Science.gov

Sample records for affect drug absorption

  1. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  2. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  3. Conditions and drugs interfering with thyroxine absorption.

    PubMed

    Liwanpo, Llanyee; Hershman, Jerome M

    2009-12-01

    Food, dietary fibre and espresso coffee interfere with the absorption of levothyroxine. Malabsorptive disorders reported to affect the absorption of levothyroxine include coeliac disease, inflammatory bowel disease, lactose intolerance as well as Helicobacter pylori (H. pylori) infection and atrophic gastritis. Many commonly used drugs, such as bile acid sequestrants, ferrous sulphate, sucralfate, calcium carbonate, aluminium-containing antacids, phosphate binders, raloxifene and proton-pump inhibitors, have also been shown to interfere with the absorption of levothyroxine. PMID:19942153

  4. Drugs affecting glycosaminoglycan metabolism.

    PubMed

    Ghiselli, Giancarlo; Maccarana, Marco

    2016-07-01

    Glycosaminoglycans (GAGs) are charged polysaccharides ubiquitously present at the cell surface and in the extracellular matrix. GAGs are crucial for cellular homeostasis, and their metabolism is altered during pathological processes. However, little consideration has been given to the regulation of the GAG milieu through pharmacological interventions. In this review, we provide a classification of small molecules affecting GAG metabolism based on their mechanism of action. Furthermore, we present evidence to show that clinically approved drugs affect GAG metabolism and that this could contribute to their therapeutic benefit. PMID:27217160

  5. Drugs affecting the eye.

    PubMed

    Taylor, F

    1985-08-01

    This discussion reviews drugs that affect the eye, including antihyperglycemic agents; corticosteroids; antirheumatic drugs (quinolines, indomethacin, and allopurinol); psychiatric drugs (phenothiazine, thioridazine, and chlorpromazine); drugs used in cardiology (practolol, amiodarone, and digitalis gylcosides); drugs implicated in optic neuritis and atrophy, drugs with an anticholinergic action; oral contraceptives (OCs); and topical drugs and systemic effects. Refractive changes, either myopic or hypermetropic, can occur as a result of hyperglycemia, and variation in vision is sometimes a presenting symptom in diabetes mellitus. If it causes a change in the refraction, treatment of hyperglycemia almost always produces a temporary hypermetropia. A return to the original refractive state often takes weeks, sometimes months. There is some evidence that patients adequately treated with insulin improve more rapidly than those taking oral medication. Such patients always should be referred for opthalmological evaluation as other factors might be responsible, but it might not be possible to order the appropriate spectacle correction for some time. The most important ocular side effect of the systemic adiministration of corticosteroids is the formation of a posterior subcapsular cataract. Glaucoma also can result from corticosteroids, most often when they are applied topically. Corticosteroids have been implicated in the production of benign intracranial hypertension, which is paradoxical because they also are used in its treatment. The most important side effect of drugs such as chloroquine and hydroxychloroquine is an almost always irreversible maculopathy with resultant loss of central vision. Corneal and retinal changes similar to those caused by the quinolines have been reported with indomethacin, but there is some question about a cause and effect relationship. The National Registry of Drug Induced Ocular Side Effects in the US published 30 case histories of

  6. Maximum entropy and drug absorption.

    PubMed

    Charter, M K; Gull, S F

    1991-10-01

    The application of maximum entropy to the calculation of drug absorption rates was introduced in an earlier paper. Here it is developed further, and the whole procedure is presented as a problem in scientific inference to be solved using Bayes' theorem. Blood samples do not need to be taken at equally spaced intervals, and no smoothing, interpolation, extrapolation, or other preprocessing of the data is necessary. The resulting input rate estimates are smooth and physiologically realistic, even with noisy data, and their accuracy is quantified. Derived quantities such as the proportion of the dose absorbed, and the mean and median absorption times, are also obtained, together with their error estimates. There are no arbitrarily valued parameters in the analysis, and no specific functional form, such as an exponential or polynomial, is assumed for the input rate functions. PMID:1783989

  7. A Quantitative Review and Meta-models of the Variability and Factors Affecting Oral Drug Absorption-Part II: Gastrointestinal Transit Time.

    PubMed

    Abuhelwa, Ahmad Y; Foster, David J R; Upton, Richard N

    2016-09-01

    This study aimed to conduct a quantitative meta-analysis for the values of, and variability in, gastrointestinal (GI) transit times of non-disintegrating single-unit ("tablet") and multiple-unit ("pellets/multi-unit tablet") solid dosage forms, characterize the effect of food on the values and variability in these parameters and present quantitative meta-models of the distributions of GI transit times in the respective GI regions to help inform models of oral drug absorption. The literature was systemically reviewed for the values of, and the variability in, gastric, small intestinal and colonic transit times under fed and fasted conditions. Meta-analysis used the "metafor" package of the R language. Meta-models of GI transit were assumed to be log-normally distributed between the studied populations. Twenty-nine studies including 125 reported means and standard deviations were used in the meta-analysis. Caloric content of administered food increased variability and delayed the gastric transit of both pellets and tablets. Conversely, food caloric content reduced the variability but had no significant influence on the mean small intestinal transit time (SITT). Food had no significant effect on the transit time through the colon. The transit of pellets through the colon was significantly slower than that of single-unit tablets which is most likely related to their smaller size. GI transit times may influence the dissolution and absorption of oral drugs. The meta-models of GI transit times may be used as part of semi-physiological absorption models to characterize the influence of transit time on the dissolution, absorption and in vivo pharmacokinetic profiles of oral drugs. PMID:27439620

  8. A Quantitative Review and Meta-Models of the Variability and Factors Affecting Oral Drug Absorption-Part I: Gastrointestinal pH.

    PubMed

    Abuhelwa, Ahmad Y; Foster, David J R; Upton, Richard N

    2016-09-01

    This study aimed to conduct a quantitative meta-analysis for the values of, and variability in, gastrointestinal (GI) pH in the different GI segments; characterize the effect of food on the values and variability in these parameters; and present quantitative meta-models of distributions of GI pH to help inform models of oral drug absorption. The literature was systemically reviewed for the values of, and the variability in, GI pH under fed and fasted conditions. The GI tract was categorized into the following 10 distinct regions: stomach (proximal, mid-distal), duodenum (proximal, mid-distal), jejunum and ileum (proximal, mid, and distal small intestine), and colon (ascending, transverse, and descending colon). Meta-analysis used the "metafor" package of the R language. The time course of postprandial stomach pH was modeled using NONMEM. Food significantly influenced the estimated meta-mean stomach and duodenal pH but had no significant influence on small intestinal and colonic pH. The time course of postprandial pH was described using an exponential model. Increased meal caloric content increased the extent and duration of postprandial gastric pH buffering. The different parts of the small intestine had significantly different pH. Colonic pH was significantly different for descending but not for ascending and transverse colon. Knowledge of GI pH is important for the formulation design of the pH-dependent dosage forms and in understanding the dissolution and absorption of orally administered drugs. The meta-models of GI pH may also be used as part of semi-physiological pharmacokinetic models to characterize the effect of GI pH on the in vivo drug release and pharmacokinetics. PMID:27495120

  9. Factors affecting gallbladder motility: drugs.

    PubMed

    Marzio, L

    2003-07-01

    Various drugs and medications that inhibit or stimulate gallbladder contraction and basal tone in humans are described. Active gallbladder contraction may be achieved using synthetic hormones such as cholecystokinin, caerulein and motilin, cholinomimetic drugs such as bethanecol, prostigmine, and erythromycin due to its motilin-like effect. Furthermore, cisapride and cholestyramine, may have some excitatory activity on the gallbladder muscle. Intravenous amino acids also induce gallbladder contraction through the release of cholecystokinin. Inhibition of gallbladder contraction induced by a meal, or reduction of the basal fasting tone may be achieved by using atropine and other cholinergics, and by inhibitory hormones such as somatostatin, the nitric acid releaser arginine, the calcium channel antagonist nifedipine, and progesterone. Other drugs such as trimebutine, loperamide and ondansetron may negatively affect gallbladder contraction. PMID:12974504

  10. Dietary factors affecting calcium and zinc absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rickets is common in Nigerian children and responds better to calcium (Ca) than to vitamin D supplementation. We reported in previous studies in which oral isotopes were given with maize pap that Ca intakes are similarly low and Ca absorption (abs) similarly high in rachitic and non-rachitic Nigeria...

  11. PREDICTING DRUG DISPOSITION, ABSORPTION / ELIMINATION / TRANSPORTER INTERPLAY AND THE ROLE OF FOOD ON DRUG ABSORPTION

    PubMed Central

    Custodio, Joseph M.; Wu, Chi-Yuan; Benet, Leslie Z.

    2008-01-01

    The ability to predict drug disposition involves concurrent consideration of many chemical and physiological variables and the effect of food on the rate and extent of availability adds further complexity due to postprandial changes in the gastrointestinal (GI) tract. A system that allows for the assessment of the multivariate interplay occurring following administration of an oral dose, in the presence or absence of meal, would greatly benefit the early stages of drug development. This is particularly true in an era when the majority of new molecular entities are highly permeable, poorly soluble, extensively metabolized compounds (BDDCS Class 2), which present the most complicated relationship in defining the impact of transporters due to the marked effects of transporter-enzyme interplay. This review evaluates the GI luminal environment by taking into account the absorption / transport / elimination interplay and evaluates the physiochemical property issues by taking into account the importance of solubility, permeability and metabolism. We concentrate on the BDDCS and its utility in predicting drug disposition. Furthermore, we focus on the effect of food on the extent of drug availability (F), which appears to follow closely what might be expected if a significant effect of high fat meals is inhibition of transporters. That is, high fat meals and lipidic excipients would be expected to have little effect on F for Class 1 drugs; they would increase F of Class 2 drugs, while decreasing F for Class 3 drugs. PMID:18199522

  12. Drug-drug interactions affecting fluoroquinolones.

    PubMed

    Wijnands, G J; Vree, T B; Janssen, T J; Guelen, P J

    1989-12-29

    In a three-week study, the metabolism of the bronchodilator theophylline and its major metabolites formed by C-8 oxidation (1,3-dimethyluric acid) and N-demethylation (3-methylxanthine and 1-methyluric acid) was investigated in two healthy volunteers. Metabolic studies were performed following intravenous infusion of a single 6 mg/kg dose of aminophylline. During Week 1, theophylline was given alone (blank period), and during Weeks 2 and 3 it was given during oral coadministration of ofloxacin and enoxacin, respectively. Dosage of each quinolone was 200 mg twice daily for four days, starting three days prior to the theophylline infusion. During enoxacin coadministration, elimination half-lives of theophylline increased from 8.7 to 17.4 hours and from 6.1 to 12.3 hours, respectively. Total body clearance of theophylline decreased in both volunteers, whereas renal clearance did not alter. From this it was concluded that the decreased elimination results from a reduced metabolic clearance. During enoxacin coadministration, the formation of the metabolites 1-methyluric acid and 3-methylxanthine clearly was decreased, whereas the formation of 1,3-dimethyluric acid was less affected compared with the blank period. Interference with theophylline disposition by enoxacin is based predominantly on inhibition of microsomal N-demethylation. Ofloxacin comedication did not cause a change in the plasma parameters or renal excretion of theophylline and its metabolites compared with the blank period. PMID:2603893

  13. On the absorption of drugs using chronic dog ileal loop method.

    PubMed

    Kukan, M; Bezek, S; Trnovec, T; Gabauer, I; Styk, J

    1994-01-01

    The absorption rate of three model drugs, i.e., pentacaine (highly lipophilic), stobadine (moderately lipophilic) and acetylsalicylic acid (hydrophilic), was studied using the chronic dog ileal loop method. The drugs were dissolved either in 0.9% unbuffered solution of NaCl or in antacid mixture. When using 0.9% NaCl, the half-lives of absorption (t1/2 (dis)) of pentacaine and stobadine were (mean +/- SD) 23.2 +/- 7.8 min and 20.8 +/- 7.2 min, respectively. For stobadine a good agreement was found between its t1/2 (dis) from the ileum and its absorption half-life determined from blood concentrations after oral administration to dogs. The absorption of acetylsalicylic acid accounted for only 10-20% of the dose introduced into the loop over 45 min; thus, a reliable value of t1/2 (dis) could not be determined. The administration of unbuffered solution of NaCl into the loop was accompanied by rapid increase of pH from acidic to basic value. The antacid mixture failed to affect the absorption rate of the drugs studied. Sampling from the ileum was limited to 35-55 min due to rapid absorption of water. These results suggest that: 1) measurement of the absorption rate of some drugs, e.g., stobadine, by using the chronic dog ileal loop method may adequately predict their absorption rate after peroral administration to the dog, 2) interactions of antacids with drug absorption in the ileum may not play a significant role because of the strong buffering capacity of the ileum, and 3) rapid absorption of water from the ileum does not allow to reliably determine the value of t1/2 (dis) for slowly absorbed drugs. PMID:7837833

  14. Absorption-Enhancing Effect of Nitric Oxide on the Absorption of Hydrophobic Drugs in Rat Duodenum.

    PubMed

    Kishimoto, Hisanao; Miyazaki, Kaori; Takizawa, Yusuke; Shirasaka, Yoshiyuki; Inoue, Katsuhisa

    2016-02-01

    Nitric oxide (NO), an endogenous gas that plays a versatile role in the physiological system, has the ability to increase the intestinal absorption of water-soluble compounds through the paracellular route. However, it remains unclear whether NO can enhance the absorption of hydrophobic drugs through the transcellular route. In this study, we examined the absorption-enhancing effect of NO on intestinal permeability of hydrophobic drugs in rat intestine. The pretreatment of rat gastrointestinal sacs with NOC7, a NO-releasing reagent, significantly increased the permeation of griseofulvin from mucosa to serosa in the sacs prepared from the duodenum, but not in those prepared from the other regions such as jejunum, ileum, and colon. The absorption-enhancing effect of NOC7 on the duodenal permeation varied depending on the hydrophobicity of the drugs used. Furthermore, NOC7 treatment was found to be apparently ineffective on the griseofulvin permeation in the duodenum pretreated with dithiothreitol (DTT) that was used as a mucus remover, even though the permeation was increased by pretreatment with DTT alone. These results suggest that NO increases the absorption of hydrophobic drugs through the transcellular route in the duodenum by modulating the mucus layer function. PMID:26458075

  15. Drug gastrointestinal absorption in rat: Strain and gender differences.

    PubMed

    Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival

    2015-10-12

    Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. PMID:26225436

  16. Computational oral absorption simulation of free base drugs.

    PubMed

    Sugano, Kiyohiko

    2010-10-15

    The purpose of the present study was to investigate the oral absorption simulation of free base drugs. In the case of a low solubility free base drug, a portion of drug particles remains incompletely dissolved during the stomach transit and can reach the small intestine. As the pH is neutralized in the small intestine, the solubility of the drug decreases and the concentration gradient around the particles becomes a negative value. The drug particles would then grow because of this negative concentration gradient resulting in a reduction of the dissolved drug concentration. The modified Nernst Brunner equation was used to simulate both particle dissolution and growth (particle growth is the opposite phenomena of particle dissolution). Albendazole, aprepitant, dipyridamole, gefitinib and ketoconazole were used as model drugs (all free solid form (not salts)). The effect of stomach pH on oral absorption was appropriately simulated. Based on the simulation results, it was suggested that the dissolution patterns in the gastrointestinal tract were significantly different depending on the dose-solubility ratio in the stomach. PMID:20655999

  17. Intestinal absorption of chromium as affected by wheat bran

    SciTech Connect

    Keim, K.S.; Holloway, C.L.; Hegsted, M.

    1986-03-01

    This study was designed to investigate the influence of dietary fiber, as found in wheat bran, on the absorption of chromium. Twenty male Sprague-Dawley rats were divided into two groups of 10. The control was fed a semi-purified diet containing casein, methionine, cornstarch, sucrose, corn oil, mineral and vitamin mix, and choline bitartrate. The experimental group was fed the same diet but with soft red winter wheat bran added to a level of 35% of the diet at the expense of sucrose. To determine chromium absorption and uptake by selected tissues, rats were fasted for 24 hr, fed 5 g of the respective diet, 2 hr later intubated with 100..mu..Ci of Cr-51of sacrificed 24 hr later. The rats wee housed in metabolic cages after the Cr-51 intubation. The addition of wheat brand to the diet did not significantly affect chromium absorption as measured by percent dose of Cr-51 in the 24 hr urine. The percent dose in the control group was 0.68 +/- 0.20% (mean +/- SEM) and in the experimental group 0.63 +/- 0.24% (mean +/-SEM) (N.S.). The cr-51 uptake of liver, spleen, jejunum, and blood was not statistically different between groups. These results indicate that dietary fiber as found in wheat bran does not impair intestinal absorption of chromium.

  18. A diffusion-diffusion model for percutaneous drug absorption.

    PubMed

    Kubota, K; Ishizaki, T

    1986-08-01

    Several theories describing percutaneous drug absorption have been proposed, incorporating the mathematical solutions of differential equations describing percutaneous drug absorption processes where the vehicle and skin are regarded as simple diffusion membranes. By a solution derived from Laplace transforms, the mean residence time MRT and the variance of the residence time VRT in the vehicle are expressed as simple elementary functions of the following five pharmacokinetic parameters characterizing the percutaneous drug absorption: kd, which is defined as the normalized diffusion coefficient of the skin, kc, which is defined as the normalized skin-capillary boundary clearance, the apparent length of diffusion of the skin 1d, the effective length of the vehicle lv, and the diffusion coefficient of the vehicle Dv. All five parameters can be obtained by the methods proposed here. Results of numerical computation indicate that: concentration-distance curves in the vehicle and skin approximate two curves which are simply expressed using trigonometric functions when sufficient time elapses after an ointment application; the most suitable condition for the assumption that the concentration of a drug in the uppermost epidermis can be considered unchanged is the case where the partition coefficient between vehicle and skin is small, and the constancy of drug concentration is even more valid when the effective length of the vehicle is large; and the amount of a drug in the vehicle or skin and the flow rate of the drug from vehicle into skin or from skin into blood becomes linear on a semilogarithmic scale, and the slopes of those lines are small when Dv is small, when the partition coefficient between vehicle and skin is small, when lv is large, or when kc is small. A simple simulation method is also proposed using a biexponential for the concentration-time curve for the skin near the skin-capillary boundary, that is, the flow rate-time curve for drug passing from skin

  19. Vitamin, Mineral, and Drug Absorption Following Bariatric Surgery

    PubMed Central

    Sawaya, Ronald Andari; Jaffe, Jane; Friedenberg, Lindsay; Friedenberg, Frank K.

    2013-01-01

    The prevalence of obesity continues to rise throughout the world. Increasingly, bariatric surgery is used for those with morbid obesity as a pivotal approach to achieve weight loss. Along with substantial weight loss, malabsorption of essential vitamins, minerals, and drugs also occurs. Therefore, more than ever, a better understanding of the physiology and mechanisms by which these deficiencies occur is essential. We review the normal physiology of vitamin, mineral, and drug absorption. This is followed by a description of currently performed bariatric surgeries in the United States. A detailed review of specific nutrient and mineral deficiency states is presented, based on the most significant studies published in the last two decades. Of note, screening and supplementation recommendations have been included. Drug absorption data after these procedures is presented and discussed. Studies were identified by searching the Cochrane Registry and MEDLINE using relevant search terms, as well as through review of the reference section of included manuscripts. Conclusions Bariatric surgery can be effectively used to achieve sustainable weight-loss in morbidly obese patients. It simultaneously brings forth important functional consequences on nutrient deficiencies and drug absorption that clinician’s must be aware of. Further prospective, randomized research on specific procedures and deficiencies is required. PMID:22746302

  20. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.

    PubMed

    Sjögren, Erik; Thörn, Helena; Tannergren, Christer

    2016-06-01

    Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and

  1. Evaluation of Factors Affecting Powdered Drug Reconstitution in Microgravity

    NASA Technical Reports Server (NTRS)

    Schaffner, Grant; Johnston, Smith; Marshburn, Tom

    1999-01-01

    Owing to the high cost of transporting mass into space, and the small volume available for equipment in the Space Shuttle Orbiter and the International Space Station, refrigeration space is extremely limited. For this reason, there exists strong motivation for transporting certain drugs in powdered form so that they do not require refrigeration. When needed, the powdered drug will be mixed with saline to obtain a liquid form that may be injected intravenously. While this is a relatively simple task in a 1-G environment, there are some difficulties that may be encountered in 0-G. In non-accelerated spaceflight, gravitational and inertial forces are eliminated allowing other smaller forces, such as capillary forces and surface tension, to dominate the behavior of fluids. For instance, water slowly ejected from a straw will tend to form a sphere, while fluid in a container will tend to wet the inside surface forming a highly rounded meniscus. Initial attempts at mixing powdered drugs with saline in microgravity have shown a tendency toward forming foamy emulsions instead of the desired homogeneous solution. The predominance of adhesive forces between the drug particles and the interface tensions at the gas/liquid and solid/liquid interfaces drastically reduce the rate of deaggregation of the drug powder and also reduce the rate of absorption of saline by the powder mass. In addition, the capillary forces cause the saline to wet the inside of the container, thus trapping air bubbles within the liquid. The rate of dissolution of a powder drug is directly proportional to the amount of surface area of the solid that is exposed to liquid solvent. The surface area of drug that is in contact with the liquid is greatly reduced in microgravity and, as a result, the dissolution rate is reduced as well. The KC-135 research described here was aimed at evaluating the extent to which it is possible to perform drug reconstitution in the weightlessness of parabolic flight using

  2. Quantitative determination of percutaneous absorption of radiolabeled drugs in vitro and in vivo by human skin.

    PubMed

    Schaefer, H; Stüttgen, G; Zesch, A; Schalla, W; Gazith, J

    1978-01-01

    We have measured concentrations of about 30 drugs in the living layers of the skin under conditions which provide data which are applicable in therapeutic treatment. Since the skin is a thin organ and small amounts of drug represent high target concentrations, it is necessary to select a sensitive quantitative method; observation of the kinetics of absorption using radiolabeled drugs is the method of choice. Because of possible hazards--and legal and ethical problems--absorption studies in human skin are commonly performed in vitro. Related in vivo investigations demonstrate the relevance and the limitations of the in vitro experiments. The main hindrance against penetration of drugs is by the horny layer. The barrier-function of this layer--if it is undisturbed--may be described by a multilayer model. The reciprocal function, the reservoir function, is important for the efficiency of topical treatment; it also plays a role in determining the unique pharmacokinetics of drug absorption in the skin and percutaneous resorption. If the horny layer is injured, i.e. in diseased skin, both the barrier and the reservoir functions are disturbed. In consequence, drug concentrations in the skin--and percutaneous resorption--may be greatly enhanced, and topically applied drugs may enter preferentially into diseased areas. The form of application, such as ointment, solution, etc. influences the penetration kinetics in such a specific manner that a specific vehicle for a specific drug should always be postulated. The frequently discussed hazards of side effects due to percutaneous resorption of drugs like corticosteroids are a function of the treated area rather than of its penetration capacity. Thus the indication for local or oral treatment of severe dermatoses should be considered in terms of the affected area. The relatively frequent side effects in the skin itself which originate from unnecessarily high drug concentrations and long term treatment must also be taken into

  3. Drug Convictions May Affect Your Student Aid.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This booklet explains problems posed by prior drug convictions to college-bound students seeking federal financial aid. Under a new law which takes effect on July 1, 2000, some students who have drug convictions may be ineligible for federal student aid. For possession of illegal drugs, students are ineligible from the date of conviction for one…

  4. Canine gastrointestinal physiology: Breeds variations that can influence drug absorption.

    PubMed

    Oswald, Hayley; Sharkey, Michele; Pade, Devendra; Martinez, Marilyn N

    2015-11-01

    Although all dogs belong to Canis lupus familiaris, the physiological diversity resulting from selective breeding can lead to wide interbreed variability in drug pharmacokinetics (PK) or in oral drug product performance. It is important to understand this diversity in order to predict the impact of drug product formulation attributes on in vivo dissolution and absorption characteristics across the canine population when the dog represents the targeted patient population. Based upon published information, this review addresses breed differences in gastrointestinal (GI) physiology and discusses the in vivo implications of these differences. In addition to the importance of such information for understanding the variability that may exist in the performance of oral dosage forms in dogs for the purpose of developing canine therapeutics, an appreciation of breed differences in GI physiology can improve our prediction of oral drug formulation performance when we extrapolate bioavailability results from the dog to the humans, and vice versa. In this literature review, we examine reports of breed associated diversity in GI anatomy and morphology, gastric emptying time (GET), oro-cecal transit time (OCTT), small intestinal transit time (SITT), large intestinal transit time (LITT), intestinal permeability, sodium/potassium fecal concentrations, intestinal flora, and fecal moisture content. PMID:26409436

  5. Quantitation of small intestinal permeability during normal human drug absorption

    PubMed Central

    2013-01-01

    Background Understanding the quantitative relationship between a drug’s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorption in humans was determined by deconvolution and related to the intestinal permeability by the use of a new 3 parameter model function (“Averaged Model” (AM)). The theoretical validity of this AM model was evaluated by comparing it to the standard diffusion-convection model (DC). This analysis was applied to 90 drugs using previously published data. Only drugs that were administered in oral solution form to fasting subjects were considered so that the rate of gastric emptying was approximately known. All the calculations are carried out using the freely available routine PKQuest Java (http://www.pkquest.com) which has an easy to use, simple interface. Results Theoretically, the AM permeability provides an accurate estimate of the intestinal DC permeability for solutes whose absorption ranges from 1% to 99%. The experimental human AM permeabilities determined by deconvolution are similar to those determined by direct human jejunal perfusion. The small intestinal pH varies with position and the results are interpreted in terms of the pH dependent octanol partition. The permeability versus partition relations are presented separately for the uncharged, basic, acidic and charged solutes. The small uncharged solutes caffeine, acetaminophen and antipyrine have very high permeabilities (about 20 x 10-4 cm/sec) corresponding to an unstirred layer of only 45 μm. The weak acid aspirin also has a large AM permeability despite its low octanol partition at pH 7.4, suggesting

  6. Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions.

    PubMed

    Li, Wei; Quan, Peng; Zhang, Yaqiong; Cheng, Jing; Liu, Jie; Cun, Dongmei; Xiang, Rongwu; Fang, Liang

    2014-01-01

    In order to investigate the influence of drug physicochemical properties on bioavailability of water insoluble drug nanosuspensions, five drug nanosuspensions were prepared using high pressure homogenization. These nanosuspensions were similar in particle size and same in stabilizer. Differential scanning calorimetry and powder X-ray diffraction analysis showed the crystalline state of the freeze dried nanocrystals did not change. In vitro dissolution test in fasted state simulated intestinal fluid (FaSSIF) and in vivo bioavailability study in rats demonstrated that the nanosuspensions had higher dissolution rate and higher AUC0-t and the ratios of dissolvednano/dissolvedmicro in 120 min were well correlated with the ratios of AUC0-t nano/AUC0-t micro. Correlation analysis between drug physicochemical properties and AUC0-t nano was performed and four-grid interpolation method was employed for interpolation and smooth surface fitting to give a visible trend. The results revealed that drug with smaller melting point, logP value around 5 and polar surface area value in the range of 50-60 would gain higher AUC0-t nano and accordingly better absorption of its nanosuspension. Melting point, logP and polar surface area were factors that influence the absorption of drug nanosuspensions in this study. PMID:24184036

  7. Against Their Wills: Children Born Affected by Drugs.

    ERIC Educational Resources Information Center

    Hodgkinson, Harold L.; Outtz, Janice Hamilton

    There is no national policy on assisting drug-using pregnant mothers nor on the children they produce. This paper looks at the issue of "crack-cocaine" and mothers who give birth to children after using drugs during pregnancy. It attempts to lay out what is known, and it puts forth "best guesses" regarding helping children born affected by drugs.…

  8. Two-photon absorption induced drug delivery from polymeric intraocular lenses

    NASA Astrophysics Data System (ADS)

    Hampp, Norbert A.; Kim, Hee-Cheol; Kreiling, Stefan; Hesse, Lutz; Greiner, Andreas

    2003-10-01

    Secondary cataracts are quite often observed after implantation of polymeric intraocular lenses. The reason for this complication is that lens epithelial cells remain in the capsular bag when the natural lens is removed. They begin proliferation and cause secondary cataracts. It is not desireable to add cell toxic agents at the time of the implantation because wound healing is negatively affected. We have developed polymeric intraocular lenses which are equipped with a drug depot which may be released non-invasively through photochemical treatment. In the example presented the drug is 5-fluoruracil (5FU) which is covalently bound to the polymer. Deliberation of 5FU from the polymer is done photochemically. Since light is transmitted permanently through the artificial intraocular lens and wearing of special glasses by the patient should be omitted conventional photochemistry is not a suitable tool for the drug release. The polymer-5FU linkage is designed in a way that it has a high two-photon absorption cross-section. Two-photon absorption is used to selectively release 5FU from the lens. The one-photon reaction is blocked since the cornea does absorb UV light. The principle shown here is not limited to 5FU but may be applied to other drugs also.

  9. Constant optimization of oral drug absorption kinetics in the compartment absorption and transit models using particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Prabowo, K.; Sumaryada, T.; Kartono, A.

    2016-01-01

    Simulation of predictive modeling oral drug namely Compartment Absorption and Transit (CAT) using Particle Swarm Optimization (PSO) algorithm has been performed. This research will be carried out optimization of kinetic constant value oral drug use PSO algorithm to obtain the best global transport constant values for CAT equation that can predict drug concentration in plasma. The value of drug absorption rate constant for drug atenolol 25 mg is k10, k12, k21, k13 and k31 with each value is 0.8562, 0.3736, 0.2191, 0.4334 and 1.000 have been obtained thus raising the value of the coefficient of determination of a model CAT. From the experimental data plasma drug concentrations used are Atenolol, the coefficient of determination (R2) obtained from simulations atenolol 25 mg (PSO) was 81.72% and 99.46%. Better correlation between the dependent variable as the drug concentration and explanatory variables such as mass medication, plasma volume, and rate of absorption of the drug has increased in CAT models using PSO algorithm. Based on the results of CAT models fit charts can predict drug concentration in plasma.

  10. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats.

    PubMed

    Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-29

    In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium. PMID:26707414

  11. How Do Beta Blocker Drugs Affect Exercise?

    MedlinePlus

    ... American Heart area Search by State SELECT YOUR LANGUAGE Español (Spanish) 简体中文 (Traditional Chinese) 繁体中文 (Simplified Chinese) ... used because beta blockers affect everyone differently. The second way to monitor your intensity is simpler: making ...

  12. Oral exposure to polystyrene nanoparticles affects iron absorption

    NASA Astrophysics Data System (ADS)

    Mahler, Gretchen J.; Esch, Mandy B.; Tako, Elad; Southard, Teresa L.; Archer, Shivaun D.; Glahn, Raymond P.; Shuler, Michael L.

    2012-04-01

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron transport in an in vitro model of the intestinal epithelium and an in vivo chicken intestinal loop model. Intestinal cells that are exposed to high doses of nanoparticles showed increased iron transport due to nanoparticle disruption of the cell membrane. Chickens acutely exposed to carboxylated particles (50 nm in diameter) had a lower iron absorption than unexposed or chronically exposed birds. Chronic exposure caused remodelling of the intestinal villi, which increased the surface area available for iron absorption. The agreement between the in vitro and in vivo results suggests that our in vitro intestinal epithelium model is potentially useful for toxicology studies.

  13. Characterizing the Network of Drugs and Their Affected Metabolic Subpathways

    PubMed Central

    Li, Jing; Han, Junwei; Wang, Shuyuan; Yao, Qianlan; Wang, Yingying; Zhang, Yunpeng; Zhang, Chunlong; Xu, Yanjun; Jiang, Wei; Li, Xia

    2012-01-01

    A fundamental issue in biology and medicine is illustration of the overall drug impact which is always the consequence of changes in local regions of metabolic pathways (subpathways). To gain insights into the global relationship between drugs and their affected metabolic subpathways, we constructed a drug–metabolic subpathway network (DRSN). This network included 3925 significant drug–metabolic subpathway associations representing drug dual effects. Through analyses based on network biology, we found that if drugs were linked to the same subpathways in the DRSN, they tended to share the same indications and side effects. Furthermore, if drugs shared more subpathways, they tended to share more side effects. We then calculated the association score by integrating drug-affected subpathways and disease-related subpathways to quantify the extent of the associations between each drug class and disease class. The results showed some close drug–disease associations such as sex hormone drugs and cancer suggesting drug dual effects. Surprisingly, most drugs displayed close associations with their side effects rather than their indications. To further investigate the mechanism of drug dual effects, we classified all the subpathways in the DRSN into therapeutic and non-therapeutic subpathways representing drug therapeutic effects and side effects. Compared to drug side effects, the therapeutic effects tended to work through tissue-specific genes and these genes tend to be expressed in the adrenal gland, liver and kidney; while drug side effects always occurred in the liver, bone marrow and trachea. Taken together, the DRSN could provide great insights into understanding the global relationship between drugs and metabolic subpathways. PMID:23112813

  14. In vitro-in vivo correlation of the effect of supersaturation on the intestinal absorption of BCS Class 2 drugs.

    PubMed

    Higashino, Haruki; Hasegawa, Tsubasa; Yamamoto, Mari; Matsui, Rie; Masaoka, Yoshie; Kataoka, Makoto; Sakuma, Shinji; Yamashita, Shinji

    2014-03-01

    The aim of this study was to establish an in vitro method for evaluating the effect of supersaturation on oral absorption of poorly water-soluble drugs in vivo. Albendazole, dipyridamole, gefitinib, and ketoconazole were used as model drugs. Supersaturation of each drug was induced by diluting its stock solution by fasted state simulated intestinal fluid (FaSSIF) (solvent-shift method), then dissolution and precipitation profile of the drug was observed in vitro. The crystalline form of the precipitate was checked by differential scanning calorimetry (DSC). For comparison, control suspension was prepared by suspending a drug powder directly into FaSSIF (powder-suspending method). In vivo intestinal absorption of the drug was observed in rats by determined the plasma concentration after intraduodenal administration of drug suspensions. For all drugs, suspensions prepared by solvent-shift method showed significantly higher dissolved concentration in vitro than that prepared by powder-suspending method, clearly indicated the induction of supersaturation. DSC analysis revealed that crystalline form of the precipitate profoundly affects the extent and the duration of supersaturation. A rat in vivo study confirmed that the supersaturation of these drugs increased the fraction absorbed from the intestine, which corresponded well to the in vitro dissolution and precipitation profile of drugs except for ketoconazole. For ketoconazole, an in vivo absorption study was performed in rats pretreated with 1-aminobenzotriazole, a potent inhibitor of CYP mediated metabolism. CYP inhibition study suggested that the high luminal concentration of ketoconazole caused by supersaturation saturated the metabolic enzymes and further increased the systemic exposure of the absorbed drug. The additional effects of supersaturation on the absorption of ketoconazole are consistent with previous studies in humans under differing gastric pH conditions. In conclusion, effects of supersaturation on

  15. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers.

    PubMed

    Hubatsch, Ina; Ragnarsson, Eva G E; Artursson, Per

    2007-01-01

    Permeability coefficients across monolayers of the human colon carcinoma cell line Caco-2, cultured on permeable supports, are commonly used to predict the absorption of orally administered drugs and other xenobiotics. This protocol describes our method for the cultivation, characterization and determination of permeability coefficients of xenobiotics (which are, typically, drug-like compounds) in the Caco-2 model. A few modifications that have been introduced over the years are incorporated in the protocol. The method can be used to trace the permeability of a test compound in two directions, from the apical to the basolateral side or vice versa, and both passive and active transport processes can be studied. The permeability assay can be completed within one working day, provided that the Caco-2 monolayers have been cultured and differentiated on the permeable supports 3 weeks in advance. PMID:17853866

  16. Application of Physiologically Based Absorption Modeling for Amphetamine Salts Drug Products in Generic Drug Evaluation.

    PubMed

    Babiskin, Andrew H; Zhang, Xinyuan

    2015-09-01

    Amphetamine (AMP) salts-based extended-release (ER) drug products are widely used for the treatment of attention deficit hyperactivity disorder. We developed physiologically based absorption models for mixed AMP salts ER capsules and dextroamphetamine sulfate ER capsules to address specific questions raised during generic drug postmarketing surveillance and bioequivalence (BE) guidance development. The models were verified against several data sets. Virtual BE simulations were conducted to assess BE in various populations other than normal healthy subjects where BE studies are generally conducted for approval. The models were also used to predict pharmacokinetics (PK) for hypothetical formulations having dissolution profiles falling within specification after the development of in vitro-in vivo relation. Finally, we demonstrated how to use the models to test sensitivity of PK metrics to the changes in formulation variables. PMID:25973928

  17. Factors That Affect Adolescent Drug Users' Suicide Attempts

    PubMed Central

    Song, Hokwang

    2016-01-01

    Drug abuse has been widely linked to suicide risk. We examined the factors that affect adolescent drug users' suicide attempts in South Korea. This study analyzed the data of 311 adolescents who had used drugs such as inhalants, psychotropic drugs, and marijuana (195 males and 116 females). Among 311 subjects, 109 (35.0%) had attempted suicide during the last 12 months. After adjusting for other variables, depressive mood (OR=19.79) and poly-drug use (OR=2.79), and low/middle levels of academic achievement compared with a high level (OR=3.72 and 4.38) were independently associated with increased odds of a suicide attempt, while better perceived health (OR=0.32) was independently associated with reduced odds of a suicide attempt. For adolescent drug users, preventive work should be directed toward the active treatment of drug use, depression, and physical health and reinforcing proper coping strategies for academic and other stress. PMID:27247604

  18. Factors That Affect Adolescent Drug Users' Suicide Attempts.

    PubMed

    Park, Subin; Song, Hokwang

    2016-05-01

    Drug abuse has been widely linked to suicide risk. We examined the factors that affect adolescent drug users' suicide attempts in South Korea. This study analyzed the data of 311 adolescents who had used drugs such as inhalants, psychotropic drugs, and marijuana (195 males and 116 females). Among 311 subjects, 109 (35.0%) had attempted suicide during the last 12 months. After adjusting for other variables, depressive mood (OR=19.79) and poly-drug use (OR=2.79), and low/middle levels of academic achievement compared with a high level (OR=3.72 and 4.38) were independently associated with increased odds of a suicide attempt, while better perceived health (OR=0.32) was independently associated with reduced odds of a suicide attempt. For adolescent drug users, preventive work should be directed toward the active treatment of drug use, depression, and physical health and reinforcing proper coping strategies for academic and other stress. PMID:27247604

  19. Ultra-fast absorption of amorphous pure drug aerosols via deep lung inhalation.

    PubMed

    Rabinowitz, Joshua D; Lloyd, Peter M; Munzar, Patrik; Myers, Daniel J; Cross, Steve; Damani, Ramesh; Quintana, Reynaldo; Spyker, Daniel A; Soni, Pravin; Cassella, James V

    2006-11-01

    A deficiency of most current drug products for treatment of acute conditions is slow onset of action. A promising means of accelerating drug action is through rapid systemic drug administration via deep lung inhalation. The speed of pulmonary drug absorption depends on the site of aerosol deposition within the lung and the dissolution rate and drug content of the deposited particles. Alveolar delivery of fast-dissolving, pure drug particles should in theory enable very rapid absorption. We have previously shown that heating of thin drug films generates vapor-phase drug that subsequently cools and condenses into pure drug particles of optimal size for alveolar delivery. Here we present a hand held, disposable, breath-actuated device incorporating this thermal aerosol technology, and its application to the delivery of alprazolam, an anti-panic agent, and prochlorperazine, an anti-emetic with recently discovered anti-migraine properties. Thermal aerosol particles of these drugs exist in an amorphous state, which results in remarkably rapid drug absorption from the lung into the systemic circulation, with peak left ventricular concentrations achieved within 20 s, even quicker than following rapid (5 s) intravenous infusion. Absorption of the thermal aerosol is nearly complete, with >80% absolute bioavailability found in both dogs and human normal volunteers. PMID:16886198

  20. Food properties affecting the digestion and absorption of carbohydrates.

    PubMed

    Björck, I; Granfeldt, Y; Liljeberg, H; Tovar, J; Asp, N G

    1994-03-01

    Carbohydrate foods differ considerably in their effects on postprandial glucose and insulin responses. Qualitative differences among starchy foods are particularly intriguing because of the dominance of starch in human diets. This paper focuses on food properties in cereal (eg, pasta, bread, Arepas, and porridge) and legume products (eg, red kidney beans and lentils) that affect metabolic responses to starch. Studies in healthy subjects have found that postprandial blood glucose and insulin responses are greatly affected by food structure. Any process that disrupts the physical or botanical structure of food ingredients will increase the plasma glucose and insulin responses. The glycemic responses to bread products were reduced by the use of ingredients with an intact botanical or physical structure or a high amylose content or by enrichment with viscous dietary fiber. However, the important of a moderate increase in the amylose-amylopectin ratio and the naturally occurring levels of viscous cereal fiber is less clear. The rate of starch digestion in vitro was shown to be a key determinant of metabolic responses to most products. Assuming the sample preparation mimics chewing, in vitro enzymic procedures can be used to facilitate ranking. One such procedure, based on chewed rather than artificially disintegrated products, was recently developed and correlates well with glycemic and insulinemic indices for several starchy foods. PMID:8116553

  1. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.

    PubMed

    Sjögren, Erik; Westergren, Jan; Grant, Iain; Hanisch, Gunilla; Lindfors, Lennart; Lennernäs, Hans; Abrahamsson, Bertil; Tannergren, Christer

    2013-07-16

    Oral drug delivery is the predominant administration route for a major part of the pharmaceutical products used worldwide. Further understanding and improvement of gastrointestinal drug absorption predictions is currently a highly prioritized area of research within the pharmaceutical industry. The fraction absorbed (fabs) of an oral dose after administration of a solid dosage form is a key parameter in the estimation of the in vivo performance of an orally administrated drug formulation. This study discloses an evaluation of the predictive performance of the mechanistic physiologically based absorption model GI-Sim. GI-Sim deploys a compartmental gastrointestinal absorption and transit model as well as algorithms describing permeability, dissolution rate, salt effects, partitioning into micelles, particle and micelle drifting in the aqueous boundary layer, particle growth and amorphous or crystalline precipitation. Twelve APIs with reported or expected absorption limitations in humans, due to permeability, dissolution and/or solubility, were investigated. Predictions of the intestinal absorption for different doses and formulations were performed based on physicochemical and biopharmaceutical properties, such as solubility in buffer and simulated intestinal fluid, molecular weight, pK(a), diffusivity and molecule density, measured or estimated human effective permeability and particle size distribution. The performance of GI-Sim was evaluated by comparing predicted plasma concentration-time profiles along with oral pharmacokinetic parameters originating from clinical studies in healthy individuals. The capability of GI-Sim to correctly predict impact of dose and particle size as well as the in vivo performance of nanoformulations was also investigated. The overall predictive performance of GI-Sim was good as >95% of the predicted pharmacokinetic parameters (C(max) and AUC) were within a 2-fold deviation from the clinical observations and the predicted plasma AUC

  2. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs.

    PubMed

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-01-01

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239

  3. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs

    PubMed Central

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-01-01

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239

  4. Comparison of activated charcoal and ipecac syrup in prevention of drug absorption.

    PubMed

    Neuvonen, P J; Vartiainen, M; Tokola, O

    1983-01-01

    The efficacy of activated charcoal and ipecac syrup in the prevention of drug absorption was studied in 6 healthy adult volunteers, using a randomized, cross-over design. Paracetamol 1000 mg, tetracycline 500 mg and aminophylline 350 mg were ingested on an empty stomach with 100 ml water. Then, after 5 or 30 min, the subjects ingested, either activated charcoal suspension (50 g charcoal), syrup of ipecac, or, only after 5 min, water 300 ml. Activated charcoal, given either after 5 or 30 min, significantly (p less than 0.01 or less 0.05) reduced the absorption of these 3 drugs measured, for example as AUC0-24 h. Syrup of ipecac caused emesis on each occasion, with a mean delay of 15 min. When ipecac was given 5 min after the drugs, its effect on absorption was significant, but when it was given after 30 min only the absorption of tetracycline was reduced. Activated charcoal was significantly (p less than 0.05) more effective than ipecac in reducing drug absorption when given at the same time points. In cases of acute intoxication, depending on the quality and quantity of the drugs ingested, the relative efficacy of charcoal and ipecac may be somewhat different from that observed in the present study. Despite its emetic action, however, ipecac syrup is not very effective in preventing drug absorption and, in general, activated charcoal should also be given after induced emesis or gastric lavage. PMID:6134626

  5. Training Personnel for Children Affected by Alcohol or Drugs.

    ERIC Educational Resources Information Center

    Bornfield, Gail; And Others

    This paper presents, first, the statutory entitlement authorizing support to educators of children affected by drugs or alcohol; then, a population overview which covers family characteristics, infant, preschool, and classroom needs; and finally, suggestions for recruitment and retention strategies in personnel training and direct service…

  6. A mechanistic approach to understanding oral drug absorption in pediatrics: an overview of fundamentals.

    PubMed

    Debotton, Nir; Dahan, Arik

    2014-09-01

    The common phrase 'children are not little adults' is very true also in the field of oral drug administration and absorption. However, in practice, due to the little available data and lack of in-depth understanding, physicians may treat kids as if they were 'little adults', even without being aware of the potential differences and risks. With respect to drug discovery, research and development, an in-depth understanding of the various factors governing age-dependent absorption is crucial when trying to develop a pediatric-tailored oral drug product. In this paper we clarify the various mechanisms that may lead to age-dependent oral drug absorption, we provide an overview of the currently available data, and draw conclusions to the coming years. PMID:24846709

  7. Iron Deprivation Affects Drug Susceptibilities of Mycobacteria Targeting Membrane Integrity

    PubMed Central

    Pal, Rahul; Hameed, Saif; Fatima, Zeeshan

    2015-01-01

    Multidrug resistance (MDR) acquired by Mycobacterium tuberculosis (MTB) through continuous deployment of antitubercular drugs warrants immediate search for novel targets and mechanisms. The ability of MTB to sense and become accustomed to changes in the host is essential for survival and confers the basis of infection. A crucial condition that MTB must surmount is iron limitation, during the establishment of infection, since iron is required by both bacteria and humans. This study focuses on how iron deprivation affects drug susceptibilities of known anti-TB drugs in Mycobacterium smegmatis, a “surrogate of MTB.” We showed that iron deprivation leads to enhanced potency of most commonly used first line anti-TB drugs that could be reverted upon iron supplementation. We explored that membrane homeostasis is disrupted upon iron deprivation as revealed by enhanced membrane permeability and hypersensitivity to membrane perturbing agent leading to increased passive diffusion of drug and TEM images showing detectable differences in cell envelope thickness. Furthermore, iron seems to be indispensable to sustain genotoxic stress suggesting its possible role in DNA repair machinery. Taken together, we for the first time established a link between cellular iron and drug susceptibility of mycobacteria suggesting iron as novel determinant to combat MDR. PMID:26779346

  8. Enhancing drugs absorption through third-degree burn wound eschar.

    PubMed

    Manafi, Ali; Hashemlou, Azadeh; Momeni, Parisa; Moghimi, Hamid R

    2008-08-01

    Antimicrobial therapy remains the most important method of wound infection treatment. Systemically administered antimicrobials may not achieve therapeutic levels in wound. On the other hand, some topically applied antimicrobials cannot penetrate eschar well enough. Therefore, an attempt has been made here to increase permeation of topically applied drugs through eschar using the so-called skin penetration enhancers. To perform this investigation, effects of different potential penetration enhancers on permeation of chlorhexidine, silver sulfadiazine and nitroglycerin through human third-degree burn eschar was evaluated. Results showed that water, glycerin, saline, sodium lauryl sulphate (SDS) and ethanol tend to reduce permeation of chlorhexidine through burn eschar. But, water, glycerin, hexane:ethanol and ethyl acetate:ethanol were able to increase permeation of silver sulfadiazine significantly by about 1.2-1.8 times, while saline, SDS and dimethyl sulfoxide were not able to change its permeation. Glycine showed 2.7 times enhancement toward permeation of nitroglycerin, followed by water, hexane:ethanol mixture, saline and SDS with enhancement ratios of 1.8-2.3. Urea, ethanol and citral were not able to increase permeation of nitroglycerin through eschar. This study shows that permeation of drugs through burn eschar can be improved by penetration enhancement including hydration; the effect depends on the nature of the penetrant. PMID:18226460

  9. Evaluation of different indirect measures of rate of drug absorption in comparative pharmacokinetic studies.

    PubMed

    Lacey, L F; Keene, O N; Duquesnoy, C; Bye, A

    1994-02-01

    As indirect measures of rate of drug absorption (metrics), maximum plasma concentration (Cmax) is confounded by extent of drug absorption and the time to reach Cmax (tmax) is a discrete variable, dependent on blood sampling frequency. Building on the work of Endrenyi et al., we have compared different metrics, including Cmax/area under the curve of concentration versus time from time zero to infinity (AUC infinity), partial AUC from zero to tmax (AUCp), and Cmax.tmax with simulated experiments. Importantly, the performance of these metrics was assessed with the results of actual pharmacokinetic studies involving Glaxo drugs. The results of the simulated and real experiments were consistent and produced the following unambiguous findings: (1) Cmax/AUC infinity is a more powerful metric than Cmax in establishing bioequivalence when the formulations are truly bioequivalent; (2) Cmax/AUC infinity is more sensitive than Cmax at detecting differences in rate of absorption when they exist; and (3) the treatment ratios for AUCp, AUCp/AUC infinity, and Cmax.tmax are very imprecisely estimated and are of no practical value as measures of rate of absorption. Of the metrics examined, Cmax/AUC infinity is the most sensitive and powerful indirect measure of rate of drug absorption in comparative pharmacokinetic studies involving immediate-release dosage forms and should be used instead of Cmax in bioequivalence testing. PMID:8169791

  10. Ophthalmic drug delivery utilizing two-photon absorption: a novel approach to treat posterior capsule opacification

    NASA Astrophysics Data System (ADS)

    Kim, H.-C.; Träger, J.; Zorn, M.; Haberkorn, N.; Hampp, N.

    2007-07-01

    Intraocular lens (IOL) implantation is the standard technique to treat cataract. Despite recent progress in surgical procedures, posterior capsule opacification is one of the sill remaining postoperative complications of cataract surgery. We present a novel strategy to reduce the incidence of posterior capsule opacification. A drug delivery polymer suitable for manufacturing intraocular lenses has been developed which enables repeated drug release in a non-invasive and controlled manner. The therapeutic molecules are attached through a UV light sensitive linkage to the polymer backbone which is mainly responsible for the optical properties of the intraocular lenses. However, UV light can not trigger the release of drug from the polymer due to the high absorption of the cornea. We developed linkers which enable drug release by two-photon absorption induced cleavage of the linker structure. Since the two-photon absorption requires high photon densities, this does not occur in ambient light conditions in daily life, but is easily triggered by focused laser beams from a pulsed laser. In this proof-of-principle study we have employed a cyclobutane type linker and investigated the properties of the therapeutic system with the approved drugs 5-fluorouracil and chlorambucil. The controlled drug delivery was successfully demonstrated in vitro and additional cell tests confirmed that the device itself shows no cytotoxicity until photochemical activation. This presented concept can provide a powerful method in ophthalmic drug delivery.

  11. Factors affecting the development of adverse drug reactions (Review article)

    PubMed Central

    Alomar, Muaed Jamal

    2013-01-01

    Objectives To discuss the effect of certain factors on the occurrence of Adverse Drug Reactions (ADRs). Data Sources A systematic review of the literature in the period between 1991 and 2012 was made based on PubMed, the Cochrane database of systematic reviews, EMBASE and IDIS. Key words used were: medication error, adverse drug reaction, iatrogenic disease factors, ambulatory care, primary health care, side effects and treatment hazards. Summary Many factors play a crucial role in the occurrence of ADRs, some of these are patient related, drug related or socially related factors. Age for instance has a very critical impact on the occurrence of ADRs, both very young and very old patients are more vulnerable to these reactions than other age groups. Alcohol intake also has a crucial impact on ADRs. Other factors are gender, race, pregnancy, breast feeding, kidney problems, liver function, drug dose and frequency and many other factors. The effect of these factors on ADRs is well documented in the medical literature. Taking these factors into consideration during medical evaluation enables medical practitioners to choose the best drug regimen. Conclusion Many factors affect the occurrence of ADRs. Some of these factors can be changed like smoking or alcohol intake others cannot be changed like age, presence of other diseases or genetic factors. Understanding the different effects of these factors on ADRs enables healthcare professionals to choose the most appropriate medication for that particular patient. It also helps the healthcare professionals to give the best advice to patients. Pharmacogenomics is the most recent science which emphasizes the genetic predisposition of ADRs. This innovative science provides a new perspective in dealing with the decision making process of drug selection. PMID:24648818

  12. True manganese absorption in chicks as affected by dietary excesses of calcium and phosphorus

    SciTech Connect

    Wedekind, K.J.; Titgemeyer, E.C.; Twardock, A.R.; Baker, D.H. )

    1991-03-15

    Two balance studies with growing chicks were conducted to evaluate the effects of excess calcium (Ca) or excess phosphorus (P) on endogenous fecal manganese (Mn) excretion and true Mn absorption determined using an isotope-dilution technique. Supplements were added to a corn-soybean meal diet containing 1% Ca, 0.7% P and 37 mg/kg Mn. In Exp. 1, supplemental Ca levels of 0, 0.5 and 1.0% from feedgrade limestone were compared. True absorption of Mn was not affected by Ca level and averaged 2.8% for birds fed the Mn-unsupplemented diet. In Exp. 2, a 2 x 3 factorial arrangement of treatments included: 100 and 1,000 mg/kg supplemental Mn and 0, 0.4 and 0.8% added P supplied by dicalcium phosphate. Excess P decreased true absorption of Mn. In birds fed 100 mg/kg supplemental Mn, absorption of Mn decreased 22% as excess P increased from 0 to 0.8%, whereas in birds fed 1,000 mg/kg supplemental Mn, Mn absorption decreased 58% as a result of 0.8% P supplementation. These results confirm that excess Ca has little effect while excess P has a marked effect on gut absorption of Mn.

