the method of standard addition was used for quantitation. Chlorine residuals in drinking water can react with some antibiotics, but ascorbic acid was found to be an effective chlorine quenching agent without affecting the analysis and stability of the antibiotics in water. A preliminary occurrence study using this method revealed the presence of some antibiotics in drinking waters, including sulfamethoxazole (3.0-3.4 ng/L), macrolides (1.4-4.9 ng/L), and quinolones (1.2-4.0 ng/L). ?? 2007 American Chemical Society.

  16. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source.

    PubMed

    Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  17. Tracing dissolved organic carbon and trihalomethane formation potential between source water and finished drinking water at a lowland and an upland UK catchment.

    PubMed

    Brooks, Emma; Freeman, Christopher; Gough, Rachel; Holliman, Peter J

    2015-12-15

    Rising dissolved organic carbon (DOC) concentrations in many upland UK catchments represents a challenge for drinking water companies, in particular due to the role of DOC as a precursor in the formation of trihalomethanes (THMs). Whereas traditionally, the response of drinking water companies has been focussed on treatment processes, increasingly, efforts have been made to better understanding the role of land use and catchment processes in affecting drinking water quality. In this study, water quality, including DOC and THM formation potential (THMFP) was assessed between the water source and finished drinking water at an upland and a lowland catchment. Surprisingly, the lowland catchment showed much higher reservoir DOC concentrations apparently due to the influence of a fen within the catchment from where a major reservoir inflow stream originated. Seasonal variations in water quality were observed, driving changes in THMFP. However, the reservoirs in both catchments appeared to dampen these temporal fluctuations. Treatment process applied in the 2 catchments were adapted to reservoir water quality with much higher DOC and THMFP removal rates observed at the lowland water treatment works where coagulation-flocculation was applied. However, selectivity during this DOC removal stage also appeared to increase the proportion of brominated THMs produced. Copyright © 2015. Published by Elsevier B.V.

  18. Water Sources and Their Protection from the Impact of Microbial Contamination in Rural Areas of Beijing, China

    PubMed Central

    Ye, Bixiong; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Li, Hairong

    2013-01-01

    Bacterial contamination of drinking water is a major public health problem in rural China. To explore bacterial contamination in rural areas of Beijing and identify possible causes of bacteria in drinking water samples, water samples were collected from wells in ten rural districts of Beijing, China. Total bacterial count, total coliforms and Escherichia coli in drinking water were then determined and water source and wellhead protection were investigated. The bacterial contamination in drinking water was serious in areas north of Beijing, with the total bacterial count, total coliforms and Escherichia coli in some water samples reaching 88,000 CFU/mL, 1,600 MPN/100 mL and 1,600 MPN/100 mL, respectively. Water source types, well depth, whether the well was adequately sealed and housed, and whether wellhead is above or below ground were the main factors influencing bacterial contamination levels in drinking water. The bacterial contamination was serious in the water of shallow wells and wells that were not closed, had no well housing or had a wellhead below ground level. The contamination sources around wells, including village dry toilets and livestock farms, were well correlated with bacterial contamination. Total bacterial counts were affected by proximity to sewage ditches and polluting industries, however, proximity to landfills did not influence the microbial indicators. PMID:23462436

  19. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.

    PubMed

    Liu, Sanly; Gunawan, Cindy; Barraud, Nicolas; Rice, Scott A; Harry, Elizabeth J; Amal, Rose

    2016-09-06

    In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now feasible with fluorescence microscopy (epifluorescence and CLSM imaging with DNA, RNA, EPS, and protein and lipid stains) and electron microscopy imaging (ESEM). Importantly, thorough identification of microbial fingerprints in drinking water biofilms is achievable with DNA sequencing techniques (the 16S rRNA gene-based identification), which have revealed a prevalence of previously undetected bacterial members. Technologies are now moving toward in situ monitoring of biomass growth in distribution networks, including the development of optical fibers capable of differentiating biomass from chemical deposits. Taken together, management of biofilm growth in water distribution systems requires an integrated approach, starting from the treatment of water prior to entering the networks to the potential implementation of "biofilm-limiting" operational conditions and, finally, ending with the careful selection of available technologies for biofilm monitoring and control. For the latter, conventional practices, including chlorine-chloramine disinfection, flushing of DWDS, nutrient removal, and emerging technologies are discussed with their associated challenges.

  20. How Trace Element Levels of Public Drinking Water Affect Body Composition in Turkey.

    PubMed

    Cetin, Ihsan; Nalbantcilar, Mahmut Tahir; Tosun, Kezban; Nazik, Aydan

    2017-02-01

    Since waterborne minerals appear in ionic form and are readily absorbed by the gastrointestinal tract, drinking water could be a crucial source of mineral intake. However, no comprehensive research has yet determined how trace elements in drinking water relate to body composition. We aimed to assess the relationship between clinically important trace elements in public drinking water and body composition in average, overweight and obese individuals in Turkey. The study's population consisted of 423 participants: 143 overweight, 138 obese and 142 healthy control individuals, grouped according to clinical cutoff points of body mass index (BMI). We measured levels of lithium (Li), nickel (Ni), lead (Pb), silicon (Si), tin (Sn), strontium (Sr), boron (B), aluminium (Al), barium (Ba) and rubidium (Rb) in samples from wells of municipal water by using inductively coupled plasma mass spectrometry. We gauged all the participants' body composition measurements with a BC-418 body composition analyser. In all the participants, body weight values showed significant positive correlations with Ni levels in drinking water, as did BMI values with Al levels and percentage of obesity with Ni, Si and B levels. In particular, Ni levels showed significant positive correlations with the basal metabolic rate, activity calories, and total activity of participants. Giving findings showing correlations between obesity-related parameters and Al, Si, B and Ni content in drinking water, we hope that these associations will be clarified with further studies including cellular, experimental and clinical studies. Hence, medical practitioners must be aware of trace element levels in drinking water for overweight and obese patients.

  1. Health, growth and reproductive success of mice exposed to environmentally relevant levels of Ra-226 via drinking water over multiple generations.

    PubMed

    Walsh, Stephanie; Satkunam, Meloja; Su, Ben; Festarini, Amy; Bugden, Michelle; Peery, Harry; Mothersill, Carmel; Stuart, Marilyne

    2015-07-01

    To assess health, growth and reproductive success of mammals exposed for multiple generations to levels of radium-226 known to occur in environments surrounding uranium mines and mills in Canada. The study consisted of a control group and four treatment groups each containing 40 mice (20 males and 20 females) of the CBA/CaJ strain that were continuously exposed to a range of radium-226 levels via drinking water. Breeding was at 8-10 weeks of age and the study was concluded after three breeding cycles. When compared to control mice, constant consumption of drinking water containing 0.012, 0.076, 0.78 and 8.0 Bq/l of radium-226 over four generations of mice did not demonstrably affect physical condition, weight, pregnancy rate, number of pups per litter, sex ratio and bodyweight gain of pups. Between generations, the observed differences in pregnancy rates that were noted in all groups, including controls, seemed to directly correlate with the weight and age of the females at breeding. Based on the endpoints measured on four generations of mice, there is no indication that the consumption of radium-226 via drinking water (at activity concentrations up to 8.0 Bq/l) affects health, growth and reproductive fitness.

  2. Are Endocrine Disrupting Compounds a Health Risk in Drinking Water?

    PubMed Central

    Falconer, Ian R.

    2006-01-01

    There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17β-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where the effluent is directly or indirectly in use for drinking water. In some places at which heavy anthropogenic contamination of drinking water sources occurs, advanced drinking water treatment is increasingly being implemented. This treatment employs particle removal, ozone oxidation of organic material and activated charcoal adsorption of the oxidation products. Such processes will remove industrial organic chemicals, pesticides, detergents, pharmaceutical products and hormones. Populations for which only basic wastewater and drinking water treatment are available remain vulnerable. PMID:16823090

  3. Safe drinking water and waterborne outbreaks.

    PubMed

    Moreira, N A; Bondelind, M

    2017-02-01

    The present work compiles a review on drinking waterborne outbreaks, with the perspective of production and distribution of microbiologically safe water, during 2000-2014. The outbreaks are categorised in raw water contamination, treatment deficiencies and distribution network failure. The main causes for contamination were: for groundwater, intrusion of animal faeces or wastewater due to heavy rain; in surface water, discharge of wastewater into the water source and increased turbidity and colour; at treatment plants, malfunctioning of the disinfection equipment; and for distribution systems, cross-connections, pipe breaks and wastewater intrusion into the network. Pathogens causing the largest number of affected consumers were Cryptosporidium, norovirus, Giardia, Campylobacter, and rotavirus. The largest number of different pathogens was found for the treatment works and the distribution network. The largest number of affected consumers with gastrointestinal illness was for contamination events from a surface water source, while the largest number of individual events occurred for the distribution network.

  4. Historical reconstruction of wastewater and land use impacts to groundwater used for public drinking water: exposure assessment using chemical data and GIS.

    PubMed

    Swartz, Christopher H; Rudel, Ruthann A; Kachajian, Jennifer R; Brody, Julia G

    2003-09-01

    Land use in geographic areas that replenish groundwater and surface water resources is increasingly recognized as an important factor affecting drinking water quality. Efforts to understand the implications for health, particularly outcomes with long latency or critical exposure windows, have been hampered by lack of historical exposure data for unregulated pollutants. This limitation has hindered studies of the possible links between breast cancer risk and drinking water impacted by endocrine disrupting compounds and mammary carcinogens, for example. This paper describes a methodology to assess potential historical exposure to a broad range of chemicals associated with wastewater and land use impacts to 132 groundwater wells and one surface water body supplying drinking water to 18 public distribution systems on Cape Cod, MA. We calculated annual measures of impact to each distribution system and used the measures as exposure estimates for the residential addresses of control women in the Cape Cod Breast Cancer and Environment Study (Cape Cod Study). Impact was assessed using (1) historical chemical measurements of nitrate at the water supply sources (performed as required by the Safe Water Drinking Act) and (2) a geographic information system analysis of land use within the zones of contribution (ZOCs) delineated for each well in a state-mandated wellhead protection program. The period for which these impact estimates were developed (1972-1995) was constrained by the availability of chemical measurements and land use data and consideration of time required for groundwater transport of contaminants to the water supply wells. Trends in these estimates for Cape Cod suggest increasing impact to drinking water quality for land use over the study period. Sensitivity analyses were conducted to assess the effect on the distribution of controls' cumulative exposure estimates from (1) reducing the area of the ZOCs to reflect typical well operating conditions rather than extreme pumping conditions used for the regulatory ZOCs, (2) assuming residences received their drinking water entirely from the closest well or cluster of wells rather than a volume-weighted annual district-wide average, and (3) changing the travel time considered for contaminants to reach wells from land use sources. We found that the rank and distribution of controls' cumulative exposure estimates were affected most by the assumption concerning district mixing; in particular, assignment of exposure estimates based on impact values for the closest well(s) consistently produced a larger number of unexposed controls than when a district-wide average impact value was used. As expected, the results suggest that adequate characterization of water quality heterogeneity within water supplies is an important component of exposure assessment methodologies in health studies investigating impacted drinking water.

  5. WATER QUALITY EARLY WARNING SYSTEMS FOR SOURCE WATER PROTECTION

    EPA Science Inventory

    Source waters of the U.S. are vulnerable to natural and anthropogenic factors affecting quality for use as both a drinking water and ecological media. Important factors include physical parameters such as increased turbidity, ecological cycles such as algal blooms, and episodic ...

  6. Correlation of Breastmilk Arsenic With Maternal, Infant Urinary Arsenic and Drinking Water Arsenic in an Arsenic Affected Area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Alauddin, M.; Islam, M. R.; Milton, A. H.; Alauddin, S. T.; Mouly, T.; Behri, E.; Ayesha, A.; Akter, S.; Islam, M. M.

    2016-12-01

    About 97% of population in Bangladesh depend on groundwater as the principle source of drinking water and this water is highly contaminated with inorganic arsenic. Consumption of arsenic contaminated drinking water by pregnant women raises the prospect of early life exposure to inorganic arsenic for newborn which may be lead to adverse health effect in later life. This work was carried out in parts of Gopalganj district in Bangladesh, a region affected by arsenic contamination in groundwater. The objective of the work was to assess potential early life exposure to arsenic for infants through breastfeeding by mothers who were drinking water with arsenic levels ranging from 100 to 300 µg/l. A cohort of 30 mother-baby pairs were selected for the current study. Breastmilk samples from mothers, urine samples from each pair of subjects at 1, 6 and 9 month age of infant were collected and total arsenic were determined in these samples. In addition speciation of urinary arsenic and metabolites were carried out in 12 mother-baby pairs. Median level for breastmilk arsenic were 0.50 µg/l. Urinary arsenic of infants did not correlate with breastmilk arsenic with progressing age of infants. Maternal and infant urinary total arsenic at 1 month age of infant showed some positive correlation (r = 0.39). In infant urine major metabolite were dimethyl arsenic acid (DMA) (approximately 70%) indicating good methylating capacity for infants at 1 and 6 months of age. In conclusion, infants were not exposed to arsenic through breastfeeding even though mothers were exposed to significant levels of arsenic through drinking water.

  7. Community Perception of Water Quality in a Mining-Affected Area: A Case Study for the Certej Catchment in the Apuseni Mountains in Romania

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities’ perceptions on the quality of water in their living area. Logistic regression was used to examine peoples’ perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  8. Community perception of water quality in a mining-affected area: a case study for the Certej catchment in the Apuseni Mountains in Romania.

    PubMed

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities' perceptions on the quality of water in their living area. Logistic regression was used to examine peoples' perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  9. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    PubMed

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures. Published by Elsevier B.V.

  10. pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence.

    PubMed

    Sofi, M Hanief; Gudi, Radhika; Karumuthil-Melethil, Subha; Perez, Nicolas; Johnson, Benjamin M; Vasu, Chenthamarakshan

    2014-02-01

    Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA-targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice.

  11. pH of Drinking Water Influences the Composition of Gut Microbiome and Type 1 Diabetes Incidence

    PubMed Central

    Sofi, M. Hanief; Gudi, Radhika; Karumuthil-Melethil, Subha; Perez, Nicolas; Johnson, Benjamin M.; Vasu, Chenthamarakshan

    2014-01-01

    Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA–targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice. PMID:24194504

  12. Low-level arsenic exposure via drinking water consumption and female fecundity - A preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susko, Michele L.; Bloom, Michael S., E-mail: mbloom@albany.edu; Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, New York

    High level arsenic exposure is associated with reproductive toxicity in experimental and observational studies; however, few data exist to assess risks at low levels. Even less data are available to evaluate the impact of low level arsenic exposure on human fecundity. Our aim in this pilot study was a preliminary evaluation of associations between low level drinking water arsenic contamination and female fecundity. This retrospective study was conducted among women previously recruited to a hospital-based case-control study of spontaneous pregnancy loss in Timiá¹£ County, Romania. Women (n=94) with planned pregnancies of 5–20 weeks gestation completed a comprehensive physician-administered study questionnairemore » and reported the number of menstrual cycles attempting to conceive as the time to pregnancy (TTP). Drinking water samples were collected from residential drinking water sources and we determined arsenic levels using hydride generation-atomic absorption spectrometry (HG-AAS). Multivariable Cox-proportional hazards regression with Efron approximation was employed to evaluate TTP as a function of drinking water arsenic concentrations among planned pregnancies, adjusted for covariates. There was no main effect for drinking water arsenic exposure, yet the conditional probability for pregnancy was modestly lower among arsenic exposed women with longer TTPs, relative to women with shorter TTPs, and relative to unexposed women. For example, 1 µg/L average drinking water arsenic conferred 5%, 8%, and 10% lower likelihoods for pregnancy in the 6th, 9th, and 12th cycles, respectively (P=0.01). While preliminary, our results suggest that low level arsenic contamination in residential drinking water sources may further impair fecundity among women with longer waiting times; however, this hypothesis requires confirmation by a future, more definitive study. - Highlights: • We assessed low level drinking water arsenic as a predictor of fecundability. • Arsenic did not affect time to pregnancy among women conceiving quickly. • Arsenic increased time to pregnancy among women taking longer to conceive. • Low level drinking water arsenic may adversely impact women with lower fecundity.« less

  13. Assessment of the Potential Impacts of Hydraulic Fracturing for ...

    EPA Pesticide Factsheets

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity of any potential impacts. The scope of this assessment is defined by the hydraulic fracturing water cycle which includes five main activities: Water acquisition – the withdrawal of ground or surface water needed for hydraulic fracturing fluids;Chemical mixing – the mixing of water, chemicals, and proppant on the well pad to create the hydraulic fracturing fluid;Well injection – the injection of hydraulic fracturing fluids into the well to fracture the geologic formation; Flowback and Produced water – the return of injected fluid and water produced from the formation to the surface, and subsequent transport for reuse, treatment, or disposal; andWastewater treatment and waste disposal – the reuse, treatment and release, or disposal of wastewater generated at the well pad, including produced water. This report can be used by federal, tribal, state, and local officials; industry; and the public to better understand and address vulnerabilities of drinking water resources to hydraulic fracturing activities. To assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of s

  14. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA

    PubMed Central

    Stanish, Lee F.; Hull, Natalie M.; Robertson, Charles E.; Harris, J. Kirk; Stevens, Mark J.; Spear, John R.; Pace, Norman R.

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources. PMID:27362708

  15. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA.

    PubMed

    Stanish, Lee F; Hull, Natalie M; Robertson, Charles E; Harris, J Kirk; Stevens, Mark J; Spear, John R; Pace, Norman R

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources.

  16. Determination of absorption coefficient of Chlorella vulgaris and Arthrospira maxima in water

    NASA Astrophysics Data System (ADS)

    Tekiner, Murat; Kurt, Mustafa; Ak, Ilknur; Kurt, Arzu

    2018-02-01

    Safe drinking water is crucial for human healthy, nowadays all drinking and irrigation water in developed country commonly come from dams. The water is transported to our usage area by several type of pipe or water-trench. The water can be infected some bacteria such as Chlorella vulgaris, Arthrospira maxima, during this transportation. In this study, we determine which wavelength effect to these green algae and cyanobacteria. For different concentration of these microorganisms in water, we determined uv-vis spectrum. By analyzing these spectrums, we determined absorption coefficient of these microorganisms for selected wavelength. The results show which wavelength can be used for destroy these microorganisms in affected water.

  17. A sub-tank water-saving drinking water station

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small amount of water consumption, the drinking water station is different from the ordinary drinking water station repeatedly boil, greatly saving energy, embodies the idea of energy saving.

  18. Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.

    PubMed

    Good, Kelly D; VanBriesen, Jeanne M

    2017-10-17

    Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.

  19. Evaluation of Methods for the Extraction of DNA from Drinking Water Distribution System Biofilms

    PubMed Central

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.; Liu, Wen-Tso

    2012-01-01

    While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories. PMID:22075624

  20. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation.

    PubMed

    Vingerhoeds, Monique H; Nijenhuis-de Vries, Mariska A; Ruepert, Nienke; van der Laan, Harmen; Bredie, Wender L P; Kremer, Stefanie

    2016-05-01

    Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from <5 to 440 mg/L) shifted the sensory perception of water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Pyrosequencing analysis of the bacterial community in drinking water wells.

    PubMed

    Navarro-Noya, Yendi E; Suárez-Arriaga, Mayra C; Rojas-Valdes, Aketzally; Montoya-Ciriaco, Nina M; Gómez-Acata, Selene; Fernández-Luqueño, Fabián; Dendooven, Luc

    2013-07-01

    Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.

  2. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015.

    PubMed

    Daly, Elizabeth R; Chan, Benjamin P; Talbot, Elizabeth A; Nassif, Julianne; Bean, Christine; Cavallo, Steffany J; Metcalf, Erin; Simone, Karen; Woolf, Alan D

    2018-04-01

    Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in manufacturing that resist environmental degradation, can leach into drinking water, and bioaccumulate in tissues. Some studies have shown associations with negative health outcomes. In May 2014, a New Hampshire public drinking water supply was found to be contaminated with PFAS from a former U.S. Air Force base. We established a serum testing program to assess PFAS exposure in the affected community. Serum samples and demographic and exposure information were collected from consenting eligible participants. Samples were tested for PFAS at three analytical laboratories. Geometric means and 95% confidence intervals were calculated and analyzed by age and exposure variables. A total of 1578 individuals provided samples for PFAS testing; >94% were found to have perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS) detectable in serum. Geometric mean serum concentrations of PFOS, PFOA, and PFHxS were 8.6 μg/L (95% CI:8.3-8.9), 3.1 μg/L (95% CI: 3.0-3.2), and 4.1 μg/L (95% CI: 3.9-4.3), respectively, which were statistically higher than the general U.S. Significant associations were observed between PFAS serum concentrations and age, time spent in the affected community, childcare attendance, and water consumption. PFOS, PFOA, and PFHxS were found in significantly higher levels in the affected population, consistent with PFAS drinking water contamination. Given increased recognition of PFAS contamination in the U.S, a coordinated national response is needed to improve access to biomonitoring and understand health impacts. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Effects of a behavior change campaign on household drinking water disinfection in the Lake Chad basin using the RANAS approach.

    PubMed

    Lilje, Jonathan; Mosler, Hans-Joachim

    2018-04-01

    Worldwide, an estimated 700 million people rely on unimproved drinking water sources; even more consume water that is not safe to drink. Inadequate drinking water quality constitutes a major risk factor for cholera and other diarrheal diseases around the globe, especially for young children in developing countries. Household water treatment and safe storage systems represent an intermediate solution for settings that lack infrastructure supplying safe drinking water. However, the correct and consistent usage of such treatment technologies rely almost exclusively on the consumer's behavior. This study targeted at evaluating effects of a behavior change campaign promoting the uptake of household drinking water chlorination in communities along the Chari and Logone rivers in Chad. The campaign was based on formative research using health psychological theory and targeted several behavioral factors identified as relevant. A total of 220 primary caregivers were interviewed concerning their household water treatment practices and mindset related to water treatment six months after the campaign. The Risks, Attitudes, Norms, Abilities, and Self-regulation (RANAS) model was used to structure the interviews as the RANAS approach had been used for designing the campaign. Results show significantly higher self-reported drinking water chlorination among participants of the intervention. Significant differences from a control group were identified regarding several behavioral factors. Mediation analysis revealed that the intervention positively affected participants' individual risk estimation for diarrheal disease, health knowledge, perceived efforts and benefits of water treatment, social support strategies, knowledge of how to perform chlorination, and perceived ability to do so. The campaign's effect on water treatment was mainly mediated through differences in health knowledge, changes in norms, and self-efficacy convictions. The findings imply that water treatment behavior can be successfully promoted using health psychological theory. However, they also indicate opportunities for improvement in the campaign design and implementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. INTERNAL CORROSION AND DEPOSITION CONTROL

    EPA Science Inventory

    Corrosion is one of the most important problems in the drinking water industry. It can affect public health, public acceptance of a water supply, and the cost of providing safe water. Deterioration of materials resulting from corrosion can necessitate huge yearly expenditures o...

  5. Ground-water flow and quality in Wisconsin's shallow aquifer system

    USGS Publications Warehouse

    Kammerer, P.A.

    1995-01-01

    In terms of chemical quality, the water is suitable for potable supply and most other uses, but objectionable hardness in large areas and concen- trations of iron and manganese that exceed State drinking-water standards cause aesthetic problems that may require treatment of the water for some uses. Concentrations of major dissolved constitu- ents (calcium, magnesium, and bicarbonate), hard- ness, alkalinity, and dissolved solids are highest where the bedrock component of the aquifer is dolo- mite and lowest where the shallow aquifer is almost entirely sand and gravel. Concentrations of other minor constituents (sodium, potassium, sulfate, chloride, and fluoride) are less closely related to common minerals that compose the aquifer system. Sulfate and fluoride concentrations exceed State drinking-water standards locally. Extreme variability in concentrations of iron and manganese are common locally. Iron and manganese concentra- tions exceed State drinking-water standards in water from one-third and one-quarter of the wells, respectively. Likely causes of nitrate-nitrogen con- centrations that exceed State drinking-water stan- dards include local contamination from plant fertilizers, animal wastes, waste water disposed of on land, and septic systems. Water quality in the shallow aquifer system has been affected by saline water from underlying aquifers, primarily along the eastern and western boundaries of the State where the thickness of Paleozoic rocks is greatest.

  6. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI ...

    EPA Pesticide Factsheets

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central Oklahoma aquifer, which supplies drinking water to numerous communities in central Oklahoma. Concentrations as high as 230 µg/L have been reported in some drinking water supply wells from this aquifer. The city of Norman, like most other affected cities, is actively seeking a cost-effective solution to the arsenic problem. Only six of the city’s 32 wells exceeded the old MCL of 50 µg/L. With implementation of the new MCL this year, 18 of the 32 wells exceed the allowable concentration of arsenic. Arsenic-bearing shaly sandstones appear to be the source of the arsenic. It may be possible to isolate these arsenic-bearing zones from water supply wells, enabling production of water that complies with drinking water standards. It is hypothesized that geologic mapping together with detailed hydrogeochemical investigations will yield correlations which predict high arsenic occurrence for the siting of new drinking water production wells. More data and methods to assess the specific distribution, speciation, and mode of transport of arsenic in aquifers are needed to improve our predictions for arsenic occurrence in water supply wells. Research is also needed to assess whether we can ret

  7. Using probabilistic modeling to evaluate human exposure to organotin in drinking water transported by polyvinyl chloride pipe.

    PubMed

    Fristachi, Anthony; Xu, Ying; Rice, Glenn; Impellitteri, Christopher A; Carlson-Lynch, Heather; Little, John C

    2009-11-01

    The leaching of organotin (OT) heat stabilizers from polyvinyl chloride (PVC) pipes used in residential drinking water systems may affect the quality of drinking water. These OTs, principally mono- and di-substituted species of butyltins and methyltins, are a potential health concern because they belong to a broad class of compounds that may be immune, nervous, and reproductive system toxicants. In this article, we develop probability distributions of U.S. population exposures to mixtures of OTs encountered in drinking water transported by PVC pipes. We employed a family of mathematical models to estimate OT leaching rates from PVC pipe as a function of both surface area and time. We then integrated the distribution of estimated leaching rates into an exposure model that estimated the probability distribution of OT concentrations in tap waters and the resulting potential human OT exposures via tap water consumption. Our study results suggest that human OT exposures through tap water consumption are likely to be considerably lower than the World Health Organization (WHO) "safe" long-term concentration in drinking water (150 microg/L) for dibutyltin (DBT)--the most toxic of the OT considered in this article. The 90th percentile average daily dose (ADD) estimate of 0.034 +/- 2.92 x 10(-4)microg/kg day is approximately 120 times lower than the WHO-based ADD for DBT (4.2 microg/kg day).

  8. Management of a toxic cyanobacterium bloom (Planktothrix rubescens) affecting an Italian drinking water basin: a case study.

    PubMed

    Bogialli, Sara; Nigro di Gregorio, Federica; Lucentini, Luca; Ferretti, Emanuele; Ottaviani, Massimo; Ungaro, Nicola; Abis, Pier Paolo; Cannarozzi de Grazia, Matteo

    2013-01-02

    An extraordinary bloom of Planktothrix rubescens, which can produce microcystins (MCs), was observed in early 2009 in the Occhito basin, used even as a source of drinking water in Southern Italy. Several activities, coordinated by a task force, were implemented to assess and manage the risk associated to drinking water contaminated by cyanobacteria. Main actions were: evaluation of analytical protocols for screening and confirmatory purpose, monitoring the drinking water supply chain, training of operators, a dedicated web site for risk communication. ELISA assay was considered suitable for health authorities as screening method for MCs and to optimize frequency of sampling according to alert levels, and as internal control for the water supplier. A liquid chromatography-tandem mass spectrometric method able to quantify 9 MCs was optimized with the aim of supporting health authorities in a comprehensive risk evaluation based on the relative toxicity of different congeners. Short, medium, and long-term corrective actions were implemented to mitigate the health risk. Preoxidation with chlorine dioxide followed by flocculation and settling have been shown to be effective in removing MCs in the water treatment plant. Over two years, despite the high levels of cyanobacteria (up to 160 × 10(6) cells/L) and MCs (28.4 μg/L) initially reached in surface waters, the drinking water distribution was never limited.

  9. Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics.

    PubMed

    Islam, Abu Reza Md Towfiqul; Ahmed, Nasir; Bodrud-Doza, Md; Chu, Ronghao

    2017-12-01

    Drinking water is susceptible to the poor quality of contaminated water affecting the health of humans. Thus, it is an essential study to investigate factors affecting groundwater quality and its suitability for drinking uses. In this paper, the entropy theory, multivariate statistics, spatial autocorrelation index, and geostatistics are applied to characterize groundwater quality and its spatial variability in the Sylhet district of Bangladesh. A total of 91samples have been collected from wells (e.g., shallow, intermediate, and deep tube wells at 15-300-m depth) from the study area. The results show that NO 3 - , then SO 4 2- , and As are the most contributed parameters influencing the groundwater quality according to the entropy theory. The principal component analysis (PCA) and correlation coefficient also confirm the results of the entropy theory. However, Na + has the highest spatial autocorrelation and the most entropy, thus affecting the groundwater quality. Based on the entropy-weighted water quality index (EWQI) and groundwater quality index (GWQI) classifications, it is observed that 60.45 and 53.86% of water samples are classified as having an excellent to good qualities, while the remaining samples vary from medium to extremely poor quality domains for drinking purposes. Furthermore, the EWQI classification provides the more reasonable results than GWQIs due to its simplicity, accuracy, and ignoring of artificial weight. A Gaussian semivariogram model has been chosen to the best fit model, and groundwater quality indices have a weak spatial dependence, suggesting that both geogenic and anthropogenic factors play a pivotal role in spatial heterogeneity of groundwater quality oscillations.

  10. Point-of-entry drinking-water treatment systems for Superfund applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, C.D.; Janszen, T.A.

    1989-06-01

    The U.S. Environmental Protection Agency (EPA) and State Superfund agencies need a technical manual to assist their personnel in the selection of an effective drinking-water treatment system for individual households in areas where the drinking water has been adversely affected by Superfund site contaminants and no other alternative water supply is available or feasible. Commercially available water treatment systems for individual households are of two basic types: point-of-use (POU) and point-of-entry (POE). A POU device consists of equipment applied to selected water taps to reduce contaminants at each tap. A POE device consists of equipment to reduce the contaminants inmore » the water distributed throughout the entire structure of a house. The study was initiated to collect monitoring, operation and maintenance, performance, and design data on existing Superfund POE water-treatment systems. Evaluation of the collected data showed that the existing data are not sufficient for the preparation of a technical assistance document to meet the objectives of EPA and State Superfund personnel.« less

  11. The causes and circumstances of drinking water incidents impact consumer behaviour: Comparison of a routine versus a natural disaster incident.

    PubMed

    Rundblad, Gabriella; Knapton, Olivia; Hunter, Paul R

    2014-11-18

    When public health is endangered, the general public can only protect themselves if timely messages are received and understood. Previous research has shown that the cause of threats to public health can affect risk perception and behaviours. This study compares compliance to public health advice and consumer behaviour during two "Boil Water" notices issued in the UK due to a routine incident versus a natural disaster incident. A postal questionnaire was sent to 1000 randomly selected households issued a routine "Boil Water" notice. Findings were then compared to a previous study that explored drinking water behaviour during a "Boil Water" notice issued after serious floods. Consumers affected by the routine incident showed a significant preference for official water company information, whereas consumers affected by the natural disaster preferred local information sources. Confusion over which notice was in place was found for both incidents. Non-compliance was significantly higher for the natural disaster (48.3%) than the routine incident (35.4%). For the routine incident, compliance with advice on drinking as well as preparing/cooking food and brushing teeth was positively associated with receiving advice from the local radio, while the opposite was true for those receiving advice from the water company/leaflet through the post; we suggest this may largely be due to confusion over needing boiled tap water for brushing teeth. No associations were found for demographic factors. We conclude that information dissemination plans should be tailored to the circumstances under which the advice is issued. Water companies should seek to educate the general public about water notices and which actions are safe and unsafe during which notice, as well as construct and disseminate clearer advice on brushing teeth and preparing/cooking food.

  12. Modelling the impacts of global change on concentrations of Escherichia coli in an urban river

    NASA Astrophysics Data System (ADS)

    Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Heniche, Mourad; Madoux-Humery, Anne-Sophie; Autixier, Laurène; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah

    2017-10-01

    Discharges of combined sewer system overflows (CSOs) affect water quality in drinking water sources despite increasing regulation and discharge restrictions. A hydrodynamic model was applied to simulate the transport and dispersion of fecal contaminants from CSO discharges and to quantify the impacts of climate and population changes on the water quality of the river used as a drinking water source in Québec, Canada. The dispersion model was used to quantify Escherichia coli (E. coli) concentrations at drinking water intakes. Extreme flows during high and low water events were based on a frequency analysis in current and future climate scenarios. The increase of the number of discharges was quantified in current and future climate scenarios with regards to the frequency of overflows observed between 2009 and 2012. For future climate scenarios, effects of an increase of population were estimated according to current population growth statistics, independently of local changes in precipitation that are more difficult to predict than changes to regional scale hydrology. Under ;business-as-usual; scenarios restricting increases in CSO discharge frequency, mean E. coli concentrations at downstream drinking water intakes are expected to increase by up to 87% depending on the future climate scenario and could lead to changes in drinking water treatment requirements for the worst case scenarios. The greatest uncertainties are related to future local discharge loads. Climate change adaptation with regards to drinking water quality must focus on characterizing the impacts of global change at a local scale. Source water protection planning must consider the impacts of climate and population change to avoid further degradation of water quality.

  13. Follow up of water use in a tin mining area affected with arsenic poisoning.

    PubMed

    Chongsuvivatwong, V; Lim, A; Dueravee, M; Geater, A; Ritsamitchai, S; Oshikawa, S

    2000-12-01

    Ron Phibun district in southern Thailand has been known as an endemic area for arsenic contamination. The government has been trying to improve the situation by encouraging the use of rainwater and piped water. This study aimed to document the change of water use and to identify factors associated with safe water use in 1997 compared to that in 1994. Home visits and face-to-face questionnaire interviews were undertaken. Information on water use for drinking, cooking, washing food and washing utensils in 1994 and 1997 was obtained. Among 3,849 households from which data could be obtained (estimated 79% of total households), the percentages of using safe water (including water from bottled rain water, piped and artesian well water) for drinking and cooking rose from 72.5 and 57.9 in 1994 to 93.6 and 80.9 in 1997, respectively. The percentages for washing foods and for washing utensils rose from 28.6 and 20.5 to 59.1 and 53.8, respectively. In 1997, percentage of households using piped water for drinking and cooking was still low (3.6 and 12.3) compared to those using piped water for washing food and utensils (39.1 and 43.6). Multivariate analysis shows that independent factors of the household predicting safe water use are: high arsenic area, near main road and having piped water installed. The influence of these factors (as judged by the level of odds ratio) operates more or less equally on water use for all purposes, except that installation of piped water has more influence on washing water than drinking and cooking water. We conclude that safe water supply in the area is still inadequate. Even if piped water is installed, it is often not used for drinking and cooking. The reasons for not using piped water for drinking and cooking need to be identified.

  14. Reconnaissance Assessment of the Potential for Roadside Dry Wells to Affect Water Quality on the Island of Hawai'i

    USGS Publications Warehouse

    Izuka, Scot K.; Senter, Craig A.; Johnson, Adam G.

    2009-01-01

    The County of Hawai'i Department of Public Works (DPW) uses dry wells to dispose of stormwater runoff from roads. Recently, concern has been raised that water entering the dry wells may transport contaminants to groundwater and affect the quality of receiving waters. The DPW operates 2,052 dry wells. Compiling an inventory of these dry wells and sorting it on the basis of presence or absence of urbanization in the drainage area, distance between the bottom of the dry well and the water table, and proximity to receiving waters helps identify the dry wells having greatest potential to affect the quality of receiving waters so that future studies or mitigation efforts can focus on a smaller number of dry wells. The drainage areas of some DPW dry wells encompass urbanized areas, which could be a source of contaminants. Some dry wells penetrate close to or through the water table, eliminating or substantially reducing opportunities for contaminant attenuation between the ground surface and water table. Dry wells that have drainage areas that encompass urbanization, penetrate to near the water table, and are near the coast have the highest potential to affect the quality of coastal waters (this study did not consider specific sections of coastline that may be of greater concern than others). Some DPW dry wells, including a few that have drainage areas that encompass urbanization, lie within the areas contributing recharge (ACR) to drinking-water wells. Numerical groundwater modeling studies by previous investigators indicate that water infiltrating those dry wells could eventually be pumped at drinking-water wells. Dry wells that have a high potential for affecting coastal receiving waters or drinking-water wells can be the focus of studies to further understand the effect of the dry wells on the quality of receiving waters. Possible study approaches include sampling for contaminants at the dry well and receiving water, injecting and monitoring the movement of tracers, and numerical modeling. To fully assess whether dry wells actually pose a significant contamination threat to receiving waters, results from modeling or monitoring must be compared to limits for contaminant concentration at receiving waters. These limits are usually established by the agencies tasked with protecting those waters.

  15. Occurrence of organic wastewater contaminants, pharmaceuticals, and personal care products in selected water supplies, Cape Cod, Massachusetts, June 2004

    USGS Publications Warehouse

    Zimmerman, Marc J.

    2005-01-01

    In June 2004, the U.S. Geological Survey, in cooperation with the Barnstable County Department of Health and Environment, sampled water from 14 wastewater sources and drinking-water supplies on Cape Cod, Massachusetts, for the presence of organic wastewater contaminants, pharmaceuticals, and personal care products. The geographic distribution of sampling locations does not represent the distribution of drinking-water supplies on Cape Cod. The environmental presence of the analyte compounds is mostly unregulated; many of the compounds are suspected of having adverse ecological and human health effects. Of the 85 different organic analyte compounds, 43 were detected, with 13 detected in low concentrations (less than 1 microgram per liter) from drinking-water supplies thought to be affected by wastewater because of previously detected high nitrate concentrations. (Phenol and d-limonene, detected in equipment blanks at unacceptably high concentrations, are not included in counts of detections in this report.) Compounds detected in the drinking-water supplies included the solvent, tetrachloroethylene; the analgesic, acetaminophen; the antibiotic, sulfamethoxazole; and the antidepressant, carbamazapine. Nitrate nitrogen, an indicator of wastewater, was detected in water supplies in concentrations ranging from 0.2 to 8.8 milligrams per liter.

  16. Supplementation of glycerol or fructose via drinking water to enhance marbling deposition and meat quality of finishing cattle.

    PubMed

    Volpi-Lagreca, Gabriela; Duckett, Susan K

    2016-02-01

    Thirty-six Angus-cross steers (667 ± 34.4 kg initial BW, 24.5 mo) were used to assess the impact of short-term glycerin or high-fructose corn syrup administration via drinking water on meat quality and marbling deposition. Steers blocked by BW (3 blocks) were assigned randomly to 1 of 3 drinking water treatments: 1) control (CON), 2) 4.3% crude glycerin (GLYC), or 3) 4.3% high-fructose corn syrup (HFCS) for the final 25 d before slaughter. Average daily gain was lower ( = 0.01) and final live weight was lower ( < 0.01) with HFCS administration compared with CON. Dry matter intake and water intake did not differ among treatments. Fat thickness, muscle depth, and intramuscular fat measured by ultrasound did not differ among treatments. Crude glycerin or HFCS via water supplementation did not alter HCW, dressing percentage, rib eye area, fat thickness, KPH, skeletal maturity, or marbling score. Longissimus muscle and subcutaneous fat color (L*, a*, and b*) were not affected by drinking water treatment. Total lipid content, total fatty acid content, and fatty acid composition of the LM did not differ among drinking water treatments. Supplementation of drinking water with GLYC or HFCS did not alter Warner-Bratzler shear force values or water-holding capacity (drip loss, cook shrink). Intramuscular mean adipocyte diameter was greater ( = 0.02) for steers offered HFCS compared with steers offered GLYC, with CON steers being intermediate. These differences in mean adipocyte size were related to changes in the adipocyte size distribution. There were greater proportions of small (20 to 30 μm) adipocytes in GLYC compared with HFCS and CON. In contrast, HFCS and CON had greater proportions of medium (40 to 50 μm) adipocytes than GLYC. The relative mRNA expression of lipogenic genes (acetyl Co-A carboxylase [ACC], fatty acid binding protein 4 [FABP4], fatty acid synthase [FASN], glycerol-3-phosphate acyltransferase [GPAT], retinol-binding protein 4 [RBP4], and stearoyl-CoA desaturase [SCD]), adipocyte differentiation genes (delta-like 1 homolog [DLK1]), and transcription factors (CCAAT/enhancer-binding protein α [C/EBPα], and PPARγ) was similar for GLYC and HFCS compared with CON. Longissimus glycogen and lactate concentrations and glycolytic potential were not affected by drinking water treatments. Overall, HFCS or GLYC supplementation via drinking water did not alter carcass or meat quality variables but did alter the size and distribution of intramuscular adipocytes. These results indicate that a longer supplementation time or a higher substrate level may be needed to obtain differences in meat quality.

  17. Geogenic fluoride and arsenic contamination in the groundwater environments in Tanzania

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Prosun; Lesafi, Fina; Filemon, Regina; Ligate, Fanuel; Ijumulana, Julian; Mtalo, Felix

    2016-04-01

    Adequate, safe and accessible drinking water is an important aspect to human health worldwide. Understanding this importance, the Tanzanian Government has initiated a number of programmes to ensure access to high quality water by the citizens. However, elevated concentration of geochemical pollutants in many drinking water sources pose a serious challenge to water suppliers and users in the country. Fluoride is a widespread drinking water contaminant of geogenic origin occuring in both surface- and groundwater around volcanic mountains and many parts within the East African Rift Valley in regions including Arusha (10 mg/L), Shinyanga (2.9 mg/L) and Singida (1.8 mg/L). An estimated 90% of the population living along the Rift Valley region are affected by dental or skeletal fluorosis and bone crippling because of long term exposure to very high levels of fluoride in drinking water sources. In the mining areas within Lake Victoria basin, groundwater wit elevated concentrations of arsenic has been discovered over an extended area. Most of these geochemical and naturally occurring drinking water pollutants are patchy with uncertainities in their spatial and temporal distribution patterns. The adverse health effects of skin disorder and cancer due to an elevated As concentration are reported from the North Mara gold and Geita mining areas in the Lake Victoria basin. About 30% of the water sources used for drinking in Tanzania exceed the WHO guideline values of fluoride (1.5 mg/L) and arsenic (10 μg/L). There is a scarcity of baseline information on the water quality data especially on geogenic contaminants in the groundwater and surface water as potable sources. This information is crucial in exploring sources of safe drinking water aquifers, associated human health risks of fluoride and arsenic pollution. using Laboratory based studies during the past two decades have shown promising results on the removal of fluoride and arsenic using locally available adsorbent materials such as pumice, bauxite, ferralsols and bone char. Developing innovative technologies, pilot-scale implementation and scaling-up water purification based on the locally available adsorbents is thus necessary to safeguard the public health for communities exposed to high levels of fluoride and arsenic in drinking water.