  13. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications

    PubMed Central

    Labiris, N R; Dolovich, M B

    2003-01-01

    As the end organ for the treatment of local diseases or as the route of administration for systemic therapies, the lung is a very attractive target for drug delivery. It provides direct access to disease in the treatment of respiratory diseases, while providing an enormous surface area and a relatively low enzymatic, controlled environment for systemic absorption of medications. As a major port of entry, the lung has evolved to prevent the invasion of unwanted airborne particles from entering into the body. Airway geometry, humidity, mucociliary clearance and alveolar macrophages play a vital role in maintaining the sterility of the lung and consequently are barriers to the therapeutic effectiveness of inhaled medications. In addition, a drug's efficacy may be affected by where in the respiratory tract it is deposited, its delivered dose and the disease it may be trying to treat. PMID:14616418

  14. Vascular perfused segments of human intestine as a tool for drug absorption.

    PubMed

    Wei, Yansheng; Neves, Liomar A A; Franklin, Tammy; Klyuchnikova, Nadya; Placzek, Benjamin; Hughes, Helen M; Curtis, C Gerald

    2009-04-01

    Blood-based vascular perfusion of isolated segments of human jejunum was developed as a tool for drug absorption studies before clinical trials. Acceptance criteria for viable human gut preparations included stable blood flow, arterial pressure, glucose utilization, active peristalsis, oxygen uptake, less than 3% absorption of a 70,000 mol. wt. dextran, and a ratio of first-order absorption rate constants (k(a)) of antipyrine to terbutaline of > or =1.4. Mannitol absorption was less than that of antipyrine but larger than that of terbutaline and could not be used as a negative control in absorption studies with human intestine. In separate perfusions (n = 3) a cassette of nine drugs was administered into the gut lumen, and the net absorption of each drug into the circulation was measured over 75 min. Using the mean values of k(a), the test compounds could be ranked into four groups: group 1: sulfasalazine and furosemide, k(a) = 3.9 to 4.0 x 10(-3) min(-1); group 2: cimetidine, timolol, nadolol, and ranitidine, k(a) = 6.4 to 8.3 x 10(-3) min(-1); group 3: atenolol and metoprolol, k(a) = 9.6 x 10(-3) min(-1); and group 4: theophylline, k(a) = 17.5 x 10(-3) min(-1). The rationale for evaluating yet another oral absorption system was as follows: first, a human gut segment with an intact vascular system is the closest system available to a clinical trial without performing one; and second, the data generated would be a direct measure of net drug transport from the gut lumen into the vascular circulation under near physiological conditions, which is not possible in models lacking a blood supply. PMID:19118133

  15. Intestinal absorption of the antiepileptic drug substance vigabatrin is altered by infant formula in vitro and in vivo.

    PubMed Central

    Nøhr, Martha Kampp; Thale, Zia I; Brodin, Birger; Hansen, Steen H; Holm, René; Nielsen, Carsten Uhd

    2014-01-01

    Vigabatrin is an antiepileptic drug substance mainly used in pediatric treatment of infantile spasms. The main source of nutrition for infants is breast milk and/or infant formula. Our hypothesis was that infant formula may affect the intestinal absorption of vigabatrin. The aim was therefore to investigate the potential effect of coadministration of infant formula with vigabatrin on the oral absorption in vitro and in vivo. The effect of vigabatrin given with an infant formula on the oral uptake and transepithelial transport was investigated in vitro in Caco-2 cells. In vivo effects of infant formula and selected amino acids on the pharmacokinetic profile of vigabatrin was investigated after oral coadministration to male Sprague–Dawley rats using acetaminophen as a marker for gastric emptying. The presence of infant formula significantly reduced the uptake rate and permeability of vigabatrin in Caco-2 cells. Oral coadministration of vigabatrin and infant formula significantly reduced Cmax and prolonged tmax of vigabatrin absorption. Ligands for the proton-coupled amino acid transporter PAT1, sarcosine, and proline/l-tryptophan had similar effects on the pharmacokinetic profile of vigabatrin. The infant formula decreased the rate of gastric emptying. Here we provide experimental evidence for an in vivo role of PAT1 in the intestinal absorption of vigabatrin. The effect of infant formula on the oral absorption of vigabatrin was found to be due to delayed gastric emptying, however, it seems reasonable that infant formula may also directly affect the intestinal absorption rate of vigabatrin possibly via PAT1. PMID:25505585

  16. Rate- and Extent-Limiting Factors of Oral Drug Absorption: Theory and Applications.

    PubMed

    Sugano, Kiyohiko; Terada, Katsuhide

    2015-09-01

    The oral absorption of drugs has been represented by various concepts such as the absorption potential, the maximum absorbable dose, the biopharmaceutics classification system, and in vitro-in vivo correlation. The aim of this article is to provide an overview of the theoretical relationships between these concepts. It shows how a simple analytical solution for the fraction of a dose absorbed (Fa equation) can offer a theoretical base to tie together the various concepts, and discusses how this solution relates to the rate-limiting cases of oral drug absorption. The article introduces the Fa classification system as a framework in which all the above concepts were included, and discusses its applications for food effect prediction, active pharmaceutical ingredient form selection, formulation design, and biowaiver strategy. PMID:25712830

  17. Gene duplication and divergence affecting drug content in Cannabis sativa.

    PubMed

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency. PMID:26189495

  18. Seismic signatures of carbonate caves affected by near-surface absorptions

    NASA Astrophysics Data System (ADS)

    Rao, Ying; Wang, Yanghua

    2015-12-01

    The near-surface absorption within a low-velocity zone generally has an exponential attenuation effect on seismic waves. But how does this absorption affect seismic signatures of karstic caves in deep carbonate reservoirs? Seismic simulation and analysis reveals that, although this near-surface absorption attenuates the wave energy of a continuous reflection, it does not alter the basic kinematic shape of bead-string reflections, a special seismic characteristic associated with carbonate caves in the Tarim Basin, China. Therefore, the bead-strings in seismic profiles can be utilized, with a great certainty, for interpreting the existence of caves within the deep carbonate reservoirs and for evaluating their pore spaces. Nevertheless, the difference between the central frequency and the peak frequency is increased along with the increment in the absorption. While the wave energy of bead-string reflections remains strong, due to the interference of seismic multiples generated by big impedance contrast between the infill materials of a cave and the surrounding carbonate rocks, the central frequency is shifted linearly with respect to the near-surface absorption. These two features can be exploited simultaneously, for a stable attenuation analysis of field seismic data.

  19. Terahertz absorption and reflection imaging of carcinoma-affected colon tissues embedded in paraffin

    NASA Astrophysics Data System (ADS)

    Wahaia, Faustino; Kasalynas, Irmantas; Venckevicius, Rimvydas; Seliuta, Dalius; Valusis, Gintaras; Urbanowicz, Andrzej; Molis, Gediminas; Carneiro, Fatima; Carvalho Silva, Catia D.; Granja, Pedro L.

    2016-03-01

    In the present study, dehydrated human colon tissues embedded in paraffin were studied at THz frequency. A compact THz imaging system with high numerical aperture optics was developed for the analysis of adenocarcinoma-affected colon sections, in transmission and reflection geometry. A comprehensive analysis of the THz images revealed a contrast up to 23% between the neoplastic and control tissues. Absorption and reflection THz images demonstrated the possibility to distinguish adenocarcinoma-affected areas even without water in the tissue, as the main contrast mechanism in THz measurements has been observed to be water absorption in in vivo or freshly excised tissues. The present results corroborate with previous histologic findings in the same tissues, and confirm that the contrast prevails even in dehydrated tissues.

  20. Anatomical and Histological Factors Affecting Intranasal Drug and Vaccine Delivery

    PubMed Central

    Gizurarson, Sveinbjörn

    2012-01-01

    The aim of this review is to provide an understanding of the anatomical and histological structure of the nasal cavity, which is important for nasal drug and vaccine delivery as well as the development of new devices. The surface area of the nasal cavity is about 160 cm2, or 96 m2 if the microvilli are included. The olfactory region, however, is only about 5 cm2 (0.3 m2 including the microvilli). There are 6 arterial branches that serve the nasal cavity, making this region a very attractive route for drug administration. The blood flow into the nasal region is slightly more than reabsorbed back into the nasal veins, but the excess will drain into the lymph vessels, making this region a very attractive route for vaccine delivery. Many of the side effects seen following intranasal administration are caused by some of the 6 nerves that serve the nasal cavity. The 5th cranial nerve (trigeminus nerve) is responsible for sensing pain and irritation following nasal administration but the 7th cranial nerve (facial nerve) will respond to such irritation by stimulating glands and cause facial expressions in the subject. The first cranial nerve (olfactory nerve), however, is the target when direct absorption into the brain is the goal, since this is the only site in our body where the central nervous system is directly expressed on the mucosal surface. The nasal mucosa contains 7 cell types and 4 types of glands. Four types of cells and 2 types of glands are located in the respiratory region but 6 cell types and 2 types of glands are found in the olfactory region. PMID:22788696

  1. Anatomical and histological factors affecting intranasal drug and vaccine delivery.

    PubMed

    Gizurarson, Sveinbjörn

    2012-11-01

    The aim of this review is to provide an understanding of the anatomical and histological structure of the nasal cavity, which is important for nasal drug and vaccine delivery as well as the development of new devices. The surface area of the nasal cavity is about 160 cm2, or 96 m2 if the microvilli are included. The olfactory region, however, is only about 5 cm2 (0.3 m2 including the microvilli). There are 6 arterial branches that serve the nasal cavity, making this region a very attractive route for drug administration. The blood flow into the nasal region is slightly more than reabsorbed back into the nasal veins, but the excess will drain into the lymph vessels, making this region a very attractive route for vaccine delivery. Many of the side effects seen following intranasal administration are caused by some of the 6 nerves that serve the nasal cavity. The 5th cranial nerve (trigeminus nerve) is responsible for sensing pain and irritation following nasal administration but the 7th cranial nerve (facial nerve) will respond to such irritation by stimulating glands and cause facial expressions in the subject. The first cranial nerve (olfactory nerve), however, is the target when direct absorption into the brain is the goal, since this is the only site in our body where the central nervous system is directly expressed on the mucosal surface. The nasal mucosa contains 7 cell types and 4 types of glands. Four types of cells and 2 types of glands are located in the respiratory region but 6 cell types and 2 types of glands are found in the olfactory region. PMID:22788696

  2. [Pharmacokinetic comparison of baicalin absorption medicine Qinbai Qingfei concentrated pellets drug compatibility].

    PubMed

    Li, Hai-Long; Feng, Wen-Cheng; Yao, Lin; Sun, Yan; Song, Ya-Juan; Hu, Hao; Wang, Wei-Ming

    2014-05-01

    The Qinbai Qingfei concentrated pellets by traditional Chinese medicine theoryand party and group, the rats were given the drugs group, comparison of pharmacokinetics parameters changes of baicalin , discusses the rationality of Qinbai prescription. The rats were gavaged monarch drug group (Huang Qincu extract, mainly forbaicalin), and official medicine group, adjuvant group, medicine group and Qinbai group (Quan Fangzu) the content of baicalin equal as the monarch drug group, in the 28 h collection in rat plasma at different time point, application of HPLC determination of baicalin glycosides in rat plasmaconcentration time curve, with 3P97 practical pharmacokinetics program to process the data Based on the data analysis, baicalin in rat plasma of Qinbai group Cmax is 4 times as big as monarch druggroup, AUC is 6 times as big as monarch drug group; the content of baicalin in plasma of rats the highest is Qinbai group, the minister drug group, adjuvant group, medicine group of baicalin in rat plasma content of less than the Qinbai group, but was significantly higher than that of monarch drug group; the medicine group is slightly higher than that adjuvant the content of baicalin in plasma of rats. The pharmacokinetic results show that the measured plasma concentration in rats that Qinbai can significantly increase Cmax and AUC of baicalin, other components of qinbai can promoted the baicalin absorption in vivo. It showed that the reasonable of Qinbai compound compatibility. The minister drug can promote the absorption of baicalin in vivo. PMID:25282909

  3. Mechanisms of membrane transport of poorly soluble drugs: role of micelles in oral absorption processes.

    PubMed

    Yano, Koji; Masaoka, Yoshie; Kataoka, Makoto; Sakuma, Shinji; Yamashita, Shinji

    2010-03-01

    Micelles formed in the GI tract by bile acid and lecithin play an important role in oral absorption of poorly soluble drugs. In this situation, the drug molecules are present in equilibrium between the free and micellar states. In this study, the relationship between the free drug concentration and the membrane permeability of poorly soluble drugs was examined. Permeability across a Caco-2 monolayer and a dialysis membrane were measured in a side-by-side chamber system. The concentrations of sodium taurocholate (NaTC) and lecithin were varied to allow measurement of membrane permeability at different concentrations of free drugs. For troglitazone, hexylparaben, and heptylparaben, an increase in the NaTC and lecithin concentrations caused the permeability across the Caco-2 monolayer to decrease slightly, whereas the permeability across the dialysis membrane decreased markedly. In contrast, the changes in permeability of griseofulvin with an increased micelle concentration were similar for the Caco-2 monolayer and the dialysis membrane. Assuming that the permeability for the dialysis membrane reflects the free drug concentration in the medium, these results suggest that troglitazone and alkylparabens, but not griseofulvin, can partition directly from micelles to Caco-2 monolayers. This mechanism may contribute to oral absorption of drugs that are poorly soluble in water. PMID:19743502

  4. The role of absorption in women's sexual response to erotica: a cognitive-affective investigation.

    PubMed

    Sheen, Jade; Koukounas, Eric

    2009-01-01

    This study examined the effect of absorption on women's emotional and cognitive processing of erotic film. Absorption was experimentally manipulated using 2 different sets of test session instructions. The first, participant-oriented, instruction set directed participants to absorb themselves in the erotic film presentation, imagining that they were active participants in the sexual activities depicted. The second, spectator-oriented, instruction set directed participants to observe and assess the erotic film excerpt as impartial spectators. The participant-oriented instruction set was found to elicit greater subjective absorption in women than the spectator-oriented instruction set, and women reported greater subjective sexual arousal in the former set compared with the latter. Thus, it appears that the degree to which a woman becomes absorbed in an erotic stimulus may affect her subsequent subjective sexual arousal. Also, women reported greater degrees of positive affect when they took a participant-oriented perspective than when they viewed the erotic materials as impartial spectators. Thus, participants who were highly absorbed in the erotic film excerpt were more likely to view the stimulus favorably. By contrast, the degree to which women became absorbed in the stimulus had no effect on their reported negative affect. Future directions for examining female response patterns are suggested. PMID:19253136

  5. Automation of cell-based drug absorption assays in 96-well format using permeable support systems.

    PubMed

    Larson, Brad; Banks, Peter; Sherman, Hilary; Rothenberg, Mark

    2012-06-01

    Cell-based drug absorption assays, such as Caco-2 and MDCK-MDR1, are an essential component of lead compound ADME/Tox testing. The permeability and transport data they provide can determine whether a compound continues in the drug discovery process. Current methods typically incorporate 24-well microplates and are performed manually. Yet the need to generate absorption data earlier in the drug discovery process, on an increasing number of compounds, is driving the use of higher density plates. A simple, more efficient process that incorporates 96-well permeable supports and proper instrumentation in an automated process provides more reproducible data compared to manual methods. Here we demonstrate the ability to perform drug permeability and transport assays using Caco-2 or MDCKII-MDR1 cells. The assay procedure was automated in a 96-well format, including cell seeding, media and buffer exchanges, compound dispense, and sample removal using simple robotic instrumentation. Cell monolayer integrity was confirmed via transepithelial electrical resistance and Lucifer yellow measurements. Proper cell function was validated by analyzing apical-to-basolateral and basolateral-to-apical movement of rhodamine 123, a known P-glycoprotein substrate. Apparent permeability and efflux data demonstrate how the automated procedure provides a less variable method than manual processing, and delivers a more accurate assessment of a compound's absorption characteristics. PMID:22357561

  6. In vitro percutaneous absorption enhancement of a lipophilic drug tamoxifen by terpenes.

    PubMed

    Gao, S; Singh, J

    1998-02-12

    Tamoxifen is a highly lipophilic drug that is widely used in breast malignancies and also as a prophylactic therapy in women at high risk for the development of this disease. Recently, the terpenes have been reported to show an enhancement effect on percutaneous drug absorption. The effect of terpenes (e.g. carvone, 1,8-cineole, menthol, and thymol) was studied on the in vitro percutaneous absorption of tamoxifen through porcine epidermis. The above terpenes (5% w/v) in combination with 50% ethanol significantly (P < 0.01) increased the permeability coefficient of tamoxifen in comparison to the control (50% ethanol). The solubility of tamoxifen was determined in the control and enhancer solutions to correct the permeability enhancement by way of fractional solubility adjustment. Binding of tamoxifen to powdered stratum corneum from control and enhancer solutions was also determined. Binding studies reveal that the enhancement in the permeability coefficient of tamoxifen by menthol and thymol is due at least in part, to improvement in the partitioning of the drug to the stratum corneum. In conclusion, terpenes in combination with ethanol can be used to enhance the percutaneous absorption of the highly lipophilic drug tamoxifen. PMID:9685917

  7. Drug marker absorption in relation to pellet size, gastric motility and viscous meals in humans

    NASA Technical Reports Server (NTRS)

    Rhie, J. K.; Hayashi, Y.; Welage, L. S.; Frens, J.; Wald, R. J.; Barnett, J. L.; Amidon, G. E.; Putcha, L.; Amidon, G. L.

    1998-01-01

    PURPOSE: The objective of this study was to evaluate drug marker absorption in relation to the gastric emptying (GE) of 0.7 mm and 3.6 mm enteric coated pellets as a function of viscosity and the underlying gastric motility. METHODS: Twelve subjects were evaluated in a 3-way crossover study. 0.7 mm caffeine and 3.6 mm acetaminophen enteric coated pellets were concurrently administered with a viscous caloric meal at the levels of 4000, 6000 and 8000 cP. Gastric motility was simultaneously measured with antral manometry and compared to time events in the plasma profiles of the drug markers. RESULTS: Caffeine, from the 0.7 mm pellets, was observed significantly earlier in the plasma than acetaminophen, from the 3.6 mm pellets, at all levels of viscosity. Motility related size differentiated GE was consistently observed at all viscosity levels, however, less variability was observed with the 4000 cP meal. Specifically, the onset of absorption from the of 3.6 mm pellets correlated with the onset of Phase II fasted state contractions (r = 0.929, p < 0.01). CONCLUSIONS: The timeframe of drug marker absorption and the onset of motility events were not altered within the range of viscosities evaluated. Rather, the differences in drug marker profiles from the non-digestible solids were most likely the result of the interaction between viscosity and motility influencing antral flow dynamics. The administration of the two sizes of pellets and a viscous caloric meal with subsequent monitoring of drug marker profiles is useful as a reference to assess the influence of motility patterns on the absorption profile of orally administered agents.

  8. Probabilistic modeling of percutaneous absorption for risk-based exposure assessments and transdermal drug delivery.

    SciTech Connect

    Ho, Clifford Kuofei

    2004-06-01

    Chemical transport through human skin can play a significant role in human exposure to toxic chemicals in the workplace, as well as to chemical/biological warfare agents in the battlefield. The viability of transdermal drug delivery also relies on chemical transport processes through the skin. Models of percutaneous absorption are needed for risk-based exposure assessments and drug-delivery analyses, but previous mechanistic models have been largely deterministic. A probabilistic, transient, three-phase model of percutaneous absorption of chemicals has been developed to assess the relative importance of uncertain parameters and processes that may be important to risk-based assessments. Penetration routes through the skin that were modeled include the following: (1) intercellular diffusion through the multiphase stratum corneum; (2) aqueous-phase diffusion through sweat ducts; and (3) oil-phase diffusion through hair follicles. Uncertainty distributions were developed for the model parameters, and a Monte Carlo analysis was performed to simulate probability distributions of mass fluxes through each of the routes. Sensitivity analyses using stepwise linear regression were also performed to identify model parameters that were most important to the simulated mass fluxes at different times. This probabilistic analysis of percutaneous absorption (PAPA) method has been developed to improve risk-based exposure assessments and transdermal drug-delivery analyses, where parameters and processes can be highly uncertain.

  9. Two-photon absorption-induced drug delivery from polymers for medical applications

    NASA Astrophysics Data System (ADS)

    Kim, Hee-Cheol; Kreiling, Stefan; Haertner, Sebastian; Hesse, Lutz; Greiner, Andreas; Hampp, Norbert A.

    2004-06-01

    Novel polymeric materials carrying a drug depot have been developed which are suitable for fabrication of photochemically modulated drug delivery devices. In order to avoid uncontrolled drug release the drug is covalently attached to the polymer backbone using a photo-active linker. Controlled drug release from the polymer can be accomplished either via single-photon excitation or by two-photon absorption (TPA). In particular the second possibility is of interest for applications where exposure to day light or UV light may not be omitted. One example are polymeric intraocular lenses (IOL), which are implanted instead of the opaque natural lens during cataract surgery. Secondary cataract formation is quite often observed after implantation of polymeric IOLs. In this study the well known cell toxic agent 5-fluorouracil (5FU) attached to a methylmethacrylate-based polymer was investigated as an IOL which can upon photochemical excitation release 5FU in order to treat or to prevent secondary cataract formation. The photochemical cleavage of the linker molecule was analyzed with single- and two-photon excitation. UV/VIS spectroscopy and HPLC analysis confirmed the release of 5FU form the polymer backbone. The diffusion of the drug precursor out from the polymer as well as the hydrolysis of the drug precursor which leads to 5FU formation were investigated in vitro.

  10. Abuse of Prescription (Rx) Drugs Affects Young Adults Most

    MedlinePlus

    ... Trends and Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Prescription ... died from overdoses of any other drug, including heroin and cocaine combined—and many more needed emergency ...

  11. Meeting the Special Needs of Drug-Affected Children. ERIC Digest Series Number EA 53.

    ERIC Educational Resources Information Center

    Lumsden, Linda S.

    Issues pertinent to prenatal drug-affected students are discussed in this ERIC Digest. The rising number of drug-exposed children approaching school age presents a challenge to school personnel in meeting their special needs. Topics covered are: (1) seriousness of the problem; (2) problems unique to drug-affected children; (3) creation of a…

  12. Improved intestinal absorption of a poorly water-soluble oral drug using mannitol microparticles containing a nanosolid drug dispersion.

    PubMed

    Nishino, Yukiko; Kubota, Aya; Kanazawa, Takanori; Takashima, Yuuki; Ozeki, Tetsuya; Okada, Hiroaki

    2012-11-01

    A nozzle for a spray dryer that can prepare microparticles of water-soluble carriers containing various nanoparticles in a single step was previously developed in our laboratory. To enhance the solubility and intestinal absorption of poorly water-soluble drugs, we used probucol (PBL) as a poorly water-soluble drug, mannitol (MAN) as a water-soluble carrier for the microparticles, and EUDRAGIT (EUD) as a polymer vehicle for the solid dispersion. PBL-EUD-acetone-methanol and aqueous MAN solutions were simultaneously supplied through different liquid passages of the spray nozzle and dried together. PBL-EUD solid dispersion was nanoprecipitated in the MAN solution using an antisolvent mechanism and rapidly dried by surrounding it with MAN. PBL in the dispersion vehicle was amorphous and had higher physical stability according to powder X-ray diffraction and differential scanning calorimetry analysis. The bioavailability of PBL in PBL-EUD S-100-MAN microparticles after oral administration in rats was markedly higher (14- and 6.2-fold, respectively) than that of the original PBL powder and PBL-MAN microparticles. These results demonstrate that the composite microparticles containing a nanosized solid dispersion of a poorly water-soluble drug prepared using the spray nozzle developed by us should be useful to increase the solubility and bioavailability of drugs after oral administration. PMID:22864998

  13. Influence of Food on Paediatric Gastrointestinal Drug Absorption Following Oral Administration: A Review

    PubMed Central

    Batchelor, Hannah K.

    2015-01-01

    The objective of this paper was to review existing information regarding food effects on drug absorption within paediatric populations. Mechanisms that underpin food–drug interactions were examined to consider potential differences between adult and paediatric populations, to provide insights into how this may alter the pharmacokinetic profile in a child. Relevant literature was searched to retrieve information on food–drug interaction studies undertaken on: (i) paediatric oral drug formulations; and (ii) within paediatric populations. The applicability of existing methodology to predict food effects in adult populations was evaluated with respect to paediatric populations where clinical data was available. Several differences in physiology, anatomy and the composition of food consumed within a paediatric population are likely to lead to food–drug interactions that cannot be predicted based on adult studies. Existing methods to predict food effects cannot be directly extrapolated to allow predictions within paediatric populations. Development of systematic methods and guidelines is needed to address the general lack of information on examining food–drug interactions within paediatric populations. PMID:27417362

  14. High-performance dispersive Raman and absorption spectroscopy as tools for drug identification

    NASA Astrophysics Data System (ADS)

    Pawluczyk, Olga; Andrey, Sam; Nogas, Paul; Roy, Andrew; Pawluczyk, Romuald

    2009-02-01

    Due to increasing availability of pharmaceuticals from many sources, a need is growing to quickly and efficiently analyze substances in terms of the consistency and accuracy of their chemical composition. Differences in chemical composition occur at very low concentrations, so that highly sensitive analytical methods become crucial. Recent progress in dispersive spectroscopy with the use of 2-dimensional detector arrays, permits for signal integration along a long (up to 12 mm long) entrance slit of a spectrometer, thereby increasing signal to noise ratio and improving the ability to detect small concentration changes. This is achieved with a non-scanning, non-destructive system. Two different methods using P&P Optica high performance spectrometers were used. High performance optical dispersion Raman and high performance optical absorption spectroscopy were employed to differentiate various acetaminophen-containing drugs, such as Tylenol and other generic brands, which differ in their ingredients. A 785 nm excitation wavelength was used in Raman measurements and strong Raman signals were observed in the spectral range 300-1800 cm-1. Measurements with the absorption spectrometer were performed in the wavelength range 620-1020 nm. Both Raman and absorption techniques used transmission light spectrometers with volume phase holographic gratings and provided sufficient spectral differences, often structural, allowing for drug differentiation.

  15. Enhanced dissolution and oral absorption of tacrolimus by supersaturable self-emulsifying drug delivery system.

    PubMed

    Lee, Dae Ro; Ho, Myoung Jin; Jung, Hyuck Jun; Cho, Ha Ra; Park, Jun Seo; Yoon, Suk-Hyun; Choi, Yong Seok; Choi, Young Wook; Oh, Chung-Hun; Kang, Myung Joo

    2016-01-01

    A new Soluplus (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer)-based supersaturable self-emulsifying drug delivery system (S-SEDDS) was formulated to enhance oral absorption of tacrolimus (FK506) with minimal use of oil, surfactant, and cosurfactant. A high payload supersaturable system (S-SEDDS) was prepared by incorporating Soluplus, as a precipitation inhibitor, to SEDDS consisting of Capmul MCM, Cremophor EL, and Transcutol (FK506:vehicle:Soluplus =1:15:1). In vitro dissolution profile and in vitro pharmacokinetic aspect of S-SEDDS in rats were comparatively evaluated with those of conventional SEDDS formulas containing four times greater content of vehicle components (FK506:vehicle =1:60). Both formulations formed spherical drug-loaded microemulsion <70 nm in size when in contact with aqueous medium. In an in vitro dissolution test in a nonsink condition, the amphiphilic polymer noticeably retarded drug precipitation and maintained >80% of accumulated dissolution rate for 24 hours, analogous to that from conventional SEDDS. Moreover, pharmacokinetic parameters of the maximum blood concentration and area under the curve from S-SEDDS formula in rats were not statistically different (P>0.05) than those of conventional SEDDS. The results suggest that the Soluplus-based supersaturable system can be an alternative to achieve a comparable in vitro dissolution profile and in vivo oral absorption with conventional SEDDS, with minimal use of vehicle ingredients. PMID:27051286

  16. Enhanced dissolution and oral absorption of tacrolimus by supersaturable self-emulsifying drug delivery system

    PubMed Central

    Lee, Dae Ro; Ho, Myoung Jin; Jung, Hyuck Jun; Cho, Ha Ra; Park, Jun Seo; Yoon, Suk-Hyun; Choi, Yong Seok; Choi, Young Wook; Oh, Chung-Hun; Kang, Myung Joo

    2016-01-01

    A new Soluplus (polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer)-based supersaturable self-emulsifying drug delivery system (S-SEDDS) was formulated to enhance oral absorption of tacrolimus (FK506) with minimal use of oil, surfactant, and cosurfactant. A high payload supersaturable system (S-SEDDS) was prepared by incorporating Soluplus, as a precipitation inhibitor, to SEDDS consisting of Capmul MCM, Cremophor EL, and Transcutol (FK506:vehicle:Soluplus =1:15:1). In vitro dissolution profile and in vitro pharmacokinetic aspect of S-SEDDS in rats were comparatively evaluated with those of conventional SEDDS formulas containing four times greater content of vehicle components (FK506:vehicle =1:60). Both formulations formed spherical drug-loaded microemulsion <70 nm in size when in contact with aqueous medium. In an in vitro dissolution test in a nonsink condition, the amphiphilic polymer noticeably retarded drug precipitation and maintained >80% of accumulated dissolution rate for 24 hours, analogous to that from conventional SEDDS. Moreover, pharmacokinetic parameters of the maximum blood concentration and area under the curve from S-SEDDS formula in rats were not statistically different (P>0.05) than those of conventional SEDDS. The results suggest that the Soluplus-based supersaturable system can be an alternative to achieve a comparable in vitro dissolution profile and in vivo oral absorption with conventional SEDDS, with minimal use of vehicle ingredients. PMID:27051286

  17. Amorphous Solid Dispersions or Prodrugs: Complementary Strategies to Increase Drug Absorption.

    PubMed

    Rumondor, Alfred C F; Dhareshwar, Sundeep S; Kesisoglou, Filippos

    2016-09-01

    Maximizing oral bioavailability of drug candidates represents a challenge in the pharmaceutical industry. In recent years, there has been an increase in the use of amorphous solid dispersions (ASDs) to address this issue, where a growing number of solid dispersion formulations have been introduced to the market. However, an increase in solubility or dissolution rate through ASD does not always result in sufficient improvement of oral absorption because solubility limitations may still exist at high doses. Chemical modification in the form of a prodrug may offer an alternative approach for these cases. Although prodrugs have been primarily used to improve membrane permeability, examples are available in which prodrugs have been used to increase drug solubility beyond what can be achieved via formulation approaches. In this mini review, the role of ASDs and prodrugs as 2 complementary approaches in improving oral bioavailability of drug candidates is discussed. We discuss the fundamental principles of absorption and bioavailability, and review available literature on both solid dispersions and prodrugs, providing a summary of their use and examples of successful applications, and cover some of the biopharmaceutics evaluation aspects for these approaches. PMID:26886316

  18. Major diet-drug interactions affecting the kinetic characteristics and hypolipidaemic properties of statins.

    PubMed

    Vaquero, M P; Sánchez Muniz, F J; Jiménez Redondo, S; Prats Oliván, P; Higueras, F J; Bastida, S

    2010-01-01

    Concomitant administration of statins with food may alter statin pharmacokinetics or pharmacodynamics, increasing the risk of adverse reactions such as myopathy or rhabdomyolysis or reducing their pharmacological action. This paper reviews major interactions between statins and dietary compounds. Consumption of pectin or oat bran together with Lovastatin reduces absorption of the drug, while alcohol intake does not appear to affect the efficacy and safety of Fluvastatin treatment. Grapefruit juice components inhibit cytochrome P-4503A4, reducing the presystemic metabolism of drugs such as Simvastatin, Lovastatin and Atorvastatin. Follow-up studies on the therapeutic effect of statins in patients consuming a Mediterranean-style diet are necessary to assure the correct prescription because the oil-statin and minor oil compound-statin possible interactions have been only briefly studied. Preliminary study suggests that olive oil can increase the hypolipaemiant effect of Simvastatin with respect sunflower oil. The consumption of polyunsaturated rich oils, throughout the cytochrome P- 450 activation could decrease the half-life of some statins and therefore their hypolipaemic effects. The statins and n-3 fatty acids combined therapy gives rise to pharmacodinamic interaction that improves the lipid profile and leads greater cardioprotection. Although statins are more effective in high endogenous cholesterol production subjects and plant sterols are more effective in high cholesterol absorption efficacy subjects, plant esterols-statins combined therapy generates very positive complementary effects. This review ends suggesting possible diet-stain interactions that require further investigations (e.g. types of olive oils, fruit juices other than grapefruit, fibre or consumption of alcoholic beverages rich in polyphenols or ethanol). PMID:20449528

  19. Influence of pH on Drug Absorption from the Gastrointestinal Tract: A Simple Chemical Model

    NASA Astrophysics Data System (ADS)

    Hickman, Raymond J. S.; Neill, Jane

    1997-07-01

    A simple model of the gastrointestinal tract is obtained by placing ethyl acetate in contact with water at pH 2 and pH 8 in separate test tubes. The ethyl acetate corresponds to the lipid material lining the tract while the water corresponds to the aqueous contents of the stomach (pH 2) and intestine (pH 8). The compounds aspirin, paracetamol and 3-aminophenol are used as exemplars of acidic, neutral and basic drugs respectively to illustrate the influence which pH has on the distribution of each class of drug between the aqueous and organic phases of the model. The relative concentration of drug in the ethyl acetate is judged by applying microlitre-sized samples of ethyl acetate to a layer of fluorescent silica which, after evaporation of the ethyl acetate, is viewed under an ultraviolet lamp. Each of the three drugs, if present in the ethyl acetate, becomes visible as a dark spot on the silica layer. The observations made in the model system correspond well to the patterns of drug absorption from the gastrointestinal tract described in pharmacology texts and these observations are convincingly explained in terms of simple acid-base chemistry.

  20. Guide to Children Affected by Parental Drug Abuse

    ERIC Educational Resources Information Center

    Davies, Leah

    2010-01-01

    A conservative estimate is that one in six children in school today has a parent dependent on or addicted to alcohol or other drugs. This places these students at high risk for social and emotional problems, as well as for school failure, drug use, and delinquency. Schools, however, are a logical place to reach them. Identifying children of those…

  1. Factors Affecting the Absorption, Metabolism, and Excretion of Cocoa Flavanols in Humans.

    PubMed

    Cifuentes-Gomez, Tania; Rodriguez-Mateos, Ana; Gonzalez-Salvador, Isidro; Alañon, María Elena; Spencer, Jeremy P E

    2015-09-01

    Cocoa is rich in a subclass of flavonoids known as flavanols, the cardiovascular health benefits of which have been extensively reported. The appearance of flavanol metabolites in the systemic circulation after flavanol-rich food consumption is likely to mediate the physiological effects on the vascular system, and these levels are influenced by numerous factors, including food matrix, processing, intake, age, gender, or genetic polymorphisms, among others. This review will focus on our current understanding of factors affecting the absorption, metabolism, and excretion of cocoa flavanols in humans. Second, it will identify gaps in these contributing factors that need to be addressed to conclusively translate our collective knowledge into the context of public health, dietary guidelines, and evidence-based dietary recommendations. PMID:25711140

  2. Local bacteria affect the efficacy of chemotherapeutic drugs

    PubMed Central

    Lehouritis, Panos; Cummins, Joanne; Stanton, Michael; Murphy, Carola T.; McCarthy, Florence O.; Reid, Gregor; Urbaniak, Camilla; Byrne, William L.; Tangney, Mark

    2015-01-01

    In this study, the potential effects of bacteria on the efficacy of frequently used chemotherapies was examined. Bacteria and cancer cell lines were examined in vitro and in vivo for changes in the efficacy of cancer cell killing mediated by chemotherapeutic agents. Of 30 drugs examined in vitro, the efficacy of 10 was found to be significantly inhibited by certain bacteria, while the same bacteria improved the efficacy of six others. HPLC and mass spectrometry analyses of sample drugs (gemcitabine, fludarabine, cladribine, CB1954) demonstrated modification of drug chemical structure. The chemoresistance or increased cytotoxicity observed in vitro with sample drugs (gemcitabine and CB1954) was replicated in in vivo murine subcutaneous tumour models. These findings suggest that bacterial presence in the body due to systemic or local infection may influence tumour responses or off-target toxicity during chemotherapy. PMID:26416623

  3. FACTORS AFFECTING THE DEPOSITION OF INHALED POROUS DRUG PARTICLES

    EPA Science Inventory

    Abstract
    Recent findings indicate that the inhalation of large manufactured porous particles may be particularly effective for drug delivery. In this study, a mathematical model was employed to systematically investigate the effects of particle size, particle density, aerosol ...

  4. Human in vivo regional intestinal permeability: quantitation using site-specific drug absorption data.

    PubMed

    Sjögren, Erik; Dahlgren, David; Roos, Carl; Lennernäs, Hans

    2015-06-01

    Application of information on regional intestinal permeability has been identified as a key aspect of successful pharmaceutical product development. This study presents the results and evaluation of an approach for the indirect estimation of site-specific in vivo intestinal effective permeability (Peff) in humans. Plasma concentration-time profiles from 15 clinical studies that administered drug solutions to specific intestinal regions were collected and analyzed. The intestinal absorption rate for each drug was acquired by deconvolution, using historical intravenous data as reference, and used with the intestinal surface area and the dose remaining in the lumen to estimate the Peff. Forty-three new Peff values were estimated (15 from the proximal small intestine, 11 from the distal small intestine, and 17 from the large intestine) for 14 active pharmaceutical ingredients representing a wide range of biopharmaceutical properties. A good correlation (r(2) = 0.96, slope = 1.24, intercept = 0.030) was established between these indirect jejunal Peff estimates and jejunal Peff measurements determined directly using the single-pass perfusion double balloon technique. On average, Peff estimates from the distal small intestine and large intestine were 90% and 40%, respectively, of those from the proximal small intestine. These results support the use of the evaluated deconvolution method for indirectly estimating regional intestinal Peff in humans. This study presents the first comprehensive data set of estimated human regional intestinal permeability values for a range of drugs. These biopharmaceutical data can be used to improve the accuracy of gastrointestinal absorption predictions used in drug development decision-making. PMID:25919764

  5. The Effect of Digestion and Drug Load on Halofantrine Absorption from Self-nanoemulsifying Drug Delivery System (SNEDDS).

    PubMed

    Michaelsen, Maria Høtoft; Wasan, Kishor M; Sivak, Olena; Müllertz, Anette; Rades, Thomas

    2016-01-01

    A super-saturated self-nanoemulsifying drug delivery system (super-SNEDDS), containing the poorly water-soluble drug halofantrine (Hf) at 150% of equilibrium solubility (S eq), was compared in vitro and in vivo with a conventional SNEDDS (75% of S eq) with respect to bioavailability and digestibility. Further, the effect of digestion on oral absorption of Hf from SNEDDS and super-SNEDDS was assessed by incorporation of the lipase inhibitor tetrahydrolipstatin (orlistat) into the SNEDDS. The SNEDDS contained soybean oil/Maisine 34-I (1:1), Kolliphor RH40, and ethanol at a ratio of 55:35:10, w/w percent. For the dynamic in vitro lipolysis, the precipitation of Hf at 60 min was significantly larger for the super-SNEDDS (66.8 ± 16.4%) than for the SNEDDS (18.5 ± 9.2%). The inhibition of the in vitro digestion by orlistat (1% (w/w)) lowered drug precipitation significantly for both the super-SNEDDS (36.8 ± 1.7%) and the SNEDDS (3.9 ± 0.7%). In the in vivo studies, the super-SNEDDS concept proved valid in a rat model with a significantly larger C max for the super-SNEDDS (964 ± 167 ng/mL) than for the SNEDDS (506 ± 112 ng/mL). The bioavailability of Hf dosed in super-SNEDDS (32.9 ± 3.6%) and SNEDDS (22.5 ± 6.3%) did not change significantly with co-administration of orlistat (45.5 ± 7.3% and 21.9 ± 6.5%, respectively). However, the pharmacokinetic parameters changed; the t max of the super-SNEDDS (1.3 ± 0.1 h) and SNEDDS (2.8 ± 1.2 h) were significantly lower when dosed with orlistat (6.0 ± 1.3 and 6.3 ± 1.2 h, respectively). These findings suggest that the role of lipid digestion for the absorption of drugs from SNEDDS may be less important than previously thought. PMID:26486790

  6. Prenatal Drug Exposure Affects Neonatal Brain Functional Connectivity

    PubMed Central

    Salzwedel, Andrew P.; Vachet, Clement; Gerig, Guido; Lin, Weili

    2015-01-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala–frontal, insula–frontal, and insula–sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala–frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  7. Prenatal drug exposure affects neonatal brain functional connectivity.

    PubMed

    Salzwedel, Andrew P; Grewen, Karen M; Vachet, Clement; Gerig, Guido; Lin, Weili; Gao, Wei

    2015-04-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala-frontal, insula-frontal, and insula-sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala-frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  8. The effects of microRNA on the absorption, distribution, metabolism and excretion of drugs

    PubMed Central

    He, Y; Chevillet, J R; Liu, G; Kim, T K; Wang, K

    2015-01-01

    The importance of genetic factors (e.g. sequence variation) in the absorption, distribution, metabolism, excretion (ADME) and overall efficacy of therapeutic agents is well established. Our ability to identify, interpret and utilize these factors is the subject of much clinical investigation and therapeutic development. However, drug ADME and efficacy are also heavily influenced by epigenetic factors such as DNA/histone methylation and non-coding RNAs [especially microRNAs (miRNAs)]. Results from studies using tools, such as in silico miRNA target prediction, in vitro functional assays, nucleic acid profiling/sequencing and high-throughput proteomics, are rapidly expanding our knowledge of these factors and their effects on drug metabolism. Although these studies reveal a complex regulation of drug ADME, an increased understanding of the molecular interplay between the genome, epigenome and transcriptome has the potential to provide practically useful strategies to facilitate drug development, optimize therapeutic efficacy, circumvent adverse effects, yield novel diagnostics and ultimately become an integral component of personalized medicine. PMID:25296724

  9. A sequential algorithm for the non-linear dual-sorption model of percutaneous drug absorption.

    PubMed

    Gumel, A B; Kubota, K; Twizell, E H

    1998-08-15

    A sequential algorithm is developed for the non-linear dual-sorption model developed by Chandrasekaran et al. [1,2] which monitors pharmacokinetic profiles in percutaneous drug absorption. In the experimental study of percutaneous absorption, it is often observed that the lag-time decreases with the increase in the donor concentration when two or more donor concentrations of the same compound are used. The dual-sorption model has sometimes been employed to explain such experimental results. In this paper, it is shown that another feature observed after vehicle removal may also characterize the dual-sorption model. Soon after vehicle removal, the plots of the drug flux versus time become straight lines on a semilogarithmic scale as in the linear model, but the half-life is prolonged thereafter when the dual-sorption model prevails. The initial half-life after vehicle removal with a low donor concentration is longer than that with a higher donor concentration. These features, if observed in experiments, may be used as evidence to confirm that the dual-sorption model gives an explanation to the non-linear kinetic behaviour of a permeant. PMID:9727298

  10. In vitro testing of drug absorption for drug 'developability' assessment: forming an interface between in vitro preclinical data and clinical outcome.

    PubMed

    Sun, Duxin; Yu, Lawrence X; Hussain, Munir A; Wall, Doris A; Smith, Ronald L; Amidon, Gordon L

    2004-01-01

    Drug 'developability' assessment has become an increasingly important addition to traditional drug efficacy and toxicity evaluations, as pharmaceutical scientists strive to accelerate drug discovery and development processes in a time- and cost-effective manner. The fraction of drug absorbed and the maximum absorbable dose (MAD) can be estimated from in vivo clinical pharmacokinetics, mass balance studies or in vivo drug permeability in humans by different calculation methods. Unfortunately, in vivo data are usually unavailable at the early stages of drug discovery and development, and in vitro screening for the permeability, solubility, activity and toxicity of a drug has become a routine measurement in drug discovery and development. These in vitro data could be used to predict drug 'developability' with different calculation methods before selecting candidates for clinical evaluation. The fraction of drug absorbed in human could be predicted by in vivo human permeability or in vitro Caco2 permeability. For example, if drug permeability in Caco2 cells reaches 13.3 to 18.1 x 10(-6) cm/s, its predicted in vivo permeability in humans would reach 2 x 10(-4) cm/s, and its predicted fraction of drug absorbed would be > 90%, which is defined as highly permeable. The MAD could also be predicted with in vitro permeability, or calculated absorption rate constant. In addition, in vitro solubility and permeability data can also be used for the biopharmaceutics classification system (BCS) and, subsequently, to direct formulation optimization strategies. If drug 'developability' becomes an obstacle for drug delivery based on these in vitro data and predictions at the early stages of drug discovery and development, options such as prodrug approaches could be explored to enhance drug 'developability', in addition to different formulation methods. Therefore, in vitro absorption testing is a highly valuable tool in the decision-making process to select candidates for in vivo

  11. Distinguishing between the Permeability Relationships with Absorption and Metabolism To Improve BCS and BDDCS Predictions in Early Drug Discovery

    PubMed Central

    2015-01-01

    The biopharmaceutics classification system (BCS) and biopharmaceutics drug distribution classification system (BDDCS) are complementary classification systems that can improve, simplify, and accelerate drug discovery, development, and regulatory processes. Drug permeability has been widely accepted as a screening tool for determining intestinal absorption via the BCS during the drug development and regulatory approval processes. Currently, predicting clinically significant drug interactions during drug development is a known challenge for industry and regulatory agencies. The BDDCS, a modification of BCS that utilizes drug metabolism instead of intestinal permeability, predicts drug disposition and potential drug–drug interactions in the intestine, the liver, and most recently the brain. Although correlations between BCS and BDDCS have been observed with drug permeability rates, discrepancies have been noted in drug classifications between the two systems utilizing different permeability models, which are accepted as surrogate models for demonstrating human intestinal permeability by the FDA. Here, we recommend the most applicable permeability models for improving the prediction of BCS and BDDCS classifications. We demonstrate that the passive transcellular permeability rate, characterized by means of permeability models that are deficient in transporter expression and paracellular junctions (e.g., PAMPA and Caco-2), will most accurately predict BDDCS metabolism. These systems will inaccurately predict BCS classifications for drugs that particularly are substrates of highly expressed intestinal transporters. Moreover, in this latter case, a system more representative of complete human intestinal permeability is needed to accurately predict BCS absorption. PMID:24628254

  12. Genetic polymorphisms affect efficacy and adverse drug reactions of DMARDs in rheumatoid arthritis.

    PubMed

    Zhang, Ling Ling; Yang, Sen; Wei, Wei; Zhang, Xue Jun

    2014-11-01

    Disease-modifying antirheumatic drugs (DMARDs) and biological agents are critical in preventing the severe complications of rheumatoid arthritis (RA). However, the outcome of treatment with these drugs in RA patients is quite variable and unpredictable. Drug-metabolizing enzymes (dihydrofolate reductase, cytochrome P450 enzymes, N-acetyltransferases, etc.), drug transporters (ATP-binding cassette transporters), and drug targets (tumor necrosis factor-α receptors) are coded for by variant alleles. These gene polymorphisms may influence the pharmacokinetics, pharmacodynamics, and side effects of medicines. The cause for differences in efficacy and adverse drug reactions may be genetic variation in drug metabolism among individuals. Polymorphisms in drug transporter genes may change the distribution and excretion of medicines, and the sensitivity of the targets to drugs is strongly influenced by genetic variations. In this article, we review the genetic polymorphisms that affect the efficacy of DMARDs or the occurrence of adverse drug reactions associated with DMARDs in RA. PMID:25144752

  13. Utility of physiologically based absorption modeling in implementing Quality by Design in drug development.

    PubMed

    Zhang, Xinyuan; Lionberger, Robert A; Davit, Barbara M; Yu, Lawrence X

    2011-03-01

    To implement Quality by Design (QbD) in drug development, scientists need tools that link drug products properties to in vivo performance. Physiologically based absorption models are potentially useful tools; yet, their utility of QbD implementation has not been discussed or explored much in the literature. We simulated pharmacokinetics (PK) of carbamazepine (CBZ) after administration of four oral formulations, immediate-release (IR) suspension, IR tablet, extended-release (XR) tablet and capsule, under fasted and fed conditions and presented a general diagram of a modeling and simulation strategy integrated with pharmaceutical development. We obtained PK parameters and absorption scale factors (ASFs) by deconvolution of the PK data for IR suspension under fasted condition. The model was validated for other PK profiles of IR formulations and used to predict PK for XR formulations. We explored three key areas where a modeling and simulation approach impacts QbD. First, the model was used to help identify optimal in vitro dissolution conditions for XR formulations. Second, identification of critical formulations variables was illustrated by a parameter sensitivity analysis of mean particle radius for the IR tablet that showed a PK shift with decreased particle radius, C (max) was increased and T (max) was decreased. Finally, virtual trial simulations allowed incorporation of inter-subject variability in the model. Virtual bioequivalence studies performed for two test formulations suggested that an in vitro dissolution test may be a more sensitive discriminative method than in vivo PK studies. In summary, a well-validated predictive model is a potentially useful tool for QbD implementation in drug development. PMID:21207216

  14. Optimization of a dual mechanism gastrofloatable and gastroadhesive delivery system for narrow absorption window drugs.

    PubMed

    Murphy, Caragh; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Ndesendo, Valence M K; Chirwa, Nthato; Kumar, Pradeep

    2012-03-01

    In order to overcome poor bioavailability of narrow absorption window drugs, a gastrosphere system comprising two mechanisms of gastric retention, namely buoyancy and gastroadhesion, has been investigated in this study employing poly(lactic-co-glycolic acid) (PLGA), polyacrylic acid (PAA), alginate, pectin, and a model drug metformin hydrochloride. Fifteen formulations were obtained using a Box-Behnken statistical design. The gastrosphere yield was above 80% in all cases; however, due to the high water solubility of metformin, drug entrapment efficacy was between 18% and 54%. Mean dissolution time and gastroadhesive strength were used as the formulation responses in order to optimize the formulation. Furthermore, the molecular mechanics force field simulations were performed to corroborate the experimental findings. Drug release profiles revealed three different release kinetics, namely, burst, first-order and zero-order release. Varying gastroadhesive results were obtained, and were highly sensitive to changes in polymer concentrations. FTIR revealed that strong bonds of PAA and PLGA were retained within the gastrosphere. Surface area and porosity analysis provided supporting evidence that the lyophilization process resulted in a significant increase in the porosity. Analysis of the surface morphology by SEM revealed that air pockets were spread over the entire surface of the gastrosphere, providing a visual proof of the high porosity and hence low density of the gastrosphere. The spatial disposition and energetic profile of the sterically constrained and geometrically optimized multi-polymeric complex of alginate, pectin, PAA, and PLGA corroborated the experimental results in terms of in vitro drug release and gastroadhesive strength of the fabricated gastrospheres. PMID:22048877

  15. Relationships between human intestinal absorption and polar interactions drug/phospholipids estimated by IAM-HPLC.

    PubMed

    Grumetto, Lucia; Russo, Giacomo; Barbato, Francesco

    2015-07-15

    Phospholipid affinity indexes (logkW(IAM)) for 15 structurally non-related basic, acidic, ampholytic, and neutral drugs were measured by HPLC on two different phospholipid stationary phases (immobilized artificial membrane - IAM). According to a method we previously proposed, polar and electrostatic forces involved in drug/membrane interactions were quantified both as ΔlogkW(IAM) and as Δ(')logkW(IAM). These values are the differences between the experimental logkW(IAM) and the values expected for a neutral compound having the lipophilicity value equal to either that of the neutral form of the analyte (logP(N)) or that of the mixture of charged and neutral forms of the analyte at jejunum pH 6.5 (logD(6.5)), respectively. Jejunum absorption values, logPeff, measured by the Loc-I-Gut technique, did not relate with logkW(IAM) values. A moderate linear relationship was observed with logP(N) values for all the analytes and a weak parabolic relationship was observed with logD(6.5) values, but only after the exclusion of two analytes. In contrast, a highly significant linear inverse relationship was observed with ΔlogkW(IAM) values. Therefore, differently from the results of our recent studies on blood-brain barrier passage, the intestinal absorption data for not only bases and zwitterions but also for acids relate significantly with ΔlogkW(IAM) and not with Δ(')logkW(IAM) values. The results suggest that membrane passage at jejunum level can be described according to the "flip-flop" model; indeed, the lipophilicity of the neutral forms (logP(N)) appears related to the passage through the non-polar inner moieties of phospholipids whereas ΔlogkW(IAM) parameter appears related to the "trapping" forces at their polar surfaces. The method, easy to perform and at medium throughput, could be of use for preliminary screening of new drugs based on oral absorption potential. PMID:25917756

  16. Development of a Triplet-Triplet Absorption Ruler: DNA- and Chromatin-Mediated Drug Molecule Release from a Nanosurface.

    PubMed

    Chakraborty, Sudeshna Das; Sau, Abhishek; Kuznetsov, Denis V; Banerjee, Amrita; Bardhan, Munmun; Bhattacharya, Maireyee; Dasgupta, Dipak; Basu, Samita; Senapati, Dulal

    2016-07-14

    Triplet-triplet (T-T) absorption spectroscopy has been used successfully as a molecular ruler to understand the actual release process of sanguinarine as a drug molecule from a gold nanoparticle surface in the presence of cell components, that is, DNA and chromatin. The obtained results have been verified by fluorescence and surface-enhanced Raman spectroscopy (SERS), and a plausible explanation has been put forward to describe the underestimation and overestimation of the percentage (%) of the release of drug molecules measured by fluorescence- and SERS-based techniques, respectively, over the highlighted T-T absorption spectroscopy. Because of the intrinsic nature of absorption, the reported T-T absorption spectroscopic assay overpowers fluorescence- and SERS-based assays, which are limited by the long-range interaction and nonlinear dependence of the concentration of analytes, respectively. PMID:27284775

  17. A novel cell compatible impingement system to study in vitro drug absorption from dry powder aerosol formulations.

    PubMed

    Bur, Michael; Rothen-Rutishauser, Barbara; Huwer, Hanno; Lehr, Claus-Michael

    2009-06-01

    A modified Astra type multistage liquid impinger (MSLI) with integrated bronchial cell monolayers was used to study deposition and subsequent drug absorption on in vitro models of the human airway epithelial barrier. Inverted cell culture of Calu-3 cells on the bottom side of cell culture filter inserts was integrated into a compendial MSLI. Upside down cultivation did not impair the barrier function, morphology and viability of Calu-3 cells. Size selective deposition with subsequent absorption was studied for three different commercially available dry powder formulations of salbutamol sulphate and budesonide. After deposition without size separation the absorption rates from the aerosol formulations differed but correlated with the size of the carrier lactose particles. However, after deposition in the MSLI, simulating relevant impaction and causing the separation of small drug crystals from the carrier lactose, the absorption rates of the three formulations were identical, confirming the bioequivalence of the three formulations. PMID:18771729

  18. Electrophysiological evidence that drug cues have greater salience than other affective stimuli in opiate addiction.

    PubMed

    Lubman, D I; Allen, N B; Peters, L A; Deakin, J F W

    2008-11-01

    Previous research has demonstrated that drug cues are able to capture attentional resources in addicted populations. However, few studies have controlled for the possibility that drug users find all motivationally significant (i.e., affective) stimuli particularly salient. We examined this issue in opiate addiction, by exploring the impact of drug-related and affective stimuli on central attentional processes. Sixteen male heroin addicts (seven on opiate pharmacotherapy and nine recently detoxified subjects) and 12 matched controls were studied. Subjects were fitted with a 32-channel electrode cap and were instructed to passively view a series of neutral, affective and opiate-related images. The P300 elicited by drug-related stimuli was significantly larger than that elicited by affective and neutral stimuli in opiate users but not controls. Baseline ratings of craving were also found to predict the degree of P300 facilitation to the drug-related stimuli in the addicted group. Further, the opiate group demonstrated an absence of the typical enhancement of ERP responses to non-drug affective stimuli. These results suggest that opiate addicts demonstrate greater cortical processing of drug cues than other types of affective stimuli. Further research is required to assess whether addiction is specifically associated with reduced sensitivity to natural rewards, aversive stimuli or affective cues in general. PMID:18208907

  19. Site-dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1977-01-01

    A procedure has been developed which can be used to determine the economic feasibility of solar powered absorption cooling systems. This procedure has been used in a study to investigate the influence of the site-dependent parameters on the economic feasibility of solar absorption cooling. The purpose of this study was to make preliminary site selections for solar powered absorption cooling systems. This paper summarizes the results of that study.

  20. [Inhibitory effect of nasal mucus on the absorption of drugs through respiratory epithelium].

    PubMed

    Hayashi, H

    1990-01-01

    The absorption of Dibekacin (DKB) through rabbit's tracheal mucosa with and without nasal mucus were examined in vitro. The modified double chamber method was used for the purpose of this study. DKB solution (20 mg/ml) and Hanks' balanced salt solution were put into the donor compartment (DC) and the receiver compartment (RC), respectively. A plate with a hole and the tracheal mucosa were inserted between the compartments in the order of DC, dialytic membrane, the plate, the rabbit tracheal mucosa and RC. The hole of the plate was filled with nasal mucus or Hanks' solution. The latter was used as the control. The chamber was incubated in a humidified atmosphere of 5% CO2 in air for 3 hours at 37 degrees C. The absorption rate (AR) was obtained by dividing the concentration of DKB in RC by that in DC. The nasal mucus from patients with chronic sinusitis significantly decreased the AR of DKB compared with that in the control (P less than 0.05). The AR significantly decreased with increments in the thickness of nasal mucus by chronic sinusitis. This decreased AR was improved by the addition of N-Acetyl-L-cysteine (NAC) to DKB solution in DC. NAC can cleave disulfied bonds of mucus glycoprotein and this results in the decrease of viscoelasticity of nasal mucus. The results indicate that nasal mucus by chronic sinusitis intercept the absorption of drugs through respiratory epithelium in vitro. One of the mechanisms of the intercepter may be due to the high molecular-reticular structure of nasal mucus. PMID:2319385

  1. Skin aging modulates percutaneous drug absorption: the impact of ultraviolet irradiation and ovariectomy.

    PubMed

    Hung, Chi-Feng; Chen, Wei-Yu; Aljuffali, Ibrahim A; Lin, Yin-Ku; Shih, Hui-Chi; Fang, Jia-You

    2015-01-01

    Ultraviolet (UV) exposure and menopause are known as the inducers of damage to the skin structure. The combination of these two factors accelerates the skin aging process. In this study, we aimed to evaluate the influence of UV and ovariectomy (OVX) on the permeation of drugs through the skin. The role of tight junctions (TJs) and adherens junctions (AJs) in the cutaneous absorption of extremely lipophilic permeants and macromolecules was explored. The OVX nude mouse underwent bilateral ovary removal. Both UVA and UVB were employed to irradiate the skin. The physiological and biochemical changes of the skin structure were examined with focus on transepidermal water loss (TEWL), skin color, immunohistochemistry, and mRNA levels of proteins. UVB and OVX increased TEWL, resulting in stratum corneum (SC) integrity disruption and dehydration. A hyperproliferative epidermis was produced by UVB. UVA caused a pale skin color tone due to keratinocyte apoptosis in the epidermis. E-cadherin and β-catenin showed a significant loss by both UVA and UVB. OVX downregulated the expression of filaggrin and involucrin. A further reduction was observed when UV and OVX were combined. The in vitro cutaneous absorption demonstrated that UV increased the skin permeation of tretinoin by about twofold. However, skin accumulation and flux of estradiol were not modified by photoaging. OVX basically revealed a negligible effect on altering the permeation of small permeants. OVX increased tretinoin uptake by the appendages from 1.36 to 3.52 μg/cm(2). A synergistic effect on tretinoin follicular uptake enhancement was observed for combined UV and OVX. However, the intervention of OVX to photoaged skin resulted in less macromolecule (dextran, molecular weight = 4 kDa) accumulation in the skin reservoir because of retarded partitioning into dry skin. The in vivo percutaneous absorption of lipophilic dye examined by confocal microscopy had indicated that the SC was still important to

  2. Melatonin not only restores but also prevents the inhibition of the intestinal Ca(2+) absorption caused by glutathione depleting drugs.

    PubMed

    Areco, Vanessa; Rodriguez, Valeria; Marchionatti, Ana; Carpentieri, Agata; Tolosa de Talamoni, Nori

    2016-07-01

    We have previously demonstrated that melatonin (MEL) blocks the inhibition of the intestinal Ca(2+) absorption caused by menadione (MEN). The purpose of this study were to determine whether MEL not only restores but also prevents the intestinal Ca(2+) absorption inhibited either by MEN or BSO, two drugs that deplete glutathione (GSH) in different ways, and to analyze the mechanisms by which MEN and MEL alter the movement of Ca(2+) across the duodenum. To know this, chicks were divided into four groups: 1) controls, 2) MEN treated, 3) MEL treated, and 4) treated sequentially with MEN and MEL or with MEN and MEL at the same time. In a set of experiments, chicks treated with BSO or sequentially with BSO and MEL or with BSO and MEL at the same time were used. MEL not only restored but also prevented the inhibition of the chick intestinal Ca(2+) absorption produced by either MEN or BSO. MEN altered the protein expression of molecules involved in the transcellular as well as in the paracellular pathway of the intestinal Ca(2+) absorption. MEL restored partially both pathways through normalization of the O2(-) levels. The nitrergic system was not altered by any treatment. In conclusion, MEL prevents or restores the inhibition of the intestinal Ca(2+) absorption caused by different GSH depleting drugs. It might become one drug for the treatment of intestinal Ca(2+) absorption under oxidant conditions having the advantage of low or null side effects. PMID:26970583

  3. Development of a Unified Dissolution and Precipitation Model and Its Use for the Prediction of Oral Drug Absorption.

    PubMed

    Jakubiak, Paulina; Wagner, Björn; Grimm, Hans Peter; Petrig-Schaffland, Jeannine; Schuler, Franz; Alvarez-Sánchez, Rubén

    2016-02-01

    Drug absorption is a complex process involving dissolution and precipitation, along with other kinetic processes. The purpose of this work was to (1) establish an in vitro methodology to study dissolution and precipitation in early stages of drug development where low compound consumption and high throughput are necessary, (2) develop a mathematical model for a mechanistic explanation of generated in vitro dissolution and precipitation data, and (3) extrapolate in vitro data to in vivo situations using physiologically based models to predict oral drug absorption. Small-scale pH-shift studies were performed in biorelevant media to monitor the precipitation of a set of poorly soluble weak bases. After developing a dissolution-precipitation model from this data, it was integrated into a simplified, physiologically based absorption model to predict clinical pharmacokinetic profiles. The model helped explain the consequences of supersaturation behavior of compounds. The predicted human pharmacokinetic profiles closely aligned with the observed clinical data. In summary, we describe a novel approach combining experimental dissolution/precipitation methodology with a mechanistic model for the prediction of human drug absorption kinetics. The approach unifies the dissolution and precipitation theories and enables accurate predictions of in vivo oral absorption by means of physiologically based modeling. PMID:26674605

  4. The isolated perfused bovine udder as an in vitro model of percutaneous drug absorption. Skin viability and percutaneous absorption of dexamethasone, benzoyl peroxide, and etofenamate.

    PubMed

    Kietzmann, M; Löscher, W; Arens, D; Maass, P; Lubach, D

    1993-10-01

    Using udders from slaughtered cows as a new in vitro model of percutaneous drug absorption, the tissue viability and the percutaneous absorption of dexamethasone, benzoyl peroxide, and etofenamate were studied. The organ was perfused with gassed tyrode solution for up to 6 hr. As shown by measurement of glucose consumption, lactate production, lactate dehydrogenase activity, and pH in the perfusate, the tissue was viable over a 6-hr period. This was confirmed by a histological examination. Determination of the udder skin-fold thickness demonstrated that no edema developed within the perfusion period. A maximum skin penetration of dexamethasone was found after administration of dexamethasone dissolved in acetone with dimethyl sulfoxide, followed by ointment with salicylic acid, ointment without salicylic acid, and acetone solution. Experiments with benzoyl peroxide and etofenamate demonstrated that the perfused udder skin was capable of metabolizing drugs in vitro. In conclusion, the isolated perfused bovine udder is a new in vitro model, which maintains bovine udder skin with an isolated vasculature in a viable state. Using this in vitro model, we note it is possible to compare the dermal penetration, metabolism, and absorption of substances after topical administration of different drug formulations. PMID:8298184

  5. The effect of E. coli STa enterotoxin on the absorption of weakly dissociable anti-malarial drugs from rat intestine in vivo.

    PubMed Central

    Rawlings, J. M.; Lynch, J.; Lucas, M. L.

    1991-01-01

    1. The effect of E. coli heat stable (STa) enterotoxin on the absorption of radiolabelled anti-malarial weak bases and their appearance in peripheral blood was assessed in vivo by a recirculation procedure in rat intestinal loops. 2. Enterotoxin increased the jejunal disappearance of quinine (P less than 0.05), trimethoprim (P less than 0.05), proguanil (P less than 0.05) and chloroquine (P less than 0.001) and left pyrimethamine disappearance unaltered. Peripheral blood levels of trimethoprim (P less than 0.02) and proguanil (P less than 0.05) were higher after STa exposure. 3. In the ileum, enterotoxin increased the luminal disappearance (P less than 0.05) and peripheral blood appearance (P less than 0.001) of chloroquine. The luminal disappearance rate of trimethoprim was reduced (P less than 0.05) and that of pyrimethamine unchanged. 4. The increased jejunal absorption of the anti-malarial drugs occurred despite STa causing a reduction in the amount of net fluid absorption. It seems likely that the enhanced absorption with STa exposure is related to the effect of STa on the microclimate pH. An elevation in the microclimate pH would increase the amount of undissociated weak base available for non-ionic diffusion. 5. The favourable elevation of microclimate pH by STa seemed to be outweighted by the reduced fluid absorption in the ileum. Only chloroquine still showed enhanced absorption in the ileum and this may have been because unlike the other antimalarial drugs, chloroquine has two dissociable groups likely to be affected by the mucosal surface pH changes. PMID:1878755

  6. Meals and dephytinization affect calcium and zinc absorption in Nigerian children with rickets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional rickets resulting from calcium insufficiency is common in Nigeria, and high dietary phytate is thought to inhibit calcium and zinc absorption. We compared the effects of a high-phytate meal and enzymatic dephytinization on calcium and zinc absorption in Nigerian children with and without...

  7. Iron supplementation does not affect copper and zinc absorption in breastfed infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron supplements are commonly recommended for infants but were suggested to inhibit zinc and copper absorption. The objective of this study was to investigate potential effects of iron supplementation, infant age, and mineral status on zinc and copper absorption in infants at 6 and 9 mo of age. Twen...

  8. One-step preparation of drug-containing microparticles to enhance the dissolution and absorption of poorly water-soluble drugs using a 4-fluid nozzle spray drier.

    PubMed

    Mizoe, Takuto; Beppu, Shuji; Ozeki, Tetsuya; Okada, Hiroaki

    2007-07-31

    We studied the use of a 4-fluid nozzle spray drier as a new one-step method for preparing drug-containing microparticles to enhance the dissolution and absorption of poorly water-soluble drugs. We employed ethenzamide (EZ) and flurbiprofen (FP) as poorly water-soluble drugs and lactose (LAC) and mannitol (MAN) as water-soluble carriers for microparticles. EZ-ethanol or FP-acetone/methanol (2:1) solutions and aqueous solutions of LAC or MAN were simultaneously supplied through different liquid passages of a 4-fluid nozzle spray drier and then dried to obtain LAC or MAN microparticles containing EZ or FP. The dissolution of EZ from the EZ/LAC and EZ/MAN microparticles was much faster than that from EZ powder. The dissolution of EZ was more rapid from the EZ/MAN microparticles than the EZ/LAC microparticles. The dissolution of FP from the FP/MAN microparticles was greatly enhanced because of large effective surface area of FP dispersed in microparticles following rapid dissolution of MAN. The absorption of FP after oral administration of the FP/MAN microparticles to rats was markedly increased. The results demonstrate that the 4-fluid nozzle spray drier can be used for the one-step preparation of drug-containing microparticles that enhance the dissolution and absorption of poorly water-soluble drugs and that overcome the problem of finding a common solvent for drugs and carriers. PMID:17582644

  9. Inulin and fructooligosaccharide affect in vitro calcium uptake and absorption from calcium-enriched gluten-free bread.

    PubMed

    Krupa-Kozak, U; Swiątecka, D; Bączek, N; Brzóska, M M

    2016-04-01

    Compromised intestinal calcium absorption affecting a deterioration of bone state is a sign of coeliac disease. Experimental calcium-fortified gluten-free bread (GFB) of improved calcium bioavailability could increase calcium content in the diets of coeliac disease patients, allowing them to obtain the amount of calcium they need for therapeutic use. Prebiotics, including inulin-type fructans (IFs) have a beneficial effect on calcium bioavailability. In the present study, the in vitro model composed of the intestinal-like Caco-2 cells and the human intestinal bacteria (Lactobacillus, Enterococcus and Enterobacteriaceae) were used to analyse the effect of inulin and fructooligosaccharide (FOS) of different chain lengths, on calcium uptake and absorption from experimental GFB. Analysed IFs, especially short-chain FOS, significantly (p < 0.05) increased cellular calcium uptake from GFB digest and stimulated the intestinal bacteria applied in the cultures to the intensive synthesis of organic acids. In particular, the concentration of butyric, valeric and lactic acids increased significantly. Similarly, in the calcium absorption experiment, IFs increased the cellular calcium retention but concomitantly reduced its content in basolateral filtrates. The results obtained suggest that the applied IFs affected differentially calcium uptake and absorption from the experimental calcium-enriched GFB, therefore a further study is needed to assess whether these observations made in vitro contribute to IF effects on calcium absorption from experimental GFB in vivo. PMID:26965706

  10. Drug structural features affect drug delivery from hyperbranched polyesteramide hot melt extrudates.

    PubMed

    Raviña-Eirin, Elena; Azuaje, Jhonny; Sotelo, Eddy; Gomez-Amoza, Jose Luis; Martinez-Pacheco, Ramon

    2016-05-01

    The aim of this study was firstly to evaluate the utility of Hybrane S1200 as a hot melt extrusion (HME) carrier to prepare instant-release multiparticulate systems for very poorly-soluble drugs such as ketoconazole or nifedipine. Hybrane S1200 allows an easy extrusion of its drug mixtures at a relatively low temperature, not higher than 90°C, and with no need of any additional aid. Extrudates containing 10% of nifedipine or ketoconazole form monophasic systems. Nifedipine extrudate shows no drug release in drug dissolution rate tests while ketoconazole extrudate release reaches only 60% of drug content. Additionally, a turbidity in the dissolution medium due to the formation of a kind of polymer vesicles (ranging 3-0.2μm in size) is observed. These facts could suggest a chemical interaction between the polymer and both drugs, triggered by the HME process. Both nifedipine and ketoconazole share characteristic acid-base profiles that could facilitate a degradation processes within the polymer, thus modifying Hybrane's water-solubility and polar nature. Such modified polymer structure, when in aqueous medium, forms the aforementioned stable vesicles that may encapsulate the drugs, thus making its delivery difficult or even preventing it. PMID:26912462

  11. Genotype and allele frequencies of drug-metabolizing enzymes and drug transporter genes affecting immunosuppressants in the Spanish white population.

    PubMed

    Bosó, Virginia; Herrero, María J; Buso, Enrique; Galán, Juan; Almenar, Luis; Sánchez-Lázaro, Ignacio; Sánchez-Plumed, Jaime; Bea, Sergio; Prieto, Martín; García, María; Pastor, Amparo; Sole, Amparo; Poveda, José Luis; Aliño, Salvador F

    2014-04-01

    Interpatient variability in drug response can be widely explained by genetically determined differences in metabolizing enzymes, drug transporters, and drug targets, leading to different pharmacokinetic and/or pharmacodynamic behaviors of drugs. Genetic variations affect or do not affect drug responses depending on their influence on protein activity and the relevance of such proteins in the pathway of the drug. Also, the frequency of such genetic variations differs among populations, so the clinical relevance of a specific variation is not the same in all of them. In this study, a panel of 33 single nucleotide polymorphisms in 14 different genes (ABCB1, ABCC2, ABCG2, CYP2B6, CYP2C19, CYP2C9, CYP3A4, CYP3A5, MTHFR, NOD2/CARD15, SLCO1A2, SLCO1B1, TPMT, and UGT1A9), encoding for the most relevant metabolizing enzymes and drug transporters relating to immunosuppressant agents, was analyzed to determine the genotype profile and allele frequencies in comparison with HapMap data. A total of 570 Spanish white recipients and donors of solid organ transplants were included. In 24 single nucleotide polymorphisms, statistically significant differences in allele frequency were observed. The largest differences (>100%) occurred in ABCB1 rs2229109, ABCG2 rs2231137, CYP3A5 rs776746, NOD2/CARD15 rs2066844, TPMT rs1800462, and UGT1A9 rs72551330. In conclusion, differences were recorded between the Spanish and other white populations in terms of allele frequency and genotypic distribution. Such differences may have implications in relation to dose requirements and drug-induced toxicity. These data are important for further research to help explain interindividual pharmacokinetic and pharmacodynamic variability in response to drug therapy. PMID:24232128

  12. Factors affecting drug-induced liver injury: antithyroid drugs as instances.

    PubMed

    Heidari, Reza; Niknahad, Hossein; Jamshidzadeh, Akram; Abdoli, Narges

    2014-09-01

    Methimazole and propylthiouracil have been used in the management of hyperthyroidism for more than half a century. However, hepatotoxicity is one of the most deleterious side effects associated with these medications. The mechanism(s) of hepatic injury induced by antithyroid agents is not fully recognized yet. Furthermore, there are no specific tools for predicting the occurrence of hepatotoxicity induced by these drugs. The purpose of this article is to give an overview on possible susceptibility factors in liver injury induced by antithyroid agents. Age, gender, metabolism characteristics, alcohol consumption, underlying diseases, immunologic mechanisms, and drug interactions are involved in enhancing antithyroid drugs-induced hepatic damage. An outline on the clinically used treatments for antithyroid drugs-induced hepatotoxicity and the potential therapeutic strategies found to be effective against this complication are also discussed. PMID:25320726

  13. A modified physiological BCS for prediction of intestinal absorption in drug discovery.

    PubMed

    Zaki, Noha M; Artursson, Per; Bergström, Christel A S

    2010-10-01

    In this study, the influence of physiologically relevant media on the compound position in a biopharmaceutical classification system (BCS) which resembled the intestinal absorption was investigated. Both solubility and permeability limited compounds (n = 22) were included to analyze the importance of each of these on the final absorption. Solubility was determined in three different dissolution media, phosphate buffer pH 6.5 (PhB 6.5), fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF) at 37 °C, and permeability values were determined using the 2/4/A1 cell line. The solubility data and membrane permeability values were used for sorting the compounds into a BCS modified to reflect the fasted and fed state. Three of the seven compounds sorted as BCS II in PhB 6.5 (high permeability, low solubility) changed their position to BCS I when dissolved in FaSSIF and/or FeSSIF (high permeability, high solubility). These were low dosed (20 mg or less) lipophilic molecules displaying solvation limited solubility. In contrast, compounds having solid-state limited solubility had a minor increase in solubility when dissolved in FaSSIF and/or FeSSIF. Although further studies are needed to enable general cutoff values, our study indicates that low dosed BCS Class II compounds which have solubility normally restricted by poor solvation may behave as BCS Class I compounds in vivo. The large series of compounds investigated herein reveals the importance of investigating solubility and dissolution under physiologically relevant conditions in all stages of the drug discovery process to push suitable compounds forward, to select proper formulations, and to reduce the risk of food effects. PMID:20734997

  14. Effects of PEGylated lipid nanoparticles on the oral absorption of one BCS II drug: a mechanistic investigation

    PubMed Central

    Zhang, Xingwang; Chen, Guijiang; Zhang, Tianpeng; Ma, Zhiguo; Wu, Baojian

    2014-01-01

    Lipid nanocarriers are becoming a versatile platform for oral delivery of lipophilic drugs. In this article, we aimed to explore the gastrointestinal behaviors of lipid nanoparticles and the effect of PEGylation on oral absorption of fenofibrate (FN), a Biopharmaceutics Classification System (BCS) II model drug. FN-loaded PEGylated lipid nanoparticles (FN-PLNs) were prepared by the solvent-diffusion method and characterized by particle size distribution, morphology, Fourier transform infrared spectroscopy, and drug release. Lipolytic experiments were performed to assess the resistance of lipid nanoparticles against pancreatic lipase. Pharmacokinetics was evaluated in rats after oral administration of FN preparations. The obtained FN-PLNs were 186.7 nm in size with an entrapment efficiency of >95%. Compared to conventional lipid nanoparticles, PLNs exhibited slower drug release in the lipase-containing medium, strikingly reduced mucin binding, and suppressed lipolysis in vitro. Further, oral absorption of FN was significantly enhanced using PLNs with relative bioavailability of 123.9% and 157.0% to conventional lipid nanoparticles and a commercial formulation (Lipanthyl®), respectively. It was demonstrated that reduced mucin trapping, suppressed lipolysis, and/or improved mucosal permeability were responsible for increased oral absorption. These results facilitated a better understanding of the in vivo fate of lipid nanoparticles, and suggested the potential of PLNs as oral carriers of BCS II drugs. PMID:25473287

  15. Evaluating Potential P-gp Substrates: Main Aspects to Choose the Adequate Permeability Model for Assessing Gastrointestinal Drug Absorption.

    PubMed

    da Silva Junior, João Batista; Dezani, Thaisa Marinho; Dezani, André Bersani; dos Reis Serra, Cristina Helena

    2015-01-01

    The success of an oral drug route administration depends on many factors that interfere in its bioavailability, therapeutic efficacy and clinical safety. In human cells, ATP-dependent efflux transporter proteins, such as P-glycoprotein (P-gp), BCRP and MRP2, reduce the absorption of drugs. A tiered approach chosen to evaluate drugs as substrates or inhibitors of efflux pumps, particularly P-gp, should be carefully selected, since each study method has advantages and intrinsic limitations to their processes. Depending on the adopted study conditions, the results may not correspond to the real characteristics of the drug regarding to its modulation by specific efflux proteins. This mini-review aims at summarizing the role of P-gp in the drugs oral absorption and correlating some of the most used permeability methods to determine the drug condition as P-gp substrate. Studies about P-gp have shown that it is a dynamic protein, facilitating secretion of endogenous compounds, as aldosterone, and protecting cells against xenobiotics. Different efflux assays are employed to evaluate drugs as P-gp substrates. In an initial planning, MDCK-MDR1 tend to be the chosen method for efflux studies due its ability of express P-gp, followed by studies conducted in Caco-2 models. However, it is necessary to evaluate the advantages and disadvantages of each method to generate sound results and to set the correlation in vitro x in situ x in vivo. PMID:25963568

  16. Anticancer efficacy and absorption, distribution, metabolism, and toxicity studies of Aspergiolide A in early drug development

    PubMed Central

    Wang, Yuanyuan; Qi, Xin; Li, Dehai; Zhu, Tianjiao; Mo, Xiaomei; Li, Jing

    2014-01-01

    Since the first anthracycline was discovered, many other related compounds have been studied in order to overcome its defects and improve efficacy. In the present paper, we investigated the anticancer effects of a new anthracycline, aspergiolide A (ASP-A), from a marine-derived fungus in vitro and in vivo, and we evaluated the absorption, distribution, metabolism, and toxicity drug properties in early drug development. We found that ASP-A had activity against topoisomerase II that was comparable to adriamycin. ASP-A decreased the growth of various human cancer cells in vitro and induced apoptosis in BEL-7402 cells via a caspase-dependent pathway. The anticancer efficacy of ASP-A on the growth of hepatocellular carcinoma xenografts was further assessed in vivo. Results showed that, compared with the vehicle group, ASP-A exhibited significant anticancer activity with less loss of body weight. A pharmacokinetics and tissue distribution study revealed that ASP-A was rapidly cleared in a first order reaction kinetics manner, and was enriched in cancer tissue. The maximal tolerable dose (MTD) of ASP-A was more than 400 mg/kg, and ASP-A was not considered to be potentially genotoxic or cardiotoxic, as no significant increase of micronucleus rates or inhibition of the hERG channel was seen. Finally, an uptake and transport assay of ASP-A was performed in monolayers of Caco-2 cells, and ASP-A was shown to be absorbed through the active transport pathway. Altogether, these results indicate that ASP-A has anticancer activity targeting topoisomerase II, with a similar structure and mechanism to adriamycin, but with much lower toxicity. Nonetheless, further molecular structure optimization is necessary. PMID:25378909

  17. Zinc Absorption from Micronutrient Powder Is Low but Is not Affected by Iron in Kenyan Infants

    PubMed Central

    Esamai, Fabian; Liechty, Edward; Ikemeri, Justus; Westcott, Jamie; Kemp, Jennifer; Culbertson, Diana; Miller, Leland V.; Hambidge, K. Michael; Krebs, Nancy F.

    2014-01-01

    Interference with zinc absorption is a proposed explanation for adverse effects of supplemental iron in iron-replete children in malaria endemic settings. We examined the effects of iron in micronutrient powder (MNP) on zinc absorption after three months of home fortification with MNP in maize-based diets in rural Kenyan infants. In a double blind design, six-month-old, non-anemic infants were randomized to MNP containing 5 mg zinc, with or without 12.5 mg of iron (MNP + Fe and MNP − Fe, respectively); a control (C) group received placebo powder. After three months, duplicate diet collections and zinc stable isotopes were used to measure intake from MNP + non-breast milk foods and fractional absorption of zinc (FAZ) by dual isotope ratio method; total absorbed zinc (TAZ, mg/day) was calculated from intake × FAZ. Mean (SEM) TAZ was not different between MNP + Fe (n = 10) and MNP − Fe (n = 9) groups: 0.85 (0.22) and 0.72 (0.19), respectively, but both were higher than C (n = 9): 0.24 (0.03) (p = 0.04). Iron in MNP did not significantly alter zinc absorption, but despite intakes over double estimated dietary requirement, both MNP groups’ mean TAZ barely approximated the physiologic requirement for age. Impaired zinc absorption may dictate need for higher zinc doses in vulnerable populations. PMID:25493942

  18. Zinc absorption from micronutrient powder is low but is not affected by iron in Kenyan infants.

    PubMed

    Esamai, Fabian; Liechty, Edward; Ikemeri, Justus; Westcott, Jamie; Kemp, Jennifer; Culbertson, Diana; Miller, Leland V; Hambidge, K Michael; Krebs, Nancy F

    2014-12-01

    Interference with zinc absorption is a proposed explanation for adverse effects of supplemental iron in iron-replete children in malaria endemic settings. We examined the effects of iron in micronutrient powder (MNP) on zinc absorption after three months of home fortification with MNP in maize-based diets in rural Kenyan infants. In a double blind design, six-month-old, non-anemic infants were randomized to MNP containing 5 mg zinc, with or without 12.5 mg of iron (MNP + Fe and MNP − Fe, respectively); a control (C) group received placebo powder. After three months, duplicate diet collections and zinc stable isotopes were used to measure intake from MNP + non-breast milk foods and fractional absorption of zinc (FAZ) by dual isotope ratio method; total absorbed zinc (TAZ, mg/day) was calculated from intake × FAZ. Mean (SEM) TAZ was not different between MNP + Fe (n = 10) and MNP - Fe (n = 9) groups: 0.85 (0.22) and 0.72 (0.19), respectively, but both were higher than C (n = 9): 0.24 (0.03) (p = 0.04). Iron in MNP did not significantly alter zinc absorption, but despite intakes over double estimated dietary requirement, both MNP groups' mean TAZ barely approximated the physiologic requirement for age. Impaired zinc absorption may dictate need for higher zinc doses in vulnerable populations. PMID:25493942

  19. Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans.

    PubMed

    Prasad, Tulika; Hameed, Saif; Manoharlal, Raman; Biswas, Sudipta; Mukhopadhyay, Chinmay K; Goswami, Shyamal K; Prasad, Rajendra

    2010-08-01

    This study shows that the morphogenic regulator EFG1 level affects the drug susceptibilities of Candida albicans when grown on solid growth media. The Deltaefg1 mutant showed sensitivity particularly to those drugs that target ergosterol or its metabolism. Efg1p disruption showed a gene-dosage effect on drug susceptibilities and resulted in enhanced susceptibility to drugs in the homozygous mutant as compared with the wild type, heterozygous and revertant strains. The enhanced sensitivity to drugs was independent of the status of ATP-binding cassette and MFS multidrug efflux pumps of C. albicans. The Deltaefg1 mutant displayed increased membrane fluidity that coincided with the downregulation of ERG11 and upregulation of OLE1 and ERG3, leading to enhanced passive diffusion of drugs. Interestingly, Deltaefg1 mutant cells displayed enhanced levels of endogenous ROS levels. Notably, the higher levels of ROS in the Deltaefg1 mutant could be reversed by the addition of antioxidants. However, the restoration of ROS levels did not reverse the drug sensitivities of the Deltaefg1 mutant. Taken together, we, for the first time, establish a new role to EFG1 in affecting the drug susceptibilities of C. albicans cells, independent of ROS and known drug efflux mechanisms. PMID:20491944

  20. Novel oral formulation safely improving intestinal absorption of poorly absorbable drugs: utilization of polyamines and bile acids.

    PubMed

    Miyake, Masateru; Minami, Takanori; Hirota, Masao; Toguchi, Hajime; Odomi, Masaaki; Ogawara, Ken-ichi; Higaki, Kazutaka; Kimura, Toshikiro

    2006-03-10

    In order to develop a novel oral formulation that can safely improve the intestinal absorption of poorly absorbable drugs, polyamines such as spermine (SPM) and spermidine (SPD) was examined as an absorption enhancing adjuvant in rats. The absorption of rebamipide, classified into BCS Class IV, from colon was significantly improved by SPM or SPD, and the enhancing ability of SPM was larger than that of SPD. As a possible mixing and/or interaction of polyamines with bile acids were expected, the combinatorial use of sodium taurocholate (STC) with polyamines was also examined. The absorption of rebamipide was drastically improved by the combinatorial use of SPM or SPD with STC. As STC itself did not enhance the absorption of rebamipide so much, it was considered that polyamines and STC had a synergistic enhancing effect. In-vivo oral absorption study was also performed to investigate the effectiveness and safety of polyamines and their combinatorial use with STC in rats. Although the enhancing effect slightly attenuated comparing with the in-situ loop study, the absorption of rebamipide was significantly improved and the combinatorial use of 10 mM SPM with 25 mM STC showed the largest enhancing effect. Histopathological studies clearly showed that any significant change in stomach and duodenum was not caused by SPM (10 mM), SPD (10 mM) or their combinatorial use with STC (25 mM) at 1.5 or 8.0 h after oral administration. Taken all together, polyamines, especially SPM, and its combinatorial use with STC could improve the absorption of poorly absorbable drugs without any significant changes in gastrointestinal tract after oral administration in rats. PMID:16410031

  1. Tracking Drug Loading Capacities of Calcium Silicate Hydrate Carrier: A Comparative X-ray Absorption Near Edge Structures Study.

    PubMed

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Yiu, Yun-Mui; Hu, Yongfeng; Zhu, Ying-Jie; Sham, Tsun-Kong

    2015-08-01

    Mesoporous spheres of calcium silicate hydrate (MS-CSH) have been prepared by an ultrasonic method. Following an earlier work in which we have revealed the interactions between ibuprofen (IBU) and CSH carriers with different morphologies by X-ray absorption near edge structures (XANES) analysis. In the present investigation, two new drug molecules, alendronate sodium (ALN) and gentamicin sulfate (GS), were incorporated into MS-CSH, and their drug loading capacities (DLCs) were measured using thermogravimetric analysis to establish the relationship between drug-carrier interactions and DLCs. The XANES spectra clearly indicate that acidic functional groups of the drug molecules linked to the active sites (Ca-OH and Si-OH groups) of MS-CSH on the surface by electrostatic interactions. In addition, it is found that the stoichiometric ratio of Ca(2+) ions of CSH carriers and the functional groups of drug molecules may significantly influence the DLCs. PMID:26162602

  2. How could preventive therapy affect the prevalence of drug resistance? Causes and consequences.

    PubMed

    Kunkel, Amber; Colijn, Caroline; Lipsitch, Marc; Cohen, Ted

    2015-06-01

    Various forms of preventive and prophylactic antimicrobial therapies have been proposed to combat HIV (e.g. pre-exposure prophylaxis), tuberculosis (e.g. isoniazid preventive therapy) and malaria (e.g. intermittent preventive treatment). However, the potential population-level effects of preventative therapy (PT) on the prevalence of drug resistance are not well understood. PT can directly affect the rate at which resistance is acquired among those receiving PT. It can also indirectly affect resistance by altering the rate at which resistance is acquired through treatment for active disease and by modifying the level of competition between transmission of drug-resistant and drug-sensitive pathogens. We propose a general mathematical model to explore the ways in which PT can affect the long-term prevalence of drug resistance. Depending on the relative contributions of these three mechanisms, we find that increasing the level of coverage of PT may result in increases, decreases or non-monotonic changes in the overall prevalence of drug resistance. These results demonstrate the complexity of the relationship between PT and drug resistance in the population. Care should be taken when predicting population-level changes in drug resistance from small pilot studies of PT or estimates based solely on its direct effects. PMID:25918446

  3. Black carbon absorption at the global scale is affected by particle-scale diversity in composition.

    PubMed

    Fierce, Laura; Bond, Tami C; Bauer, Susanne E; Mena, Francisco; Riemer, Nicole

    2016-01-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (Eabs) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find Eabs=1-1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models. PMID:27580627

  4. Site dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.

  5. Experimental factors affecting in vitro absorption of six model compounds across porcine skin.

    PubMed

    Karadzovska, Daniela; Brooks, James D; Riviere, Jim E

    2012-10-01

    This comparative study evaluated the effect of several experimental variables on the absorption of six model [(14)C]-labeled compounds (caffeine, cortisone, diclofenac sodium, mannitol, salicylic acid, and testosterone) through porcine skin. Using static and flow-through diffusion cells, finite or infinite, saturated or unsaturated doses were applied in one of three vehicles: propylene glycol, water, and ethanol following a full factorial experimental design. The flux of each compound into the receptor phase, with or without bovine serum albumin (BSA), was monitored over 24 h. Levels of radioactivity were also determined in the stratum corneum by tape stripping and in the remaining skin. Apparent permeability coefficients (Kp) and dose absorbed were calculated and compared. The overall results emphasize the importance of experimental design and confirm previous findings that identified dose volume, saturation level and vehicle as the main sources of variation in the in vitro assessment of dermal absorption, whilst diffusion cell model and the presence/absence of BSA in the receptor phase had minimal effect. Although the acquired data do not directly reveal new mechanistic information on dermal absorption, the unique and complete study design has provided a suitable data source for the development of dermal absorption prediction models. PMID:22750544

  6. Poor permeability and absorption affect the activity of four alkaloids from Coptis.

    PubMed

    Cui, Han-Ming; Zhang, Qiu-Yan; Wang, Jia-Long; Chen, Jian-Long; Zhang, Yu-Ling; Tong, Xiao-Lin

    2015-11-01

    Coptidis rhizoma (Coptis) and its alkaloids exert various pharmacological functions in cells and tissues; however, the oral absorption of these alkaloids requires further elucidation. The present study aimed to examine the mechanism underlying the poor absorption of alkaloids, including berberine (BER), coptisine (COP), palmatine (PAL) and jatrorrhizine (JAT). An ultra‑performance liquid chromatography (UPLC) method was validated for the determination of BER, COP, PAL and JAT in the above experimental medium. In addition, the apparent oil‑water partition coefficient (Po/w); apparent permeability coefficient (Papp), determined using a parallel artificial membrane permeability assay (PAMPA) plate; membrane retention coefficient (R %); and effect of P‑glycoprotein (P‑gp) inhibitor on the Papp of the four alkaloids were investigated. The intestinal absorption rate constant (Ka) and absorption percentage (A %) of the four alkaloids were also determined. The results of the present study demonstrated that the Po/w of the four alkaloids in 0.1 mol·l‑1 HCl medium was significantly higher (P<0.01), compared with those of the alkaloids in phosphate buffer (pH 7.4). The Papp of BER was 1.0‑1.2x10‑6 cm·s‑1, determined using a PAMPA plate, and the Papp of BER, COP, PAL and JAT decreased sequentially. The concentrations of the four alkaloids on the apical‑to‑basolateral (AP‑BL) surface and the basolateral‑to‑apical (BL‑AP) surface increased in a linear manner, with increasing concentrations between 10 and 100 µmol. In addition, the transportation of BER on the BL‑AP surface was significantly faster (P<0.01), compared with that on the AP‑BL surface and, following the addition of verpamil (a P‑gp inhibitor), the Papp (AP‑BL) of the four alkaloids increased, whereas the Papp (BL‑AP) was significantly decreased (P<0.01). The rat intestinal perfusion experiment demonstrated that the four alkaloids were poorly absorbed; however, the Ka of BER

  7. Drug-Induced Diabetes Mellitus: Evidence for Statins and Other Drugs Affecting Glucose Metabolism.

    PubMed

    Anyanwagu, U; Idris, I; Donnelly, R

    2016-04-01

    Abnormalities of glucose metabolism and glucose tolerance, either because of a reduction in tissue sensitivity to insulin (e.g., in liver, skeletal muscle, and adipose tissues) and/or a reduction in pancreatic insulin secretion, are associated with a number of unwanted health outcomes. Even small increases in circulating glucose levels (often described as dysglycemia or prediabetes) may confer an increased risk of cardiovascular (CV) disease and progression to overt type 2 diabetes. A number of drug therapies, many of them used long term in chronic disease management, have adverse effects on glucose metabolism, diabetes risk, and glycemic control among patients with preexisting diabetes. In this study, we review the evidence, underlying mechanisms, and the clinical significance of drug-related adverse effects on glucose metabolism. PMID:26440603

  8. Albumin Supplement Affects the Metabolism and Metabolism-Related Drug-Drug Interaction of Fenoprofen Enantiomers.

    PubMed

    Wang, Nan; Wang, Feng; Meng, Yu; Yang, Guo-Hui; Chen, Ju-Wu; Wang, Jia-Xiang

    2015-07-01

    The influence of albumin towards the metabolism behavior of fenoprofen enantiomers and relevant drug-drug interaction was investigated in the present study. The metabolic behavior of fenoprofen enantiomers was compared in a phase II metabolic incubation system with and without bovine serum albumin (BSA). BSA supplement increased the binding affinity parameter (Km) of (R)-fenoprofen towards human liver microsomes (HLMs) from 148.3 to 214.4 μM. In contrast, BSA supplement decreased the Km of (S)-fenoprofen towards HLMs from 218.2 to 123.5 μM. For maximum reaction velocity (Vmax), the addition of BSA increased the Vmax of (R)-fenoprofen from 1.3 to 1.6 nmol/min/mg protein. In the contrast, BSA supplement decreased the Vmax value from 3.3 to 1.5 nmol/min/mg protein. Andrographolide-fenoprofen interaction was used as an example to investigate the influence of BSA supplement towards fenoprofen-relevant drug-drug interaction. The addition of 0.2% BSA in the incubation system significantly decreased the inhibition potential of andrographolide towards (R)-fenoprofen metabolism (P < 0.001). Different from (R)-fenoprofen, the addition of BSA significantly increased the inhibition potential of andrographolide towards the metabolism of (S)-fenoprofen. BSA supplement also changed the inhibition kinetic type and parameter of andrographolide towards the metabolism of (S)-fenoprofen. In conclusion, albumin supplement changes the metabolic behavior of fenoprofen enantiomers and the fenoprofen-andrographolide interaction. PMID:26037509

  9. Interaction of the main components from the traditional Chinese drug pair Chaihu-Shaoyao based on rat intestinal absorption.

    PubMed

    Chen, Yan; Wang, Jinyan; Yuan, Ling; Zhou, Lei; Jia, Xiaobin; Tan, Xiaobin

    2011-01-01

    The Chaihu-Shaoyao drug pair (Bupleuri Radix and Paeoniae Radix Alba) which is a traditional Chinese drug pair, has been widely used for anti-inflammatory purposes. Saikosaponin a (SSA), saikosaponin d (SSD) and paeoniflorin are identified as the main components in the pair. The present study focused on the interaction of the main components based on investigating their intestinal absorption using a four-site perfused rat intestinal model in order to clarify the mechanism of the compatibility of Chaihu-Shaoyao. The concentrations of SSA, SSD and paeoniflorin in the intestinal perfusate were determined by LC/MS or UPLC (Ultra Performance Liquid Chromatography) methods, followed by P*(eff) (effective permeability) and 10% ABS (the percent absorption of 10 cm of intestine) calculations. The results showed that all of the three main components displayed very low permeabilities (P*(eff) < 0.4), which implied their poor absorption in the rat intestine. The absorption levels of SSA and SSD were similar in intestine and higher in ileum than those in other intestinal regions in the decreasing order: colon, jejunum and duodenum. However, there is no significant difference in the absorption of paeoniflorin in the four segments (P < 0.05). The P*(eff) values of paeoniflorin exhibited an almost 2.11-fold or 1.90-fold increase in ileum when it was co-administrated with SSA and SSD, as well as 2.42-, 2.18-fold increase in colon, respectively, whereas the absorptions of SSA and SSD were not influenced by paeoniflorin. In conclusion, SSA and SSD could promote the absorption of paeoniflorin. To some extent this might explain the nature of the compatibility mechanisms of composite formulae in TCMs. PMID:22095024

  10. Impact of Luminal Fluid Volume on the Drug Absorption After Oral Administration: Analysis Based on In Vivo Drug Concentration-Time Profile in the Gastrointestinal Tract.

    PubMed

    Tanaka, Yusuke; Goto, Takanori; Kataoka, Makoto; Sakuma, Shinji; Yamashita, Shinji

    2015-09-01

    The objective of this study is to clarify the influence of fluid volume in the gastrointestinal (GI) tract on the oral drug absorption. In vivo rat luminal concentrations of FITC-dextran (FD-4), a nonabsorbable marker, and drugs (metoprolol and atenolol) after oral coadministration as solutions with different osmolarity were determined by direct sampling of residual water in each segment of the GI tract. The luminal FD-4 concentration after oral administration as hyposmotic solution was significantly higher than that after administration as isosmotic or hyperosmotic solution. As the change in FD-4 concentration reflects the change in the volume of luminal fluid, it indicated that the luminal volume was greatly influenced by osmolality of solution ingested orally. Then, fraction of drug absorbed (Fa) in these segments was calculated by comparing the area under the luminal concentration-time curve of FD-4 with those of drugs. Fa values of two model drugs in each GI segment decreased with increase in luminal fluid volume, and the impact of the fluid volume was marked for Fa of atenolol (a low permeable drug) than for that of metoprolol (a high permeable drug). These findings should be beneficial to assure the effectiveness and safety of oral drug therapy. PMID:25821198

  11. The influence of food on the absorption and metabolism of drugs: an update.

    PubMed

    Williams, L; Hill, D P; Davis, J A; Lowenthal, D T

    1996-01-01

    Food-drug interactions can lead to a loss of therapeutic efficacy or toxic effects of drug therapy. Generally, the effect of food on drugs results in a reduction in the drug's bioavailability; however, food can also alter drug clearance. The benefits of considering metabolism and pharmacokinetic information in the drug discovery process have been highlighted by Humphrey and Smith (79) and the process of rational drug design should include considerations of the chemistry, pharmacology and pharmacokinetics of the drug (80) and the impact of diet on these parameters. PMID:8980916

  12. Preclinical dose number and its application in understanding drug absorption risk and formulation design for preclinical species.

    PubMed

    Wuelfing, W Peter; Daublain, Pierre; Kesisoglou, Filippos; Templeton, Allen; McGregor, Caroline

    2015-04-01

    In the drug discovery setting, the ability to rapidly identify drug absorption risk in preclinical species at high doses from easily measured physical properties is desired. This is due to the large number of molecules being evaluated and their high attrition rate, which make resource-intensive in vitro and in silico evaluation unattractive. High-dose in vivo data from rat, dog, and monkey are analyzed here, using a preclinical dose number (PDo) concept based on the dose number described by Amidon and other authors (Pharm. Res., 1993, 10, 264-270). PDo, as described in this article, is simply calculated as dose (mg/kg) divided by compound solubility in FaSSIF (mg/mL) and approximates the volume of biorelevant media per kilogram of animal that would be needed to fully dissolve the dose. High PDo values were found to be predictive of difficulty in achieving drug exposure (AUC)-dose proportionality in in vivo studies, as could be expected; however, this work analyzes a large data set (>900 data points) and provides quantitative guidance to identify drug absorption risk in preclinical species based on a single solubility measurement commonly carried out in drug discovery. Above the PDo values defined, >50% of all in vivo studies exhibited poor AUC-dose proportionality in rat, dog, and monkey, and these values can be utilized as general guidelines in discovery and early development to rapidly assess risk of solubility-limited absorption for a given compound. A preclinical dose number generated by biorelevant dilutions of formulated compounds (formulated PDo) was also evaluated and defines solubility targets predictive of suitable AUC-dose proportionality in formulation development efforts. Application of these guidelines can serve to efficiently identify compounds in discovery that are likely to present extreme challenges with respect to solubility-limited absorption in preclinical species as well as reduce the testing of poor formulations in vivo, which is a key

  13. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure.

    PubMed

    Scholz-Ahrens, Katharina E; Ade, Peter; Marten, Berit; Weber, Petra; Timm, Wolfram; Açil, Yahya; Glüer, Claus-C; Schrezenmeir, Jürgen

    2007-03-01

    Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics

  14. Rapid screening and identification of illicit drugs by IR absorption spectroscopy and gas chromatography

    NASA Astrophysics Data System (ADS)

    Mengali, Sandro; Liberatore, Nicola; Luciani, Domenico; Viola, Roberto; Cardinali, Gian Carlo; Elmi, Ivan; Poggi, Antonella; Zampolli, Stefano; Biavardi, Elisa; Dalcanale, Enrico; Bonadio, Federica; Delemont, Olivier; Esseiva, Pierre; Romolo, Francesco S.

    2013-01-01

    Analytical instruments based on InfraRed Absorption Spectroscopy (IRAS) and Gas Chromatography (GC) are today available only as bench-top instrumentation for forensic labs and bulk analysis. Within the 'DIRAC' project funded by the European Commission, we are developing an advanced portable sensor, that combines miniaturized GC as its key chemical separation tool, and IRAS in a Hollow Fiber (HF) as its key analytical tool, to detect and recognize illicit drugs and key precursors, as bulk and as traces. The HF-IRAS module essentially consists of a broadly tunable External Cavity (EC) Quantum Cascade Laser (QCL), thermo-electrically cooled MCT detectors, and an infrared hollow fiber at controlled temperature. The hollow fiber works as a miniaturized gas cell, that can be connected to the output of the GC column with minimal dead volumes. Indeed, the module has been coupled to GC columns of different internal diameter and stationary phase, and with a Vapour Phase Pre-concentrator (VPC) that selectively traps target chemicals from the air. The presentation will report the results of tests made with amphetamines and precursors, as pure substances, mixtures, and solutions. It will show that the sensor is capable of analyzing all the chemicals of interest, with limits of detection ranging from a few nanograms to about 100-200 ng. Furthermore, it is suitable to deal with vapours directly trapped from the headspace of a vessel, and with salts treated in a basic solution. When coupled to FAST GC columns, the module can analyze multi-components mixes in less than 5 minutes.

  15. Paracetamol as a Post Prandial Marker for Gastric Emptying, A Food-Drug Interaction on Absorption

    PubMed Central

    Bartholomé, R.; Salden, B.; Vrolijk, M. F.; Troost, F. J.; Masclee, A.; Bast, A.; Haenen, G. R.

    2015-01-01

    The use of paracetamol as tool to determine gastric emptying was evaluated in a cross over study. Twelve healthy volunteers were included and each of them consumed two low and two high caloric meals. Paracetamol was mixed with a liquid meal and administered by a nasogastric feeding tube. The post prandial paracetamol plasma concentration time curve in all participants and the paracetamol concentration in the stomach content in six participants were determined. It was found that after paracetamol has left the stomach, based on analysis of the stomach content, there was still a substantial rise in the plasma paracetamol concentration time curve. Moreover, the difference in gastric emptying between high and low caloric meals was missed using the plasma paracetamol concentration time curve. The latter curves indicate that (i) part of the paracetamol may leave the stomach much quicker than the meal and (ii) part of the paracetamol may be relatively slowly absorbed in the duodenum. This can be explained by the partition of the homogenous paracetamol-meal mixture in the stomach in an aqueous phase and a solid bolus. The aqueous phase leaves the stomach quickly and the paracetamol in this phase is quickly absorbed in the duodenum, giving rise to the relatively steep increase of the paracetamol concentration in the plasma. The bolus leaves the stomach relatively slowly, and encapsulation by the bolus results in relatively slow uptake of paracetamol from the bolus in the duodenum. These findings implicate that paracetamol is not an accurate post prandial marker for gastric emptying. The paracetamol concentration time curve rather illustrates the food-drug interaction on absorption, which is not only governed by gastric emptying. Trial Registration ClinicalTrials.gov NCT01335503 Nederlands Trial Register NTR2780 PMID:26352940

  16. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs.