  18. Immunotoxic effects of sodium tungstate dihydrate on female B6C3F1/N mice when administered in drinking water.

    PubMed

    Frawley, Rachel P; Smith, Matthew J; White, Kimber L; Elmore, Susan A; Herbert, Ron; Moore, Rebecca; Staska, Lauren M; Behl, Mamta; Hooth, Michelle J; Kissling, Grace E; Germolec, Dori R

    2016-09-01

    Tungsten is a naturally occurring, high-tensile strength element that has been used in a number of consumer products. Tungsten has been detected in soil, waterways, groundwater, and human tissue and body fluids. Elevated levels of tungsten in urine were reported for populations exposed to tungstate in drinking water in areas where natural tungsten formations were prevalent. Published reports indicated that sodium tungstate may modulate hematopoiesis, immune cell populations, and immune responses in rodent models. The objective of this study was to assess potential immunotoxicity of sodium tungstate dihydrate (STD), a drinking water contaminant. Female B6C3F1/N mice received 0-2000 mg STD/L in their drinking water for 28 d, and were evaluated for effects on immune cell populations in spleen and bone marrow, and humoral-mediated, cell-mediated, and innate immunity. Three different parameters of cell-mediated immunity were similarly affected at 1000 mg STD/L. T-cell proliferative responses against allogeneic leukocytes and anti-CD3 were decreased 32%, and 21%, respectively. Cytotoxic T-lymphocyte activity was decreased at all effector:target cell ratios examined. At 2000 mg STD/L, the absolute numbers of CD3(+) T-cell progenitor cells in bone marrow were increased 86%, but the alterations in B-lymphocyte and other progenitor cells were not significant. There were no effects on bone marrow DNA synthesis or colony forming capabilities. STD-induced effects on humoral-mediated immunity, innate immunity, and splenocyte sub-populations were limited. Enhanced histopathology did not detect treatment-related lesions in any of the immune tissues. These data suggest exposure to STD in drinking water may adversely affect cell-mediated immunity.

  19. Assessing the Impacts of Climate Change on Drinking Water Treatment

    EPA Science Inventory

    Climate change may affect both surface water and ground water quality. Increases (or decreases) in precipitation and related changes in flow can result in problematic turbidity levels, increased levels of organic matter, high levels of bacteria, virus and parasites and increased...

  20. Assessment and management of the first German case of a contamination with perfluorinated compounds (PFC) in the Region Sauerland, North Rhine-Westphalia.

    PubMed

    Wilhelm, Michael; Kraft, Martin; Rauchfuss, Knut; Hölzer, Jürgen

    2008-01-01

    In May 2006 the first serious German perfluorinated compounds (PFC) case of contamination became evident. Industrial waste with high concentrations of PFC was manufactured into a soil improver by a recycling company and spread by farmers on agricultural land of the rural area Sauerland, and led to substantial environmental pollution. In parts of the affected area, perfluorooctanoic acid (PFOA) concentrations in drinking water were > 0.5 microg/L. The German Drinking Water Commission assessed PFC in drinking water and set a health-based guidance value for safe lifelong exposure of all population groups at 0.3 microg/L (sum of perfluorooctane sulfonate [PFOS] and PFOA). The Ministry of Environment together with regional institutions initiated monitoring measurements and actions to minimize further contamination. A human biomonitoring study with mother-child pairs and men revealed that increased PFOA exposure via drinking water led to about four- to eightfold higher PFOA levels in plasma compared to nonexposed groups. Analysis of PFC in breast milk showed comparatively low levels, which seemed not to pose a risk for lactating infants. Due to high levels of PFOS in fish from contaminated lakes and rivers, recommendations for anglers to reduce fish consumption were initiated. Remediation of the affected area is ongoing and PFC levels in various matrices are still above background levels.

  1. Factors associated with drinking and being satisfied with tap water in Indigenous communities in Saskatchewan, Canada

    PubMed Central

    Bharadwaj, Lalita; Waldner, Cheryl L.

    2018-01-01

    ABSTRACT Previous studies have described concerns regarding tap water in Indigenous communities, yet there is little information on participants who report drinking their tap water and being satisfied with its quality. This study undertaken with members of 8 Indigenous communities in Saskatchewan, Canada, and identified factors associated with both the decision to drink tap water at home and being satisfied with its quality. We examined the importance of factors such as individual attributes, experiences, attitudes, household and community-based variables. Less than one-quarter of participants (23.4%) drank tap water and were satisfied with its quality. Individuals who did not boil tap water (odds ratio [OR] = 5.76, 95% confidence interval [CI] = 1.68–19.8), those who did not experience tap water odour (OR = 2.38, 95% CI = 1.26–4.50) and participants living in communities away from urban centres (OR = 2.74, 95% CI = 1.63–4.51) were more likely to drink and be satisfied with their tap water. Concerns about the environment had the most impact on community members aged 55+ years. Those not reporting concerns about environmental problems affecting water (OR = 11.4, 95% CI = 3.10–42.2) were much more likely to drink and be satisfied with their tap water. Programmes to improve water quality, reduce the need for boil water advisories and increase community confidence in the environment could improve tap water satisfaction and consumption. PMID:29697009

  2. Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2007-12-01

    The numbers of bacteria generally increase in distributed water. Often household pipelines or water fittings (e.g., taps) represent the most critical location for microbial growth in water distribution systems. According to the European Union drinking water directive, there should not be abnormal changes in the colony counts in water. We used a pilot distribution system to study the effects of water stagnation on drinking water microbial quality, concentration of copper and formation of biofilms with two commonly used pipeline materials in households; copper and plastic (polyethylene). Water stagnation for more than 4h significantly increased both the copper concentration and the number of bacteria in water. Heterotrophic plate counts were six times higher in PE pipes and ten times higher in copper pipes after 16 h of stagnation than after only 40 min stagnation. The increase in the heterotrophic plate counts was linear with time in both copper and plastic pipelines. In the distribution system, bacteria originated mainly from biofilms, because in laboratory tests with water, there was only minor growth of bacteria after 16 h stagnation. Our study indicates that water stagnation in the distribution system clearly affects microbial numbers and the concentration of copper in water, and should be considered when planning the sampling strategy for drinking water quality control in distribution systems.

  3. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems.

    PubMed

    Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei

    2018-07-15

    As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Assessment of potential climate change impacts on peatland dissolved organic carbon release and drinking water treatment from laboratory experiments.

    PubMed

    Tang, R; Clark, J M; Bond, T; Graham, N; Hughes, D; Freeman, C

    2013-02-01

    Catchments draining peat soils provide the majority of drinking water in the UK. Over the past decades, concentrations of dissolved organic carbon (DOC) have increased in surface waters. Residual DOC can cause harmful carcinogenic disinfection by-products to form during water treatment processes. Increased frequency and severity of droughts combined with and increased temperatures expected as the climate changes, have potentials to change water quality. We used a novel approach to investigate links between climate change, DOC release and subsequent effects on drinking water treatment. We designed a climate manipulation experiment to simulate projected climate changes and monitored releases from peat soil and litter, then simulated coagulation used in water treatment. We showed that the 'drought' simulation was the dominant factor altering DOC release and affected the ability to remove DOC. Our results imply that future short-term drought events could have a greater impact than increased temperature on DOC treatability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Early warning of changing drinking water quality by trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Leiviskä, Kauko

    2016-06-01

    Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings.

  6. Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada.

    PubMed

    Hua, Wenyi; Bennett, Erin R; Letcher, Robert J

    2006-07-01

    The depletion and degradation of pharmacologically active compounds (PhACs) and pesticides as a function of ozonation in drinking water treatment processes is not well studied. The A.H. Weeks drinking water treatment plant (DWTP) serves the City of Windsor, Ontario Canada, and incorporates ozone treatment into the production of drinking water. This DWTP also operates a real-time, scaled down pilot plant, which has two parallel streams, conventional and ozone plus conventional treatments. In this study water samples were collected from key points in the two streams of the pilot plant system to determine the depletion and influence of seasonal changes in water processing parameters on eighteen major PhACs (and metabolites) and seven s-triazines herbicides. However, only carbamazepine (antiepileptic), caffeine (stimulant), cotinine (metabolite of nicotine) and atrazine were consistently detectable in the raw water intake (low to sub-ng/L level). Regardless of the seasonality, the flocculation-coagulation and dual media filtration steps without ozone treatment resulted in no decrease in analyte concentrations, while decreases of 66-100% (undetectable, method detection limits 0.05-1 ng/L) of the analyte concentrations were observed when ozone treatment was part of the water processing. These findings demonstrate that ozone treatment is highly effective in depleting carbamazepine, caffeine, cotinine, and atrazine, and thus is highly influential in the fate of these compounds in drinking water treatment regardless of the seasonal time frame. Currently very few Canadian DWTPs incorporate ozonation into conventional treatment, which suggests that human exposure to these compounds via drinking water consumption may be an issue in affected communities.

  7. Identification, assessment, and control of hazards in water supply: experiences from Water Safety Plan implementations in Germany.

    PubMed

    Mälzer, H-J; Staben, N; Hein, A; Merkel, W

    2010-01-01

    According to the recommendations of the World Health Organization (WHO) for Water Safety Plans (WSP), a Technical Risk Management was developed, which considers standard demands in drinking water treatment in Germany. It was already implemented at several drinking water treatment plants of different size and treatment processes in Germany. Hazards affecting water quality, continuity, and the reliability of supply from catchment to treatment and distribution could be identified by a systematic approach, and suitable control measures were defined. Experiences are presented by detailed examples covering methods, practical consequences, and further outcomes. The method and the benefits for the water suppliers are discussed and an outlook on the future role of WSPs in German water supply is given.

  8. Overview of environmental and hydrogeologic conditions at Galena, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The remote Native village of Galena along the Yukon River in west-central Alaska has long cold winters and short summers that affects the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities in Galena and wishes to consider the subsistence lifestyle of the residents and the quality of the current environment when evaluating options for remediation of environmental contamination at these facilities. Galena is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available but at significantly greater cost than existing supplies.

  9. Determination of trace heavy metals in harvested rainwater used for drinking in Hebron (south West Bank, Palestine) by ICP-MS.

    PubMed

    Malassa, Husam; Al-Rimawi, Fuad; Al-Khatib, Mahmoud; Al-Qutob, Mutaz

    2014-10-01

    Rainwater samples harvested for drinking from the west part of Hebron (south of West Bank in Palestine), the largest city in the West Bank, were analyzed for the content of different trace heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Bi, and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to determine the water quality of harvested rainwater used for drinking of south West Bank (case study, Hebron area). A total of 44 water samples were collected in November 2012 from 44 house cisterns used to collect rainwater from the roofs of houses. The samples were analyzed for their pH, temperature, electrical conductivity, total dissolved solids, and different heavy metal contents. The pH of all water samples was within the US Environmental Protection Agency limits (6.5-8.5), while some water samples were found to exceed the allowed WHO limit for total dissolved solids (TDSs) in drinking water. Results showed that concentrations of the heavy metals vary significantly between the 44 samples. Results also showed that the concentration of five heavy metals (Cr, Mn, Ni, Ag, and Pb) is higher than the WHO limits for these heavy metals in drinking water. Overall, our findings revealed that harvested rainwater used for drinking of this part of south West Bank is contaminated with heavy metals that might affect human health.

  10. Influence of drinking water salinity on carcass characteristics and meat quality of Santa Inês lambs.

    PubMed

    Castro, Daniela P V; Yamamoto, Sandra M; Araújo, Gherman G L; Pinheiro, Rafael S B; Queiroz, Mario A A; Albuquerque, Ítalo R R; Moura, José H A

    2017-08-01

    This study aimed to evaluate the effects of different salinity levels in drinking water on the quantitative and qualitative characteristics of lamb carcass and meat. Ram lambs (n = 32) were distributed in a completely randomized design with four levels of salinity in the drinking water (640 mg of total dissolved solids (TDS)/L of water, 3188 mg TDS/L water, 5740 mg TDS/L water, and 8326 mg TDS/L water). After slaughter, blending, gutting, and skinning the carcass, hot and biological carcass yields were obtained. Then, the carcasses were cooled at 5 °C for 24 h, and then, the morphometric measurements and the cold carcass yield were determined and the commercial cuts made. In the Longissimus lumborum muscle color, water holding capacity, cooking loss, shear force, and chemical composition were determined. The yields of hot and cold carcass (46.10 and 44.90%), as well as losses to cooling (2.40%) were not affected (P > 0.05) by the salinity levels in the water ingested by the lambs. The meat shear force was 3.47 kg/cm 2 and moisture, crude protein, ether extract, and ash were 73.62, 22.77, 2.5, and 4.3%, respectively. It is possible to supply water with salinity levels of up to 8326 mg TDS/L, because it did not affect the carcass and meat characteristics of Santa Inês lambs.

  11. Eco-health in the rural environment.

    PubMed

    Carr-harris, J

    1993-04-01

    The rural population in India is exposed to working and living conditions: drinking supply, sanitation, fuel wood shortages, maternal mortality, alcoholism among males, pesticide use, environmental degradation, migrant workers, sickness and injury compensation in natural resource based industry, and mechanization in the workplace. Good health is dependent on a supportive home environment which physically provides protection, has access to safe potable drinking water and sanitary facilities, and reinforces health habits and behavior. One of the greatest health hazards is the lack of safe drinking water. The result is increases in water-related diseases such as dysentery, cholera, diarrhea, and hepatitis among men, women, children, and fetuses. Today only 30% of the total population has access to sufficient, safe drinking water. Personal hygiene is also affected by inadequate supplies. Another hazard is waste disposal, which if improperly managed, results in hookworm and ascarias infestations. Barefoot people are particularly affected. In 1982, 8790 villages were found to be without latrines, or with only bucket latrines. The firewood fuel shortages impact directly on women through food habit changes and excessive labor in acquiring adequate supplies. Women are also affected by high rates of anemia which are a by-product of environmental and social conditions. There are a number of psychosocial conditions that impact on the health of women. In Himachal Pradesh women complain that their husbands drink too much alcohol, which increases acts of domestic violence. Male migration for work places women in stressful work conditions managing the land and child care, and exposing women to sexually transmitted diseases. The workplace also had hazards. Agricultural workers have little bargaining power and few organizations representing their interests. A brief description is given of conditions among plantation workers in Assam and Darjeeling. There are hazards due to unskilled workers operating machinery, exposure to harmful pesticides, and the lack of benefits for sickness or injury. Mining hazards are characterized. Awareness of conditions will hopefully lead to efforts to establish preventive health.

  12. Precipitation Nonstationarity Effects on Water Infrastructure and Risk Management

    EPA Science Inventory

    The non-stationary precipitation regime, as increasingly recognized, affects the engineering basis and service functions of drinking water, wastewater, and stormwater infrastructures in urban centers. Small, yet significant rates of temporal precipitation change and diverse spat...

  13. Environmental overview and hydrogeologic conditions at Aniak, Alaska

    USGS Publications Warehouse

    Dorava, J.M.

    1994-01-01

    The remote Native village of Aniak, on the flood plain of the Kuskokwim River in southwestern Alaska, has long cold winters and short summers that affect both the hydrology of the area and the lifestyle of the residents. Aniak obtains its drinking water from a shallow aquifer in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Kuskokwim River may affect the quality of the ground water. Alternative drinking water sources are available but at significantly greater cost than existing supplies. The Federal Aviation Administration (FAA) owns or operates airport support facilities in Aniak. The subsistence lifestyle of the villagers and the quality of the current environment must be taken into consideration when the FAA evaluates options for remediation of environmental contamination at these facilities. This report describes the ground- and surface-water hydrology, geology, climate, vegetation, soils, and flood potential of the areas surrounding the FAA sites.

  14. Lithium levels in the public drinking water supply and risk of suicide: A pilot study.

    PubMed

    Liaugaudaite, Vilma; Mickuviene, Narseta; Raskauskiene, Nijole; Naginiene, Rima; Sher, Leo

    2017-09-01

    Suicide is a major public health concern affecting both the society and family life. There are data indicating that higher level lithium intake with drinking water is associated with lower suicide rate. This pilot study examined the relationship between lithium levels in drinking water and suicide rates in Lithuania. Twenty-two samples from public drinking water systems were taken in 9 cities of Lithuania. The lithium concentration in these samples was determined by inductively coupled plasma mass spectrometry (ICP-MS). The suicide data were obtained from the Lithuania Database of Health Indicators, and comprised all registered suicides across all ages and gender within the 5-year period from 2009 to 2013. The study demonstrated an inverse correlation between levels of lithium (log natural transformed), number of women for 1000 men and standardized mortality rate for suicide among total study population. After adjusting for confounder (the number of women for 1000 men), the lithium level remained statistically significant in men, but not in women. Our study suggested that higher levels of lithium in public drinking water are associated with lower suicide rates in men. It might have a protective effect on the risk of suicide in men. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  15. Decreased intelligence in children and exposure to fluoride and arsenic in drinking water.

    PubMed

    Rocha-Amador, Diana; Navarro, Maria Elena; Carrizales, Leticia; Morales, Raúl; Calderón, Jaqueline

    2007-01-01

    Recent evidence suggests that fluoride (F) and arsenic (As) may adversely affect intelligence quotient (IQ) scores. We explore the association between exposure to F and As in drinking water and intelligence in children. Three rural communities in Mexico with contrasting levels of F and As in drinking water were studied: Moctezuma (F 0.8+/-1.4 mg/L; As 5.8+/-1.3 microg/L); Salitral (F 5.3+/-0.9 mg/L; As 169+/-0.9 microg/L) and 5 de Febrero (F 9.4+/-0.9 mg/L; As 194+/-1.3 microg/L). The final study sample consisted of 132 children from 6 to 10 years old. After controlling for confounders, an inverse association was observed between F in urine and Performance, Verbal, and Full IQ scores (beta values = -13, -15.6, -16.9, respectively). Similar results were observed for F in drinking water (beta values = -6.7, -11.2, -10.2, respectively) and As in drinking water (beta values= -4.30, -6.40, -6.15, respectively). The p-values for all cases were < 0.001. A significant association was observed between As in urine and Full IQ scores (beta = -5.72, p = 0.003). These data suggest that children exposed to either F or As have increased risks of reduced IQ scores.

  16. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence.

    PubMed

    Saint-Jacques, Nathalie; Parker, Louise; Brown, Patrick; Dummer, Trevor Jb

    2014-06-02

    Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2-4.1]; 4.2 [2.1-6.3] and; 5.8 [2.9-8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35-4.0], 2.3 [0.59-6.4], and 3.1 [0.80-8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta-analyses suggest exposure to 10 μg/L of arsenic in drinking water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health consequences of arsenic in drinking water are substantial.

  17. Dracunculiasis (guinea worm disease).

    PubMed

    Greenaway, Chris

    2004-02-17

    Dracunculiasis (guinea worm disease) is a parasitic disease that is limited to remote, rural villages in 13 sub-Saharan African countries that do not have access to safe drinking water. It is one the next diseases targeted for eradication by the World Health Organization. Guinea worm disease is transmitted by drinking water containing copepods (water fleas) that are infected with Dracunculiasis medinensis larvae. One year after human ingestion of infected water a female adult worm emerges, typically from a lower extremity, producing painful ulcers that can impair mobility for up to several weeks. This disease occurs annually when agricultural activities are at their peak. Large proportions of economically productive individuals of a village are usually affected simultaneously, resulting in decreased agricultural productivity and economic hardship. Eradication of guinea worm disease depends on prevention, as there is no effective treatment or vaccine. Since 1986, there has been a 98% reduction in guinea worm disease worldwide, achieved primarily through community-based programs. These programs have educated local populations on how to filter drinking water to remove the parasite and how to prevent those with ulcers from infecting drinking-water sources. Complete eradication will require sustained high-level political, financial and community support.

  18. Pre-exercise ingestion of pickle juice, hypertonic saline, or water and aerobic performance and thermoregulation.

    PubMed

    Peikert, Jarett; Miller, Kevin C; Albrecht, Jay; Tucker, Jared; Deal, James

    2014-01-01

    Ingesting high-sodium drinks pre-exercise can improve thermoregulation and performance. Athletic trainers (19%) give athletes pickle juice (PJ) prophylactically for cramping. No data exist on whether this practice affects aerobic performance or thermoregulation. To determine if drinking 2 mL/kg body mass of PJ, hypertonic saline, or deionized water (DIW) pre-exercise affects aerobic performance or thermoregulation. Crossover study. Controlled laboratory study. Nine euhydrated men (age = 22 ± 3 years, height = 184.0 ± 8.2 cm, mass = 82.6 ± 16.0 kg) completed testing. Participants rested for 65 minutes. During this period, they ingested 2 mL/kg of PJ, hypertonic saline, or DIW. Next, they drank 5 mL/kg of DIW. Blood was collected before and after ingestion of all fluids. Participants were weighed and ran in the heat (temperature = 38.3°C ± 1°C, relative humidity = 21.1% ± 4.7%) at increasing increments of maximal heart rate (50%, 60%, 70%, 80%, 90%, 95%) until exhaustion or until rectal temperature exceeded 39.5°C. Participants were weighed postexercise so we could calculate sweat volume. Time to exhaustion, rectal temperature, changes in plasma volume, and sweat volume. Time to exhaustion did not differ among drinks (PJ = 77.4 ± 5.9 minutes, hypertonic saline = 77.4 ± 4.0 minutes, DIW = 75.7 ± 3.2 minutes; F2,16 = 1.1, P = .40). Core temperature of participants was similar among drinks (PJ = 38.7°C ± 0.3°C, hypertonic saline = 38.7°C ± 0.4°C, DIW = 38.8°C ± 0.4°C; P = .74) but increased from pre-exercise (36.7°C ± 0.2°C) to postexercise (38.7°C ± 0.4°C) (P < .05). No differences were observed for changes in plasma volume or sweat volume among drinks (P > .05). Ingesting small amounts of PJ or hypertonic saline with water did not affect performance or select thermoregulatory measures. Drinking larger volumes of PJ and water may be more effective at expanding the extracellular space.

  19. Aluminum bioavailability from drinking water is very low and is not appreciably influenced by stomach contents or water hardness.

    PubMed

    Yokel, R A; Rhineheimer, S S; Brauer, R D; Sharma, P; Elmore, D; McNamara, P J

    2001-03-21

    The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intragastric 26Al in the absence and presence of food in the stomach and with or without concomitant calcium (Ca) and magnesium (Mg) at concentrations found in hard drinking water. The use of 26Al enables the study of Al pharmacokinetics at physiological Al concentrations without interference from 27Al in the environment or the subject. 27Al was intravenously administered throughout the study. Repeated blood withdrawal enabled determination of oral 26Al bioavailability from the area under its serum concentrationxtime curve compared to serum 27Al concentration in relation to its infusion rate. Oral Al bioavailability averaged 0.28%. The presence of food in the stomach and Ca and Mg in the water that contained the orally dosed 26Al appeared to delay but not significantly alter the extent of 26Al absorption. The present and published results suggest oral bioavailability of Al from drinking water is very low, about 0.3%. The present results suggest it is independent of stomach contents and water hardness.

  20. The quality of our Nation's waters: Water quality in principal aquifers of the United States, 1991-2010

    USGS Publications Warehouse

    DeSimone, Leslie A.; McMahon, Peter B.; Rosen, Michael R.

    2015-01-01

    About 130 million people in the United States rely on groundwater for drinking water, and the need for high-quality drinking-water supplies becomes more urgent as our population grows. Although groundwater is a safe, reliable source of drinking water for millions of people nationwide, high concentrations of some chemical constituents can pose potential human-health concerns. Some of these contaminants come from the rocks and sediments of the aquifers themselves, and others are chemicals that we use in agriculture, industry, and day-to-day life. When groundwater supplies are contaminated, millions of dollars can be required for treatment so that the supplies can be usable. Contaminants in groundwater can also affect the health of our streams and valuable coastal waters. By knowing where contaminants occur in groundwater, what factors control contaminant concentrations, and what kinds of changes in groundwater quality might be expected in the future, we can ensure the availability and quality of this vital natural resource in the future.

  1. Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia.

    PubMed

    Lehtola, Markku J; Juhna, Tālis; Miettinen, Ilkka T; Vartiainen, Terttu; Martikainen, Pertti J

    2004-12-01

    The formation of biofilms in drinking water distribution networks is a significant technical, aesthetic and hygienic problem. In this study, the effects of assimilable organic carbon, microbially available phosphorus (MAP), residual chlorine, temperature and corrosion products on the formation of biofilms were studied in two full-scale water supply systems in Finland and Latvia. Biofilm collectors consisting of polyvinyl chloride pipes were installed in several waterworks and distribution networks, which were supplied with chemically precipitated surface waters and groundwater from different sources. During a 1-year study, the biofilm density was measured by heterotrophic plate counts on R2A-agar, acridine orange direct counting and ATP-analyses. A moderate level of residual chlorine decreased biofilm density, whereas an increase of MAP in water and accumulated cast iron corrosion products significantly increased biofilm density. This work confirms, in a full-scale distribution system in Finland and Latvia, our earlier in vitro finding that biofilm formation is affected by the availability of phosphorus in drinking water.

  2. Potential Health Impacts of Hard Water

    PubMed Central

    Sengupta, Pallav

    2013-01-01

    In the past five decades or so evidence has been accumulating about an environmental factor, which appears to be influencing mortality, in particular, cardiovascular mortality, and this is the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems and hardness of drinking water or its content of magnesium and calcium. In addition, the acidity of the water influences the reabsorption of calcium and magnesium in the renal tubule. Not only, calcium and magnesium, but other constituents also affect different health aspects. Thus, the present review attempts to explore the health effects of hard water and its constituents. PMID:24049611

  3. Potential health impacts of hard water.

    PubMed

    Sengupta, Pallav

    2013-08-01

    In the past five decades or so evidence has been accumulating about an environmental factor, which appears to be influencing mortality, in particular, cardiovascular mortality, and this is the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems and hardness of drinking water or its content of magnesium and calcium. In addition, the acidity of the water influences the reabsorption of calcium and magnesium in the renal tubule. Not only, calcium and magnesium, but other constituents also affect different health aspects. Thus, the present review attempts to explore the health effects of hard water and its constituents.

  4. Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice.

    PubMed

    Rhodes, Justin S; Best, Karyn; Belknap, John K; Finn, Deborah A; Crabbe, John C

    2005-01-31

    Because of intrinsic differences between humans and mice, no single mouse model can represent all features of a complex human trait such as alcoholism. It is therefore necessary to develop partial models. One important feature is drinking to the point where blood ethanol concentration (BEC) reaches levels that have measurable affects on physiology and/or behavior (>1.0 mg ethanol/ml blood). Most models currently in use examine relative oral self-administration from a bottle containing alcohol versus one containing water (two-bottle preference drinking), or oral operant self-administration. In these procedures, it is not clear when or if the animals drink to pharmacologically significant levels because the drinking is episodic and often occurs over a 24-h period. The aim of this study was to identify the optimal parameters and evaluate the reliability of a very simple procedure, taking advantage of a mouse genotype (C57BL/6J) that is known to drink large quantities of ethanol. We exchanged for the water bottle a solution containing ethanol in tap water for a limited period, early in the dark cycle, in the home cage. Mice regularly drank sufficient ethanol to achieve BEC>1.0 mg ethanol/ml blood. The concentration of ethanol offered (10%, 20% or 30%) did not affect consumption in g ethanol/kg body weight. The highest average BEC ( approximately 1.6 mg/ml) occurred when the water-to-ethanol switch occurred 3 h into the dark cycle, and when the ethanol was offered for 4 rather than 2 h. Ethanol consumption was consistent within individual mice, and reliably predicted BEC after the period of ethanol access. C57BL/6J mice from three sources provided equivalent data, while DBA/2J mice drank much less than C57BL/6J in this test. We discuss advantages of the model for high-throughput screening assays where the goal is to find other genotypes of mice that drink excessively, or to screen drugs for their efficacy in blocking excessive drinking.

  5. [Analytical control of organic impurities in the drinking and bottled water after its contact with a pack and filters made from polymer materials].

    PubMed

    Sotnikov, E E; Kir'ianova, L F; Mikhaĭlova, R I; Ryzhova, I N; Moskovkin, A S

    2009-01-01

    The paper provides the results of gas chromatographic analysis of organic impurities in the drinking water after its contact with various packs and filters made from polymer materials. Vapor-phase analysis in combination with selective gas chromatographic detectors was used to determine volatile substances and liquid extraction in combination with chromatographic mass-spectrometry was employed to identify high-boiling compounds. The release sources of toxic compounds from materials to water, the taste and odor of which is affected by them were studied.

  6. Overview of environmental and hydrogeologic conditions at McGrath, Alaska

    USGS Publications Warehouse

    Dorava, J.M.

    1994-01-01

    The remote village of McGrath along the Kuskokwim River in southwestern Alaska has long cold winters and short summers. The village is located on the flood plain of the Kuskokwim River and obtains drinking water for its 533 residents from the Kuskokwim River. Surface spills and disposal of hazardous materials combined with frequent flooding of the Kuskokwim River could affect the quality of the drinking water. Alternative drinking-water sources are available but at greater cost than existing supplies. The Federal Aviation Administration (FAA) owns or operates airport support facilities in McGrath and wishes to consider the subsistence lifestyle of the residents and the quality of the current environ- ment when evaluating options for remediation of environmental contamination at their facilities. This report describes the history, socioeconomics, physical setting, ground- and surface-water hydrology, geology, climate, vegetation, soils, and flood potential of the areas surrounding the FAA facilities near McGrath.

  7. Parental decisions, child health and valuation of avoiding arsenic in drinking water in rural Bangladesh.

    PubMed

    Aziz, Sonia N; Boyle, Kevin J; Crocker, Tom

    2015-03-01

    Arsenic contamination of groundwater in Bangladesh is a widespread public health hazard. Water sources without high arsenic levels are scarce, affecting people's availability for work and other activities when they have to seek safe water to drink. While children are particularly susceptible to chronic arsenic exposure, limited information and heavy constraints on resources may preclude people in developing countries from taking protective actions. Since parents are primary decision-makers for children, a model of stochastic decision-making analytically linking parent health and child health is used to frame the valuation of avoiding arsenic exposure using an averting behavior model. The results show that safe drinking water programs do work and that people do take protective actions. The results can help guide public health mitigation policies, and examine whether factors such as child health and time required for remediation have an effect on mitigation measures.

  8. Use of Ronidazole and Limited Culling To Eliminate Tritrichomonas muris from Laboratory Mice.

    PubMed

    Steiner, Jörg M; Schwamberger, Sabine; Pantchev, Nikola; Balzer, Hans-Jörg; Vrhovec, Majda Globokar; Lesina, Marina; Algül, Hana

    2016-01-01

    Tritrichomonas muris is occasionally identified during routine fecal screening of laboratory mice. Frequently, entire racks are affected, and because no effective treatment is available, culling of affected mice and rederivation by embryo transfer have been suggested. The current study evaluated whether treatment with ronidazole, a nitroimidazole efficacious against T. fetus infections in cats, combined with limited culling was effective against T. muris in laboratory mice (Mus musculus). A subset (n = 39) of mice were treated with ronidazole (400 mg/L in drinking water) for 15 d, after which 6 of the mice still shed T. muris. Consequently all mice in the affected rack received ronidazole (500 mg /L in drinking water) for 25 d. All mice were retested by using pooled samples, and those positive for T. muris (except for a valuable breeding pair) were culled. The remaining mice continued to receive ronidazole for another 17 d. At the end of the treatment period, all mice were tested (days 60 and 81) and were shown to be negative for T. muris. Over the following year, sentinel mice from the rack were tested every 3 mo and remained negative for tritrichomonads by fecal smear. Thus, a combination of limited culling and treatment with ronidazole in the drinking water successfully cleared research mice of infection with T. muris.

  9. Long-term dynamics of dissolved organic carbon: implications for drinking water supply.

    PubMed

    Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N

    2012-08-15

    Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. 40 CFR 146.7 - Corrective action.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... the additional steps needed to prevent fluid movement into underground sources of drinking water, the...; (b) Nature of native fluids or by-products of injection; (c) Potentially affected population; (d...

  11. 40 CFR 146.7 - Corrective action.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... the additional steps needed to prevent fluid movement into underground sources of drinking water, the...; (b) Nature of native fluids or by-products of injection; (c) Potentially affected population; (d...

  12. 40 CFR 146.7 - Corrective action.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... the additional steps needed to prevent fluid movement into underground sources of drinking water, the...; (b) Nature of native fluids or by-products of injection; (c) Potentially affected population; (d...

  13. 40 CFR 146.7 - Corrective action.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... the additional steps needed to prevent fluid movement into underground sources of drinking water, the...; (b) Nature of native fluids or by-products of injection; (c) Potentially affected population; (d...

  14. After the flood: an evaluation of in-home drinking water treatment with combined flocculent-disinfectant following Tropical Storm Jeanne -- Gonaives, Haiti, 2004.

    PubMed

    Colindres, Romulo E; Jain, Seema; Bowen, Anna; Mintz, Eric; Domond, Polyana

    2007-09-01

    Tropical Storm Jeanne struck Haiti in September 2004, causing widespread flooding which contaminated water sources, displaced thousands of families and killed approximately 2,800 people. Local leaders distributed PūR, a flocculent-disinfectant product for household water treatment, to affected populations. We evaluated knowledge, attitudes, practices, and drinking water quality among a sample of PūR recipients. We interviewed representatives of 100 households in three rural communities who received PūR and PūR-related education. Water sources were tested for fecal contamination and turbidity; stored household water was tested for residual chlorine. All households relied on untreated water sources (springs [66%], wells [15%], community taps [13%], and rivers [6%]). After distribution, PūR was the most common in-home treatment method (58%) followed by chlorination (30%), plant-based flocculation (6%), boiling (5%), and filtration (1%). Seventy-eight percent of respondents correctly answered five questions about how to use PūR; 81% reported PūR easy to use; and 97% reported that PūR-treated water appears, tastes, and smells better than untreated water. Although water sources tested appeared clear, fecal coliform bacteria were detected in all sources (range 1 - >200 cfu/100 ml). Chlorine was present in 10 (45%) of 22 stored drinking water samples in households using PūR. PūR was well-accepted and properly used in remote communities where local leaders helped with distribution and education. This highly effective water purification method can help protect disaster-affected communities from waterborne disease.

  15. Effect of different polishing systems and drinks on the color stability of resin composite.

    PubMed

    Berber, Asll; Cakir, Filiz Yalcin; Baseren, Meserret; Gurgan, Sevil

    2013-07-01

    The purpose of this study was to evaluate the color stability of resin composit using different finishing systems and drinks. Composit disks (5 mm diameter, 2 mm thickness) were prepared for each nanofilled composite using a brass mold. The specimens were divided into 5 finishing system groups Mylar strip (Mylar, DuPont, Wilmington, Del., USA), Soft Lex (3M(™) ESPE(™) St. Paul, MN, USA), Enhance (Dentsply-DeTrey GmbHD Konstanz, Germany), Hiluster (KerrHawe, Bioggio, Switzerland), Opti Disc (KerrHawe, Bioggio, Switzerland) and each group was divided into 10 subgroups (n = 10) and stored for 24 hours at 37°C in different drinks water coffee, coffee with sugar, tea, tea with sugar, diet coke, coke, light sour cherry juice or sour cherry juice. Color of all specimens was measured before and after exposure with a spectrophotometer using CIE L*a*b* relative, and color changes (ΔE*) were then calculated. The data were analyzed with a twoway analysis of variance (ANOVA), and mean values were compared by the Tukey HSD test (p = 0.05). For the drinks, the lowest ΔE* values were observed in the water and highest ΔE* values were observed in sour cherry juice. When drinks with and without sugar were compared, all groups with sugar demonstrated a higher color difference than without sugar. For the different finishing systems, Mylar strip group demonstrated significantly highest color change; Enhance groups demonstrated significantly lowest color change. Finishing treatments and storage solutions significantly affect the color stability of resin composite. The presence of sugar in drinks increased the color difference compared to drinks without composit. Polishing techniques and drinking drinks with sugar may affect the color of esthetic restorations.

  16. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain.

    PubMed

    Azizur Rahman, M; Hasegawa, H; Mahfuzur Rahman, M; Mazid Miah, M A; Tasmin, A

    2008-02-01

    Although human exposure to arsenic is thought to be caused mainly through arsenic-contaminated underground drinking water, the use of this water for irrigation enhances the possibility of arsenic uptake into crop plants. Rice is the staple food grain in Bangladesh. Arsenic content in straw, grain and husk of rice is especially important since paddy fields are extensively irrigated with underground water having high level of arsenic concentration. However, straw and husk are widely used as cattle feed. Arsenic concentration in rice grain was 0.5+/-0.02 mg kg(-1) with the highest concentrations being in grains grown on soil treated with 40 mg As kg(-1) soil. With the average rice consumption between 400 and 650 g/day by typical adults in the arsenic-affected areas of Bangladesh, the intake of arsenic through rice stood at 0.20-0.35 mg/day. With a daily consumption of 4 L drinking water, arsenic intake through drinking water stands at 0.2mg/day. Moreover, when the rice plant was grown in 60 mg of As kg(-1) soil, arsenic concentrations in rice straw were 20.6+/-0.52 at panicle initiation stage and 23.7+/-0.44 at maturity stage, whereas it was 1.6+/-0.20 mg kg(-1) in husk. Cattle drink a considerable amount of water. So alike human beings, arsenic gets deposited into cattle body through rice straw and husk as well as from drinking water which in turn finds a route into the human body. Arsenic intake in human body from rice and cattle could be potentially important and it exists in addition to that from drinking water. Therefore, a hypothesis has been put forward elucidating the possible food chain pathways through which arsenic may enter into human body.

  17. Towards global Guinea worm eradication in 2015: the experience of South Sudan.

    PubMed

    Awofeso, Niyi

    2013-08-01

    For centuries, the Guinea worm parasite (Dracunculus medinensis) has caused disabling misery, infecting people who drink stagnant water contaminated with the worm's larvae. In 2012, there were 542 cases of Guinea worm reported globally, of which 521 (96.1%) were reported in South Sudan. Protracted civil wars, an inadequate workforce, neglect of potable water provision programs, suboptimal Guinea worm surveillance and case containment, and fragmented health systems account for many of the structural and operational factors encumbering South Sudan's Guinea worm eradication efforts. This article reviews the impacts of six established Guinea worm control strategies in South Sudan: (1) surveillance to determine actual caseload distribution and trends in response to control measures; (2) educating community members from whom worms are emerging to avoid immersing affected parts in sources of drinking water; (3) filtering potentially contaminated drinking water using cloth filters or filtered drinking straws; (4) treating potentially contaminated surface water with the copepod larvicide temephos (Abate); (5) providing safe drinking water from boreholes or hand-dug wells; and (6) containment of transmission through voluntary isolation of each patient to prevent contamination of drinking water sources, provision of first aid, and manual extraction of the worm. Surveillance, community education, potable water provision, and case containment remain weak facets of the program. Abate pesticide is not a viable option for Guinea worm control in South Sudan. In light of current case detection and containment trends, as well as capacity building efforts for Guinea worm eradication, South Sudan is more likely to eradicate Guinea worm by 2020, rather than by 2015. The author highlights areas in which substantial improvements are required in South Sudan's Guinea worm eradication program, and suggests improvement strategies. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. The correlation of arsenic levels in drinking water with the biological samples of skin disorders.

    PubMed

    Kazi, Tasneem Gul; Arain, Muhammad Balal; Baig, Jameel Ahmed; Jamali, Muhammad Khan; Afridi, Hassan Imran; Jalbani, Nusrat; Sarfraz, Raja Adil; Shah, Abdul Qadir; Niaz, Abdul

    2009-01-15

    Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n=187). The referent samples of both genders were also collected from the areas having low level of As (<10 microg/L) in drinking water (n=121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 microg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 microg As/g for hair and <0.5-4.2 microg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2=0.852 and 0.718) as compared to non-diseased subjects (R2=0.573 and 0.351), respectively.

  19. An outbreak of Campylobacter enteritis associated with a community water supply on a U.S. military installation.

    PubMed

    DeFraites, Robert F; Sanchez, Jose L; Brandt, Cynthia A; Kadlec, Robert P; Haberberger, Richard L; Lin, Jenny J; Taylor, David N

    2014-11-01

    An outbreak of acute gastroenteritis involving 249 persons, 32% of whom were hospitalized, occurred on a U.S. Army installation in 1990. Campylobacter jejuni was isolated from 81 of 163 (50%) persons cultured. Seventeen isolates of C. jejuni available for serotyping were Lior serotype 5. The outbreak remained restricted to one recruit barracks area and adjacent Junior Reserve Officer Training Corps cadet barracks. Infection of sequential cohorts of recruits over an interval of 3 weeks suggested a continuing or intermittent common source. Contaminated food was not implicated because affected persons ate at separate dining facilities and other facilities with the same food sources had no associated illnesses. There was a strong association between the amount of water consumed by recruits and risk of diarrhea (chi-square test for trend, p<0.001). Samples of drinking water collected in the affected area had no residual chlorine and when cultured yielded greater than 200 colonies of coliform bacteria per 100 mL of water sampled. Although Campylobacter was not isolated from water, living and dead birds were found in an elevated water storage tank providing drinking water to the affected area. This and other similar outbreaks indicate that contamination of water storage tanks can lead to large outbreaks of Campylobacter enteritis.

  20. Neurosensory effects of chronic exposure to arsenic via drinking water in Inner Mongolia: II. Vibrotactile and visual function.

    PubMed

    Otto, David; He, Linlin; Xia, Yanhong; Li, Yajuan; Wu, Kegong; Ning, Zhixiong; Zhao, Baixiao; Hudnell, H Kenneth; Kwok, Richard; Mumford, Judy; Geller, Andrew; Wade, Timothy

    2006-03-01

    This study was designed to assess the effects of exposure to arsenic in drinking water on visual and vibrotactile function in residents of the Bamen region of Inner Mongolia, China. Arsenic was measured by hydride generation atomic fluorescence. 321 participants were divided into three exposure groups- low (non-detectable-20), medium (100-300) and high (400-700 microg/l) arsenic in drinking water (AsW). Three visual tests were administered: acuity, contrast sensitivity and color discrimination (Lanthony's Desaturated 15 Hue Test). Vibration thresholds were measured with a vibrothesiometer. Vibration thresholds were significantly elevated in the high exposure group compared to other groups. Further analysis using a spline regression model suggested that the threshold for vibratory effects is between 150-170 microg/l AsW. These findings provide the first evidence that chronic exposure to arsenic in drinking water impairs vibrotactile thresholds. The results also indicate that arsenic affects neurological function well below the 1000 microg/I concentration reported by NRC (1999). No evidence of arsenic-related effects on visual function was found.

  1. Microcystins from tap water could be a risk factor for liver and colorectal cancer: a risk intensified by global change.