    PubMed

    Lee, Kathy W Y; Nguyen, Tri-Hung; Hanley, Tracey; Boyd, Ben J

    2009-01-01

    Nanostructured lipid-based liquid crystalline systems have been proposed as sustained oral drug delivery systems, but the interplay between their intrinsic release rates, susceptibility to digestive processes, and the manner in which these effects impact on their application in vivo, are not well understood. In this study, two different bicontinuous cubic phases, prepared from glyceryl monooleate and phytantriol, and a reversed hexagonal phase formed by addition of a small amount of vitamin E to phytantriol (Q(II GMO), Q(II PHYT) and H(II PHYT+VitEA), respectively) were prepared. The release kinetics for a number of model hydrophilic drugs with increasing molecular weights (glucose, Allura Red and FITC-dextrans) was determined in in vitro release experiments. Diffusion-controlled release was observed in all cases as anticipated from previous studies with liquid crystalline systems, and it was discovered that the release rates of each drug decreased as the matrix was changed from Q(II GMO) to Q(II PHYT) to H(II PHYT+VitEA). Formulations containing (14)C-glucose, utilized as a rapidly absorbed marker of drug release, were then orally administered to rats to determine the relative in vivo absorption rates from the different formulations. The results showed a trend by which the rate of absorption of (14)C-glucose followed that observed in the corresponding in vitro release studies, providing the first indication that the nanostructure of these materials may provide the ability to tailor the absorption kinetics of hydrophilic drugs in vivo, and hence form the basis of a new drug delivery system. PMID:18790030

  17. Prenatal exposure to recreational drugs affects global motion perception in preschool children

    PubMed Central

    Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; LaGasse, Linda L.; Lester, Barry M.; Wouldes, Trecia A.; Thompson, Benjamin

    2015-01-01

    Prenatal exposure to recreational drugs impairs motor and cognitive development; however it is currently unknown whether visual brain areas are affected. To address this question, we investigated the effect of prenatal drug exposure on global motion perception, a behavioural measure of processing within the dorsal extrastriate visual cortex that is thought to be particularly vulnerable to abnormal neurodevelopment. Global motion perception was measured in one hundred and forty-five 4.5-year-old children who had been exposed to different combinations of methamphetamine, alcohol, nicotine and marijuana prior to birth and 25 unexposed children. Self-reported drug use by the mothers was verified by meconium analysis. We found that global motion perception was impaired by prenatal exposure to alcohol and improved significantly by exposure to marijuana. Exposure to both drugs prenatally had no effect. Other visual functions such as habitual visual acuity and stereoacuity were not affected by drug exposure. Prenatal exposure to methamphetamine did not influence visual function. Our results demonstrate that prenatal drug exposure can influence a behavioural measure of visual development, but that the effects are dependent on the specific drugs used during pregnancy. PMID:26581958

  18. Prenatal exposure to recreational drugs affects global motion perception in preschool children.

    PubMed

    Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; LaGasse, Linda L; Lester, Barry M; Wouldes, Trecia A; Thompson, Benjamin

    2015-01-01

    Prenatal exposure to recreational drugs impairs motor and cognitive development; however it is currently unknown whether visual brain areas are affected. To address this question, we investigated the effect of prenatal drug exposure on global motion perception, a behavioural measure of processing within the dorsal extrastriate visual cortex that is thought to be particularly vulnerable to abnormal neurodevelopment. Global motion perception was measured in one hundred and forty-five 4.5-year-old children who had been exposed to different combinations of methamphetamine, alcohol, nicotine and marijuana prior to birth and 25 unexposed children. Self-reported drug use by the mothers was verified by meconium analysis. We found that global motion perception was impaired by prenatal exposure to alcohol and improved significantly by exposure to marijuana. Exposure to both drugs prenatally had no effect. Other visual functions such as habitual visual acuity and stereoacuity were not affected by drug exposure. Prenatal exposure to methamphetamine did not influence visual function. Our results demonstrate that prenatal drug exposure can influence a behavioural measure of visual development, but that the effects are dependent on the specific drugs used during pregnancy. PMID:26581958

  19. Erbium:YAG laser resurfacing increases skin permeability and the risk of excessive absorption of antibiotics and sunscreens: the influence of skin recovery on drug absorption.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Al-Suwayeh, Saleh A; Li, Yi-Ching; Fang, Jia-You

    2012-06-01

    While laser skin resurfacing is expected to result in reduced barrier function and increased risk of drug absorption, the extent of the increment has not yet been systematically investigated. We aimed to establish the skin permeation profiles of tetracycline and sunscreens after exposure to the erbium:yttrium-aluminum-garnet (Er:YAG) laser during postoperative periods. Physiological and histopathological examinations were carried out for 5 days after laser treatment on nude mice. Percutaneous absorption of the permeants was determined by an in vitro Franz cell. Ablation depths varied in reaching the stratum corneum (10 μm, 2.5 J/cm²) to approach the epidermis (25 μm, 6.25 J/cm²) and upper dermis (40 μm, 10 J/cm²). Reepithelialization evaluated by transepidermal water loss was complete within 2-4 days and depended on the ablation depth. Epidermal hyperplasia was observed in the 40-μm-treated group. The laser was sufficient to disrupt the skin barrier and allow the transport of the permeants into and across the skin. The laser fluence was found to play an important role in modulating skin absorption. A 25-μm ablation depth increased tetracycline flux 84-fold. A much smaller enhancement (3.3-fold) was detected for tetracycline accumulation within the skin. The laser with different fluences produced enhancement of oxybenzone skin deposition of 3.4-6.4-fold relative to the untreated group. No penetration across the skin was shown regardless of whether titanium dioxide was applied to intact or laser-treated skin. However, laser resurfacing increased the skin deposition of titanium dioxide from 46 to 109-188 ng/g. Tetracycline absorption had recovered to the level of intact skin after 5 days, while more time was required for oxybenzone absorption. The in vivo skin accumulation and plasma concentration revealed that the laser could increase tetracycline absorption 2-3-fold. The experimental results indicated that clinicians should be cautious when determining the

  20. Urinary excretion of magnesium and calcium as an index of absorption is not affected by lactose intake in healthy adults.

    PubMed

    Brink, E J; van Beresteijn, E C; Dekker, P R; Beynen, A C

    1993-05-01

    The effect of lactose on the urinary excretion of Mg and Ca, as an index of absorption, was studied in a double-blind, crossover study during three 1-week periods. Twenty-four healthy, lactose-tolerant, adult volunteers maintained their habitual diets with the exception that all lactose-containing dairy products in the diet were replaced by 600 g/d of three specially prepared dairy products. These products were based on either lactose-enriched cow's milk or lactose-enriched, lactase (EC 3.2.1.23)-treated cow's milk, with or without added Mg, and were given in turn during 1 week. Lactose intake was increased by 127 mmol/d (46 g/d) while taking the lactose-enriched products. While taking the Mg-enriched products, Mg intake was increased by 2.8 mmol/d (69 mg/d) which was equivalent to 17% of the habitual Mg intake. Apart from the lactose and Mg intake, nutrient intake was comparable during the three dietary periods. Urinary excretions of Mg and Ca were used as indicators for their absorption. Mg supplementation significantly increased urinary Mg excretion by 0.97 mmol/d (equivalent to an increase of 18%, P < 0.001), indicating that urinary Mg excretion is a valid indicator for intestinal Mg absorption. Hydrolysis of lactose did not affect urinary excretion of Mg and Ca, which implies that lactose intake does not affect the absorption of Mg and Ca in healthy adults. PMID:8329360

  1. Problems affecting performance of the fluorescent treponemal antibody-absorption test for syphilis.

    PubMed Central

    Hunter, E F; Adams, M R; Orrison, L H; Pender, B J; Larsen, S A

    1979-01-01

    Immunofluorescent staining of Treponema pallidum was studied to clarify the effect of three factors on the results of the fluorescent treponemal antibody-absorption test: (i) heat inactivation of sera at 56 degrees C for 30 min before testing, (ii) use of multicircle slides, and (iii) tungsten illumination to visualize and assess unstained treponemes on reactive as well as nonreactive smears. It was found that serum inactivation before testing was not necessary for detection of immunoglobin G antibody, but an immunoglobulin M prozone was detected in unheated serum. On multicircle slides, it was demonstrated that a false-positive reaction could be obtained in 30 s at 37 and 25 degrees C if a smear where a nonreactive serum had been placed was crossed by a strongly reactive serum from another circle. Tungsten illumination proved necessary for correct assessment of unstained treponemes on all fluorescent treponemal antibody-aborption test smears, reactive or nonreactive. The possible role of these factors in incorrect fluorescent treponemal antibody-absorption test results is discussed. PMID:372219

  2. Physiologically Based In vitro Models to Predict the Oral Dissolution and Absorption of a Solid Drug Delivery System.

    PubMed

    Li, Ziqiang; He, Xin

    2015-01-01

    To understand the sophisticated dynamic behaviors of drug elution and permeation in the gastrointestinal tract (GIT), researchers have tried to reemerge it by employing various in vitro experimental models. However, official in vitro apparatuses routinely used for quality control purposes, employ simple, non-physiologic buffers, and hydrodynamics conditions, and can not accurately perform continuous, dynamic in vivo pharmacokinetics (PK) behaviors. Therefore, different angles of GI physiology information are incorporate into novel models to forecast the dissolution and permeation of drug solid dosage forms. This review, in general, discusses some related studies of physiologically-based mechanical models to predict human absorption following oral administration in four sections. First the GIT, taken out of a complex physiological environment, where the drug is absorbed, distributed, metabolized and excreted (ADME) in the human body, is considered as the physiological basis for active pharmaceutics ingredients (API) dissolved and permeated through the epithelial cell. The second part embodies the theoretical foundation of in vitro models to predict human absorption and the corresponding in vitro.in vivo correlations (IVIVC). The third section summarizes physiologically based dissolution models developed recently, ranging from dynamic compartmental dissolution models, to biorelevant dissolution models based on certain physiological factors, to biphasic dissolution models. The last part is devoted to combined dissolution and absorption models that can be employed to simulate the continuous, dynamic behavior of oral drug delivery being dissolved and subsequently permeated across the GIT. Along with physiologically-based mechanically models spring up, pharmaceutical researchers will harvest better level A IVIVC for oral drug delivery systems, especially for sustained and controlled release preparations. On the other way hand, it will successively promote more effective

  3. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system.

    PubMed

    Zhang, Jinjie; Li, Jianbo; Ju, Yuan; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2015-02-01

    Phospholipid complex (PLC) based self-nanoemulsifying drug delivery system (PLC-SNEDDS) has been developed for efficient delivery of drugs with poor solubility and low permeability. In the present study, a BCS class IV drug and a P-glycoprotein (P-gp) substrate, morin, was selected as the model drug to elucidate the oral absorption mechanism of PLC-SNEDDS. PLC-SNEDDS was superior to PLC in protecting morin from degradation by intestinal enzymes in vitro. In situ perfusion study showed increased intestinal permeability by PLC was duodenum-specific. In contrast, PLC-SNEDDS increased morin permeability in all intestinal segments and induced a change in the main absorption site of morin from colon to ileum. Moreover, ileum conducted the lymphatic transport of PLC-SNEDDS, which was proven by microscopic intestinal visualization of Nile red labeled PLC-SNEDDS and lymph fluids in vivo. Low cytotoxicity and increased Caco-2 cell uptake suggested a safe and efficient delivery of PLC-SNEDDS. The increased membrane fluidity and disrupted actin filaments were closely associated with the increased cell uptake of PLC-SNEDDS. PLC-SNEDDS could be internalized into enterocytes as an intact form in a cholesterol-dependent manner via clathrin-mediated endocytosis and macropinocytosis. The enhanced oral absorption of morin was attributed to the P-gp inhibition by Cremophor RH and the intact internalization of M-PLC-SNEDDS into Caco-2 cells bypassing P-gp recognition. Our findings thus provide new insights into the development of novel nanoemulsions for poorly absorbed drugs. PMID:25536306

  4. Human small intestinal and colonic tissue mounted in the Ussing chamber as a tool for characterizing the intestinal absorption of drugs.

    PubMed

    Rozehnal, Veronika; Nakai, Daisuke; Hoepner, Ursula; Fischer, Thomas; Kamiyama, Emi; Takahashi, Masayuki; Yasuda, Satoru; Mueller, Juergen

    2012-08-15

    The purpose of this study was to validate human small intestinal and colonic tissue mounted in the Ussing chamber as a tool for predicting the oral drug absorption in humans with the main focus on moderately and poorly permeable compounds. The obtained apparent permeability coefficient (P(app)) of eleven test compounds was compared to their fraction absorbed (Fa) in humans taken from the literature. Beside the conventional P(app) a new parameter, the apparent permeability coefficient total (P(app,total)), involving both the apical-to-basolateral permeability and the time-dependent compound accumulation in the tissue was established. The permeability of lucifer yellow (LY), a fluorescent marker of the paracellular pathway and the test compounds showed no obvious differences between small intestine and colon. Furthermore, small intestinal and colonic tissue from a single donor showed similar permeability of both LY and a transcellularly transported compound metoprolol. All test compounds including low molecular weight hydrophilic compounds such as metformin, atenolol, sulpiride and famotidine showed adequate permeability reflecting human Fa values (R(2)=0.87). The P(app) values of digoxin, a P-glycoprotein (P-gp) substrate, were not significantly affected by the addition of verapamil, a P-gp inhibitor. In contrast, the P(app,total) values of digoxin increased approximately threefold in the presence of verapamil. In conclusion, both small intestinal and colonic tissue mounted in the Ussing chamber provide a good opportunity to predict the oral drug absorption rate in humans even for moderately and poorly absorbed compounds. The novel calculation of P(app,total) allows the study of the carrier-mediated drug-drug interactions in human intestine. PMID:22418036

  5. Drug Issues Affecting Chinese, Indian and Pakistani People Living in Greater Glasgow

    ERIC Educational Resources Information Center

    Ross, A. J.; Heim, D.; Bakshi, N.; Davies, J. B.; Flatley, K. J.; Hunter, S. C.

    2004-01-01

    This paper describes research on drug issues affecting Chinese, Indian and Pakistani people living in Greater Glasgow. There were two strands: (i) a questionnaire-based survey of young people and focus groups; (ii) interviews with young people and adults. The primary aims were to gather prevalence data and to investigate perceptions about current…

  6. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" model.

    PubMed

    Darwich, A S; Neuhoff, S; Jamei, M; Rostami-Hodjegan, A

    2010-11-01

    Bioavailability of orally administered drugs can be influenced by a number of factors including release from the formulation, dissolution, stability in the gastrointestinal (GI) environment, permeability through the gut wall and first-pass gut wall and hepatic metabolism. Although there are various enzymes in the gut wall which may contribute to gut first pass metabolism, Cytochrome P450 (CYP) 3A has been shown to play a major role. The efflux transporter P-glycoprotein (P-gp; MDR1/ABCB1) is the most extensively studied drug efflux transporter in the gut and might have a significant role in the regulation of GI absorption. Although not every CYP3A substrate will have a high extent of gut wall first-pass extraction, being a substrate for the enzyme increases the likelihood of a higher first-pass extraction. Similarly, being a P-gp substrate does not necessarily pose a problem with the gut wall absorption however it may reduce bioavailability in some cases (e.g. when drug has low passive permeability). An on-going debate has focused on the issue of the interplay between CYP3A and P-gp such that high affinity to P-gp increases the exposure of drug to CYP3A through repeated cycling via passive diffusion and active efflux, decreasing the fraction of drug that escapes first pass gut metabolism (F(G)). The presence of P-gp in the gut wall and the high affinity of some CYP3A substrates to this transporter are postulated to reduce the potential for saturating the enzymes, thus increasing gut wall first-pass metabolism for compounds which otherwise would have saturated CYP3A. Such inferences are based on assumptions in the modelling of oral drug absorption. These models should be as mechanistic as possible and tractable using available in vitro and in vivo information. We review, through simulation, this subject and examine the interplay between gut wall metabolism and efflux transporters by studying the fraction of dose absorbed into enterocytes (F(a)) and F(G) via

  7. Factors affecting the loading efficiency of water-soluble drugs in PLGA microspheres.

    PubMed

    Ito, Fuminori; Fujimori, Hiroyuki; Makino, Kimiko

    2008-01-15

    Poly(lactide-co-glycolide), PLGA, microspheres containing blue dextran as a hydrophilic model drug were prepared by a solvent evaporation method from w/o/w emulsions using a micro homogenizer. Effects of surfactant concentration in oil phase, stirring time period and stirring rate in the preparation procedure of primary emulsion (w/o) upon drug-loading efficiency were evaluated. Stirring rate during preparation of primary emulsion and surfactant concentration in oil phase affected drug-loading efficiency and the particle size of primary emulsion. Microspheres having the higher drug-loading efficiency were obtained when size differences between the primary emulsions and the secondary ones were large. That is, when the diameter of the primary emulsion is much smaller than that of the secondary emulsion, PLGA microspheres with high-loading efficiency of blue dextran were obtained. PMID:17719753

  8. A Comparative Study of Molecular Structure, pKa, Lipophilicity, Solubility, Absorption and Polar Surface Area of Some Antiplatelet Drugs

    PubMed Central

    Remko, Milan; Remková, Anna; Broer, Ria

    2016-01-01

    Theoretical chemistry methods have been used to study the molecular properties of antiplatelet agents (ticlopidine, clopidogrel, prasugrel, elinogrel, ticagrelor and cangrelor) and several thiol-containing active metabolites. The geometries and energies of most stable conformers of these drugs have been computed at the Becke3LYP/6-311++G(d,p) level of density functional theory. Computed dissociation constants show that the active metabolites of prodrugs (ticlopidine, clopidogrel and prasugrel) and drugs elinogrel and cangrelor are completely ionized at pH 7.4. Both ticagrelor and its active metabolite are present at pH = 7.4 in neutral undissociated form. The thienopyridine prodrugs ticlopidine, clopidogrel and prasugrel are lipophilic and insoluble in water. Their lipophilicity is very high (about 2.5–3.5 logP values). The polar surface area, with regard to the structurally-heterogeneous character of these antiplatelet drugs, is from very large interval of values of 3–255 Å2. Thienopyridine prodrugs, like ticlopidine, clopidogrel and prasugrel, with the lowest polar surface area (PSA) values, exhibit the largest absorption. A high value of polar surface area (PSA) of cangrelor (255 Å2) results in substantial worsening of the absorption in comparison with thienopyridine drugs. PMID:27007371

  9. HIV and Recent Illicit Drug Use Interact to Affect Verbal Memory in Women

    PubMed Central

    Meyer, Vanessa J.; Rubin, Leah H.; Martin, Eileen; Weber, Kathleen M.; Cohen, Mardge H.; Golub, Elizabeth T.; Valcour, Victor; Young, Mary A.; Crystal, Howard; Anastos, Kathryn; Aouizerat, Bradley E.; Milam, Joel; Maki, Pauline M.

    2013-01-01

    Objective HIV infection and illicit drug use are each associated with diminished cognitive performance. This study examined the separate and interactive effects of HIV and recent illicit drug use on verbal memory, processing speed and executive function in the multicenter Women's Interagency HIV Study (WIHS). Methods Participants included 952 HIV-infected and 443 HIV-uninfected women (mean age=42.8, 64% African-American). Outcome measures included the Hopkins Verbal Learning Test - Revised (HVLT-R) and the Stroop test. Three drug use groups were compared: recent illicit drug users (cocaine or heroin use in past 6 months, n=140), former users (lifetime cocaine or heroin use but not in past 6 months, n=651), and non-users (no lifetime use of cocaine or heroin, n=604). Results The typical pattern of recent drug use was daily or weekly smoking of crack cocaine. HIV infection and recent illicit drug use were each associated with worse verbal learning and memory (p's<.05). Importantly, there was an interaction between HIV serostatus and recent illicit drug use such that recent illicit drug use (compared to non-use) negatively impacted verbal learning and memory only in HIV-infected women (p's <0.01). There was no interaction between HIV serostatus and illicit drug use on processing speed or executive function on the Stroop test. Conclusion The interaction between HIV serostatus and recent illicit drug use on verbal learning and memory suggests a potential synergistic neurotoxicity that may affect the neural circuitry underlying performance on these tasks. PMID:23392462

  10. Improved oral absorption of dutasteride via Soluplus®-based supersaturable self-emulsifying drug delivery system (S-SEDDS).

    PubMed

    Lee, Dong Hoon; Yeom, Dong Woo; Song, Ye Seul; Cho, Ha Ra; Choi, Yong Seok; Kang, Myung Joo; Choi, Young Wook

    2015-01-15

    A novel supersaturable self-emulsifying drug delivery system (S-SEDDS) was formulated to improve the oral absorption of dutasteride (DTS), a 5α-reductase inhibitor that is poorly water-soluble. A supersaturable system was prepared by employing Soluplus(®) (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) as a precipitation inhibitor with a conventional SEDDS vehicle consisted of Capryol™ 90, Cremophor(®) EL and Transcutol(®) HP (DTS:SEDDS vehicle:Soluplus(®)=1.0:67.6:10.0 w/v/w). In an in vitro dissolution test in a non-sink condition, the drug dissolution rate from SEDDS was rapidly increased to 72% for an initial period of 5min, but underwent rapid drug precipitation within 2h, decreasing the amount of drug dissolved to one-seventh of its original amount. On the other hand, S-SEDDS resulted in a slower crystallization of DTS by virtue of a precipitation inhibitor, maintaining a 3 times greater dissolution rate after 2h compared to SEDDS. In an in vivo pharmacokinetic study in rats, the S-SEDDS formulation exhibited 3.9-fold greater area-under-curve value than that of the drug suspension and 1.3-fold greater than that of SEDDS. The maximum plasma concentration of S-SEDDS was 5.6- and 2.0-fold higher compared to drug suspension and SEDDS, respectively. The results of this study suggest that the novel supersaturable system may be a promising tool for improving the physicochemical property and oral absorption of the 5α-reductase inhibitor. PMID:25437113

  11. Physiologically Based Absorption Modeling to Impact Biopharmaceutics and Formulation Strategies in Drug Development-Industry Case Studies.

    PubMed

    Kesisoglou, Filippos; Chung, John; van Asperen, Judith; Heimbach, Tycho

    2016-09-01

    In recent years, there has been a significant increase in use of physiologically based pharmacokinetic models in drug development and regulatory applications. Although most of the published examples have focused on aspects such as first-in-human (FIH) dose predictions or drug-drug interactions, several publications have highlighted the application of these models in the biopharmaceutics field and their use to inform formulation development. In this report, we present 5 case studies of use of such models in this biopharmaceutics/formulation space across different pharmaceutical companies. The case studies cover different aspects of biopharmaceutics or formulation questions including (1) prediction of absorption prior to FIH studies; (2) optimization of formulation and dissolution method post-FIH data; (3) early exploration of a modified-release formulation; (4) addressing bridging questions for late-stage formulation changes; and (5) prediction of pharmacokinetics in the fed state for a Biopharmaceutics Classification System class I drug with fasted state data. The discussion of the case studies focuses on how such models can facilitate decisions and biopharmaceutic understanding of drug candidates and the opportunities for increased use and acceptance of such models in drug development and regulatory interactions. PMID:26886317

  12. Drug addiction: An affective-cognitive disorder in need of a cure.

    PubMed

    Fattore, Liana; Diana, Marco

    2016-06-01

    Drug addiction is a compulsive behavioral abnormality. In spite of pharmacological treatments and psychosocial support to reduce or eliminate drug intake, addiction tends to persist over time. Preclinical and human observations have converged on the hypothesis that addiction represents the pathological deterioration of neural processes that normally serve affective and cognitive functioning. The major elements of persistent compulsive drug use are hypothesized to be structural, cellular and molecular that underlie enduring changes in several forebrain circuits that receive input from midbrain dopamine neurons and are involved in affective (e.g. ventral striatum) and cognitive (e.g. prefrontal cortex) mechanisms. Here we review recent progress in identifying crucial elements useful to understand the pathophysiology of the disease and its treatments. Manipulation of neuropeptides brain systems and pharmacological targeting of κ-opioid receptors and/or drug metabolism may hold beneficial effects at affective and cognitive level. Non-pharmacological, highly innovative approaches such as Transcranial Magnetic Stimulation may reveal unsuspected potential and promise to be the first neurobiology-based therapeutics in addiction. PMID:27095547

  13. Influence of Circulation System on Estimation of Absorption and Elimination Constant after per oral Drug Administration: A Reanalysis.

    PubMed

    Rausova, Z; Chrenova, J; Dedik, L

    2013-03-01

    This study aimed to identify the cause of atypical shape of measured concentration-time profile in the peak area by one compartment open model with a lag time (Bateman function with a lag) after single dose oral administration of drug published in "Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Application" by Gabrielsson and Weiner (1997) and two concentration profiles after frequent sampling oral glucose tolerance test. Following the oral administration of 100 μg of substance A to human volunteer, frequent sampling was carried out and concentration-time profiles were obtained. Our hemodynamic circulatory structural model capable of parameters estimation of circulation and gastrointestinal subsystem to explain the plateau within the interval 40-100 min (substance A) and 15-30 min (glucose) of the measured concentration-time profile was developed. The mean residence time, the rate constants of absorption and elimination parameters of our model were calculated. Comparing to the Bateman function, our results demonstrate better approximation of the substance A and glucose concentration-time profile and estimation of absorption rate constant by our structural model. Obtained model results indicate that the atypical shape of measured concentration-time profile of single dose oral administration of drug was probably caused by the gastrointestinal and circulation system with deep compartment. This applies to the substances with high coefficient of absorption. PMID:24019565

  14. In situ intestinal permeability and in vivo absorption characteristics of olmesartan medoxomil in self-microemulsifying drug delivery system.

    PubMed

    Kang, Myung J; Kim, Hyung S; Jeon, Ho S; Park, Jong H; Lee, Bong S; Ahn, Byeong K; Moon, Ki Y; Choi, Young W

    2012-05-01

    To characterize the intestinal absorption behavior of olmesartan medoxomil (OLM) and to evaluate the absorption-improving potential of a self-microemulsifying drug delivery system (SMEDDS), we performed in situ single-pass intestinal perfusion (SPIP) and in vivo pharmacokinetic studies in rats. The SPIP study revealed that OLM is absorbed throughout whole intestinal regions, favoring proximal segments, at drug levels of 10-90 μM. The greatest value for effective permeability coefficient (P(eff)) was 11.4 × 10(-6) cm/s in the duodenum (90 μM); the lowest value was 2.9 × 10(-6) cm/s in the ileum (10 μM). A SMEDDS formulation consisting of Capryol 90, Labrasol, and Transcutol, which has a droplet size of 200 nm and self-dispersion time of 21 s, doubled upper intestinal permeability of OLM. The SMEDDS also improved oral bioavailability of OLM in vivo: a 2.7-fold increase in the area under the curve (AUC) with elevated maximum plasma concentration (C(max)) and shortened peak time (T(max)) compared to an OLM suspension. A strong correlation (r(2) = 0.955) was also found between the in situ jejunal P(eff) and the in vivo AUC values. Our study illustrates that the SMEDDS formulation holds great potential as an alternative to increased oral absorption of OLM. PMID:21988221

  15. Evaluation of different partial AUCs as indirect measures of rate of drug absorption in comparative pharmacokinetic studies.

    PubMed

    Duquesnoy, C; Lacey, L F; Keene, O N; Bye, A

    1998-10-01

    The performance of different partial AUCs, including partial AUC from zero to t(max) of the reference formulation (AUC(r)) and partial AUC from zero to tmax of test or reference formulation, whichever occurs earliest (AUC(e), as indirect measures of rate of absorption have been evaluated using simulated experiments. The performance of these metrics relative to C(max), t(max) and C(max)/AUC(infinity) was further assessed using the results of actual studies involving a Glaxo drug. The normalised metrics AUC(r)/AUC(infinity) and AUC(e)/AUC(infinity) have also been evaluated. Our provisional conclusions were: (1) AUC(r)/AUC(infinity) and AUC(e)/AUC(infinity) had greater statistical power than C(max) and the non-normalised partial AUCs at detecting true differences in rate of absorption. Using real data, the performance of AUC(e)/AUC(infinity) was poor, however, the performance of AUC(r)/AUC(infinity) was good; (2) C(max)/AUC(infinity) was more precisely estimated than AUC(r)/AUC(infinity) or AUC(e)/AUC(infinity) and may be a superior metric for assessing absorption rates of highly variable drugs. PMID:9795077

  16. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    PubMed Central

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  17. Biorelevant media for transport experiments in the Caco-2 model to evaluate drug absorption in the fasted and the fed state and their usefulness.

    PubMed

    Markopoulos, C; Thoenen, F; Preisig, D; Symillides, M; Vertzoni, M; Parrott, N; Reppas, C; Imanidis, G

    2014-04-01

    In this work we developed and characterized transport media that simulate the composition of micellar phase of intestinal fluids in the fasted and, especially, in the fed state and are appropriate for evaluating intestinal drug permeability characteristics using the Caco-2 model (FaSSIF-TM(Caco) and FeSSIF-TM(Caco), respectively). Media composition was based on FaSSIF-V2 and FeSSIF-V2 and recently reported data on total lipid concentrations in the micellar phase of contents of the upper small intestine in the fasted and the fed state and was adapted for cell culture compatibility. Permeation data were evaluated by compartmental kinetic modeling. Permeability coefficients, P, of hydrophilic drugs were not affected by media composition. In contrast, P values of a series of lipophilic compounds measured with FaSSIF-TM(Caco) and FeSSIF-TM(Caco), and reflecting transport by diffusion were smaller than those obtained with a purely aqueous reference transport medium, aq-TM(Caco), following the rank order aq-TM(Caco)>FaSSIF-TM(Caco)>FeSSIF-TM(Caco). The decline of permeability values was stronger as lipophilicity of the compounds increased. Compared with values estimated using aq-TM(Caco), permeability was reduced, depending on the compound, by more than 20- to 100-fold when measured with FeSSIF-TM(Caco) whereas compound ranking in regard to the permeability characteristics was also affected. The impact of reduced P value on flux through the mucosa, hence on drug absorption, in combination with the drug amount loaded on colloidal particles needs to be taken into consideration in PBPK modeling especially when the food effect is evaluated. PMID:24184673

  18. Administration of a probiotic can change drug pharmacokinetics: effect of E. coli Nissle 1917 on amidarone absorption in rats.

    PubMed

    Matuskova, Zuzana; Anzenbacherova, Eva; Vecera, Rostislav; Tlaskalova-Hogenova, Helena; Kolar, Milan; Anzenbacher, Pavel

    2014-01-01

    The growing interest in the composition and effects of microbiota raised the question how drug pharmacokinetics could be influenced by concomitant application of probiotics. The aim of this study was to find whether probiotic E. coli strain Nissle 1917 (EcN) influences the pharmacokinetics of concomitantly taken antiarrhythmic drug amiodarone (AMI). Live bacterial suspension of probiotic EcN (or non-probiotic E. coli strain ATCC 25922) was applied orally to male Wistar rats for seven days, while a control group of rats was treated with a saline solution. On the eighth day, the amiodarone hydrochloride was administered as one single oral dose (50 mg/kg) to all rats (N = 60). After 0, 1, 2, 3, 4, 5.5, 7, 9, 14, 22, and 30 hours, blood samples were taken from the rat abdominal aorta. The plasma level of AMI and its metabolite N-desethylamiodarone (DEA) was determined using the HPLC with UV detection. Administration of EcN led to a 43% increase of AMI AUC0-30 in comparison with control samples. However, this effect was not observed if EcN was replaced by a reference non-probiotic E. coli strain. Thus, EcN administration was most probably responsible for better drug absorption from the gastrointestinal tract. Plasma levels of DEA were also increased in plasma samples from animals treated with EcN. This change was again not found in the experiment with the reference non-probiotic strain. Higher DEA levels in samples from EcN-treated rats may be explained either by better absorption of AMI and/or by an increased activity of CYP2C forms, known to participate in metabolism of this drug, after EcN administration. In this paper, it is documented that concomitantly taken probiotic EcN may modulate pharmacokinetics of a drug; in this case, it led to an increased bioavailability of AMI. PMID:24505278

  19. Microarray Determination of the Expression of Drug Transporters in Humans and Animal Species Used for the Investigation of Nasal Absorption

    PubMed Central

    Al-Ghabeish, Manar; Scheetz, Todd; Assem, Mahfoud; Donovan, Maureen D.

    2015-01-01

    Purpose Mice and rats are commonly used to investigate in vivo nasal drug absorption, yet their small nasal cavities limit their use for in vitro investigations. Bovine tissue explants have been used to investigate drug transport through the nasal respiratory and olfactory mucosae, yet limited information is available regarding the similarities and differences among these animal models compared to humans. The aim of this study was to compare the presence of a number of important drug transporters in the nasal mucosa of these species. Methods DNA microarray results for nasal samples from humans, rats and mice were obtained from GenBank, while DNA microarray and RT-PCR were performed on bovine nasal explants. The drug transporters of interest include multidrug resistance, cation, anion, peptide, and nucleoside transporters. Results Each of the species (mouse, rat, cow and human) shows similar patterns of expression for most of the important drug transporters. Several transporters were highly expressed in all the species, including MRP1, OCTN2, PEPT2 and y+LAT2. Conclusion While some differences in transporter mRNA and protein expression were observed, the transporter expression patterns were quite similar among the species. The differences suggest that it is important to be aware of any specific differences in transporter expression for a given compound being investigated, yet the similarities support the continued use of these animal models during preclinical investigation of intranasally administered therapeutics. PMID:26106909

  20. Microarray Determination of the Expression of Drug Transporters in Humans and Animal Species Used for the Investigation of Nasal Absorption.

    PubMed

    Al-Ghabeish, Manar; Scheetz, Todd; Assem, Mahfoud; Donovan, Maureen D

    2015-08-01

    Mice and rats are commonly used to investigate in vivo nasal drug absorption, yet their small nasal cavities limit their use for in vitro investigations. Bovine tissue explants have been used to investigate drug transport through the nasal respiratory and olfactory mucosae, yet limited information is available regarding the similarities and differences among these animal models compared to humans. The aim of this study was to compare the presence of a number of important drug transporters in the nasal mucosa of these species. DNA microarray results for nasal samples from humans, rats, and mice were obtained from GenBank, while DNA microarray and RT-PCR were performed on bovine nasal explants. The drug transporters of interest include multidrug resistance, cation, anion, peptide, and nucleoside transporters. Each of the species (mouse, rat, cattle, and human) shows similar patterns of expression for most of the important drug transporters. Several transporters were highly expressed in all the species, including MRP1, OCTN2, PEPT2, and y+LAT2. While some differences in transporter mRNA and protein expression were observed, the transporter expression patterns were quite similar among the species. The differences suggest that it is important to be aware of any specific differences in transporter expression for a given compound being investigated, yet the similarities support the continued use of these animal models during preclinical investigation of intranasally administered therapeutics. PMID:26106909

  1. Deficits of Affect Mentalization in Patients with Drug Addiction: Theoretical and Clinical Aspects

    PubMed Central

    Savov, Svetoslav; Atanassov, Nikola

    2013-01-01

    Traditionally treated with wariness, drug addictions have provoked a serious interest in psychodynamically oriented clinicians in recent decades. This paper discusses the development of contemporary psychodynamic conceptualizations of addictions, focusing specifically on mentalization-based theories. The concept of mentalization refers to a complex form of self-regulation which includes attribution of psychological meaning to one's own behavior and affective states, as well as those of the others. We hypothesize that drug-addicted patients have severe impairments in mentalizing, associated with developmental deficits, characteristic for the borderline personality disorder and psychosomatic conditions. Psychodynamic models of mentalization and their corresponding research operationalizations are reviewed, and implications for a contemporary understanding of drug addictions and psychotherapy are drawn. The authors propose that mentalization-oriented theories provide an adequate conceptualization, which is open to empirical testing and has clear and pragmatic guidelines for treatment. PMID:25969831

  2. Factors Affecting the Timing of Signal Detection of Adverse Drug Reactions.

    PubMed

    Hashiguchi, Masayuki; Imai, Shungo; Uehara, Keiko; Maruyama, Junya; Shimizu, Mikiko; Mochizuki, Mayumi

    2015-01-01

    We investigated factors affecting the timing of signal detection by comparing variations in reporting time of known and unknown ADRs after initial drug release in the USA. Data on adverse event reactions (AERs) submitted to U.S. FDA was used. Six ADRs associated with 6 drugs (rosuvastatin, aripiprazole, teriparatide, telithromycin, exenatide, varenicline) were investigated: Changes in the proportional reporting ratio, reporting odds ratio, and information component as indexes of signal detection were followed every 3 months after each drugs release, and the time for detection of signals was investigated. The time for the detection of signal to be detected after drug release in the USA was 2-10 months for known ADRs and 19-44 months for unknown ones. The median lag time for known and unknown ADRs was 99.0-122.5 days and 185.5-306.0 days, respectively. When the FDA released advisory information on rare but potentially serious health risks of an unknown ADR, the time lag to report from the onset of ADRs to the FDA was shorter. This study suggested that one factor affecting signal detection time is whether an ADR was known or unknown at release. PMID:26641634

  3. A heuristic model to quantify the impact of excess cyclodextrin on oral drug absorption from aqueous solution.

    PubMed

    Olesen, Niels Erik; Westh, Peter; Holm, René

    2016-05-01

    The intestinal drug solubilising capacity (Dtot(SC)) of a drug formulated as an aqueous cyclodextrin solution is a recently proposed quantity to predict the cyclodextrin concentration needed to fully solubilise the drug in the intestinal lumen. According to this concept, the cyclodextrin concentration in the drug product must be higher than the amount needed to solubilise the compound, due to the displacement of the drug from the cyclodextrin cavity by bile salts in the intestinal lumen. On the other hand, dosing cyclodextrin at >Dtot(SC) is expected to result in decreased free intestinal drug concentrations and thus potentially a lower fraction absorbed. In this study, data from three previous in vivo studies in rats with fixed concentrations of three compounds (danazol, cinnarizine and benzo[A]pyrene) and various cyclodextrin concentrations >Dtot(SC) were analysed. The model was developed for danazol and applied to the two other compounds. Absorption, as quantified from the area under the plasma concentration-time profile, was predicted by the model to decrease at elevated concentrations of co-administered cyclodextrin in accordance with the in vivo data. In addition, at high cyclodextrin concentrations a delay in Tmax and a decrease in Cmax were predicted, again in accordance with the experimental observations. These observations were rationalised in terms of the free intestinal drug concentration by a chemical equilibrium model for Dtot(SC). This model depends on the quantity termed the dimensionless dose concentration, Dtot(∗)=Do/Pn, given as the fraction of the permeation number (Pn) and dose number (Do). The model provides the formulation scientist with a critical quality attribute for assessing the implication of having excess cyclodextrin in an oral solution. PMID:26969263

  4. Enhancement of in-vitro drug dissolution of ketoconazole for its optimal in-vivo absorption using Nanoparticles and Solid Dispersion forms of the drug

    NASA Astrophysics Data System (ADS)

    Syed, Mohammed Irfan

    was modified to include 0.02%, 0.05% and 0.1% sodium lauryl sulfate. Here, after 2 hours, the amount of drug dissolved was calculated to be 10% from controls, 21% from solid dispersion and 36% from nanoparticles in SIF with 0.02% SLS. Drug release was 20% from controls, 41% from solid dispersion and 52% from nanoparticle formulation in SIF with 0.05% SLS. Whereas amount of drug released in SIF with 0.1% SLS showed 21% from the control, 62% from solid dispersion and 85% from Nanoparticles respectively. This data supports that the ketoconazole Nanoparticles and its solid-dispersion exhibit many fold increase in dissolution of the drug, which could lead to a less variable and enhanced in-vivo drug absorption profiles. In addition, the data from the Physical Characterization (DSC, XRD and FTIR) supports that there were no interaction within the ingredients occurred in Nanoparticles and solid-dispersion formulations of the drug sample. Wet Bead Milling and Hot Melt methods proved useful in developing the Nanoparticles and solid dispersion form of ketoconazole. Results from particle size analysis were in correlation with data obtained from Scanning electron Microscopy and size of the nanoparticles was below 100nm. The dissolution studies with the modified simulated intestinal fluid (SIF) exhibited several fold increase in the dissolution of the drug compared to the pure drug powder and the commercial products used as the control. Also, the results from the physical characterization studies clearly support the stability of ketoconazole in both of these formulations.

  5. Drugs and the Brain: An Introduction to Neuropharmacology. Pamphlet Series.

    ERIC Educational Resources Information Center

    Brick, John

    The thousands of different drugs on the market can be separated into two categories: drugs that affect behavior, called psychoactive drugs, and drugs that do not affect behavior. Drugs get into the body by mouth, inhalation into the lungs, by injection into a vein, muscle or under the skin, and by absorption through mucous membranes. Regardless of…

  6. Microvesicle formulations used in topical drugs and cosmetics affect product efficiency, performance and allergenicity.

    PubMed

    Madsen, Jakob Torp; Andersen, Klaus Ejner

    2010-01-01

    Attempts to improve the formulations of topical products are continuing processes (ie, to increase cosmetic performance, enhance effects, and protect ingredients from degradation). The development of micro- and nanovesicular systems has led to the marketing of topical drugs and cosmetics that use these technologies. Several articles have reported improved clinical efficacy by the encapsulation of pharmaceuticals in vesicular systems, and the numbers of publications and patents are rising. Some vesicular systems may deliver the drug deeper in the skin as compared to conventional vehicles, or even make transdermal delivery more efficient for a number of drugs. Vesicular systems may also allow a more precise drug delivery to the site of action (ie, the hair follicles) and thereby minimize the applied drug concentration, reducing potential side effects. On the other hand, this may increase the risk of other side effects. Few case reports have suggested that microvesicle formulations may affect the allergenicity of topical products. This article gives an overview of the current knowledge about the topical use of microvesicular systems and the dermatoallergologic aspects. PMID:20920408

  7. Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy

    PubMed Central

    Sun, Wei; Lim, Chwee Teck; Kurniawan, Nicholas Agung

    2014-01-01

    Cancer metastasis involves the dissemination of cancer cells from the primary tumour site and is responsible for the majority of solid tumour-related mortality. Screening of anti-metastasis drugs often includes functional assays that examine cancer cell invasion inside a three-dimensional hydrogel that mimics the extracellular matrix (ECM). Here, we built a mechanically tuneable collagen hydrogel model to recapitulate cancer spreading into heterogeneous tumour stroma and monitored the three-dimensional invasion of highly malignant breast cancer cells, MDA-MB-231. Migration assays were carried out in the presence and the absence of drugs affecting four typical molecular mechanisms involved in cell migration, as well as under five ECMs with different biophysical properties. Strikingly, the effects of the drugs were observed to vary strongly with matrix mechanics and microarchitecture, despite the little dependence of the inherent cancer cell migration on the ECM condition. Specifically, cytoskeletal contractility-targeting drugs reduced migration speed in sparse gels, whereas migration in dense gels was retarded effectively by inhibiting proteolysis. The results corroborate the ability of cancer cells to switch their multiple invasion mechanisms depending on ECM condition, thus suggesting the importance of factoring in the biophysical properties of the ECM in anti-metastasis drug screenings. PMID:25100319

  8. Current Approaches for Absorption, Distribution, Metabolism, and Excretion Characterization of Antibody-Drug Conjugates: An Industry White Paper.

    PubMed

    Kraynov, Eugenia; Kamath, Amrita V; Walles, Markus; Tarcsa, Edit; Deslandes, Antoine; Iyer, Ramaswamy A; Datta-Mannan, Amita; Sriraman, Priya; Bairlein, Michaela; Yang, Johnny J; Barfield, Matthew; Xiao, Guangqing; Escandon, Enrique; Wang, Weirong; Rock, Dan A; Chemuturi, Nagendra V; Moore, David J

    2016-05-01

    An antibody-drug conjugate (ADC) is a unique therapeutic modality composed of a highly potent drug molecule conjugated to a monoclonal antibody. As the number of ADCs in various stages of nonclinical and clinical development has been increasing, pharmaceutical companies have been exploring diverse approaches to understanding the disposition of ADCs. To identify the key absorption, distribution, metabolism, and excretion (ADME) issues worth examining when developing an ADC and to find optimal scientifically based approaches to evaluate ADC ADME, the International Consortium for Innovation and Quality in Pharmaceutical Development launched an ADC ADME working group in early 2014. This white paper contains observations from the working group and provides an initial framework on issues and approaches to consider when evaluating the ADME of ADCs. PMID:26669328

  9. Visual field asymmetry in facial affect perception: moderating effects of hypnosis, hypnotic susceptibility level, absorption, and sustained attentional abilities.

    PubMed

    Crawford, H J; Harrison, D W; Kapelis, L

    1995-05-01

    Effects of hypnotic level, affect valence and cerebral asymmetry on reaction time (RT) in the discrimination of Ekman and Friesen's (1978) stimuli of angry and happy faces were studied in counterbalanced conditions of waking and hypnosis. Assessed previously on two hypnotic susceptibility scales [Harvard Group Scale of Hypnotic Susceptibility; Stanford Hypnotic Susceptibility Scale, Form C (SHSSC)], non-depressed subjects were 16 low (0-4 SHSSC) and 17 highly (10-12 SHSSC) hypnotizable, right-handed college students. Subjects were required to identify affects of faces, presented tachistoscopically to left (LVF) or right (RVF) visual fields, by using a forced-choice RT paradigm. Highs were significantly faster than lows in angry and happy affect recognition. Hypnosis had no significant effects. For highs only, angry emotional valence was identified faster when presented to the right hemisphere (LVF), but there were no significant hemispheric effects for happy emotional valence. For lows there were no hemispheric differences. Gender was a nonsignificant factor. Significant correlations showed that faster reaction times to angry and happy stimuli, in both LVF and RVF in waking and hypnosis, were obtained by subjects who reported more deeply absorbed and extremely focused and sustained attention on the Tellegen (1982) Absorption Scale and a subscale of the Differential Attentional Processes Inventory (Grumbles & Crawford, 1981). Vividness of Visual Imagery Questionnaire (Marks, 1973) and Affect Intensity Measure (Larsen, 1985), in general, did not correlate with RTs. The potential role of the fronto-limbic attentional system in the recognition of external visual sensory affect is discussed. PMID:7591508

  10. Characterization of the activities of actin-affecting drugs on tumor cell migration

    SciTech Connect

    Hayot, Caroline; Debeir, Olivier; Ham, Philippe van; Damme, Marc van; Kiss, Robert; Decaestecker, Christine . E-mail: cdecaes@ulb.ac.be

    2006-02-15

    Metastases kill 90% of cancer patients. It is thus a major challenge in cancer therapy to inhibit the spreading of tumor cells from primary tumor sites to those particular organs where metastases are likely to occur. Whereas the actin cytoskeleton is a key component involved in cell migration, agents targeting actin dynamics have been relatively poorly investigated. Consequently, valuable in vitro pharmacological tools are needed to selectively identify this type of agent. In response to the absence of any standardized process, the present work aims to develop a multi-assay strategy for screening actin-affecting drugs with anti-migratory potentials. To validate our approach, we used two cancer cell lines (MCF7 and A549) and three actin-affecting drugs (cytochalasin D, latrunculin A, and jasplakinolide). We quantified the effects of these drugs on the kinetics of actin polymerization in tubes (by means of spectrofluorimetry) and on the dynamics of actin cytoskeletons within whole cells (by means of fluorescence microscopy). Using quantitative videomicroscopy, we investigated the actual effects of the drugs on cell motility. Finally, the combined drug effects on cell motility and cell growth were evaluated by means of a scratch-wound assay. While our results showed concordant drug-induced effects on actin polymerization occurring in vitro in test tubes and within whole cells, the whole cell assay appeared more sensitive than the tube assay. The inhibition of actin polymerization induced by cytochalasin D was paralleled by a decrease in cell motility for both cell types. In the case of jasplakinolide, which induces actin polymerization, while it significantly enhanced the locomotion of the A549 cells, it significantly inhibited that of the MCF-7 ones. All these effects were confirmed by means of the scratch-wound assay except of the jasplakinolide-induced effects on MCF-7 cell motility. These later seemed compensated by an additional effect occurring during wound

  11. Recent Advances in Delivery Systems and Therapeutics of Cinnarizine: A Poorly Water Soluble Drug with Absorption Window in Stomach

    PubMed Central

    Pathak, Kamla

    2014-01-01

    Low solubility causing low dissolution in gastrointestinal tract is the major problem for drugs meant for systemic action after oral administration, like cinnarizine. Pharmaceutical products of cinnarizine are commercialized globally as immediate release preparations presenting low absorption with low and erratic bioavailability. Approaches to enhance bioavailability are widely cited in the literature. An attempt has been made to review the bioavailability complications and clinical therapeutics of poorly water soluble drug: cinnarizine. The interest of writing this paper is to summarize the pharmacokinetic limitations of drug with special focus on strategies to improvise bioavailability along with effectiveness of novel dosage forms to circumvent the obstacle. The paper provides insight to the approaches to overcome low and erratic bioavailability of cinnarizine by cyclodextrin complexes and novel dosage forms: self-nanoemulsifying systems and buoyant microparticulates. Nanoformulations need to systematically explored in future, for their new clinical role in prophylaxis of migraine attacks in children. Clinical reports have affirmed the role of cinnarizine in migraine prophylaxis. Research needs to be dedicated to develop dosage forms for efficacious bioavailability and drug directly to brain. PMID:25478230

  12. Colorimetric and atomic absorption spectrometric determination of mucolytic drug ambroxol through ion-pair formation with iron and thiocyanate.

    PubMed

    Levent, Abdulkadir; Sentürk, Zühre

    2010-09-01

    Colorimetric and atomic absorption spectrometric methods have been developed for the determination of mucolytic drug Ambroxol. These procedures depend upon the reaction of iron(III) metal ion with the drug in the presence of thiocyanate ion to form stable ion-pair complex which extractable chloroform. The red-coloured complex was determined either colorimetrically at 510 nm or by indirect atomic absorption spectrometry (AAS) via the determination of the iron content in the formed complex. The optimum experimental conditions for pH, concentrations of Fe(3+) and SCN(-), shaking time, phase ratio, and the number of extractions were determined. Under the proposed conditions, linearity was obeyed in the concentration ranges 4.1x10(-6) - 5.7x10(-5) M (1.7-23.6 µg mL(-1)) using both methods, with detection limits of 4.6x10(-7) M (0.19 µg mL(-1)) for colorimetry and 1.1x10(-6) M (0.46 µg mL(-1)) for AAS. The proposed methods were applied for the determination of Ambroxol in tablet dosage forms. The results obtained were statistically analyzed and compared with those obtained by applying the high-performance liquid chromatographic method with diode-array detection. PMID:20426742

  13. Spectrofluorimetric methods of stability-indicating assay of certain drugs affecting the cardiovascular system

    NASA Astrophysics Data System (ADS)

    Moussa, B. A.; Mohamed, M. F.; Youssef, N. F.

    2011-01-01

    Two stability-indicating spectrofluorimetric methods have been developed for the determination of ezetimibe and olmesartan medoxomil, drugs affecting the cardiovascular system, and validated in the presence of their degradation products. The first method, for ezetimibe, is based on an oxidative coupling reaction of ezetimibe with 3-methylbenzothiazolin-2-one hydrazone hydrochloride in the presence of cerium (IV) ammonium sulfate in an acidic medium. The quenching effect of ezetimibe on the fluorescence of excess cerous ions is measured at the emission wavelength, λem, of 345 nm with the excitation wavelength, λex, of 296 nm. Factors affecting the reaction were carefully studied and optimized. The second method, for olmesartan medoxomil, is based on measuring the native fluorescence intensity of olmesartan medoxomil in methanol at λem = 360 nm with λex = 286 nm. Regression plots revealed good linear relationships in the assay limits of 10-120 and 8-112 g/ml for ezetimibe and olmesartan medoxomil, respectively. The validity of the methods was assessed according to the United States Pharmacopeya guidelines. Statistical analysis of the results exposed good Student's t-test and F-ratio values. The introduced methods were successfully applied to the analysis of ezetimibe and olmesartan medoxomil in drug substances and drug products as well as in the presence of their degradation products.

  14. Feeding conditions differentially affect the neurochemical and behavioral effects of dopaminergic drugs in male rats.