    PubMed

    Martínez Hernández, Juan; López-Rodas, V; Costas, E

    2009-05-01

    An increasing number of people drink water from fresh water supply reservoirs. However, with the global change a lot of reservoirs become eutrophic, which facilitates the occurrence of toxin-producing cyanobacterial blooms. Microcystins (powerful hepatotoxic water-soluble heptapeptides) are the most important cyanobacterial toxins affecting humans. High doses of microcystins produce hepatic necrosis. Consequently, WHO Guidelines limit microcystins to 1 ppb in drinking waters. However, microcystins are present frequently in tap water at lower doses. Here, we hypothesized that chronic consume of tap water containing low doses of microcystins may be a risk factor for liver and colorectal cancer. Two kinds of evidences support this hypothesis. On one hand some epidemiological data (mainly in China). On the other hand, the molecular mechanism of microcystins toxicity (inhibition of protein phosphatases PP1 and PP2) is just like okadaic acid (a potent tumor promoter). Cancer risk from drinking water is certainly less than smoking, occupational exposures or some foods. But it is significant and with a rapid increase of toxic cyanobacterial blooms by eutrophycation, become more frequent.

  2. The effect of interactions between a bacterial strain isolated from drinking water and a pathogen surrogate on biofilms formation diverged under static vs flow conditions.

    PubMed

    Dai, D; Raskin, L; Xi, C

    2017-12-01

    Interactions with water bacteria affect the incorporation of pathogens into biofilms and thus pathogen control in drinking water systems. This study was to examine the impact of static vs flow conditions on interactions between a pathogen and a water bacterium on pathogen biofilm formation under laboratory settings. A pathogen surrogate Escherichia coli and a drinking water isolate Stenotrophomonas maltophilia was selected for this study. Biofilm growth was examined under two distinct conditions, in flow cells with continuous medium supply vs in static microtitre plates with batch culture. E. coli biofilm was greatly stimulated (c. 2-1000 times faster) with the presence of S. maltophilia in flow cells, but surprisingly inhibited (c. 65-95% less biomass) in microtitre plates. These divergent effects were explained through various aspects including surface attachment, cellular growth, extracellular signals and autoaggregation. Interactions with the same water bacterium resulted in different effects on E. coli biofilm formation when culture conditions changed from static to flow. This study highlights the complexity of species interactions on biofilm formation and suggests that environmental conditions such as the flow regime can be taken into consideration for the management of microbial contamination in drinking water systems. © 2017 The Society for Applied Microbiology.

  3. PubMed Central

    QUATTO, P.

    2015-01-01

    Summary Introduction. An excess of nitrates causes environmental pollution in receiving water bodies and health risk for human, if contaminated water is source of drinking water. The directive 91/676/ CEE [1] aims to reduce the nitrogen pressure in Europe from agriculture sources and identifies the livestock population as one of the predominant sources of surplus of nutrients that could be released in water and air. Directive is concerned about cattle, sheep, pigs and poultry and their territorial loads, but it does not deal with fish farms. Fish farms effluents may contain pollutants affecting ecosystem water quality. Methods. On the basis of multivariate statistical analysis, this paper aims to establish what types of farming affect the presence of nitrates in drinking water in the province of Cuneo, Piedmont, Italy. In this regard, we have used data from official sources on nitrates in drinking water and data Arvet database, concerning the presence of intensive farming in the considered area. For model selection we have employed automatic variable selection algorithm. Results and discussion. We have identified fish farms as a major source of nitrogen released into the environment, while pollution from sheep and poultry has appeared negligible. We would like to emphasize the need to include in the "Nitrate Vulnerable Zones" (as defined in Directive 91/676/CEE [1]), all areas where there are intensive farming of fish with open-system type of water use. Besides, aquaculture open-system should be equipped with adequate downstream system of filtering for removing nitrates in the wastewater. PMID:26900335

  4. The Causes and Circumstances of Drinking Water Incidents Impact Consumer Behaviour: Comparison of a Routine versus a Natural Disaster Incident

    PubMed Central

    Rundblad, Gabriella; Knapton, Olivia; Hunter, Paul R.

    2014-01-01

    When public health is endangered, the general public can only protect themselves if timely messages are received and understood. Previous research has shown that the cause of threats to public health can affect risk perception and behaviours. This study compares compliance to public health advice and consumer behaviour during two “Boil Water” notices issued in the UK due to a routine incident versus a natural disaster incident. A postal questionnaire was sent to 1000 randomly selected households issued a routine “Boil Water” notice. Findings were then compared to a previous study that explored drinking water behaviour during a “Boil Water” notice issued after serious floods. Consumers affected by the routine incident showed a significant preference for official water company information, whereas consumers affected by the natural disaster preferred local information sources. Confusion over which notice was in place was found for both incidents. Non-compliance was significantly higher for the natural disaster (48.3%) than the routine incident (35.4%). For the routine incident, compliance with advice on drinking as well as preparing/cooking food and brushing teeth was positively associated with receiving advice from the local radio, while the opposite was true for those receiving advice from the water company/leaflet through the post; we suggest this may largely be due to confusion over needing boiled tap water for brushing teeth. No associations were found for demographic factors. We conclude that information dissemination plans should be tailored to the circumstances under which the advice is issued. Water companies should seek to educate the general public about water notices and which actions are safe and unsafe during which notice, as well as construct and disseminate clearer advice on brushing teeth and preparing/cooking food. PMID:25411725

  5. Environmental pollution and chronic arsenicosis in south Calcutta.

    PubMed Central

    Mazumder, D. N.; Das Gupta, J.; Chakraborty, A. K.; Chatterjee, A.; Das, D.; Chakraborti, D.

    1992-01-01

    Careless handling of industrial wastes often creates problems for human health and the environment. Chronic arsenic toxicity, resulting from household use of arsenic-contaminated water occurred in 53 out of 79 members (67%) of 17 families residing in South Calcutta close to a factory that manufactured Paris-green (copper acetoarsenite). Clinical investigation of 20 of these affected persons showed typical skin pigmentation as well as palmar and plantar keratosis in all of them, while gastrointestinal symptoms, anaemia and signs of liver disease and peripheral neuropathy were seen in many. The water used by the affected families for drinking and cooking had been taken from shallow tubewells and had arsenic levels from 5.0 to 58 mg/l (WHO permissible limit, 0.05 mg/l). Other residents in the same area whose drinking-water came from deep tubewells or from tap water supplied by the Calcutta Municipal Corporation (arsenic levels, less than 0.05 mg/l) were not affected. The study confirms that arsenic in the shallow tubewells was due to the waste discharged by the factory producing Paris-green. PMID:1394782

  6. Short communication: the effects of histidine-supplemented drinking water on the performance of lactating dairy cows.

    PubMed

    Doelman, J; Purdie, N G; Osborne, V R; Cant, J P

    2008-10-01

    An experiment was conducted to test the hypothesis that a sufficient proportion of histidine (His) included in the drinking water of lactating cows bypasses the rumen to have an effect on milk synthesis. Eight dairy cows (45 +/- 15 d in milk) were given either 0 or 2.5 g/L of His in the drinking water in a crossover design of two 7-d periods. Cows were offered a corn and alfalfa silage-based total mixed ration for ad libitum intake. Water was provided ad libitum to each cow in an individual automatic drinking vessel with a flow meter attached. Water intake tended to increase from 85.1 to 92.1 L/d when His was added. Concentrations of His in plasma samples collected on the last day of each period tended to increase from 14.6 to 21.6 muM, corresponding to an estimated 0.4% bypass of the imbibed histidine. Other amino acid concentrations in plasma were not affected by His supplementation. Milk yield increased by 1.7 L/d with His treatment, lactose yield increased by 90 g/d, and there were tendencies for protein yield to increase, fat percentage to decrease, and protein to fat ratio to increase. An improvement in postruminal histidine flow can influence milk production and composition but the proportion of imbibed water that bypasses the rumen will have to be increased to take advantage of drinking water as a vehicle to transfer His postruminally.

  7. Socio-economic effect on socially-deprived communities of developing drinking water quality problems in arid and semi-arid area of central Rajasthan

    NASA Astrophysics Data System (ADS)

    Husain, I.; Husain, J.; Arif, M.

    2014-09-01

    Rajasthan is well known for its Great Thar desert. Central Rajasthan has an arid to semi-arid environment. The area faces either scarcity of water or poor quality of drinking water. In some areas water is transported 2 km or more, which uses time, energy and money. Rich people have their own sources, which is restricted for use by others. Such conditions are affecting socially-deprived communities, both socially and economically. Groundwater is a major source of drinking water due to the unavailability of surface water. There is a lack of groundwater quality knowledge in the community and the data available is hard to understand by consumers. The CCME Water Quality Index is a tool to simplify the water quality report by rating the water on quality standards. It provides meaningful summaries of overall water quality and trends, which is accessible to non-technical lay people. In the present study the objective is to examine the groundwater quality of six districts (Ajmer, Bhilwara, Pali, Rajasamand, Nagaur and Jodhpur), centrally located in Rajasthan, with arid and semi-arid conditions. CCME WQI is also evaluated to produce quality data in a form to be understood by the community. A total of 4369 groundwater sources in 1680 villages from six districts (76 546 km2) were collected and examined. Results are outlined in the Bureau of Indian Standards (BIS: 10500, 2012) and 2952 sources are unsafe for drinking. According to CCME WQI groundwater of 93 villages is poor, 343 villages are marginal, and 369 villages are fair in quality. Toxicological studies of unsafe drinking water and their remedial measures are also discussed. A tentative correlation between prevailing water-borne diseases and quality parameter has also been shown

  8. Water use on nonirrigated pasture-based dairy farms: Combining detailed monitoring and modeling to set benchmarks.

    PubMed

    Higham, C D; Horne, D; Singh, R; Kuhn-Sherlock, B; Scarsbrook, M R

    2017-01-01

    Water use in intensively managed, confinement dairy systems has been widely studied, but few reports exist regarding water use on pasture-based dairy farms. The objective of this study was to quantify the seasonal pattern of water use to develop a prediction model of water use for pasture-based dairy farms. Stock drinking, milking parlor, and total water use was measured on 35 pasture-based, seasonal calving dairy farms in New Zealand over 2 yr. Average stock drinking water was 60 L/cow per day, with peak use in summer. We estimated that, on average, 26% of stock drinking water was lost through leakage from water-distribution systems. Average corrected stock drinking water (equivalent to voluntary water intake) was 36 L/cow per day, and peak water consumption was 72 L/cow per day in summer. Milking parlor water use increased sharply at the start of lactation (July) and plateaued (August) until summer (February), after which it decreased with decreasing milk production. Average milking parlor water use was 58 L/cow per day (between September and February). Water requirements were affected by parlor type, with rotary milking parlor water use greater than herringbone parlor water use. Regression models were developed to predict stock drinking and milking parlor water use. The models included a range of climate, farm, and milk production variables. The main drivers of stock drinking water use were maximum daily temperature, potential evapotranspiration, radiation, and yield of milk and milk components. The main drivers for milking parlor water use were average per cow milk production and milking frequency. These models of water use are similar to those used in confinement dairy systems, where milk yield is commonly used as a variable. The models presented fit the measured data more accurately than other published models and are easier to use on pasture-based dairy farms, as they do not include feed and variables that are difficult to measure on pasture-based farms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Fluoride Alters Serum Elemental (Calcium, Magnesium, Copper, and Zinc) Homeostasis Along with Erythrocyte Carbonic Anhydrase Activity in Fluorosis Endemic Villages and Restores on Supply of Safe Drinking Water in School-Going Children of Nalgonda District, India.

    PubMed

    Khandare, Arjun L; Validandi, Vakdevi; Boiroju, Naveen

    2018-02-17

    The present study aimed to determine the serum trace elements (copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg)) along with erythrocyte carbonic anhydrase (CA) activity and effect of intervention with safe drinking water for 5 years in the school children of fluorosis endemic area. For this purpose, three categories of villages were selected based on drinking water fluoride (F): Category I (control, F = 1.68 mg/L), category II (affected F = 3.77 mg/L), and category III (intervention village) where initial drinking water F was 4.51 mg/L, and since the last 5 years, they were drinking water containing < 1.0 mg/L F. The results revealed that urinary F was significantly (P < 0.05) higher in category II compared to categories I and III. A significant (P < 0.05) increase in serum Cu and Mg was observed in category II compared to category I. Serum Zn and Ca was significantly (P < 0.05) decreased in categories II and III compared to category I. The erythrocyte CA activity was decreased in the category II compared to category I. However, in the category III, erythrocyte CA activity was comparable to the control group. In conclusion, F exposure altered elemental homeostasis which has restored to some extent on intervention by safe drinking water for 5 years in school-going children.

  10. Literature Review of Associations among Attributes of Reported Drinking Water Disease Outbreaks

    PubMed Central

    Ligon, Grant; Bartram, Jamie

    2016-01-01

    Waterborne disease outbreaks attributed to various pathogens and drinking water system characteristics have adversely affected public health worldwide throughout recorded history. Data from drinking water disease outbreak (DWDO) reports of widely varying breadth and depth were synthesized to investigate associations between outbreak attributes and human health impacts. Among 1519 outbreaks described in 475 sources identified during review of the primarily peer-reviewed, English language literature, most occurred in the U.S., the U.K. and Canada (in descending order). The outbreaks are most frequently associated with pathogens of unknown etiology, groundwater and untreated systems, and catchment realm-associated deficiencies (i.e., contamination events). Relative frequencies of outbreaks by various attributes are comparable with those within other DWDO reviews, with water system size and treatment type likely driving most of the (often statistically-significant at p < 0.05) differences in outbreak frequency, case count and attack rate. Temporal analysis suggests that while implementation of surface (drinking) water management policies is associated with decreased disease burden, further strengthening of related policies is needed to address the remaining burden attributed to catchment and distribution realm-associated deficiencies and to groundwater viral and disinfection-only system outbreaks. PMID:27240387

  11. A cross-omics toxicological evaluation of drinking water treated with different processes.

    PubMed

    Shi, Peng; Jia, Shuyu; Zhang, Xu-Xiang; Zhao, Fuzheng; Chen, Yajun; Zhou, Qing; Cheng, Shupei; Li, Ai-Min

    2014-04-30

    Cross-omics profiling and phenotypic analysis were conducted to comprehensively assess the toxicities of source of drinking water (SDW), effluent of conventional treatment (ECT) and effluent of advanced treatment (EAT) in a water treatment plant. SDW feeding increased body weight, and relative liver and kidney weights of mice. Hepatic histopathological damages and serum biochemical alterations were observed in the mice fed with SDW and ECT, but EAT feeding showed no obvious effects. Transcriptomic analysis demonstrated that exposure to water samples caused differential expression of hundreds of genes in livers. Cluster analysis of the differentially expressed genes which generated by both microarrays and digital gene expression showed similar grouping patterns. Proteomic and metabolomics analyses indicated that drinking SDW, ECT and EAT generated 59, 145 and 41 significantly altered proteins in livers and 8, 2 and 0 altered metabolites in serum, respectively. SDW was found to affect several metabolic pathways including metabolism of xenobiotics by cytochrome P450 and fatty acid metabolism. SDW and ECT might induce molecular toxicities to mice, but the advanced treatment process can reduce the potential health risk by effectively removing toxic chemicals in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Literature Review of Associations among Attributes of Reported Drinking Water Disease Outbreaks.

    PubMed

    Ligon, Grant; Bartram, Jamie

    2016-05-27

    Waterborne disease outbreaks attributed to various pathogens and drinking water system characteristics have adversely affected public health worldwide throughout recorded history. Data from drinking water disease outbreak (DWDO) reports of widely varying breadth and depth were synthesized to investigate associations between outbreak attributes and human health impacts. Among 1519 outbreaks described in 475 sources identified during review of the primarily peer-reviewed, English language literature, most occurred in the U.S., the U.K. and Canada (in descending order). The outbreaks are most frequently associated with pathogens of unknown etiology, groundwater and untreated systems, and catchment realm-associated deficiencies (i.e., contamination events). Relative frequencies of outbreaks by various attributes are comparable with those within other DWDO reviews, with water system size and treatment type likely driving most of the (often statistically-significant at p < 0.05) differences in outbreak frequency, case count and attack rate. Temporal analysis suggests that while implementation of surface (drinking) water management policies is associated with decreased disease burden, further strengthening of related policies is needed to address the remaining burden attributed to catchment and distribution realm-associated deficiencies and to groundwater viral and disinfection-only system outbreaks.

  13. Development of a process-based model to predict pathogen budgets for the Sydney drinking water catchment.

    PubMed

    Ferguson, Christobel M; Croke, Barry F W; Beatson, Peter J; Ashbolt, Nicholas J; Deere, Daniel A

    2007-06-01

    In drinking water catchments, reduction of pathogen loads delivered to reservoirs is an important priority for the management of raw source water quality. To assist with the evaluation of management options, a process-based mathematical model (pathogen catchment budgets - PCB) is developed to predict Cryptosporidium, Giardia and E. coli loads generated within and exported from drinking water catchments. The model quantifies the key processes affecting the generation and transport of microorganisms from humans and animals using land use and flow data, and catchment specific information including point sources such as sewage treatment plants and on-site systems. The resultant pathogen catchment budgets (PCB) can be used to prioritize the implementation of control measures for the reduction of pathogen risks to drinking water. The model is applied in the Wingecarribee catchment and used to rank those sub-catchments that would contribute the highest pathogen loads in dry weather, and in intermediate and large wet weather events. A sensitivity analysis of the model identifies that pathogen excretion rates from animals and humans, and manure mobilization rates are significant factors determining the output of the model and thus warrant further investigation.

  14. Outbreak of Norwalk virus in a Caribbean island resort: application of molecular diagnostics to ascertain the vehicle of infection.

    PubMed Central

    Brown, C. M.; Cann, J. W.; Simons, G.; Fankhauser, R. L.; Thomas, W.; Parashar, U. D.; Lewis, M. J.

    2001-01-01

    In 1998, an outbreak of gastroenteritis affected at least 448 persons including 122 staff at a resort hotel in Bermuda. A survey among staff indicated that gastroenteritis was associated with eating or drinking at the hotel (OR = 60, 95% CI = 2.4-15.1). Multiple specimens of drinking water had elevated faecal coliform levels and Escherichia coli present, suggestive of faecal contamination. Stools from 18 of the 19 persons with gastroenteritis that were tested were positive for genogroup-II Norwalk-like viruses (NLVs). RT-PCR analysis of a 31 specimen of water produced a genogroup-II NLV genome with a sequence identical to that of NLVs in the stools of three ill persons. This outbreak shows the value of new molecular diagnostics to link illness with a contaminated source through the use of sequence analysis. The risk of outbreaks such as these could be reduced in tourism dependent regions like Bermuda and the Caribbean by regular evaluation of data from the inspection and monitoring of drinking water supplies and waste water systems, by ensuring the chlorination of supplemental drinking water supplies and by establishing food-safety initiatives. PMID:11467799

  15. Haemorrhagic diarrhoea and reproductive failure in Bonsmara cattle resulting from anomalous heavy metal concentrations in soils, forages and drinking water associated with geochemical anomalies of toxic elements on the farm Puntlyf, South Africa

    NASA Astrophysics Data System (ADS)

    Elsenbroek, J. H.; Meyer, J.; Myburgh, J.

    2003-05-01

    Poor livestock health conditions are associated with geochemical Pb anomalies on a farm approximately 40km east of Pretoria, South Africa. A generic risk assessment of drinking water for Bonsmara cattle obtained from three separate subterranean water sources on the farm, revealed the presence of several potentially hazardous constituents suspected for the development of adverse health effects in the herd. The two main symptoms of the herd, namely, severe haemorrhagic diarrhoea in calves and reproductive failure in cows, have been investigated. A selenium-induced copper deficiency was proposed as the main cause to the calf diarrhoea, due to complexing between high concentrations of Se, Mo, Hg and Pb in drinking water. It was also anticipated that such Cu deficiencies would lead to low systemic Se inducing hypothyroidism in the cows due to inadequate iodine activation required for thyroid hormone formation and consequently adversely affect reproduction. The anomalous Pb in borehole drinking water on the southem part of the farm, suggests a clear genetic link with the underlying geochemical Pb anomalies detected by means of an ongoing regional geochemical survey.

  16. Reexamining the risks of drinking-water nitrates on public health.

    PubMed

    Richard, Alyce M; Diaz, James H; Kaye, Alan David

    2014-01-01

    Nitrates in drinking water are generally considered the sole source of nitrite poisoning with methemoglobinemia in infantile methomoglobinemia (IM). However, IM, which occurs during the first 4 months of life, is actually a constellation of cyanosis and hypoxia associated with methemoglobinemia that can result from several other causes. This review reexamines the role of nitrate levels in drinking water as a cause of IM and identifies other sources of nitrates that can affect public health and cause chronic diseases. Causes of IM include nitrites in foods, environmental chemical exposures, commonly prescribed pharmaceuticals, and the endogenous generation of oxides of nitrogen. Infants with congenital enzyme deficiencies in glucose-6-phosphate dehydrogenase and methemoglobin reductase are at greater risk of nitrite-induced methemoglobinemia from nitrates in water and food and from exposures to hemoglobin oxidizers. Early epidemiological studies demonstrated significant associations between high groundwater nitrate levels and elevated methemoglobin levels in infants fed drinking water-diluted formulas. However, more recent epidemiological investigations suggest other sources of nitrogenous substance exposures in infants, including protein-based formulas and foods and the production of nitrate precursors (nitric acid) by bacterial action in the infant gut in response to inflammation and infection.

  17. Outbreak of Norwalk virus in a Caribbean island resort: application of molecular diagnostics to ascertain the vehicle of infection.

    PubMed

    Brown, C M; Cann, J W; Simons, G; Fankhauser, R L; Thomas, W; Parashar, U D; Lewis, M J

    2001-06-01

    In 1998, an outbreak of gastroenteritis affected at least 448 persons including 122 staff at a resort hotel in Bermuda. A survey among staff indicated that gastroenteritis was associated with eating or drinking at the hotel (OR = 60, 95% CI = 2.4-15.1). Multiple specimens of drinking water had elevated faecal coliform levels and Escherichia coli present, suggestive of faecal contamination. Stools from 18 of the 19 persons with gastroenteritis that were tested were positive for genogroup-II Norwalk-like viruses (NLVs). RT-PCR analysis of a 31 specimen of water produced a genogroup-II NLV genome with a sequence identical to that of NLVs in the stools of three ill persons. This outbreak shows the value of new molecular diagnostics to link illness with a contaminated source through the use of sequence analysis. The risk of outbreaks such as these could be reduced in tourism dependent regions like Bermuda and the Caribbean by regular evaluation of data from the inspection and monitoring of drinking water supplies and waste water systems, by ensuring the chlorination of supplemental drinking water supplies and by establishing food-safety initiatives.

  18. 75 FR 40745 - Cyazofamid; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... Model/Exposure Analysis Modeling System (PRZM/EXAMS) model for surface water and the Screening... listed in this unit could also be affected. The North American Industrial Classification System (NAICS... there is reliable information.'' This includes exposure through drinking water and in residential...

  19. Prevalence of arsenic exposure in population of Ballia district from drinking water and its correlation with blood arsenic level.

    PubMed

    Katiyar, Shashwat; Singh, Dharam

    2014-05-01

    An investigation was carried out to ascertain the effect of arsenic in the blocks of Ballia district in Uttar Pradesh in the upper and middle Ganga plain, India. Analysis of 100 drinking water samples revealed that arsenic concentration was below 10 μg l⁻¹ in 60% samples, 10-50 μg l⁻¹ in 6%, 100 μg l⁻¹ in 24% and 200 μg l⁻¹ in 10% samples, respectively. The arsenic concentration in drinking water ranged from 12.8 to 132.2 μg l⁻¹. The depth of source of drinking water (10-60 m) was also found with a mean of 36.12 ± 13.61 μg l⁻¹ arsenic concentration. Observations revealed that at depth ranging from 10 to 20 m, the mean level of arsenic concentration was 17.398 ± 21.796 μg l⁻¹, while at 21 to 40 m depth As level was 39.685 ± 40.832 μg l⁻¹ and at 41 to 60 m As level was 46.89 ± 52.80 μg l⁻¹, respectively. These observations revealed a significant positive correlation (r = 0.716, t = 4.215, P < 0.05) between depth and arsenic concentration in drinking water. The age of water sources were ranged from zero to 30 years. The study indicates that the older sources of drinking water showed higher chance of contamination. Results showed that group 21-30 years having maximum arsenic concentration with mean value of 52.57 ± 53.79 μg l⁻¹. Correlation analysis also showed a significant positive correlation (r = 0.801, t = 5.66, P < 0.05) between age of drinking water sources and their respective arsenic concentration (μg l⁻¹). Arsenic concentration in blood with mean value 0.226 ± 0.177 μg dl⁻¹ significantly increased as compared to control. The blood arsenic content correlated significantly (r = 0.6823, t = 3.93, P < 0.05) with drinking water arsenic level and exposure time (r = 0.545, t = 3.101 & *P < 0.05) for populations residing in Ballia districts. Observations and correlation analysis revealed that individuals having depth of drinking water sources 20-30 m were less affected with arsenic exposure.

  20. Social knowledge and the construction of drinking water preference.

    PubMed

    Soares, Ana Carolina Cordeiro; Carmo, Rose Ferraz; Bevilacqua, Paula Dias

    2017-10-01

    The analytical categories of Health Surveillance territorialization and daily life guided the design of this study, which aimed to understand from the methodological framework of qualitative research the factors involved in the use of individual supply solutions (ISS) as drinking water sources. We conducted semi-structured interviews with residents of 22 households set at a municipality in the Zona da Mata Mineira. Statements were fully transcribed, processed through content analysis and interpreted based on the psychosocial theory of social representations. It was possible to apprehend the social and affective components of social representations. The social component characterized by the representation of water from IWSS ISS water as clean and of good quality seemed to drive or justify the "resistance" of individuals to use water from public supply. The affective component referred to the use of IWSS water from ISS as a return to and protection of individuals' origins, a way to strengthen respondents' identity. The results pointed out that people's perceptions and demands might guide actions aimed to stimulate trust in the use of public system water and the choice of this source of supply, contributing to health protection.

  1. A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin

    USGS Publications Warehouse

    de la Cruz, Armah A.; Hiskia, Anastasia; Kaloudis, Triantafyllos; Chernoff, Neil; Hill, Donna; Antoniou, Maria G.; He, Xuexiang; Loftin, Keith; O'Shea, Kevin; Zhao, Cen; Pelaez, Miguel; Han, Changseok; Lynch, Trevor J.; Dionysiou, Dionysios D.

    2013-01-01

    Cylindrospermopsin is an important cyanobacterial toxin found in water bodies worldwide. The ever-increasing and global occurrence of massive and prolonged blooms of cylindrospermopsin-producing cyanobacteria poses a potential threat to both human and ecosystem health. Its toxicity is associated with metabolic activation and may involve mechanisms that adversely affect a wide variety of targets in an organism. Cylindrospermopsin has been shown to be cytotoxic, dermatotoxic, genotoxic, hepatotoxic in vivo, developmentally toxic, and may be carcinogenic. Human exposure may occur through drinking water, during recreational activities and by consuming foods in which the toxin may have bioaccumulated. Drinking water shortages of sufficient quality coupled with growing human pressures and climate variability and change necessitate an integrated and sustainable water management program. This review presents an overview of the importance of cylindrospermopsin, its detection, toxicity, worldwide distribution, and lastly, its chemical and biological degradation and removal by natural processes and drinking water treatment processes.

  2. Applications of the water drinking test in glaucoma management.

    PubMed

    Susanna, Remo; Clement, Colin; Goldberg, Ivan; Hatanaka, Marcelo

    2017-08-01

    Intraocular pressure (IOP) peaks and means have been considered important factors for glaucoma onset and progression. However, peak IOP detection depends only on appropriated IOP checks at office visits, whereas the mean IOP requires longitudinal IOP data collection and may be affected by the interval between visits. Also, IOP peak assessment is necessary to verify if the peak pressure of a given patient is in target range, to evaluate glaucoma suspect risk, the efficacy of hypotensive drugs and to detect early loss of IOP control. The water-drinking test has gained significant attention in recent years as an important tool to evaluate IOP peaks and instability. The main objective of this review was to present new findings and to discuss the applicability of the water-drinking test in glaucoma management. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  3. Self-reported Effects of Water on Health in First Nations Communities in Saskatchewan, Canada: Results From Community-Based Participatory Research.

    PubMed

    Waldner, Cheryl L; Alimezelli, Hubert Tote; McLeod, Lianne; Zagozewski, Rebecca; Bradford, Lori Ea; Bharadwaj, Lalita A

    2017-01-01

    Water-related health challenges on First Nations reserves in Canada have been previously documented. Our objective was to describe factors associated with self-reported health effects from tap water in 8 First Nations reserve communities in Saskatchewan, Canada. Community-based participatory approaches were used in designing and implementing cross-sectional household surveys. Individual, household, community, and contextual effects were considered in multilevel analysis. Negative health effects from tap water were reported by 28% of households (n = 579). Concerns about environmental factors affecting water quality (odds ratio [OR] = 3.4, 95% confidence interval [CI] = 1.8-6.7), rarely or never drinking tap water (OR = 2.9, 95% CI = 1.3-6.6), insufficient tap water (OR = 3.0, 95% CI = 1.4-6.3), paying for bottled water (OR = 3.2, 95% CI = 1.2-8.7), and dissatisfaction with tap water were associated with self-reported health effects (n = 393); however, the effect of dissatisfaction was modified by respondent age ( P = .03). Quality and availability were associated with perceptions of health effects from drinking water, providing additional information on how ongoing concerns about drinking water influence self-reported health in some First Nations.

  4. [Fluoride in drinking water in Cuba and its association with geological and geographical variables].

    PubMed

    Luna, Liliam Cuéllar; Melián, Maricel García

    2003-11-01

    To determine the association between different concentrations of the fluoride ion in drinking water and some geological and geographical variables in Cuba, by using a geographic information system. From November 1998 to October 1999 we studied the fluoride concentration in the sources of drinking water for 753 Cuban localities that had at least 1 000 inhabitants. For the information analysis we utilized the MapInfo Professional version 5.5 geographic information system, using the overlaying method. The study variables were the concentration of the fluoride ion in the water sources, the geological characteristics of the area, the alignments (geological characteristics that were found together), the types of water sources, and whether an area was a plain or mountainous. The results were grouped by locality and municipality. In 83.1% of the localities, the water samples were collected from wells and springs, and the remaining 16.9% came from dams and rivers. Of the 753 localities studied, 675 of them (89.6%) had low or medium fluoride concentrations (under 0.7 mg/L). The eastern region of the country was the one most affected by high fluoride concentrations in the waters, followed by the central region of the country. The majority of the localities with high natural fluoride concentrations were in areas located on Cretaceous volcanic arc rocks. The presence of fluoride in the drinking waters was related to the alignments with the earth's crust, in rock complexes of volcanic-sedimentary origin and of intrusive origin and also in carbonate rocks. However, the highest fluoride concentrations generally coincided with rock complexes of volcanic-sedimentary origin and of intrusive origin. All the localities with high fluoride concentrations in the water were associated with wells. The fluoride concentration is low or medium in the drinking water sources for 89.6% of the Cuban localities with at least 1 000 inhabitants. Geological and geographical characteristics can help identify areas with optimal or high concentrations of the fluoride ion in the drinking water.

  5. Bacteriological contamination of well water in Makurdi town, Benue State, Nigeria.

    PubMed

    Mile, I I; Jande, J A; Dagba, B I

    2012-11-01

    Bacteriological contamination of well water in Makurdi town, of Benue State, Nigeria was investigated. A total of 15 water samples were collected from hand dug wells and analyzed for total bacteria count as it affect the quality of drinking water for both wet and dry season. The analysis was done according to standard methods of water examination and as reported in WHO guide limit for drinking water. The investigation revealed that the wells examined were highly contaminated with bacteria. Wells 6 and 7 showed highest total bacteria counts of 7.0 x 10(5)/100 mL and 8.2 x 10(5)/100 mL in the wet season, while wells 7 and 2 showed highest total bacteria counts of 8.0 x 10(5)/100 mL and 5.5 x 10(5)/100 mL in the dry season. The contamination of all wells could be due to improper construction of wells, refuse dumping sites and various human activities around the wells. Water generally from these wells is not safe for drinking except some form of treatment is carried out.

  6. Drinking water fluoridation and bone.

    PubMed

    Allolio, B; Lehmann, R

    1999-01-01

    Drinking water fluoridation has an established role in the prevention of dental caries, but may also positively or negatively affect bone. In bone fluoride is incorporated into hydroxylapatite to form the less soluble fluoroapatite. In higher concentrations fluoride stimulates osteoblast activity leading to an increase in cancellous bone mass. As optimal drinking water fluoridation (1 mg/l) is widely used, it is of great interest, whether long-term exposition to artificial water fluoridation has any impact on bone strength, bone mass, and -- most importantly -- fracture rate. Animal studies suggest a biphasic pattern of the effect of drinking water fluoridation on bone strength with a peak strength at a bone fluoride content of 1200 ppm followed by a decline at higher concentrations eventually leading to impaired bone quality. These changes are not paralleled by changes in bone mass suggesting that fluoride concentrations remain below the threshold level required for activation of osteoblast activity. Accordingly, in most epidemiological studies in humans bone mass was not altered by optimal drinking water fluoridation. In contrast, studies on the effect on hip fracture rate gave conflicting results ranging from an increased fracture incidence to no effect, and to a decreased fracture rate. As only ecological studies have been performed, they may be biased by unknown confounding factors -- the so-called ecological fallacy. However, the combined results of these studies indicate that any increase or decrease in fracture rate is likely to be small. It has been calculated that appropriately designed cohort studies to solve the problem require a sample size of >400,000 subjects. Such studies will not be performed in the foreseeable future. Future investigations in humans should, therefore, concentrate on the effect of long-term drinking water fluoridation on bone fluoride content and bone strength.

  7. The unintended energy impacts of increased nitrate contamination from biofuels production.

    PubMed

    Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E

    2010-01-01

    Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.

  8. Some Factors Influencing Effective Utilization of Drinking Water Facilities: Women, Income, and Health in Rural North Ghana

    NASA Astrophysics Data System (ADS)

    Kendie, S. B.

    1996-01-01

    In the examination of the implementation of rural drinking water facilities, not enough attention has been paid to analyzing the socioeconomic and political relationships that affect the effective utilization of the facilities, particularly as these relate to women in rural society. This paper suggests that much of the difficulty in instituting the utilization of safe water supply sources has to do with the rather low economic status of women—the main water collectors. Poverty consigns women to long periods of work in activities or jobs that bring little reward. This makes it difficult to effectively digest the messages delivered by program staff and limits the extent of usage of the safe water facilities.

  9. Long-term study of migration of volatile organic compounds from cross-linked polyethylene (PEX) pipes and effects on drinking water quality.

    PubMed

    Lund, Vidar; Anderson-Glenna, Mary; Skjevrak, Ingun; Steffensen, Inger-Lise

    2011-09-01

    The objectives of this study were to investigate migration of volatile organic compounds (VOCs) from cross-linked polyethylene (PEX) pipes used for drinking water produced by different production methods, and to evaluate their potential risk for human health and/or influence on aesthetic drinking water quality. The migration tests were carried out in accordance with EN-1420-1, and VOCs were analysed by gas chromatography-mass spectrometry. The levels of VOC migrating from new PEX pipes were generally low, and decreasing with time of pipe use. No association was found between production method of PEX pipes and concentration of migration products. 2,4-di-tert-butyl phenol and methyl tert-butyl ether (MTBE) were two of the major individual components detected. In three new PEX pipes, MTBE was detected in concentrations above the recommended US EPA taste and odour value for drinking water, but decreased below this value after 5 months in service. However, the threshold odour number (TON) values for two pipes were similar to new pipes even after 1 year in use. For seven chemicals for which conclusions on potential health risk could be drawn, this was considered of no or very low concern. However, odour from some of these pipes could negatively affect drinking water for up to 1 year.

  10. Application of semipermeable membrane devices for long-term monitoring of polycyclic aromatic hydrocarbons at various stages of drinking water treatment.

    PubMed

    Pogorzelec, Marta; Piekarska, Katarzyna

    2018-08-01

    The primary goal of the presented study was the investigation of occurrence and concentration of sixteen selected polycyclic aromatic hydrocarbons in samples from various stages of water treatment and verification of the applicability of semi-permeable membrane devices in the monitoring of drinking water. Another objective was to verify if weather seasons affect the concentration and complexity of PAHs. For these purposes, semipermeable membrane devices were installed in a surface water treatment plant located in Lower Silesia (Poland). Samples were collected monthly over a period of one year. To determine the effect of water treatment on PAH concentrations, four sampling sites were selected: raw water input, a stream of water in the pipe just before ozonation, treated water output and water after passing through the distribution system. After each month of sampling, SPMDs were exchanged for fresh ones and prepared for instrumental analysis. Concentrations of polycyclic aromatic hydrocarbons were determined by high-performance liquid chromatography (HPLC). The presented study indicates that semipermeable membrane devices can be an effective tool for the analysis of drinking water, in which organic micropollutants occur at very low concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Predicting effects of environmental change on river inflows to Tillamook Bay, Oregon

    EPA Science Inventory

    Estuarine river watersheds provide valued ecosystem services to their surrounding communities including drinking water, fish habitat, and regulation of estuarine water quality. However, the provisioning of these services can be affected by changes in the quantity and quality of ...

  12. 76 FR 70890 - Fenamidone; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    .../models/water/index.htm . Based on the Pesticide Root Zone Model/Exposure Analysis Modeling System (PRZM... listed in this unit could also be affected. The North American Industrial Classification System (NAICS... there is reliable information.'' This includes exposure through drinking water and in residential...

  13. Protecting Consumers from Contaminated Drinking Water during Natural Disasters

    EPA Science Inventory

    Natural disasters can cause damage and destruction to local water supplies affecting millions of people. Communities should plan for and designate an authorized team to manage and prioritize emergency response in devastated areas. Sections 2.0 and 3.0 describe the Environmental...

  14. 40 CFR 143.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...). These regulations control contaminants in drinking water that primarily affect the aesthetic qualities... contaminants, health implications may also exist as well as aesthetic degradation. The regulations are not...

  15. Effects of saline drinking water on early gosling development

    USGS Publications Warehouse

    Stolley, D.S.; Bissonette, J.A.; Kadlec, J.A.; Coster, D.

    1999-01-01

    Relatively high levels of saline drinking water may adversely affect the growth, development, and survival of young waterfowl. Saline drinking water was suspect in the low survival rate of Canada goose (Branta canadensis) goslings at Fish Springs National Wildlife Refuge (FSNWR) in western Utah. Hence, we investigated the effects of saline drinking water on the survival and growth of captive, wild-strain goslings from day 1-28 following hatch. We compared survival and growth (as measured by body mass, wing length, and culmen length) between a control group on tap water with a mean specific conductivity of 650 ??S/cm, and 2 saline water treatments: (1) intermediate level (12,000 ??S/cm), and (2) high level (18,000 ??S/cm). Gosling mortality occurred only in the 18,000 ??S/cm treatment group (33%; n = 9). Slopes of regressions of mean body mass, wing length, and culmen length on age were different from each other (P < 0.05), except for culmen length for the intermediate and high treatment levels. We predict that free-ranging wild goslings will experience mortality at even lower salinity levels than captive goslings because of the combined effects of depressed growth and environmental stresses, including hot desert temperatures and variable food quality over summer.

  16. Endotoxin inactivation by selected drinking water treatment oxidants.

    PubMed

    Anderson, William B; Mayfield, Colin I; Dixon, D George; Huck, Peter M

    2003-11-01

    Exposure to endotoxins in treated drinking water can occur through ingestion, dermal abrasions, inhalation of water vapor, intravenous injection or during dialysis. While the risks associated with endotoxin ingestion and entry through dermal abrasions are not well quantified, adverse effects of intravenous injection and dialysis are well known and some studies indicate that inhalation of moisture-laden air may impact human health. This study quantifies the inactivation of endotoxin derived from Escherichia coli O55:B5 by three substances used either as disinfectants or oxidants in drinking water treatment: chlorine, monochloramine and potassium permanganate. Inactivation rates were found to be 1.4, 1.0 and 0.7 endotoxin units (EU)/mL h, for free chlorine, potassium permanganate and monochloramine, respectively. These rates are relatively slow given that contact times in drinking water distribution systems are typically less than 48 h. While small amounts of endotoxin may be removed by oxidation the observed removals are much less than those provided by physical removal processes. The significance of this finding is important for dialysis considerations but is as yet unclear with regard to inhalation, as the risk of inhaling sufficient quantities of endotoxin-containing aerosolized water droplets to adversely affect human health has not yet been adequately quantified.

  17. Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis.

    PubMed

    Yang, Liyang; Kim, Daekyun; Uzun, Habibullah; Karanfil, Tanju; Hur, Jin

    2015-02-01

    The formation of disinfection byproducts (DBPs) is a major challenge in drinking water treatments. This study explored the applicability of fluorescence excitation-emission matrices and parallel factor analysis (EEM-PARAFAC) for assessing the formation potentials (FPs) of trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA), and the treatability of THM and NDMA precursors in nine drinking water treatment plants. Two humic-like and one tryptophan-like components were identified for the samples using PARAFAC. The total THM FP (TTHM FP) correlated strongly with humic-like component C2 (r=0.874), while NDMA FP showed a moderate and significant correlation with the tryptophan-like component C3 (r=0.628). The reduction by conventional treatment was more effective for C2 than C3, and for TTHM FP than NDMA FP. The treatability of DOM and TTHM FP correlated negatively with the absorption spectral slope (S275-295) and biological index (BIX) of the raw water, but it correlated positively with humification index (HIX). Our results demonstrated that PARAFAC components were valuable for assessing DBPs FP in drinking water treatments, and also that the raw water quality could affect the treatment efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Analytical Confirmation of Various Herbicides in Drinking Water Resources in Sugarcane Production Regions of Guangxi, China.

    PubMed

    Li, Honghong; Feng, Yujie; Li, Xuesheng; Zeng, Dongqiang

    2018-06-01

    This work investigated drinking water contamination by 11 commonly used herbicides in sugarcane production areas in Guangxi, China. The work developed an analytical method for determination of these herbicides in environmental waters. This work studied herbicide residues in drinking water in Guangxi, China. The maximum residues and percent of detects were: (0.091 µg/L, 29.2%, atrazine), (0.018 µg/L, 8.3%, ametryne), (0.188 µg/L, 8.3%, aetolaehlor), (0.139 µg/L, 4%, simazine), (0.585 µg/L, 62.5%, atrazine), (0.311 µg/L, 33.3%, acetochlor), (0.341 µg/L, 58.3%, ametryne), (1.312 µg/L, 29.2%, metolachlor), (0.088 µg/L, 4.2%, alachlor), (0.127 µg/L, 14.3%, atrazine), and (0.453 µg/L, 7.1%, metolachlor), respectively. The results demonstrated that agricultural herbicides were detected in all water samples, including tap, surface and groundwater samples. Since the residues are generally below the safe limits established by the government authorities, the monitored 11 herbicides do not significantly affect the quality of the human environment. This work will provide scientific understanding of pesticide residues in drinking water standards in terms of its consistency with precautionary human health and environmental safety.

  19. Beer improves copper metabolism and increases longevity in Cu-deficient rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, R.J.; Klevay, L.M.

    Moderate consumption of alcoholic beverages decreases risk of death from ischemic heart disease (IHD). Evidence suggests that Cu-deficiency is important in the etiology and pathophysiology of IHD. The effect of beer (25 ng Cu/ml) drinking on the severity of Cu-deficiency was examined in weanling, male Sprague-Dawley rats fed a low Cu diet (0.84 {mu}g Cu/g). Beer drinking increased median longevity to 204 or 299 d from 62 or 42 d respectively in rats drinking water in two experiments (15 rats/group). In experiment 3, a single dose of {sup 67}Cu (3.3 {mu}Ci as chloride) was added to 1 g of feedmore » and given to 12-h fasted rats 30 d after the start of the experiment. Whole body counting over 13 d showed apparent Cu absorption and t{sub {1/2}} (biological) were greater in Cu-deficient rats drinking beer than in similar rats drinking water. Plasma cholesterol was lower but hematocrit and liver Cu were higher in surviving rats drinking beer than in rats drinking water. Body weight was not affected by beer in any experiment. In experiment 4, a 4% aqueous ethanol solution had no effect on longevity of copper deficient rats. A non-alcohol component of beer alters Cu metabolism and mitigates the severity of nutritional Cu-deficiency in rats.« less

  20. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence

    PubMed Central

    2014-01-01

    Background Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. Methods Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. Results Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2–4.1]; 4.2 [2.1–6.3] and; 5.8 [2.9–8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35–4.0], 2.3 [0.59–6.4], and 3.1 [0.80–8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. Conclusion Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta-analyses suggest exposure to 10 μg/L of arsenic in drinking water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health consequences of arsenic in drinking water are substantial. PMID:24889821

  1. Challenges in setting up a potable water supply system in a United Nations peacekeeping mission: the South Sudan experience.

    PubMed

    Hazra, Aniruddha

    2013-01-01

    A United Nations peacekeeping contingent was deployed in the conflict affected areas of South Sudan with inadequate environmental sanitation, lack of clean drinking water and a heightened risk of water-borne diseases. In the immediate post-deployment phase, the contingent-owned water purification system was pressed into service. However, laboratory analyses of processed water revealed its unsuitability for human consumption. A systematic, sanitary survey was conducted to identify the shortcomings in the water supply system's ability to provide potable water. Under field conditions, the 'H2S method' was used to detect faecal contamination of drinking water. The raw water from the only available source, the White Nile River, was highly turbid and contaminated by intestinal and other pathogens due to an unprotected watershed. Water sterilizing powder was not readily available in the local area to replenish the existing stocks that had deteriorated during the long transit period from the troop contributing country. The water pipelines that had been laid along the ground, under water-logged conditions, were prone to microbial recontamination due to leakages in the network. The critical evaluation of the water supply system and necessary modifications in the purification process, based upon locally available options, yielded safe drinking water. Provision of safe drinking water in the mission area requires an in-depth analysis of prevailing conditions and appropriate planning in the pre-deployment phase. The chemicals for water purification should be procured through UN sources via a 'letter of assist' request from the troop contributor. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Electrolyzed water as novel technology to improve hygiene of drinking water for dairy ewes.

    PubMed

    Bodas, R; Bartolomé, D J; Tabernero De Paz, M J; Posado, R; García, J J; Rodríguez, L; Olmedo, S; Martín-Diana, A B

    2013-12-01

    Tap water alone (TW) or treated with 3% of slightly acidic electrolyzed water (SAEW) were used in this experiment to study its effect on water quality, blood biochemical parameters and milk yield and composition. Each type of water was supplied to one group of 10 milking ewes for 25 days. Weekly water samples from troughs were taken. On days 1, 12 and 25, milk yield was measured, and milk and blood samples were taken. SAEW reduced (P < 0.05) bacterial counts (aerobic mesophilic, total coliform and streptococcus). Blood gases, biochemical parameters and milk yield and its composition were not affected (P > 0.05). SAEW can be used at 3% rate as a powerful and economic agent for sanitizing drinking water for dairy ewes with no effects on animal performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Pesticides and pesticide degradates in the East Fork Little Miami River and William H. Harsha Lake, southwestern Ohio, 1999-2000

    USGS Publications Warehouse

    Funk, Jason M.; Reutter, David C.; Rowe, Gary L.

    2003-01-01

    In 1999 and 2000, the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program conducted a national pilot study of pesticides and degradates in drinking-water supplies, in cooperation with the U.S. Environmental Protection Agency (USEPA). William H. Harsha Lake, which provides drinking water for several thousand people in southwestern Ohio, was selected as one of the drinking-water supplies for this study. East Fork Little Miami River is the main source of water to Harsha Lake and drains a predominantly agricultural basin. Samples were collected from the East Fork Little Miami River upstream from Harsha Lake, at the drinking-water intake at Harsha Lake, at the outfall just below Harsha Lake, and from treated water at the Bob McEwen Treatment Plant. These samples were analyzed using standardized methods developed for the NAWQA Program. In all, 42 pesticide compounds (24 herbicides, 4 insecticides, 1 fungicide, and 13 degradates) were detected at least once in samples collected during this study. No compound in the treated water samples exceeded any drinking-water standard, although atrazine concentrations in untreated water exceeded the USEPA Maximum Contaminant Level (MCL) for drinking water (3 ?g/L) on four occasions. At least eight compounds were detected with greater than 60 percent frequency at each sampling location. Herbicides, such as atrazine, alachlor, acetochlor, cyanazine, metolachlor, and simazine, were detected most frequently. Rainfall affected the pesticide concentrations in surface waters of the East Fork Little Miami River Basin. Drought conditions from May through November 1999 led to lower streamflow and pesticide concentrations throughout southwestern Ohio. More normal climate conditions during 2000 resulted in higher streamflows and seasonally higher concentrations in the East Fork Little Miami River and Harsha Lake for some pesticides Comparison of pesticide concentrations in untreated lake water and treated drinking water supplied by the Bob McEwen Treatment Plant suggests that treatment processes employed by the plant (chlorination, activated carbon) reduced pesticide concentrations to levels well below USEPA drinking-water standards. In particular, the percentage of pesticides remaining in treated water samples decreased significantly for several frequently occurring pesticides when the plant replaced the use of powdered activated carbon with granular activated carbon in November 1999. For example, the median percentage of atrazine remaining after treatment that included powdered activated carbon was 63 percent, whereas the median percentage of atrazine remaining after the switch to granular activated carbon was 2.4 percent.

  4. Performance, meat quality, meat mineral contents and caecal microbial population responses to humic substances administered in drinking water in broilers.

    PubMed

    Ozturk, E; Coskun, I; Ocak, N; Erener, G; Dervisoglu, M; Turhan, S

    2014-01-01

    This study was conducted to examine the effect of different levels of humic substances (HS) administered in drinking water on caecal microflora and mineral composition and colour characteristics of breast and thigh meats and the growth performance, carcass and gastrointestinal tract (GIT) traits of broiler chicks. A total of 480 3-d-old broiler chickens were randomly allocated to 4 treatments with 4 cages per treatment and 30 bird (15 males and 15 females) chicks per cage. All birds were fed on commercial basal diet. The control birds (HS0) received drinking water with no additions, whereas birds in the other treatment groups received a drinking water with 7.5 (HS7.5), 15.0 (HS15.0) and 22.5 (HS22.5) g/kg HS. Mush feed were provided on an ad libitum basis. Body weight and feed intake of broilers were determined at d 0, 21, and 42, and feed conversion ratio was calculated. On d 42, 4 broilers (2 males and 2 females) from each cage were slaughtered and the breast and thigh meats were collected for mineral composition and quality measurements. Performance, carcass and GIT traits and caecal microbial population of broiler chicks at d 42 were not affected by the dietary treatments. The lightness (L*) of breast and thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water. Although the redness (a*) of breast meat increased, yellowness of thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water (P < 0.05). In conclusion, the 15 and 22.5 g/kg HS administration in drinking water can be applied for broiler chicks to maintain growth performance and improve meat quality without changing caecal microflora.

  5. Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats.

    PubMed

    Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kutty, Harikumar Sankaran; Kandasamy, Kannan; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-12-01

    We evaluated whether arsenic can alter vascular redox homeostasis and modulate antioxidant status, taking rat thoracic aorta as a model vascular tissue. In addition, we evaluated whether the altered vascular biochemical homeostasis could be associated with alterations in the physical indicators of toxicity development. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. Body weight, food intake, and water consumption were recorded weekly. On the 91st day, rats were sacrificed; vital organs and thoracic aorta were collected. Lipid peroxidation, reactive oxygen species generation, and antioxidants were assessed in the thoracic aorta. Arsenic increased aortic lipid peroxidation and hydrogen peroxide generation while decreased reduced glutathione content in a dose-dependent manner. The activities of the enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were decreased. Further, arsenic at 100 ppm decreased feed intake, water consumption, and body weight from the 11th week onward. At this concentration, arsenic increased the relative weights of the liver and kidney. The results suggest that arsenic causes dose-dependent oxidative stress, reduction in antioxidative defense systems, and body weight loss with alteration in hepato-renal organosomatic indices. Overall, subchronic arsenic exposure through drinking water causes alteration in vascular redox homeostasis and at high concentration affects physical health.

  6. Ground-water quality of the southern High Plains aquifer, Texas and New Mexico, 2001

    USGS Publications Warehouse

    Fahlquist, Lynne

    2003-01-01

    In 2001, the U.S. Geological Survey National Water-Quality Assessment Program collected water samples from 48 wells in the southern High Plains as part of a larger scientific effort to broadly characterize and understand factors affecting water quality of the High Plains aquifer across the entire High Plains. Water samples were collected primarily from domestic wells in Texas and eastern New Mexico. Depths of wells sampled ranged from 100 to 500 feet, with a median depth of 201 feet. Depths to water ranged from 34 to 445 feet below land surface, with a median depth of 134 feet. Of 240 properties or constituents measured or analyzed, 10 exceeded U.S. Environmental Protection Agency public drinking-water standards or guidelines in one or more samples - arsenic, boron, chloride, dissolved solids, fluoride, manganese, nitrate, radon, strontium, and sulfate. Measured dissolved solids concentrations in 29 samples were larger than the public drinking-water guideline of 500 milligrams per liter. Fluoride concentrations in 16 samples, mostly in the southern part of the study area, were larger than the public drinking-water standard of 4 milligrams per liter. Nitrate was detected in all samples, and concentrations in six samples were larger than the public drinking-water standard of 10 milligrams per liter. Arsenic concentrations in 14 samples in the southern part of the study area were larger than the new (2002) public drinking-water standard of 10 micrograms per liter. Radon concentrations in 36 samples were larger than a proposed public drinking-water standard of 300 picocuries per liter. Pesticides were detected at very small concentrations, less than 1 microgram per liter, in less than 20 percent of the samples. The most frequently detected compounds were atrazine and breakdown products of atrazine, a finding similar to those of National Water-Quality Assessment aquifer studies across the Nation. Four volatile organic compounds were detected at small concentrations in six water samples. About 70 percent of the 48 primarily domestic wells sampled contained some fraction of recently (less than about 50 years ago) recharged ground water, as indicated by the presence of one or more pesticides, or tritium or nitrate concentrations greater than threshold levels.

  7. THE SIGNIFICANCE OF ARSENIC-BOUND SOLIDS IN DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Sorption, co-precipitation, and oxidation-reduction reactions of arsenic at the sorbent-water interface are importent factors affecting the fate and transport of arsenic in aqueous systems. Numerous studies have concluded that arsenite (As(III) is more soluble and mobile than ar...

  8. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland.

    PubMed

    Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-09-01

    Arsenic is a ubiquitous element which may be found in surface water, groundwater, and drinking water. In higher concentrations, this element is considered genotoxic and carcinogenic; thus, its level must be strictly controlled. We investigated the concentration of total arsenic and arsenic species: As(III), As(V), MMA, DMA, and AsB in drinking water, surface water, wastewater, and snow collected from the provinces of Wielkopolska, Kujawy-Pomerania, and Lower Silesia (Poland). The total arsenic was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and arsenic species were analyzed with use of high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Obtained results revealed that maximum total arsenic concentration determined in drinking water samples was equal to 1.01 μg L(-1). The highest concentration of total arsenic in surface water, equal to 3778 μg L(-1) was determined in Trująca Stream situated in the area affected by geogenic arsenic contamination. Total arsenic concentration in wastewater samples was comparable to those determined in drinking water samples. However, significantly higher arsenic concentration, equal to 83.1 ± 5.9 μg L(-1), was found in a snow sample collected in Legnica. As(V) was present in all of the investigated samples, and in most of them, it was the sole species observed. However, in snow sample collected in Legnica, more than 97 % of the determined concentration, amounting to 81 ± 11 μg L(-1), was in the form of As(III), the most toxic arsenic species.

  9. Gemifloxacin

    MedlinePlus

    ... change in your ability to feel light touch, vibrations, pain, heat, or cold. Taking gemifloxacin may affect ... includes these foods or drinks.Swallow the tablets whole with plenty of water; do not split, chew, ...

  10. Status of groundwater arsenic contamination in all 17 blocks of Nadia district in the state of West Bengal, India: A 23-year study report

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Mahmudur; Mondal, Debapriya; Das, Bhaskar; Sengupta, Mrinal Kumar; Ahamed, Sad; Hossain, M. Amir; Samal, Alok Chandra; Saha, Kshitish Chandra; Mukherjee, Subhash Chandra; Dutta, Rathindra Nath; Chakraborti, Dipankar

    2014-10-01

    A comprehensive study was conducted in Nadia, one of the nine arsenic (As) affected districts in West Bengal, India to determine the extent and severity of groundwater As contamination and its health effects in particular, dermatological effects and neurological complications. We collected 28,947 hand tube-well water samples from all 17 blocks of Nadia district and analyzed for As by the flow injection-hydride generation atomic absorption spectrometer (FI-HG-AAS). We found 51.4% and 17.3% of the tube-wells had As above 10 and 50 μg/L, respectively and observed that groundwater of all 17 blocks contained As above 50 μg/L with maximum observed level of 3200 μg/L. We estimated that about 2.1 million and 0.6 million people could be drinking As contaminated water above 10 and 50 μg/L, respectively, while 0.048 million could be at risk of drinking As-contaminated water above 300 μg/L, the concentration predicted to cause overt arsenical skin lesions. We screened 15,153 villagers from 50 villages and registered 1077 with arsenical skin lesions resulting in a prevalence rate of 7.1%. Analyzing 2671 biological samples (hair, nail and urine), from people with and without arsenical skin symptoms we found 95% of the samples had As above the normal level, indicating many people in Nadia district are sub-clinically affected. Arsenical neuropathy was observed in 33% of 255 arsenicosis patients with 28.2% prevalence for predominant sensory neuropathy and 4.7% for sensorimotor. As groundwater is still the main source of drinking water, targeting low-As aquifers and switching tube-well from unsafe to nearby safe sources are two visible options to obtain safe drinking water.

  11. The significance of drinking water for population migration in the Sahel zone of the Republic of Sudan.

    PubMed

    Ruppert, H

    1991-01-01

    This study examines how the availability of water supplies affects migration in the Sahel region of Sudan. More particularly, the author shows that "through the development of watering-places and the opening-up of new water resources, the government influences considerably processes of population migration and regional concentrations of population groups." excerpt

  12. Pre-Exercise Ingestion of Pickle Juice, Hypertonic Saline, or Water and Aerobic Performance and Thermoregulation

    PubMed Central

    Peikert, Jarett; Miller, Kevin C.; Albrecht, Jay; Tucker, Jared; Deal, James

    2014-01-01

    Context: Ingesting high-sodium drinks pre-exercise can improve thermoregulation and performance. Athletic trainers (19%) give athletes pickle juice (PJ) prophylactically for cramping. No data exist on whether this practice affects aerobic performance or thermoregulation. Objective: To determine if drinking 2 mL/kg body mass of PJ, hypertonic saline, or deionized water (DIW) pre-exercise affects aerobic performance or thermoregulation. Design: Crossover study. Setting: Controlled laboratory study. Patients or Other Participants: Nine euhydrated men (age = 22 ± 3 years, height = 184.0 ± 8.2 cm, mass = 82.6 ± 16.0 kg) completed testing. Intervention(s): Participants rested for 65 minutes. During this period, they ingested 2 mL/kg of PJ, hypertonic saline, or DIW. Next, they drank 5 mL/kg of DIW. Blood was collected before and after ingestion of all fluids. Participants were weighed and ran in the heat (temperature = 38.3°C ± 1°C, relative humidity = 21.1% ± 4.7%) at increasing increments of maximal heart rate (50%, 60%, 70%, 80%, 90%, 95%) until exhaustion or until rectal temperature exceeded 39.5°C. Participants were weighed postexercise so we could calculate sweat volume. Main Outcome Measure(s): Time to exhaustion, rectal temperature, changes in plasma volume, and sweat volume. Results: Time to exhaustion did not differ among drinks (PJ = 77.4 ± 5.9 minutes, hypertonic saline = 77.4 ± 4.0 minutes, DIW = 75.7 ± 3.2 minutes; F2,16 = 1.1, P = .40). Core temperature of participants was similar among drinks (PJ = 38.7°C ± 0.3°C, hypertonic saline = 38.7°C ± 0.4°C, DIW = 38.8°C ± 0.4°C; P = .74) but increased from pre-exercise (36.7°C ± 0.2°C) to postexercise (38.7°C ± 0.4°C) (P < .05). No differences were observed for changes in plasma volume or sweat volume among drinks (P > .05). Conclusions: Ingesting small amounts of PJ or hypertonic saline with water did not affect performance or select thermoregulatory measures. Drinking larger volumes of PJ and water may be more effective at expanding the extracellular space. PMID:24568225

  13. [Risk analysis of nitrate contamination in wells supplying drinking water in a rural area of Chile].

    PubMed

    Arumi, José Luis; Núñez, Jorge; Salgado, Luis; Claret, Marcelino

    2006-12-01

    To assess the risk associated with nitrate contamination of wells that supply drinking water in the rural, Parral region of central Chile. The nitrate concentration levels were determined using water samples from 94 wells. An analysis of the distribution of nitrate concentration levels was performed in order to assess possible geographic correlations. For the risk analysis, two exposure situations were identified among the population (for adults and for infants), and the health risks were mapped. Fourteen percent of the wells studied had nitrate concentration levels greater than what the Chilean health standards allow for drinking water. There was no geographic correlation for the nitrate concentration levels. The mean hazard quotient (HQ) for adults in the study area was 0.12, indicating an absence of risk for this population group. For infants, the HQ values had a maximum value of 3.1 in some locations, but the average was 0.69 (still below 1.0), indicating that the well water in the study area was generally not hazardous for infants. In the Parral region of Chile, nitrate contamination of wells is primarily linked to certain factors such as construction practices and the proximity of livestock. These factors affect the quality of drinking water in isolated cases. There was no risk found for the adult population, but there was for infants fed on formula mixed with water coming from the contaminated wells.

  14. Arsenic removal methods for drinking water in the developing countries: technological developments and research needs.

    PubMed

    Kabir, Fayzul; Chowdhury, Shakhawat

    2017-11-01

    Arsenic pollution of drinking water is a concern, particularly in the developing countries. Removal of arsenic from drinking water is strongly recommended. Despite the availability of efficient technologies for arsenic removal, the small and rural communities in the developing countries are not capable of employing most of these technologies due to their high cost and technical complexity. There is a need for the "low-cost" and "easy to use" technologies to protect the humans in the arsenic affected developing countries. In this study, arsenic removal technologies were summarized and the low-cost technologies were reviewed. The advantages and disadvantages of these technologies were identified and their scopes of applications and improvements were investigated. The costs were compared in context to the capacity of the low-income populations in the developing countries. Finally, future research directions were proposed to protect the low-income populations in the developing countries.

  15. Spatial modelling of arsenic distribution and human health effects in Lake Victoria basin, Tanzania

    NASA Astrophysics Data System (ADS)

    Ijumulana, Julian; Mtalo, Felix; Bhattacharya, Prosun

    2016-04-01

    Increasing incidences of naturally occurring geogenic pollutants in drinking water sources and associated human health risks are the two major challenges requiring detailed knowledge to support decision making process at various levels. The presence, location and extent of environmental contamination is needed towards developing mitigation measures to achieve required standards. In this study we are developing a GIS-based model to detect and predict drinking water pollutants at the identified hotspots and monitor its variation in space. In addition, the mobility of pollutants within the affected region needs to be evaluated using topographic and hydrogeological data. Based on these geospatial data on contaminant distribution, spatial relationship of As and F contamination and reported human health effects such as dental caries, dental fluorosis, skeletal fluorosis and bone crippling, skin and other cancers etc. can be modeled for potential interventions for safe drinking water supplies.

  16. Sensory aspects and water quality impacts of chlorinated and chloraminated drinking water in contact with HDPE and cPVC pipe.

    PubMed

    Heim, Timothy H; Dietrich, Andrea M

    2007-02-01

    Pipes constructed with high-density polyethylene (HDPE) or chlorinated polyvinyl chloride (cPVC) are commonly used in drinking water distribution systems and premise plumbing. In this comprehensive investigation, the effects on odor, organic chemical release, trihalomethane (THM) formation, free chlorine demand and monochloramine demand were determined for water exposed to HDPE and cPVC pipes. The study was conducted in accordance with the Utility Quick Test (UQT), a migration/leaching protocol for analysis of materials in contact with drinking water. The sensory panel consistently attributed a weak to moderate intensity of a "waxy/plastic/citrus" odor to the water from the HDPE pipes but not the cPVC-contacted water samples. The odor intensity generated by the HDPE pipe remained relatively constant for multiple water flushes, and the odor descriptors were affected by disinfectant type. Water samples stored in both types of pipe showed a significant increase in the leaching of organic compounds when compared to glass controls, with HDPE producing 0.14 microgTOC/cm(2) pipe surface, which was significantly greater than the TOC release from cPVC. Water stored in both types of pipe showed disinfectant demands of 0.1-0.9 microg disinfectant/cm(2) pipe surface, with HDPE exerting more demand than cPVC. No THMs were detected in chlorinated water exposed to the pipes. The results demonstrate the impact that synthetic plumbing materials can have on sensory and chemical water quality, as well as the significant variations in drinking water quality generated from different materials.

  17. Modeling Source Water Threshold Exceedances with Extreme Value Theory

    NASA Astrophysics Data System (ADS)

    Rajagopalan, B.; Samson, C.; Summers, R. S.

    2016-12-01

    Variability in surface water quality, influenced by seasonal and long-term climate changes, can impact drinking water quality and treatment. In particular, temperature and precipitation can impact surface water quality directly or through their influence on streamflow and dilution capacity. Furthermore, they also impact land surface factors, such as soil moisture and vegetation, which can in turn affect surface water quality, in particular, levels of organic matter in surface waters which are of concern. All of these will be exacerbated by anthropogenic climate change. While some source water quality parameters, particularly Total Organic Carbon (TOC) and bromide concentrations, are not directly regulated for drinking water, these parameters are precursors to the formation of disinfection byproducts (DBPs), which are regulated in drinking water distribution systems. These DBPs form when a disinfectant, added to the water to protect public health against microbial pathogens, most commonly chlorine, reacts with dissolved organic matter (DOM), measured as TOC or dissolved organic carbon (DOC), and inorganic precursor materials, such as bromide. Therefore, understanding and modeling the extremes of TOC and Bromide concentrations is of critical interest for drinking water utilities. In this study we develop nonstationary extreme value analysis models for threshold exceedances of source water quality parameters, specifically TOC and bromide concentrations. In this, the threshold exceedances are modeled as Generalized Pareto Distribution (GPD) whose parameters vary as a function of climate and land surface variables - thus, enabling to capture the temporal nonstationarity. We apply these to model threshold exceedance of source water TOC and bromide concentrations at two locations with different climate and find very good performance.

  18. Opportunistic pathogens and faecal indicators in drinking water associated biofilms in Cluj, Romania.

    PubMed

    Farkas, A; Drăgan-Bularda, M; Ciatarâş, D; Bocoş, B; Tigan, S

    2012-09-01

    Biofouling occurs without exception in all water systems, with undesirable effects such as biocorrosion and deterioration of water quality. Drinking water associated biofilms represent a potential risk to human health by harbouring pathogenic or toxin-releasing microorganisms. This is the first study investigating the attached microbiota, with potential threat to human health, in a public water system in Romania. The presence and the seasonal variation of viable faecal indicators and opportunistic pathogens were investigated within naturally developed biofilms in a drinking water treatment plant. Bacterial frequencies were correlated with microbial loads in biofilms as well as with physical and chemical characteristics of biofilms and raw water. The biofilms assessed in the current study proved to be extremely active microbial consortia. High bacterial numbers were recovered by cultivation, including Pseudomonas aeruginosa, Escherichia coli, Aeromonas hydrophila, intestinal enterococci and Clostridium perfringens. There were no Legionella spp. detected in any biofilm sample. Emergence of opportunistic pathogens in biofilms was not significantly affected by the surface material, but by the treatment process. Implementation of a water safety plan encompassing measures to prevent microbial contamination and to control biofouling would be appropriate.

  19. Socioeconomic status and exposure to disinfection by-products in drinking water in Spain.

    PubMed

    Castaño-Vinyals, Gemma; Cantor, Kenneth P; Villanueva, Cristina M; Tardon, Adonina; Garcia-Closas, Reina; Serra, Consol; Carrato, Alfredo; Malats, Núria; Rothman, Nathaniel; Silverman, Debra; Kogevinas, Manolis

    2011-03-16

    Disinfection by-products in drinking water are chemical contaminants that have been associated with cancer and other adverse effects. Exposure occurs from consumption of tap water, inhalation and dermal absorption. We determined the relationship between socioeconomic status and exposure to disinfection by-products in 1271 controls from a multicentric bladder cancer case-control study in Spain. Information on lifetime drinking water sources, swimming pool attendance, showering-bathing practices, and socioeconomic status (education, income) was collected through personal interviews. The most highly educated subjects consumed less tap water (57%) and more bottled water (33%) than illiterate subjects (69% and 17% respectively, p-value = 0.003). These differences became wider in recent time periods. The time spent bathing or showering was positively correlated with attained educational level (p < 0.001). Swimming pool attendance was more frequent among highly educated subjects compared to the illiterate (odds ratio = 3.4; 95% confidence interval 1.6-7.3). The most highly educated subjects were less exposed to chlorination by-products through ingestion but more exposed through dermal contact and inhalation in pools and showers/baths. Health risk perceptions and economic capacity may affect patterns of water consumption that can result in differences in exposure to water contaminants.

  20. Function of Serum Complement in Drinking Water Arsenic Toxicity

    PubMed Central

    Islam, Laila N.; Zahid, M. Shamim Hasan; Nabi, A. H. M. Nurun; Hossain, Mahmud

    2012-01-01

    Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P < 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P < 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity. PMID:22545044

  1. Uranium in drinking water: renal effects of long-term ingestion by an aboriginal community.

    PubMed

    Zamora, Maria L Limson; Zielinski, Jan M; Moodie, Gerry B; Falcomer, Renato A F; Hunt, Wendy C; Capello, Kevin

    2009-01-01

    The authors conducted a study of an aboriginal community to determine if kidney func-tion had been affected by the chronic ingestion of uranium in drinking water from the community's drilled wells. Uranium concentrations in drinking water varied from < 1 to 845 ppb. This nonin-vasive study relied on the measurement of a combination of urinary indicators of kidney function and markers for cell toxicity. In all, 54 individuals (12-73 years old) participated in the study. Correlation of uranium excreted in urine with bio-indicators at p

  2. Study of the relationship between the lifestyle of residents residing in fluorosis endemic areas and adult skeletal fluorosis.

    PubMed

    Liu, GuoJie; Ye, QingFang; Chen, Wei; Zhao, ZhenJuan; Li, Ling; Lin, Ping

    2015-07-01

    The relationship between fluorosis and the lifestyle of adult residents of areas in which fluorosis is endemic was evaluated. A cross-sectional and case-control analysis was performed to study 289 villagers living in fluorosis endemic areas who drank the local water. Subjects were divided into skeletal fluorosis and non-skeletal fluorosis groups according to whether they were afflicted with skeletal fluorosis. A semi-quantitative food frequency questionnaire, homemade lifestyle questionnaires, and general characteristics were analyzed. The factors that affected the occurrence of skeletal fluorosis were determined by generalized estimating equations. Our results showed that protective factors against skeletal fluorosis included drinking boiled water, storing water in a ceramic tank, and ingesting fruits, vitamin A, thiamine, and folic acid. Risk factors for skeletal fluorosis were overweight status and obesity, drinking tea, drinking water without storage, and ingestion of oils, fats, and phosphorus. Our results demonstrate that skeletal fluorosis has a close relationship with lifestyle. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Solar photolysis of soluble microbial products as precursors of disinfection by-products in surface water.

    PubMed

    Wu, Jie; Ye, Jian; Peng, Huanlong; Wu, Meirou; Shi, Weiwei; Liang, Yongmei; Liu, Wei

    2018-06-01

    In the Pearl River Delta area, the upstream municipal wastewater is commonly discharged into rivers which are a pivotal source of downstream drinking water. Solar irradiation transforms some of the dissolved organic matter discharged from the wastewater, also affecting the formation of disinfection by-products in subsequent drinking water treatment plants. The effect of simulated solar radiation on soluble microbial products extracted from activated sludge was documented in laboratory experiments. Irradiation was found to degrade macromolecules in the effluent, yielding smaller, more reactive intermediate species which reacted with chlorine or chloramine to form higher levels of noxious disinfection by-products. The soluble microbial products were found to be more active in formation of disinfection by-products regard than naturally-occurring organic matter. The results show that solar irradiation induced the formation of more trihalomethane (THMs), chloral hydrate (CH) and trichloronitromethane (TCNM), causing greater health risks for downstream drinking water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Removing lead in drinking water with activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.M.; Kuennen, R.W.

    A point-of-use (POU) granular activated carbon (GAC) fixed bed adsorber (FBA) was evaluated for reduction of soluble and insoluble lead from drinking water. Some of the factors which affect lead removal by GAC were evaluated, such as carbon type, solution pH, and a limited amount of work on competitive interactions. The design criteria for lead reduction by a POU device are also addressed. Minicolumns were used to evaluate the capacity of carbon for lead under a variety of conditions. The importance of surface chemistry of the carbon and the relationship with the pH of the water for lead reduction wasmore » demonstrated. Results indicate that a properly designed POU-GAC-FBA can reduce lead in drinking water to below the EPA action level of 15 ppb while being tested under a variety of conditions as specified under the National Sanitation Foundation (NSF) International Standard 53 test protocol. 37 refs., 9 figs., 1 tab.« less

  5. 40 CFR 146.9 - Criteria for establishing permitting priorities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS General Provisions § 146...) Likelihood of contamination of underground sources of drinking water; (d) Potentially affected population; (e...

  6. 40 CFR 146.9 - Criteria for establishing permitting priorities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS General Provisions § 146...) Likelihood of contamination of underground sources of drinking water; (d) Potentially affected population; (e...

  7. 40 CFR 146.9 - Criteria for establishing permitting priorities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS General Provisions § 146...) Likelihood of contamination of underground sources of drinking water; (d) Potentially affected population; (e...

  8. 40 CFR 146.9 - Criteria for establishing permitting priorities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS General Provisions § 146...) Likelihood of contamination of underground sources of drinking water; (d) Potentially affected population; (e...

  9. From dehydration to hyperhidration isotonic and diuretic drinks and hyperhydratant aids in sport.

    PubMed

    Urdampilleta, Aritz; Gómez-Zorita, Saioa

    2014-01-01

    The needs of water and electrolytes are quite variants, depending on age, physiological or environmental conditions. In most long-term sports, usual weight loss of 3-6%, affect in athletic performance. The effects of a 6% dehydration could be improved with individualized diet-specific nutritional strategies and allow only a 2-3% dehydration, which affect metabolic efficiency but will not risk the health. On the contrary, hyperhydration can be dangerous and is associated with hyponatremia that can cause cerebral edema or respiratory failure. Sports drinks should moisturize, providing minerals and carbohydrates and increase the absorption of water by an ideal combination of salts and sugars. Therefore, it is important to provide correct hydration -protocols before, during and after physical activity, as well as know possible limitations of the sport.

  10. Overview of environmental and hydrogeologic conditions at Fort Yukon, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The village of Fort Yukon along the Yukon River in east-central Alaska has long cold winters and short summers. The Federal Aviation Administration operates and supports some airport facilities in Fort Yukon and is evaluating the severity of environmental contamination and options for remediation of such contamination at their facilites. Fort Yukon is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available from local surface-water bodies or from presently unidentified confined aquifers.

  11. CHARACTERIZATION OF LOCALIZED CORROSION OF COPPER PIPES USED IN DRINKING WATER

    EPA Science Inventory

    Localized corrosion of copper, or "copper pitting" in water distribution tubing is a large problem at many utilities. Pitting can lead to pinhole leaks less than a year. Tubing affected by copper pitting will often fail in ultiple locations, resulting in a frustrating situation ...

  12. Drinking-Water Standards and Regulations. Volume 2. Manual for 1982-88

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.K.; Wang, M.H.S.

    1988-04-10

    The following 11 important documents are compiled for Drinking Water Standards and Regulations: (1) U.S. Environmental Agency Water Programs, National Interim Primary Drinking Water Regulations; (2) New Jersey Safe Drinking Water Act; (3) Summary of New Jersey Drinking Water Standards; (4) U.S. Environmental Protection Agency Safe Drinking Water Act of 1986 Amendments; (5) U.S. Environmental Protection Agency National Primary Drinking Water Standards; (6) Canadian National Health and Welfare Drinking Water Quality Guidelines--Maximum Acceptable Concentrations; (7) U.S. Environmental Protection Agency, National Primary Drinking Water Regulations, Filtration and Disinfection Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria; (8) Public Water Supply Manual--Guidemore » to the Safe Drinking Water Program; (9) Public Water Supply Manual--Emergency Response; (10) U.S. EPA Approved Krofta Chemicals; (11) NY-DOH Approved Krofta Chemicals.« less

  13. Seasonality Affects the Diversity and Composition of Bacterioplankton Communities in Dongjiang River, a Drinking Water Source of Hong Kong.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Sun, Guoping

    2017-01-01

    Water quality ranks the most vital criterion for rivers serving as drinking water sources, which periodically changes over seasons. Such fluctuation is believed associated with the state shifts of bacterial community within. To date, seasonality effects on bacterioplankton community patterns in large rivers serving as drinking water sources however, are still poorly understood. Here we investigated the intra-annual bacterial community structure in the Dongjiang River, a drinking water source of Hong Kong, using high-throughput pyrosequencing in concert with geochemical property measurements during dry, and wet seasons. Our results showed that Proteobacteria, Actinobacteria , and Bacteroidetes were the dominant phyla of bacterioplankton communities, which varied in composition, and distribution from dry to wet seasons, and exhibited profound seasonal changes. Actinobacteria, Bacteroidetes , and Cyanobacteria seemed to be more associated with seasonality that the relative abundances of Actinobacteria , and Bacteroidetes were significantly higher in the dry season than those in the wet season ( p < 0.01), while the relative abundance of Cyanobacteria was about 10-fold higher in the wet season than in the dry season. Temperature and [Formula: see text]-N concentration represented key contributing factors to the observed seasonal variations. These findings help understand the roles of various bacterioplankton and their interactions with the biogeochemical processes in the river ecosystem.

  14. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    PubMed

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  15. Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry.

    PubMed

    Ako, Andrew Ako; Shimada, Jun; Hosono, Takahiro; Kagabu, Makoto; Ayuk, Akoachere Richard; Nkeng, George Elambo; Eyong, Gloria Eneke Takem; Fouepe Takounjou, Alain L

    2012-10-01

    Groundwater is the only reliable water resource for drinking, domestic, and agricultural purposes for the people living in the Mount Cameroon area. Hydrogeochemical and R-mode factor analysis were used to identify hydrogeochemical processes controlling spring water quality and assess its usability for the above uses. Main water types in the study area are Ca-Mg-HCO(3) and Na-HCO(3). This study reveals that three processes are controlling the spring water quality. CO(2)-driven silicate weathering and reverse cation exchange are the most important processes affecting the hydrochemistry of the spring waters. While tropical oceanic monsoon chloride-rich/sulfate-rich rainwater seems to affect spring water chemistry at low-altitude areas, strong correlations exist between major ions, dissolved silica and the altitude of springs. In general, the spring waters are suitable for drinking and domestic uses. Total hardness (TH) values indicate a general softness of the waters, which is linked to the development of cardiovascular diseases. Based on Na %, residual sodium carbonate, sodium adsorption ratio, and the USSL classification, the spring waters are considered suitable for irrigation. Though there is wide spread use of chemical fertilizers and intense urban settlements at the lower flanks of the volcano, anthropogenic activities for now seem to have little impact on the spring water quality.

  16. Outbreak of acute gastroenteritis of unknown etiology caused by contaminated drinking water in a rural village in Austria, August 2006.

    PubMed

    Meusburger, Stefan; Reichart, Sandra; Kapfer, Sabine; Schableger, Karl; Fretz, Rainer; Allerberger, Franz

    2007-01-01

    In August 2006 a physician from a rural village reported an outbreak of acute gastroenteritis. An investigation was undertaken in order to determine the magnitude of the outbreak, the source of infection and to prevent further disease. This is the first published outbreak of acute gastroenteritis caused by contaminated drinking water in Austria. For descriptive epidemiology, the investigators had to rely on voluntary cooperation from physicians and patients, data collected by a police officer and data on sick leave reported by physicians to the health insurance system. Microbiological testing of water samples indicated that this cluster was caused by fecal contamination of untreated drinking water. Age and sex distributions were available for 146 of 160 cases: ages ranged from 5 to 91 years (median 45) and 81 cases (55.5%) were female. Stool samples from 14 patients were sent for microbiological analysis: all tested negative for Salmonella, Campylobacter, Shigella and Yersinia enterocolitica. Specimens were not tested for viruses, parasites or enteropathogenic Escherichia coli. In this outbreak no identification was made of pathogenic microorganisms in stool samples from affected patients, despite the occurrence of fecal indicator organisms in samples of drinking water. In outbreaks of gastroenteritis, medical practitioners should encourage microbiological testing beyond the limited routine program. Public health officers must be made aware that the spectrum of routine laboratory tests on stool specimens does not cover the wide array of pathogens capable of causing waterborne outbreaks. The springs serving the affected village originate in a mountainous area of karst formations, and heavy falls of rain that occurred at the beginning of the outbreak may explain introduction of fecal bacteria. In view of the unsolved problem of possible future contamination of springs in karst areas, the water department of this district authority has issued an order requesting installation of a permanent ultraviolet water-treatment facility.

  17. Factors affecting water resistance of alginate/gellan blend films on paper cups for hot drinks.

    PubMed

    Zhang, Ning; Xu, Jiachao; Gao, Xin; Fu, Xiaoting; Zheng, Di

    2017-01-20

    Enhanced film water resistance of paper cups was achieved by physically blending sodium alginate (NaAlg) and gellan gum with crosslinking treatment. Pure and blended films were prepared and characterized via Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and positron annihilation lifetime spectroscopy (PALS). Results demonstrated excellent compatibility between the two polysaccharides. Total mixed solution concentration, component ratio, glycerol content, Ca 2+ concentration, crosslinking time, and dry temperature affected water resistance. Water permeability (WP) and swelling degree (SD) were tested. Optimal conditions were as follows: total mixed solution concentration, 2.4% (m/v); component ratio, 2:1; glycerol content, 0.5% (m/v); Ca 2+ concentration, 5% (m/v); crosslinking time, 5min; and dry temperature, 50°C. WP and SD values were 78.1×10 -8 g/msPa and 66.3%, respectively. Properties of the films showed the synergistic effect between NaAlg and gellan, which can be used for water-resistant film coating on paper cups for hot drinks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Self-reported Effects of Water on Health in First Nations Communities in Saskatchewan, Canada: Results From Community-Based Participatory Research

    PubMed Central

    Waldner, Cheryl L; Alimezelli, Hubert Tote; McLeod, Lianne; Zagozewski, Rebecca; Bradford, Lori EA; Bharadwaj, Lalita A

    2017-01-01

    Water-related health challenges on First Nations reserves in Canada have been previously documented. Our objective was to describe factors associated with self-reported health effects from tap water in 8 First Nations reserve communities in Saskatchewan, Canada. Community-based participatory approaches were used in designing and implementing cross-sectional household surveys. Individual, household, community, and contextual effects were considered in multilevel analysis. Negative health effects from tap water were reported by 28% of households (n = 579). Concerns about environmental factors affecting water quality (odds ratio [OR] = 3.4, 95% confidence interval [CI] = 1.8-6.7), rarely or never drinking tap water (OR = 2.9, 95% CI = 1.3-6.6), insufficient tap water (OR = 3.0, 95% CI = 1.4-6.3), paying for bottled water (OR = 3.2, 95% CI = 1.2-8.7), and dissatisfaction with tap water were associated with self-reported health effects (n = 393); however, the effect of dissatisfaction was modified by respondent age (P = .03). Quality and availability were associated with perceptions of health effects from drinking water, providing additional information on how ongoing concerns about drinking water influence self-reported health in some First Nations. PMID:28469443

  19. Water and the environment: a natural resource or a limited luxury?

    PubMed

    Leder, Karin; Sinclair, Martha I; McNeil, John J

    The risk of contamination of drinking water supplies with microbial pathogens is minimised by modern approaches to water management, but continues to be the major public health concern. Chemical contaminants usually pose little health risk except at very high levels, but debate continues over the potential adverse health effects of low-level, chronic exposure to compounds such as disinfection byproducts. Recreational water contact can be associated with adverse health outcomes either from microbial infections or exposure to cyanobacterial toxins. Environmental issues such as increasing salinity and global warming are likely to affect the sustainability of our current drinking water supplies and increase the threat of waterborne disease outbreaks. New technologies, use of alternative water sources, such as rainwater tanks, water reuse and restrictions will undoubtedly be part of the solution to our diminishing water resources, but have the potential to introduce new health threats.

  20. The influence of brewing water characteristic on sensory perception of pour-over local coffee

    NASA Astrophysics Data System (ADS)

    Fibrianto, K.; Ardianti, A. D.; Pradipta, K.; Sunarharum, W. B.

    2018-01-01

    The coffee quality can be characterized by its multisensory perceptions. The content and mineral composition and other substances of brewing water can affect the result of brewed-coffee. The water may influence in extraction capabilities and flavor clarity. The ground Dampit coffee and two commercial instant coffee with pour-over method were used in this study. Various types of commercial drinking water were used to brew the coffee. The result suggests that the different brewing water affects the intensity of sweet and chocolate aroma, as well as oily mouth-feel. Surprisingly, taste and flavour attributes were not affected by the pH of brewing water within the range of 5.5 to 9.1.

  1. Delineating potential mechanisms of implicit alcohol cognitions: drinking restraint, negative affect, and their relationship with approach alcohol associations.