    PubMed

    Sevak, Rajkumar J; Koek, Wouter; Owens, William Anthony; Galli, Aurelio; Daws, Lynette C; France, Charles P

    2008-09-11

    The high co-morbidity of eating disorders and substance abuse suggests that nutritional status can impact vulnerability to drug abuse. These studies used rats to examine the effects of food restriction on dopamine clearance in striatum and on the behavioral effects of amphetamine (locomotion, conditioned place preference), the dopamine receptor agonist quinpirole (yawning), and the dopamine receptor antagonist raclopride (catalepsy). Amphetamine increased locomotion and produced conditioned place preference. Food restriction reduced dopamine clearance, which was restored by repeated treatment with amphetamine or by free feeding. Food restriction also decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy; normal sensitivity to both drugs was restored by free feeding. The same amphetamine treatment that normalized dopamine clearance, failed to restore normal sensitivity to quinpirole or raclopride, suggesting that in food-restricted rats the activity of dopamine transporters and dopamine receptors is differentially affected by pathways that are stimulated by amphetamine. These studies show that modest changes in nutritional status markedly alter dopamine neurotransmission and the behavioral effects of direct-acting dopamine receptor drugs (agonist and antagonist). These results underscore the potential importance of nutritional status (e.g., glucose and insulin) in modulating dopamine neurotransmission and in so doing they begin to establish a neurochemical link between the high co-morbidity of eating disorders and drug abuse. PMID:18652823

  15. A review of drug solubility in human intestinal fluids: implications for the prediction of oral absorption.

    PubMed

    Augustijns, Patrick; Wuyts, Benjamin; Hens, Bart; Annaert, Pieter; Butler, James; Brouwers, Joachim

    2014-06-16

    The purpose of this paper is to collate all recently published solubility data of orally administered drugs in human intestinal fluids (HIF) that were aspirated from the upper small intestine (duodenum and jejunum). The data set comprises in total 102 solubility values in fasted state HIF and 37 solubility values in fed state HIF, covering 59 different drugs. Despite differences in the protocol for HIF sampling and subsequent handling, this summary of HIF solubilities provides a critical reference data set to judge the value of simulated media for intestinal solubility estimation. In this regard, the review includes correlations between the reported solubilizing capacity of HIF and fasted or fed state simulated intestinal fluid (FaSSIF/FeSSIF). Correlating with HIF solubilities enables the optimal use of solubility measurements in simulated biorelevant media to obtain accurate estimates of intestinal solubility during drug development. Considering the fraction of poorly soluble new molecular entities in contemporary drug discovery, adequate prediction of intestinal solubility is critical for efficient lead optimization, early candidate profiling, and further development. PMID:23994640

  16. The affective dimension of pain as a risk factor for drug and alcohol addiction.

    PubMed

    LeBlanc, Dana M; McGinn, M Adrienne; Itoga, Christy A; Edwards, Scott

    2015-12-01

    Addiction, or substance use disorder (SUD), is a devastating psychiatric disease composed of multiple elemental features. As a biobehavioral disorder, escalation of drug and/or alcohol intake is both a cause and consequence of molecular neuroadaptations in central brain reinforcement circuitry. Multiple mesolimbic areas mediate a host of negative affective and motivational symptoms that appear to be central to the addiction process. Brain stress- and reinforcement-related regions such as the central amygdala (CeA), prefrontal cortex (PFC), and nucleus accumbens (NAc) also serve as central processors of ascending nociceptive input. We hypothesize that a sensitization of brain mechanisms underlying the processing of persistent and maladaptive pain contributes to a composite negative affective state to drive the enduring, relapsing nature of addiction, particularly in the case of alcohol and opioid use disorder. At the neurochemical level, pain activates central stress-related neuropeptide signaling, including the dynorphin and corticotropin-releasing factor (CRF) systems, and by this process may facilitate negative affect and escalated drug and alcohol use over time. Importantly, the widespread prevalence of unresolved pain and associated affective dysregulation in clinical populations highlights the need for more effective analgesic medications with reduced potential for tolerance and dependence. The burgeoning epidemic of prescription opioid abuse also demands a closer investigation into the neurobiological mechanisms of how pain treatment could potentially represent a significant risk factor for addiction in vulnerable populations. Finally, the continuing convergence of sensory and affective neuroscience fields is expected to generate insight into the critical balance between pain relief and addiction liability, as well as provide more effective therapeutic strategies for chronic pain and addiction. PMID:26008713

  17. Development and evaluation of a gastroretentive drug delivery system for the low-absorption-window drug celecoxib.

    PubMed

    Ali, Javed; Tyagi, Puneet; Ahuja, Alka; Baboota, Sanjula; Hasan, Sohail

    2007-01-01

    The objective of the present study is to develop microspheres for celecoxib to enhance its bioavailability by increasing its gastric residence time. Four different polymers-polyethylene oxide, Eudragit S, cellulose acetate, and Eudragit RL-were used to form the floating microspheres using an emulsion-solvent diffusion technique. The use of two different solvents (dichloromethane and ethanol) that differed in the rate of diffusion led to formation of a hollow core in the microspheres, which was partially responsible for the flotation ability. The formulation was optimized on the basis of in vitro buoyancy and in vitro release in simulated gastric fluid at pH 3. Scanning electron microscopy revealed differences between the formulations in terms of their topography. X-ray diffractometry and differential scanning calorimetry examination showed the amorphous nature of the drug. Microspheres prepared with polyethylene oxide:Eudragit S:celecoxib (2:2:1) gave the best in vitro percentage release and was taken as the optimized formulation. By fitting the data into zero order, first order, and Higuchi model, it could be concluded that the release followed first-order release kinetics. The correlation coefficient (R2 value) was obtained upon fitting the data to Higuchi equation, which signifies that the mechanism of release of celecoxib from the microspheres was diffusion rate-limited. PMID:17479716

  18. Assessment of In Vivo Clinical Product Performance of a Weak Basic Drug by Integration of In Vitro Dissolution Tests and Physiologically Based Absorption Modeling.

    PubMed

    Ding, Xuan; Gueorguieva, Ivelina; Wesley, James A; Burns, Lee J; Coutant, Carrie A

    2015-11-01

    Effective integration of in vitro tests and absorption modeling can greatly improve our capability in understanding, comparing, and predicting in vivo performances of clinical drug products. In this case, we used a proprietary drug candidate galunisertib to describe the procedures of designing key in vitro tests, analyzing relevant experimental and trial data, and integrating them into physiologically based absorption models to evaluate the performances of its clinical products. By simulating the preclinical study result, we estimated high in vivo permeability for the drug. Given the high sensitivity of its solubility to pH, supersaturation may play an important role in the absorption of galunisertib. Using the dynamic dissolution test, i.e., artificial stomach-duodenum (ASD) model and simulation, we concluded galunisertib in solution or tablet products could maintain supersaturation during the transit in the gastrointestinal tract (GIT). A physiologically based absorption model was established by incorporating these key inputs in the simulation of Trial 1 results of galunisertib solution. To predict the performance of three tablet products, we developed z-factor dissolution models from the multi-pH USP dissolution results and integrate them into the absorption model. The resultant biopharmaceutical models provided good prediction of the extent of absorption of all three products, but underestimated the rate of absorption of one tablet product. Leveraging the ASD result and optimization with the dissolution model, we identified the limitation of the model due to complexity of estimating the dissolution parameter z and its in vitro-in vivo correlation. PMID:26126932

  19. Alpha-lactalbumin and casein-glycomacropeptide do not affect iron absorption from formula in healthy term infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron absorption from infant formula is relatively low. Alpha-lactalbumin and casein-glycomacropeptide have been suggested to enhance mineral absorption. We therefore assessed the effect of alpha-lactalbumin and casein-glycomacropeptide on iron absorption from infant formula in healthy term infants. ...

  20. The core shift measurements for two-sided jets affected by Free-Free absorption using VLBA

    NASA Astrophysics Data System (ADS)

    Haga, Takafumi; Doi, Akihiro; Murata, Yasuhiro; Sudou, Hiroshi; Kameno, Seiji; Hada, Kazuhiro; Nagai, Hiroshi

    2013-12-01

    A radio core represents the peak of intensity in VLBI images and is located at the base of jets. It appears at different positions depending on frequencies. This is known as "core shift", caused by absorption of the core emission. The position of the central engine in an AGN can be estimated accurately by measuring the core shift with multifrequency and phase-referencing observations. We observed NGC 4261 using the VLBA at seven frequencies. This source is a nearby FR-I type radio galaxy at the distance of 30 Mpc and has prominent two-sided jets. We measured the core shifts in not only approaching side but also counter side of the jets. The positions of core at infinity of frequency in both side indicated to come close asymptotically to the same position, which was separated by 82±16 μas from 43 GHz core position, corresponding to 310±60 Rs (Schwarzschild radius). This source also has another feature that there is a region affected by free-free absorption (FFA) in the vicinity of the core and toward the counter jet. Moreover, we also found the same feature in other three sources, 3C 84, Cen A and Cyg A, which are also nearby galaxies with two-sided jets and with an indication of the FFA regions. We will measure the core shifts in these sources by using same technique as NGC 4261 in order to study the structure of circumnuclear plasma, to determine the position of the central engine and to test core shifts due to FFA.

  1. Generation of enterocyte-like cells from human induced pluripotent stem cells for drug absorption and metabolism studies in human small intestine

    PubMed Central

    Ozawa, Tatsuya; Takayama, Kazuo; Okamoto, Ryota; Negoro, Ryosuke; Sakurai, Fuminori; Tachibana, Masashi; Kawabata, Kenji; Mizuguchi, Hiroyuki

    2015-01-01

    Enterocytes play an important role in drug absorption and metabolism. However, a widely used enterocyte model, Caco-2 cell, has difficulty in evaluating both drug absorption and metabolism because the expression levels of some drug absorption and metabolism-related genes in these cells differ largely from those of human enterocytes. Therefore, we decided to generate the enterocyte-like cells from human induced pluripotent stem (iPS) cells (hiPS-ELCs), which are applicable to drug absorption and metabolism studies. The efficiency of enterocyte differentiation from human iPS cells was significantly improved by using EGF, SB431542, and Wnt3A, and extending the differentiation period. The gene expression levels of cytochrome P450 3A4 (CYP3A4) and peptide transporter 1 in the hiPS-ELCs were higher than those in Caco-2 cells. In addition, CYP3A4 expression in the hiPS-ELCs was induced by treatment with 1, 25-dihydroxyvitamin D3 or rifampicin, which are known to induce CYP3A4 expression, indicating that the hiPS-ELCs have CYP3A4 induction potency. Moreover, the transendothelial electrical resistance (TEER) value of the hiPS-ELC monolayer was approximately 240 Ω*cm2, suggesting that the hiPS-ELC monolayer could form a barrier. In conclusion, we succeeded in establishing an enterocyte model from human iPS cells which have potential to be applied for drug absorption and metabolism studies. PMID:26559489

  2. Treatment of affective illness in the elderly with drugs and electroconvulsive therapy.

    PubMed

    Jenike, M A

    1989-01-01

    Affective illness is common, frequently debilitating, and sometimes life-threatening in the elderly. Considerations pertaining to treatment with heterocyclic drugs, MAOIs, lithium, psychostimulants and thyroid hormone, as well as ECT, have been reviewed. Amitriptyline and imipramine cause significant orthostatic hypotension and probably should be avoided in the elderly. In addition, amitriptyline is extremely anticholinergic. Amoxapine is essentially a neuroleptic sequelae, including tardive dyskinesia. If a patient has had a prior positive response or has a relative who had a good outcome from a particular drug, it may be best to begin treatment with that drug. Initial choice of antidepressant can be based largely on the clinical picture. For example, if a depressed patient is sleeping much more than usual, try a potentially activating agent like desipramine or protriptyline. if, on the other hand, the patient is unable to sleep, a more sedating agent like nortriptyline, maprotiline, trimipramine, or trazodone should be tried. Risks and side effects of these drugs, as well as their use in cardiac patients, have been reviewed in detail. Many clinicians avoid MAOIs in elderly patients because of fear of adverse reactions. This fear is largely unfounded. Precautions, side effects, and specific recommendations have been outlined. Using lithium in the elderly requires special precautions because of decreased GFR and potential interactions with concomitantly used drugs. This paper has discussed possible side effects and toxicity. The usage of psychostimulants, such as methylphenidate and amphetamine, to treat medically ill depressed patients is reviewed. These agents are also sometimes useful in demented individuals or in patients with abulic frontal lobe syndromes. Poststroke depressions are common, and recent evidence indicates that they can be adequately treated. Stroke patients have many difficulties dealing with rehabilitation and should not be forced to suffer

  3. Non-Destructive and Discriminating Identification of Illegal Drugs by Transient Absorption Spectroscopy in the Visible and Near-IR Wavelength Range

    NASA Astrophysics Data System (ADS)

    Sato, Chie; Furube, Akihiro; Katoh, Ryuzi; Nonaka, Hidehiko; Inoue, Hiroyuki

    2008-11-01

    We have tested the possibility of identifying illegal drugs by means of nanosecond transient absorption spectroscopy with a 10-ns UV-laser pulse for the excitation light and visible-to-near-IR light for the probe light. We measured the transient absorption spectra of acetonitrile solutions of d-methamphetamine, dl-3,4-methylenedioxymethamphetamine hydrochloride (MDMA), and dl-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine hydrochloride (MBDB), which are illegal drugs widely consumed in Japan. Transient absorption signals of these drugs were observed between 400 and 950 nm, a range in which they are transparent in the ground state. By analyzing the spectra in terms of exponential and Gaussian functions, we could identify the drugs and discriminate them from chemical substances having similar structures. We propose that transient absorption spectroscopy will be a useful, non-destructive method of inspecting for illegal drugs, especially when they are dissolved in liquids. Such a method may even be used for drugs packed in opaque materials if it is further extended to utilize intense femtosecond laser pulses.

  4. Mode of oral iron administration and the amount of iron habitually consumed do not affect iron absorption, systemic iron utilisation or zinc absorption in iron-sufficient infants: a randomised trial.

    PubMed

    Szymlek-Gay, Ewa A; Domellöf, Magnus; Hernell, Olle; Hurrell, Richard F; Lind, Torbjörn; Lönnerdal, Bo; Zeder, Christophe; Egli, Ines M

    2016-09-01

    Different metabolic pathways of supplemental and fortification Fe, or inhibition of Zn absorption by Fe, may explain adverse effects of supplemental Fe in Fe-sufficient infants. We determined whether the mode of oral Fe administration or the amount habitually consumed affects Fe absorption and systemic Fe utilisation in infants, and assessed the effects of these interventions on Zn absorption, Fe and Zn status, and growth. Fe-sufficient 6-month-old infants (n 72) were randomly assigned to receive 6·6 mg Fe/d from a high-Fe formula, 1·3 mg Fe/d from a low-Fe formula or 6·6 mg Fe/d from Fe drops and a formula with no added Fe for 45 d. Fractional Fe absorption, Fe utilisation and fractional Zn absorption were measured with oral (57Fe and 67Zn) and intravenous (58Fe and 70Zn) isotopes. Fe and Zn status, infection and growth were measured. At 45 d, Hb was 6·3 g/l higher in the high-Fe formula group compared with the Fe drops group, whereas serum ferritin was 34 and 35 % higher, respectively, and serum transferrin 0·1 g/l lower in the high-Fe formula and Fe drops groups compared with the low-Fe formula group (all P<0·05). No intervention effects were observed on Fe absorption, Fe utilisation, Zn absorption, other Fe status indices, plasma Zn or growth. We concluded that neither supplemental or fortification Fe nor the amount of Fe habitually consumed altered Fe absorption, Fe utilisation, Zn absorption, Zn status or growth in Fe-sufficient infants. Consumption of low-Fe formula as the only source of Fe was insufficient to maintain Fe stores. PMID:27546308

  5. Ultrasonic Vocalizations as a Measure of Affect in Preclinical Models of Drug Abuse: A Review of Current Findings.

    PubMed

    Barker, David J; Simmons, Steven J; West, Mark O

    2015-01-01

    The present review describes ways in which ultrasonic vocalizations (USVs) have been used in studies of substance abuse. Accordingly, studies are reviewed which demonstrate roles for affective processing in response to the presentation of drug-related cues, experimenter- and self-administered drug, drug withdrawal, and during tests of relapse/reinstatement. The review focuses on data collected from studies using cocaine and amphetamine, where a large body of evidence has been collected. Data suggest that USVs capture animals' initial positive reactions to psychostimulant administration and are capable of identifying individual differences in affective responding. Moreover, USVs have been used to demonstrate that positive affect becomes sensitized to psychostimulants over acute exposure before eventually exhibiting signs of tolerance. In the drug-dependent animal, a mixture of USVs suggesting positive and negative affect is observed, illustrating mixed responses to psychostimulants. This mixture is predominantly characterized by an initial bout of positive affect followed by an opponent negative emotional state, mirroring affective responses observed in human addicts. During drug withdrawal, USVs demonstrate the presence of negative affective withdrawal symptoms. Finally, it has been shown that drug-paired cues produce a learned, positive anticipatory response during training, and that presentation of drug-paired cues following abstinence produces both positive affect and reinstatement behavior. Thus, USVs are a useful tool for obtaining an objective measurement of affective states in animal models of substance abuse and can increase the information extracted from drug administration studies. USVs enable detection of subtle differences in a behavioral response that might otherwise be missed using traditional measures. PMID:26411762

  6. Statistical Design of Experiments on Fabrication of Bilayer Tablet of Narrow Absorption Window Drug: Development and In vitro characterisation

    PubMed Central

    Jivani, R. R.; Patel, C. N.; Jivani, N. P.

    2012-01-01

    The current study involves the fabrication of oral bioadhesive bilayer matrices of narrow absorption window drug baclofen and the optimisation of their in vitro drug release and characterisation. Statistical design of experiments, a computer-aided optimisation technique, was used to identify critical factors, their interactions and ideal process conditions that accomplish the targeted response(s). A central composite design was employed to systematically optimise the drug delivery containing a polymer, filler and compression force. The values of ratio of different grades of hydroxypropyl methylcellulose, microcrystalline cellulose and compression force were varied to be fitted in design. Drug release at 1 h (Q1), 4 h (Q4), 8 h (Q8), 12 h (Q12), and hardness were taken as responses. Tablets were prepared by direct compression methods. The compressed tablets were evaluated for their hardness, weight variation, friability, content uniformity and diameter. Counter plots were drawn and optimum formulation was selected by desirability function. The formulations were checked for their ex vivo mucoadhesion. The experimental value of Q1, Q4, Q8, Q12 and hardness for check-point batch was found to be 31.64, 45.82, 73.27, 98.95% and 4.4 kg/cm2, respectively. The release profile indicates Highuchi kinetics (Fickian transport) mechanism. The results of the statistical analysis of the data demonstrated significant interactions amongst the formulation variables, and the desirability function was demonstrated to be a powerful tool to predict the optimal formulation for the bilayer tablet. PMID:23626385

  7. Aminoclay-lipid hybrid composite as a novel drug carrier of fenofibrate for the enhancement of drug release and oral absorption.

    PubMed

    Yang, Liang; Shao, Yating; Han, Hyo-Kyung

    2016-01-01

    This study aimed to prepare the aminoclay-lipid hybrid composite to enhance the drug release and improve the oral bioavailability of poorly water-soluble fenofibrate. Antisolvent precipitation coupled with an immediate freeze-drying method was adopted to incorporate fenofibrate into aminoclay-lipid hybrid composite (ALC). The optimal composition of the ALC formulation was determined as the ratios of aminoclay to krill oil of 3:1 (w/w), krill oil to fenofibrate of 2:1 (w/w), and antisolvent to solvent of 6:4 (v/v). The morphological characteristics of ALC formulation were determined using scanning electron microscopy, differential scanning calorimetry, and X-ray powder diffraction, which indicated microcrystalline state of fenofibrate in ALC formulation. The ALC formulation achieved almost complete dissolution within 30 minutes, whereas the untreated powder and physical mixture exhibited less than 15% drug release. Furthermore, ALC formulation effectively increased the peak plasma concentration (C max) and area under the curve (AUC) of fenofibric acid (an active metabolite) in rats by approximately 13- and seven-fold, respectively. Furthermore, ALC formulation exhibited much lower moisture sorption behavior than the lyophilized formulation using sucrose as a cryoprotectant. Taken together, the present findings suggest that ALC formulation is promising for improving the oral absorption of poorly soluble fenofibrate. PMID:27042061

  8. Aminoclay–lipid hybrid composite as a novel drug carrier of fenofibrate for the enhancement of drug release and oral absorption

    PubMed Central

    Yang, Liang; Shao, Yating; Han, Hyo-Kyung

    2016-01-01

    This study aimed to prepare the aminoclay–lipid hybrid composite to enhance the drug release and improve the oral bioavailability of poorly water-soluble fenofibrate. Antisolvent precipitation coupled with an immediate freeze-drying method was adopted to incorporate fenofibrate into aminoclay–lipid hybrid composite (ALC). The optimal composition of the ALC formulation was determined as the ratios of aminoclay to krill oil of 3:1 (w/w), krill oil to fenofibrate of 2:1 (w/w), and antisolvent to solvent of 6:4 (v/v). The morphological characteristics of ALC formulation were determined using scanning electron microscopy, differential scanning calorimetry, and X-ray powder diffraction, which indicated microcrystalline state of fenofibrate in ALC formulation. The ALC formulation achieved almost complete dissolution within 30 minutes, whereas the untreated powder and physical mixture exhibited less than 15% drug release. Furthermore, ALC formulation effectively increased the peak plasma concentration (Cmax) and area under the curve (AUC) of fenofibric acid (an active metabolite) in rats by approximately 13- and seven-fold, respectively. Furthermore, ALC formulation exhibited much lower moisture sorption behavior than the lyophilized formulation using sucrose as a cryoprotectant. Taken together, the present findings suggest that ALC formulation is promising for improving the oral absorption of poorly soluble fenofibrate. PMID:27042061

  9. Vacuolar ATPase depletion affects mitochondrial ATPase function, kinetoplast dependency, and drug sensitivity in trypanosomes.

    PubMed

    Baker, Nicola; Hamilton, Graham; Wilkes, Jonathan M; Hutchinson, Sebastian; Barrett, Michael P; Horn, David

    2015-07-21

    Kinetoplastid parasites cause lethal diseases in humans and animals. The kinetoplast itself contains the mitochondrial genome, comprising a huge, complex DNA network that is also an important drug target. Isometamidium, for example, is a key veterinary drug that accumulates in the kinetoplast in African trypanosomes. Kinetoplast independence and isometamidium resistance are observed where certain mutations in the F1-γ-subunit of the two-sector F1Fo-ATP synthase allow for Fo-independent generation of a mitochondrial membrane potential. To further explore kinetoplast biology and drug resistance, we screened a genome-scale RNA interference library in African trypanosomes for isometamidium resistance mechanisms. Our screen identified 14 V-ATPase subunits and all 4 adaptin-3 subunits, implicating acidic compartment defects in resistance; V-ATPase acidifies lysosomes and related organelles, whereas adaptin-3 is responsible for trafficking among these organelles. Independent strains with depleted V-ATPase or adaptin-3 subunits were isometamidium resistant, and chemical inhibition of the V-ATPase phenocopied this effect. While drug accumulation in the kinetoplast continued after V-ATPase subunit depletion, acriflavine-induced kinetoplast loss was specifically tolerated in these cells and in cells depleted for adaptin-3 or endoplasmic reticulum membrane complex subunits, also identified in our screen. Consistent with kinetoplast dispensability, V-ATPase defective cells were oligomycin resistant, suggesting ATP synthase uncoupling and bypass of the normal Fo-A6-subunit requirement; this subunit is the only kinetoplast-encoded product ultimately required for viability in bloodstream-form trypanosomes. Thus, we describe 30 genes and 3 protein complexes associated with kinetoplast-dependent growth. Mutations affecting these genes could explain natural cases of dyskinetoplasty and multidrug resistance. Our results also reveal potentially conserved communication between the

  10. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  11. Meal conditions affect the absorption of supplemental vitamin D3 but not the plasma 25-hydroxyvitamin D response to supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is sometimes assumed that dietary fat is required for vitamin D absorption, although the impact of different amounts of dietary fat on vitamin D absorption is not established. This study was conducted to determine whether the presence of a meal and the fat content of the meal influences vitamin D...

  12. Factors affecting the persistence of drug-induced reprogramming of the cancer methylome.

    PubMed

    Bell, Joshua S K; Kagey, Jacob D; Barwick, Benjamin G; Dwivedi, Bhakti; McCabe, Michael T; Kowalski, Jeanne; Vertino, Paula M

    2016-04-01

    Aberrant DNA methylation is a critical feature of cancer. Epigenetic therapy seeks to reverse these changes to restore normal gene expression. DNA demethylating agents, including 5-aza-2'-deoxycytidine (DAC), are currently used to treat certain leukemias, and can sensitize solid tumors to chemotherapy and immunotherapy. However, it has been difficult to pin the clinical efficacy of these agents to specific demethylation events, and the factors that contribute to the durability of response remain largely unknown. Here we examined the genome-wide kinetics of DAC-induced DNA demethylation and subsequent remethylation after drug withdrawal in breast cancer cells. We find that CpGs differ in both their susceptibility to demethylation and propensity for remethylation after drug removal. DAC-induced demethylation was most apparent at CpGs with higher initial methylation levels and further from CpG islands. Once demethylated, such sites exhibited varied remethylation potentials. The most rapidly remethylating CpGs regained >75% of their starting methylation within a month of drug withdrawal. These sites had higher pretreatment methylation levels, were enriched in gene bodies, marked by H3K36me3, and tended to be methylated in normal breast cells. In contrast, a more resistant class of CpG sites failed to regain even 20% of their initial methylation after 3 months. These sites had lower pretreatment methylation levels, were within or near CpG islands, marked by H3K79me2 or H3K4me2/3, and were overrepresented in sites that become aberrantly hypermethylated in breast cancers. Thus, whereas DAC-induced demethylation affects both endogenous and aberrantly methylated sites, tumor-specific hypermethylation is more slowly regained, even as normal methylation promptly recovers. Taken together, these data suggest that the durability of DAC response is linked to its selective ability to stably reset at least a portion of the cancer methylome. PMID:27082926

  13. Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction

    PubMed Central

    Pitcher, Jonathan; Abt, Anna; Myers, Jaclyn; Han, Rachel; Snyder, Melissa; Graziano, Alessandro; Festa, Lindsay; Kutzler, Michele; Garcia, Fernando; Gao, Wen-Jun; Fischer-Smith, Tracy; Rappaport, Jay; Meucci, Olimpia

    2014-01-01

    Interaction of the chemokine CXCL12 with its receptor CXCR4 promotes neuronal function and survival during embryonic development and throughout adulthood. Previous studies indicated that μ-opioid agonists specifically elevate neuronal levels of the protein ferritin heavy chain (FHC), which negatively regulates CXCR4 signaling and affects the neuroprotective function of the CXCL12/CXCR4 axis. Here, we determined that CXCL12/CXCR4 activity increased dendritic spine density, and also examined FHC expression and CXCR4 status in opiate abusers and patients with HIV-associated neurocognitive disorders (HAND), which is typically exacerbated by illicit drug use. Drug abusers and HIV patients with HAND had increased levels of FHC, which correlated with reduced CXCR4 activation, within cortical neurons. We confirmed these findings in a nonhuman primate model of SIV infection with morphine administration. Transfection of a CXCR4-expressing human cell line with an iron-deficient FHC mutant confirmed that increased FHC expression deregulated CXCR4 signaling and that this function of FHC was independent of iron binding. Furthermore, examination of morphine-treated rodents and isolated neurons expressing FHC shRNA revealed that FHC contributed to morphine-induced dendritic spine loss. Together, these data implicate FHC-dependent deregulation of CXCL12/CXCR4 as a contributing factor to cognitive dysfunction in neuroAIDS. PMID:24401274

  14. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  15. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model

    PubMed Central

    Sarlikioti, V.; de Visser, P. H. B.; Buck-Sorlin, G. H.; Marcelis, L. F. M.

    2011-01-01

    Background and Aims Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis. Methods Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same. Key Results Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6–10 % for light absorption and photosynthesis. Conclusions At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %. PMID:21865217

  16. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers.

    PubMed

    Nøhr, Martha Kampp; Hansen, Steen Honoré; Brodin, Birger; Holm, René; Nielsen, Carsten Uhd

    2014-01-23

    Vigabatrin is an anti-epileptic drug substance. The oral bioavailability of vigabatrin is high (60-70%), however, little is known about the mechanism(s) mediating the intestinal absorption. The aim of the present study was to identify which solute carrier(s) are involved in the absorption of vigabatrin in Caco-2 cells, a cell culture model of the small intestinal epithelium. The uptake and transepithelial flux of vigabatrin was measured using an LC-MS method for quantification. Transepithelial transport of vigabatrin was shown to be proton-dependent and polarized in the apical-to-basolateral (A-B) direction. The A-B flux of vigabatrin had a saturable component and a passive component, indicating the presence of a carrier system in parallel with a passive permeability. The Michaelis constant, Km, of the transepithelial A-B flux of vigabatrin was estimated to be 32.8±7.4 mM (n=3-5), whereas the Km of the apical uptake was found to be 12.7±3.7 mM (n=3). The carrier-mediated transepithelial A-B flux of vigabatrin accounted for 80-95% (50.0-1.0mM) of the total A-B flux. The transepithelial A-B flux (as well as apical uptake) of vigabatrin was significantly decreased upon addition of substrates or inhibitors of the human proton-coupled amino acid transporter (hPAT1) to the apical solution. The present study indicates that the transepithelial A-B flux of vigabatrin is mainly mediated by hPAT1 in Caco-2 cells at dose-relevant concentrations. PMID:24008184

  17. Preformulation characterization and in vivo absorption in beagle dogs of JFD, a novel anti-obesity drug for oral delivery.

    PubMed

    Fan, Yunzhou; Yang, Meiyan; Wang, Yuli; Li, Yanyou; Zhou, Yuanda; Chen, Xiaoping; Shan, Li; Wei, Jun; Gao, Chunsheng

    2015-05-01

    JFD (N-isoleucyl-4-methyl-1,1-cyclopropyl-1-(4-chlorine)phenyl-2-amylamine·HCl) is a novel investigational anti-obesity drug without obvious cardiotoxicity. The objective of this study was to characterize the key physicochemical properties of JFD, including solution-state characterization (ionization constant, partition coefficient, aqueous and pH-solubility profile), solid-state characterization (particle size, thermal analysis, crystallinity and hygroscopicity) and drug-excipient chemical compatibility. A supporting in vivo absorption study was also carried out in beagle dogs. JFD bulk powders are prismatic crystals with a low degree of crystallinity, particle sizes of which are within 2-10 μm. JFD is highly hygroscopic, easily deliquesces to an amorphous glass solid and changes subsequently to another crystal form under an elevated moisture/temperature condition. Similar physical instability was also observed in real-time CheqSol solubility assay. pK(a) (7.49 ± 0.01), log P (5.10 ± 0.02) and intrinsic solubility (S0) (1.75 μg/ml) at 37 °C of JFD were obtained using potentiometric titration method. Based on these solution-state properties, JFD was estimated to be classified as BCS II, thus its dissolution rate may be an absorption-limiting step. Moreover, JFD was more chemically compatible with dibasic calcium phosphate, mannitol, hypromellose and colloidal silicon dioxide than with lactose and magnesium stearate. Further, JFD exhibited an acceptable pharmacokinetic profiling in beagle dogs and the pharmacokinetic parameters T(max), C(max), AUC(0-t) and absolute bioavailability were 1.60 ± 0.81 h, 0.78 ± 0.47 μg/ml, 3.77 ± 1.85 μg·h/ml and 52.30 ± 19.39%, respectively. The preformulation characterization provides valuable information for further development of oral administration of JFD. PMID:24694186

  18. Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala.

    PubMed

    Xu, Chao; Li, Xiang-Fei; Tian, Hong-Yan; Jiang, Guang-Zhen; Liu, Wen-Bin

    2016-04-01

    This study aimed to investigate the optimal feeding rate for juvenile blunt snout bream (average initial weight 23.74 ± 0.09 g) based on the results on growth performance, intestinal digestive and absorptive capabilities and endocrine functions. A total of 840 fish were randomly distributed into 24 cages and fed a commercial feed at six feeding rates ranging from 2.0 to 7.0 % body weight (BW)/day. The results indicated that weight gain rate increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0 % BW/day, but decreased with the further increasing feeding rates (P > 0.05). Protein efficiency ratio and nitrogen and energy retention all showed a similar trend. However, feed conversion ratio increased significantly (P < 0.05) with increasing feeding rates. Feeding rates have little effects (P > 0.05) on whole-body moisture, ash and protein contents, but significantly (P < 0.05) affect both lipid and energy contents with the highest values both observed in fish fed 4.0 % BW/day. In addition, moderate ration sizes (2.0-4.0 % BW/day) resulted in the enhanced activities of intestinal enzymes, including lipase, protease, Na(+), K(+)-ATPase, alkaline phosphatase and creatine kinase. Furthermore, the mRNA levels of growth hormone, insulin-like growth factors-I, growth hormone receptor and neuropeptide all increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0 % and 6.0 % BW/day, but decreased significantly (P < 0.05) with the further increase in feeding rates, whereas both leptin and cholecystokinin expressions showed an opposite trend. Based on the broken-line regression analysis of SGR against feeding rates, the optimal feeding rate for juvenile blunt snout bream was estimated to be 4.57 % BW/day. PMID:26597852

  19. In vitro drug release and ex vivo percutaneous absorption of resveratrol cream using HPLC with zirconized silica stationary phase.

    PubMed

    Polonini, Hudson Caetano; Bastos, Carina de Almeida; de Oliveira, Marcone Augusto Leal; da Silva, Carla Grazieli Azevedo; Collins, Carol Hollingworth; Brandão, Marcos Antônio Fernandes; Raposo, Nádia Rezende Barbosa

    2014-02-01

    Since the designs of optimal formulations for resveratrol permeation via the skin are lacking, the aim of this study was to establish the profile of resveratrol permeability into and across human skin. For that, a laboratory-made chromatographic column was used (Zr-PMODS), with its performance being compared to a traditional C18 column. In vitro drug release was conducted with polysulfone membranes, and the flux (JS) was 30.49 μg cm(-2) h(-1)), with a lag time (LT) of 0.04 h, following a pseudo-first-order kinetics. For ex vivo percutaneous absorption using excised female human skin, the kinetic profile was the same, but JS was 0.87 μg cm(-2) h(-1) and LT was 0.97 h. From the initials 49.30 μg applied to the skin, 9.50 μg were quantified in the receptor medium, 20.48 μg was retained at the stratum corneum (do not account as permeated) and 21.41 μg was retained at the viable epidermis+dermis (account as permeated), totalizing 30.90 μg of resveratrol permeated after 24 h of application (62.6%). From these results, one can conclude that a person using the 1-g emulsion dose released by the pump containing 20mg of resveratrol will have, theoretically, 12.53 mg of it liberated into his bloodstream, gradually and continuously for 24 h. PMID:24381018

  20. Prediction of oral absorption of griseofulvin, a BCS class II drug, based on GITA model: utilization of a more suitable medium for in-vitro dissolution study.

    PubMed

    Fujioka, Yoshitsugu; Kadono, Keitaro; Fujie, Yasuko; Metsugi, Yukiko; Ogawara, Ken-ichi; Higaki, Kazutaka; Kimura, Toshikiro

    2007-06-01

    The in-vivo absorbability of drugs categorized into the biopharmaceutics classification system (BCS) class II is very difficult to be predicted because of the large variability in the absorption and/or dissolution kinetics and the lack of an adequate in-vitro system for evaluating the dissolution behavior. We tried to predict the in-vivo absorption kinetics of griseofulvin, categorized into BCS class II, orally administrated as powders into rats, based on Gastrointestinal-Transit-Absorption model (GITA model), consisting of the absorption, dissolution and GI-transit processes. Using the dissolution rate constants (k(dis)) of griseofulvin obtained with JP 1st solution, JP 2nd solution, FaSSIF, FeSSIF and modified SIBLM as a medium, simulation lines were not able to describe the observed mean plasma profile at all. On the other hand, a calculated line provided by employing k(dis) obtained with MREVID 2 (medium reflecting in-vivo dissolution 2), a new medium, was in better agreement with the observed mean plasma profile than existing media, indicating that the utilization of adequate k(dis) value made it possible to predict the in-vivo absorption kinetics of drugs classified into BCS class II based on GITA model and that MREVID 2 could be a useful medium for describing the in-vivo dissolution kinetics. PMID:17442444

  1. Immunosuppressive Drugs Affect High-Mannose/Hybrid N-Glycans on Human Allostimulated Leukocytes

    PubMed Central

    Pocheć, Ewa; Bocian, Katarzyna; Ząbczyńska, Marta; Korczak-Kowalska, Grażyna; Lityńska, Anna

    2015-01-01

    N-glycosylation plays an important role in the majority of physiological and pathological processes occurring in the immune system. Alteration of the type and abundance of glycans is an element of lymphocyte differentiation; it is also common in the development of immune-mediated inflammatory diseases. The N-glycosylation process is very sensitive to different environmental agents, among them the pharmacological environment of immunosuppressive drugs. Some results show that high-mannose oligosaccharides have the ability to suppress different stages of the immune response. We evaluated the effects of cyclosporin A (CsA) and rapamycin (Rapa) on high-mannose/hybrid-type glycosylation in human leukocytes activated in a two-way mixed leukocyte reaction (MLR). CsA significantly reduced the number of leukocytes covered by high-mannose/hybrid N-glycans, and the synergistic action of CsA and Rapa led to an increase of these structures on the remaining leukocytes. This is the first study indicating that β1 and β3 integrins bearing high-mannose/hybrid structures are affected by Rapa and CsA. Rapa taken separately and together with CsA changed the expression of β1 and β3 integrins and, by regulating the protein amount, increased the oligomannose/hybrid-type N-glycosylation on the leukocyte surface. We suggest that the changes in the glycosylation profile of leukocytes may promote the development of tolerance in transplantation. PMID:26339568

  2. Research & market strategy: how choice of drug discovery approach can affect market position.

    PubMed

    Sams-Dodd, Frank

    2007-04-01

    In principal, drug discovery approaches can be grouped into target- and function-based, with the respective aims of developing either a target-selective drug or a drug that produces a specific biological effect irrespective of its mode of action. Most analyses of drug discovery approaches focus on productivity, whereas the strategic implications of the choice of drug discovery approach on market position and ability to maintain market exclusivity are rarely considered. However, a comparison of approaches from the perspective of market position indicates that the functional approach is superior for the development of novel, innovative treatments. PMID:17395091

  3. Infant iron status affects iron absorption in Peruvian breastfed infants at 2 and 5 mo of age

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of prenatal iron supplementation on maternal postpartum iron status and early infant iron homeostasis remain largely unknown. We examined iron absorption and growth in exclusively breastfed infants in relation to fetal iron exposure and iron status during early infancy. Longitudinal, paired ...

  4. Does prenatal methamphetamine exposure affect the drug-seeking behavior of adult male rats?

    PubMed

    Slamberová, Romana; Schutová, Barbora; Hrubá, Lenka; Pometlová, Marie

    2011-10-10

    Methamphetamine (MA) is one of the most frequently used illicit drugs worldwide and also one of the most common drugs abused by pregnant women. Repeated administration of psychostimulants induces behavioral sensitization in response to treatment of the same or related drugs in rodents. The effect of prenatal MA exposure on sensitivity to drugs in adulthood is not yet fully determined. Because our most recent studies demonstrated that prenatal MA (5mg/kg) exposure makes adult rats more sensitive to acute injection of the same drug, we were interested whether the increased sensitivity corresponds with the increased drug-seeking behavior. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the conditioned place preference (CPP). The following psychostimulant drugs were used as a challenge in adulthood: MA (5mg/kg), amphetamine (5mg/kg) and cocaine (10mg/kg). All psychostimulant drugs induced increased drug-seeking behavior in adult male rats. However, while MA and amphetamine-induced increase in drug-seeking behavior did not differ based on the prenatal drug exposure, prenatally MA-exposed rats displayed tolerance effect to cocaine in adulthood. In addition, prenatally MA-exposed rats had decreased weight gain after administration of MA or amphetamine, while the weight of prenatally MA-exposed rats stayed unchanged after cocaine administration. Defecation was increased by all the drugs (MA, amphetamine and cocaine), while only amphetamine increased the tail temperature. In conclusion, our results did not confirm our hypothesis that prenatal MA exposure increases drug-seeking behavior in adulthood in the CPP test. PMID:21645557

  5. Immunological control of drug absorption from the gastrointestinal tract: the mechanism whereby intestinal anaphylaxis interferes with the intestinal absorption of bromthymol blue in the rat.

    PubMed

    Yamamoto, A; Utsumi, E; Sakane, T; Hamaura, T; Nakamura, J; Hashida, M; Sezaki, H

    1986-05-01

    Rats were immunized intraperitoneally with ovalbumin and the disappearance of bromthymol blue (BTB) from the intestinal lumen, its accumulation in the tissue, and its net absorption were examined by means of an in-situ recirculation technique during local anaphylaxis. The disappearance of BTB from the intestinal lumen and its net absorption were significantly reduced, but there was no significant effect on its accumulation in the tissue. The pH value of the luminal solution and the perfusate volume were not influenced by intraluminal challenge with the antigen in ovalbumin-immunized rats. In addition, no significant effect was observed on intestinal permeability to BTB in the in-vitro everted sac technique. The intestinal blood flow, measured by a hydrogen clearance method, was not reduced significantly by the intraluminal exposure to antigen. There was enhanced Evans Blue leakage and mucus release in the perfusate after intraluminal challenge with ovalbumin in ovalbumin-immunized rats, but not in non-immunized rats. A significant increase of BTB binding with macromolecular substances in the perfusate was observed during the local anaphylaxis. These findings suggest that the decreased absorption of BTB is due to the interaction with the macromolecular substances in the perfusate during local anaphylaxis. PMID:2872311

  6. Analysis of illicit drugs in human urine by micellar electrokinetic capillary chromatography with on-column fast scanning polychrome absorption detection.

    PubMed

    Wernly, P; Thormann, W

    1991-12-15

    Using micellar electrokinetic capillary chromatography (MECC) with a borate/phosphate buffer containing 75 mM SDS (pH 9.1), common drugs of abuse and/or their metabolites, including opioids, benzoylecgonine, amphetamines, and methaqualone, can easily be analyzed. After solid-phase extraction of 5 mL of urine, drug concentrations down to about 100 ng/mL can be unambiguously monitored with on-column multiwavelength detection. Peak assignment is achieved through comparison of retention times and absorption spectra of eluting peaks with those of computer-stored model runs. The effectiveness of the approach is demonstrated with data obtained from different patient urines which tested positively for one or several drugs using nonisotopic immunoassays. Results suggest that MECC of illicit drugs is a highly specific and sensitive instrumental approach suitable for confirmation testing following a positive response of a toxicological screening procedure. PMID:1789451

  7. Psychoactive-drug response is affected by acute low-level microwave irradiation

    SciTech Connect

    Lai, H.; Horita, A.; Chou, C.K.; Guy, A.W.

    1983-01-01

    The effects of various psychoactive drugs were studied in rats exposed for 45 min in a circularly polarized, pulsed microwave field (2450 MHz; SAR 0.6 W/kg; 2-microseconds pulses, 500 pps). Apomorphine-induced hypothermia and stereotypy were enhanced by irradiation. Amphetamine-induced hyperthermia was attenuated while stereotypy was unaffected. Morphine-induced catalepsy and lethality were enhanced by irradiation at certain dosages of the drug. Since these drugs have different modes of action on central neural mechanisms and the effects of microwaves depend on the particular drug studied, these results show the complex nature of the effect of microwave irradiation on brain functions.

  8. Enhanced absorption of hydroxysafflor yellow A using a self-double-emulsifying drug delivery system: in vitro and in vivo studies.

    PubMed

    Lv, Liang-Zhong; Tong, Chen-Qi; Lv, Qing; Tang, Xin-Jiang; Li, Li-Ming; Fang, Qing-Xia; Yu, Jia; Han, Min; Gao, Jian-Qing

    2012-01-01

    Hydroxysafflor yellow A (HSYA), the main active ingredient of the safflower plant (Carthamus tinctorius L.), is a hydrophilic drug with low oral bioavailability. Water-in-oil-in-water (w/o/w) double emulsions may enhance the oral absorption of HSYA. In this study, we prepared a self-double-emulsifying drug delivery system (SDEDDS) to improve the absorption of HSYA. SDEDDS consists of water in oil emulsions and hydrophilic surfactants that can self-emulsify into w/o/w double emulsions in the aqueous gastrointestinal environment. Confocal laser scanning micrographs showed that spherical droplets were uniformly distributed in the dispersion medium with narrow particle size distribution and could form fine w/o/w double emulsions upon dilution in dispersion medium with gentle stirring. The dispersed oil droplets contained small dispersed aqueous droplets consistent with the characteristics of double emulsions. Furthermore, in vitro cellular experiments were performed to study the mechanism of the absorption promoting effect of SDEDDS. The accumulation of rhodamine-123 in Caco-2 cells was used to evaluate the efflux transport of p-glycoprotein inhibitor. Histopathologic studies on the rat intestine showed that SDEDDS can cause mucosal damage to a certain degree of toxicity, however this was not serious. These results suggest that SDEDDS can greatly improve the oral absorption of HSYA. Given the toxicity demonstrated to the small intestine, the formulation prescription should be improved to enhance security in the future. PMID:22888246

  9. Does Recent Physical and Sexual Victimization Affect Further Substance Use for Adult Drug-Involved Offenders?

    ERIC Educational Resources Information Center

    Zweig, Janine M.; Yahner, Jennifer; Rossman, Shelli B.

    2012-01-01

    This study examined whether physical and sexual victimization experiences were related to further substance use for a sample of drug-involved adult offenders and whether this increase could be attributed to depression experienced after the victimization occurred. A total of 674 men and 284 women from the longitudinal Multisite Adult Drug Court…

  10. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions

    PubMed Central

    Quan, Yong; Jin, Yisheng; Faria, Teresa N.; Tilford, Charles A.; He, Aiqing; Wall, Doris A.; Smith, Ronald L.; Vig, Balvinder S.

    2012-01-01

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells. PMID:24300234

  11. No effect of food intake on clobazam absorption.

    PubMed Central

    Cenraud, B; Guyot, M; Levy, R H; Brachet-Liermain, A; Morselli, P L; Moreland, T A; Loiseau, P

    1983-01-01

    The kinetics of clobazam taken 3 h before, during, and 3 h after a standard hospital meal were studied in six healthy volunteers. Peak plasma levels were significantly lower when the drug was taken with or after meals suggesting that the rate of absorption was reduced by food. The mean area under the concentration vs time curve was not affected by the time of drug administration indicating that the meal had no effect upon the extent of absorption. PMID:6661360

  12. In vitro--in silico--in vivo drug absorption model development based on mechanistic gastrointestinal simulation and artificial neural networks: nifedipine osmotic release tablets case study.

    PubMed

    Ilić, Marija; Ðuriš, Jelena; Kovačević, Ivan; Ibrić, Svetlana; Parojčić, Jelena

    2014-10-01

    In vitro--in vivo correlations (IVIVC) are generally accepted as a valuable tool in modified release formulation development aimed at (i) quantifying the in vivo drug delivery profile and formulation related effects on absorption; (ii) establishing clinically relevant dissolution specifications and (iii) supporting the biowaiver claims. The aim of the present study was to develop relevant IVIVC models based on mechanistic gastrointestinal simulation (GIS) and artificial neural network (ANN) analysis and to evaluate their applicability and usefulness in biopharmaceutical drug characterisation. Nifedipine osmotic release tablets were selected as model drug product on the basis of their robustness, dissolution limited drug absorption and the availability of relevant literature data. Although the osmotic release tablets have been designed to be robust against the influence of physiological conditions in the gastrointestinal tract, notable differences in nifedipine dissolution kinetics were observed depending on the in vitro experimental conditions employed. The results obtained indicate that both GIS and ANN model developed were sensitive to input kinetics represented by the in vitro profiles obtained under various experimental conditions. Different in silico approaches may be successfully employed in the in vitro--in silico--in vivo model development. However, the results obtained may differ and relevant outcomes are sensitive to the methodology employed. PMID:24911992

  13. [Drug Interactions and Pharmacokinetics of Psychotropic Drugs].

    PubMed

    Suzuki, Eiji

    2015-01-01

    Pharmacokinetics is the field dedicated to investigating the absorption, distribution, metabolism and excretion of drugs. Absorption of drugs is affected when they are taken together with a meal. Depending on the drug, the area under the concentration curve is affected by whether a medication is taken before or after a meal. Combined use of drugs with a high plasma protein binding fraction may be dangerous, since drug efficacy is impacted by efficiency, which in turn is affected by the degree to which it binds to proteins. Even more significant is the issue of "drug/drug" interactions that arise due to inhibition of the cytochrome P450 (CYP) hepatic microsomal enzyme system. Some antidepressants, such as paroxetine and fluvoxamine, are strong inhibitors of the CYP system. In the case of a medication that depends on renal clearance for elimination, caution is required when taking such a drug if it influences renal function. When a medicinal effect changes, pharmacodynamic changes must also be considered. PMID:26514046

  14. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    NASA Astrophysics Data System (ADS)

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  15. How various drugs affect anxiety-related behavior in male and female rats prenatally exposed to methamphetamine.

    PubMed

    Macúchová, E; Ševčíková, M; Hrebíčková, I; Nohejlová, K; Šlamberová, R

    2016-06-01

    Different forms of anxiety-related behavior have been reported after a single drug use of many abused substances, however, less is known about how males and females are affected differently from exposure to various drugs. Furthermore, chronic prenatal methamphetamine (MA) exposure was shown to predispose the animal to an increased sensitivity to drugs administrated in adulthood. Using the Elevated plus-maze test (EPM), the first aim of the present study was to examine how male and female rats are affected by acute drug treatment with subcutaneously (s.c.) administrated (a) MA (1mg/kg); (b) drugs with a similar mechanism of action to MA: amphetamine (AMP, 1mg/kg), cocaine (COC, 5mg/kg), 3,4-methylenedioxymethamphetamine (MDMA, 5mg/kg); and (c) drugs with different mechanisms of action: morphine (MOR, 5mg/kg), and Δ 9-tetrahydrocannabinol (THC, 2mg/kg). The second aim was to determine if prenatally MA-exposed (5mg/kg) animals show an increased sensitivity to adult drug treatment. The parameters analyzed were divided into two categories: anxiety-related behavior and anxiety-unrelated/exploratory behavior. Our results showed in female rats a decreased percentage of the time spent in the closed arms (CA) after MA, and an increased percentage of the time spent in the open arms (OA) after MA, AMP, and COC treatment, indicating an anxiolytic-like effect. In females, MDMA and THC treatment increased the percentage of the time spent in the CA. An increased percentage of the time spent in the CA was also seen after MOR treatment in females as well as in males, indicating an anxiogenic-like effect. As far as the interaction between prenatal MA exposure and adult drug treatment is concerned, there was no effect found. In conclusion, it seems that: (a) in some cases female rats are more vulnerable to acute drug treatment, in terms of either anxiogenic- or anxiolytic-like effects; (b) prenatal MA exposure does not sensitize animals to the anxiety-related effects of any of the

  16. Dead tired and bone weary: Grandmothers as caregivers in drug affected inner city households✩

    PubMed Central

    Dunlap, Eloise; Tourigny, Sylvie C.; Johnson, Bruce D.

    2009-01-01

    At a time of unprecedented growth in the numbers of custodial grandparents, this case study of Emma’s household articulates the stresses inherent to the lives of many grandparents whose own children’s lives are governed by drug use and addiction. We contrast normative expectations traditionally integral to the culture of extended families with the counternormative demands that drug use imposes on households. This highlights the untenable nature of caregiving for Emma and countless others of her generation. Compelled by tradition and sentiment to help their own children, they are thus allowing drug use driven norms, values and beliefs to permeate the lives of the grandchildren in their care. Yet, they are also trying to protect those children from drugs and from the violence and conflict that drugs bring into the household. Emma’s own life illustrates the salience of norms of kinship, reciprocity and respect, and the trauma in her household demonstrates how their absence does, indeed, intensify demands and erode resources. We conclude that the imperatives of raising the next generation may necessitate a counternormative willingness on the part of grandparents to exclude their adult drug using children from their households. PMID:20011671

  17. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I-Factors affecting skin absorption.

    PubMed

    Larese Filon, Francesca; Bello, Dhimiter; Cherrie, John W; Sleeuwenhoek, Anne; Spaan, Suzanne; Brouwer, Derk H

    2016-08-01

    The paper reviews and critically assesses the evidence on the relevance of various skin uptake pathways for engineered nanoparticles, nano-objects, their agglomerates and aggregates (NOAA). It focuses especially in occupational settings, in the context of nanotoxicology, risk assessment, occupational medicine, medical/epidemiological surveillance efforts, and the development of relevant exposure assessment strategies. Skin uptake of nanoparticles is presented in the context of local and systemic health effects, especially contact dermatitis, skin barrier integrity, physico-chemical properties of NOAA, and predisposing risk factors, such as stratum corneum disruption due to occupational co-exposure to chemicals, and the presence of occupational skin diseases. Attention should be given to: (1) Metal NOAA, since the potential release of ions may induce local skin effects (e.g. irritation and contact dermatitis) and absorption of toxic or sensitizing metals; (2) NOAA with metal catalytic residue, since potential release of ions may also induce local skin effects and absorption of toxic metals; (3) rigid NOAA smaller than 45nm that can penetrate and permeate the skin; (4) non rigid or flexible NOAA, where due to their flexibility liposomes and micelles can penetrate and permeate the intact skin; (5) impaired skin condition of exposed workers. Furthermore, we outline possible situations where health surveillance could be appropriate where there is NOAA occupational skin exposures, e.g. when working with nanoparticles made of sensitizer metals, NOAA containing sensitizer impurities, and/or in occupations with a high prevalence of disrupted skin barrier integrity. The paper furthermore recommends a stepwise approach to evaluate risk related to NOAA to be applied in occupational exposure and risk assessment, and discusses implications related to health surveillance, labelling, and risk communication. PMID:27289581

  18. Intradermal Tests for Diagnosis of Drug Allergy are not Affected by a Topical Anesthetic Patch.

    PubMed

    Couto, Mariana; Silva, Diana; Ferreira, Ana; Cernadas, Josefina R

    2014-09-01

    The use of topical anesthesia to perform intradermal tests (IDTs) for drug allergy diagnosis was never investigated. We aimed to determine the effects of a topical anesthetic patch containing prilocaine-lidocaine on wheal size of IDT with drugs. Patients who had positive IDT as part of their investigation process of suspected drug hypersensitivity were selected. IDT were performed according to guidelines. Anesthetic patch (AP) was placed and the same prior positive IDT, as well as positive histamine skin prick test (SPT) and negative (saline IDT) controls, were performed in the anesthetized area. Patients with negative IDT were also included to check for false positives with AP. Increase in wheals after 20 minutes both with and without AP was recorded and compared. 45 IDT were performed (36 patients), of which 37 have been previously positive (14 antibiotics, 10 general anesthetics, 6 non-steroidal anti-inflammatory drugs, 3 iodinated contrasts, 3 anti-Hi-histamines and 1 ranitidine). Mean histamine SPT size without the AP was 4.7 mm [95%CI (4.4-5.1]), and 4.6 mm [95%CI(4.2-5.0)] with anesthesia. Mean wheal increase in IDT for drugs without the anesthesia was 4.5 mm [95%CI(3.3-5.7)] and with anesthesia was 4.3 mm [95%CI(2.8-5.8)]. No statistical significant differences were observed between skin tests with or without AP for histamine SPT (P=0.089), IDT with saline (P=0.750), and IDT with drugs (P=0.995). None of the patients with negative IDT showed positivity with the AP, or vice-versa. The use of an AP containing prilocaine-lidocaine does not interfere with IDT to diagnose drug allergy, and no false positive tests were found. PMID:25229004

  19. A highly sensitive method for in vitro testing of fluorinated drug candidates using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS).

    PubMed

    Würtenberger, Irene; Gust, Ronald

    2014-05-01

    We report here the development, optimization, and evaluation of a highly sensitive method for the determination of fluorine in biological matrices employing highresolution continuum source molecular absorption spectrometry (HR-CS MAS), suitable for pharmacological testing of fluorine-containing drug candidates. For this purpose, the most important parameters were studied in detail and subsequently optimized using a multivariate approach based on experimental design methodology. We developed a new approach employing a graphite tube lined with tantalum foil, thereby significantly enhancing sensitivity, while interferences from phosphorus monoxide (PO) molecular absorption due to the complex phosphate-rich matrix were completely eliminated. The limit of detection and the characteristic mass were 5.79 and 6.08 pg F, respectively. In order to evaluate the accuracy of the procedure, a recovery test was performed using spiked samples from three bioassays (i.e., DNA binding, protein binding, and cellular uptake) and the recovery rates ranged from 97.4 to 106.4%. The proposed method is applicable for preclinical in vitro testing of fluorinated drug molecules and thereby establishes HR-CS atomic absorption spectrometry instrumentation as a universal tool in medicinal chemistry. PMID:24760395

  20. Soil pH, soil type and replant disease affect growth and nutrient absorption in apple rootstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rootstocks are the foundation of a healthy and productive orchard. They are the interface between the scion and the soil, providing anchorage, water, nutrients, and disease protection that ultimately affect the productivity and sustainability of the orchard. Recent advances in the science of genet...

  1. Communication: Does a single CH3CN molecule attached to Ru(bipy)3(2+) affect its absorption spectrum?

    PubMed

    Stockett, M H; Brøndsted Nielsen, S

    2015-05-01

    Tris(bipyridine)ruthenium(II) (Ru(bipy)3 (2+)) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complex's beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics. PMID:25956080

  2. Communication: Does a single CH3CN molecule attached to Ru(bipy)32+ affect its absorption spectrum?

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Brøndsted Nielsen, S.

    2015-05-01

    Tris(bipyridine)ruthenium(II) (Ru(bipy)32+) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complex's beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics.

  3. An Empirical Review of Major Legislation Affecting Drug Development: Past Experiences, Effects, and Unintended Consequences

    PubMed Central

    Kesselheim, Aaron S

    2011-01-01

    Context: With the development of transformative drugs at a low point, numerous commentators have recommended new legislation that uses supplementary market exclusivity as an incentive to promote innovation in the pharmaceutical market. Methods: This report provides an historical perspective on proposals for encouraging drug research. Four legislative programs have been primarily designed to offer market exclusivity to promote public health goals in the pharmaceutical or biomedical sciences: the Bayh-Dole Act of 1980, the Orphan Drug Act of 1983, the Hatch-Waxman Act of 1984, and the pediatric exclusivity provisions of the FDA Modernization Act of 1997. I reviewed quantitative and qualitative studies that reported on the outcomes from these programs and evaluated the quality of evidence generated. Findings: All four legislative programs generally have been regarded as successful, although such conclusions are largely based on straightforward descriptive reports rather than on more rigorous comparative data or analyses that sufficiently account for confounding. Overall, solid data demonstrate that market exclusivity incentives can attract interest from parties involved in drug development. However, using market exclusivity to promote innovation in the pharmaceutical market can be prone to misuse, leading to improper gains. In addition, important collateral effects have emerged with substantial negative public health implications. Conclusions: Using market exclusivity to promote pharmaceutical innovation can lead to positive outcomes, but the practice is also characterized by waste and collateral effects. Certain practices, such as mechanisms for reevaluation and closer ties of incentives programs to public health outcomes, can help address these problems. PMID:21933276

  4. Maternal Drug Use during Pregnancy: Are Preterm and Full-Term Infants Affected Differently?

    ERIC Educational Resources Information Center

    Brown, Josephine V.; Bakeman, Roger; Coles, Claire D.; Sexson, William R.; Demi, Alice S.

    1998-01-01

    Examined effects of prenatal drug exposure on infants born preterm and full-term to African American mothers. Found more extreme fetal growth deficits in later-born infants, and more extreme irritability increases in earlier-born infants. Gestation length did not moderate cardiorespiratory reactivity effects. Exposure effects occurred for…

  5. Helicobacter pylori infection and drugs malabsorption

    PubMed Central

    Lahner, Edith; Virili, Camilla; Santaguida, Maria Giulia; Annibale, Bruno; Centanni, Marco

    2014-01-01

    Drug absorption represents an important factor affecting the efficacy of oral drug treatment. Gastric secretion and motility seem to be critical for drug absorption. A causal relationship between impaired absorption of orally administered drugs and Helicobacter pylori (H. pylori) infection has been proposed. Associations have been reported between poor bioavailability of l-thyroxine and l-dopa and H. pylori infection. According to the Maastricht Florence Consensus Report on the management of H. pylori infection, H. pylori treatment improves the bioavailability of both these drugs, whereas the direct clinical benefits to patients still await to be established. Less strong seems the association between H. pylori infection and other drugs malabsorption, such as delavirdine and ketoconazole. The exact mechanisms forming the basis of the relationship between H. pylori infection and impaired drugs absorption and/or bioavailability are not fully elucidated. H. pylori infection may trigger a chronic inflammation of the gastric mucosa, and impaired gastric acid secretion often follows. The reduction of acid secretion closely relates with the wideness and the severity of the damage and may affect drug absorption. This minireview focuses on the evidence of H. pylori infection associated with impaired drug absorption. PMID:25132749

  6. Genetic and environmental factors affecting host response to drugs and other chemical compounds in our environment.

    PubMed Central

    Vesell, E S; Passananti, G T

    1977-01-01

    Compared to laboratory animals, humans are extremely heterogenous with respect to the many factors that can influence the distribution and biological effects of toxic chemicals. This heterogeneity can prevent an accurate assessment of the impact of a particular toxic compound on the health of an individual subject. Some of the factors that can significantly modify the host response to certain drugs, which serve in this review as a model for environmental chemicals, are enumerated and discussed. Although the mechanisms by which many of these factors modify the biological effects of certain environmental chemicals and drugs have been determined in some cases, better definition of the nature of interactions between these factors and environmental chemicals in a particular individual is required at a biochemical and molecular level. Recommendations are offered for the further development of our knowledge concerning interactions between environmental chemicals and such factors in a particular individual. PMID:598349

  7. Did FDA Decisionmaking Affect Anti-Psychotic Drug Prescribing in Children?: A Time-Trend Analysis

    PubMed Central

    Wang, Bo; Franklin, Jessica M.; Eddings, Wesley; Landon, Joan; Kesselheim, Aaron S.

    2016-01-01

    Background Following Food and Drug Administration (FDA) approval, many drugs are prescribed for non-FDA-approved (“off-label”) uses. If substantial evidence supports the efficacy and safety of off-label indications, manufacturers can pursue formal FDA approval through supplemental new drug applications (sNDAs). We evaluated the effect of FDA determinations on pediatric sNDAs for antipsychotic drugs on prescribing of these products in children. Methods Retrospective, segmented time-series analysis using new prescription claims during 2003–2012 for three atypical antipsychotics (olanzapine, quetiapine, ziprasidone). FDA approved the sNDAs for pediatric use of olanzapine and quetiapine in December 2009, but did not approve the sNDA for pediatric use of ziprasidone. Results During the months before FDA approval of its pediatric sNDA, new prescriptions of olanzapine decreased for both children and adults. After FDA approval, the increase in prescribing trends was similar for both age groups (P = 0.47 for schizophrenia and bipolar disorder; P = 0.37 for other indications). Comparable decreases in use of quetiapine were observed between pediatrics and adults following FDA approval of its pediatric sNDA (P = 0.88; P = 0.63). Prescribing of ziprasidone decreased similarly for pediatric and adult patients after FDA non-approval of its pediatric sNDA (P = 0.61; P = 0.79). Conclusions The FDA’s sNDA determinations relating to use of antipsychotics in children did not result in changes in use that favored the approved sNDAs and disfavored the unapproved sNDA. Improved communication may help translate the agency’s expert judgments to clinical practice. PMID:27032095

  8. Seizure Clustering during Drug Treatment Affects Seizure Outcome and Mortality of Childhood-Onset Epilepsy

    ERIC Educational Resources Information Center

    Sillanpaa, Matti; Schmidt, Dieter

    2008-01-01

    To provide evidence of whether seizure clustering is associated with drug resistance and increased mortality in childhood-onset epilepsy, a prospective, long-term population-based study was performed. One hundred and twenty patients who had been followed since disease onset (average age 37.0 years, SD 7.1, median 40.0, range 11-42; incident cases)…

  9. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    PubMed

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. PMID:27025293

  10. Decreased Core Crystallinity Facilitated Drug Loading in Polymeric Micelles without Affecting Their Biological Performances.

    PubMed

    Gou, Jingxin; Feng, Shuangshuang; Xu, Helin; Fang, Guihua; Chao, Yanhui; Zhang, Yu; Xu, Hui; Tang, Xing

    2015-09-14

    Cargo-loading capacity of polymeric micelles could be improved by reducing the core crystallinity and the improvement in the amount of loaded cargo was cargo-polymer affinity dependent. The effect of medium chain triglyceride (MCT) in inhibiting PCL crystallization was confirmed by DSC and polarized microscope. When incorporating MCT into polymeric micelles, the maximum drug loading of disulfiram (DSF), cabazitaxel (CTX), and TM-2 (a taxane derivative) increased from 2.61 ± 0.100%, 13.5 ± 0.316%, and 20.9 ± 1.57% to 8.34 ± 0.197%, 21.7 ± 0.951%, and 28.0 ± 1.47%, respectively. Moreover, the prepared oil-containing micelles (OCMs) showed well-controlled particle size, good stability, and decreased drug release rate. MCT incorporation showed little influence on the performances of micelles in cell studies or pharmacokinetics. These results indicated that MCT incorporation could be a core construction module applied in the delivery of hydrophobic drugs. PMID:26314832

  11. Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity

    PubMed Central

    Vicari, Luisa; Musumeci, Teresa; Giannone, Ignazio; Adamo, Luana; Conticello, Concetta; De Maria, Ruggero; Pignatello, Rosario; Puglisi, Giovanni; Gulisano, Massimo

    2008-01-01

    Background PTX is one of the most widely used drug in oncology due to its high efficacy against solid tumors and several hematological cancers. PTX is administered in a formulation containing 1:1 Cremophor® EL (polyethoxylated castor oil) and ethanol, often responsible for toxic effects. Its encapsulation in colloidal delivery systems would gain an improved targeting to cancer cells, reducing the dose and frequency of administration. Methods In this paper PTX was loaded in PLGA NS. The activity of PTX-NS was assessed in vitro against thyroid, breast and bladder cancer cell lines in cultures. Cell growth was evaluated by MTS assay, intracellular NS uptake was performed using coumarin-6 labelled NS and the amount of intracellular PTX was measured by HPLC. Results NS loaded with 3% PTX (w/w) had a mean size < 250 nm and a polydispersity index of 0.4 after freeze-drying with 0.5% HP-Cyd as cryoprotector. PTX encapsulation efficiency was 30% and NS showed a prolonged drug release in vitro. An increase of the cytotoxic effect of PTX-NS was observed with respect to free PTX in all cell lines tested. Conclusion These findings suggest that the greater biological effect of PTX-NS could be due to higher uptake of the drug inside the cells as shown by intracellular NS uptake and cell accumulation studies. PMID:18657273

  12. Independent assessment of Mass Drug Administration in filariasis affected Surat city.

    PubMed

    Vaishnav, K G; Patel, I C

    2006-03-01

    The Mass Drug Administration (MDA) done in Surat city (Gujarat) during 2005, revealed good impact on infection and infectivity in mosquitoes and also on microfilaria rate & mean infection density. The overall impact seen was 23% on mf rate, 28% on mean mf density, 65% on infection rate and 50% on infectivity rate in vectors. Indigenous population contribution to microfilaria cases was 9.7%, whereas migratory population contributed 72.2%; predominant 51.9% from Orissa and 20.3% from U.P. Of the total 3640 persons interviewed for MDA compliance in seven zones of the Surat city revealed that actual drug consumption was 76.7% (2792/3640). Another 11.9% although took the drug but did not consume and 11.4% refused. Important reasons for consuming was fear to get the disease (40.7%) and for not consuming; 'will consume after meal' (6.9%), too many tablets (1.7%), seek consent from doctor (1.5%), lack of awareness (1.4%) etc. Refusal was mainly due to the reason as respondents felt apparently healthy. Assessment of IEC activities suggested that main awareness was created by media (local or national TV, banners or handbills, local news papers or mike announcement) alongwith some impact made through NGO's. These observations clearly indicated the utility of effective health education for optimum community participation and shown that it was crucial for successful community based elimination campaign. However some gray areas also suggest the scope for further improvements. PMID:17370677

  13. Two-dimensional transport analysis of transdermal drug absorption with a non-perfect sink boundary condition at the skin-capillary interface.

    PubMed

    Simon, Laurent; Ospina, Juan

    2013-07-01

    A transient percutaneous drug absorption model was solved in two dimensions. Clearance of the topically-applied pharmaceutical occured at the skin-capillary boundary. Timolol penetration profiles in the dermal tissue were produced revealing concentration gradients in the directions normal and parallel to the skin surface. Ninety-eight percent of the steady-state flux was reached after 85 h or four time constants. The analytical solution procedure agreed with published results. As the clearance rate increased relative to diffusion, the delivery rate and amount of drug absorbed into the bloodstream increased while the time to reach the equilibrium flux decreased. Researchers can apply the closed-form expressions to simulate the process, estimate key parameters and design devices that meet specific performance requirements. PMID:23624255

  14. High prevalence of potential drug interactions affecting mycophenolic acid pharmacokinetics in nonmyeloablative hematopoietic stem cell transplant recipients

    PubMed Central

    Jaklič, Alenka; Collins, Carol J.; Mrhar, Aleš; Sorror, Mohamed L.; Sandmaier, Brenda M.; Bemer, Meagan J.; Locatelli, Igor; McCune, Jeannine S.

    2013-01-01

    Objective: Mycophenolic acid (MPA) exposure is associated with clinical outcomes in hematopoietic cell transplant (HCT) recipients. Various drug interaction studies, predominantly in healthy volunteers or solid organ transplant recipients, have identified medications which impact MPA pharmacokinetics. Recipients of nonmyeloablative HCT, however, have an increased burden of comorbidities, potentially increasing the number of concomitant medications and potential drug interactions (PDI) affecting MPA exposure. Thus, we sought to be the first to characterize these PDI in nonmyeloablative HCT recipients. Materials and methods: We compiled PDI affecting MPA pharmacokinetics and characterized the prevalence of PDI in nonmyeloablative HCT recipients. A comprehensive literature evaluation of four databases and PubMed was conducted to identify medications with PDI affecting MPA pharmacokinetics. Subsequently, a retrospective medication review was conducted to characterize the cumulative PDI burden, defined as the number of PDI for an individual patient over the first 21 days after allogeneic graft infusion, in 84 nonmyeloablative HCT recipients. Results: Of the 187 concomitant medications, 11 (5.9%) had a PDI affecting MPA pharmacokinetics. 87% of 84 patients had one PDI, with a median cumulative PDI burden of 2 (range 0 – 4). The most common PDI, in descending order, were cyclosporine, omeprazole and pantoprazole. Conclusion: Only a minority of medications (5.9%) have a PDI affecting MPA pharmacokinetics. However, the majority of nonmyeloablative HCT recipients had a PDI, with cyclosporine and the proton pump inhibitors being the most common. A better understanding of PDI and their management should lead to safer medication regimens for nonmyeloablative HCT recipients. PMID:23782584

  15. Glucose cryoprotectant affects glutathione-responsive antitumor drug release from polysaccharide nanoparticles.

    PubMed

    Curcio, Manuela; Blanco-Fernández, Bárbara; Costoya, Alejandro; Concheiro, Angel; Puoci, Francesco; Alvarez-Lorenzo, Carmen

    2015-06-01

    The aim of this work was to prepare polysaccharide-based nanoparticles (NPs) sensitive to glutathione (GSH), and to elucidate the effect of the concentration of glucose used as cryoprotectant during freeze-drying on the GSH-responsiveness. NPs were obtained via ionic interaction between negatively charged polysaccharides, chondroitin sulfate and dermatan sulfate, and the positively charged thiolated chitosan (CSSH), and crosslinking of CSSH before or after the nanoparticles formation with a disulfide-bond containing crosslinker, N,N'-bis(acryloyl)cystamine (BAC). NPs were freeze-dried with glucose at two different concentrations (0.5 and 5.0%w/w) and then characterized as methotrexate delivery systems, studying the effect of GSH concentration on drug release, efficacy against tumor cells and cellular internalization. Non-loaded NPs were highly compatible with murine fibroblasts and showed a suitable size for being used in anticancer therapy. When methotrexate-loaded NPs were freeze-dried with the highest glucose concentration, they lost their responsiveness to GSH concentration in vitro. Drug-loaded NPs were shown to inhibit the growth of tumor cells (HeLa and CHO-K1) with greater efficiency than free methotrexate, disregarding the concentration of glucose used for freeze-drying. Nevertheless, confocal microscopy studies revealed that cellular internalization of NPs freeze-dried with 5.0% glucose is more difficult than for NPs freeze-dried with lower glucose concentration. Thus, concentration of glucose cryoprotectant should be taken into account during development of NPs intended to release the drug as a function of GSH levels, due to the specific interactions of glucose with GSH. PMID:25917641

  16. Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells.

    PubMed

    Šemeláková, M; Jendželovský, R; Fedoročko, P

    2016-07-01

    Our previous results have shown that the combination of hypericin-mediated photodynamic therapy (HY-PDT) at sub-optimal dose with hyperforin (HP) (compounds of Hypericum sp.), or its stable derivative aristoforin (AR) stimulates generation of reactive oxygen species (ROS) leading to antitumour activity. This enhanced oxidative stress evoked the need for an explanation for HY accumulation in colon cancer cells pretreated with HP or AR. Generally, the therapeutic efficacy of chemotherapeutics is limited by drug resistance related to the overexpression of drug efflux transporters in tumour cells. Therefore, the impact of non-activated hypericin (HY), HY-PDT, HP and AR on cell membrane transporter systems (Multidrug resistance-associated protein 1-MRP1/ABCC1, Multidrug resistance-associated protein 2-MRP2/ABCC2, Breast cancer resistance protein - BCRP/ABCG2, P-glycoprotein-P-gp/ABCC1) and cytochrome P450 3A4 (CYP3A4) was evaluated. The different effects of the three compounds on their expression, protein level and activity was determined under specific PDT light (T0+, T6+) or dark conditions (T0- T6-). We found that HP or AR treatment affected the protein levels of MRP2 and P-gp, whereas HP decreased MRP2 and P-gp expression mostly in the T0+ and T6+ conditions, while AR decreased MRP2 in T0- and T6+. Moreover, HY-PDT treatment induced the expression of MRP1. Our data demonstrate that HP or AR treatment in light or dark PDT conditions had an inhibitory effect on the activity of individual membrane transport proteins and significantly decreased CYP3A4 activity in HT-29 cells. We found that HP or AR significantly affected intracellular accumulation of HY in HT-29 colon adenocarcinoma cells. These results suggest that HY, HP and AR might affect the efficiency of anti-cancer drugs, through interaction with membrane transporters and CYP3A4. PMID:27261575

  17. A new Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) to evaluate pulmonary drug absorption for metered dose dry powder formulations.

    PubMed

    Hein, Stephanie; Bur, Michael; Schaefer, Ulrich F; Lehr, Claus-Michael

    2011-01-01

    Absorption studies with aerosol formulation delivered by metered dose inhalers across cell- and tissue-based in vitro models of the pulmonary epithelia are not trivial due to the complexity of the processes involved: (i) aerosol generation and deposition, (ii) drug release from the carrier, and (iii) absorption across the epithelial air-blood barrier. In contrast to the intestinal mucosa, pulmonary epithelia are only covered by a thin film of lining fluid. Submersed cell culture systems would not allow to studying the deposition of aerosol particles and their effects on this delicate epithelial tissue. We developed a new Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) to mimic the inhalation of a single metered aerosol dose and its subsequent deposition on filter-grown pulmonary epithelial cell monolayers exposed to an air-liquid interface. The reproducibility of deposition of these dry powder aerosols and subsequent drug transport across Calu-3 monolayers with commercially available dry powder inhalers containing salbutamol sulphate or budesonide could be demonstrated. In the context of developing new dry powder aerosol formulations, PADDOCC appears as a useful tool, allowing reducing animal testing and faster translation into clinical trials. PMID:20951200

  18. Effect of Gastric Fluid Volume on the In Vitro Dissolution and In Vivo Absorption of BCS Class II Drugs: a Case Study with Nifedipine.

    PubMed

    Nader, Ahmed M; Quinney, Sara K; Fadda, Hala M; Foster, David R

    2016-07-01

    Nifedipine is a BCS Class II drug used for treatment of hypertension and preterm labor. Large inter-patient variability in nifedipine absorption results in variable exposure among different patients. We conducted in vitro dissolution studies to compare nifedipine dissolution from immediate release (IR) capsules with different volumes of dissolution media. Results from dissolution studies were used to design a crossover study in healthy volunteers to evaluate the effect of coadministered water volume with nifedipine 10 mg IR capsules on nifedipine pharmacokinetics, especially absorption (C max, t max, and AUC0-6). Dissolution studies demonstrated that larger gastric fluid volumes result in enhanced nifedipine dissolution from 10 mg IR cosolvent capsules (73 vs. 17% in 200 and 100 mL simulated gastric fluid, respectively, at 30 min). The pharmacokinetic crossover study in healthy volunteers (N = 6) did not show a significant effect of the water volume administered with the capsule (50 vs. 250 mL) on C max, t max, or AUC0-6 of orally administered nifedipine IR capsules (10 mg). However, administration of large water volumes resulted in lower variability in nifedipine C max (47 vs. 70% for 250 and 50 mL, respectively). Administration of large water volumes with nifedipine 10 mg IR cosolvent capsules may reduce inter-individual variability in plasma exposure. Evaluation of similar effects in other BCS Class II drugs is recommended. PMID:27106837

  19. Evaluation of neurotoxic and neuroprotective pathways affected by antiepileptic drugs in cultured hippocampal neurons.

    PubMed

    Morte, Maria I; Carreira, Bruno P; Falcão, Maria J; Ambrósio, António F; Soares-da-Silva, Patrício; Araújo, Inês M; Carvalho, Caetana M

    2013-12-01

    In this study we evaluated the neurotoxicity of eslicarbazepine acetate (ESL), and of its in vivo metabolites eslicarbazepine (S-Lic) and R-licarbazepine (R-Lic), as compared to the structurally-related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), in an in vitro model of cultured rat hippocampal neurons. The non-related antiepileptic drugs (AEDs) lamotrigine (LTG) and sodium valproate (VPA) were also studied. We assessed whether AEDs modulate pro-survival/pro-apoptotic pathways, such as extracellular-regulated kinase (ERK1/2), Akt and stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). We found that neither ESL nor its metabolites, CBZ or LTG, up to 0.3mM, for 24h of exposure, decreased cell viability. OXC was the most toxic drug decreasing cell viability in a concentration-dependent manner, leading to activation of caspase-3 and PARP cleavage. VPA caused the appearance of the apoptotic markers, but did not alter cell viability. ESL, S-Lic and OXC decreased the levels of phospho-ERK1/2 and of phospho-Akt, when compared to basal levels, whereas CBZ decreased phospho-SAPK/JNK and phospho-Akt levels. LTG and VPA increased the phosphorylation levels of SAPK/JNK. These results suggest that ESL and its main metabolite S-Lic, as well as CBZ, LTG and VPA, are less toxic to hippocampal neurons than OXC, which was the most toxic agent. PMID:24055897

  20. Do nonsteroidal anti-inflammatory drugs affect the outcome of arthroscopic Bankart repair?

    PubMed

    Blomquist, J; Solheim, E; Liavaag, S; Baste, V; Havelin, L I

    2014-12-01

    To achieve pain control after arthroscopic shoulder surgery, nonsteroidal anti-inflammatory drugs (NSAIDs) are a complement to other analgesics. However, experimental studies have raised concerns that these drugs may have a detrimental effect on soft tissue-to-bone healing and, thus, have a negative effect on the outcome. We wanted to investigate if there are any differences in the clinical outcome after the arthroscopic Bankart procedure for patients who received NSAIDs prescription compared with those who did not. 477 patients with a primary arthroscopic Bankart procedure were identified in the Norwegian shoulder instability register and included in the study. 32.5% received prescription of NSAIDs post-operatively. 370 (78%) of the patients answered a follow-up questionnaire containing the Western Ontario Shoulder Instability index (WOSI). Mean follow-up was 21 months. WOSI at follow-up were 75% in the NSAID group and 74% in the control group. 12% of the patients in the NSAID group and 14% in the control group reported recurrence of instability. The reoperation rate was 5% in both groups. There were no statistically significant differences between the groups. Prescription of short-term post-operative NSAID treatment in the post-operative period did not influence on the functional outcome after arthroscopic Bankart procedures. PMID:24750379

  1. The effect of macrophage and angiogenesis inhibition on the drug release and absorption from an intramuscular sustained-release paliperidone palmitate suspension.

    PubMed

    Darville, Nicolas; van Heerden, Marjolein; Mariën, Dirk; De Meulder, Marc; Rossenu, Stefaan; Vermeulen, An; Vynckier, An; De Jonghe, Sandra; Sterkens, Patrick; Annaert, Pieter; Van den Mooter, Guy

    2016-05-28

    The intramuscular (IM) administration of long-acting injectable (LAI) aqueous nano-/microsuspensions elicits a chronic granulomatous injection site reaction, which recently has been hypothesized to drive the (pro)drug dissolution and systemic absorption resulting in flip-flop pharmacokinetics. The goal of this mechanistic study was to investigate the effects of the local macrophage infiltration and angiogenesis on the systemic drug exposure following a single IM administration of a paliperidone palmitate (PP) LAI nano-/microsuspension in the rat. Liposomal clodronate (CLO) and sunitinib (SNT) were co-administered to inhibit the depot infiltration and nano-/microparticle phagocytosis by macrophages, and the neovascularization of the depot, respectively. Semi-quantitative histopathology of the IM administration sites at day 1, 3, 7, 14, 21 and 28 after dosing with PP-LAI illustrated that CLO significantly decreased the rate and extent of the granulomatous inflammatory reaction. The macrophage infiltration was slowed down, but only partially suppressed by CLO and this translated in paliperidone (PAL) plasma concentration-time profiles that resembled those observed upon injection of PP-LAI only, albeit with a lower PAL input rate and delayed maximum plasma concentration (CMAX). Conversely, SNT treatment completely suppressed the granulomatous reaction, besides effectively inhibiting the neovascularization of the PP-LAI depot. This resulted in an even slower systemic PAL input with delayed and lower maximum PAL CMAX. The reduced PP-LAI lymph node retention after CLO and SNT treatment, as well as pharmacokinetic drug-drug interactions were rejected as possible sources of the observed pharmacokinetic differences. The biphasic PAL plasma concentration-time profiles could best be described by an open first-order disposition model with parallel fast (first-order) and slow (sequential zero-first-order) absorption. The correlation of the pharmacokinetic data with the

  2. Targeting SVCT for enhanced drug absorption: Synthesis and in vitro evaluation of a novel vitamin C conjugated prodrug of saquinavir

    PubMed Central

    Luo, Shuanghui; Wang, Zhiying; Patel, Mitesh; Khurana, Varun; Zhu, Xiaodong; Pal, Dhananjay; Mitra, Ashim. K.

    2015-01-01

    In order to improve oral absorption, a novel prodrug of saquinavir (Saq), ascorbyl-succinic-saquinavir (AA-Su-Saq) targeting sodium dependent vitamin C transporter (SVCT) was synthesized and evaluated. Aqueous solubility, stability and cytotoxicity were determined. Affinity of AA-Su-Saq towards effluxpump P-glycoprotein (P-gp) and recognition of AA-Su-Saq by SVCT were studied. Transepithelial permeability across polarized MDCK-MDR1 and Caco-2 cells were determined. Metabolic stability of AA-Su-Saq in rat liver microsomes was investigated. AA-Su-Saq appears to be fairly stable in both DPBS and Caco-2 cells with half lives of 9.65 and 5.73 h, respectively. Uptake of [3H]Saquinavir accelerated by 2.7 and 1.9 fold in the presence of 50 μM Saq and AA-Su-Saq in MDCK-MDR1 cells. Cellular accumulation of [14C]AA diminished by about 50–70% relative to control in the presence of 200 μM AA-Su-Saq in MDCK-MDR1 and Caco-2 cells. Uptake of AA-Su-Saq was lowered by 27% and 34% in the presence of 5 mM AA in MDCK-MDR1 and Caco-2 cells, respectively. Absorptive permeability of AA-Su-Saq was elevated about 4-5 fold and efflux index reduced by about 13-15 fold across the polarized MDCK-MDR1 and Caco-2 cells. Absorptive permeability of AA-Su-Saq decreased 44% in the presence of 5 mM AA across MDCK-MDR1 cells. AA-Su-Saq was devoid of cytotoxicity over the concentration range studied. AA-Su-Saq significantly enhanced the metabolic stability but lowered the affinity towards CYP3A4. In conclusion, prodrug modification of Saq through conjugation to AA via a linker significantly raised the absorptive permeability and metabolic stability. Such modification also caused significant evading of P-gp mediated efflux and CYP3A4 mediated metabolism. SVCT targeted prodrug approach can be an attractive strategy to enhance the oral absorption and systemic bioavailability of anti-HIV protease inhibitors. PMID:21571053

  3. How treatment affects the brain: meta-analysis evidence of neural substrates underpinning drug therapy and psychotherapy in major depression.

    PubMed

    Boccia, Maddalena; Piccardi, Laura; Guariglia, Paola

    2016-06-01

    The idea that modifications of affect, behavior and cognition produced by psychotherapy are mediated by biological underpinnings predates the advent of the modern neurosciences. Recently, several studies demonstrated that psychotherapy outcomes are linked to modifications in specific brain regions. This opened the debate over the similarities and dissimilarities between psychotherapy and pharmacotherapy. In this study, we used activation likelihood estimation meta-analysis to investigate the effects of psychotherapy (PsyTh) and pharmacotherapy (DrugTh) on brain functioning in Major Depression (MD). Our results demonstrate that the two therapies modify different neural circuits. Specifically, PsyTh induces selective modifications in the left inferior and superior frontal gyri, middle temporal gyrus, lingual gyrus and middle cingulate cortex, as well as in the right middle frontal gyrus and precentral gyrus. Otherwise, DrugTh selectively affected brain activation in the right insula in MD patients. These results are in line with previous evidence of the synergy between psychotherapy and pharmacotherapy but they also demonstrate that the two therapies have different neural underpinnings. PMID:26164169

  4. The use of anti-asthmatic drugs. Do they affect sports performance?

    PubMed

    Fitch, K D

    1986-01-01

    Recent major advances in pharmacological management have provided asthmatics with a satisfactory range of drugs to control asthma. These include sodium cromoglycate (cromolyn sodium), H1-antagonists, belladonna alkaloids, methyl xanthines, glucocorticoids and beta 2-adrenoceptor stimulants. Despite the tendency for most asthmatics to develop bronchoconstriction after exercise, sport and physical activity are now accepted as valuable in the overall management of patients with asthma. Thus, control of exercise-induced asthma (EIA) is essential, if asthmatics are to participate safely in physical activity and without respiratory disadvantage in competitive sport. Fortunately, inhibition or minimization of exercise-induced asthma may be achieved in most asthmatics by pre-exercise aerosol beta 2-agonists supplemented if necessary by sodium cromoglycate and/or theophylline. Regular medication as required to attain and maintain normal ventilatory function throughout each day is the objective in all patients with asthma and appears to be a prerequisiste to control exercise-induced asthma. The introduction of anti-doping controls into high performance sport has presented added difficulties for the asthmatic athlete. Although not always so, currently all of the classes of drugs previously noted are acceptable for the treatment of asthma and exercise-induced asthma. Anomalies may exist in the banning of 2 beta 2-adrenoceptor agonists, fenoterol and orciprenaline (metaproterenol). All sympathomimetic amines with alpha- or predominantly beta-stimulation are banned. The perpetuation of the need to report the use of beta 2-agonists prior to competition appears unnecessary. Although relatively little specific research has been undertaken, there is minimal evidence to suggest that asthmatics can derive any additional ergogenic advantage from medication to control asthma and exercise-induced asthma. beta 2-agonists, sodium cromoglycate and glucocorticoids administered by the aerosol

  5. Acridine Orange is an Effective Anti-Cancer Drug that Affects Mitochondrial Function in Osteosarcoma Cells.

    PubMed

    Fotia, Caterina; Avnet, Sofia; Kusuzaki, Katsuyuki; Roncuzzi, Laura; Baldini, Nicola

    2015-01-01

    Acridine orange (AO) is an antimalarial drug that accumulates into acidic cellular compartments. Lysosomes are quite acidic in cancer cells, and on this basis we have demonstrated that photoactivated AO is selectively toxic in sarcomas. However, photodynamic therapy is only locally effective, and cannot be used to eradicate systemic residual disease. In this study, we have evaluated the activity of non-photoactivated AO on sensitive and chemoresistant osteosarcoma (OS) cells to be considered for the systemic delivery. Since lysosomes are even more acidic in chemoresistant cells (MDR), we found that AO accumulation was significantly higher in the lysosomes of MDR in respect to parental cells, and in both cell types, therapeutic doses of AO significantly inhibited cell growth. However, the level of growth inhibition was inversely related to the level of lysosomal uptake of AO, suggesting that the main target of this agent is indeed extralysosomal. A significant reduction of intracellular ATP content and of the expression of mitochondrial complex III suggests a mitochondrial targeting. Notably, MDR cells showed a lower mitochondrial activity. Finally, the combined treatment of AO with the anticancer agent doxorubicin (DXR) significantly increased chemotoxicity by promoting DXR mitochondrial targeting, as revealed by the further reduction in ATP intracellular content. In conclusion, AO is able to effectively target both sensitive and resistant OS cells through mitotoxicity. PMID:26381269

  6. Do Nonsteroidal Anti-Inflammatory Drugs Affect Bone Healing? A Critical Analysis

    PubMed Central

    Pountos, Ippokratis; Georgouli, Theodora; Calori, Giorgio M.; Giannoudis, Peter V.

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) play an essential part in our approach to control pain in the posttraumatic setting. Over the last decades, several studies suggested that NSAIDs interfere with bone healing while others contradict these findings. Although their analgesic potency is well proven, clinicians remain puzzled over the potential safety issues. We have systematically reviewed the available literature, analyzing and presenting the available in vitro animal and clinical studies on this field. Our comprehensive review reveals the great diversity of the presented data in all groups of studies. Animal and in vitro studies present so conflicting data that even studies with identical parameters have opposing results. Basic science research defining the exact mechanism with which NSAIDs could interfere with bone cells and also the conduction of well-randomized prospective clinical trials are warranted. In the absence of robust clinical or scientific evidence, clinicians should treat NSAIDs as a risk factor for bone healing impairment, and their administration should be avoided in high-risk patients. PMID:22272177

  7. Do nonsteroidal anti-inflammatory drugs affect bone healing? A critical analysis.

    PubMed

    Pountos, Ippokratis; Georgouli, Theodora; Calori, Giorgio M; Giannoudis, Peter V

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) play an essential part in our approach to control pain in the posttraumatic setting. Over the last decades, several studies suggested that NSAIDs interfere with bone healing while others contradict these findings. Although their analgesic potency is well proven, clinicians remain puzzled over the potential safety issues. We have systematically reviewed the available literature, analyzing and presenting the available in vitro animal and clinical studies on this field. Our comprehensive review reveals the great diversity of the presented data in all groups of studies. Animal and in vitro studies present so conflicting data that even studies with identical parameters have opposing results. Basic science research defining the exact mechanism with which NSAIDs could interfere with bone cells and also the conduction of well-randomized prospective clinical trials are warranted. In the absence of robust clinical or scientific evidence, clinicians should treat NSAIDs as a risk factor for bone healing impairment, and their administration should be avoided in high-risk patients. PMID:22272177

  8. How does family drug treatment court participation affect child welfare outcomes?

    PubMed

    Gifford, Elizabeth Joanne; Eldred, Lindsey Morgan; Vernerey, Allison; Sloan, Frank Allen

    2014-10-01

    Parental substance use is a risk factor for child maltreatment. Family drug treatment courts (FDTCs) have emerged in the United States as a policy option to treat the underlying condition and promote family preservation. This study examines the effectiveness of FDTCs in North Carolina on child welfare outcomes. Data come from North Carolina records from child protection services, court system, and birth records. Three types of parental participation in a FDTC are considered: referral, enrolling, and completing an FDTC. The sample includes 566 children who were placed into foster care and whose parents participated in a FDTC program. Findings indicate that children of parents who were referred but did not enroll or who enrolled but did not complete had longer stays in foster care than children of completers. Reunification rates for children of completers were also higher. Outcomes for children in the referred and enrolled groups did not differ in the multivariate analyses. While effective substance use treatment services for parents may help preserve families, future research should examine factors for improving participation and completion rates as well as factors involved in scaling programs so that more families are served. PMID:24736039

  9. Putative mechanisms of action of antidepressant drugs in affective and anxiety disorders and pain.

    PubMed Central

    Blier, P; Abbott, F V

    2001-01-01

    An enhancement of neurotransmission of serotonin (5-HT), noradrenaline, or both, underlies the antidepressant response associated with most agents presently available to treat major depression. With respect to the 5-HT system, antidepressant drugs exert immediate effects on some neuronal elements controlling overall transmission, but it is the gradual changes in neuronal responses to such treatments that are ultimately responsible for producing their therapeutic benefits. In major depression, an increase in 5-HT1A transmission is thought to be a crucial determinant of the antidepressant response, whereas an enhancement of 5-HT2 transmission in the orbitofrontal cortex may mediate the therapeutic effect of 5-HT reuptake inhibitors in obsessive-compulsive disorder (OCD). The doses of medication and the durations of treatment necessary to obtain these alterations in 5-HT transmission in various brain structures of laboratory animals are fully consistent with the conditions in the clinic necessary to attenuate symptoms in depression and OCD. It is also possible that the relief of chronic pain produced by some antidepressants may be mediated, in part, by the blockade of peripheral 5-HT2A receptors. These observations emphasize the notion that the 5-HT system is endowed with different adaptive properties in various parts of the body, which, in addition to the multiplicity of 5-HT receptors, makes this chemospecific network important in many disorders. PMID:11212592

  10. Developing a Seamless System for Meeting the Needs of Young Children Affected by Alcohol and Other Drugs through Training and Technical Assistance.

    ERIC Educational Resources Information Center

    Antoniadis, Anastasia

    This paper describes a cross-agency model of training and technical assistance which prepares preschool teachers, therapists, social workers, drug treatment providers, parents, administrators, service coordinators, and bureaucrats to work with and understand children and families affected by alcohol and other drugs. Presented first is a brief…

  11. Percutaneous absorption in diseased skin: an overview.

    PubMed

    Chiang, Audris; Tudela, Emilie; Maibach, Howard I

    2012-08-01

    The stratum corneum's (SC) functions include protection from external hazardous environments, prevention of water loss and regulation of body temperature. While intact skin absorption studies are abundant, studies on compromised skin permeability are less common, although products are often used to treat affected skin. We reviewed literature on percutaneous absorption through abnormal skin models. Tape stripping is used to disrupt water barrier function. Studies demonstrated that physicochemical properties influence the stripping effect: water-soluble drugs are more affected. Abrasion did not affect absorption as much. Freezing is commonly used to preserve skin. It does not seem to modify water absorption, but still increases the penetration of compounds. Comparatively, heating the skin consistently increased percutaneous absorption. Removing SC lipids may increase percutaneous absorption of drugs. Many organic solvents are employed to delipidize. Delipidization with chloroform-methanol increased hydrophilic compound permeability, but not lipophilic. Acetone pre-treatment enhanced hydrophilic compound penetration. More data is needed to determine influence on highly lipophilic compound penetration. Sodium lauryl sulfate (SLS) induces irritant dermatitis and is frequently used as a model. Studies revealed that SLS increases hydrophilic compound absorption, but not lipophilic. However, skin irritation with other chemicals increases lipophilic penetration as much as hydrophilic. Animal studies show that UV exposure increases percutaneous absorption whereas human studies do not. Human studies show increased penetration in psoriatic and atopic dermatitis skin. The data summarized here begin to characterize flux alteration associated with damaged skin. Understanding the degree of alteration requires interpretation of involved conditions and the enlarging of our database to a more complete physicochemical spectrum. PMID:22912973

  12. Herbal drug quality and phytochemical composition of Hypericum perforatum L. affected by ash yellows phytoplasma infection.

    PubMed

    Bruni, Renato; Pellati, Federica; Bellardi, Maria Grazia; Benvenuti, Stefania; Paltrinieri, Samanta; Bertaccini, Assunta; Bianchi, Alberto

    2005-02-23

    Qualitative/quantitative phytochemical variations were observed in dried flowering tops of cultivated Hypericum perforatum L. cv. Zorzi infected by phytoplasmas of the "ash yellows" class, identified by direct and nested polymerase chain reaction (PCR); this is the first report of ribosomial group 16SrVII phytoplasmas in St. John's Wort. Methanolic extracts of healthy and infected plants were separated by reversed phase high-performance liquid chromatography to quantify naphthodianthrones and flavonoids, while essential oils were analyzed by means of gas chromatography (GC)-GC/MS. The affected plants exhibited decreased amounts of rutin (1.96 +/- 0.23 vs 4.96 +/- 0.02 mg/g), hyperoside (2.38 +/- 0.21 vs 3.04 +/- 0.05 mg/g), isoquercitrin (1.47 +/- 0.04 vs 3.50 +/- 0.08 mg/g), amentoflavone (0.12 +/- 0.01 vs 0.39 +/- 0.02 mg/g), and pseudohypericin (1.41 +/- 0.23 vs 2.29 +/- 0.07 mg/g), whereas the chlorogenic acid content was doubled (1.56 +/- 0.11 vs 0.77 +/- 0.02 mg/g). Hypericin, quercitrin, and quercetin contents were not severely affected. The essential oil yield was drastically reduced in infected material (0.11 vs 0.75% in healthy material) and revealed an increased abundance of sesquiterpenes (beta-caryophyllene, delta-elemene, and germacrene D, in particular) and a matching decrease in monoterpene hydrocarbons and aliphatics. The consequences that the phytopathological condition of cultivated H. perforatum plants has on the commercial quality, market value, and therapeutic efficacy are outlined. PMID:15713006

  13. High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice.

    PubMed

    Wang, Yang; Dellatore, Peter; Douard, Veronique; Qin, Ling; Watford, Malcolm; Ferraris, Ronaldo P; Lin, Tiao; Shapses, Sue A

    2016-07-01

    Diet induced obesity has been shown to reduce bone mineral density (BMD) and Ca absorption. However, previous experiments have not examined the effect of high fat diet (HFD) in the absence of obesity or addressed the type of dietary fatty acids. The primary objective of this study was to determine the effects of different types of high fat feeding, without obesity, on fractional calcium absorption (FCA) and bone health. It was hypothesized that dietary fat would increase FCA and reduce BMD. Mature 8-month-old female C57BL/6J mice were fed one of three diets: a HFD (45% fat) enriched either with monounsaturated fatty acids (MUFAs) or with saturated fatty acids (SFAs), and a normal fat diet (NFD; 10% fat). Food consumption was controlled to achieve a similar body weight gain in all groups. After 8wk, total body bone mineral content and BMD as well as femur total and cortical volumetric BMD were lower in SFA compared with NFD groups (P<.05). In contrast, femoral trabecular bone was not affected by the SFAs, whereas MUFAs increased trabecular volume fraction and thickness. The rise over time in FCA was greater in mice fed HFD than NFD and final FCA was higher with HFD (P<.05). Intestinal calbindin-D9k gene and hepatic cytochrome P450 2r1 protein levels were higher with the MUFA than the NFD diet (P<.05). In conclusion, HFDs elevated FCA overtime; however, an adverse effect of HFD on bone was only observed in the SFA group, while MUFAs show neutral or beneficial effects. PMID:27262536

  14. Sitamaquine-resistance in Leishmania donovani affects drug accumulation and lipid metabolism.

    PubMed

    Imbert, L; Cojean, S; Libong, D; Chaminade, P; Loiseau, P M

    2014-09-01

    This study focuses on the mechanism of sitamaquine-resistance in Leishmania donovani. Sitamaquine accumulated 10 and 1.4 fold more in cytosol than in membranes of wild-type (WT) and of sitamaquine-resistant (Sita-R160) L. donovani promastigotes, respectively. The sitamaquine accumulation was a concentration-dependent process in WT whereas a saturation occurred in Sita-R160 suggesting a reduced uptake or an increase of the sitamaquine efflux. Membrane negative phospholipids being the main target for sitamaquine uptake, a lipidomic analysis showed that sitamaquine-resistance did not rely on a decrease of membrane negative phospholipid rate in Sita-R160, discarding the hypothesis of reduced uptake. However, sterol and phospholipid metabolisms were strongly affected in Sita-R160 suggesting that sitamaquine-resistance could be related to an alteration of phosphatidylethanolamine-N-methyl-transferase and choline kinase activities and to a decrease in cholesterol uptake and of ergosterol biosynthesis. Preliminary data of proteomics analysis exhibited different protein profiles between WT and Sita-160R remaining to be characterized. PMID:25201056

  15. 'Ecstasy' as a social drug: MDMA preferentially affects responses to emotional stimuli with social content.

    PubMed

    Wardle, Margaret C; Kirkpatrick, Matthew G; de Wit, Harriet

    2014-08-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is used recreationally to improve mood and sociability, and has generated clinical interest as a possible adjunct to psychotherapy. One way that MDMA may produce positive 'prosocial' effects is by changing responses to emotional stimuli, especially stimuli with social content. Here, we examined for the first time how MDMA affects subjective responses to positive, negative and neutral emotional pictures with and without social content. We hypothesized that MDMA would dose-dependently increase reactivity to positive emotional stimuli and dampen reactivity to negative stimuli, and that these effects would be most pronounced for pictures with people in them. The data were obtained from two studies using similar designs with healthy occasional MDMA users (total N = 101). During each session, participants received MDMA (0, 0.75 and 1.5 mg/kg oral), and then rated their positive and negative responses to standardized positive, negative and neutral pictures with and without social content. MDMA increased positive ratings of positive social pictures, but reduced positive ratings of non-social positive pictures. We speculate this 'socially selective' effect contributes to the prosocial effects of MDMA by increasing the comparative value of social contact and closeness with others. This effect may also contribute to its attractiveness to recreational users. PMID:24682132

  16. Possible interaction of quinolone antibiotics with peptide transporter 1 in oral absorption of peptide-mimetic drugs.

    PubMed

    Arakawa, Hiroshi; Kamioka, Hiroki; Kanagawa, Masahiko; Hatano, Yasuko; Idota, Yoko; Yano, Kentaro; Morimoto, Kaori; Ogihara, Takuo

    2016-01-01

    The study investigated whether quinolone antibiotics inhibit the PEPT1-mediated uptake of its substrates. Among the quinolones examined, lomefloxacin, moxifloxacin (MFLX) and purlifloxacin significantly inhibited the uptake of PEPT1 substrate phenylalanine-Ψ(CN-S)-alanine (Phe-Ψ-Ala) in HeLa/PEPT1 cells to 31.6 ± 1.3%, 27.6 ± 2.9%, 36.8 ± 2.2% and 32.6 ± 1.4%, respectively. Further examination showed that MFLX was an uncompetitive inhibitor, with an IC50 value of 4.29 ± 1.29 mm. In addition, MFLX significantly decreased the cephalexin and valacyclovir uptake in HeLa/PEPT1 cells. In an in vivo study in rats, the maximum plasma concentration (C(max)) of orally administered Phe-Ψ-Ala was significantly decreased in the presence of MFLX (171 ± 1 ng/ml) compared with that in its absence (244 ± 9 ng/ml). The area under the concentration-time curve (AUC) of orally administered Phe-Ψ-Ala in the presence of MFLX (338 ± 50 ng/ml · h) tended to decrease compared with that in its absence (399 ± 75 ng/ml · h). The oral bioavailability of Phe-Ψ-Ala in the presence and absence of MFLX was 41.7 ± 6.2% and 49.2 ± 9.2%, respectively. The results indicate that administration of quinolone antibiotics concomitantly with PEPT1 substrate drugs may potentially result in drug-drug interaction. PMID:26590007

  17. How does hospitalization affect continuity of drug therapy: an exploratory study

    PubMed Central

    Blozik, Eva; Signorell, Andri; Reich, Oliver

    2016-01-01

    Introduction Transitions between different levels of health care, such as hospital admission and discharge, pose a significant threat to the quality and continuity of medication therapy. This study aims to explore the role of hospitalization on medication changes as patients are transferred from and back to ambulatory care. Methods Secondary analysis of claims data from Swiss residents with basic health insurance at the Helsana Group was performed. We evaluated medication invoices of patients who were hospitalized in a Swiss private hospital group in the year 2013. Medication changes were defined as discontinuation, new prescription, or change in the Anatomical Therapeutic Chemical (ATC) Classification System level 4, which is equivalent to a change in the chemical/therapeutic/pharmacological subgroup. Multiple Poisson regression analysis was applied to evaluate whether medication change was predicted by socioeconomic or clinical patient characteristics or by a system factor (physician dispensing of medication allowed in canton of residence). Results We investigated a total of 10,123 hospitalized patients, among whom a mean number of 3.85 (median 3.00) changes were identified. Change most frequently affected antihypertensives, analgesics, and antirheumatics. If patients were enrolled in a managed care plan, they were less likely to undergo changes. If a patient resided in a canton, in which physicians were allowed to dispense medication directly, the patient was more likely to experience change. Conclusion There is considerable change in medication when patients shift between ambulatory and inpatient health care levels. This interruption of medication continuity is in part desirable as it responds to clinical needs. However, we hypothesize that there is also a significant proportion of change due to unwarranted factors such as financial incentives for change of products. PMID:27578981

  18. In Situ Perfusion Model in Rat Colon for Drug Absorption Studies: Comparison with Small Intestine and Caco-2 Cell Model.

    PubMed

    Lozoya-Agullo, Isabel; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival

    2015-09-01

    Our aim is to develop and to validate the in situ closed loop perfusion method in rat colon and to compare with small intestine and Caco-2 cell models. Correlations with human oral fraction absorbed (Fa) and human colon fraction absorbed (Fa_colon) were developed to check the applicability of the rat colon model for controlled release (CR) drug screening. Sixteen model drugs were selected and their permeabilities assessed in rat small intestine and colon, and in Caco-2 monolayers. Correlations between colon/intestine/Caco-2 permeabilities versus human Fa and human Fa_colon have been explored to check model predictability and to apply a BCS approach in order to propose a cut off value for CR screening. Rat intestine perfusion with Doluisio's method and single-pass technique provided a similar range of permeabilities demonstrating the possibility of combining data from different laboratories. Rat colon permeability was well correlated with Caco-2 cell-4 days model reflecting a higher paracellular permeability. Rat colon permeabilities were also higher than human colon ones. In spite of the magnitude differences, a good sigmoidal relationship has been shown between rat colon permeabilities and human colon fractions absorbed, indicating that rat colon perfusion can be used for compound classification and screening of CR candidates. PMID:25891783

  19. Effect of Absorption Behavior of Solubilizers on Drug Dissolution in the Gastrointestinal Tract: Evaluation Based on In Vivo Luminal Concentration-Time Profile of Cilostazol, a Poorly Soluble Drug, and Solubilizers.

    PubMed

    Tanaka, Yusuke; Kubota, Atsuo; Matsuo, Akira; Kawakami, Ayaka; Kamizi, Hiroki; Mochigoe, Akane; Hiramachi, Takahiro; Kasaoka, Satoshi; Yoshikawa, Hiroshi; Nagata, Shunji

    2016-09-01

    The purpose of this study was to evaluate the effect of absorption behavior of solubilizers on drug dissolution in the gastrointestinal tract. After oral administration of FITC-dextran (FD-10), a nonabsorbable marker, and cilostazol (CZ), a low-solubility drug, with or without solubilizers (dimethyl sulfoxide [DMSO], and d-α-tocopherol polyethylene glycol 1000 succinate [TPGS]), the in vivo rat luminal concentrations of these compounds were determined by direct sampling of residual water in each segment of the gastrointestinal tract. DMSO was rapidly absorbed and not detected in the middle small intestine. Conversely, the TPGS concentration increased by 1.5- and 2-fold relative to the initial dose concentration in the middle and lower small intestine, respectively, owing to condensation. Then, normalized area under the luminal concentration-time curve of solid CZ was calculated from the luminal concentration-time profiles of FD-10 and solid CZ to evaluate in vivo dissolution behavior of CZ. The dissolution of CZ was marked when administered with TPGS compared with that when administered with DMSO, especially in the lower small intestine. This clearly indicates that absorbability of solubilizers is one of the important factors in determining the solubilizing effect. These findings may be beneficial to development of oral lipophilic drugs. PMID:27025982

  20. Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet.