    PubMed

    Cohn, Amy M; Cameron, Amy Y; Udo, Tomoko; Hagman, Brett T; Mitchell, Jessica; Bramm, Stephanie; Ehlke, Sarah

    2012-06-01

    Problem drinkers may use alcohol to avoid negative mood states and may develop implicit cognitive associations between negative emotional states and reinforcing properties of drinking. It is paradoxical that attempts to control drinking, such as among those high in drinking restraint, may inadvertently increase desire to drink and subsequent alcohol consumption, and this may be exaggerated under times of emotional distress when urges to drink are high. We examined whether individuals who are high on drinking restraint would demonstrate stronger alcohol-related thoughts elicited by stimuli that represent the desire to use alcohol, in response to stronger versus weaker negative mood arousal. Seventy hazardous drinkers completed measurements of drinking restraint, alcohol consumption, and consequences of use. After being randomized to view negative or positive pictures sets, participants completed an Implicit Association Task (IAT) to test differences in the strength of the association between desire to approach or avoid alcohol or water cues, and then a measurement of subjective craving following the IAT. Regression analyses showed that trait restriction not temptation was positively related to IAT scores, after controlling for relevant covariates and explained 7% of the total variance. Trait temptation not IAT predicted subjective craving. Negative affect was unrelated to IAT scores, singly or in conjunction with measures of drinking restraint, contrary to predictions. In sum, implicit alcohol cognitions are related to attempts to restrict drinking not temptation to drink and are less strongly influenced by mood state.

  2. New England's Drinking Water | Drinking Water in New ...

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  3. Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study.

    PubMed

    Manassaram, Deana M; Backer, Lorraine C; Messing, Rita; Fleming, Lora E; Luke, Barbara; Monteilh, Carolyn P

    2010-10-14

    Private water systems are more likely to have nitrate levels above the maximum contaminant level (MCL). Pregnant women are considered vulnerable to the effects of exposure to high levels of nitrates in drinking water due to their altered physiological states. The level of methemoglobin in the blood is the biomarker often used in research for assessing exposure to nitrates. The objective of this study was to assess methemoglobin levels and examine how various factors affected methemoglobin levels during pregnancy. We also examined whether differences in water use practices existed among pregnant women based on household drinking water source of private vs. public supply. A longitudinal study of 357 pregnant women was conducted. Longitudinal regression models were used to examine changes and predictors of the change in methemoglobin levels over the period of gestation. Pregnant women showed a decrease in methemoglobin levels with increasing gestation although <1% had levels above the physiologic normal of 2% methemoglobin, regardless of the source of their drinking water. The multivariable analyses did not show a statistically significant association between methemoglobin levels and the estimated nitrate intake from tap water among pregnant women around 36 weeks gestation (β = 0.046, p = 0.986). Four women had tap water nitrate levels above the MCL of 10 mg/L. At enrollment, a greater proportion of women who reported using water treatment devices were private wells users (66%) compared to public system users (46%) (p < 0.0001). Also, a greater proportion of private well users (27%) compared to public system users (13%) were using devices capable of removing nitrate from water (p < 0.0001). Pregnant women potentially exposed to nitrate levels primarily below the MCL for drinking water were unlikely to show methemoglobin levels above the physiologic normal. Water use practices such as the use of treatment devices to remove nitrates varied according to water source and should be considered in the assessment of exposure to nitrates in future studies.

  4. Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study

    PubMed Central

    2010-01-01

    Background Private water systems are more likely to have nitrate levels above the maximum contaminant level (MCL). Pregnant women are considered vulnerable to the effects of exposure to high levels of nitrates in drinking water due to their altered physiological states. The level of methemoglobin in the blood is the biomarker often used in research for assessing exposure to nitrates. The objective of this study was to assess methemoglobin levels and examine how various factors affected methemoglobin levels during pregnancy. We also examined whether differences in water use practices existed among pregnant women based on household drinking water source of private vs. public supply. Methods A longitudinal study of 357 pregnant women was conducted. Longitudinal regression models were used to examine changes and predictors of the change in methemoglobin levels over the period of gestation. Results Pregnant women showed a decrease in methemoglobin levels with increasing gestation although <1% had levels above the physiologic normal of 2% methemoglobin, regardless of the source of their drinking water. The multivariable analyses did not show a statistically significant association between methemoglobin levels and the estimated nitrate intake from tap water among pregnant women around 36 weeks gestation (β = 0.046, p = 0.986). Four women had tap water nitrate levels above the MCL of 10 mg/L. At enrollment, a greater proportion of women who reported using water treatment devices were private wells users (66%) compared to public system users (46%) (p < 0.0001). Also, a greater proportion of private well users (27%) compared to public system users (13%) were using devices capable of removing nitrate from water (p < 0.0001). Conclusion Pregnant women potentially exposed to nitrate levels primarily below the MCL for drinking water were unlikely to show methemoglobin levels above the physiologic normal. Water use practices such as the use of treatment devices to remove nitrates varied according to water source and should be considered in the assessment of exposure to nitrates in future studies. PMID:20946657

  5. Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up

    PubMed Central

    Knudsen, Nikoline N.; Schullehner, Jörg; Hansen, Birgitte; Jørgensen, Lisbeth F.; Kristiansen, Søren M.; Voutchkova, Denitza D.; Gerds, Thomas A.; Andersen, Per K.; Bihrmann, Kristine; Grønbæk, Morten; Kessing, Lars V.; Ersbøll, Annette K.

    2017-01-01

    Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate level have suggested an association between lithium in drinking water and a reduced risk of suicide; however, a causal relation is uncertain. Individual-level register-based data on the entire Danish adult population (3.7 million individuals) from 1991 to 2012 were linked with a moving five-year time-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 μg/L ranging from 0.6 to 30.7 μg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found no significant indication of an association between increasing five-year TWA lithium exposure level and decreasing suicide rate. The comprehensiveness of using individual-level data and spatial analyses with 22 years of follow-up makes a pronounced contribution to previous findings. Our findings demonstrate that there does not seem to be a protective effect of exposure to lithium on the incidence of suicide with levels below 31 μg/L in drinking water. PMID:28604590

  6. Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up.

    PubMed

    Knudsen, Nikoline N; Schullehner, Jörg; Hansen, Birgitte; Jørgensen, Lisbeth F; Kristiansen, Søren M; Voutchkova, Denitza D; Gerds, Thomas A; Andersen, Per K; Bihrmann, Kristine; Grønbæk, Morten; Kessing, Lars V; Ersbøll, Annette K

    2017-06-10

    Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate level have suggested an association between lithium in drinking water and a reduced risk of suicide; however, a causal relation is uncertain. Individual-level register-based data on the entire Danish adult population (3.7 million individuals) from 1991 to 2012 were linked with a moving five-year time-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 μg/L ranging from 0.6 to 30.7 μg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found no significant indication of an association between increasing five-year TWA lithium exposure level and decreasing suicide rate. The comprehensiveness of using individual-level data and spatial analyses with 22 years of follow-up makes a pronounced contribution to previous findings. Our findings demonstrate that there does not seem to be a protective effect of exposure to lithium on the incidence of suicide with levels below 31 μg/L in drinking water.

  7. Effect of chlorination by-products on the quantitation of microcystins in finished drinking water.

    PubMed

    Rosenblum, Laura; Zaffiro, Alan; Adams, William A; Wendelken, Steven C

    2017-11-01

    Microcystins are toxic peptides that can be produced by cyanobacteria in harmful algal blooms (HABs). Various analytical techniques have been developed to quantify microcystins in drinking water, including liquid chromatography tandem mass spectrometry (LC/MS/MS), enzyme linked immunosorbent assay (ELISA), and oxidative cleavage to produce 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) with detection by LC/MS/MS, the "MMPB method". Both the ELISA and MMPB methods quantify microcystins by detecting a portion of the molecule common to most microcystins. However, there is little research evaluating the effect of microcystin chlorination by-products potentially produced during drinking water treatment on analytical results. To evaluate this potential, chlorinated drinking water samples were fortified with various microcystin congeners in bench-scale studies. The samples were allowed to react, followed by a comparison of microcystin concentrations measured using the three methods. The congener-specific LC/MS/MS method selectively quantified microcystins and was not affected by the presence of chlorination by-products. The ELISA results were similar to those obtained by LC/MS/MS for most microcystin congeners, but results deviated for a particular microcystin containing a variable amino acid susceptible to oxidation. The concentrations measured by the MMPB method were at least five-fold higher than the concentrations of microcystin measured by the other methods and demonstrate that detection of MMPB does not necessarily correlate to intact microcystin toxins in finished drinking water. Published by Elsevier Ltd.

  8. Mean Residence Time and Emergency Drinking Water Supply.

    NASA Astrophysics Data System (ADS)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate Mean Residence Times (MRTs) of the raw water of drinking water supplies is the measurement of the water-isotopes (oxygen-18, hydrogen-2 and tritium (3H)). The traceability and the quality oft he lumped model calculation is based on the quality and the density of input (meteorological) stations in the region with monthly measurements. In addition, noble gas measurements in the groundwater (helium-3, krypton-85) and of industrial tracer gases (chlorofluorocarbon (CFC) and sulphurhexaflorid (SF6)) are important tools to estimate the MRTs of the raw water in the aquifers. To exclude the presence of small amounts of very recent waters, which are in cases of accidents some times heavily polluted, the raw water is tested for natural radionuclides (beryllium-7 or sulphur-35) with very short half-life or artificial fluorescence tracers. In addition, the estimate of the MRTs of groundwater is an essential part of the vulnerability assessment of drinking water supplies due to climate change impacts (frequency of droughts and floods in the recharge area) and offers a valuable tool to specify a sustainable water abstraction. The applicability of this approach was tested in several springs and groundwater monitoring wells used for raw water abstraction for drinking water supply in Austria.

  9. Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review.

    PubMed

    Rahman, M Azizur; Rahman, A; Khan, M Zaved Kaiser; Renzaho, Andre M N

    2018-04-15

    Arsenic contamination of drinking water, which can occur naturally or because of human activities such as mining, is the single most important public health issue in Bangladesh. Fifty out of the 64 districts in the country have arsenic concentration of groundwater exceeding 50µgL -1 , the Bangladeshi threshold, affecting 35-77 million people or 21-48% of the total population. Chronic arsenic exposure through drinking water and other dietary sources is an important public health issue worldwide affecting hundreds of millions of people. Consequently, arsenic poisoning has attracted the attention of researchers and has been profiled extensively in the literature. Most of the literature has focused on characterising arsenic poisoning and factors associated with it. However, studies examining the socio-economic aspects of chronic exposure of arsenic through either drinking water or foods remain underexplored. The objectives of this paper are (i) to review arsenic exposure pathways to humans; (ii) to summarise public health impacts of chronic arsenic exposure; and (iii) to examine socio-economic implications and consequences of arsenicosis with a focus on Bangladesh. This scoping review evaluates the contributions of different exposure pathways by analysing arsenic concentrations in dietary and non-dietary sources. The socio-economic consequences of arsenicosis disease in Bangladesh are discussed in this review by considering food habits, nutritional status, socio-economic conditions, and socio-cultural behaviours of the people of the country. The pathways of arsenic exposure in Bangladesh include drinking water, various plant foods and non-dietary sources such as soil. Arsenic affected people are often abandoned by the society, lose their jobs and get divorced and are forced to live a sub-standard life. The fragile public health system in Bangladesh has been burdened by the management of thousands of arsenicosis victims in Bangladesh. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States.

    PubMed

    Varughese, Eunice A; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer L; Fout, G Shay; Furlong, Edward T; Kolpin, Dana W; Glassmeyer, Susan T; Keely, Scott P

    2018-04-01

    Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymerase chain reaction (PCR) or quantitative PCR (qPCR). However, true values may be underestimated due to challenges involved in a multi-step viral concentration process and due to PCR inhibition. In this study, water samples were concentrated from 25 drinking water treatment plants (DWTPs) across the US to study the occurrence of enteric viruses in source water and removal after treatment. The five different types of viruses studied were adenovirus, norovirus GI, norovirus GII, enterovirus, and polyomavirus. Quantitative PCR was performed on all samples to determine presence or absence of these viruses in each sample. Ten DWTPs showed presence of one or more viruses in source water, with four DWTPs having treated drinking water testing positive. Furthermore, PCR inhibition was assessed for each sample using an exogenous amplification control, which indicated that all of the DWTP samples, including source and treated water samples, had some level of inhibition, confirming that inhibition plays an important role in PCR-based assessments of environmental samples. PCR inhibition measurements, viral recovery, and other assessments were incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters. Published by Elsevier B.V.

  11. Preventive Effect of Hydrogen Water on the Development of Detrusor Overactivity in a Rat Model of Bladder Outlet Obstruction.

    PubMed

    Miyazaki, Nozomu; Yamaguchi, Osamu; Nomiya, Masanori; Aikawa, Ken; Kimura, Junko

    2016-03-01

    Bladder ischemia and oxidative stress contribute to the pathogenesis of bladder dysfunction caused by bladder outlet obstruction. H2 reportedly acts as an effective antioxidant. We investigated whether oral ingestion of H2 water would have a beneficial effect on bladder function in a rat model of bladder outlet obstruction. H2 water was made by dissolving H2 gas in ordinary drinking water using a hydrogen water producing apparatus. The bladder outlet obstruction model was surgically induced in male rats. Rats with obstruction were fed H2 water or ordinary drinking water. On week 4 postoperatively cystometry was performed. Oxidative stress markers and the bladder nerve growth factor level were determined. Bladder tissues were processed for pharmacological studies and histological analysis. The micturition interval and micturition volume significantly decreased in obstructed rats given ordinary drinking water. These decreases were significantly suppressed by oral ingestion of H2 water. Increased post-void residual volume in obstructed rats was significantly reduced by H2 water. Obstruction led to a significant increase in bladder weight, oxidative stress markers and nerve growth factor. H2 water significantly suppressed these increases without affecting bladder weight. There was no significant difference in histological findings between rats with bladder obstruction given H2 water and ordinary drinking water. Decreased responses of detrusor muscle strips from obstructed bladders to KCl, carbachol and electrical field stimulation were reversed by H2 water ingestion. Results suggest that H2 water could ameliorate bladder dysfunction secondary to bladder outlet obstruction by attenuating oxidative stress. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Biomonitoring of perfluorinated compounds in adults exposed to contaminated drinking water in the Veneto Region, Italy.

    PubMed

    Ingelido, Anna Maria; Abballe, Annalisa; Gemma, Simonetta; Dellatte, Elena; Iacovella, Nicola; De Angelis, Giovanna; Zampaglioni, Franco; Marra, Valentina; Miniero, Roberto; Valentini, Silvia; Russo, Francesca; Vazzoler, Marina; Testai, Emanuela; De Felip, Elena

    2018-01-01

    In 2013 a contamination of drinking water by perfluoroalkylated substances (PFASs) was discovered in areas of the Veneto Region (northern Italy). In this study the exposure to PFASs of people living in the aforesaid areas was characterized: contaminant serum concentrations were measured and compared with those of a control population group living in neighboring areas at background exposure (based on available drinking water data). The enrolled population was also genotyped for the OATP1A2*3 allelic variant, possibly affecting PFAS excretion and hence the internal dose. The difference in PFAS concentrations between exposed and not exposed subjects was significantly larger for nine of the 12 substances analyzed, and confirmed that water contamination had resulted in an appreciable high exposure of the residing population over time. Within the group of exposed subjects, subgroups at different exposure levels were identified. The contamination of drinking water of the residence area was found to be the main factor influencing PFAS serum levels; in addition to water contamination, other relevant influencing factors were sex, the years of residence and raising own livestock. No relationship with the genetic trait for the studied renal transporter was evidenced. These results provide a baseline characterization of PFAS exposure of the monitored population groups for further studies, planned to be carried out in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Immunotoxicological profile of chloramine in female B6C3F1 mice when administered in the drinking water for 28 days.

    PubMed

    Guo, Tai L; Germolec, Dori R; Collins, Bradley J; Luebke, Robert W; Auttachoat, Wimolnut; Smith, Matthew J; White, Kimber L

    2011-01-01

    Monochloramine has been used to provide a disinfecting residual in water distribution systems where it is difficult to maintain an adequate free-chlorine residual or where disinfection by-product formation is of concern. The goal of this study was to characterize the immunotoxic effects of chloramine in female B(6)C(3)F(1) mice when administered via the drinking water. Mice were exposed to chloramine-containing deionized tap water at 2, 10, 20, 100, or 200 ppm for 28 days. No statistically significant differences in drinking water consumption, body weight, body weight gain, organ weights, or hematological parameters between the exposed and control animals were noted during the experimental period. There were no changes in the percentages and numbers of total B-lymphocytes, T-lymphocytes, CD4(+) and CD8(+) T-lymphocytes, natural killer (NK) cells, and macrophages in the spleen. Exposure to chloramine did not affect the IgM antibody-forming cell response to sheep red blood cells (SRBC) or anti-SRBC IgM antibody production. Minimal effects, judged to be biologically insignificant, were observed in the mixed-leukocyte response and NK activity. In conclusion, chloramine produced no toxicological and immunotoxic effects in female B(6)C(3)F(1) mice when administered for 28 days in the drinking water at concentrations ranging from 2-200 ppm.

  14. Internal Dose from Food and Drink Ingestion in the Early Phase after the Accident

    NASA Astrophysics Data System (ADS)

    Kawai, Masaki; Yoshizawa, Nobuaki; Hirakawa, Sachiko; Murakami, Kana; Takizawa, Mari; Sato, Osamu; Takagi, Shunji; Miyatake, Hirokazu; Takahashi, Tomoyuki; Suzuki, Gen

    2017-09-01

    Activity concentrations in food and drink, represented by water and vegetables, have been monitored continuously since the Fukushima Daiichi Nuclear Power Plant accident, with a focus on radioactive cesium. On the other hand, iodine-131 was not measured systematically in the early phase after the accident. The activity concentrations of iodine-131 in food and drink are important to estimate internal exposure due to ingestion pathway. When the internal dose from ingestion in the evacuation areas is estimated, water is considered as the main ingestion pathway. In this study, we estimated the values of activity concentrations in water in the early phase after the accident, using a compartment model as an estimation method. The model uses measurement values of activity concentration and deposition rate of iodine-131 onto the ground, which is calculated from an atmospheric dispersion simulation. The model considers how drinking water would be affected by radionuclides deposited into water. We estimated the activity concentrations of water on Kawamata town and Minamisouma city during March of 2011 and the committed effective doses were 0.08 mSv and 0.06 mSv. We calculated the transfer parameters in the model for estimating the activity concentrations in the areas with a small amount of measurement data. In addition, we estimated the committed effective doses from vegetables using atmospheric dispersion simulation and FARMLAND model in case of eating certain vegetables as option information.

  15. [Influence of phthalates from Shaying river on children's intelligence and secretion of thyroid hormone].

    PubMed

    Li, Anqi; Tang, Chunyu; Hang, Hui; Cheng, Xuemin; Gao, Yalin; Cheng, Hongyang; Huang, Qi; Luo, Yixin; Xue, Yutang; Zuo, Qiting; Ba, Yue; Cui, Liuxin

    2013-03-01

    To investigate the effect of phthalates exposure from drinking water on children's intelligence and secretion of thyroid hormone. Two villages in S County were selected randomly as polluted area and control area according to the distance from the Shaying river basin. Phthalates including DEP, DBP, DMP, DEHP were measured both in the river water and drinking water using HPLC method. Children aged 8 to 13 years old studying in the village primary school were recruited by cluster sampling (n = 154). The combined Reven Test was used to test children intelligence and ELISA method was used to determined thyroid hormone levels. The concentrations of phthalates (DEP, DBP) were exceeding standards of surface water quality in any of the three sections of the river. Compared to the control area, the concentration of DEP and DBP in drinking water were significant higher in the polluted area than that in control area (P < 0.05). Children from polluted area had significant higher FT4 concentration compared to children from control area (P < 0.05). Intelligence level in children from polluted area was lower than that from control area (P < 0.05). The drinking water has been polluted by Shaying river and thyroid hormones levels of children were affected in the polluted areas. It is necessary to verify if this change is related to the phthalates.

  16. Clean Water for Developing Countries.

    PubMed

    Pandit, Aniruddha B; Kumar, Jyoti Kishen

    2015-01-01

    Availability of safe drinking water, a vital natural resource, is still a distant dream to many around the world, especially in developing countries. Increasing human activity and industrialization have led to a wide range of physical, chemical, and biological pollutants entering water bodies and affecting human lives. Efforts to develop efficient, economical, and technologically sound methods to produce clean water for developing countries have increased worldwide. We focus on solar disinfection, filtration, hybrid filtration methods, treatment of harvested rainwater, herbal water disinfection, and arsenic removal technologies. Simple, yet innovative water treatment devices ranging from use of plant xylem as filters, terafilters, and hand pumps to tippy taps designed indigenously are methods mentioned here. By describing the technical aspects of major water disinfection methods relevant for developing countries on medium to small scales and emphasizing their merits, demerits, economics, and scalability, we highlight the current scenario and pave the way for further research and development and scaling up of these processes. This review focuses on clean drinking water, especially for rural populations in developing countries. It describes various water disinfection techniques that are not only economically viable and energy efficient but also employ simple methodologies that are effective in reducing the physical, chemical, and biological pollutants found in drinking water to acceptable limits.

  17. Communication, perception and behaviour during a natural disaster involving a 'Do Not Drink' and a subsequent 'Boil Water' notice: a postal questionnaire study.

    PubMed

    Rundblad, Gabriella; Knapton, Olivia; Hunter, Paul R

    2010-10-25

    During times of public health emergencies, effective communication between the emergency response agencies and the affected public is important to ensure that people protect themselves from injury or disease. In order to investigate compliance with public health advice during natural disasters, we examined consumer behaviour during two water notices that were issued as a result of serious flooding. During the summer of 2007, 140,000 homes in Gloucestershire, United Kingdom, that are supplied water from Mythe treatment works, lost their drinking water for up to 17 days. Consumers were issued a 'Do Not Drink' notice when the water was restored, which was subsequently replaced with a 'Boil Water' notice. The rare occurrence of two water notices provided a unique opportunity to compare compliance with public health advice. Information source use and other factors that may affect consumer perception and behaviour were also explored. A postal questionnaire was sent to 1,000 randomly selected households. Chi-square, ANOVA, MANOVA and generalised estimating equation (with and without prior factor analysis) were used for quantitative analysis. In terms of information sources, we found high use of and clear preference for the local radio throughout the incident, but family/friends/neighbours also proved crucial at the onset. Local newspapers and the water company were associated with clarity of advice and feeling informed, respectively. Older consumers and those in paid employment were particularly unlikely to read the official information leaflets. We also found a high degree of confusion regarding which notice was in place at which time, with correct recall varying between 23.2%-26.7%, and a great number of consumers believed two notices were in place simultaneously. In terms of behaviour, overall non-compliance levels were significantly higher for the 'Do Not Drink' notice (62.9%) compared to the 'Boil Water' notice (48.3%); consumers in paid employment were not likely to comply with advice. Non-compliance with the general advice to boil bowser water was noticeably lower (27.3%). Higher non-compliance during the 'Do Not Drink' notice was traced to the public's limited knowledge of water notices and their folk beliefs about the protection offered from boiling water. We suggest that future information dissemination plans reduce reliance on official leaflets and maximise the potential of local media and personal networks. Current public health education programmes are recommended to attend to insufficient and incorrect public knowledge about precautionary actions.

  18. Communication, perception and behaviour during a natural disaster involving a 'Do Not Drink' and a subsequent 'Boil Water' notice: a postal questionnaire study

    PubMed Central

    2010-01-01

    Background During times of public health emergencies, effective communication between the emergency response agencies and the affected public is important to ensure that people protect themselves from injury or disease. In order to investigate compliance with public health advice during natural disasters, we examined consumer behaviour during two water notices that were issued as a result of serious flooding. During the summer of 2007, 140,000 homes in Gloucestershire, United Kingdom, that are supplied water from Mythe treatment works, lost their drinking water for up to 17 days. Consumers were issued a 'Do Not Drink' notice when the water was restored, which was subsequently replaced with a 'Boil Water' notice. The rare occurrence of two water notices provided a unique opportunity to compare compliance with public health advice. Information source use and other factors that may affect consumer perception and behaviour were also explored. Method A postal questionnaire was sent to 1,000 randomly selected households. Chi-square, ANOVA, MANOVA and generalised estimating equation (with and without prior factor analysis) were used for quantitative analysis. Results In terms of information sources, we found high use of and clear preference for the local radio throughout the incident, but family/friends/neighbours also proved crucial at the onset. Local newspapers and the water company were associated with clarity of advice and feeling informed, respectively. Older consumers and those in paid employment were particularly unlikely to read the official information leaflets. We also found a high degree of confusion regarding which notice was in place at which time, with correct recall varying between 23.2%-26.7%, and a great number of consumers believed two notices were in place simultaneously. In terms of behaviour, overall non-compliance levels were significantly higher for the 'Do Not Drink' notice (62.9%) compared to the 'Boil Water' notice (48.3%); consumers in paid employment were not likely to comply with advice. Non-compliance with the general advice to boil bowser water was noticeably lower (27.3%). Conclusion Higher non-compliance during the 'Do Not Drink' notice was traced to the public's limited knowledge of water notices and their folk beliefs about the protection offered from boiling water. We suggest that future information dissemination plans reduce reliance on official leaflets and maximise the potential of local media and personal networks. Current public health education programmes are recommended to attend to insufficient and incorrect public knowledge about precautionary actions. PMID:20973959

  19. Alcohol enhances unprovoked 22–28 kHz USVs and suppresses USV mean frequency in High Alcohol Drinking (HAD-1) male rats

    PubMed Central

    Thakore, Neha; Reno, James M.; Gonzales, Rueben A.; Schallert, Timothy; Bell, Richard L.; Maddox, W. Todd; Duvauchelle, Christine L.

    2016-01-01

    Heightened emotional states increase impulsive behaviors such as excessive ethanol consumption in humans. Though positive and negative affective states in rodents can be monitored in real-time through ultrasonic vocalization (USV) emissions, few animal studies have focused on the role of emotional status as a stimulus for initial ethanol drinking. Our laboratory has recently developed reliable, high-speed analysis techniques to compile USV data during multiple-hour drinking sessions. Since High Alcohol Drinking (HAD-1) rats are selectively bred to voluntarily consume intoxicating levels of alcohol, we hypothesized that USVs emitted by HAD-1 rats would reveal unique emotional phenotypes predictive of alcohol intake and sensitive to alcohol experience. In this study, male HAD-1 rats had access to water, 15% and 30% EtOH or water only (i.e., Controls) during 8 weeks of daily 7-hr drinking-in-the-dark (DID) sessions. USVs, associated with both positive (i.e., 50–55 kHz frequency-modulated or FM) and negative (i.e., 22–28 kHz) emotional states, emitted during these daily DID sessions were examined. Findings showed basal 22–28 kHz USVs were emitted by both EtOH-Naïve (Control) and EtOH-experienced rats, alcohol experience enhanced 22–28 kHz USV emissions, and USV acoustic parameters (i.e., mean frequency in kHz) of both positive and negative USVs were significantly suppressed by chronic alcohol experience. These data suggest that negative affective status initiates and maintains excessive alcohol intake in selectively bred HAD-1 rats and support the notion that unprovoked emissions of negative affect-associated USVs (i.e., 22–28 kHz) predict vulnerability to excessive alcohol intake in distinct rodent models. PMID:26802730

  20. Alcohol enhances unprovoked 22-28 kHz USVs and suppresses USV mean frequency in High Alcohol Drinking (HAD-1) male rats.

    PubMed

    Thakore, Neha; Reno, James M; Gonzales, Rueben A; Schallert, Timothy; Bell, Richard L; Maddox, W Todd; Duvauchelle, Christine L

    2016-04-01

    Heightened emotional states increase impulsive behaviors such as excessive ethanol consumption in humans. Though positive and negative affective states in rodents can be monitored in real-time through ultrasonic vocalization (USV) emissions, few animal studies have focused on the role of emotional status as a stimulus for initial ethanol drinking. Our laboratory has recently developed reliable, high-speed analysis techniques to compile USV data during multiple-hour drinking sessions. Since High Alcohol Drinking (HAD-1) rats are selectively bred to voluntarily consume intoxicating levels of alcohol, we hypothesized that USVs emitted by HAD-1 rats would reveal unique emotional phenotypes predictive of alcohol intake and sensitive to alcohol experience. In this study, male HAD-1 rats had access to water, 15% and 30% EtOH or water only (i.e., Controls) during 8 weeks of daily 7-h drinking-in-the-dark (DID) sessions. USVs, associated with both positive (i.e., 50-55 kHz frequency-modulated or FM) and negative (i.e., 22-28 kHz) emotional states, emitted during these daily DID sessions were examined. Findings showed basal 22-28 kHz USVs were emitted by both EtOH-Naïve (Control) and EtOH-experienced rats, alcohol experience enhanced 22-28 kHz USV emissions, and USV acoustic parameters (i.e., mean frequency in kHz) of both positive and negative USVs were significantly suppressed by chronic alcohol experience. These data suggest that negative affective status initiates and maintains excessive alcohol intake in selectively bred HAD-1 rats and support the notion that unprovoked emissions of negative affect-associated USVs (i.e., 22-28 kHz) predict vulnerability to excessive alcohol intake in distinct rodent models. Published by Elsevier B.V.

  1. [Effects of drinking spa therapy on oxidative stress].

    PubMed

    Costantino, M; Giampaolo, C; Filippelli, A

    2012-01-01

    Data of literature have shown the correlation between oxidative stress and some diseases of gastrointestinal and metabolic relevance such as diabetes mellitus, gastric cancer, gastritis, etc.. Studies have also shown that sulfurous mineral water may be useful in the treatment of gastrointestinal diseases. The aim of our research was to evaluate the antioxidant effect of sulphurous mineral water, administered by drinking method, in type 2 diabetes mellitus, a chronic disease with a high social and economic impact. The study has been performed on 57 subjects (25% women and 75% males; mean age: 60 ± 1.1 years; BMI: 27 ± 0.4) affected by type 2 Diabetes Mellitus. The subjects were divided in four groups: A (subjected to glucose-lowering diet therapy), B (subjected to antihyperglycaemic therapy), C (exposed to glucose-lowering diet therapy + drinking SPA therapy) and D (exposed to antihyperglycaemic therapy + drinking SPA therapy). Drinking SPA treatment was effected with sulphurous mineral water from Terme of Telese SpA (Benevento - Italy) and the pharmacological treatment provided the use of hypoglycemic drugs normally used in diabetic disease. After two weeks of therapy with treatments considered were evaluated fasting blood glycaemia and plasma concentration of ROMs (reactive oxygen metabolites) (d-ROMs test-Diacron International srl®-Grosseto - Italy). The results of our study have shown a significant (p<0.05) reduction of the fasting blood glycaemia when to hypoglycemic drugs or diet therapy was associated the sulphurous drinking SPA therapy. It was also observed a reduction of plasma ROMs levels, significant (p <0.05) in group D versus group B. The data from this preliminary investigation suggest that the drinking SPA therapy with sulphurous mineral water, especially in combination with antidiabetic drug treatment, may be useful in type 2 diabetes mellitus for the improvement redox state of the organism.

  2. Growing pigs' drinking behaviour: number of visits, duration, water intake and diurnal variation.

    PubMed

    Andersen, H M-L; Dybkjær, L; Herskin, M S

    2014-11-01

    Individual drinking patterns are a potential tool for disease monitoring in pigs. However, to date, individual pig drinking behaviour has not been described, and effects of external factors have not been examined. The aim of this study was to perform detailed quantification of drinking behaviour of growing pigs and to examine effects of period of day and effects of competition for access to the drinking nipple on the drinking behaviour, amount of water used and water wastage. In all, 52 cross-bred castrated male pigs (live weight 20.5±1.7 kg; mean±s.d.) maintained as either 3 (N3) or 10 (N10) pigs per pen and water nipple (four groups/treatment) were used. All pigs were fitted with a transponder ear tag. A radio frequency identification reader recorded and time stamped visits at the nipple. In each pen, water flow was logged every second. The drinking behaviour was recorded for 4 consecutive days and analysed using a linear mixed model. Overall, the pigs spent 594 s at the nipple during 24 h distributed among 44 visits. During this period, 5 l of water were used, of which >30% was wasted. Social competition did not affect the drinking behaviour over 24 h, except for the proportion of interrupted visits where pigs, kept with recommended nipple availability (N10), showed an increased proportion of interrupted drinking bouts compared with pigs kept at very low level of competition (N3) (0.18±0.01 v. 0.11±0.01; P<0.01). However, splitting data into 8-h periods (P1, P2, P3) starting from 0600 h revealed differences between treatments, showing that in N3, water use per visit was lower in P1 than P2 and P3 (110±10 v. 126±7 and 132±7 ml; P<0.05), whereas in N10, the water used per visit was higher during P3 than during the other periods (P1: 107±14 ml, P2: 112±10 ml v. P3: 151±10 ml; P<0.001). A similar pattern was found for visit duration. In N3, fewer nipple visits were observed in P2 than P1 (15.6±1.2 v. 22.0±1.2; P<0.001), whereas no difference was found between P1 and P2 in N10. The results demonstrate that growing pigs at the two levels of competition maintained a comparable level of 24 h water intake by changing behavioural variables involved in drinking. This dynamic characteristic of drinking behaviour means that if individual drinking patterns are to be used as disease monitoring tools, it is important to consider effects of external factors and include data on period level to allow rapid detection of behavioural changes.

  3. Occurrence, impact variables and potential risk of PPCPs and pesticides in a drinking water reservoir and related drinking water treatment plants in the Yangtze Estuary.

    PubMed

    Xu, Cong; Chen, Lei; You, Luhua; Xu, Zheng; Ren, Long-Fei; Yew-Hoong Gin, Karina; He, Yiliang; Kai, Weizhi

    2018-06-14

    PPCPs and pesticides have been documented throughout the world over the years, yet relatively little is known about the factors affecting their spatial distribution and temporal change in order to know their potential risk to the ecosystem or human health in the future. In our study, 5 PPCPs and 9 pesticides were selected to study their occurrence, impact variables and potential risk in a drinking water reservoir in Yangtze Estuary and related drinking water treatment plants (DWTPs) in China. The detection results showed the presence of PPCPs and pesticides reflected in a large part of croplands and urban and built-up land in the adjacent basin. The discrepancy of concentration among the different PPCPs and pesticides was mainly decided by their application amount or daily usage. Then, the major factors regulating the occurrence of these contaminants in the surface water were found as the living expenditure attributed to food and medicine based on a correlation analysis. Also, the PPCPs were found to negatively correlate to the effectiveness of sewage management. The detection of the PPCPs and pesticides in DWTPs indicated that, except for atrazine and simazine, the removal percentages were increased significantly in advanced DWTPs. Moreover, risk assessment estimated by a Risk Quotient and Hazard Quotient showed that while caffeine, bisphenol A, estrone and simazine were at a high-risk level in the reservoir water, all of the contaminants detected posed no risk to human health through drinking water. It's possible that atrazine could pose a high risk to the ecosystem while simazine could pose a risk to human health in the future considering the increasing expenditure attributed to food.

  4. Community Response to Impaired Drinking Water Quality: Evidence from Bottled Water Sales

    NASA Astrophysics Data System (ADS)

    Allaire, M.; Zheng, S.; Lall, U.

    2017-12-01

    Drinking water contaminants pose a harm to public health. When confronted with elevated contaminate levels, individuals can take averting actions to reduce exposure, such as bottled water purchases. This study addresses a problem of national interest given that 9 to 45 million people have been affected by drinking water quality violations in each of the past 34 years. Moreover, few studies address averting behavior and avoidance costs due to water quality violations. This study assesses how responses might differ across baseline risk of impaired water quality and demographics of service area. We match a panel of weekly supermarket sales data with geocoded violations data for 67 counties in the Southeast from 2006-2015. We estimate the change in bottled water sales due to drinking water violations using a fixed effects model. Observing market behavior also allows us to calculate the cost of these averting actions. Critical findings from this study contribute to understanding how communities respond to water quality violations. We find that violations have considerable effects on bottled water consumption. Sales increase 8.1 percent due to violations related to microorganisms and 31.2 percent due to Tier 1 violations, which pose an immediate health risk. In addition, we calculate a national cost of averting actions of $26 million for microorganism violations from 2006-2015, which represents a lower-bound estimate. Averting costs vary considerably across the U.S. and some counties bear a particularly large burden, such as in California and Texas. Overall, this study provides insight into how averting behavior differs across contaminant type, water utility characteristics, and community demographics. Such knowledge can aid public health agencies, water systems, and environmental regulators to direct assistance to communities most in need.

  5. Assessing the microbial quality of improved drinking water sources: results from the Dominican Republic.

    PubMed

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water.

  6. Assessing the Microbial Quality of Improved Drinking Water Sources: Results from the Dominican Republic

    PubMed Central

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water. PMID:24218411

  7. Glacial sediment causing regional-scale elevated arsenic in drinking water.

    PubMed

    Erickson, Melinda L; Barnes, Randal J

    2005-01-01

    In the upper Midwest, USA, elevated arsenic concentrations in public drinking water systems are associated with the lateral extent of northwest provenance late Wisconsin-aged drift. Twelve percent of public water systems located within the footprint of this drift (212 of 1764) exceed 10 microg/L arsenic, which is the U.S. EPA's drinking water standard. Outside of the footprint, only 2.4% of public water systems (52 of 2182) exceed 10 microg/L arsenic. Both glacial drift aquifers and shallow bedrock aquifers overlain by northwest provenance late Wisconsin-aged sediment are affected by arsenic contamination. Evidence suggests that the distinct physical characteristics of northwest provenance late Wisconsin-aged drift--its fine-grained matrix and entrained organic carbon that fosters biological activity--cause the geochemical conditions necessary to mobilize arsenic via reductive mechanisms such as reductive desorption and reductive dissolution of metal oxides. This study highlights an important and often unrecognized phenomenon: high-arsenic sediment is not necessary to cause arsenic-impacted ground water--when "impacted" is now defined as >10 microg/L. This analysis also demonstrates the scientific and economic value of using existing large but imperfect statewide data sets to observe and characterize regional-scale environmental problems.

  8. Outbreak of acute gastroenteritis caused by contamination of drinking water in a factory, the Basque Country.

    PubMed

    Altzibar, J M; Zigorraga, C; Rodriguez, R; Leturia, N; Garmendia, A; Rodriguez, A; Alkorta, M; Arriola, L

    2015-03-01

    On 18 September 2013, the Gipuzkoa Epidemiology Unit was notified of an outbreak of acute gastroenteritis (AGE) among employees at a domestic appliance factory. The first signs of the outbreak had emerged at the end of June and at the time of the notification 30 workers were on sick leave for gastroenteritis. Some employees had had more than one episode and the main symptoms were diarrhoea and vomiting. An investigation began to identify the causative agent, assess exposure and determine the route of transmission. Data collected by a questionnaire identified 302 episodes of AGE among 238 people affected between June and September 2013. The source of water consumed was found to be a risk factor associated with the appearance of symptoms both in the crude and the adjusted analysis: odds ratio 1.8 (0.8-4.2) and 6.4 (4.2-9.8), respectively. Microbiological analysis of stool samples and of water confirmed the presence of norovirus and rotavirus. The environmental study detected a connection between an industrial use water system and drinking water at the factory. It was concluded that the outbreak was caused by mixed viral infections, due to contamination of drinking water.

  9. Analysis of black fungal biofilms occurring at domestic water taps. II: potential routes of entry.

    PubMed

    Heinrichs, Guido; Hübner, Iris; Schmidt, Carsten K; de Hoog, G Sybren; Haase, Gerhard

    2013-06-01

    Formation of tenacious and massive black biofilms was occasionally observed at the water-air interphase of water taps and in associated habitats at several locations in Germany. Exophiala lecanii-corni was proven to be the dominant component of these biofilms. Water utility companies were interested to understand by which route fungi building these black biofilms enter their habitat at affected sites in domestic sanitary. A wide variety of fungi is known to be common in wet indoor environments, as well as in the drinking water resources. Two possible routes of entry are therefore considered as follows: (a) distribution by the drinking water system or (b) a retrograde route of colonisation. Previous compositional analysis revealed that the black constituents of biofilms primarily belong to the herpotrichiellaceous black yeast and relatives. Therefore, a systematic search for black fungi in the drinking water system was performed using Sabouraud's glucose agar medium with chloramphenicol and erythritol-chloramphenicol agar as isolation media. Cadophora malorum was the dominant fungus in the investigated drinking water systems, and samples taken from the house connections (n = 50; 74 %, <200 cfu/L), followed by a so far undescribed Alternaria sp. (28 %; <10 cfu/L) and E. castellanii (26 %; <10 cfu/L). Of note, C. malorum was not present in any previously analysed biofilm. Since E. lecanii-corni was not found in any water sample from the distribution system tested, but represented the most abundant species in dark biofilms previously analysed, a retrograde route of contamination in case of E. lecanii-corni can be assumed.

  10. A novel Eulerian approach for modelling cyanobacteria movement: Thin layer formation and recurrent risk to drinking water intakes.

    PubMed

    Ndong, Mouhamed; Bird, David; Nguyen Quang, Tri; Kahawita, René; Hamilton, David; de Boutray, Marie Laure; Prévost, Michèle; Dorner, Sarah

    2017-12-15

    Toxic cyanobacteria (CB) blooms are being reported in an increasing number of water bodies worldwide. As drinking water (DW) treatment can be disrupted by CB, in addition to long term management plans, short term operational decision-making tools are needed that enable an understanding of the temporal variability of CB movement in relation to drinking water intakes. In this paper, we propose a novel conservative model based on a Eulerian framework and compare results with data from CB blooms in Missisquoi Bay (Québec, Canada). The hydrodynamic model considered the effects of wind and light intensity, demonstrated that current understanding of cell buoyancy in relation to light intensity in full-scale systems is incomplete and some factors are yet to be fully characterized. Factors affecting CB buoyancy play a major role in the formation of a thin surface layer that could be of ecological importance with regards to cell concentrations and toxin production. Depending on velocities, wind contributes either to the accumulation or to the dispersion of CB. Lake recirculation effects have a tendency to create zones of low CB concentrations in a water body. Monitoring efforts and future research should focus on short-term variations of CB throughout the water column and the characterization of factors other than light intensity that affect cell buoyancy. These factors are critical for understanding the risk of breakthrough into treatment plants as well as the formation of surface scums and subsequent toxin production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Dose-dependent effect of fluoride on clinical and subclinical indices of fluorosis in school going children and its mitigation by supply of safe drinking water for 5 years: an Indian study.

    PubMed

    Khandare, Arjun L; Validandi, Vakdevi; Gourineni, Shankar Rao; Gopalan, Viswanathan; Nagalla, Balakrishna

    2018-02-02

    Fluorosis is a public health problem in India; to know its prevalence and severity along with its mitigation measures is very important. The present study has been undertaken with the aim to assess the F dose-dependent clinical and subclinical symptoms of fluorosis and reversal of the disease by providing safe drinking water. For this purpose, a cross-sectional study was undertaken in 1934 schoolgoing children, Nalgonda district. Study villages were categorized into control (category I, F = 0.87 mg/L), affected (category II, F = 2.53 mg/L, and category III, F = 3.77 mg/L), and intervention categories (category IV, F = < 1.0 mg/L). School children were enrolled for dental grading by modified Dean Index criteria. Anthropometric measurements (height and weight) were used to assess nutritional status of the children. The biochemical parameters like serum T3, T4, TSH, PTH, ALP, 25-OH vitamin D, and 1,25-(OH) 2 vitamin D were analyzed. The results showed a positive correlation between the drinking water and urinary fluoride (UF) in different categories. However, there was a significant decrease in the UF levels in the intervention category IV compared to affected group (category III). Fluoride altered the clinical (dental fluorosis and stunting) and subclinical indices (urine and blood) of fluorosis in a dose-dependent manner. In conclusion, the biochemical indices were altered in a dose-dependent manner and intervention with safe drinking water for 5 years in intervention group-mitigated clinical and subclinical symptoms of fluorosis.