    PubMed

    Foucault, Anne-Sophie; Even, Patrick; Lafont, René; Dioh, Waly; Veillet, Stanislas; Tomé, Daniel; Huneau, Jean-François; Hermier, Dominique; Quignard-Boulangé, Annie

    2014-04-10

    In a previous study, we have demonstrated that a supplementation of a high-fat diet with a quinoa extract enriched in 20-hydroxyecdysone (QE) or pure 20-hydroxyecdysone (20E) could prevent the development of obesity. In line with the anti-obesity effect of QE, we used indirect calorimetry to examine the effect of dietary QE and 20E in high-fat fed mice on different components of energy metabolism. Mice were fed a high-fat (HF) diet with or without supplementation by QE or pure 20E for 3 weeks. As compared to mice maintained on a low-fat diet, HF feeding resulted in a marked physiological shift in energy homeostasis, associating a decrease in global energy expenditure (EE) and an increase in lipid utilization as assessed by the lower respiratory quotient (RQ). Supplementation with 20E increased energy expenditure while food intake and activity were not affected. Furthermore QE and 20E promoted a higher rate of glucose oxidation leading to an increased RQ value. In QE and 20E-treated HFD fed mice, there was an increase in fecal lipid excretion without any change in stool amount. Our study indicates that anti-obesity effect of QE can be explained by a global increase in energy expenditure, a shift in glucose metabolism towards oxidation to the detriment of lipogenesis and a decrease in dietary lipid absorption leading to reduced dietary lipid storage in adipose tissue. PMID:24534167

  1. Database Extraction of Metabolite Information of Drug Candidates: Analysis of 27 AstraZeneca Compounds with Human Absorption, Distribution, Metabolism, and Excretion Data.

    PubMed

    Iegre, Jessica; Hayes, Martin A; Thompson, Richard A; Weidolf, Lars; Isin, Emre M

    2016-05-01

    As part of the drug discovery and development process, it is important to understand the human metabolism of a candidate drug prior to clinical studies. Preclinical in vitro and in vivo experiments across species are conducted to build knowledge concerning human circulating metabolites in preparation for clinical studies; therefore, the quality of these experiments is critical. Within AstraZeneca, all metabolite identification (Met-ID) information is stored in a global database using ACDLabs software. In this study, the Met-ID information derived from in vitro and in vivo studies for 27 AstraZeneca drug candidates that underwent human absorption, distribution, metabolism, and excretion studies was extracted from the database. The retrospective analysis showed that 81% of human circulating metabolites were previously observed in preclinical in vitro and/or in vivo experiments. A detailed analysis was carried out to understand which human circulating metabolites were not captured in the preclinical experiments. Metabolites observed in human hepatocytes and rat plasma but not seen in circulation in humans (extraneous metabolites) were also investigated. The majority of human specific circulating metabolites derive from multistep biotransformation reactions that may not be observed in in vitro studies within the limited time frame in which cryopreserved hepatocytes are active. Factors leading to the formation of extraneous metabolites in preclinical studies seemed to be related to species differences with respect to transporter activity, secondary metabolism, and enzyme kinetics. This retrospective analysis assesses the predictive value of Met-ID experiments and improves our ability to discriminate between metabolites expected to circulate in humans and irrelevant metabolites seen in preclinical studies. PMID:26868617

  2. Adverse antibiotic drug interactions.

    PubMed

    Bint, A J; Burtt, I

    1980-07-01

    There is enormous potential for drug interactions in patients who, today, often receive many drugs. Antibiotics are prominent amongst the groups of drugs commonly prescribed. Many interactions take place at the absorption stage. Antacids and antidiarrhoeal preparations, in particular, can delay and reduce the absorption of antibiotics such as tetracyclines and clindamycin, by combining with them in the gastrointestinal tract to form chelates or complexes. Other drugs can affect gastric motility, which in turn often controls the rate at which antibiotics are absorbed. Some broad spectrum antibiotics can alter the bacterial flora of the gut which may be related to malabsorption states. The potentiation of toxic side effects of one drug by another is a common type of interaction. Antibiotics which are implicated in this type of interaction are those which themselves possess some toxicity such as aminoglycosides, some cephalosporins, tetracyclines and colistin. Some of the most important adverse interactions with antibiotics are those which involve other drugs which have a low toxicity/efficacy ratio. These include anticoagulants such as warfarin, anticonvulsants such as phenytoin and phenobarbitone and oral antidiabetic drugs like tolbutamide. Risk of interaction arises when the metabolism of these drugs is inhibited by liver microsomal enzyme inhibitors such as some sulphonamides and chloramphenicol, or is enhanced by enzyme inducers such as rifampicin. PMID:6995091

  3. How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs

    PubMed Central

    Pinho, Brígida R; Santos, Miguel M; Fonseca-Silva, Anabela; Valentão, Patrícia; Andrade, Paula B; Oliveira, Jorge M A

    2013-01-01

    Background and Purpose Mitochondria are a drug target in mitochondrial dysfunction diseases and in antiparasitic chemotherapy. While zebrafish is increasingly used as a biomedical model, its potential for mitochondrial research remains relatively unexplored. Here, we perform the first systematic analysis of how mitochondrial respiratory chain inhibitors affect zebrafish development and cardiovascular function, and assess multiple quinones, including ubiquinone mimetics idebenone and decylubiquinone, and the antimalarial atovaquone. Experimental Approach Zebrafish (Danio rerio) embryos were chronically and acutely exposed to mitochondrial inhibitors and quinone analogues. Concentration-response curves, developmental and cardiovascular phenotyping were performed together with sequence analysis of inhibitor-binding mitochondrial subunits in zebrafish versus mouse, human and parasites. Phenotype rescuing was assessed in co-exposure assays. Key Results Complex I and II inhibitors induced developmental abnormalities, but their submaximal toxicity was not additive, suggesting active alternative pathways for complex III feeding. Complex III inhibitors evoked a direct normal-to-dead transition. ATP synthase inhibition arrested gastrulation. Menadione induced hypochromic anaemia when transiently present following primitive erythropoiesis. Atovaquone was over 1000-fold less lethal in zebrafish than reported for Plasmodium falciparum, and its toxicity partly rescued by the ubiquinone precursor 4-hydroxybenzoate. Idebenone and decylubiquinone delayed rotenone- but not myxothiazol- or antimycin-evoked cardiac dysfunction. Conclusion and Implications This study characterizes pharmacologically induced mitochondrial dysfunction phenotypes in zebrafish, laying the foundation for comparison with future studies addressing mitochondrial dysfunction in this model organism. It has relevant implications for interpreting zebrafish disease models linked to complex I/II inhibition. Further

  4. In-vivo measurements of penetration depth, oxygenation, and drug concentration using broadband absorption spectroscopy in human tissues before and after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Hsing-Wen; Zhu, Timothy C.; Solonenko, Michael; Hahn, Stephen M.; Metz, James M.; Dimofte, Andrea; Mile, Jermy; Yodh, Arjun G.

    2003-06-01

    Photodynamic therapy (PDT) employs a combination of photosensitizing chemical, light, and oxygen Knowledge of tissue optical properties, including absorption (μa) and reduce scattering coefficients (μs"), makes possible to derive blood oxygen saturation, light penetration depth, and drug concentration, which are important to ensure PDT treatment efficacy at the specific wavelengths. We have developed an absorption spectroscopy system to measure μa and μs" in the spectral range 600-800nm using a contact linear probe with a source fiber and multiple source-detector separation distances less than 1 cm. The μa and μs" were recovered based on diffusion approximations of the photon transport equation. We measured tissue optical properties among various organs of patients with intraperitoneal malignancies for an on-going Phase II PDT protocol. The results from 12 patients showed various effective penetration depth from site to site and from organ to organ. The percentage oxygen saturation (%StO2) are similar before and after PDT. Before PDT, meff (mean (standard deviation) (number of patients)) in cm-1 at 630nm are 2.4 (0.2) (12) in small bowel, 2.2(0.4) (9) in large bowel, 4.2(2.7) (7) in tumor, 3.3 (0.3) (10) in peritoneum, 2.7 (0.3) (11) in skin, and 10.1 (0.6) (10) in liver. %StO2 is 60-80% for most organs but 30-40% for tumor.

  5. Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected.

    PubMed

    Löscher, Wolfgang; Luna-Tortós, Carlos; Römermann, Kerstin; Fedrowitz, Maren

    2011-01-01

    Resistance to multiple antiepileptic drugs (AEDs) is a common problem in epilepsy, affecting at least 30% of patients. One prominent hypothesis to explain this resistance suggests an inadequate penetration or excess efflux of AEDs across the blood - brain barrier (BBB) as a result of overexpressed efflux transporters such as P-glycoprotein (Pgp), the encoded product of the multidrug resistance- 1 (MDR1, ABCB1) gene. Pgp and MDR1 are markedly increased in epileptogenic brain tissue of patients with AED-resistant partial epilepsy and following seizures in rodent models of partial epilepsy. In rodent models, AED-resistant rats exhibit higher Pgp levels than responsive animals; increased Pgp expression is associated with lower brain levels of AEDs; and, most importantly, co-administration of Pgp inhibitors reverses AED resistance. Thus, it is reasonable to conclude that Pgp plays a significant role in mediating resistance to AEDs in rodent models of epilepsy - however, whether this phenomenon extends to at least some human refractory epilepsy remains unclear, particularly because it is still a matter of debate which AEDs, if any, are transported by human Pgp. The difficulty in determining which AEDs are substrates of human Pgp is mainly a consequence of the fact that AEDs are highly permeable compounds, which are not easily identified as Pgp substrates in in vitro models of the BBB, such as monolayer (Transwell(®)) efflux assays. By using a modified assay (concentration equilibrium transport assay; CETA), which minimizes the influence of high transcellular permeability, two groups have recently demonstrated that several major AEDs are transported by human Pgp. Importantly, it was demonstrated in these studies that Pgp-mediated transport highly depends on the AED concentration and may not be identified if concentrations below or above the therapeutic range are used. In addition to the efflux transporters, seizure-induced alterations in BBB integrity and activity of

  6. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: relevance for drug delivery systems.

    PubMed

    Firdessa, Rebuma; Oelschlaeger, Tobias A; Moll, Heidrun

    2014-01-01

    Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type of threat a particle poses on the host cells and how a cell responds to it. Hence, understanding the uptake mechanisms and cellular interactions of nanoparticles at the cellular and subcellular level is a prerequisite for their effective biomedical applications. The present study shows the uptake mechanisms of polystyrene nanoparticles and factors affecting their uptake in bone marrow-derived macrophages, 293T kidney epithelial cells and L929 fibroblasts. Labeling with the endocytic marker FM4-64 and transmission electron microscopy studies show that the nanoparticles were internalized rapidly via endocytosis and accumulated in intracellular vesicles. Soon after their internalizations, nanoparticles trafficked to organelles with acidic pH. Analysis of the ultrastructural morphology of the plasma membrane invaginations or extravasations provides clear evidence for the involvement of several uptake routes in parallel to internalize a given type of nanoparticles by mammalian cells, highlighting the complexity of the nanoparticle-cell interactions. Blocking the specific endocytic pathways by different pharmacological inhibitors shows similar outcomes. The potential to take up nanoparticles varies highly among different cell types in a particle sizes-, time- and energy-dependent manner. Furthermore, infection and the activation status of bone marrow-derived macrophages significantly affect the uptake potential of the cells, indicating the need to understand the diseases' pathogenesis to establish effective and rational drug-delivery systems. This study enhances our understanding of the application of nanotechnology in biomedical sciences. PMID:25224362

  7. Stereoselective Property of 20(S)-Protopanaxadiol Ocotillol Type Epimers Affects Its Absorption and Also the Inhibition of P-Glycoprotein

    PubMed Central

    Wang, Wenyan; Wu, Xiangmeng; Wang, Li; Meng, Qingguo; Liu, Wanhui

    2014-01-01

    Stereoselectivity has been proved to be tightly related to drug action including pharmacodynamics and pharmacokinetics. (20S,24R)-epoxy-dammarane-3,12,25-triol (24R-epimer) and (20S,24S)-epoxy-dammarane-3,12,25-triol (24S-epimer), a pair of 20(S)-protopanaxadiol (PPD) ocotillol type epimers, were the main metabolites of PPD. Previous studies have shown that 24R-epimer and 24S-epimer had stereoselectivity in pharmacological action and pharmacokinetics. In the present study, the aim was to further study the pharmacokinetic characteristics of both epimers, investigate their absorption mechanism and analyze the selectivity effects of ocotillol type side chain and C24 stereo-configuration on P-glycoprotein (P-gp) in vivo and in vitro. Results showed that the absolute bioavailability of 24R-epimer was about 14-fold higher than that of 24S-epimer, and a linear kinetic characteristic was acquired in doses of 5–20 mg/kg for both epimers after oral administration. Furthermore, the apparent permeability coefficients of 24R-epimer were 5–7 folds higher than that of 24S-epimer having lower efflux ratios in Caco-2 cell models. Moreover, both 24R-epimer and 24S-epimer had similar inhibitory effects on P-gp by increasing cellular retention of rhodamine 123 in Caco-2 cells and decreasing efflux of digoxin across Caco-2 cell monolayers. In situ in vivo experiments showed that the inhibition of 24R-epimer on P-gp was stronger than that of 24S-epimer by single-pass intestinal perfusion of rhodamine 123 in rats. Western blot analyses demonstrated that both epimers had no action on P-gp expression in Caco-2 cells. In conclusion, with respect to the stereoselectivity, C24 S-configuration of the ocotillol type epimers processed a poor transmembrane permeability and could be distinguished by P-gp. Sharing a dammarane skeleton, both 24R-epimer and 24S-epimer were potent inhibitors of P-gp. This study provides a new case of stereoselective pharmacokinetics of chiral compounds which

  8. FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC

    PubMed Central

    Merolla, Francesco; Poser, Ina; Visconti, Roberta; Ilardi, Gennaro; Paladino, Simona; Inuzuka, Hiroyuki; Guggino, Gianluca; Monaco, Roberto; Colecchia, David; Monaco, Guglielmo; Cerrato, Aniello; Chiariello, Mario; Denning, Krista; Claudio, Pier Paolo; Staibano, Stefania; Celetti, Angela

    2015-01-01

    CCDC6 gene product is a pro-apoptotic protein substrate of ATM, whose loss or inactivation enhances tumour progression. In primary tumours, the impaired function of CCDC6 protein has been ascribed to CCDC6 rearrangements and to somatic mutations in several neoplasia. Recently, low levels of CCDC6 protein, in NSCLC, have been correlated with tumor prognosis. However, the mechanisms responsible for the variable levels of CCDC6 in primary tumors have not been described yet. We show that CCDC6 turnover is regulated in a cell cycle dependent manner. CCDC6 undergoes a cyclic variation in the phosphorylated status and in protein levels that peak at G2 and decrease in mitosis. The reduced stability of CCDC6 in the M phase is dependent on mitotic kinases and on degron motifs that are present in CCDC6 and direct the recruitment of CCDC6 to the FBXW7 E3 Ubl. The de-ubiquitinase enzyme USP7 appears responsible of the fine tuning of the CCDC6 stability, affecting cells behaviour and drug response. Thus, we propose that the amount of CCDC6 protein in primary tumors, as reported in lung, may depend on the impairment of the CCDC6 turnover due to altered protein-protein interaction and post-translational modifications and may be critical in optimizing personalized therapy. PMID:25885523

  9. The Fcp1-Wee1-Cdk1 axis affects spindle assembly checkpoint robustness and sensitivity to antimicrotubule cancer drugs.

    PubMed

    Visconti, R; Della Monica, R; Palazzo, L; D'Alessio, F; Raia, M; Improta, S; Villa, M R; Del Vecchio, L; Grieco, D

    2015-09-01

    To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity. PMID:25744022

  10. The Fcp1-Wee1-Cdk1 axis affects spindle assembly checkpoint robustness and sensitivity to antimicrotubule cancer drugs

    PubMed Central

    Visconti, R; Della Monica, R; Palazzo, L; D'Alessio, F; Raia, M; Improta, S; Villa, M R; Del Vecchio, L; Grieco, D

    2015-01-01

    To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity. PMID:25744022

  11. Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells.

    PubMed

    Kader, Abdul; Pater, Alan

    2002-04-23

    Low density lipoprotein (LDL) has been found to represent a suitable carrier for cytotoxic drugs that may target them to cancer. This study investigated whether very low density lipoprotein (VLDL), LDL and high density lipoprotein (HDL) can be used to effectively incorporate four cytotoxic drugs, 5-fluorouracil (5-FU), 5-iododeoxyuridine (IUdR), doxorubicin (Dox) and vindesine; characterized the complexes; and examined the effect of incorporation on drug cytotoxicity against HeLa cervical and MCF-7 breast carcinoma cells. Significant drug loading was achieved into all three classes of lipoproteins, consistent with the sizes and hydrophobicity of the drugs. The relative loading efficiency was found to be vindesine>IUdR>Dox>5-FU for all three classes of lipoproteins. As shown by electron microscopy (EM), drug incorporation did not affect the size or morphology of the lipoproteins. Differential scanning calorimetry (DSC) showed that drug loading did not significantly change the thermal transition temperature of core lipids in the lipoproteins. The transition enthalpy was changed only for LDL-Dox and LDL-vindesine. The drugs remained stable in the lipoproteins as determined by high performance liquid chromatography (HPLC). EM, DSC and HPLC data suggest that drugs were incorporated into lipoproteins without disrupting their integrity and drugs remained in their stable forms inside lipoproteins. Compared with free drugs in cytotoxicity assays, the IC(50) values of LDL- and HDL-drug complexes were significantly lower (2.4- to 8.6-fold for LDL complexes and 2.5- to 23-fold for HDL complexes). All free or lipoprotein-bound drug formulations were comparably more cytotoxic against MCF-7 than HeLa cells. Upregulating the lipoprotein receptors enhanced, and downregulating them inhibited, the cytotoxicity, indicating the mechanistic involvement of lipoprotein receptor pathways. Complexes of all four drugs with VLDL, in contrast to LDL and HDL, had the same cytotoxicity as the

  12. Changes of pathological and physiological indicators affecting drug metabolism in rats after acute exposure to high altitude

    PubMed Central

    LI, WENBIN; WANG, RONG; XIE, HUA; ZHANG, JUANHONG; JIA, ZHENGPING

    2015-01-01

    High altitude environments cause the human body to undergo a series of pathological, physiological and biochemical changes, which have a certain effect on drug pharmacokinetics. The objective of the present study was to observe changes in factors affecting pharmacokinetics in rats following acute exposure to high altitude and return to low altitude. A total of 21 male Wistar rats were randomly assigned to three groups. The rats in group A were maintained at low altitude in Shanghai, 55 m above sea level; those in group B were acutely exposed to high altitude in Maqu, Gansu, 4,010 m above sea level; and those in group C were acutely exposed to high altitude and then returned to low altitude. Blood was collected from the orbit for the analysis of significant biochemical indicators and from the abdominal aorta for blood gas analysis. Brain, lung and kidney tissues were removed to observe pathological changes. In group B, the pH, buffer base (BB), base excess (BE), total carbon dioxide content (ctCO2), oxygen saturation of arterial blood (sO2), oxygen tension of arterial blood (pO2), serum sodium (Na+) concentration, lactate dehydrogenase (LDH) activity and total protein (TP) level were significantly reduced, and the carbon dioxide tension of arterial blood (pCO2), serum chloride (Cl−) concentration, serum total bilirubin (TBIL) level and alkaline phosphatase (ALP) activity were significantly increased compared with those in group A (P<0.05). In group C, the pH, BB, BE, sO2, pO2, hemoglobin (Hb) level, serum Na+ concentration, LDH activity and TP level were significantly reduced, and the pCO2, serum Cl− concentration, alanine transaminase activity, TBIL and urea levels were significantly increased (P<0.05) compared with those in group A. The Hb and ALP levels in group C were significantly lower than those in group B (P<0.05); and the TP, TBIL and urea levels in group C were significantly higher than those in group B (P<0.05). Pathological observation revealed that

  13. PAN-811 Blocks Chemotherapy Drug-Induced In Vitro Neurotoxicity, While Not Affecting Suppression of Cancer Cell Growth

    PubMed Central

    Jiang, Zhi-Gang; Fuller, Steven A.; Ghanbari, Hossein A.

    2016-01-01

    Chemotherapy often results in cognitive impairment, and no neuroprotective drug is now available. This study aimed to understand underlying neurotoxicological mechanisms of anticancer drugs and to evaluate neuroprotective effects of PAN-811. Primary neurons in different concentrations of antioxidants (AOs) were insulted for 3 days with methotrexate (MTX), 5-fluorouracil (5-FU), or cisplatin (CDDP) in the absence or presence of PAN-811·Cl·H2O. The effect of PAN-811 on the anticancer activity of tested drugs was also examined using mouse and human cancer cells (BNLT3 and H460) to assess any negative interference. Cell membrane integrity, survival, and death and intramitochondrial reactive oxygen species (ROS) were measured. All tested anticancer drugs elicited neurotoxicity only under low levels of AO and elicited a ROS increase. These results suggested that ROS mediates neurotoxicity of tested anticancer drugs. PAN-811 dose-dependently suppressed increased ROS and blocked the neurotoxicity when neurons were insulted with a tested anticancer drug. PAN-811 did not interfere with anticancer activity of anticancer drugs against BNLT3 cells. PAN-811 did not inhibit MTX-induced death of H460 cells but, interestingly, demonstrated a synergistic effect with 5-FU or CDDP in reducing cancer cell viability. Thus, PAN-811 can be a potent drug candidate for chemotherapy-induced cognitive impairment. PMID:26640619

  14. Switch-Loop Flexibility Affects Transport of Large Drugs by the Promiscuous AcrB Multidrug Efflux Transporter

    PubMed Central

    Cha, Hi-jea; Müller, Reinke T.

    2014-01-01

    Multidrug efflux transporters recognize a variety of structurally unrelated compounds for which the molecular basis is poorly understood. For the resistance nodulation and cell division (RND) inner membrane component AcrB of the AcrAB-TolC multidrug efflux system from Escherichia coli, drug binding occurs at the access and deep binding pockets. These two binding areas are separated by an 11-amino-acid-residue-containing switch loop whose conformational flexibility is speculated to be essential for drug binding and transport. A G616N substitution in the switch loop has a distinct and local effect on the orientation of the loop and on the ability to transport larger drugs. Here, we report a distinct phenotypical pattern of drug recognition and transport for the G616N variant, indicating that drug substrates with minimal projection areas of >70 Å2 are less well transported than other substrates. PMID:24914123

  15. Determination of total arsenic by batch hydride generation atomic absorption spectrometry in injectable drugs containing high levels of Sb(V) as N-methylglucamine antimonate

    NASA Astrophysics Data System (ADS)

    Flores, Érico Marlon de Moraes; Barcelos da Silva, Fabiana E.; Santos, Eliane Pereira dos; Paula, Fávero Reisdorfer; Barin, Juliano Smanioto; Zanella, Renato; Dressler, Valderi Luiz; Bittencourt, Celso Figueiredo

    2002-12-01

    A procedure for the determination of arsenic by batch hydride generation atomic absorption spectrometry (HG AAS) in commercial samples of injectable drugs, containing high concentrations of Sb(V), is described. The procedure is based on the complexing effect for Sb of citric, oxalic and acetic acids as reaction media. Aqua regia was used for sample digestion prior to As determination by HG AAS. The following experimental conditions for the determination of total As, as As(V), were evaluated: the acid medium and its concentration, sodium tetrahydroborate concentration, purge time, and influence of the different oxidation states of As. The effect of the delay time after mixing of sample and acid solution was also studied. Optimized conditions were: 10% (m/v) citric acid, 1.5% (m/v) sodium tetrahydroborate solution and 30 s for purge time. A delay time of 1 h was required after the digested sample had been mixed with citric acid, before As determination could be carried out. No interference on As(III) and As(V) signals was observed in the presence of up to 1 mg Sb(V). The tolerance limits for Ni(II), Cu(II) and Pb(II) were 1 mg, 100 μg and 100 μg, respectively. Recovery tests for As(III) and As(V) resulted in values between 97 and 101%. Characteristic mass and detection limit (3σ), using the recommended conditions, were 0.52 and 0.8 ng, respectively, for total As.

  16. Proximal Roux-en-Y Gastric Bypass Alters Drug Absorption Pattern But Not Systemic Exposure of CYP3A4 and P-glycoprotein Substrates

    PubMed Central

    Chan, Lingtak-Neander; Lin, Yvonne S.; Tay-Sontheimer, Jessica C.; Trawick, Dorothy; Oelschlager, Brant K.; Flum, David R.; Patton, Kristen K.; Shen, Danny D.; Horn, John R.

    2015-01-01

    Study Objectives To evaluate the effect of Roux-en-Y gastric bypass surgery (RYGB) on the pharmacokinetics of midazolam (a CYP3A4 substrate) and digoxin (a P-glycoprotein substrate). Design Prospective, nonblinded, longitudinal, single-dose pharmacokinetic study in three phases: presurgery baseline and postoperative assessments at 3 and 12 months. Patients Twelve obese patients meeting current standards for bariatric surgery. Measurements and Main Results At each study visit, patients received a single dose of oral digoxin and midazolam at 8 a.m. Blood samples were collected at regular intervals for 24 hours after dosing. Continuous 12-lead electrocardiogram (EKG), heart rate, blood pressure, and respiratory rate were monitored, and pharmacokinetic parameters from the three visits were compared. The peak plasma concentration (Cmax) of midazolam increased by 66% and 71% at 3- and 12-month post-RYGB (p=0.017 and p=0.001, respectively), whereas the median time to peak concentration (Tmax) was reduced by 50%. The mean Cmax for 1′-hydroxymidazolam increased by 87% and 80% at 3 and 12 months (p=0.001 and p<0.001, respectively). However, neither the area under the concentration-time curve (AUC) for midazolam nor the metabolite-to-parent AUC ratio changed significantly over time. For digoxin, the median Tmax decreased from 40 minutes at baseline to 30 and 20 minutes at 3 and 12 months, respectively. The mean AUC for digoxin, heart rate, and EKG patterns were similar across the three study phases. Conclusion Contemporary proximal RYGB increases the rate of drug absorption without significantly changing the overall exposure to midazolam and digoxin. The Cmax of a CYP3A4 substrate with a high extraction ratio was substantially increased after RYGB. PMID:25757445

  17. Study on the interactions of antiemetic drugs and 12-tungstophosphoric acid by absorption and resonance Rayleigh scattering spectra and their analytical applications

    NASA Astrophysics Data System (ADS)

    Wang, Yaqiong; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2013-03-01

    In 0.1 mol L-1 HCl medium, antiemetic drugs (ATM), such as granisetron hydrochloride (GS) and tropisetron hydrochloride (TS), reacted with H3PW12O40·nH2O and formed 3:1 ion-association complex of [(ATM)3PW12O40], then self-aggregated into nanoparticles-[(ATM)3PW12O40]n with an average size of 100 nm. The reaction resulted in the enhancement of resonance Rayleigh scattering (RRS) and the absorption spectra. The increments of scattering intensity (ΔIRRS) and the change of absorbance (ΔA) were both directly proportional to the concentrations of ATM in certain ranges. Accordingly, two new RRS and spectrophotometric methods were proposed for ATM detection. The detection limits (3σ) of GS and TS were 3.2 ng mL-1 and 4.0 ng mL-1(RRS method), 112.5 ng mL-1 and 100.0 ng mL-1(spectrophotometric method). These two methods were applied to determine GS in orally disintegrating tablets and the results were in good agreement with the official method. The ground-state geometries and electronic structures of GS and TS were optimized by the hybrid density functional theory (DFT) method and the shape of [(ATM)3PW12O40]n was characterized by atomic force microscopy (AFM). Take the RRS method with higher sensitivity as an example, the reaction mechanism and the reasons for enhancement of scattering were discussed.

  18. Effect of food intake and co-administration of placebo self-nanoemulsifying drug delivery systems on the absorption of cinnarizine in healthy human volunteers.

    PubMed

    Christiansen, Martin Lau; Holm, Rene; Abrahamsson, Bertil; Jacobsen, Jette; Kristensen, Jakob; Andersen, Jens Rikardt; Müllertz, Anette

    2016-03-10

    Positive food effects may be observed for low aqueous soluble compounds, these effects could potentially be circumvented using lipid based formulations. However, as all compounds are not chemically stable in lipid based systems, alternative dosage regimes could be investigated to evade the stability issue. The two aims for this present study were therefore; i) to investigate if a nutritional drink, Fresubin Energy®, could induce food effect in humans for the poorly soluble compound cinnarizine; and ii) to investigate if co-administration of a self-nano-emulsifying drug delivery systems (SNEDDS) with a conventional cinnarizine tablet could reduce the observed food-effect. A commercial conventional cinnarizine tablet was dosed to 10 healthy volunteers in a cross-over design in both fasted and fed state, with and without co-administration of a SNEDDS, with a one week wash-out period between dosing. The fed state was induced using a nutritional drink (Fresubin Energy®) and gastric emptying was assessed by administration of paracetamol as a marker. The pharmacokinetic analysis showed that the nutritional drink delayed the uptake and increased the fraction of absorbed cinnarizine, indicative of a food effect on the compound. This was in agreement with a previous dog study and indicates that the nutritional drink can be used for inducing the same level of food effect in humans. Though not statistically significant, the co-administration of SNEDDS exhibited a tendency towards a reduction of the observed food effect and an increased absorption of cinnarizine in the fasted state; based upon the individual ratios, which was not reflected in the mean data. However, the co-administration of SNEEDS in the fasted state, also induce a slower gastric emptying rate, which was observed as a delayed tmax for both cinnarizine and paracetamol. PMID:26775868

  19. Luteolin and Quercetin Affect the Cholesterol Absorption Mediated by Epithelial Cholesterol Transporter Niemann–Pick C1-Like 1 in Caco-2 Cells and Rats

    PubMed Central

    Nekohashi, Mari; Ogawa, Mana; Ogihara, Takuo; Nakazawa, Kyoko; Kato, Hisanori; Misaka, Takumi; Abe, Keiko; Kobayashi, Shoko

    2014-01-01

    Niemann–Pick C1-Like 1 (NPC1L1) mediates cholesterol absorption, and ezetimibe is a potent NPC1L1 inhibitor applicable for medication of hypercholesterolemia. Epidemiological studies demonstrated that consumption of polyphenols correlates with a decreased risk for atherosclerosis due to their antioxidant effect. This activity can hardly be attributable to the antioxidant activity only, and we hypothesized that polyphenols inhibit intestinal transport of cholesterol. We elucidated the kinetic parameters of intestinal cholesterol absorption, screened several polyphenols for their ability to specifically inhibit intestinal cholesterol absorption, and determined the inhibitory effects of selected flavonoids in vitro and in vivo. The concentration-dependent uptake of cholesterol by Caco-2 cells obeyed a monophasic saturation process. This indicates the involvement of an active-passive transport, i.e., NPC1L1. Parameters of cholesterol uptake by Caco-2 cells were as follows: Jmax, Kt, and Kd were 6.89±2.96 19.03±11.58 µM, and 0.11±0.02 pmol/min/mg protein, respectively. Luteolin and quercetin inhibited cholesterol absorption by Caco-2 cells and human embryonic kidney 293T cells expressing NPC1L1. When preincubated Caco-2 cells with luteolin and quercetin before the assay, cholesterol uptake significantly decreased. The inhibitory effects of these flavonoids were maintained for up to 120 min. The level of inhibition and irreversible effects were similar to that of ezetimibe. Serum cholesterol levels significantly decreased more in rats fed both cholesterol and luteolin (or quercetin), than in those observed in the cholesterol feeding group. As quercetin induced a significant decrease in the levels of NPC1L1 mRNA in Caco-2 cells, the in vivo inhibitory effect may be due to the expression of NPC1L1. These results suggest that luteolin and quercetin reduce high blood cholesterol levels by specifically inhibiting intestinal cholesterol absorption mediated by NPC1L1

  20. Changes in ruminal volatile fatty acid production and absorption rate during the dry period and early lactation as affected by rate of increase of concentrate allowance.

    PubMed

    Dieho, K; Dijkstra, J; Schonewille, J T; Bannink, A

    2016-07-01

    The aim of the present experiment was to study changes in volatile fatty acid (VFA) production using an isotope dilution technique, and changes in VFA fractional absorption rate (kaVFA) using a buffer incubation technique (BIT) during the dry period and early lactation, as affected by the postpartum (pp) rate of increase of concentrate allowance. The current results are complementary to previously reported changes on rumen papillae morphology from the same experiment. From 50 d antepartum to 80 d pp, VFA production rate was measured 5 times and kaVFA was measured 10 times in 12 rumen-cannulated Holstein Friesian cows. Cows had free access to a mixed ration, consisting of grass and corn silage, soybean meal, and (dry period only) chopped straw. Treatment consisted of either a rapid (RAP; 1.0 kg of DM/d; n=6) or gradual (GRAD; 0.25 kg of DM/d; n=6) increase of concentrate allowance (up to 10.9 kg of DM/d), starting at 4 d pp, aimed at creating a contrast in rumen-fermentable organic matter intake. For the BIT, rumen contents were evacuated, the rumen washed, and a standardized buffer fluid introduced [120 mM VFA, 60% acetic (Ac), 25% propionic (Pr), and 15% butyric (Bu) acid; pH 5.9 and Co-EDTA as fluid passage marker]. For the isotope dilution technique, a pulse-dose of (13)C-labeled Ac, Pr, and Bu and Co-EDTA as fluid passage marker was infused. The rate of total VFA production was similar between treatments and was 2 times higher during the lactation (114 mol/d) than the dry period (53 mol/d). Although papillae surface area at 16, 30, and 44 d pp was greater in RAP than GRAD, Bu and Ac production at these days did not differ between RAP and GRAD, whereas at 16 d pp RAP produced more Pr than GRAD. These results provide little support for the particular proliferative effects of Bu on papillae surface area. Similar to developments in papillae surface area in the dry period and early lactation, the kaVFA (per hour), measured using the BIT, decreased from 0.45 (Ac), 0

  1. Drug-drug interactions between clopidogrel and novel cardiovascular drugs.

    PubMed

    Pelliccia, Francesco; Rollini, Fabiana; Marazzi, Giuseppe; Greco, Cesare; Gaudio, Carlo; Angiolillo, Dominick J

    2015-10-15

    The combination of aspirin and the thienopyridine clopidogrel is a cornerstone in the prevention of atherothrombotic events. These two agents act in concert to ameliorate the prothrombotic processes stimulated by plaque rupture and vessel injury complicating cardiovascular disease. Guidelines recommend the use of clopidogrel in patients with acute coronary syndromes and in those undergoing percutaneous coronary intervention, and the drug remains the most utilized P2Y12 receptor inhibitor despite the fact that newer antiplatelet agents are now available. In recent years, numerous studies have shown inconsistency in the efficacy of clopidogrel to prevent atherothrombotic events. Studies of platelet function testing have shown variability in the response to clopidogrel. One of the major reason for this phenomenon lies in the interaction between clopidogrel and other drugs that may affect clopidogrel absorption, metabolism, and ultimately its antiplatelet action. Importantly, these drug-drug interactions have prognostic implications, since patients with high on-treatment platelet reactivity associated with reduced clopidogrel metabolism have an increased risk of ischemia. Previous systematic reviews have focused on drug-drug interactions between clopidogrel and specific pharmacologic classes, such as proton pump inhibitors, calcium channel blockers, and statins. However, more recent pieces of scientific evidence show that clopidogrel may also interact with newer drugs that are now available for the treatment of cardiovascular patients. Accordingly, the aim of this review is to highlight and discuss recent data on drug-drug interactions between clopidogrel and third-generation proton pump inhibitors, pantoprazole and lansoprazole, statins, pitavastatin, and antianginal drug, ranolazine. PMID:26341013

  2. Molecular organization of the antifungal and anticancer drug 2-(2,4-dihydroxyphenylo)-5,6-dichlorobenzothiazole (dHBBT) in solution and in lipid membranes studied by means of electronic absorption spectroscopy.

    PubMed

    Gagoś, Mariusz; Niewiadomy, Andrzej; Gruszecki, Wiesław I

    2004-10-25

    2-(2,4-Dihydroxyphenylo)-5,6-dichlorobenzthiazole (dHBBT) is a new drug from the group of chemical compounds characterized by documented antifungal, antibacterial, cytostatic as well as antitumour activity. Despite general knowledge regarding pharmacological importance of dHBBT its interaction to biomembranes has not been investigated. In this work, we present the electronic absorption spectroscopic study on molecular organization of dHBBT in organic solvents and on its localization and molecular organization within model lipid membranes formed with dipalmitoylphosphatidylcholine (DPPC). The spectroscopic measurements are interpreted within the framework of the exciton splitting theory. It is concluded that complex absorption spectrum of dHBBT both in the organic solvents and incorporated to DPPC represents superposition of two spectral forms: representing monomers and hypsochromically shifted spectrum representing molecular dimers. Analysis of the temperature dependencies of the absorption spectra of dHBBT incorporated to DPPC liposomes suggests localization of the drug in the polar head-group region of the membrane or in the region of the polar-nonpolar interface. Linear dichroism measurements of dHBBT incorporated to DPPC multibilayers reveal roughly vertical orientation of the drug molecules with respect to the plane of the membrane. A model is presented of molecular organization of dHBBT in lipid membranes. Potential effects of dHBBT on membrane physical properties is briefly discussed. PMID:15488713

  3. Epigenomics and interindividual differences in drug response.

    PubMed

    Ivanov, M; Kacevska, M; Ingelman-Sundberg, M

    2012-12-01

    Epigenomics is a rapidly growing field. New developments in epigenetics, such as the recently described modified cytosine variants (e.g., 5-hydroxymethylcytosine, 5hmC) and an arsenal of novel noncoding forms of RNA, can be applied in the area of drug pharmacokinetics and pharmacodynamics. Epigenetic aberrations can affect drug treatment by modulating the expressions of key genes involved in the metabolism and distribution of drugs as well as drug targets, thereby contributing to interindividual variation in drug response. These epigenetic alterations, along with the epigenetic profiles of circulating nucleic acids, have great potential to be used as biomarkers for personalized therapy, particularly in the treatment of cancer. In this review we present an update of pharmacoepigenetics with respect to epigenetic regulation of ADME genes (genes related to drug absorption, distribution, metabolism, and excretion) and drug targets, and we illustrate how this information can be used for predicting interindividual variations in drug response. PMID:23093317

  4. Analysis of the impact of controlled release formulations on oral drug absorption, gut wall metabolism and relative bioavailability of CYP3A substrates using a physiologically-based pharmacokinetic model.

    PubMed

    Olivares-Morales, Andrés; Kamiyama, Yoshiteru; Darwich, Adam S; Aarons, Leon; Rostami-Hodjegan, Amin

    2015-01-25

    Controlled release (CR) formulations are usually designed to achieve similar exposure (AUC) levels as the marketed immediate release (IR) formulation. However, the AUC is often lower following CR compared to IR formulations. There are a few exceptions when the CR formulations have shown higher AUC. This study investigated the impact of CR formulations on oral drug absorption and CYP3A4-mediated gut wall metabolism. A review of the current literature on relative bioavailability (Frel) between CR and IR formulations of CYP3A substrates was conducted. This was followed by a systematic analysis to assess the impact of the release characteristics and the drug-specific factors (including metabolism and permeability) on oral bioavailability employing a physiologically-based pharmacokinetic (PBPK) modelling and simulation approach. From the literature review, only three CYP3A4 substrates showed higher Frel when formulated as CR. Several scenarios were investigated using the PBPK approach; in most of them, the oral absorption of CR formulations was lower as compared to the IR formulations. However, for highly permeable compounds that were CYP3A4 substrates the reduction in absorption was compensated by an increase in the fraction that escapes from first pass metabolism in the gut wall (FG), where the magnitude was dependent on CYP3A4 affinity. The systematic simulations of various interplays between different parameters demonstrated that BCS class 1 highly-cleared CYP3A4 substrates can display up to 220% higher relative bioavailability when formulated as CR compared to IR, in agreement with the observed data collected from the literature. The results and methodology of this study can be employed during the formulation development process in order to optimize drug absorption, especially for CYP3A4 substrates. PMID:25444842

  5. Alkaline sphingomyelinase (NPP7) promotes cholesterol absorption by affecting sphingomyelin levels in the gut: A study with NPP7 knockout mice.

    PubMed

    Zhang, Ping; Chen, Ying; Cheng, Yajun; Hertervig, Erik; Ohlsson, Lena; Nilsson, Ake; Duan, Rui-Dong

    2014-05-15

    We previously showed that dietary sphingomyelin (SM) inhibited cholesterol absorption in animals. The key enzyme hydrolyzing SM in the gut is alkaline sphingomyelinase (alk-SMase, nucleotide pyrophosphatase/phosphodiesterase 7). Here using the fecal dual-isotope ratio method we compared cholesterol absorption in the wild-type (WT) and alk-SMase knockout (KO) mice. The animals were fed an emulsion containing [(14)C]cholesterol and [(3)H]sitosterol. The radioactivities in the lipids of the fecal samples collected 4, 8, and 24 h thereafter were determined, and the ratio of (14)C/(3)H was calculated. We found that the fecal [(14)C]cholesterol recovery in the KO mice was significantly higher than in the WT mice. A maximal 92% increase occurred 8 h after feeding. Recovery of [(3)H]sitosterol did not differ between the two groups. Accordingly, the (14)C-to-(3)H ratio of fecal lipids was 133% higher at 8 h and 75% higher at 24 h in the KO than in the WT mice. Decreased [(14)C]cholesterol was also found in the serum of the KO mice 4 h after feeding. Supplement of SM in the emulsion reduced the differences in fecal [(14)C]cholesterol recovery between the WT and KO mice because of a greater increase of [(14)C]cholesterol recovery in the WT mice. Without treatment, the KO mice had significantly higher SM levels in the intestinal content and feces, but not in the intestinal mucosa or serum. The expression of Niemann-Pick C1 like 1 protein in the small intestine was not changed. In conclusion, alk-SMase is a physiological factor promoting cholesterol absorption by reducing SM levels in the intestinal lumen. PMID:24650549

  6. High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference.

    PubMed

    Huang, Yingyan; Ho, Seng-Tiong

    2008-10-13

    We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive. PMID:18852789

  7. [Alleviated affect of exogenous CaCl2 on the growth, antioxidative enzyme activities and cadmium absorption efficiency of Wedelia trilobata hairy roots under cadmium stress].

    PubMed

    Shi, Heping; Wang, Yunling; Tsang, PoKeung Eric; Chan, LeeWah Andrew

    2012-06-01

    In order to study the physiological mechanism of exogenous calcium on the toxicity of heavy metal cadmium (Cd) to Wedelia trilobata hairy roots, the effects of Cd alone, and in combination with different concentrations of Ca on growth, contents of soluble protein and malondialdehyde (MDA), activities of superoxide dismutase (SOD) and peroxidase (POD), Cd2+ absorption in W. trilobata hairy roots were investigated. Cd concentrations lower than 50 micromol/L enhanced the growth of hairy roots, while concentrations higher than 100 micromol/L inhibited growth, making the branched roots short and small, and also turning the root tips brown, even black. In comparison with the control (0 micromol/L Cd), the soluble protein content in hairy roots was found to increase when cultured with 10-50 micromol/L Cd, and decrease when exposed to a cadmium concentration higher than 100 micromol/L Cd. In addition, the activities of POD and SOD activity and MDA content were significantly higher than the control. Compared to the control (hairy roots cultured without 10-30 mmol/L Ca), 100 micromol/L Cd or 300 micromol/L Cd in combination with 10-30 mmol/L Ca resulted in increased growth, causing the main root and secondary roots thicker and also an increase in soluble protein content. On the contrary, MDA content and POD and SOD activities decreased. Quantitative analysis by Atomic Absorption Spectrophotometry showed that W. trilobata hairy roots can absorb and adsorb heavy metal Cd in the ionic form of Cd2+. The maximum content of Cd2+ absorbed by the hairy roots was obtained with a concentration 100 micromol/L Cd2+ while that of Cd2+ adsorbed by hairy roots was achieved with a concentration of 300 micromol/L Cd2+. The exogenous addition of 10-30 mmol/L Ca2+ was found to reduce the absorption, adsorption of Cd2+ and the toxicity of Cd significantly. This reduction in toxicity was caused by the reduction in the absorption of Cd and decreasing the lipid peroxidation through regulating the

  8. What Affects Reintegration of Female Drug Users after Prison Release? Results of a European Follow-Up Study

    ERIC Educational Resources Information Center

    Zurhold, Heike; Moskalewicz, Jacek; Sanclemente, Cristina; Schmied, Gabriele; Shewan, David; Verthein, Uwe

    2011-01-01

    The main objective of this follow-up study is to explore factors influencing the success or failure of women in reintegrating after their release from prison. Female drug users in five European cities were tracked after being released from prison. Out of 234 female prisoners contacted in prisons, 59 were included in the follow-up study. Structured…

  9. Freeze-drying of polycaprolactone and poly(D,L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs.

    PubMed

    Saez, A; Guzmán, M; Molpeceres, J; Aberturas, M R

    2000-11-01

    The present study was geared at identifying the conditions to stabilize poly (D,L-lactic-glycolic) (PLGA) and polycaprolactone (PCL) nanoparticles (NP) by freeze-drying with several cryoprotective agents. Differential scanning calorimetry and freeze-thawing studies were used to optimize the lyophilization process. These studies showed that all samples were totally frozen at -45 degrees C and evidenced the necessity of adding sucrose, glucose, trehalose or gelatine to preserve the properties of NP regardless of the freezing procedure. However, only 20% sucrose and 20% glucose exerted an acceptable lyoprotective effect on PLGA and PCL NP, respectively. Nonetheless, the final to initial size ratios ( approximately 1.5) indicated that particle size was slightly affected in both cases. In vivo studies with CyA-loaded PCL NP whose sizes matched those obtained after NP preparation (100 nm) and after being lyophilized (160 nm) showed that the changes of particle size might have some relevance on drug pharmacokinetics. The MRT was significantly (P<0.05) modified after an oral CyA dose of 5 mg/kg and the treatment with 160-nm sized CyA-loaded NP produced a higher drug partition into the liver of Wistar rats potentially affecting the toxic and immunosuppressive profile of the drug. Therefore, although the particle size changes induced by NP lyophilization were slight, they need to be carefully evaluated and cannot be neglected. PMID:11072195

  10. A Genomewide Screen in Schizosaccharomyces pombe for Genes Affecting the Sensitivity of Antifungal Drugs That Target Ergosterol Biosynthesis

    PubMed Central

    Hu, Lingling; Zhou, Xin; Jaiseng, Wurentuya; Zhang, Ben; Takami, Tomonori; Kuno, Takayoshi

    2012-01-01

    We performed a genomewide screen for altered sensitivity to antifungal drugs, including clotrimazole and terbinafine, that target ergosterol biosynthesis using a Schizosaccharomyces pombe gene deletion library consisting of 3,004 nonessential haploid deletion mutants. We identified 109 mutants that were hypersensitive and 11 mutants that were resistant to these antifungals. Proteins whose absence rendered cells sensitive to these antifungals were classified into various functional categories, including ergosterol biosynthesis, membrane trafficking, histone acetylation and deacetylation, ubiquitination, signal transduction, ribosome biosynthesis and assembly, regulation of transcription and translation, cell wall organization and biogenesis, mitochondrion function, amino acid metabolism, nucleic acid metabolism, lipid metabolism, meiosis, and other functions. Also, proteins whose absence rendered cells resistant to these antifungals were classified into functional categories including mitochondrion function, ubiquitination, membrane trafficking, cell polarity, chromatin remodeling, and some unknown functions. Furthermore, the 109 sensitive mutants were tested for sensitivity to micafungin, another antifungal drug that inhibits (1,3)-β-d-glucan synthase, and 57 hypersensitive mutants were identified, suggesting that these mutants were defective in cell wall integrity. Altogether, our findings in fission yeast have shed light on molecular pathways associated with the cellular response to ergosterol biosynthesis inhibitors and may provide useful information for developing strategies aimed at sensitizing cells to these drugs. PMID:22252817

  11. [The effect of thiamine deficiency on the actions of drugs affecting the central nervous system in rats (author's transl)].

    PubMed

    Onodera, K; Sakurada, S; Ando, R; Takahashi, N; Tadano, T; Kisara, K; Ogura, Y

    1980-03-01

    Male Wistar rats, 35-days-old, maintained on a thiamine deficient diet for 30 days showed marked growth inhibition and a heart rate less than 70% of that of control rats. We examined the effect of thiamine deficiency on the action of drugs effecting the central nervous system at this period. In thiamine deficient rats treated with chloral hydrate 200 mg/kg, ketamine 100 mg/kg sodium pentobarbital 50 mg/kg, and hexobarbital 100 mg/kg, the sleeping time increased. Pretreatment with 15 mg/kg of the metabolic enzymes inhibitor, SKF-525A, 30 min prior to the hexobarbital administration resulted in prolongation of sleeping time in all groups. The thiamine deficient rats slept almost 3.5 times longer than did the control group. Pretreatment with 100 mg/kg of the metabolic enzyme inducer, sodium phenobarbital, 48 hours prior to hexobarbital treatment resulted in decreased sleeping time in all groups, as compared with only hexobarbital treatment. In the thiamine deficient rats the catalepsy and ptosis induced by the i.p. administration of tetrabenazine 50 mg/kg was reduced even when the control and pair-fed groups responded to this drug at the drug peak time. The spontaneous neuronal activity of lateral hypothalamus was most sensitive to the administration of 5-hydroxytryptophan in thiamine deficient rats. PMID:6967442

  12. Betalactam antibiotics affect human dendritic cells maturation through MAPK/NF-kB systems. Role in allergic reactions to drugs.

    PubMed

    Lopez, Soledad; Gomez, Enrique; Torres, Maria J; Pozo, David; Fernandez, Tahia D; Ariza, Adriana; Sanz, Maria L; Blanca, Miguel; Mayorga, Cristobalina

    2015-11-01

    The mechanisms leading to drug allergy in predisposed patients, especially those related to T-cell-mediated drug hypersensitivity, are not well understood. A key event in allergic reactions to drugs is the maturation process undergone by dendritic cells (DCs). Although amoxicillin (AX) has been reported to interact and maturate DCs from patients with AX-induced delayed-type hypersensitivity, the cell signaling pathways related to AX-mediated DC maturation have not been elucidated. We sought to determine the role of the MAPK and NF-κΒ pathways on AX-induced DC maturation and functional status. For that purpose, in monocyte-derived-DCs from AX-delayed allergic patients and tolerant subjects, we analyzed the activation pattern of p38MAPK, JNK, and ERK signaling and the NF-κB, maturation markers as well as endocytosis and allostimulatory capacities driven by AX-stimulated-DCs. Our data reveal that AX induces an increase in the phosphorylation levels of the three MAPKs and activated NF-κB in DCs from allergic patients. Moreover, the inhibition of these pathways prevents the up-regulation of surface molecules induced by AX. Additionally, we observed that the allostimulatory capacity and the endocytosis down-regulation in AX-stimulated-DCs from allergic patients depend on JNK and NF-κB activities. Taken together, our data shed light for the first time on the main signaling pathways involved in DC maturation from AX-delayed allergic patient. PMID:26254762

  13. Identification of residues in ABCG2 affecting protein trafficking and drug transport, using co-evolutionary analysis of ABCG sequences

    PubMed Central

    Haider, Ameena J.; Cox, Megan H.; Jones, Natalie; Goode, Alice J.; Bridge, Katherine S.; Wong, Kelvin; Briggs, Deborah; Kerr, Ian D.

    2015-01-01

    ABCG2 is an ABC (ATP-binding cassette) transporter with a physiological role in urate transport in the kidney and is also implicated in multi-drug efflux from a number of organs in the body. The trafficking of the protein and the mechanism by which it recognizes and transports diverse drugs are important areas of research. In the current study, we have made a series of single amino acid mutations in ABCG2 on the basis of sequence analysis. Mutant isoforms were characterized for cell surface expression and function. One mutant (I573A) showed disrupted glycosylation and reduced trafficking kinetics. In contrast with many ABC transporter folding mutations which appear to be ‘rescued’ by chemical chaperones or low temperature incubation, the I573A mutation was not enriched at the cell surface by either treatment, with the majority of the protein being retained in the endoplasmic reticulum (ER). Two other mutations (P485A and M549A) showed distinct effects on transport of ABCG2 substrates reinforcing the role of TM helix 3 in drug recognition and transport and indicating the presence of intracellular coupling regions in ABCG2. PMID:26294421

  14. Drug-using and nonusing women: potential for child abuse, child-rearing attitudes, social support, and affection for expected baby.