  12. Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States

    USGS Publications Warehouse

    Varughese, Eunice A.; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer S; Fout, G. Shay; Furlong, Edward T.; Kolpin, Dana W.; Glassmeyer, Susan T.; Keely, Scott P

    2017-01-01

    incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters.

  13. Emerging genotype (GGIIb) of norovirus in drinking water, Sweden.

    PubMed

    Nygård, Karin; Torvén, Maria; Ancker, Camilla; Knauth, Siv Britt; Hedlund, Kjell-Olof; Giesecke, Johan; Andersson, Yvonne; Svensson, Lennart

    2003-12-01

    From May through June 2001, an outbreak of acute gastroenteritis that affected at least 200 persons occurred in a combined activity camp and conference center in Stockholm County. The source of illness was contaminated drinking water obtained from private wells. The outbreak appears to have started with sewage pipeline problems near the kitchen, which caused overflow of the sewage system and contaminated the environment. While no pathogenic bacteria were found in water or stools specimens, norovirus was detected in 8 of 11 stool specimens and 2 of 3 water samples by polymerase chain reaction. Nucleotide sequencing of amplicons from two patients and two water samples identified an emerging genotype designated GGIIb, which was circulating throughout several European countries during 2000 and 2001. This investigation documents the first waterborne outbreak of viral gastroenteritis in Sweden, where nucleotide sequencing showed a direct link between contaminated water and illness.

  14. Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems.

    PubMed

    Cerrato, José M; Reyes, Lourdes P; Alvarado, Carmen N; Dietrich, Andrea M

    2006-08-01

    Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water.

  15. Correlation of cadmium and aluminum in blood samples of kidney disorder patients with drinking water and tobacco smoking: related health risk.

    PubMed

    Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Salma Aslam; Arain, Mariam Shahzadi; Brahaman, Kapil Dev; Naeemullah; Arain, Sadaf Sadia

    2016-02-01

    The combined exposure to aluminum (Al) and cadmium (Cd) causes more pronounced adverse health effects on humans. The kidneys are the main organs affected by internal exposure to Cd and Al via food and non-food items. The objective of present study was to measure the Al and Cd concentrations in cigarettes tobacco (branded and non-branded) and drinking water (domestic treated, ground and lake water) samples in southern part of Pakistan, to assess the risk due to ingestion of water and inhalation of cigarettes smoke containing high concentrations of both elements. The study population (kidney disorder and healthy) divided into two group based on consuming lake and ground water, while smoking non-branded cigarette as exposed, while drinking domestic treated water and smoking branded cigarette as non-exposed. Electrothermal atomic absorption spectrometry was used to determined Cd and Al concentrations in tobacco, drinking water and blood samples. The resulted data indicated that the levels of Al and Cd in lake and underground water were higher than the permissible limit in drinking water recommended by the World Health Organization. The biochemical parameters of exposed and referent patients, especially urinary N-acetyl-h-glucosaminidase, were used as a biomarkers of kidney disorder. Exposed kidney disorder patients have higher levels of Cd and Al than the exposed referents subjects, while difference was significant when compared to resulted data of non-exposed patients and referents (p = 0.01-0.001). The pearson correlation showed positive correlation between both toxic element concentrations in water, cigarettes versus blood samples of exposed subjects (r = 0.20-0.67 and 0.71-0.82), while lower values were observed for non-exposed subjects (r = 0.123-0.423 and 0.331-0.425), respectively.

  16. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A triangular fuzzy TOPSIS-based approach for the application of water technologies in different emergency water supply scenarios.

    PubMed

    Qu, Jianhua; Meng, Xianlin; Yu, Huan; You, Hong

    2016-09-01

    Because of the increasing frequency and intensity of unexpected natural disasters, providing safe drinking water for the affected population following a disaster has become a global challenge of growing concern. An onsite water supply technology that is portable, mobile, or modular is a more suitable and sustainable solution for the victims than transporting bottled water. In recent years, various water techniques, such as membrane-assisted technologies, have been proposed and successfully implemented in many places. Given the diversity of techniques available, the current challenge is how to scientifically identify the optimum options for different disaster scenarios. Hence, a fuzzy triangular-based multi-criteria, group decision-making tool was developed in this research. The approach was then applied to the selection of the most appropriate water technologies corresponding to the different emergency water supply scenarios. The results show this tool capable of facilitating scientific analysis in the evaluation and selection of emergency water technologies for enduring security drinking water supply in disaster relief.

  18. Complex interactions between the subject factors of biological sex and prior histories of binge-drinking and unpredictable stress influence behavioral sensitivity to alcohol and alcohol intake.

    PubMed

    Quadir, Sema G; Guzelian, Eugenie; Palmer, Mason A; Martin, Douglas L; Kim, Jennifer; Szumlinski, Karen K

    2017-08-10

    Alcohol use disorders, affective disorders and their comorbidity are sexually dimorphic in humans. However, it is difficult to disentangle the interactions between subject factors influencing alcohol sensitivity in studies of humans. Herein, we combined murine models of unpredictable, chronic, mild stress (UCMS) and voluntary binge-drinking to examine for sex differences in the interactions between prior histories of excessive ethanol-drinking and stress upon ethanol-induced changes in motor behavior and subsequent drinking. In Experiment 1, female mice were insensitive to the UCMS-induced increase in ethanol-induced locomotion and ethanol intake under continuous alcohol-access. Experiment 2 revealed interactions between ethanol dose and sex (females>males), binge-drinking history (water>ethanol), and UCMS history (UCMS>controls), with no additive effect of a sequential prior history of both binge drinking and UCMS observed. We also observed an interaction between UCMS history and sex for righting recovery. UCMS history potentiated subsequent binge-drinking in water controls of both sexes and in male binge-drinking mice. Conversely, a prior binge-drinking history increased subsequent ethanol intake in females only, irrespective of prior UCMS history. In Experiment 3, a concurrent history of binge-drinking and UCMS did not alter ethanol intake, nor did it influence the ethanol dose-locomotor response function, but it did augment alcohol-induced sedation and reduced subsequent alcohol intake over that produced by binge-drinking alone. Thus, the subject factors of biological sex, prior stressor history and prior binge-drinking history interact in complex ways in mice to impact sensitivity to alcohol's motor-stimulating, -incoordinating and intoxicating effects, as well as to influence subsequent heavy drinking. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Exposure to Lithium and Cesium Through Drinking Water and Thyroid Function During Pregnancy: A Prospective Cohort Study

    PubMed Central

    Harari, Florencia; Bottai, Matteo; Casimiro, Esperanza; Palm, Brita

    2015-01-01

    Background: Impaired thyroid function is a common side effect of lithium medication. Recent data indicate that lithium exposure through drinking water, although providing much lower doses than the medication, may also affect thyroid hormone levels. However, the effects in susceptible groups like pregnant women are not known. Methods: In a population-based mother–child cohort in the Argentinean Andes (n = 194), an area with varying concentrations of lithium in the drinking water, we assessed lithium exposure repeatedly during pregnancy by measuring the concentrations in blood using inductively coupled plasma mass spectrometry. The markers of thyroid function included thyrotropin (TSH), free/total thyroxine (fT4/T4), free/total triiodothyronine (fT3/T3), thyroglobulin, and transthyretin in serum, sampled at the same time. Multiple potential confounders, including exposure to arsenic, cesium, and boron (elevated in water) as well as selenium and iodine (essential for thyroid function) were considered. Results: The lithium concentrations in blood [median 25 μg/L (0.0036 mmol/L); range 1.9–145 μg/L (0.000027–0.021 mmol/L)] correlated significantly with those in urine and drinking water (rs = 0.84, p < 0.001, and rs = 0.40, p < 0.001, respectively). Using linear quantile regression models, we found a positive association between blood lithium (log2 transformed) and TSH concentrations, particularly in the lowest percentiles of TSH (B = 0.20 mIU/L, [95% confidence interval 0.048–0.35] at the fifth percentile). We also found inverse associations of blood lithium with transthyretin, particularly at the highest percentiles, as well as with fT3 and T3, with less obvious variation across percentiles. Unexpectedly, blood cesium concentrations (median 111 μg/L, range 2.5–711 μg/L) were also inversely associated with fT3 and T3, particularly at the highest T3 percentiles, but not with TSH or transthyretin. Arsenic and boron exposure (also through drinking water) did not show any associations with the thyroid parameters. Conclusions: The study supports previous findings that lithium exposure through drinking water may impair thyroid function. The results regarding cesium exposure through drinking water are new. During pregnancy, impaired thyroid function may be detrimental for fetal development. The findings reinforce the need for better control of drinking water, including bottled water, as well as a health-based guideline value. PMID:26332132

  20. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  1. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  2. 76 FR 38158 - Meeting of the National Drinking Water Advisory Council; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... water supplies. The Council will also receive updates about several on-going drinking water program... ENVIRONMENTAL PROTECTION AGENCY [FRL-9425-8] Meeting of the National Drinking Water Advisory... meeting of the National Drinking Water Advisory Council (NDWAC), established under the Safe Drinking Water...

  3. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  4. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  5. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  6. An SPR biosensor for the detection of microcystins in drinking water.

    PubMed

    Herranz, Sonia; Bocková, Markéta; Marazuela, María Dolores; Homola, Jiří; Moreno-Bondi, María Cruz

    2010-11-01

    A surface plasmon resonance (SPR) biosensor for the detection of microcystins (MCs) in drinking water has been developed. Several assay formats have been evaluated. The selected format is based on a competitive inhibition assay, in which microcystin-LR (MCLR) has been covalently immobilized onto the surface of an SPR chip functionalized with a self-assembled monolayer. The influence of several factors affecting sensor performance, such as the nature and concentration of the antibody, the composition of the carrier buffer, and the blocking and regeneration solutions, has been evaluated. The optimized SPR biosensor provides an IC(50) 0.67 ± 0.09 µg L(-1), a detection limit of 73 ± 8 ng L(-1), and a dynamic range from 0.2 to 2.0 µg L(-1) for MCLR. Cross-reactivity to other related MCs, such as microcystin-RR (88%) and microcystin-YR (94%), has also been measured. The SPR biosensor can perform four simultaneous determinations in 60 min, and each SPR chip can be reused for at least 40 assay-regeneration cycles without significant binding capacity loss. The biosensor has been successfully applied to the direct analysis of MCLR in drinking water samples, below the provisional guideline value of 1 µg L(-1) established by the World Health Organization for drinking water.

  7. (18)OS04 AND (18)OH20 AS PROSPECTIVE INDICATORS OF ELEVATED ARSENIC IN THE GOOSE RIVER GROUND-WATERSHED, MAINE

    EPA Science Inventory

    Anomalous geogenic arsenic occurs in drinking water from the Goose River crystalline ground-watershed in mid-coastal Maine. Isotope investigations were useful in understanding release areas of arsenic into affected water wells. The isotope composition of sulfate associated with p...

  8. Lead and Drinking Water from Private Wells

    MedlinePlus

    ... Drinking Water Policy & Recommendations History of Drinking Water Treatment Drinking Water FAQ Fast Facts Healthy Water Sites Healthy Water ... if needed. You may also wish to consider water treatment methods such as reverse osmosis, distillation, and carbon ...

  9. In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice.

    PubMed

    Ramsey, Kathryn A; Larcombe, Alexander N; Sly, Peter D; Zosky, Graeme R

    2013-02-18

    Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100 μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations.

  10. In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice

    PubMed Central

    2013-01-01

    Background Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Methods Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. Results In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Conclusions Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations. PMID:23419080

  11. Overview of environmental and hydrogeologic conditions at Tanana, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The remote Native village of Tanana along the Yukon River in west-central Alaska has long cold winters and short summers. The Federal Aviation Administration owns or operates airway support facilities near Tanana and wishes to consider the subsistence lifestyle of the residents and the quality of the current environment when evaluating the severity of environmental contamination at these facilities. Tanana is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available, but may cost more than existing supplies.

  12. Overview of environmental and hydrogeologic conditions at Saint Marys, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The Federal Aviation Administration (FAA) owns or operates airway support facilities near Saint Marys along the Yukon River in west-central Alaska. The FAA is evaluating the severity of environmental contamination and options for remediation of environmental contamination at their facilities. Saint Marys is on a flood plain near the continence of the Yukon and Andreafsky Rivers and has long cold winters and short summers. Residents obtain their drinking water from an infiltration gallery fed by a creek near the village. Surface spills and disposal of hazardous materials combined with potential flooding may affect the quality of the surface and ground water. Alternative drinking-water sources are available, but would likely cost more than existing supplies to develop.

  13. Drinking Water Quality Status and Contamination in Pakistan

    PubMed Central

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  14. Drinking Water Quality Status and Contamination in Pakistan.

    PubMed

    Daud, M K; Nafees, Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz; Zhu, Shui Jin

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  15. Unsteady state flow and stagnation in distribution systems affect the biological stability of drinking water.

    PubMed

    Manuel, C M; Nunes, O C; Melo, L F

    2010-01-01

    The effects of water stagnation and flushing on the biological stability of drinking water were studied by promoting the formation of biofilms under continuous flow (turbulent or laminar) and subsequently subjecting them to unsteady hydraulic situations. Independently of the flow regime under which the biofilm was formed, stagnation promoted bacterial accumulation, either in attached or suspended form, which were carried away in higher numbers when flow was re-started, thereby compromising its biological quality. In all cases, Betaproteobacteria was the dominant phylogenetic group, although Gamma and Alpha subclasses were also present. These results suggest that special attention should be given to the biological quality of drinking water where consumption is subjected to strongly variable demands such as in seasonal hotels, week-end houses or dental clinics after week-ends as abnormal changes may have occurred in the microbiological parameters. Moreover, this study showed that the cultivable bacterial numbers are not related to those of total bacteria and, thus, should not be the basis for the routine tests of bacteriological control in these systems.

  16. Inequities in coverage of preventive child health interventions: the rural drinking water supply program and the universal immunization program in Rajasthan, India.

    PubMed

    Mohan, Pavitra

    2005-02-01

    I assessed whether the Rural Drinking Water Supply Program (RDWSP) and the Universal Immunization Program (UIP) have achieved equitable coverage in Rajasthan, India, and explored program characteristics that affect equitable coverage of preventive health interventions. A total of 2460 children presenting at 12 primary health facilities in one district of Rajasthan were enrolled and classified into economic quartiles based on possession of assets. Immunization coverage and prime source of drinking water were compared across quartiles. A higher access to piped water by wealthier families (P< .001) was compensated by higher access to hand pumps by poorer families (P<.001), resulting in equal access to a safe source (P=.9). Immunization coverage was inequitable, favoring the wealthier children (P<.001). The RDWSP has achieved equitable coverage, while UIP coverage remains highly inequitable. Programs can make coverage more equitable by formulating explicit objectives to ensure physical access to all, promoting the intervention's demand by the poor, and enhancing the support and monitoring of frontline workers who deliver these interventions.

  17. The association between drinking water turbidity and gastrointestinal illness: a systematic review

    PubMed Central

    Mann, Andrea G; Tam, Clarence C; Higgins, Craig D; Rodrigues, Laura C

    2007-01-01

    Background Studies suggest that routine variations in public drinking water turbidity may be associated with endemic gastrointestinal illness. We systematically reviewed the literature on this topic. Methods We searched databases and websites for relevant studies in industrialized countries. Studies investigating the association between temporal variations in drinking water turbidity and incidence of acute gastrointestinal illness were assessed for quality. We reviewed good quality studies for evidence of an association between increased turbidity and gastrointestinal illness. Results We found six relevant good quality studies. Of five studies investigating effluent water turbidity, two found no association. Two studies from Philadelphia reported increased paediatric and elderly hospital use on specific days after increased turbidity. A fifth study reported more telephone health service calls on specific days after peak turbidity. There were differences between studies affecting their comparability, including baseline turbidity and adjustment for seasonal confounders. Conclusion It is likely that an association between turbidity and GI illness exists in some settings or over a certain range of turbidity. A pooled analysis of available data using standard methods would facilitate interpretation. PMID:17888154

  18. The association between drinking water turbidity and gastrointestinal illness: a systematic review.

    PubMed

    Mann, Andrea G; Tam, Clarence C; Higgins, Craig D; Rodrigues, Laura C

    2007-09-21

    Studies suggest that routine variations in public drinking water turbidity may be associated with endemic gastrointestinal illness. We systematically reviewed the literature on this topic. We searched databases and websites for relevant studies in industrialized countries. Studies investigating the association between temporal variations in drinking water turbidity and incidence of acute gastrointestinal illness were assessed for quality. We reviewed good quality studies for evidence of an association between increased turbidity and gastrointestinal illness. We found six relevant good quality studies. Of five studies investigating effluent water turbidity, two found no association. Two studies from Philadelphia reported increased paediatric and elderly hospital use on specific days after increased turbidity. A fifth study reported more telephone health service calls on specific days after peak turbidity. There were differences between studies affecting their comparability, including baseline turbidity and adjustment for seasonal confounders. It is likely that an association between turbidity and GI illness exists in some settings or over a certain range of turbidity. A pooled analysis of available data using standard methods would facilitate interpretation.

  19. Pelagic sea snakes dehydrate at sea

    PubMed Central

    Lillywhite, Harvey B.; Sheehy, Coleman M.; Brischoux, François; Grech, Alana

    2014-01-01

    Secondarily marine vertebrates are thought to live independently of fresh water. Here, we demonstrate a paradigm shift for the widely distributed pelagic sea snake, Hydrophis (Pelamis) platurus, which dehydrates at sea and spends a significant part of its life in a dehydrated state corresponding to seasonal drought. Snakes that are captured following prolonged periods without rainfall have lower body water content, lower body condition and increased tendencies to drink fresh water than do snakes that are captured following seasonal periods of high rainfall. These animals do not drink seawater and must rehydrate by drinking from a freshwater lens that forms on the ocean surface during heavy precipitation. The new data based on field studies indicate unequivocally that this marine vertebrate dehydrates at sea where individuals may live in a dehydrated state for possibly six to seven months at a time. This information provides new insights for understanding water requirements of sea snakes, reasons for recent declines and extinctions of sea snakes and more accurate prediction for how changing patterns of precipitation might affect these and other secondarily marine vertebrates living in tropical oceans. PMID:24648228

  20. Drug residues and endocrine disruptors in drinking water: risk for humans?

    PubMed

    Touraud, Evelyne; Roig, Benoit; Sumpter, John P; Coetsier, Clémence

    2011-11-01

    The presence of pharmaceuticals and endocrine disruptors in the environment raises many questions about risk to the environment and human health. Environmental exposure has been largely studied, providing to date a realistic picture of the degree of contamination of the environment by pharmaceuticals and hormones. Conversely, little information is available regarding human exposure. NSAIDS, carbamazepine, iodinated contrast media, β-blockers, antibiotics have been detected in drinking water, mostly in the range of ng/L. it is questioned if such concentrations may affect human health. Currently, no consensus among the scientific community exists on what risk, if any, pharmaceuticals and endocrine disruptors pose to human health. Future European research will focus, on one hand, on genotoxic and cytotoxic anti-cancer drugs and, on the other hand, on the induction of genetic resistance by antibiotics. This review does not aim to give a comprehensive overview of human health risk of drug residues and endocrine disruptors in drinking water but rather highlight important topics of discussion. Copyright © 2011. Published by Elsevier GmbH.

  1. Bone as a Possible Target of Chemical Toxicity of Natural Uranium in Drinking Water

    PubMed Central

    Kurttio, Päivi; Komulainen, Hannu; Leino, Aila; Salonen, Laina; Auvinen, Anssi; Saha, Heikki

    2005-01-01

    Uranium accumulates in bone, affects bone metabolism in laboratory animals, and when ingested in drinking water increases urinary excretion of calcium and phosphate, important components in the bone structure. However, little is known about bone effects of ingested natural uranium in humans. We studied 146 men and 142 women 26–83 years of age who for an average of 13 years had used drinking water originating from wells drilled in bedrock, in areas with naturally high uranium content. Biochemical indicators of bone formation were serum osteocalcin and amino-terminal propeptide of type I procollagen, and a marker for bone resorption was serum type I collagen carboxy-terminal telopeptide (CTx). The primary measure of uranium exposure was uranium concentration in drinking water, with additional information on uranium intake and uranium concentration in urine. The data were analyzed separately for men and women with robust regression (which suppresses contributions of potential influential observations) models with adjustment for age, smoking, and estrogen use. The median uranium concentration in drinking water was 27 μg/L (interquartile range, 6–116 μg/L). The median of daily uranium intake was 36 μg (7–207 μg) and of cumulative intake 0.12 g (0.02–0.66 g). There was some suggestion that elevation of CTx (p = 0.05) as well as osteocalcin (p = 0.19) could be associated with increased uranium exposure (uranium in water and intakes) in men, but no similar relationship was found in women. Accordingly, bone may be a target of chemical toxicity of uranium in humans, and more detailed evaluation of bone effects of natural uranium is warranted. PMID:15626650

  2. The EPA's Study on the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    NASA Astrophysics Data System (ADS)

    Burden, Susan

    2013-03-01

    Natural gas plays a key role in our nation's clean energy future. The United States has vast reserves of natural gas that are commercially viable as a result of advances in horizontal drilling and hydraulic fracturing technologies, which enable greater access to gas in rock formations deep underground. These advances have spurred a significant increase in the production of both natural gas and oil across the country. However, as the use of hydraulic fracturing has increased, so have concerns about its potential human health and environmental impacts, especially for drinking water. In response to public concern, the US Congress requested that the US Environmental Protection Agency (EPA) conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. In 2011, the EPA began research to assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of such impacts. The study is organized around the five stages of the hydraulic fracturing water cycle, from water acquisition through the mixing of chemicals and the injection of fracturing fluid to post-fracturing treatment and/or disposal of wastewater. EPA scientists are using a transdisciplinary research approach involving laboratory studies, computer modeling, toxicity assessments, and case studies to answer research questions associated with each stage of the water cycle. This talk will provide an overview of the EPA's study, including a description of the hydraulic fracturing water cycle and a summary of the ongoing research projects.

  3. Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand.

    PubMed

    Chuah, C Joon; Lye, Han Rui; Ziegler, Alan D; Wood, Spencer H; Kongpun, Chatpat; Rajchagool, Sunsanee

    2016-03-01

    In Northern Thailand, incidences of fluorosis resulting from the consumption of high-fluoride drinking-water have been documented. In this study, we mapped the high-fluoride endemic areas and described the relevant transport processes of fluoride in enriched waters in the provinces of Chiang Mai and Lamphun. Over one thousand surface and sub-surface water samples including a total of 995 collected from shallow (depth: ≤ 30 m) and deep (> 30 m) wells were analysed from two unconnected high-fluoride endemic areas. At the Chiang Mai site, 31% of the shallow wells contained hazardous levels (≥ 1.5 mg/L) of fluoride, compared with the 18% observed in the deep wells. However, at the Lamphun site, more deep wells (35%) contained water with at least 1.5mg/L fluoride compared with the shallow wells (7%). At the Chiang Mai site, the high-fluoride waters originate from a nearby geothermal field. Fluoride-rich geothermal waters are distributed across the area following natural hydrological pathways of surface and sub-surface water flow. At the Lamphun site, a well-defined, curvilinear high-fluoride anomalous zone, resembling that of the nearby conspicuous Mae Tha Fault, was identified. This similarity provides evidence of the existence of an unmapped, blind fault as well as its likely association to a geogenic source (biotite-granite) of fluoride related to the faulted zone. Excessive abstraction of ground water resources may also have affected the distribution and concentration of fluoride at both sites. The distribution of these high-fluoride waters is influenced by a myriad of complex natural and anthropogenic processes which thus created a challenge for the management of water resources for safe consumption in affected areas. The notion of clean and safe drinking water can be found in deeper aquifers is not necessarily true. Groundwater at any depth should always be tested before the construction of wells. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Creosote bush (Larrea tridentata) resin increases water demands and reduces energy availability in desert woodrats (Neotoma lepida).

    PubMed

    Mangione, Antonio M; Dearing, M Denise; Karasov, William H

    2004-07-01

    Although many plant secondary compounds are known to have serious consequences for herbivores, the costs of processing them are generally unknown. Two potential costs of ingestion and detoxification of secondary compounds are elevation of the minimum drinking water requirement and excretion of energetically expensive metabolites (i.e., glucuronides) in the urine. To address these impacts, we studied the costs of ingestion of resin from creosote bush (Larrea tridentata) on desert woodrats (Neotoma lepida). The following hypotheses were tested: ingestion of creosote resin by woodrats (1) increases minimum water requirement and (2) reduces energy available by increasing fecal and urinary energy losses. We tested the first hypothesis, by measuring the minimum water requirement of woodrats fed a control diet with and without creosote resin. Drinking water was given in decreasing amounts until woodrats could no longer maintain constant body mass. In two separate experiments, the minimum drinking water requirement of woodrats fed resin was higher than that of controls by 18-30% (about 1-1.7 ml/d). We tested several potential mechanisms of increased water loss associated with the increase in water requirement. The rate of fecal water loss was higher in woodrats consuming resin. Neither urinary water nor evaporative water loss was affected by ingestion of resin. Hypothesis 2 was tested by measuring energy fluxes of woodrats consuming control vs. resin-treated diets. Woodrats on a resin diet had higher urinary energy losses and, thus, metabolized a lower proportion of the dietary energy than did woodrats on control diet. Fecal energy excretion was not affected by resin. The excretion of glucuronic acid represented almost half of the energy lost as a consequence of resin ingestion. The increased water requirement and energy losses of woodrats consuming a diet with resin could have notable ecological consequences.

  5. Handbook for the Institutional and Financial Implementation of Water Utilities.

    DTIC Science & Technology

    1984-05-01

    water . From a public health standpoint, water is necessary for drinking and sanitation. While public drinking water use aver- ages approximately 5 pints a... water . Domestic water includes that water furnished to homes, hotels, apartments, etc., for sanitary, drinking , washing, and other purposes. This use...with establishing Primary Drinking Water Standards under the Safe Drinking Water Act of 1974 (Public Law 93-523) for all public

  6. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza

    There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5–1660 μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D{sub 3},more » serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25 μg/L (range 1.9–145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D{sub 3} (−6.1 nmol/L [95%CI −9.5; −2.6] for a 25 μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D{sub 3}. In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30 nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25 μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. - Highlights: • Elevated drinking water lithium (Li) concentrations are increasingly reported. • We studied a Li-exposed population-based mother-child cohort in northern Argentina. • Li exposure during pregnancy affected maternal calcium homeostasis. • Blood Li was consistently inversely associated with maternal plasma vitamin D{sub 3}. • Associations were independent of season of sampling and lifestyle.« less

  7. Relationship between drinking water and toenail arsenic concentrations among a cohort of Nova Scotians.

    PubMed

    Yu, Zhijie M; Dummer, Trevor J B; Adams, Aimee; Murimboh, John D; Parker, Louise

    2014-01-01

    Consumption of arsenic-contaminated drinking water is associated with increased cancer risk. The relationship between arsenic body burden, such as concentrations in human toenails, and arsenic in drinking water is not fully understood. We evaluated the relationship between arsenic concentrations in drinking water and toenail clippings among a cohort of Nova Scotians. A total of 960 men and women aged 35 to 69 years provided home drinking water and toenail clipping samples. Information on water source and treatment use and covariables was collected through questionnaires. Arsenic concentrations in drinking water and toenail clippings and anthropometric indices were measured. Private drilled water wells had higher arsenic concentrations compared with other dug wells and municipal drinking water sources (P<0.001). Among participants with drinking water arsenic levels ≥1 μg/l, there was a significant relationship between drinking water and toenail arsenic concentrations (r=0.46, P<0.0001). Given similar levels of arsenic exposure from drinking water, obese individuals had significantly lower concentrations of arsenic in toenails compared with those with a normal weight. Private drilled water wells were an important source of arsenic exposure in the study population. Body weight modifies the relationship between drinking water arsenic exposure and toenail arsenic concentrations.

  8. Binge alcohol drinking elicits persistent negative affect in mice.

    PubMed

    Lee, Kaziya M; Coehlo, Michal; McGregor, Hadley A; Waltermire, Ryan S; Szumlinski, Karen K

    2015-09-15

    Cessation from chronic alcohol abuse often produces a dysphoric state that can persist into protracted withdrawal. This dysphoric state is theorized to function as a negative reinforcer that maintains excessive alcohol consumption and/or precipitates relapse in those struggling to abstain from alcohol. However, we know relatively little regarding the impact of cessation from binge drinking on behavioral measures of negative affect and related neurobiology. Male C57BL/6J mice were given access to unsweetened 20% alcohol for 6 weeks under modified Drinking-in-the-dark procedures, followed by behavioral testing beginning either 1 or 21 days into withdrawal. Mice were administered a behavioral test battery consisting of: the elevated plus maze, light/dark box, novel object test, marble burying test, Porsolt forced swim test and sucrose preference test to assess anxiogenic and depressive signs. Egr1 immunostaining was used to quantify cellular activity within the central nucleus of the amygdala (CEA), basolateral amygdala (BLA), bed nucleus of the stria terminalis (BNST), and the nucleus accumbens (Acb) shell (AcbSh) and core (AcbC). Compared to water controls, alcohol-drinking mice exhibited higher indices of emotionality in the majority of behavioral assays. The hyper-emotionality exhibited by binge drinking mice was apparent at both withdrawal time-points and correlated with higher Egr1+ cell counts in the CEA and BNST, compared to controls. These data show that affective symptoms emerge very early after cessation of binge drinking and persist into protracted withdrawal. A history of binge drinking is capable of producing enduring neuroadaptations within brain circuits mediating emotional arousal. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [Geographic distribution and exposure population of drinking water with high concentration of arsenic in China].

    PubMed

    Zhang, L; Chen, C

    1997-09-01

    According to the data obtained from the "National Survey on Drinking Water Quality and Waterborne Diseases", the geographic distribution and exposure population of high arsenic drinking water were reported. From the data of more than 28,800 water samples, we found 9.02 million people drinking the water with As concentration of 0.030-0.049 mg/L, 3.34 million people having their water of 0.050-0.099 mg/L and 2.29 million people having water of > 0.1 mg/L. A total of 14.6 million people, about 1.5% of the surveyed population was exposed to As (> 0.030 mg/L) from drinking water. 80% of high-As-drinking water was groundwater. The situation of As in drinking water in provinces, autonomous regions and municipalities were listed. The locations of sampling site where water As exceeded the national standard for drinking water were illustrated.

  10. Fluid and Electrolyte Balance model (FEB)

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1973-01-01

    The effects of various oral input water loads on solute and water distribution throughout the body are presented in the form of a model. The model was a three compartment model; the three compartments being plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea were the only major solutes considered explicitly. The control of body water and electrolyte distribution was affected via drinking and hormone levels.

  11. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    PubMed Central

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-01-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water. PMID:26394759

  12. [Investigation of a water-borne Salmonella ohio outbreak].

    PubMed

    Molinero, M E; Fernández, I; García-Calabuig, M A; Peiró, E

    1998-05-01

    The genus Salmonella is one of the main causes of foodborne and waterborne illness worldwide. It is a major public health concern almost entirely due to S. enteritidis. However, outbreaks caused by Salmonella ohio are rare. We have not found any reference about salmonellosis by S. ohio whose origin was water of a drinking fountain. An epidemiological survey was carried out to investigate the origin of the outbreak, and information was sought on personal details, symptoms, contact with others who had ill as well as a history of eating. Fecal specimens and water samples were cultured for bacterial pathogens including Salmonella. Salmonella isolates obtained were characterized by stereotyping. A total of 101 persons were exposed. 87 of these were interviewed, but only 59 of these were affected (attack rate: 67.8%), including 56 children and 3 adults. Syndrome was not severe, in general, persisting for a period of 2 days, in average. S. ohio was isolated from the water and from 2 of the 13 stool specimens analysed. The outbreak was caused by consumption of water from a drinking fountain which was contaminated by S. ohio. This fountain had not a chlorination system. An outbreak due to S. ohio whose origin is the consumption of water from a drinking fountain is described for the first time in this paper. It can be concluded the importance of keeping a good epidemiological control system to investigate and prevent outbreaks. The control of drinking fountains is also important, to prevent its contamination.

  13. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    NASA Astrophysics Data System (ADS)

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-09-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water.

  14. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides.

    PubMed

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-09-23

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water.

  15. Linking the mobilization of dissolved organic matter in catchments and its removal in drinking water treatment to its molecular characteristics.

    PubMed

    Raeke, Julia; Lechtenfeld, Oliver J; Tittel, Jörg; Oosterwoud, Marieke R; Bornmann, Katrin; Reemtsma, Thorsten

    2017-04-15

    Drinking water reservoirs in the Northern Hemisphere are largely affected by the decadal-long increase in riverine dissolved organic carbon (DOC) concentrations. The removal of DOC in drinking water treatment is costly and predictions are needed to link DOC removal efficiency to its mobilization in catchments, both of which are determined by the molecular composition. To study the effect of hydrological events and land use on the molecular characteristics of dissolved organic matter (DOM), 36 samples from three different catchment areas in the German low mountain ranges, with DOC concentrations ranging from 3 to 32 mg L -1 , were examined. Additionally, nine pairs of samples from downstream drinking water reservoirs were analyzed before and after flocculation. The molecular composition and the age of DOM were analyzed using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and radiocarbon ( 14 C) analysis. At elevated discharge in a forested catchment comparatively younger, more oxygenated and unsaturated molecules of higher molecular weight were preferentially mobilized, likely linked to the reductive mobilization of iron. DOM with highly similar molecular characteristics (O/C ratio > 0.5, m/z > 500) could also be efficiently removed through flocculation in drinking water treatment. The proportion of DOM removed through flocculation ranged between 43% and 73% of DOC and was highest at elevated discharge. In catchment areas with a higher percentage of grassland and agriculture a higher proportion of DOM molecules containing sulfur and nitrogen was detected, which in turn could be less efficiently flocculated. Altogether, it was shown that DOM that is released during large hydrological events can be efficiently flocculated again, suggesting a reversal of similar chemical mechanisms in both processes. Since the occurrence of heavy rainfall events is predicted to increase in the future, event-driven mobilization of DOC may continue to challenge drinking water production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evaluation and Management Strategies for Per- and Polyfluoroalkyl Substances (PFASs) in Drinking Water Aquifers: Perspectives from Impacted U.S. Northeast Communities.

    PubMed

    Guelfo, Jennifer L; Marlow, Thomas; Klein, David M; Savitz, David A; Frickel, Scott; Crimi, Michelle; Suuberg, Eric M

    2018-06-01

    Multiple Northeast U.S. communities have discovered per- and polyfluoroalkyl substances (PFASs) in drinking water aquifers in excess of health-based regulatory levels or advisories. Regional stakeholders (consultants, regulators, and others) need technical background and tools to mitigate risks associated with exposure to PFAS-affected groundwater. The aim was to identify challenges faced by stakeholders to extend best practices to other regions experiencing PFAS releases and to establish a framework for research strategies and best management practices. Management challenges were identified during stakeholder engagement events connecting attendees with PFAS experts in focus areas, including fate/transport, toxicology, and regulation. Review of the literature provided perspective on challenges in all focus areas. Publicly available data were used to characterize sources of PFAS impacts in groundwater and conduct a geospatial case study of potential source locations relative to drinking water aquifers in Rhode Island. Challenges in managing PFAS impacts in drinking water arise from the large number of relevant PFASs, unconsolidated information regarding sources, and limited studies on some PFASs. In particular, there is still considerable uncertainty regarding human health impacts of PFASs. Frameworks sequentially evaluating exposure, persistence, and treatability can prioritize PFASs for evaluation of potential human health impacts. A regional case study illustrates how risk-based, geospatial methods can help address knowledge gaps regarding potential sources of PFASs in drinking water aquifers and evaluate risk of exposure. Lessons learned from stakeholder engagement can assist in developing strategies for management of PFASs in other regions. However, current management practices primarily target a subset of PFASs for which in-depth studies are available. Exposure to less-studied, co-occurring PFASs remains largely unaddressed. Frameworks leveraging the current state of science can be applied toward accelerating this process and reducing exposure to total PFASs in drinking water, even as research regarding health effects continues. https://doi.org/10.1289/EHP2727.

  17. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    PubMed

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to improve public health.

  18. Ammonia pollution characteristics of centralized drinking water sources in China.

    PubMed

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  19. Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment.

    PubMed

    Meng, Qingpeng; Zhang, Jing; Zhang, Zhaoyu; Wu, Tairan

    2016-04-01

    Dissolved trace elements and heavy metals in the Dan River drainage basin, which is the drinking water source area of South-to-North Water Transfer Project (China), affect large numbers of people and should therefore be carefully monitored. To investigate the distribution, sources, and quality of river water, this study integrating catchment geology and multivariate statistical techniques was carried out in the Dan River drainage from 99 river water samples collected in 2013. The distribution of trace metal concentrations in the Dan River drainage was similar to that in the Danjiangkou Reservoir, indicating that the reservoir was significantly affected by the Dan River drainage. Moreover, our results suggested that As, Sb, Cd, Mn, and Ni were the major pollutants. We revealed extremely high concentrations of As and Sb in the Laoguan River, Cd in the Qingyou River, Mn, Ni, and Cd in the Yinhua River, As and Sb in the Laojun River, and Sb in the Dan River. According to the water quality index, water in the Dan River drainage was suitable for drinking; however, an exposure risk assessment model suggests that As and Sb in the Laojun and Laoguan rivers could pose a high risk to humans in terms of adverse health and potential non-carcinogenic effects.

  20. Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water.

    PubMed

    Wasana, Hewa M S; Aluthpatabendi, Dharshani; Kularatne, W M T D; Wijekoon, Pushpa; Weerasooriya, Rohan; Bandara, Jayasundera

    2016-02-01

    High prevalence of chronic kidney disease of unknown etiology (CKDu) in some regions of the world is suspected mainly due to a toxin-mediated renal failure. We examined the incidence of CKDu and potable chemical water quality in a CKDu-affected region. This region has been identified as a high-risk zone for CKDu (location: latitude: 8.3500°-9.0000°, longitude: 80.3833°-81.3000°, North Central Province, NCP, Sri Lanka) by the World Health Organization (WHO). However, within this macro-region, small pockets of CKDu non-prevalence zones do exist; notably, the residents in those pockets consume spring water. Therefore, the drinking water quality of four areas, namely high-CKDu-prevalence areas (zone I), low-CKDu-prevalence area (zone II), the CKDu-free isolated pockets (zone III) and control areas (controls) were examined for F, Al, Cd, and As, and hardness and the statistical analysis were carried out to probe possible correlations among these parameters. The fluoride and hardness concentrations of water in zone III and control areas are much lower compared to zones I and II, and the water hardness is ~61 mg/L CaCO3. In zones I and II, the harness of drinking water is ~121-180 mg/L CaCO3; however, Al, Cd and As concentrations are almost comparable and below WHO recommendations. In most of the locations in zones I and II, the F concentration in drinking water is higher than the WHO recommendations. The peculiar distribution patterns of CKDu point to a synergic effect of trace elements in water for etiology of the disease.

  1. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats

    PubMed Central

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-01-01

    Aim To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. Methods At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. Results MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Conclusion Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life. PMID:25891868

  2. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats.

    PubMed

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-04-01

    To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life.

  3. Microbial water quality risks to public health: potable water assessment for a flood-affected town in northern Pakistan.

    PubMed

    Baig, Shams Ali A; Xu, Xinhua; Khan, Rashid

    2012-01-01

    In mid-July 2010 flash flooding in Pakistan destroyed the basic water, environmental sanitation and livelihood infrastructures in 82 districts. Two months later, the local press of Swat (northern Pakistan) reported that several residents of Marghazar town became ill and were hospitalized after drinking contaminated water. A non-governmental organization (Oxfam GB) team took action to determine the causes of this incident and analyzed the community drinking water supply. Standard methods were used to analyze six physio-chemical and four microbiological water quality parameters at five selected sampling locations in the water supply system. The samples from sites numbers (SN)02, 03, 04 and 05 were found to be microbiologically unfit for drinking due to the presence of Escherichia coli, Shigella, Salmonella and Staphylococcus aureus (range 18-96 ± 14 cfu/100 mL). However, the pH, conductivity, total dissolved solid, total hardness as calcium carbonate and nitrate as NO3(-2) of all the samples were within WHO permissible limits. Higher turbidities were recorded at SN04 and 05 of 6 ± 0.23 and 9 ± 1.23, respectively. Quantitative results revealed the presence of pathogenic organisms and water quality risk factors due to the damaged water and environmental sanitation infrastructure. Continued water quality monitoring, the application of household based disinfectants, and healthy domestic hygiene practices are highly recommended in similar circumstances.

  4. Composition and Dynamics of Bacterial Communities of a Drinking Water Supply System as Assessed by RNA- and DNA-Based 16S rRNA Gene Fingerprinting

    PubMed Central

    Eichler, Stefan; Christen, Richard; Höltje, Claudia; Westphal, Petra; Bötel, Julia; Brettar, Ingrid; Mehling, Arndt; Höfle, Manfred G.

    2006-01-01

    Bacterial community dynamics of a whole drinking water supply system (DWSS) were studied from source to tap. Raw water for this DWSS is provided by two reservoirs with different water characteristics in the Harz mountains of Northern Germany. Samples were taken after different steps of treatment of raw water (i.e., flocculation, sand filtration, and chlorination) and at different points along the supply system to the tap. RNA and DNA were extracted from the sampled water. The 16S rRNA or its genes were partially amplified by reverse transcription-PCR or PCR and analyzed by single-strand conformation polymorphism community fingerprints. The bacterial community structures of the raw water samples from the two reservoirs were very different, but no major changes of these structures occurred after flocculation and sand filtration. Chlorination of the processed raw water strongly affected bacterial community structure, as reflected by the RNA-based fingerprints. This effect was less pronounced for the DNA-based fingerprints. After chlorination, the bacterial community remained rather constant from the storage containers to the tap. Furthermore, the community structure of the tap water did not change substantially for several months. Community composition was assessed by sequencing of abundant bands and phylogenetic analysis of the sequences obtained. The taxonomic compositions of the bacterial communities from both reservoirs were very different at the species level due to their different limnologies. On the other hand, major taxonomic groups, well known to occur in freshwater, such as Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes, were found in both reservoirs. Significant differences in the detection of the major groups were observed between DNA-based and RNA-based fingerprints irrespective of the reservoir. Chlorination of the drinking water seemed to promote growth of nitrifying bacteria. Detailed analysis of the community dynamics of the whole DWSS revealed a significant influence of both source waters on the overall composition of the drinking water microflora and demonstrated the relevance of the raw water microflora for the drinking water microflora provided to the end user. PMID:16517632

  5. Health risks from large-scale water pollution: Current trends and implications for improving drinking water quality in the lower Amu Darya drainage basin, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Törnqvist, Rebecka; Jarsjö, Jerker

    2010-05-01

    Safe drinking water is a primary prerequisite to human health, well being and development. Yet, there are roughly one billion people around the world that lack access to safe drinking water supply. Health risk assessments are effective for evaluating the suitability of using various water sources as drinking water supply. Additionally, knowledge of pollutant transport processes on relatively large scales is needed to identify effective management strategies for improving water resources of poor quality. The lower Amu Darya drainage basin close to the Aral Sea in Uzbekistan suffers from physical water scarcity and poor water quality. This is mainly due to the intensive agriculture production in the region, which requires extensive freshwater withdrawals and use of fertilizers and pesticides. In addition, recurrent droughts in the region affect the surface water availability. On average 20% of the population in rural areas in Uzbekistan lack access to improved drinking water sources, and the situation is even more severe in the lower Amu Darya basin. In this study, we consider health risks related to water-borne contaminants by dividing measured substance concentrations with health-risk based guideline values from the World Health Organisation (WHO). In particular, we analyse novel results of water quality measurements performed in 2007 and 2008 in the Mejdurechye Reservoir (located in the downstream part of the Amu Darya river basin). We furthermore identify large-scale trends by comparing the Mejdurechye results to reported water quality results from a considerable stretch of the Amu Darya river basin, including drainage water, river water and groundwater. The results show that concentrations of cadmium and nitrite exceed the WHO health-risk based guideline values in Mejdurechye Reservoir. Furthermore, concentrations of the since long ago banned and highly toxic pesticides dichlorodiphenyltrichloroethane (DDT) and γ-hexachlorocyclohexane (γ-HCH) were detected in the reservoir water for the first time in a decade. However, a relatively pronounced temporal variability in concentrations was observed for many of the substances, implying that the reservoir could contain low-risk waters temporarily. Health risk factors related to lead and chromium concentrations in groundwater were up to 200 times higher than for river water. The identified major divergence in health risk between groundwater and surface water illuminates the risk of using groundwater for drinking water supply during recurrent surface water deficits in the study area. However, the severe water scarcity and lack of financial resources in the region makes the choices of alternative water supply sources limited. Due to the presence of multiple contaminants, it appears reasonable that the aggregated toxicity of contaminant mixtures should be in focus in surface and groundwater water monitoring and management in the region. Key words: Aral Sea, Drinking water, Groundwater, Health Risk, Surface Water

  6. Small Drinking Water System Initiative | Drinking Water in New ...

    EPA Pesticide Factsheets

    2017-07-06

    Reliable, safe, high quality drinking water is essential to sustaining our communities. Approximately 90% of New England's drinking water systems - about 10,000 systems - are small and most use ground water sources.

  7. Basic Information about Lead in Drinking Water

    MedlinePlus

    ... Water and Drinking Water Contact Us Share Basic Information about Lead in Drinking Water Have a question ... Related Information from Other Federal Government Agencies General Information about Lead in Drinking Water How Lead Gets ...

  8. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals

    EPA Pesticide Factsheets

    Learn about Secondary Drinking Water Regulations for nuisance chemicals contained in some drinking water. They are established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations.

  9. Exposure to drinking water disinfection by-products and pregnancy loss.

    PubMed

    Savitz, David A; Singer, Philip C; Herring, Amy H; Hartmann, Katherine E; Weinberg, Howard S; Makarushka, Christina

    2006-12-01

    Previous research has suggested that exposure to elevated levels of drinking water disinfection by-products (DBPs) may cause pregnancy loss. In 2000-2004, the authors conducted a study in three US locations of varying DBP levels and evaluated 2,409 women in early pregnancy to assess their tap water DBP concentrations, water use, other risk factors, and pregnancy outcome. Tap water concentrations were measured in the distribution system weekly or biweekly. The authors considered DBP concentration and ingested amount and, for trihalomethanes only, bathing/showering and integrated exposure that included ingestion. On the basis of 258 pregnancy losses, they did not find an increased risk of pregnancy loss in relation to trihalomethane, haloacetic acid, or total organic halide concentrations; ingested amounts; or total exposure. In contrast to a previous study, pregnancy loss was not associated with high personal trihalomethane exposure (> or =75 micro g/liter and > or =5 glasses of water/day) (odds ratio = 1.1, 95% confidence interval: 0.7, 1.7). Sporadic elevations in risk were found across DBPs, most notably for ingested total organic halide (odds ratio = 1.5, 95% confidence interval: 1.0, 2.2 for the highest exposure quintile). These results provide some assurance that drinking water DBPs in the range commonly encountered in the United States do not affect fetal survival.

  10. White Sands Missile Range 2011 Drinking Water Quality Report

    DTIC Science & Technology

    2012-01-01

    This Annual Drinking Water Quality Report, or the Consumer Confi dence Report, is required by the Safe Drinking Water Act (SDWA). The SDWA ensures...public drinking water systems meet national standards for the protection of your health. This report provides details about where your water comes...NMED). WSMR tap water meets all EPA and NMED drinking water standards. What is This Water Quality Report? Este informe contiene informacion importante

  11. New England Drinking Water Program | US EPA

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  12. Consumers' choice of drinking water: Is it dependent upon perceived quality, convenience, price and attitude?

    NASA Astrophysics Data System (ADS)

    Wahid, Nabsiah Abdul; Cheng, Patrick Tan Foon; Abustan, Ismail; Nee, Goh Yen

    2017-10-01

    Tap water is one of the many sources of water that the public as consumers can choose for drinking. This study hypothesized that perceived quality, convenience, price and environmental attitude would determine consumers's choice of drinking water following the Attribution Theory as the underlying model. A survey was carried out on Malaysia's public at large. From 301 usable data, the PLS analysis revealed that only perceived quality, convenience and price attributed towards the public's choice of drinking water while attitude was not significant. The findings are beneficial for the water sector industry, particularly for drinking water operators, state governments, and alternative drinking water manufacturers like bottled water companies. The ability to identify factors for why consumers in the marketplace choose the source of their drinking water would enable the operators to plan and strategize tactics that can disseminate accurate knowledge about the product that can motivate marketability of drinking water in Malaysia.

  13. Overview of environmental and hydrogeologic conditions at Dillingham, Alaska

    USGS Publications Warehouse

    Palcsak, Betty B.; Dorava, Joseph M.

    1994-01-01

    The remote city of Dillingham is at the northern end of Bristol Bay in southwestern Alaska. The hydrology of the area is strongly affected by the mild maritime climate and local geologic conditions. Dillingham residents obtain drinking water from both deep and shallow aquifers composed of gravels and sands and separated by layers of clay underlying the community. Alternative sources of drinking water are limited to the development of new wells because surface-water sources are of inadequate quantity or quality or are located at too great a distance from the population. The Federal Aviation Administration owns or operates airway support facilities in Dillingham and wishes to consider the severity of contamination and the current environmental setting when they evaluate options for compliance with environmental regulations at their facilities. This report describes the climate. vegetation, geology, soils, ground-water and surface-water hydrology, and flood potential of the areas surrounding the Federal Aviation Administration facilities near Dillingham.

  14. The quality of our Nation's waters: groundwater quality in the Columbia Plateau and Snake River Plain basin-fill and basaltic-rock aquifers and the Hawaiian volcanic-rock aquifers, Washington, Idaho, and Hawaii, 1993-2005

    USGS Publications Warehouse

    Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.; Frans, Lonna M.; Mahler, Barbara J.

    2015-01-01

    The Columbia Plateau, Snake River Plain, and Hawaii are large volcanic areas in the western United States and mid-Pacific ocean that contain extensive regional aquifers of a hard, gray, volcanic rock called basalt. Residents of the Columbia Plateau, the Snake River Plain, and the island of Oahu depend on groundwater as their primary source of drinking water. Although the depth to the water table can be several hundred feet, the groundwater is highly vulnerable to contamination because the permeable sediments and rocks allow contaminants to move readily down to the water table. Intense agricultural and urban activities occur above the drinking-water supply and are increasing in some areas. Contaminants, such as nitrate, pesticides, and volatile organic compounds, associated with agricultural and urban activities, have adversely affected groundwater quality.

  15. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood.

    PubMed

    Sun, Rubao; An, Daizhi; Lu, Wei; Shi, Yun; Wang, Lili; Zhang, Can; Zhang, Ping; Qi, Hongjuan; Wang, Qiang

    2016-02-01

    In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets.

  16. REGULATED CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Safe drinking water is critical to protecting human health. More than 260 million Americans rely on the safety of tap water provided by water systems that comply with national drinking water standards. EPA's strategy for ensuring safe drinking water includes four key elements, ...

  17. An examination of the potential added value of water safety plans to the United States national drinking water legislation.

    PubMed

    Baum, Rachel; Amjad, Urooj; Luh, Jeanne; Bartram, Jamie

    2015-11-01

    National and sub-national governments develop and enforce regulations to ensure the delivery of safe drinking water in the United States (US) and countries worldwide. However, periodic contamination events, waterborne endemic illness and outbreaks of waterborne disease still occur, illustrating that delivery of safe drinking water is not guaranteed. In this study, we examined the potential added value of a preventive risk management approach, specifically, water safety plans (WSPs), in the US in order to improve drinking water quality. We undertook a comparative analysis between US drinking water regulations and WSP steps to analyze the similarities and differences between them, and identify how WSPs might complement drinking water regulations in the US. Findings show that US drinking water regulations and WSP steps were aligned in the areas of describing the water supply system and defining monitoring and controls. However, gaps exist between US drinking water regulations and WSPs in the areas of team procedures and training, internal risk assessment and prioritization, and management procedures and plans. The study contributes to understanding both required and voluntary drinking water management practices in the US and how implementing water safety plans could benefit water systems to improve drinking water quality and human health. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. World Health Organization discontinues its drinking-water guideline for manganese.

    PubMed

    Frisbie, Seth H; Mitchell, Erika J; Dustin, Hannah; Maynard, Donald M; Sarkar, Bibudhendra

    2012-06-01

    The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because "this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value." In this commentary, we review the WHO guideline for Mn in drinking water--from its introduction in 1958 through its discontinuation in 2011. For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn.

  19. Public perception of drinking water safety in South Africa 2002–2009: a repeated cross-sectional study

    PubMed Central

    2012-01-01

    Background In low and middle income countries, public perceptions of drinking water safety are relevant to promotion of household water treatment and to household choices over drinking water sources. However, most studies of this topic have been cross-sectional and not considered temporal variation in drinking water safety perceptions. The objective of this study is to explore trends in perceived drinking water safety in South Africa and its association with disease outbreaks, water supply and household characteristics. Methods This repeated cross-sectional study draws on General Household Surveys from 2002–2009, a series of annual nationally representative surveys of South African households, which include a question about perceived drinking water safety. Trends in responses to this question were examined from 2002–2009 in relation to reported cholera cases. The relationship between perceived drinking water safety and organoleptic qualities of drinking water, supply characteristics, and socio-economic and demographic household characteristics was explored in 2002 and 2008 using hierarchical stepwise logistic regression. Results The results suggest that perceived drinking water safety has remained relatively stable over time in South Africa, once the expansion of improved supplies is controlled for. A large cholera outbreak in 2000–02 had no apparent effect on public perception of drinking water safety in 2002. Perceived drinking water safety is primarily related to water taste, odour, and clarity rather than socio-economic or demographic characteristics. Conclusion This suggests that household perceptions of drinking water safety in South Africa follow similar patterns to those observed in studies in developed countries. The stability over time in public perception of drinking water safety is particularly surprising, given the large cholera outbreak that took place at the start of this period. PMID:22834485

  20. Public perception of drinking water safety in South Africa 2002-2009: a repeated cross-sectional study.

    PubMed

    Wright, Jim A; Yang, Hong; Rivett, Ulrike; Gundry, Stephen W

    2012-07-27

    In low and middle income countries, public perceptions of drinking water safety are relevant to promotion of household water treatment and to household choices over drinking water sources. However, most studies of this topic have been cross-sectional and not considered temporal variation in drinking water safety perceptions. The objective of this study is to explore trends in perceived drinking water safety in South Africa and its association with disease outbreaks, water supply and household characteristics. This repeated cross-sectional study draws on General Household Surveys from 2002-2009, a series of annual nationally representative surveys of South African households, which include a question about perceived drinking water safety. Trends in responses to this question were examined from 2002-2009 in relation to reported cholera cases. The relationship between perceived drinking water safety and organoleptic qualities of drinking water, supply characteristics, and socio-economic and demographic household characteristics was explored in 2002 and 2008 using hierarchical stepwise logistic regression. The results suggest that perceived drinking water safety has remained relatively stable over time in South Africa, once the expansion of improved supplies is controlled for. A large cholera outbreak in 2000-02 had no apparent effect on public perception of drinking water safety in 2002. Perceived drinking water safety is primarily related to water taste, odour, and clarity rather than socio-economic or demographic characteristics. This suggests that household perceptions of drinking water safety in South Africa follow similar patterns to those observed in studies in developed countries. The stability over time in public perception of drinking water safety is particularly surprising, given the large cholera outbreak that took place at the start of this period.

  1. The effect of drinking water quality on the health and longevity of people-A case study in Mayang, Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Lu, J.; Yuan, F.

    2017-08-01

    Drinking water is an important source for trace elements intake into human body. Thus, the drinking water quality has a great impact on people’s health and longevity. This study aims to study the relationship between drinking water quality and human health and longevity. A longevity county Mayang in Hunan province, China was chosen as the study area. The drinking water and hair of local centenarians were collected and analyzed the chemical composition. The drinking water is weak alkaline and rich in the essential trace elements. The daily intakes of Ca, Cu, Fe, Se, Sr from drinking water for residents in Mayang were much higher than the national average daily intake from beverage and water. There was a positive correlation between Ni and Pb in drinking water and Ni and Pb in hair. There were significant correlations between Cu, K in drinking water and Ba, Ca, Mg, Sr in the hair at the 0.01 level. The concentrations of Mg, Sr, Se in drinking water showed extremely significant positive relation with two centenarian index 100/80% and 100/90% correlation. Essential trace elements in drinking water can be an important factor for local health and longevity.

  2. Hot Topics/New Initiatives | Drinking Water in New England ...

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  3. An improved biofilter to control the dissolved organic nitrogen concentration during drinking water treatment.

    PubMed

    Zhang, Huining; Gu, Li; Liu, Bing; Gan, Huihui; Zhang, Kefeng; Jin, Huixia; Yu, Xin

    2016-09-01

    Dissolved organic nitrogen (DON) is a key precursor of numerous disinfection by-products (DBPs), especially nitrogenous DBPs (N-DBPs) formed during disinfection in drinking water treatment. To effectively control DBPs, reduction of the DON concentration before the disinfection process is critical. Traditional biofilters can increase the DON concentration in the effluent, so an improved biofilter is needed. In this study, an improved biofilter was set up with two-layer columns using activated carbon and quartz sand under different influent patterns. Compared with the single-layer filter, the two-layer biofilter controlled the DON concentration more efficiently. The two-point influent biofilter controlled the DON concentration more effectively than the single-point influent biofilter. The improved biofilter resulted in an environment (including matrix, DO, and pH) suitable for microbial growth. Along the depth of the biofilter column, the environment affected the microbial biomass and microbial activity and thus affected the DON concentration.

  4. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest.

  5. Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature.

    PubMed

    Torvinen, Eila; Lehtola, Markku J; Martikainen, Pertti J; Miettinen, Ilkka T

    2007-10-01

    Mycobacterium avium is a potential pathogen occurring in drinking water systems. It is a slowly growing bacterium producing a thick cell wall containing mycolic acids, and it is known to resist chlorine better than many other microbes. Several studies have shown that pathogenic bacteria survive better in biofilms than in water. By using Propella biofilm reactors, we studied how factors generally influencing the growth of biofilms (flow rate, phosphorus concentration, and temperature) influence the survival of M. avium in drinking water biofilms. The growth of biofilms was followed by culture and DAPI (4',6'-diamidino-2-phenylindole) staining, and concentrations of M. avium were determined by culture and fluorescence in situ hybridization methods. The spiked M. avium survived in biofilms for the 4-week study period without a dramatic decline in concentration. The addition of phosphorus (10 microg/liter) increased the number of heterotrophic bacteria in biofilms but decreased the culturability of M. avium. The reason for this result is probably that phosphorus increased competition with other microbes. An increase in flow velocity had no effect on the survival of M. avium, although it increased the growth of biofilms. A higher temperature (20 degrees C versus 7 degrees C) increased both the number of heterotrophic bacteria and the survival of M. avium in biofilms. In conclusion, the results show that in terms of affecting the survival of slowly growing M. avium in biofilms, temperature is a more important factor than the availability of nutrients like phosphorus.

  6. The Many Faces of Affect: A Multilevel Model of Drinking Frequency/Quantity and Alcohol Dependence Symptoms Among Young Adults

    PubMed Central

    Simons, Jeffrey S.; Wills, Thomas A.; Neal, Dan J.

    2016-01-01

    This research tested a multilevel structural equation model of associations between 3 aspects of affective functioning (state affect, trait affect, and affective lability) and 3 alcohol outcomes (likelihood of drinking, quantity on drinking days, and dependence symptoms) in a sample of 263 college students. Participants provided 49 days of experience sampling data over 1.3 years in a longitudinal burst design. Within-person results: At the daily level, positive affect was directly associated with greater likelihood and quantity of alcohol consumption. Daily negative affect was directly associated with higher consumption on drinking days and with higher dependence symptoms. Between-person direct effects: Affect lability was associated with higher trait negative, but not positive, affect. Trait positive affect was inversely associated with the proportion of drinking days, whereas negative affectivity predicted a greater proportion of drinking days. Affect lability exhibited a direct association with dependence symptoms. Between-person indirect effects: Trait positive affect was associated with fewer dependence symptoms via proportion of drinking days. Trait negative affect was associated with greater dependence symptoms via proportion of drinking days. The results distinguish relations of positive and negative affect to likelihood versus amount of drinking and state versus trait drinking outcomes, and highlight the importance of affect variability for predicting alcohol dependence symptoms. PMID:24933278

  7. Challenges and Opportunities for Tribal Waters: Addressing Disparities in Safe Public Drinking Water on the Crow Reservation in Montana, USA.

    PubMed

    Doyle, John T; Kindness, Larry; Realbird, James; Eggers, Margaret J; Camper, Anne K

    2018-03-21

    Disparities in access to safe public drinking water are increasingly being recognized as contributing to health disparities and environmental injustice for vulnerable communities in the United States. As the Co-Directors of the Apsaálooke Water and Wastewater Authority (AWWWA) for the Crow Tribe, with our academic partners, we present here the multiple and complex challenges we have addressed in improving and maintaining tribal water and wastewater infrastructure, including the identification of diverse funding sources for infrastructure construction, the need for many kinds of specialized expertise and long-term stability of project personnel, ratepayer difficulty in paying for services, an ongoing legacy of inadequate infrastructure planning, and lack of water quality research capacity. As a tribal entity, the AWWWA faces additional challenges, including the complex jurisdictional issues affecting all phases of our work, lack of authority to create water districts, and additional legal and regulatory gaps-especially with regards to environmental protection. Despite these obstacles, the AWWWA and Crow Tribe have successfully upgraded much of the local water and wastewater infrastructure. We find that ensuring safe public drinking water for tribal and other disadvantaged U.S. communities will require comprehensive, community-engaged approaches across a broad range of stakeholders to successfully address these complex legal, regulatory, policy, community capacity, and financial challenges.

  8. Challenges and Opportunities for Tribal Waters: Addressing Disparities in Safe Public Drinking Water on the Crow Reservation in Montana, USA

    PubMed Central

    Doyle, John T.; Kindness, Larry; Realbird, James; Camper, Anne K.

    2018-01-01

    Disparities in access to safe public drinking water are increasingly being recognized as contributing to health disparities and environmental injustice for vulnerable communities in the United States. As the Co-Directors of the Apsaálooke Water and Wastewater Authority (AWWWA) for the Crow Tribe, with our academic partners, we present here the multiple and complex challenges we have addressed in improving and maintaining tribal water and wastewater infrastructure, including the identification of diverse funding sources for infrastructure construction, the need for many kinds of specialized expertise and long-term stability of project personnel, ratepayer difficulty in paying for services, an ongoing legacy of inadequate infrastructure planning, and lack of water quality research capacity. As a tribal entity, the AWWWA faces additional challenges, including the complex jurisdictional issues affecting all phases of our work, lack of authority to create water districts, and additional legal and regulatory gaps—especially with regards to environmental protection. Despite these obstacles, the AWWWA and Crow Tribe have successfully upgraded much of the local water and wastewater infrastructure. We find that ensuring safe public drinking water for tribal and other disadvantaged U.S. communities will require comprehensive, community-engaged approaches across a broad range of stakeholders to successfully address these complex legal, regulatory, policy, community capacity, and financial challenges. PMID:29561815

  9. Water as consumed and its impact on the consumer--do we understand the variables?

    PubMed

    Bates, A J

    2000-01-01

    Water is the most important natural resource in the world, without it life cannot exist. In 1854 a cholera outbreak in London caused 10, 000 deaths and positively linked enteric disease with bacterial contamination of drinking water by sewage pollution. Since then, adequate water hygiene standards and sewage purification have played the most significant role in disease eradication and public health improvements everywhere. Standards for drinking water have become an extensive range of microbiological and chemical parametric values. Which has not increased consumer, if the media is to be believed. Customers rightly expect that the water they drink is safe and wholesome. Standard setting is perceived as a precise science and meaningful to health. Is this justified and do scientists and regulators who derive and set the standards understand the uncertainties in the system? Water is the universal solvent, therefore it will never be pure; it will contain impurities prior to and after treatment. Knowledge of its potential to become contaminated is necessary to understand the epidemiology associated with waterborne contaminants and their effects. Water use patterns vary considerably and affect assumptions based on toxicology derived from laboratory studies under tightly controlled conditions. Consideration must be given to the model systems used to assess toxicity and translate results from the laboratory to the real world, if sensible scientifically-based water quality standards are to be set and achieved cost effectively.

  10. Access to warm drinking water prevents rumen temperature drop without affecting in situ NDF disappearance in grazing winter range cows

    USDA-ARS?s Scientific Manuscript database

    Ingestion of large quantities of cold water or frozen forage may result in changes in temperature of ruminal contents. Rumen microorganisms may be sensitive to temperature changes in the ruminal environment. Therefore, this study was conducted to assess the variability in ruminal temperature and e...

  11. CHRONIC EXPOSURE TO DIBROMOACETIC ACID, A WATER DISINFECTION BY-PRODUCT, DIMINISHES PRIMORDIAL FOLLICLE POPULATIONS IN THE RABBIT

    EPA Science Inventory

    To determine if dibromoacetic acid (DBA) affects folliculogenesis, four groups of female Dutch-belted rabbits were exposed daily to 0, 1, 5, or 50 mg DBA/kg body wt. in drinking water beginning in utero from gestation day 15 throughout life. Functionality of the endocrine axis w...

  12. Chronic exposure to low levels of dibromoacetic acid, a water disinfection by-product, adversely affects reproductive function in male rabbits

    EPA Science Inventory

    Four groups (minimum of 10/dose group) of male Dutch-Belted rabbits were treated daily to dibromoacetic acid (DBA) via drinking water beginning in utero from gestation day 15 throughout life; target dosages were 1, 5, and 50 mg DBA /kg body weight. Developmental, prepubertal as ...

  13. Levetiracetam Results in Increased and Decreased Alcohol Drinking with Different Access Procedures in C57BL/6J Mice

    PubMed Central

    Fish, Eric W.; Agoglia, Abigail E.; Krouse, Michael C.; Muller, R. Grant; Robinson, J. Elliott; Malanga, C.J.

    2013-01-01

    The antiepileptic, levetiracetam (LEV), has been investigated for the treatment of alcohol abuse. However, little is known about how LEV alters the behavioral effects of alcohol in laboratory animals. The acute effects of LEV on alcohol drinking by male C57BL/6J mice were investigated using two different drinking procedures, limited access (drinking-in-the-dark, or DID) and intermittent access (IA) drinking. In the first experiment (DID), mice had access to a single bottle containing alcohol or sucrose for four hours every-other day. In the second experiment (IA), mice had intermittent access to two bottles, one containing alcohol or sucrose and one containing water, for 24 h on Mon/Wed/Fri. In both experiments, mice were administered LEV (0.3 – 100 mg/kg i.p.) or vehicle 30 min before access to the drinking solutions. In the DID mice, LEV increased alcohol intake from 4.3 to 5.4 g/kg, while in the IA mice LEV decreased alcohol intake from 4.8 to 3.0 g/kg in the first 4 h of access and decreased 24 h alcohol intake from 20 g/kg to approximately 15 g/kg. These effects appear specific to alcohol, as LEV did not affect sucrose intake in either experiment. LEV appears to differentially affect drinking in animal models of moderate and heavier alcohol consumption. PMID:24322822

  14. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    PubMed

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  15. Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern.

    PubMed

    Baken, Kirsten A; Sjerps, Rosa M A; Schriks, Merijn; van Wezel, Annemarie P

    2018-06-13

    Toxicological risk assessment of contaminants of emerging concern (CEC) in (sources of) drinking water is required to identify potential health risks and prioritize chemicals for abatement or monitoring. In such assessments, concentrations of chemicals in drinking water or sources are compared to either (i) health-based (statutory) drinking water guideline values, (ii) provisional guideline values based on recent toxicity data in absence of drinking water guidelines, or (iii) generic drinking water target values in absence of toxicity data. Here, we performed a toxicological risk assessment for 163 CEC that were selected as relevant for drinking water. This relevance was based on their presence in drinking water and/or groundwater and surface water sources in downstream parts of the Rhine and Meuse, in combination with concentration levels and physicochemical properties. Statutory and provisional drinking water guideline values could be derived from publically available toxicological information for 142 of the CEC. Based on measured concentrations it was concluded that the majority of substances do not occur in concentrations which individually pose an appreciable human health risk. A health concern could however not be excluded for vinylchloride, trichloroethene, bromodichloromethane, aniline, phenol, 2-chlorobenzenamine, mevinphos, 1,4-dioxane, and nitrolotriacetic acid. For part of the selected substances, toxicological risk assessment for drinking water could not be performed since either toxicity data (hazard) or drinking water concentrations (exposure) were lacking. In absence of toxicity data, the Threshold of Toxicological Concern (TTC) approach can be applied for screening level risk assessment. The toxicological information on the selected substances was used to evaluate whether drinking water target values based on existing TTC levels are sufficiently protective for drinking water relevant CEC. Generic drinking water target levels of 37 μg/L for Cramer class I substances and 4 μg/L for Cramer class III substances in drinking water were derived based on these CEC. These levels are in line with previously reported generic drinking water target levels based on original TTC values and are shown to be protective for health effects of the majority of contaminants of emerging concern evaluated in the present study. Since the human health impact of many chemicals appearing in the water cycle has been studied insufficiently, generic drinking water target levels are useful for early warning and prioritization of CEC with unknown toxicity in drinking water and its sources for future monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015

    USGS Publications Warehouse

    Foster, Guy M.; Graham, Jennifer L.

    2016-04-06

    The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes in water-quality conditions through time, characterizing potentially harmful cyanobacterial events, and indicating changes in water-quality conditions that may affect drinking-water treatment processes.

  17. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    PubMed

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  18. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  19. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply

    NASA Astrophysics Data System (ADS)

    Bereskie, Ty; Rodriguez, Manuel J.; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  20. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply.

    PubMed

    Bereskie, Ty; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  1. Protecting health from metal exposures in drinking water.

    PubMed

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  2. Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects.

    PubMed

    Guo, Juan X; Hu, Lin; Yand, Peng Z; Tanabe, Kimiko; Miyatalre, Munetoshi; Chen, Yao

    2007-10-01

    Since 1990, a large number of people have been experiencing various health problems from drinking arsenic contaminated water (50-1860 microg/L) in 13 counties of Inner Mongolia, China, most of which are located in the Hetao Plain area. It is calculated that 411,243 people are currently at risk from arsenic poisoning. Clinical and epidemiological investigations were carried out on 13,021 people to ascertain the nature and degree of morbidity that occurred due to chronic arsenic toxicity. In all of the studied patients, 22% had typical hyperkeratosis on the palms or soles and some had raindrop-like hyperpigmentation and depigmentation on the trunk. Other data recorded included subjective and objective symptoms, such as chronic cough (35.0%) and insomnia (37.5%). During physical checkups of 680 villagers in arsenic affected areas, liver function tests showed elevated globulin levels in 6.8% (P value=0.006) of the subjects. Neurotoxicity manifesting as loss of hearing 5.88 (P value=0.005), loss of taste 5.44% (P value=0.001), blurred vision 17.35% (P value=0.000), tingling and numbness of the limbs 33.53% (P value=0.000) and hypertension 8.09% (P value=0.000) were significantly higher in the arsenic affected villages and arsenic pollution also seemed to affect patients' social life and mental health. To solve the problem of arsenic exposure, the quality of drinking water needs to be improved by reducing the arsenic content. We also plan to carry out a survey to detect the incidence and types of cancer among this population.

  3. Source Water Protection Basics

    EPA Pesticide Factsheets

    Defines drinking water sources (source water), identifies drinking water sources, and describes source water assessments and protection, roles of government and organizations in drinking water source protection

  4. The corrosive nature of manganese in drinking water.

    PubMed

    Alvarez-Bastida, C; Martínez-Miranda, V; Vázquez-Mejía, G; Solache-Ríos, M; Fonseca-Montes de Oca, G; Trujillo-Flores, E

    2013-03-01

    Corrosion problems having to do with drinking water distribution systems are related to many processes and factors and two of them are ionic acidity and carbon dioxide, which were considered in this work. The corrosion character of water is determined by the corrosion indexes of Langelier, Ryznar, Larson, and Mojmir. The results show that pipes made of different materials, such as plastics or metals, are affected by corrosion, causing manganese to be deposited on materials and dissolved in water. The deterioration of the materials, the degree of corrosion, and the deposited corrosion products were determined by X-ray diffraction and Scanning Electron Microscopy. High levels of manganese and nitrate ions in water may cause serious damage to the health of consumers of water. Three wells were examined, one of them presented a high content of manganese; the others had high levels of nitrate ions, which increased the acidity of the water and, therefore, the amount of corrosion of the materials in the distribution systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Tribal Set-Aside Program of the Drinking Water Infrastructure Grant

    EPA Pesticide Factsheets

    The Safe Drinking Water Act (SWDA), as amended in 1996, established the Drinking Water State Revolving Fund (DWSRF) to make funds available to drinking water systems to finance infrastructure improvements.

  6. Drinking water boosts food intake rate, body mass increase and fat accumulation in migratory blackcaps (Sylvia atricapilla).

    PubMed

    Tsurim, Ido; Sapir, Nir; Belmaker, Jonathan; Shanni, Itai; Izhaki, Ido; Wojciechowski, Michał S; Karasov, William H; Pinshow, Berry

    2008-05-01

    Fat accumulation by blackcaps (Sylvia atricapilla) is a prerequisite for successful migratory flight in the autumn and has recently been determined to be constrained by availability of drinking water. Birds staging in a fruit-rich Pistacia atlantica plantation that had access to water increased their body mass and fat reserves both faster and to a greater extent than birds deprived of water. We conducted a series of laboratory experiments on birds captured during the autumn migration period in which we tested the hypotheses that drinking water increases food use by easing limitations on the birds' dietary choices and, consequently, feeding and food processing rates, and that the availability of drinking water leads to improved digestion and, therefore, to higher apparent metabolizable energy. Blackcaps were trapped in autumn in the Northern Negev Desert, Israel and transferred to individual cages in the laboratory. Birds were provided with P. atlantica fruit and mealworms, and had either free access to water (controls) or were water-deprived. In experiment 1, in which mealworm availability was restricted, water-deprived birds had a fourfold lower fruit and energy intake rates and, consequently, gained less fat and total mass than control birds. Water availability did not affect food metabolizability. In experiment 2, in which mealworms were provided ad libitum, water availability influenced the birds' diet: water-restricted birds ate more mealworms, while control birds consumed mainly P. atlantica fruit. Further, in experiment 2, fat and mass gain did not differ between the two treatment groups. We conclude that water availability may have important consequences for fat accumulation in migrating birds while they fatten at stopover sites, especially when water-rich food is scarce. Restricted water availability may also impede the blackcap's dietary shift from insectivory to frugivory, a shift probably necessary for successful pre-migratory fattening.

  7. A simple model of fluid flow and electrolyte balance in the body

    NASA Technical Reports Server (NTRS)

    White, R. J.; Neal, L.

    1973-01-01

    The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.

  8. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    PubMed

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  9. Assessment of groundwater under direct influence of surface water.

    PubMed

    Nnadi, Fidelia N; Fulkerson, Mark

    2002-08-01

    Waterborne pathogens are known to reside in surface water systems throughout the U.S. Cryptosporidium outbreaks over recent years are the result of drinking water supplied from such sources. Contamination of aquifers has also led to several reported cases from drinking water wells. With high resistance to typical groundwater treatment procedures, aquifer infiltration by Cryptosporidium poses a serious threat. As groundwater wells are the main source of drinking water supply in the State of Florida, understanding factors that affect the presence of Cryptosporidium would prevent future outbreaks. This study examines karst geology, land use, and hydrogeology in the State of Florida as they influence the risk of groundwater contamination. Microscopic Particulate Analysis (MPA) sampling was performed on 719 wells distributed across Florida. The results of the sampling described each well as having high, moderate, or low risk to surface water influence. The results of this study indicated that the hydrogeology of an area tends to influence the MPA Risk Index (RI) of a well. Certain geologic formations were present for the majority of the high risk wells. Residential land use contained nearly half of the wells sampled. The results also suggested that areas more prone to sinkhole development are likely to contain wells with a positive RI.

  10. MALDI-MIS INVESTIGATIONS OF DRINKING WATER PATHOGENS--GIARDIA AND CRYPTOSPORIDIUM

    EPA Science Inventory

    The protozoan parasites, Cryptosporidium parvum and Giardia lamblia, have been responsible for numerous waterborne outbreaks of gastrointestinal illness in the United States. The 1993 cryptosporidiosis outbreak in Milwaukee affected approximately 400,000 people and resulted in o...

  11. Effects of Forest and Grassland Management On Drinking Water Quality for Public Water Supplies:A Review And Synthesis of the Scientific Literature - Review Draft

    Treesearch

    George E. Dissmeyer

    1999-01-01

    The Importance of Safe Public Drinking Water The United States Congress justified passing the Safe Drinking Water Amendments (SDWA) of 1996 (P. L. 104-182) by stating "safe drinking water is essential to the protection of public health".For 50 years the basic axiom for public health protection has been safe drinking water...

  12. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  13. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  14. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  15. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  16. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  17. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  18. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  19. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  20. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  1. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  2. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    PubMed

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (<70 m) over an area of 100 km(2) in Chakdaha Block of Nadia district, West Bengal, India. The results indicate that despite close similarity in major ion composition, the redox condition is markedly different in groundwater of the two studied aquifers. The redox condition in the BSA is delineated to be Mn oxy-hydroxide reducing, not sufficiently lowered for As mobilization into groundwater. In contrast, the enrichments of NH(4)(+), PO(4)(3-), Fe and As along with lower Eh in groundwater of GSA reflect reductive dissolution of Fe oxy-hydroxide coupled to microbially mediated oxidation of organic matter as the prevailing redox process causing As mobilization into groundwater of this aquifer type. In some portions of GSA the redox status even has reached to the stage of SO(4)(2-) reduction, which to some extent might sequester dissolved As from groundwater by co-precipitation with authigenic pyrite. Despite having low concentration of As in groundwater of the BSA the concentration of Mn often exceeds the drinking water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Arsenic speciation analysis of urine samples from individuals living in an arsenic-contaminated area in Bangladesh.

    PubMed

    Hata, Akihisa; Yamanaka, Kenzo; Habib, Mohamed Ahsan; Endo, Yoko; Fujitani, Noboru; Endo, Ginji

    2012-05-01

    Chronic inorganic arsenic (iAs) exposure currently affects tens of millions of people worldwide. To accurately determine the proportion of urinary arsenic metabolites in residents continuously exposed to iAs, we performed arsenic speciation analysis of the urine of these individuals and determined whether a correlation exists between the concentration of iAs in drinking water and the urinary arsenic species content. The subjects were 165 married couples who had lived in the Pabna District in Bangladesh for more than 5 years. Arsenic species were measured using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. The median iAs concentration in drinking water was 55 μgAs/L (range <0.5-332 μgAs/L). Speciation analysis revealed the presence of arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsinic acid in urine samples with medians (range) of 16.8 (7.7-32.3), 1.8 (<0.5-3.3), 13.7 (5.6-25.0), and 88.6 μgAs/L (47.9-153.4 μgAs/L), respectively. No arsenobetaine or arsenocholine was detected. The concentrations of the 4 urinary arsenic species were significantly and linearly related to each other. The urinary concentrations of total arsenic and each species were significantly correlated with the iAs concentration of drinking water. All urinary arsenic species are well correlated with each other and with iAs in drinking water. The most significant linear relationship existed between the iAs concentration in drinking water and urinary iAs + MMA concentration. From these results, combined with the effects of seafood ingestion, the best biomarker of iAs exposure is urinary iAs + MMA concentration.

  4. Immunotoxic Effects of Sodium Tungstate Dihydrate on Female B6C3F1/N Mice When Administered in Drinking Water

    PubMed Central

    Frawley, Rachel P.; Smith, Matthew J.; White, Kimber L; Elmore, Susan; Herbert, Ron; Moore, Rebecca; Staska, Lauren M.; Behl, Mamta; Hooth, Michelle J.; Kissling, Grace E.; Germolec, Dori R.

    2018-01-01

    Tungsten is a naturally occurring, high tensile strength element that has been used in a number of consumer products. Tungsten has been detected in soil, waterways, groundwater, and human tissue and body fluids. Elevated levels of tungsten in urine were reported for populations exposed to tungstate in drinking water in areas where natural tungsten formations were prevalent. Published reports indicated that sodium tungstate may modulate hematopoiesis, immune cell populations, and immune responses in rodent models. The objective of this study was to assess potential immunotoxicity of sodium tungstate dihydrate (STD), a drinking water contaminant. Female B6C3F1/N mice received 0–2000 mg STD/L in their drinking water for 28 days, and were evaluated for effects on immune cell populations in spleen and bone marrow, and humoral-mediated, cell-mediated, and innate immunity. Three different parameters of cell-mediated immunity were similarly affected at 1000 mg STD/L. T-cell proliferative responses against allogeneic leukocytes and anti-CD3 were decreased 32%, and 21%, respectively. Cytotoxic T-lymphocyte activity was decreased at all effector:target cell ratios examined. At 2000 mg STD/L, the absolute numbers of CD3+ T-cell progenitor cells in bone marrow were increased 86%, but the alterations in B-lymphocyte and other progenitor cells were not significant. There were no effects on bone marrow DNA synthesis or colony forming capabilities. STD-induced effects on humoral-mediated immunity, innate immunity, and splenocyte sub-populations were limited. Enhanced histopathology did not detect treatment-related lesions in any of the immune tissues. These data suggest exposure to STD in drinking water may adversely effect cell-mediated immunity. PMID:27223060

  5. 75 FR 48329 - Tribal Drinking Water Operator Certification Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9186-8] Tribal Drinking Water Operator Certification Program... details of EPA's voluntary Tribal Drinking Water Operator Certification Program, effective October 1, 2010. The program enables qualified drinking water operators at public water systems in Indian country to be...

  6. Removal of strontium from drinking water by conventional treatment and lime softening in bench-scale studies.

    PubMed

    O'Donnell, Alissa J; Lytle, Darren A; Harmon, Stephen; Vu, Kevin; Chait, Hannah; Dionysiou, Dionysios D

    2016-10-15

    The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. Very limited data is available on strontium removal from drinking water and as a result, there is an immediate need for treatment information. The objective of this work is to evaluate the effectiveness of coagulation/filtration and lime-soda ash softening treatment methods to remove strontium from surface and ground waters. Coagulation/filtration jar test results on natural waters showed that conventional treatment with aluminum and iron coagulants were able to achieve only 12% and 5.9% strontium removal, while lime softening removed as high as 78% from natural strontium-containing ground water. Controlled batch experiments on synthetic water showed that strontium removal during the lime-soda ash softening was affected by pH, calcium concentration and dissolved inorganic carbon concentration. In all softening jar tests, the final strontium concentration was directly related to the initial strontium concentration and the removal of strontium was directly associated with calcium removal. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium was likely incorporated in the calcium carbonate crystal lattice and was likely responsible for removal during lime softening. Copyright © 2016. Published by Elsevier Ltd.

  7. Occurrence of water-borne enteric viruses in two settlements based in Eastern Chad: analysis of hepatitis E virus, hepatitis A virus and human adenovirus in water sources.

    PubMed

    Guerrero-Latorre, Laura; Carratala, Anna; Rodriguez-Manzano, Jesus; Calgua, Byron; Hundesa, Ayalkibet; Girones, Rosina

    2011-09-01

    Hepatitis E virus (HEV) is a common cause of water-borne acute hepatitis in areas with poor sanitation. In 2004 an outbreak of HEV infection affected around 2,000 people in Eastern Chad (Dar Sila). This paper describes the decrease in the incidence of acute jaundice syndrome (AJS) from 2004 until 2009 when a mean incidence of 0.48 cases/1,000 people/year was recorded in the region. Outbreaks of AJS were identified in some of the camps in 2007 and 2008. Moreover, water samples from drinking water sources were screened for human adenoviruses considered as viral indicators and for hepatitis A virus and HEV. Screening of faecal samples from donkeys for HEV gave negative results. Some of the samples were also analysed for faecal coliforms showing values before disinfection treatment between 3 and >50 colony forming units per 100 mL. All water samples tested were negative for HEV and HAV; however, the presence of low levels of human adenoviruses in 4 out of 16 samples analysed indicates possible human faecal contamination of groundwater. Consequently, breakdowns in the treatment of drinking water and/or increased excretion of hepatitis viruses, which could be related to the arrival of a new population, could spread future outbreaks through drinking water.

  8. Vulnerability of drinking water supplies to engineered nanoparticles.

    PubMed

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP contamination. In karstic aquifers, however, there is an increased probability that if any ENPs enter the groundwater system they will reach the extraction point of a drinking water treatment plant (DWTP). The ability to remove ENPs during water treatment depends on the specific design of the treatment process. In conventional DWTPs with no flocculation step a proportion of ENPs, if present in the raw water, may reach the final drinking water. The use of ultrafiltration techniques improves drinking water safety with respect to ENP contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Operational performance, biomass and microbial community structure: impacts of backwashing on drinking water biofilter.

    PubMed

    Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang

    2015-01-01

    Biofiltration has been widely used to reduce organic matter and control the formation of disinfection by-products in drinking water. Backwashing might affect the biofilters' performance and the attached microbiota on filter medium. In this study, the impacts of backwashing on the removal of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and N-nitrosamine precursors by a pilot-scale biological activated carbon (BAC) filtration system were investigated. The impacts of backwashing on biomass and microbial community structure of BAC biofilm were also investigated. Phospholipid fatty acid (PLFA) analysis showed that backwashing reduced nearly half of the attached biomass on granular activated carbon (GAC) particles, followed by a recovery to the pre-backwashing biomass concentration in 2 days after backwashing. Backwashing was found to transitionally improve the removal of DOC, DON and N-nitrosamine precursors. MiSeq sequencing analysis revealed that backwashing had a strong impact on the bacterial diversity and community structure of BAC biofilm, but they could gradually recover with the operating time after backwashing. Phylum Proteobacteria was the largest bacterial group in BAC biofilm. Microorganisms from genera Bradyrhizobium, Hyphomicrobium, Microcystis and Sphingobium might contribute to the effective removal of nitrogenous organic compounds by drinking water biofilter. This work could add some new insights towards the operation of drinking water biofilters and the biological removal of organic matter.

  10. Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners.

    PubMed

    Scheurer, Marco; Storck, Florian R; Brauch, Heinz-J; Lange, Frank T

    2010-06-01

    Due to incomplete removal of artificial sweeteners in wastewater treatment plants some of these compounds end up in receiving surface waters, which are used for drinking water production. The sum of removal efficiency of single treatment steps in multi-barrier treatment systems affects the concentrations of these compounds in the provided drinking water. This is the first systematic study revealing the effectiveness of single treatment steps in laboratory experiments and in waterworks. Six full-scale waterworks using surface water influenced raw water were sampled up to ten times to study the fate of acesulfame, saccharin, cyclamate and sucralose. For the most important treatment technologies the results were confirmed by laboratory batch experiments. Saccharin and cyclamate proved to play a minor role for drinking water treatment plants as they were eliminated by nearly 100% in all waterworks with biologically active treatment units like river bank filtration (RBF) or artificial groundwater recharge. Acesulfame and sucralose were not biodegraded during RBF and their suitability as wastewater tracers under aerobic conditions was confirmed. Sucralose proved to be persistent against ozone and its transformation was < 20% in lab and field investigations. Remaining traces were completely removed by subsequent granular activated carbon (GAC) filters. Acesulfame readily reacts with ozone (pseudo first-order rate constant k = 1.3 x 10(-3) s(-1) at 1 mg L(-1) ozone concentration). However, the applied ozone concentrations and contact times under typical waterworks conditions only led to an incomplete removal (18-60%) in the ozonation step. Acesulfame was efficiently removed by subsequent GAC filters with a low throughput of less than 30 m(3) kg(-1), but removal strongly depended on the GAC preload. Thus, acesulfame was detected up to 0.76 microg L(-1) in finished water. 2010 Elsevier Ltd. All rights reserved.

  11. Human Health Benchmarks for Pesticides

    EPA Pesticide Factsheets

    Advanced testing methods now allow pesticides to be detected in water at very low levels. These small amounts of pesticides detected in drinking water or source water for drinking water do not necessarily indicate a health risk. The EPA has developed human health benchmarks for 363 pesticides to enable our partners to better determine whether the detection of a pesticide in drinking water or source waters for drinking water may indicate a potential health risk and to help them prioritize monitoring efforts.The table below includes benchmarks for acute (one-day) and chronic (lifetime) exposures for the most sensitive populations from exposure to pesticides that may be found in surface or ground water sources of drinking water. The table also includes benchmarks for 40 pesticides in drinking water that have the potential for cancer risk. The HHBP table includes pesticide active ingredients for which Health Advisories or enforceable National Primary Drinking Water Regulations (e.g., maximum contaminant levels) have not been developed.

  12. World Health Organization Discontinues Its Drinking-Water Guideline for Manganese

    PubMed Central

    Frisbie, Seth H.; Mitchell, Erika J.; Dustin, Hannah; Maynard, Donald M.

    2012-01-01

    Background: The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because “this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value.” Objective: In this commentary, we review the WHO guideline for Mn in drinking water—from its introduction in 1958 through its discontinuation in 2011. Methods: For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Discussion: Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. Conclusions: The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn. PMID:22334150

  13. [Knowledge, attitude and practice on drinking water of primary and secondary students in Shenzhen].

    PubMed

    Liu, Jiaxin; Hu, Xiaoqi; Zhang, Qian; Du, Songming; Pan, Hui; Dai, Xingbi; Ma, Guansheng

    2014-05-01

    To investigate the status on drinking water related knowledge, attitude and practice of primary and secondary students in Shenzhen. All 832 primary and secondary students from three schools in Shenzhen were selected by using multi-stage random sampling method. The information of drinking water related knowledge, time of drinking water and the type of drink chose in different situations were collected by questionnaires. 87.3% of students considered plain water being the healthiest drink in daily life, and the percent in girls (90.6%) was significantly higher than that in boys (84.4% ) (chi2 = 7.13, P = 0.0089). The awareness percent of the harm of dehydration was 84.5%. The percent in high school students (96.4%) was significantly higher than that in primary (73.9%) and middle school students (94.2%) (chi2 = 73.77, P < 0.0001). 63.7% of students considered that the healthiest time of drinking water was in the morning with an empty stomach, and 46.3% chose when they felt thirsty. However, 63.7% drank water when they felt thirsty, and 50.6% drank water in the morning with an empty stomach. The percent of drinking plain water at school was the highest (83.4%), followed by at home (64.1%) and in public (26.2%). There were 45.2% and 53.3% of students, respectively, choosing sugary drinks as their favorite drink and most frequently drinking in public places. Primary and secondary students in Shenzhen have a good awareness of drinking water, which is inconsistent with their practice. Meanwhile, a considerable proportion of students towards choosing drinks have many misconceptions. The education of healthy drinking water should be strengthened.

  14. Effect of coffee and tea on the glycaemic index of foods: no effect on mean but reduced variability.

    PubMed

    Aldughpassi, Ahmed; Wolever, Thomas M S

    2009-05-01

    Coffee and tea may influence glycaemic responses but it is not clear whether they affect the glycaemic index (GI) value of foods. Therefore, to see if coffee and tea affected the mean and SEM of GI values, the GI of fruit leather (FL) and cheese puffs (CP) were determined twice in ten subjects using the FAO/WHO protocol with white bread as the reference food. In one series subjects chose to drink 250 ml of either coffee or tea with all test meals, while in the other series they drank 250 ml water. The tests for both series were conducted as a single experiment with the order of all tests being randomised. Coffee and tea increased the overall mean peak blood glucose increment compared with water by 0.25 (SEM 0.09) mmol/l (P=0.02), but did not significantly affect the incremental area under the glucose response curve. Mean GI values were not affected by coffee or tea but the SEM was reduced by about 30% (FL: 31 (SEM 4) v. 35 (SEM 7) and CP: 76 (SEM 6) v. 75 (SEM 8) for coffee or tea v. water, respectively). The error mean square term from the ANOVA of the GI values was significantly smaller for coffee or tea v. water (F(18, 18) = 2.31; P=0.04). We conclude that drinking coffee or tea with test meals does not affect the mean GI value obtained, but may reduce variability and, hence, improve precision.

  15. [Analysis on current status of drinking water quality in rural areas of China].

    PubMed

    Zhang, L; Chen, Y; Chen, C; Wang, H; Yan, H Z; Zhao, Y C

    1997-01-01

    An investigation on drinking water quality in rural areas of 180 counties in 26 provinces, municipalities and autonomous regions of China was carried out. The population surveyed was 89.39 million. 69.6% of which was supplied with ground water. Central water supply systems served 47.1% of population. Quality of drinking water was graded according to the "Guidelines for Implementation of the 'Sanitary Standard for Drinking Water' in Rural Areas". The rate of population supplied with unqualified drinking water was 42.7%. The bacteriological indices of drinking water exceeded the standard seriously. Organic pollution occurred extensively. Some regions supplied with water of high concentration of fluoride.

  16. Effect of Safe Water on Arsenicosis: A Follow-up Study.

    PubMed

    Majumdar, Kunal K; Ghose, Aloke; Ghose, Nilima; Biswas, Anirban; Mazumder, D N Guha

    2014-04-01

    Arsenic pollution in groundwater, used for drinking purposes, has been envisaged as a problem of global concern. Treatment options for the management symptoms of chronic arsenicosis are limited. Mitigation option available for dealing with the health problem of ground water arsenic contamination rests mainly on supply of arsenic safe water in arsenic-endemic region of Indo-Bangladesh subcontinent. Limited information is available regarding the long-term effect of chronic arsenic toxicity after stoppage of consumption of arsenic-containing water. The current study was, therefore, done to assess, objectively, the effect of drinking arsenic safe water (<50 μg/L) on disease manifestation of arsenicosis. Manifestations of various skin lesions and systemic diseases associated with chronic arsenic exposure were ascertained initially by carrying on baseline study on 208 participants in Nadia (Cohort-I, with skin lesion and Cohort-II, without skin lesion) using a scoring system, as developed by us, and compared objectively at the end of each year for 3 year follow-up period. All the participants who had arsenic contaminated drinking water source in their houses were supplied with arsenic removal filters for getting arsenic-free water during the follow-up period. In participants belonging to Cohort-I, the skin score was found to improve significantly at the end of each year, and it was found to be reduced significantly from 2.17 ± 1.09 to 1.23 ± 1.17; P < 0.001 at the end of 3 year's intervention study indicating beneficial effect of safe water on skin lesions. The systemic disease symptom score was also found to improve, but less significantly, at the end of 3 years in both the cohorts. Most important observation during the follow-up study was persistence of severe symptoms of chronic lung disease and severe skin lesion including Bowen's disease in spite of taking arsenic-safe water. Further, death could not be prevented to occur because of lung cancer and severe lung disease. It is, therefore, an urgent need to make arrangement for availability of safe water source among the arsenic-affected people in the district. Many of the people in the affected villages are not aware of contamination of their home tube wells with arsenic. Awareness generation and motivation of the people for testing their drinking water sources for arsenic and environmental interventions like rain water harvesting, ground water recharge, and restricting excessive use of ground water for domestic and agricultural purposes are also important to prevent further exposure of arsenic to these people.

  17. Effects of pumping strategies on pesticide concentration of a drinking water well

    NASA Astrophysics Data System (ADS)

    Aisopou, A.; Bjerg, P. L.; Binning, P. J.; Albrechtsen, H.

    2011-12-01

    Groundwater is an important source of drinking water production in many countries including Denmark. This requires high quality groundwater that meets the standards of the European Water Framework Directive. Yet as a result of agricultural activitity, deposition and previous handling, pesticides are frequently found in groundwater and can raise a substantial problem for ground water abstraction. The concentration of this contamination may vary between different layers. The heterogeneity of the subsurface geology and the depth of the drinking water well's screen are important parameters that affect the resulting contamination of the abstracted groundwater. The pesticide concentration in wells may also be affected by the pumping strategy because pumping can alter the structure of the flow field, the flowpath of water going to the well and subsequently the age of water at the well. The purpose of this study was to examine numerically the effects of pumping on pesticide contamination of drinking water wells using a reactive transport model in a hypothetical aquifer system resembling a typical Danish well field. The application history of the pesticides is crucial. This can be taken into account by assessing the effects of pumping on water age distribution along the well. Three compounds with different application histories were considered: an old banned pesticide MCPP (Mecoprop) which is mobile and relatively persistent in deeper aquifers, and a highly applied, biodegradable and strongly sorbing pesticide glyphosate, and its degradation product AMPA. A steady state flow field was first computed. A well field was then introduced and different pumping regimes were applied for a period of 180 years; a low-rate pumping, a high-rate pumping and a varying pumping regime. A constant application rate at the surface was assumed for the application period of each pesticide. The pre-abstraction age distribution of the water in the system was first estimated using a steady-state flow and transport simulation. These water ages were then used as the initial conditions for the transient simulations. The results of the simulations showed that the range of water ages contributing to the well increased during pumping and was substantially affected by the pumping rate. High pesticide concentrations were persistent in the well 40 to 100 years after they were banned, due to the high residence times in the aquifer. Large changes in simulated pesticides concentrations at the well occurred during pumping. The pesticide concentration reaching the well was affected by the pumping regime and the pesticide application history and properties. A higher pumping rate induced a higher pesticide concentration peak at the well of shorter duration, while a lower pumping rate induced a lower concentration peak of longer duration. The long term scenarios revealed that at high pumping rates MCPP would disappear 40 years after its application end year, while glyphosate concentrations increase and reach a plateau, which is highly dependent on the pumping rate. The findings of the study help understand the results of groundwater monitoring programmes and can be used for the quantitative evaluation of management and pumping strategies for the long-term supply of safe potable groundwater.

  18. Compatibility Study of Silver Biocide in Drinking Water with Candidate Metals for Crew Exploration Vehicle Potable Water System

    NASA Technical Reports Server (NTRS)

    Adam, Niklas M.

    2009-01-01

    The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.

  19. Water drinking as a treatment for orthostatic syndromes

    NASA Technical Reports Server (NTRS)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P <0.01) 35 minutes after drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P <0.001). In patients with idiopathic orthostatic intolerance, water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P <0.001). CONCLUSION: Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  20. Hypospadias and maternal exposure to atrazine via drinking water in the National Birth Defects Prevention study.

    PubMed

    Winston, Jennifer J; Emch, Michael; Meyer, Robert E; Langlois, Peter; Weyer, Peter; Mosley, Bridget; Olshan, Andrew F; Band, Lawrence E; Luben, Thomas J

    2016-07-15

    Hypospadias is a relatively common birth defect affecting the male urinary tract. It has been suggested that exposure to endocrine disrupting chemicals might increase the risk of hypospadias by interrupting normal urethral development. Using data from the National Birth Defects Prevention Study, a population-based case-control study, we considered the role of maternal exposure to atrazine, a widely used herbicide and potential endocrine disruptor, via drinking water in the etiology of 2nd and 3rd degree hypospadias. We used data on 343 hypospadias cases and 1,422 male controls in North Carolina, Arkansas, Iowa, and Texas from 1998-2005. Using catchment level stream and groundwater contaminant models from the US Geological Survey, we estimated atrazine concentrations in public water supplies and in private wells. We assigned case and control mothers to public water supplies based on geocoded maternal address during the critical window of exposure for hypospadias (i.e., gestational weeks 6-16). Using maternal questionnaire data about water consumption and drinking water, we estimated a surrogate for total maternal consumption of atrazine via drinking water. We then included additional maternal covariates, including age, race/ethnicity, parity, and plurality, in logistic regression analyses to consider an association between atrazine and hypospadias. When controlling for maternal characteristics, any association between hypospadias and daily maternal atrazine exposure during the critical window of genitourinary development was found to be weak or null (odds ratio for atrazine in drinking water = 1. 00, 95 % CI = 0.97 to 1.03 per 0.04 μg/day increase; odds ratio for maternal consumption = 1.02, 95 % CI = 0.99 to 1.05; per 0.05 μg/day increase). While the association that we observed was weak, our results suggest that additional research into a possible association between atrazine and hypospadias occurrence, using a more sensitive exposure metric, would be useful.

  1. [Research and development of a vehicle-mounted drinking water installation and its purification effect].

    PubMed

    Gao, Junhong; Wan, Hong; Kong, Wei; Yue, Hong

    2012-01-01

    To provide a suitable vehicle-mounted installation to solve the problem of drinking water in the wild. The vehicle-mounted drinking water installation, made up of pre-treatment unit, purification unit, box and VECU, was used to storage, transport and purify water in the wild. The effect of purification was detected by assembling the installation in the wild and observing the change of water turbidity, TDS, the number of total bacteria and coliform bacteria before and after the treatment of water sources. The wild water sources, such as river water, rainwater, well water and spring water could be purified, and the quality of the treated water could meet the requirement of Drinking Water Quality Standard of CJ94-2005. The vehicle-mounted drinking water installation is suitable for purifying water sources in the wild for drinking use.

  2. Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water.

    PubMed

    de Jongh, Cindy M; Kooij, Pascal J F; de Voogt, Pim; ter Laak, Thomas L

    2012-06-15

    Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical uncertainty and variability in time and space, and research on possible synergistic effects of low concentration mixtures of compounds belonging to similar pharmacological classes require attention. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Fungi contamination of drinking water.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-01-01

    Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially accomplish this, by first filtering the water and finally by adding disinfection treatments adequate to remove or mitigate fungi or their toxic metabolites.

  4. Behavioral Effects of Developmental Methylmercury Drinking Water Exposure in Rodents

    PubMed Central

    Bisen-Hersh, Emily B.; Farina, Marcelo; Barbosa, Fernando; Rocha, Joao BT; Aschner, Michael

    2013-01-01

    Early methylmercury (MeHg) exposure can have long-lasting consequences likely arising from impaired developmental processes, the outcome of which has been exposed in several longitudinal studies of affected populations. Given the large number of newborns at an increased risk of learning disabilities associated with in utero MeHg exposure, it is important to study neurobehavioral alterations using ecologically valid and physiologically relevant models. This review highlights the benefits of using the MeHg drinking water exposure paradigm and outlines behavioral outcomes arising from this procedure in rodents. Combination treatments that exacerbate or ameliorate MeHg-induced effects, and possible molecular mechanisms underlying behavioral impairment are also discussed. PMID:24210169

  5. Fluoride and bacterial content of bottled drinking water versus municipal tap water.

    PubMed

    Mythri, H; Chandu, G N; Prashant, G M; Subba Reddy, V V

    2010-01-01

    Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs) per milliliter. Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.

  6. Estimating the probability of arsenic occurrence in domestic wells in the United States

    NASA Astrophysics Data System (ADS)

    Ayotte, J.; Medalie, L.; Qi, S.; Backer, L. F.; Nolan, B. T.

    2016-12-01

    Approximately 43 million people (about 14 percent of the U.S. population) rely on privately owned domestic wells as their source of drinking water. Unlike public water systems, which are regulated by the Safe Drinking Water Act, there is no comprehensive national program to ensure that the water from domestic wells is routinely tested and that is it safe to drink. A study published in 2009 from the National Water-Quality Assessment Program of the U.S. Geological Survey assessed water-quality conditions from 2,100 domestic wells within 48 states and reported that more than one in five (23 percent) of the sampled wells contained one or more contaminants at a concentration greater than a human-health benchmark. In addition, there are many activities such as resource extraction, climate change-induced drought, and changes in land use patterns that could potentially affect the quality of the ground water source for domestic wells. The Health Studies Branch (HSB) of the National Center for Environmental Health, Centers for Disease Control and Prevention, created a Clean Water for Health Program to help address domestic well concerns. The goals of this program are to identify emerging public health issues associated with using domestic wells for drinking water and develop plans to address these issues. As part of this effort, HSB in cooperation with the U.S. Geological Survey has created probability models to estimate the probability of arsenic occurring at various concentrations in domestic wells in the U.S. We will present preliminary results of the project, including estimates of the population supplied by domestic wells that is likely to have arsenic greater than 10 micrograms per liter. Nationwide, we estimate this to be just over 2 million people. Logistic regression model results showing probabilities of arsenic greater than the Maximum Contaminant Level for public supply wells of 10 micrograms per liter in domestic wells in the U.S., based on data for arsenic concentrations in domestic wells across the U.S. will be described, as well as the use of data on domestic-well use by county in the U.S., to estimate the affected population. Similar work has been done by public health professionals on a state and regional basis.

  7. Epidemiology of cancers in Serbia and possible connection with cyanobacterial blooms.

    PubMed

    Svirčev, Zorica; Drobac, Damjana; Tokodi, Nada; Lužanin, Zorana; Munjas, Ana Marija; Nikolin, Branislava; Vuleta, Dušan; Meriluoto, Jussi

    2014-01-01

    Cyanobacteria produce toxic metabolites known as cyanotoxins. These bioactive compounds can cause acute poisoning, and some of them may promote cancer through chronic exposure. Direct ingestion of and contact with contaminated water is one of the many exposure routes to cyanotoxins. The aim of this article was to review the incidence of 13 cancers during a 10-year period in Serbia and to assess whether there is a correlation between the cancer incidences and cyanobacterial bloom occurrence in reservoirs for drinking water supply. The types of cancers were chosen and subjected to epidemiological analyses utilizing previously published data. Based on the epidemiological and statistical analysis, the group of districts in which the incidences of cancers are significant, and may be considered as critical, include Nišavski, Toplički, and Šumadijski district. A significantly higher incidence of ten cancers was observed in the three critical districts as compared to the remaining 14 districts in Central Serbia. These elevated incidences of cancer include: brain cancer, heart, mediastinum and pleura cancer, ovary cancer, testicular cancer, gastric cancer, colorectal cancer, retroperitoneum and peritoneum cancer, leukemia, malignant melanoma of skin, and primary liver cancer. In addition, the mean incidence of five chosen cancers was the highest in the three critical regions, then in the rest of Central Serbia, while the lowest values were recorded in Vojvodina. Persistent and recurrent cyanobacterial blooms occur during summer months in reservoirs supplying water to waterworks in the three critical districts. People in Central Serbia mainly use surface water as water supply (but not all the water bodies are blooming) while in Vojvodina region (control region in this study) only groundwater is used. Among the 14 "noncritical" districts, reservoirs used for drinking water supply have been affected by recurrent cyanobacterial blooms in two districts (Rasinski and Zaječarski), but the waterworks in these districts have been performing ozonation for more than 30 years. We propose that the established statistical differences of cancer incidences in Serbia could be related to drinking water quality, which is affected by cyanobacterial blooms in drinking water reservoirs in certain districts. However, more detailed research is needed regarding cyanobacterial secondary metabolites as risk factors in tumor promotion and cancerogenesis in general.

  8. The concentrations of arsenic and other toxic elements in Bangladesh's drinking water.

    PubMed

    Frisbie, Seth H; Ortega, Richard; Maynard, Donald M; Sarkar, Bibudhendra

    2002-11-01

    For drinking water, the people of Bangladesh used to rely on surface water, which was often contaminated with bacteria causing diarrhea, cholera, typhoid, and other life-threatening diseases. To reduce the incidences of these diseases, millions of tubewells were installed in Bangladesh since independence in 1971. This recent transition from surface water to groundwater has significantly reduced deaths from waterborne pathogens; however, new evidence suggests disease and death from arsenic (As) and other toxic elements in groundwater are affecting large areas of Bangladesh. In this evaluation, the areal and vertical distribution of As and 29 other inorganic chemicals in groundwater were determined throughout Bangladesh. This study of 30 analytes per sample and 112 samples suggests that the most significant health risk from drinking Bangladesh's tubewell water is chronic As poisoning. The As concentration ranged from < 0.0007 to 0.64 mg/L, with 48% of samples above the 0.01 mg/L World Health Organization drinking water guideline. Furthermore, this study reveals unsafe levels of manganese (Mn), lead (Pb), nickel (Ni), and chromium (Cr). Our survey also suggests that groundwater with unsafe levels of As, Mn, Pb, Ni, and Cr may extend beyond Bangladesh's border into the four adjacent and densely populated states in India. In addition to the health risks from individual toxins, possible multimetal synergistic and inhibitory effects are discussed. Antimony was detected in 98% of the samples from this study and magnifies the toxic effects of As. In contrast, Se and Zn were below our detection limits in large parts of Bangladesh and prevent the toxic effects of As.

  9. Prevalence of exposure of heavy metals and their impact on health consequences.

    PubMed

    Rehman, Kanwal; Fatima, Fiza; Waheed, Iqra; Akash, Muhammad Sajid Hamid

    2018-01-01

    Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal-contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal-contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed. © 2017 Wiley Periodicals, Inc.

  10. THE EPIDEMIOLOGY OF CHEMICAL CONTAMINANTS OF DRINKING WATER

    EPA Science Inventory



    A number of chemical contaminants have been identified in drinking water. These contaminants reach drinking water supplies from various sources, including municipal and industrial discharges, urban and rural run-off, natural geological formations, drinking water distrib...

  11. Formative Research to Design a Promotional Campaign to Increase Drinking Water among Central American Latino Youth in an Urban Area.

    PubMed

    Barrett, Nicole; Colón-Ramos, Uriyoán; Elkins, Allison; Rivera, Ivonne; Evans, W Douglas; Edberg, Mark

    2017-06-01

    Latinos consume more sugary drinks and less water than other demographic groups. Our objective was to understand beverage choice motivations and test promotional concepts that can encourage Central American Latino urban youth to drink more water. Two rounds of focus group discussions were conducted (n = 10 focus groups, 61 participants, 6-18 years old). Data were transcribed verbatim and analyzed using inductive and deductive coding approaches. Youth motivations for drinking water were shaped by level of thirst, weather, energy, and perceptions of health benefits. Youth were discouraged from drinking water due to its taste and perceptions of the safety and cleanliness of tap water. Youth beverage preference depended on what their friends were drinking. Availability of water versus other beverages at home and other settings influenced their choice. Promotional materials that included mixed language, informative messages about the benefits of drinking water, and celebrities or athletes who were active, energized, and drinking water were preferred. A promotional campaign to increase water consumption among these Latino youth should include bicultural messages to underscore the power of water to quench true thirst, highlight the health benefits of drinking water, and address the safety of tap water.

  12. Dynamics of drinking water biofilm in flow/non-flow conditions.

    PubMed

    Manuel, C M; Nunes, O C; Melo, L F

    2007-02-01

    Drinking water biofilm formation on polyvinyl chloride (PVC), cross-linked polyethylene (PEX), high density polyethylene (HDPE) and polypropylene (PP) was followed in three different reactors operating under stagnant or continuous flow regimes. After one week, a quasi-steady state was achieved where biofilm total cell numbers per unit surface area were not affected by fluctuations in the concentration of suspended cells. Metabolically active cells in biofilms were around 17-35% of the total cells and 6-18% were able to form colony units in R(2)A medium. Microbiological analysis showed that the adhesion material and reactor design did not affect significantly the biofilm growth. However, operating under continuous flow (0.8-1.9 Pa) or stagnant water had a significant effect on biofilm formation: in stagnant waters, biofilm grew to a less extent. By applying mass balances and an asymptotic biofilm formation model to data from biofilms grown on PVC and HDPE surfaces under turbulent flow, specific growth rates of bacteria in the biofilm were found to be similar for both materials (around 0.15 day(-1)) and much lower than the specific growth rates of suspended bacteria (around 1.8 day(-1)).

  13. Water-induced thermogenesis reconsidered: the effects of osmolality and water temperature on energy expenditure after drinking.

    PubMed

    Brown, Clive M; Dulloo, Abdul G; Montani, Jean-Pierre

    2006-09-01

    A recent study reported that drinking 500 ml of water causes a 30% increase in metabolic rate. If verified, this previously unrecognized thermogenic property of water would have important implications for weight-loss programs. However, the concept of a thermogenic effect of water is controversial because other studies have found that water drinking does not increase energy expenditure. The objective of the study was to test whether water drinking has a thermogenic effect in humans and, furthermore, determine whether the response is influenced by osmolality or by water temperature. This was a randomized, crossover design. The study was conducted at a university physiology laboratory. Participants included healthy young volunteer subjects. Intervention included drinking 7.5 ml/kg body weight (approximately 518 ml) of distilled water or 0.9% saline or 7% sucrose solution (positive control) on different days. In a subgroup of subjects, responses to cold water (3 C) were tested. Resting energy expenditure, assessed by indirect calorimetry for 30 min before and 90 min after the drinks, was measured. Energy expenditure did not increase after drinking either distilled water (P = 0.34) or 0.9% saline (P = 0.33). Drinking the 7% sucrose solution significantly increased energy expenditure (P < 0.0001). Drinking water that had been cooled to 3 C caused a small increase in energy expenditure of 4.5% over 60 min (P < 0.01). Drinking distilled water at room temperature did not increase energy expenditure. Cooling the water before drinking only stimulated a small thermogenic response, well below the theoretical energy cost of warming the water to body temperature. These results cast doubt on water as a thermogenic agent for the management of obesity.

  14. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    PubMed

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  16. 76 FR 72703 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... small water systems and efforts underway to address nutrient pollution of drinking water supplies. The... ENVIRONMENTAL PROTECTION AGENCY [FRL-9496-4] Meeting of the National Drinking Water Advisory... meeting. SUMMARY: Notice is hereby given of a meeting of the National Drinking Water Advisory Council...

  17. 76 FR 33756 - Notice of Approval of the Primacy Application for National Primary Drinking Water Regulations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Primacy Application for National Primary Drinking Water Regulations for the State of Missouri AGENCY... Department of Natural Resources, Public Drinking Water Branch, 1101 Riverside Drive, Jefferson City, MO 65101. (2) Environmental Protection Agency-Region 7, Water Wetlands and Pesticides Division, Drinking Water...

  18. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time

    USGS Publications Warehouse

    Gibs, J.; Stackelberg, P.E.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2??mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10??days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24??h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution. ?? 2006 Elsevier B.V. All rights reserved.

  19. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time.

    PubMed

    Gibs, Jacob; Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael; Zaugg, Steven D; Lippincott, Robert Lee

    2007-02-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2 mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10 days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24 h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution.

  20. Drinking water and health research: a look to the future in the United States and globally.

    PubMed

    Sobsey, Mark D

    2006-01-01

    Drinking water supplies continue to be a major source of human disease and death globally because many of them remain unsafe and vulnerable. Greater efforts are needed to address the key issues and questions which influence the provision of safe drinking water. Efforts are needed to re-evaluate and set new and better priorities for drinking water research and practice. More stakeholders need to be included in the processes of identifying key issues and setting priorities for safe drinking water. The overall approach to drinking water research and the provision of safe drinking water needs to become more rational and scientific, and become more visionary and anticipatory of the ever-present and emerging risks to drinking water safety. Collectively, we need to do a better job of making safe water available, accessible and affordable for all. One such approach to safe water for all is household water treatment and safe storage, which is being promoted globally by the World Health Organization and many other stakeholders and partners to reduce the global burden of waterborne disease.

  1. Effects of human placental S9 and induced rat liver S9 on the mutagenicity of drinking waters processed from humus-rich surface waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartiainen, T.; Lampelo, S.

    The mutagenicity of chlorinated drinking waters processed from humus-rich surface waters has been shown to be very high. The effect of placental S9 on the mutagenicity of drinking waters has not been studied previously. The purpose of this study was to compare the effects of human placental and rat liver microsomal fractions on the mutagenicity of drinking waters processed from humus-rich surface waters. The samples of 34 drinking and two raw waters from 26 localities in Finland were tested for mutagenicity in Ames Salmonella typhimurium tester strain TA100 with and without metabolic activations. Between the drinking water samples, clear differencesmore » were recorded in the presence of placental and rat liver S9, suggesting different mutagens in the drinking waters. Rat liver S9 decreased the mutagenicities of drinking water concentrates, but placental S9 increased, decreased, or had no effect. It is not known if placental mutagenicity enhancing system might cause any health hazard to a developing fetus.« less

  2. THE DRINKING WATER TREATABILITY DATABASE (Slides)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  3. Middle School Student Attitudes about School Drinking Fountains and Water Intake

    PubMed Central

    Patel, Anisha I.; Bogart, Laura M.; Klein, David J.; Cowgill, Burt; Uyeda, Kimberly E.; Hawes-Dawson, Jennifer; Schuster, Mark A.

    2014-01-01

    Objective Describe middle school student attitudes about school drinking fountains, investigate whether such attitudes are associated with intentions to drink water at school, and determine how intentions relate to overall water intake. Methods Students (n=3,211) in 9 California middle schools completed surveys between 2009–2011. We used multivariate linear regression, adjusting for school sociodemographic characteristics, to examine how attitudes about fountains (5-point scale; higher scores indicating more positive attitudes) were associated with intentions to drink water at school and how intentions to drink water at school were related to overall water intake. Results Mean age of students was 12.3 (SD=0.7) years; 75% were Latino, 89% low-income, and 39% foreign-born. Fifty-two percent reported lower than recommended overall water intake (<3 glasses/day), and 30% reported that they were unlikely or extremely unlikely to drink water at school. Fifty-nine percent reported that school fountains were unclean, 48% that fountain water does not taste good, 33% that fountains could make them sick, 31% that it was not okay to drink from fountains, and 24% that fountain water is contaminated. In adjusted analyses, attitudes about school drinking fountains were related to intentions to drink water at school (B=0.41; p-value <0.001); intentions to drink water at school were also associated with overall water intake (B=0.20; p-value <0.001). Conclusions and Relevance Students have negative attitudes about school fountains. To increase overall water intake, it may be important to promote and improve drinking water sources not only at school, but also at home and in other community environments. What’s New Although most schools provide water via fountains, little is known about student attitudes about fountains. In this study, middle school students had negative attitudes about fountains; such attitudes were associated with lower intentions to drink water at school. PMID:25169158

  4. Nitrate and ammonia contaminations in drinking water and the affecting factors in Hailun, northeast China.

    PubMed

    Zhao, Xinfeng; Chen, Liding; Zhang, Haiping

    2013-03-01

    Drinking water samples (N = 228) from domestic tube wells (DTWs) and seven samples from public water supply wells (PWSWs) were collected and tested in Hailun, northeast China. The percentage of samples with nitrate and ammonia concentrations above the maximum acceptable concentration of nitrate, 10 mg N/L, and the maximum ensure concentration of ammonia, 1.5 mg/L, for the DTWs were significantly higher than for the PWSWs. Of the DTWs, an important observation was that the occurrence of groundwater nitrate contamination was directly related to well tube material with different joint pathways. Nitrate in seamless-tube wells was lower statistically significantly than those in multiple-section-tube wells (p < .001). Furthermore, well depth and hydrogeological setting might have some impacts on nitrogen contamination and the major sources of inorganic nitrogen contamination may be nitrogenous chemical fertilizer. Therefore, PWSWs built for all families are the best way to ensure the drinking water safety in villages. For DTWs it is necessary to use seamless tubes and to dig deep enough according to the depth of groundwater level. Improving the efficiency of chemical fertilizer use would also reduce the risk of groundwater contamination.

  5. Simultaneous detection of perchlorate and bromate using rapid high-performance ion exchange chromatography-tandem mass spectrometry and perchlorate removal in drinking water.

    PubMed

    West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan

    2015-06-01

    Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.

  6. Different Choices of Drinking Water Source and Different Health Risks in a Rural Population Living Near a Lead/Zinc Mine in Chenzhou City, Southern China.

    PubMed

    Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan

    2015-11-12

    This study aimed to describe the households' choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10(-9)~3.62 × 10(-5). The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water's highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals.

  7. 76 FR 71560 - Notice of a Public Meeting on Long Term 2 Enhanced Surface Water Treatment Rule: Initiate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... Management Division, Office of Ground Water and Drinking Water (MC 4607M), Environmental Protection Agency... drinking water. The 1996 Amendments to the Safe Drinking Water Act (SDWA) require EPA to review its existing drinking water regulations every six years. SDWA specifies that any revision to a national primary...

  8. Pyrosequence Analysis of the hsp65 Genes of Nontuberculous Mycobacterium Communities in Unchlorinated Drinking Water in the Netherlands

    PubMed Central

    Heijnen, Leo; van der Kooij, Dick

    2013-01-01

    Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance. PMID:23913420

  9. Pyrosequence analysis of the hsp65 genes of nontuberculous mycobacterium communities in unchlorinated drinking water in the Netherlands.

    PubMed

    van der Wielen, Paul W J J; Heijnen, Leo; van der Kooij, Dick

    2013-10-01

    Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance.

  10. Dissemination of well water arsenic results to homeowners in Central Maine: Influences on mitigation behavior and continued risks for exposure

    PubMed Central

    Flanagan, Sara V.; Marvinney, Robert G.; Johnston, Robert A.; Yang, Qiang; Zheng, Yan

    2014-01-01

    Private wells in the United States are unregulated for drinking water standards and are the homeowner’s responsibility to test and treat. Testing for water quality parameters such as arsenic (As) is a crucial first step for homeowners to take protective actions. This study seeks to identify key behavioral factors influencing homeowners’ decisions to take action after receiving well As test results. A January 2013 survey of central Maine households (n=386, 73% response) who were notified 3–7 years earlier that their well water contained As above 10 μg/L found that 43% of households report installing As treatment systems. Another 30% report taking other mitigation actions such as drinking bottled water because of the As, but the remaining 27% of households did not act. Well water As level appears to be a motivation for mitigation: 31% of households with well water level between 10 and 50 μg/L did not act, compared to 13% of households with well water > 50 μg/L. Belief that the untreated water is not safe to drink (risk) and that reducing drinking water As would increase home value (instrumental attitude) were identified as significant predictors of mitigating As. Mitigating As exposure is associated with less worry about the As level (affective attitude), possibly because those acting to reduce exposure feel less worried about As. Use of a treatment system specifically was significantly predicted by confidence that one can maintain a treatment system, even if there are additional costs (self-efficacy). An assessment of As treatment systems used by 68 of these households with well water As >10 μg/L followed up with in August-November 2013 found that 15% of treatment units failed to produce water below As 10 μg/L, suggesting there are continued risks for exposure even after the decision is made to treat. PMID:24726512

  11. Groundwater Contributions to Intermittent Streamflow in a Headwater Catchment: How do Geoclimatic Controls Influence Downstream Water Quality?

    NASA Astrophysics Data System (ADS)

    Smull, E. M.; Gooseff, M. N.; Singha, K.

    2014-12-01

    Hydrologic connectivity of headwater catchments affects surface water yield and quality of downstream drinking water supplies. Lower Gordon Gulch, a 2.75 km2 catchment, is part of the Boulder Creek watershed - the primary drinking water supply for the city of Boulder, Colorado. We hypothesize that the geologic and climatic environment within the catchment controls the magnitude, timing, and duration of hydrologic connection between the landscape and the stream, and thus the distribution of major ions to the surface water. Specifically, bedrock patterns, vegetation type and density, and snowpack dynamics influence how precipitation inputs move from the hillslopes to the catchment outlet. Preliminary results suggest that north-facing hillslopes with steeper slopes, deeper weathering of bedrock, denser vegetation stands, and a seasonal snowpack, provide consistently greater groundwater inputs to the stream compared to the south-facing hillslopes. We believe that this is in part due to subsurface bedrock patterns forcing a dominate cross-valley gradient. Through an extensive observation network of hillslope wells, periodic stream water balance measurements, and synoptic chemistry samples, we plan to continue our assessment of the spatio-temporal connectivity dynamics throughout the seasonal dry down (late summer through winter), during which streamflow can be intermittent. Results will help to guide landuse practices of upland catchments with respect to their role in Boulder's drinking water supply.

  12. Water Supply Provision in Sarbagita Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Humaira, ANS; Rachmat, SY

    2017-07-01

    Sarbagita (Denpasar, Badung, Gianyar, and Tabanan) Metropolitan Area is one of seven metropolitan areas in Indonesia, located in the coastal region of Bali Island. Providing clean water in the coastal region is generally constrained by the limited sources of water. Besides, there is also disparity issue between the core and peri-urban area. The purpose of this study is to explore the conditions of water supply provision in Metropolitan Sarbagita in the context of coastal and peri-urban region. The methods of analysis used are descriptive and association analysis. The analysis shows that the location in the coastal area and peri-urban area does not affect the water supply provision for the case of daily safe water yet it does affect significantly in the specific context of drinking water source.

  13. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA

    NASA Astrophysics Data System (ADS)

    Brima, Eid I.

    2017-03-01

    Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.

  14. Developmental neurotoxicity of monocrotophos and lead is linked to thyroid disruption

    PubMed Central

    Kumar, B. Kala; Reddy, A. Gopala; Krishna, A. Vamsi; Quadri, S. S. Y. H.; Kumar, P. Shiva

    2016-01-01

    Aim: A role of thyroid disruption in developmental neurotoxicity of monocrotophos (MCP) and lead is studied. Materials and Methods: A total of 24 female rats after conception were randomized into four groups of six each and treated as follows: Group I - Sham was administered distilled water orally. Group II - A positive control was administered methyl methimazole at 0.02% orally in drinking water. Group III - MCP orally at 0.3 mg/kg and Group IV - Lead acetate at 0.2% orally in drinking water. The drug was administered from gestation day 3 through post-natal day 21 in all the groups. Acetylcholinesterase (AChE) inhibition, thyroid profile (thyroid stimulating hormone, T3 and T4), neurodevelopment (brain wet weights, DNA, RNA and protein), and neurobehavioral (elevated plus maze, photoactometry, and Morris water maze) parameters were assessed in pups. A histopathology of thyroid of dams and brain of progeny was conducted. Results: Inhibition of AChE was <20%. Thyroid profile decreased in the treatment groups. Neurodevelopmental and neurobehavioral parameters did not reveal any significant changes. Thyroid architecture was affected significantly with MCP and lead. Cortical layers too were affected. The three layers of cerebellum either had abnormal arrangement or decreased cellularity in all treated groups relating to thyroid disruption. Conclusion: MCP and lead might have affected the development of cerebrum and cerebellum via thyroid disruption leading to developmental neurotoxicity. PMID:27051198

  15. Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water.

    PubMed

    Jia, Aiyin; Wu, Chunde; Duan, Yan

    2016-05-05

    This study investigated the precursors and factors affecting formation of haloacetonitriles (HANs) and chloropicrin (TCNM) during chlorination/chloramination of eight amino acids in the effluent water of V-type clarifying filtration from a drinking water treatment plant. The yields of trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN) and TCNM were higher during chlorination than during chloramination. Tyrosine and tryptophan produced the greatest amount of DCAN and also generated a small amount of TCAN during chlorination process. Besides, the yields of DCAN were higher than TCNM during chlorination/chloramination. Contact time, Cl2:org-N molar ratios, pH, temperature and bromide ion affected nitrogenous disinfection by-products (N-DBPs) formation during chlorination of tryptophan in different degrees. TCAN, DCAN and TCNM formation showed the increasing and then decreasing with prolonged contact time. Higher Cl2:org-N molar ratios improved N-DBPs formation within a certain range. The pH affected N-DBPs formation differently. HANs increased with increasing pH from 5 to 6 and decreased with increasing pH from 6 to 9, while TCNM increased with increasing pH from 5 to 9. Higher temperatures enhanced TCNM formation, but reduced the formation of TCAN and DCAN. The presence of bromide ions improved the yields of HANs and TCNM and shifted N-DBPs to more brominated ones. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Quality of Kelantan drinking water and knowledge, attitude and practice among the population of Pasir Mas, Malaysia.

    PubMed

    Ab Razak, N H; Praveena, S M; Aris, A Z; Hashim, Z

    2016-02-01

    Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk. Information on KAP was collected using a standardized questionnaire. Heavy metal analysis of drinking water samples was performed using graphite furnace atomic absorption spectrophotometry. The population of Pasir Mas has good knowledge (80%), a less positive attitude (93%) and good practice (81%) towards heavy metal contamination of drinking water. The concentrations of heavy metals analysed in this study were found to be below the permissible limits for drinking water set by the Malaysian Ministry of Health and the World Health Organization. The HRA showed no potential non-carcinogenic and carcinogenic risks from the intake of heavy metal through drinking water. By investigating the quality of drinking water, KAP and HRA, the results of this study will provide authorities with the knowledge and resources to improve the management of drinking water quality in the future. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. THE DRINKING WATER TREATABILITY DATABASE (Conference Paper)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  18. 40 CFR 141.201 - General public notification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking... violations of national primary drinking water regulations (NPDWR) and for other situations, as listed in... required by the drinking water regulations. (iv) Failure to comply with testing procedures as prescribed by...

  19. BOOK REVIEW OF "DRINKING WATER REGULATION AND HEALTH"

    EPA Science Inventory

    Since the enactment of the Safe Drinking Water Act (SDWA) in 1974, several amendments and other new regulations have been developed for drinking water. The book, "Drinking Water Regulation and Health", explains these regulations and provides background on why they were developed ...

  20. Solid-phase microextraction of organophosphate pesticides in source waters for drinking water treatment facilities.

    PubMed

    Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda

    2006-09-01

    The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.

Top