    PubMed

    Williams-Petersen, M G; Myers, B J; Degen, H M; Knisely, J S; Elswick, R K; Schnoll, S S

    1994-10-01

    Eighty pregnant women (25 substance using, 55 nonusing) from an American prenatal clinic serving lower-income to working-class women responded to questionnaire measures of child-rearing attitudes. The drug users' primary substance of misuse was cocaine (68%), alcohol (16%), amphetamines (12%), or sedatives (4%); polydrug use was documented for 80% of the women. The two (user and nonuser) groups were not different on demographic (age, race, marital status, education, SES, source of income) or obstetrical factors (number of pregnancies, number of children). Drug-using women scored significantly higher on a measure of child abuse potential; more than half scored in the range of clinical criterion for extreme risk. As their babies were not yet born, no actual physical abuse was documented, only a higher potential for abuse. The subgroup who were both drug users and had lower social support scored higher on child abuse potential than all other subgroups. The drug users also had lower self-esteem scores than the nonusers. The two groups did not differ on measures of overall social support, authoritarian/democratic child-rearing beliefs, or affection for the expected baby. PMID:7836024

  15. Ciclopirox Olamine Treatment Affects the Expression Pattern of Candida albicans Genes Encoding Virulence Factors, Iron Metabolism Proteins, and Drug Resistance Factors

    PubMed Central

    Niewerth, Markus; Kunze, Donika; Seibold, Michael; Schaller, Martin; Korting, Hans Christian; Hube, Bernhard

    2003-01-01

    The hydroxypyridone ciclopirox olamine belongs to the antimycotic drugs used for the treatment of superficial mycoses. In contrast to the azoles and other antimycotic drugs, its specific mode of action is only poorly understood. To investigate the mode of action of ciclopirox olamine on fungal viability, pathogenicity, and drug resistance, we examined the expression patterns of 47 Candida albicans genes in cells grown in the presence of a subinhibitory concentration (0.6 μg/ml) of ciclopirox olamine by reverse transcription-PCR. In addition, we used suppression-subtractive hybridization to further identify genes that are up-regulated in the presence of ciclopirox olamine. The expression of essential genes such as ACT1 was not significantly modified in cells exposed to ciclopirox olamine. Most putative and known virulence genes such as genes encoding secreted proteinases or lipases had no or only moderately reduced expression levels. In contrast, exposure of cells to ciclopirox olamine led to a distinct up- or down-regulation of genes encoding iron permeases or transporters (FTR1, FTR2, FTH1), a copper permease (CCC2), an iron reductase (CFL1), and a siderophore transporter (SIT1); these effects resembled those found under iron-limited conditions. Addition of FeCl3 to ciclopirox olamine-treated cells reversed the effect of the drug. Addition of the iron chelator bipyridine to the growth medium induced similar patterns of expression of distinct iron-regulated genes (FTR1, FTR2). While serum-induced yeast-to-hyphal phase transition of C. albicans was not affected in ciclopirox olamine-treated cells in the presence of subinhibitory conditions, a dramatic increase in sensitivity to oxidative stress was noted, which may indicate the reduced activities of iron-containing gene products responsible for detoxification. Although the Candida drug resistance genes CDR1 and CDR2 were up-regulated, no change in resistance or increased tolerance could be observed even after an

  16. Is drug discontinuation risk of adalimumab compared with etanercept affected by concomitant methotrexate dose in patients with rheumatoid arthritis?

    PubMed Central

    Chen, Hsin-Hua; Chen, Der-Yuan; Chen, Yi-Ming; Tang, Chao-Hsiun

    2016-01-01

    Objective To compare drug discontinuation risk between adalimumab (ADA) and etanercept (ETN) treatment among anti-tumor necrosis factor (anti-TNF)-naïve rheumatoid arthritis (RA) patients, in particular the influence of concomitant dose of methotrexate (MTX). Methods This retrospective nationwide population-based cohort study identified 4,592 anti-TNF-naïve RA patients in whom ETN (n=2,609) or ADA (n=1,983) was initiated using National Health Insurance claims data. After adjustment for prior medication, concomitant medication, and baseline demographic data, the relative risk of drug discontinuation in ADA users compared with ETN users was quantified by calculating adjusted hazard ratios (aHRs) with 95% confidence intervals (CIs) using Cox proportional hazard regression analyses, stratified by the follow-up time (≤1 year, >1 year) and/or concomitant MTX dose (≤10 mg/wk, >10 mg/wk). Results ADA users had a higher risk of drug discontinuation compared with ETN users during the first year of follow-up (aHR, 1.13; 95% CI, 1.01–1.27), but not during all treatment periods (aHR, 1.06; 95% CI, 0.98–1.16) or after 1 year (aHR, 0.99; 95% CI, 0.87–1.13). However, ADA users had a significantly higher risk of drug discontinuation compared with ETN users among patients on concomitant MTX >10 mg/wk during all treatment periods (aHR, 1.27; 95% CI, 1.10–1.47), during the first year of follow-up (aHR, 1.48; 95% CI, 1.22–1.78), or after 1 year (aHR, 1.42; 95% CI, 1.06–1.90), but not among patients on concomitant MTX 0–10 mg/wk. Conclusion This population-based cohort study demonstrated a modification effect of concomitant MTX dose on the relative risk of anti-TNF discontinuation for ADA compared with ETN among anti-TNF-naïve RA patients. However, the lack of exact cause of anti-TNF discontinuation limited causal inference of such a concomitant MTX dose-related modification effect. PMID:26917952

  17. Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression.

    PubMed

    Hirschberg, Cosima; Sun, Changquan Calvin; Rantanen, Jukka

    2016-09-01

    Characterization of particulate systems (powders) is one of the remaining scientific challenges. Evaluation of powder behaviour is often empirical and the decision-making processes are experience-based. There is a need for development of analytical instrumentation enabling more fundamental understanding of powder behaviour. Flowability and tabletability, two key factors in commercial scale manufacturing of tablets with direct compression (DC) approach, were analysed for formulations containing increasing amounts of several model active pharmaceutical ingredients (APIs). Flowability was investigated using a ring shear tester and tablets were prepared at four different compression pressures using a single punch tablet press. Thereby, a material sparing screening approach was developed to estimate the influence of APIs on behaviour of a given DC formulation. Additionally, this approach is useful for estimating the low threshold amount of API (wt%), at which the properties of an API start affecting the powder behaviour of a given formulation (API-excipient mixture). This threshold will be referred to as critical drug loading. The flowability of microcrystalline cellulose (reference grade pH 102) was used as a threshold for adequate flowability of model formulations. The threshold for tablet tensile strength was set to 2MPa. Simultaneous visual presentation of both- flowability and tabletability were used for a fast evaluation of manufacturability of a given formulation. The results confirmed that flowability is more sensitive to drug loading than tabletability, and that the critical drug loading for a DC formulation is strongly affected by particulate properties of API. For example, decreasing the particle size of paracetamol led to rapid decrease in flowability index, whereas the tabletability was not affected. PMID:27368089

  18. Multi-drugs resistant acne rosacea in a child affected by Ataxia-Telangiectasia: successful treatment with Isotretinoin.

    PubMed

    Cantarutti, Nicoletta; Claps, Alessia; Angelino, Giulia; Chessa, Luciana; Callea, Francesco; El Hachem, May; Diociaiuti, Andrea; Finocchi, Andrea

    2015-01-01

    Ataxia-Telangiectasia is a rare multisystem autosomal recessive disorder [OMIM 208900], caused by mutations in Ataxia-Telangiectasia Mutated gene. It is characterized by neurological, immunological and cutaneous involvement. Granulomas have been previously reported in Ataxia-Telangiectasia patients, even if acne rosacea has not been described.We report a case of a young Ataxia-Telangiectasia patient with a severe immunological and neurological involvement, who developed granulomatous skin lesions diagnosed by skin biopsy as acne rosacea. Considering the severe clinical picture and the lack of improvement to multiple topic and systemic therapies, treatment with Isotretinoin was started and the skin lesions disappeared after five months. However the therapy was stopped due to drug-hepatotoxicity.Systemic treatment with Isotretinoin should be carefully considered in patient with Ataxia-Telangiectasia for the treatment of multi-drug resistant acne rosacea, however its toxicity may limit long-term use and the risk/benefit ratio of the treatment should be evaluated. PMID:25881033

  19. Statin drugs mitigate cellular inflammatory response after ST elevation myocardial infarction, but do not affect in-hospital mortality

    PubMed Central

    Pourafkari, Leili; Visnjevac, Ognjen; Ghaffari, Samad; Nader, Nader D.

    2016-01-01

    Introduction: The objective was to examine the role of statins in modulating post-STEMI inflammation and related mortality. Methods: A total of 404 patients with STEMI were reviewed. Demographics, comorbidities, laboratory values, and outcomes were collected. The patients were grouped as STATIN and NOSTAT based on the use of statin drugs at the time of admission. Ninety-seven patients were receiving statin drugs. Results: The patients in the STATIN group were more likely to be hypertensive (53.6%), diabetic (37.1%) and to have previous coronary revascularization (9.3%). Following propensity matching of 89 patients in STATIN group to an equal number of patients in NOSTAT controls had lower neutrophil count 7.8 (6.8-8.4) compared to those in the NOSTAT group 9.1 (7.9-10.1). Although there was no difference in-hospital mortality between the two groups, the incidence of pump failure was lower in the STATIN group (5.6% vs. 15.7%; P < 0.01). Conclusion: Statin treatment prior to STEMI mitigates the cellular inflammatory response after the myocardial infarction, as evidenced by lower leukocyte and neutrophil cell counts in the STATIN group. PMID:27069565

  20. Factors affecting the development of adverse drug reactions to β-blockers in hospitalized cardiac patient population

    PubMed Central

    Mugoša, Snežana; Djordjević, Nataša; Djukanović, Nina; Protić, Dragana; Bukumirić, Zoran; Radosavljević, Ivan; Bošković, Aneta; Todorović, Zoran

    2016-01-01

    The aim of the present study was to undertake a study on the prevalence of cytochrome P450 2D6 (CYP2D6) poor metabolizer alleles (*3, *4, *5, and *6) on a Montenegrin population and its impact on developing adverse drug reactions (ADRs) of β-blockers in a hospitalized cardiac patient population. A prospective study was conducted in the Cardiology Center of the Clinical Center of Montenegro and included 138 patients who had received any β-blocker in their therapy. ADRs were collected using a specially designed questionnaire, based on the symptom list and any signs that could point to eventual ADRs. Data from patients’ medical charts, laboratory tests, and other available parameters were observed and combined with the data from the questionnaire. ADRs to β-blockers were observed in 15 (10.9%) patients. There was a statistically significant difference in the frequency of ADRs in relation to genetically determined enzymatic activity (P<0.001), with ADRs’ occurrence significantly correlating with slower CYP2D6 metabolism. Our study showed that the adverse reactions to β-blockers could be predicted by the length of hospitalization, CYP2D6 poor metabolizer phenotype, and the concomitant use of other CYP2D6-metabolizing drugs. Therefore, in hospitalized patients with polypharmacy CYP2D6 genotyping might be useful in detecting those at risk of ADRs. PMID:27536078

  1. Decellularized skeletal muscle as an in vitro model for studying drug-extracellular matrix interactions.

    PubMed

    Wassenaar, Jean W; Boss, Gerry R; Christman, Karen L

    2015-09-01

    Several factors can affect drug absorption after intramuscular (IM) injection: drug solubility, drug transport across cell membranes, and drug metabolism at the injection site. We found that potential interactions between the drug and the extracellular matrix (ECM) at the injection site can also affect the rate of absorption post-injection. Using decellularized skeletal muscle, we developed a simple method to model drug absorption after IM injection, and showed that the nature of the drug-ECM interaction could be investigated by adding compounds that alter binding. We validated the model using the vitamin B12 analog cobinamide with different bound ligands. Cobinamide is being developed as an IM injectable treatment for cyanide poisoning, and we found that the in vitro binding data correlated with previously published in vivo drug absorption in animals. Commercially available ECM products, such as collagen and GelTrex, did not recapitulate drug binding behavior. While decellularized ECM has been widely studied in fields such as tissue engineering, this work establishes a novel use of skeletal muscle ECM as a potential in vitro model to study drug-ECM interactions during drug development. PMID:26125502

  2. Communication: Does a single CH{sub 3}CN molecule attached to Ru(bipy){sub 3}{sup 2+} affect its absorption spectrum?

    SciTech Connect

    Stockett, M. H.; Brøndsted Nielsen, S.

    2015-05-07

    Tris(bipyridine)ruthenium(II) (Ru(bipy){sub 3}{sup 2+}) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complex’s beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics.

  3. [Variation in soil Mn fractions as affected by long-term manure amendment using atomic absorption spectrophotometer in a typical grassland of inner Mongolia].

    PubMed

    Fu, Ming-ming; Jiang, Yong; Bai, Yong-fei; Zhang, Yu-ge; Xu, Zhu-wen; Li, Bo

    2012-08-01

    The effect of sheep manure amendment on soil manganese fractions was conducted in a 11 year experiment at inner Mongolia grassland, using sequential extraction procedure in modified Community Bureau of Reference, and determined by atomic absorption spectrophotometer. Five treatments with dry sheep manure addition rate 0, 50, 250, 750, and 1500 g x m(-2) x yr(-1), respectively, were carried out in this experiment. Results showed that the recovery rate for total Mn was 91.4%-105.9%, as the percentage recovered from the summation of the improved BCR results with aqua regia extractable contents, and it was 97.2%-102.9% from certified soil reference materials. Plant available exchangeable Mn could be enhanced by 47.89%, but reducible and total Mn contents decreased significantly under heavy application of manure at depth of 0-5 cm. The effect of manure amendment on Mn fractions was greater in 0-5 cm than in 5-10 cm soil layer. The results are benefit to micronutrient fractions determination and nutrient management in grassland soils. PMID:23156789

  4. Interindividual variation in transdermal and oral drug deliveries.

    PubMed

    Levin, Jacquelyn; Maibach, Howard

    2012-11-01

    It is generally assumed that the topical absorption of drugs is subject to more interindividual variation than the oral absorption of drugs. To date, we are unaware of any clinical studies or meta-analyses that compare the interindividual variation of transdermal and oral drug deliveries for a large number of medications. In this research article, the absorption data for 10 medications that can be used as an oral medication or a transdermal patch were compiled, and from the collected data, the interindividual variance was calculated for topical and oral absorption as an overall average and by drug. This research article also briefly reviews the pharmacokinetics and pharmacodynamics of transdermal and oral drug absorption. Our results indicate that there is considerable interindividual variation in topical and oral absorption for the 10 medications investigated. Yet, surprisingly, the calculated overall mean and median coefficient of variation (CV) for topical and oral absorption were comparable (within 10% of each other). Therefore, the interindividual variation in topical and oral absorption may not be as divergent as assumed previously. In a drug-by-drug comparison, certain medications demonstrated considerably more variation when absorbed orally versus topically and vice versa. It is unclear why certain drugs had less variation in absorption when delivered topically versus orally (or vice versa). However, patterns in drug molecular weight (MW) or octanol partition coefficient (log K(OCT) ) could not totally explain these findings. In our analysis, the previously reported correlation between MW or log K(OCT) and interindividual variation in absorption could only be replicated when plotting the topical absorption CV and MW. What became clear from our analysis is that the drug itself is an important variable when considering which route of delivery (oral or topical) will provide the least amount of interindividual variation. Our study had many limitations because

  5. Drug testing in oral fluid.

    PubMed

    Drummer, Olaf H

    2006-08-01

    Over the last decade there have been considerable developments in the use of oral fluid (saliva) for drug testing. Oral fluid can provide a quick and non-invasive specimen for drug testing. However, its collection may be thwarted by lack of available fluid due to a range of physiological factors, including drug use itself. Food and techniques designed to stimulate production of oral fluid can also affect the concentration of drugs. Current applications are mainly focused on drugs of abuse testing in employees at workplaces where drug use has safety implications, in drivers of vehicles at the roadside and in other situations where drug impairment is suspected. Testing has included alcohol (ethanol) and a range of clinical tests eg antibodies to HIV, therapeutic drugs and steroids. Its main application has been for testing for drugs of abuse such as the amphetamines, cocaine and metabolites, opioids such as morphine, methadone and heroin, and for cannabis. Oral fluid concentrations of basic drugs such as the amphetamines, cocaine and some opioids are similar or higher than those in plasma. Tetrahydrocannabinol (THC), the major species present from cannabis use, displays similar concentrations in oral fluid compared to blood in the elimination phase. However, there is significant local absorption of the drug in the oral cavity which increases the concentrations for a period after use of drug. Depot effects occur for other drugs introduced into the body that allow local absorption, such as smoking of tobacco (nicotine), cocaine, amphetamines, or use of sub-lingual buprenorphine. Screening techniques are usually an adaptation of those used in other specimens, with an emphasis on the parent drug since this is usually the dominant species present in oral fluid. Confirmatory techniques are largely based on mass spectrometry (MS) with an emphasis on Liquid Chromatography-Mass Spectrometry (LC-MS), due to low sample volumes and the low detection limits required. Drug testing

  6. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs.

    PubMed

    Jinno, Jun-ichi; Kamada, Naoki; Miyake, Masateru; Yamada, Keigo; Mukai, Tadashi; Odomi, Masaaki; Toguchi, Hajime; Liversidge, Gary G; Higaki, Kazutaka; Kimura, Toshikiro

    2006-03-10

    The purpose of the present study was to investigate the effects of particle size on the dissolution and oral absorption of cilostazol. Three types of suspensions having different particle size distributions were prepared of the hammer-milled, the jet-milled cilostazol crystals and the NanoCrystal spray-dried powder of cilostazol. In vitro dissolution rate of cilostazol was significantly increased by reducing the particle size. The dissolution curves of the cilostazol suspensions were in good agreement with the simulation based on the Noyes-Whitney equation. The bioavailability of cilostazol after oral administration to dogs was increased with reducing the particle size. While positive food effect on the absorption was observed for the suspensions made of the hammer-milled and the jet-milled crystals, no significant food effect was found for the suspension made of the NanoCrystal cilostazol spray-dried powder. These results could be qualitatively predicted from the in vitro dissolution data using the bio-relevant media, FaSSIF and FeSSIF. In conclusion, the NanoCrystal technology is found to be efficient to improve the oral bioavailability of cilostazol and to avoid the food effect on the absorption. PMID:16410029

  7. Gut Wall Metabolism. Application of Pre-Clinical Models for the Prediction of Human Drug Absorption and First-Pass Elimination.

    PubMed

    Jones, Christopher R; Hatley, Oliver J D; Ungell, Anna-Lena; Hilgendorf, Constanze; Peters, Sheila Annie; Rostami-Hodjegan, Amin

    2016-05-01

    Quantifying the multiple processes which control and modulate the extent of oral bioavailability for drug candidates is critical to accurate projection of human pharmacokinetics (PK). Understanding how gut wall metabolism and hepatic elimination factor into first-pass clearance of drugs has improved enormously. Typically, the cytochrome P450s, uridine 5'-diphosphate-glucuronosyltransferases and sulfotransferases, are the main enzyme classes responsible for drug metabolism. Knowledge of the isoforms functionally expressed within organs of first-pass clearance, their anatomical topology (e.g. zonal distribution), protein homology and relative abundances and how these differ across species is important for building models of human metabolic extraction. The focus of this manuscript is to explore the parameters influencing bioavailability and to consider how well these are predicted in human from animal models or from in vitro to in vivo extrapolation. A unique retrospective analysis of three AstraZeneca molecules progressed to first in human PK studies is used to highlight the impact that species differences in gut wall metabolism can have on predicted human PK. Compared to the liver, pharmaceutical research has further to go in terms of adopting a common approach for characterisation and quantitative prediction of intestinal metabolism. A broad strategy is needed to integrate assessment of intestinal metabolism in the context of typical DMPK activities ongoing within drug discovery programmes up until candidate drug nomination. PMID:26964996

  8. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  9. Drugs affecting brain dopamine interfere with the effect of Z-prolyl-D-leucine on morphine withdrawal.

    PubMed

    Kovács, G L; Telegdy, G; Hódi, K

    1984-09-01

    The dipeptide Z-prolyl-D-leucine (Z-Pro-D-Leu) has been demonstrated to inhibit the development of tolerance to and dependence on morphine in the mouse. Since the dipeptide affects dopamine (DA) utilization in the terminal regions of the mesolimbic and nigrostriatal DA-ergic projections, the question has been studied of whether DA-ergic mechanisms are involved in the action of Z-Pro-D-Leu on morphine withdrawal. Both inhibition of tyrosine hydroxylase by alpha-methyl-p-tyrosine (alpha-MPT) and inhibition of DA receptors by pimozide interfere with the effect of Z-Pro-D-Leu on naloxone-precipitated morphine withdrawal. Inhibition of serotonin (5-HT) synthesis by DL-p-chlorophenylalanine (PCPA), on the other hand, does not modify the effect of the dipeptide. The results argue for a role of DA-ergic mechanisms in the effect of Z-Pro-D-Leu on the development of morphine dependence. PMID:6541792

  10. Advances and challenges in PBPK modeling--Analysis of factors contributing to the oral absorption of atazanavir, a poorly soluble weak base.

    PubMed

    Berlin, Mark; Ruff, Aaron; Kesisoglou, Filippos; Xu, Wei; Wang, Michael Hong; Dressman, Jennifer B

    2015-06-01

    Many active pharmaceutical ingredients (APIs) exhibit a highly variable pharmacokinetic (PK) profile. This behavior may be attributable to pre-absorptive, absorptive and/or post-absorptive factors. Pre-absorptive factors are those related to dosage form disintegration, drug dissolution, supersaturation, precipitation and gastric emptying. Absorptive factors are involved with drug absorption and efflux mechanisms, while drug distribution and clearance are post-absorptive factors. This study aimed to investigate the relative influence of the aforementioned parameters on the pharmacokinetic profile of atazanavir, a poorly soluble weakly basic compound with highly variable pharmacokinetics. The pre-absorptive behavior of the drug was examined by applying biorelevant in vitro tests to reflect upper gastrointestinal behavior in the fasted and fed states. The in vitro results were implemented, along with permeability and post-absorptive data obtained from the literature, into physiologically based pharmacokinetic (PBPK) models. Sensitivity analysis of the resulting plasma profiles revealed that the pharmacokinetic profile of atazanavir is affected by an array of factors rather than one standout factor. According to the in silico model, pre-absorptive and absorptive factors had less impact on atazanavir bioavailability compared to post-absorptive parameters, although active drug efflux and extraction appear to account for the sub-proportional pharmacokinetic response to lower atazanavir doses in the fasted state. From the PBPK models it was concluded that further enhancement of the formulation would bring little improvement in the pharmacokinetic response to atazanavir. This approach may prove useful in assessing the potential benefits of formulation enhancement of other existing drug products on the market. PMID:25872159

  11. On the positive and negative affective responses to cocaine and their relation to drug self-administration in rats

    PubMed Central

    Ettenberg, Aaron; Fomenko, Vira; Kaganovsky, Konstantin; Shelton, Kerisa; Wenzel, Jennifer M.

    2015-01-01

    Rationale Acute cocaine administration produces an initial rewarding state followed by a dysphoric/anxiogenic “crash”. Objective To determine whether individual differences in the relative value of cocaine’s positive and negative effects would account for variations in subsequent drug self-administration. Methods The dual actions of cocaine were assessed using a conditioned place test (where animals formed preferences for environments paired with the immediate rewarding effects of 1.0 mg/kg i.v. cocaine or aversions of environments associated with the anxiogenic effects present 15 min post-injection) and a runway test (where animals developed approach-avoidance “retreat” behaviors about entering a goal-box associated with cocaine delivery). Ranked scores from these two tests were then correlated with each other and with the escalation in the operant responding of the same subjects observed over 10 days of 1- or 6-h/day access to i.v. (0.4 mg/inj) cocaine self-administration. Results a) larger place preferences were associated with faster runway start latencies (rs=−0.64), but not with retreat frequency or run times; b) larger place aversions predicted slower runway start times (rs=0.62) and increased run times (rs=0.65) and retreats (rs=0.62); c) response escalation was observed in both the 1-h and 6-h self-administration groups and was associated with increased CPPs (rs=0.58) but not CPAs, as well as with faster run times (rs=−0.60). Conclusions Together, these data suggest that animals exhibiting a greater positive than negative response to acute (single daily injections of) cocaine are at the greatest risk for subsequent escalated cocaine self-administration, a presumed indicator of cocaine addiction. PMID:25662610

  12. Metabolic fate (absorption, β-oxidation and deposition) of long-chain n-3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat.

    PubMed

    Ghasemifard, Samaneh; Hermon, Karen; Turchini, Giovanni M; Sinclair, Andrew J

    2015-09-14

    The effects of krill oil as an alternative source of n-3 long-chain PUFA have been investigated recently. There are conflicting results from the few available studies comparing fish oil and krill oil. The aim of this study was to compare the bioavailability and metabolic fate (absorption, β-oxidation and tissue deposition) of n-3 fatty acids originating from krill oil (phospholipid-rich) or fish oil (TAG-rich) in rats of both sexes using the whole-body fatty acid balance method. Sprague-Dawley rats (thirty-six male, thirty-six female) were randomly assigned to be fed either a krill oil diet (EPA+DHA+DPA=1·38 mg/g of diet) or a fish oil diet (EPA+DHA+DPA=1·61 mg/g of diet) to constant ration for 6 weeks. The faeces, whole body and individual tissues were analysed for fatty acid content. Absorption of fatty acids was significantly greater in female rats and was only minimally affected by the oil type. It was estimated that most of EPA (>90 %) and more than half of DHA (>60 %) were β-oxidised in both diet groups. Most of the DPA was β-oxidised (57 and 67 % for female and male rats, respectively) in the fish oil group; however, for the krill oil group, the majority of DPA was deposited (82-83 %). There was a significantly greater deposition of DPA and DHA in rats fed krill oil compared with those fed fish oil, not due to a difference in bioavailability (absorption) but rather due to a difference in metabolic fate (anabolism v. catabolism). PMID:26234617

  13. Physiological and pathophysiological factors affecting the expression and activity of the drug transporter MRP2 in intestine. Impact on its function as membrane barrier.

    PubMed

    Arana, Maite R; Tocchetti, Guillermo N; Rigalli, Juan P; Mottino, Aldo D; Villanueva, Silvina S M

    2016-07-01

    The gastrointestinal epithelium functions as a selective barrier to absorb nutrients, electrolytes and water, but at the same time restricts the passage into the systemic circulation of intraluminal potentially toxic compounds. This epithelium maintains its selective barrier function through the presence of very selective and complex intercellular junctions and the ability of the absorptive cells to reject those compounds. Accordingly, the enterocytes metabolize orally incorporated xenobiotics and secrete the hydrophilic metabolites back into the intestinal lumen through specific transporters localized apically. In the recent decades, there has been increasing recognition of the existence of the intestinal cellular barrier. In the present review we focus on the role of the multidrug resistance-associated protein 2 (MRP2, ABCC2) in the apical membrane of the enterocytes, as an important component of this intestinal barrier, as well as on its regulation. We provide a detailed compilation of significant contributions demonstrating that MRP2 expression and function vary under relevant physiological and pathophysiological conditions. Because MRP2 activity modulates the availability and pharmacokinetics of many therapeutic drugs administered orally, their therapeutic efficacy and safety may vary as well. PMID:27109321

  14. Drug disposition in cystic fibrosis.

    PubMed

    Rey, E; Tréluyer, J M; Pons, G

    1998-10-01

    There are many pathological changes in patients with cystic fibrosis (CF) which can lead to alterations in drug disposition. Although, in patients with CF, the extent of drug absorption varies widely and the rate of absorption is slower, bioavailability is not altered. Plasma protein binding for the majority of drugs studied did not differ in patients with CF compared with control groups. The difference in volume of distribution of most drugs between patients with CF and healthy individuals vanished when corrected for lean body mass. Despite hepatic dysfunction, patients with CF have enhanced clearance of many, but not all, drugs. Phase I mixed-function oxidases are selectively affected: cytochrome P450 (CYP) 1A2 and CYP2C8 have enhanced activity, while other CYP isoforms such as CYP2C9 and CYP3A4 are unaffected. Increased phase II activities are also demonstrated: glucuronyl transferase, acetyl transferase (NAT1) and sulfotransferase. The increased hepatic clearance of drugs in the presence of CF may be the consequence of disease-specific changes in both enzyme activity and/or drug transport within the liver. The renal clearance (CLR) of many drugs in patients with CF is enhanced although there has been no pathological abnormality identified which could explain this finding: glomerular filtration rate and tubular secretion appear normal in patients with CF. The precise mechanisms for enhanced drug clearance in patients with CF remain to be elucidated. The optimisation of antibiotic therapy in patients with CF includes increasing the dose of beta-lactams by 20 to 30% and monitoring plasma concentrations of aminoglycosides. The appropriate dosage of quinolones has not been definitively established. PMID:9812180

  15. Drug eruption caused by the nonionic contrast medium iohexol. "Recall-like phenomenon" appearing on an area previously affected by herpes zoster.

    PubMed

    Matsumura, Takumi; Watanabe, Hideaki; Batchelor, Jonathan; Sueki, Hirohiko; Iijima, Masafumi

    2006-10-01

    We report a case of "recall-like phenomenon" caused by nonionic contrast medium. A 62-year-old woman suffering from postherpetic neuralgia developed erythematous plaques 12 h after an intercostal nerve block under X-ray guidance using iohexol (Omnipaque) as contrast medium. The erythematous plaques were preferentially located in the sites where she had experienced herpes zoster 4 months previously. The lesions cleared spontaneously leaving no pigmentation. Both patch testing and intradermal testing with iohexol and ioversol were positive. We postulate that local immunological changes in the skin, such as an increased number and/or accelerated activity of Langerhans cells and mast cells in the herpes zoster lesions, were responsible for this phenomenon. This "recall-like phenomenon", occurring preferentially in skin previously affected by herpes zoster, could facilitate understanding of the pathology of drug eruptions. PMID:17040501

  16. Effect of lapatinib on oral digoxin absorption in patients.

    PubMed

    Koch, Kevin M; Smith, Deborah A; Botbyl, Jeff; Arya, Nikita; Briley, Linda P; Cartee, Leanne; White, Jane Holshouser; Beyer, Jennifer; Dar, Mohammed M; Chung, Hyun Choel; Chu, Quincy; Bang, Yung-Jue

    2015-11-01

    The potential for an interaction between lapatinib and absorption of the P-glycoprotein (ABCB1) substrate digoxin at a therapeutic dose in breast cancer patients was characterized. Seventeen women with HER2-positive metastatic breast cancer received a single oral 0.5-mg dose of digoxin on days 1 and 9 and oral lapatinib 1500 mg once daily on days 2 through 9. Digoxin pharmacokinetic parameters were determined on day 1 (digoxin administration alone) and on day 9 (coadministration of lapatinib and digoxin), and parameters were compared to determine the effects of lapatinib on digoxin absorption. Concomitant medications that could affect ABCB1 were accounted for. Lapatinib 1500 mg/day increased digoxin absorption approximately 80%, implicating lapatinib inhibition of intestinal ABCB1-mediated efflux. In summary, coadministration of lapatinib with narrow therapeutic index drugs that are substrates of ABCB1 should be undertaken with caution and dose adjustment should be considered. PMID:27137717

  17. Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings

    PubMed Central

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xiao, Changqing; Zhao, Jingping

    2015-01-01

    Dysconnectivity hypothesis posits that schizophrenia is a disorder with dysconnectivity of the cortico-cerebellar-thalamic-cortical circuit (CCTCC). However, it remains unclear to the changes of the cerebral connectivity with the cerebellum in schizophrenia patients and unaffected siblings. Forty-nine patients with first-episode, drug-naive schizophrenia patients, 46 unaffected siblings of schizophrenia patients and 46 healthy controls participated in the study. Seed-based resting-state functional connectivity approach was employed to analyze the data. Compared with the controls, the patients and the siblings share increased default-mode network (DMN) seed – right Crus II connectivity. The patients have decreased right dorsal attention network (DAN) seed – bilateral cerebellum 4,5 connectivity relative to the controls. By contrast, the siblings exhibit increased FC between the right DAN seed and the right cerebellum 6 and right cerebellum 4,5 compared to the controls. No other abnormal connectivities (executive control network and salience network) are observed in the patients/siblings relative to the controls. There are no correlations between abnormal cerebellar-cerebral connectivities and clinical variables. Cerebellar-cerebral connectivity of brain networks within the cerebellum are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings. Increased DMN connectivity with the cerebellum may serve as potential endophenotype for schizophrenia. PMID:26608842

  18. Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings.

    PubMed

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xiao, Changqing; Zhao, Jingping

    2015-01-01

    Dysconnectivity hypothesis posits that schizophrenia is a disorder with dysconnectivity of the cortico-cerebellar-thalamic-cortical circuit (CCTCC). However, it remains unclear to the changes of the cerebral connectivity with the cerebellum in schizophrenia patients and unaffected siblings. Forty-nine patients with first-episode, drug-naive schizophrenia patients, 46 unaffected siblings of schizophrenia patients and 46 healthy controls participated in the study. Seed-based resting-state functional connectivity approach was employed to analyze the data. Compared with the controls, the patients and the siblings share increased default-mode network (DMN) seed - right Crus II connectivity. The patients have decreased right dorsal attention network (DAN) seed - bilateral cerebellum 4,5 connectivity relative to the controls. By contrast, the siblings exhibit increased FC between the right DAN seed and the right cerebellum 6 and right cerebellum 4,5 compared to the controls. No other abnormal connectivities (executive control network and salience network) are observed in the patients/siblings relative to the controls. There are no correlations between abnormal cerebellar-cerebral connectivities and clinical variables. Cerebellar-cerebral connectivity of brain networks within the cerebellum are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings. Increased DMN connectivity with the cerebellum may serve as potential endophenotype for schizophrenia. PMID:26608842

  19. Colloid Formation by Drugs in Simulated Intestinal Fluid

    PubMed Central

    2010-01-01

    Many organic molecules form colloidal aggregates in aqueous solution at micromolar concentrations. These aggregates promiscuously inhibit soluble proteins and are a major source of false positives in high-throughput screening. Several drugs also form colloidal aggregates, and there has been speculation that this may affect the absorption and distribution of at least one drug in vivo. Here we investigate the ability of drugs to form aggregates in simulated intestinal fluid. Thirty-three Biopharmaceutics Classification System (BCS) class II and class IV drugs, spanning multiple pharmacological activities, were tested for promiscuous aggregation in biochemical buffers. The 22 that behaved as aggregators were then tested for colloid formation in simulated intestinal fluid, a buffer mimicking conditions in the small intestine. Six formed colloids at concentrations equal to or lower than the concentrations reached in the gut, suggesting that aggregation may have an effect on the absorption and distribution of these drugs, and potentially others, in vivo. PMID:20426472

  20. Enhanced rectal absorption and reduced local irritation of the anti-inflammatory drug ethyl 4-biphenylylacetate in rats by complexation with water-soluble beta-cyclodextrin derivatives and formulation as oleaginous suppository.

    PubMed

    Arima, H; Kondo, T; Irie, T; Uekama, K

    1992-11-01

    To improve the rectal delivery of ethyl 4-biphenylylacetate (EBA), a prodrug of the anti-inflammatory drug 4-biphenylylacetic acid (BPAA), the use of highly water-soluble 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CyD) was investigated and compared with the use of the parent beta-cyclodextrin (beta-CyD). Among the three beta-CyDs, HP-beta-CyD was best at improving the rectal bioavailability of EBA in rats after single and multiple administrations of oleaginous suppositories (Witepsol H-5) containing the complexes. To gain insight into the enhancing effect of beta-CyDs, the absorption behaviors of EBA (observed by monitoring BPAA as an active metabolite of EBA) and beta-CyDs themselves were examined in vitro, in situ, and in vivo. The in situ recirculation study revealed that the complexed form of EBA was less absorbable from the rectal lumen in the solution state, but this disadvantageous effect of beta-CyDs was compensated in part by the inhibition of the bioconversion of EBA to BPAA. When beta-CyDs were coadministered with EBA in vivo, however, rather high amounts of HP-beta-CyD (approximately 26% of dose) and DM-beta-CyD (approximately 21% of dose), compared with beta-CyD (approximately 5% of dose), were absorbed from the rat rectum. Thus, the enhancement of rectal absorption of EBA in vivo can be explained by the facts that the hydrophilic beta-CyDs increased the release rate of EBA from the vehicle and stabilized EBA in the rectal lumen and that the drug was partly absorbed in the form of the complex.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1447717

  1. Effect of medium-chain glycerides (MGK) on the intestinal absorption and the hepatobiliary transport of bromthymol blue.

    PubMed

    Higaki, K; Kishimoto, I; Komatsu, H; Hashida, M; Sezaki, H

    1986-06-01

    The effect of medium chain glyceride (MGK) emulsion on the intestinal absorption and the biliary excretion of bromthymol blue (BTB) was investigated in rats. Extensive tissue accumulation of BTB was reduced when BTB was administered with MGK emulsion formulation. HCO-100, an emulsifier, was also important for the decrease in the tissue accumulation of BTB. The ratios of absorption percent to tissue accumulation percent and to free fraction, not contained in the droplet of emulsion, in MGK emulsion were much greater than that of the control. Pretreatment with BTB-free emulsion reduced BTB absorption under the control, although tissue accumulation was not affected. The absorption appeared to decrease with increase in the time of pretreatment. The effect of leaving treatment after pretreatment on the absorption of BTB was also investigated. With the increase in leaving time after pretreatment, reduced absorption tended to resume to the level of control. The change in monocaprylate content from 54 to 60% in MGK made a difference in BTB absorption and it was suggested that monocaprylate content in MGK was one of the significant factors of MGK emulsion on drug absorption. Bile recovery study was simultaneously carried out with an in situ recirculation experiment. The recovery of BTB into bile tended to decrease. The ratio of recovery percent of BTB into bile to the absorption percent of BTB also decreased extensively, which is possibly another effect of MGK on drug disposition. PMID:3761141

  2. Effect of added alkalizer and surfactant on dissolution and absorption of the potassium salt of a weakly basic poorly water-soluble drug.

    PubMed

    Mahjour, Majid; Kesisoglou, Filippos; Cruanes, Maria; Xu, Wei; Zhang, Dina; Maguire, Timothy J; Rosen, Lawrence A; Templeton, Allen C; Kress, Michael H

    2014-06-01

    Telcagepant potassium salt (MK-0974) is an oral calcitonin gene-related peptide receptor inhibitor investigated for the treatment of acute migraine. Under gastric pH conditions, the salt rapidly gels, then converts to an insoluble neutral form that creates an impervious shell on the tablet surface, resulting in a slow and variable release dissolution rate and poor bioavailability. Early attempts to develop a solid dosage form, including solid dispersion and nanosuspension formulations, resulted in low exposures in preclinical studies. Thus, a liquid-filled soft gelatin capsule (SGC) formulation (oblong 20) was used for clinical studies. However, a solid dosage form was desirable for commercialization. The slow dissolution of the tablet formulations was overcome by using a basifying agent, arginine, and inclusion of a nonionic surfactant, poloxamer 407. The combination of arginine and poloxamer in the formulation created a local transient basic microenvironment that promoted the dissolution of the salt and prevented rapid precipitation of the neutral form on the tablet surface to form the gel layer. The tablet formulation achieved fast absorption and comparable exposure to the SGC formulation. The final optimized 280 mg tablet formulation was successfully demonstrated to be bioequivalent to the 300 mg SGC formulation. PMID:24788413

  3. Drug Affected Babies: A Bibliography.

    ERIC Educational Resources Information Center

    Portland Public Schools, OR. Dept. of Research, Evaluation, and Testing.

    This 42-item annotated bibliography, represents a comprehensive effort to gather information on the educational problems of infant children of substance-abusing parents. Extensive searches were conducted in databases in the fields of education, medicine, social sciences, and the humanities. In particular, studies on the problems of "crack babies"…

  4. Drug absorption in vitro model: filter-immobilized artificial membranes. 2. Studies of the permeability properties of lactones in Piper methysticum Forst.

    PubMed

    Avdeef, A; Strafford, M; Block, E; Balogh, M P; Chambliss, W; Khan, I

    2001-12-01

    The assessment of transport properties of 23 drug and natural product molecules was made using the in vitro model based on filter-immobilized artificial membranes (filter-IAM), assembled from phosphatidylcholine in dodecane, in buffer solutions at pH 7.4. Five of the compounds were lactones extracted from the roots of the kava-kava plant. Experiments were designed to test the effects of stirring (0-600 rpm) during assays and the effects of varying the assay times (2-15 h). The highly mobile kava lactones permeated in the order dihydromethisticin (40)>yangonin (37)>kavain (34)>methisticin (32)>desmethoxyyangonin (26), the numbers in parentheses being the measured effective permeabilities in units of 10(-6) cm/s. By comparison, commercial drugs ranked: phenazopyridine (35)>testosterone (19)>propranolol (13)>ketoconazole (6.3)>piroxicam (2.2)>caffeine (1.7)>metoprolol (0.8)>terbutaline (0.01). In addition to permeability measurements, membrane retention of compounds was determined. Yangonin, desmethoxyyangonin, ketoconazole, and phenazopyridine were more than 60% retained by the artificial membranes containing phospholipids. Stirring during assay significantly increased the observed permeabilities for highly mobile molecules, but had minimal impact on the poorly permeable molecules. The influence of hydrogen bonding was explored by determining permeabilities using filters coated with dodecane free of phospholipids. In the filter-IAM method, concentrations were determined by microtitre plate UV spectrophotometry and by LC-MS. Higher-throughput was achieved with direct UV by the use of 96-well microtitre plate formats and with LC-MS by the use of cassette dosing (five-in-one). PMID:11684401

  5. Methadone maintenance reduces heroin- and cocaine-induced relapse without affecting stress-induced relapse in a rodent model of poly-drug use.

    PubMed

    Leri, Francesco; Tremblay, Annie; Sorge, Robert E; Stewart, Jane

    2004-07-01

    Although it is well established that methadone can be an effective treatment for opiate addiction, it is not clear how methadone maintenance affects cocaine use and cravings in individuals who self-administer both opiates and cocaine. In our attempt to explore the effect of methadone maintenance on the effects of cocaine, we first assessed the locomotor stimulatory effects of cocaine in rats maintained on methadone (0, 10, 20, or 30 mg/kg/day, via osmotic minipumps). Chronic methadone elevated baseline locomotion in a dose-dependent manner and did not reduce the direct stimulatory effects of cocaine (5 mg/kg). We then investigated the effects of the highest methadone maintenance dose (30 mg/kg/day) on heroin and cocaine seeking in extinction, and when it was precipitated by exposure to heroin, cocaine, or foot-shock stress in rats trained to self-administer both drugs in the same experimental context (heroin 0.05 mg/kg/inf; cocaine 0.5 mg/kg/inf, eight 3-h sessions each). In tests of reinstatement, rats responded selectively on the appropriate drug-associated lever after priming injections of heroin (0.25 mg/kg) or cocaine (20 mg/kg). Methadone maintenance blocked both cocaine- and heroin-induced reinstatement, but not stress-induced reinstatement, which was not lever selective. These results suggest that although methadone maintenance may not reduce the direct stimulatory effects of cocaine, it has the potential to reduce both spontaneous and cocaine-primed cocaine-seeking behavior. PMID:15039768

  6. Attitudes Toward Diabetes Affect Maintenance of Drug-Free Remission in Patients With Newly Diagnosed Type 2 Diabetes After Short-Term Continuous Subcutaneous Insulin Infusion Treatment

    PubMed Central

    Chen, Ailing; Huang, Zhimin; Wan, Xuesi; Deng, Wanping; Wu, Jiyan; Li, Licheng; Cai, Qiuling; Xiao, Haipeng; Li, Yanbing

    2012-01-01

    OBJECTIVE Short-term intensive insulin treatment in patients with newly diagnosed type 2 diabetes can improve β-cell function and insulin sensitivity, which results in long-term remission without need for further antidiabetes medication. Patient attitudes toward their disease were assessed using the Diabetes Care Profile (DCP) tool to evaluate the potential impact on maintaining long-term remission. RESEARCH DESIGN AND METHODS Newly diagnosed patients with type 2 diabetes were recruited and treated with continuous subcutaneous insulin infusion (CSII) for 2–3 weeks. They were also invited to participate in diabetes self-management intervention during hospitalization and complete a DCP questionnaire on attitudes toward diabetes at baseline and 3, 6, and 12 months after suspension of CSII. RESULTS Near normoglycemia was achieved by 118 patients after short-term CSII, with 65 remaining in drug-free remission for >1 year. They had significantly better glycemic control and greater restoration of acute insulin response after CSII as well as higher educational attainment compared with patients experiencing relapse. They also achieved higher scores in positive attitude, (belief in) importance of care, care ability, self-care adherence, and less negative attitude. Differences between the two groups became greater over time. Cox proportional hazards model analysis indicated that greater self-care adherence (hazard ratio 0.184, P < 0.001) and homeostasis model assessment of insulin resistance before treatment (0.854, P = 0.053) were independent predictors for long-term remission, whereas elevated 2-h postprandial plasma glucose after CSII (1.156, P = 0.015) was a risk factor for relapse. CONCLUSIONS Attitudes toward diabetes affect long-term drug-free remission in newly diagnosed patients with type 2 diabetes after short-term CSII. PMID:22228747

  7. Prescription Drugs

    MedlinePlus

    ... body, especially in brain areas involved in the perception of pain and pleasure. Prescription stimulants , such as ... of drug that causes changes in your mood, perceptions, and behavior can affect judgment and willingness to ...

  8. [Study on intestinal absorption features of oligosaccharides in Morinda officinalis How. with sigle-pass perfusion].

    PubMed

    Deng, Shao-Dong; Zhang, Peng; Lin, Li; Xiao, Feng-Xia; Lin, Jing-Ran

    2015-01-01

    To study the in situ intestinal absorption of five oligosaccharides contained in Morinda officinalis How. (sucrose, kestose, nystose, 1F-Fructofuranosyinystose and Bajijiasu). The absorption of the five oligosaccharides in small intestine (duodenum, jejunum and ileum) and colon of rats and their contents were investigated by using in situ single-pass perfusion model and HPLC-ELSD. The effects of drug concentration, pH in perfusate and P-glycoprotein inhibitor on the intestinal absorption were investigated to define the intestinal absorption mechanism of the five oligosaccharides in rats. According to the results, all of the five oligosaccharides were absorbed in the whole intestine, and their absorption rates were affected by the pH of the perfusion solution, drug concentration and intestinal segments. Verapamil Hydrochloride could significantly increase the absorptive amount of sucrose and Bajijiasu, suggesting sucrose and Bajijiasu are P-gp's substrate. The five oligosaccharides are absorbed mainly through passive diffusion in the intestinal segments, without saturated absorption. They are absorbed well in all intestines and mainly in duodenum and jejunum. PMID:25993803

  9. Drug Reactions

    MedlinePlus

    ... using any of these products. Some types of food may also cause adverse drug reactions. For example, grapefruit and grapefruit juice, as well as alcohol and caffeine, may affect how drugs work. Every time your doctor ... interactions with any foods or beverages. What about medicines I've used ...

  10. Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs.

    PubMed

    Zaccara, Gaetano; Perucca, Emilio

    2014-12-01

    Interactions between antiepileptic drugs, or between antiepileptic drugs and other drugs, can be pharmacokinetic or pharmacodynamic in nature. Pharmacokinetic interactions involve changes in absorption, distribution or elimination, whereas pharmacodynamic interactions involve synergism and antagonism at the site of action. Most clinically important interactions of antiepileptic drugs result from induction or inhibition of drug metabolism. Carbamazepine, phenytoin, phenobarbital and primidone are strong inducers of cytochrome P450 and glucuronizing enzymes (as well as P-glycoprotein) and can reduce the efficacy of co-administered medications such as oral anticoagulants, calcium antagonists, steroids, antimicrobial and antineoplastic drugs through this mechanism. Oxcarbazepine, eslicarbazepine acetate, felbamate, rufinamide, topiramate (at doses ≥ 200 mg/day) and perampanel (at doses ≥ 8 mg/day) have weaker inducing properties, and a lower propensity to cause interactions mediated by enzyme induction. Unlike enzyme induction, enzyme inhibition results in decreased metabolic clearance of the affected drug, the serum concentration of which may increase leading to toxic effects. Examples of important interactions mediated by enzyme inhibition include the increase in the serum concentration of phenobarbital and lamotrigine caused by valproic acid. There are also interactions whereby other drugs induce or inhibit the metabolism of antiepileptic drugs, examples being the increase in serum carbamazepine concentration by erythromycin, and the decrease in serum lamotrigine concentration by oestrogen-containing contraceptives. Pharmacodynamic interactions between antiepileptic drugs may also be clinically important. These interactions can have potentially beneficial effects, such as the therapeutic synergism of valproic acid combined with lamotrigine, or adverse effects, such as the reciprocal potentiation of neurotoxicity observed in patients treated with a combination of

  11. Serum Immunoglobulin G Levels to Porphyromonas gingivalis Peptidylarginine Deiminase Affect Clinical Response to Biological Disease-Modifying Antirheumatic Drug in Rheumatoid Arthritis

    PubMed Central

    Kobayashi, Tetsuo; Ito, Satoshi; Kobayashi, Daisuke; Shimada, Atsushi; Narita, Ichiei; Murasawa, Akira; Nakazono, Kiyoshi; Yoshie, Hiromasa

    2016-01-01

    Objectives To determine whether serum immunity to Porphyromonas gingivalis peptidylarginine deiminase (PPAD) affects the clinical response to biological disease-modifying antirheumatic drug (bDMARD) in patients with rheumatoid arthritis (RA). Methods In a retrospective study, rheumatologic and periodontal conditions of 60 patients with RA who had been treated with conventional synthetic DMARD were evaluated before (baseline) and after 3 and 6 months of bDMARD therapy. After serum levels of anti-PPAD immunoglobulin G (IgG) were determined at baseline, the patients were respectively divided into two groups for high and low anti-PPAD IgG titers according to the median measurements. Genotypes at 8 functional single nucleotide polymorphisms (SNPs) related to RA were also determined. Results After 3 and 6 months of therapy, patients with low anti-PPAD IgG titers showed a significantly greater decrease in changes in the Disease Activity Score including 28 joints using C-reactive protein (DAS28-CRP) (P = 0.04 for both) and anti-cyclic citrullinated peptide (CCP) IgG levels (P = 0.03 and P = 0.04) than patients with high anti-PPAD IgG titers, although these parameter values were comparable at baseline. The anti-PPAD IgG titers were significantly positively correlated with changes in the DAS28-CRP (P = 0.01 for both) and the anti-CCP IgG levels (P = 0.02 for both) from baseline to 3 and 6 months later. A multiple regression analysis revealed a significantly positive association between the anti-PPAD IgG titers and changes in the DAS28-CRP after 6 months of bDMARD therapy (P = 0.006), after adjusting for age, gender, smoking, periodontal condition, and RA-related SNPs. Conclusion The serum IgG levels to PPAD affect the clinical response to bDMARD in patients with RA. PMID:27111223

  12. Orotate phosphoribosyltransferase localizes to the Golgi complex and its expression levels affect the sensitivity to anti-cancer drug 5-fluorouracil.

    PubMed

    Hozumi, Yasukazu; Tanaka, Toshiaki; Nakano, Tomoyuki; Matsui, Hirooki; Nasu, Takashi; Koike, Shuji; Kakehata, Seiji; Ito, Tsukasa; Goto, Kaoru

    2015-01-01

    Orotate phosphoribosyltransferase (OPRT) is engaged in de novo pyrimidine synthesis. It catalyzes oronitine to uridine monophosphate (UMP), which is used for RNA synthesis. De novo pyrimidine synthesis has long been known to play an important role in providing DNA/RNA precursors for rapid proliferative activity of cancer cells. Furthermore, chemotherapeutic drug 5-fluorouracil (5-FU) is taken up into cancer cells and is converted to 5-fluoro-UMP (FUMP) by OPRT or to 5-fluoro-dUMP (FdUMP) through intermediary molecules by thymidine phosphorylase. These 5-FU metabolites are misincorporated into DNA/RNA, thereby producing dysfunction of these information processing. However, it remains unclear how the subcellular localization of OPRT and how its variable expression levels affect the response to 5-FU at the cellular level. In this study, immunocytochemical analysis reveals that OPRT localizes to the Golgi complex. Results also show that not only overexpression but also downregulation of OPRT render cells susceptible to 5-FU exposure, but it has no effect on DNA damaging agent doxorubicin. This study provides clues to elucidate the cellular response to 5-FU chemotherapy in relation to the OPRT expression level. PMID:26700594

  13. New Approaches for Working with Children and Families Involved in Family Treatment Drug Courts: Findings from the Children Affected by Methamphetamine Program.

    PubMed

    Rodi, Michael S; Killian, Colleen M; Breitenbucher, Philip; Young, Nancy K; Amatetti, Sharon; Bermejo, Russ; Hall, Erin

    2015-01-01

    This is a descriptive study of the Children Affected by Methamphetamine (CAM) grant program, a federally funded effort to improve outcomes through the addition of targeted interventions for 1,940 families, including 2,596 adults and 4,245 children involved in 12 diverse Family Treatment Drug Courts (FTDCs) located across six U.S. states. The majority were children of parents with a primary methamphetamine use disorder. Findings reflect grantees' reporting on 18 performance indicators of child safety and permanency, adult recovery, and family well-being. Additional information gleaned from grantees' biannual reports provides insights about program implementation. Results, drawn from this large and complex dataset, indicate that comprehensively addressing families' needs is associated with better outcomes than those experienced by similarly situated families in grantees' communities and the nation overall. In addition to describing common program components and outcomes, this article presents important lessons learned about implementing evidence-based children's services in the FTDC context, as well as future directions for research and evaluation in this arena. PMID:26827483

  14. Pollution-induced community tolerance to non-steroidal anti-inflammatory drugs (NSAIDs) in fluvial biofilm communities affected by WWTP effluents.

    PubMed

    Corcoll, Natàlia; Acuña, Vicenç; Barceló, Damià; Casellas, Maria; Guasch, Helena; Huerta, Belinda; Petrovic, Mira; Ponsatí, Lidia; Rodríguez-Mozaz, Sara; Sabater, Sergi

    2014-10-01

    We assessed the tolerance acquired by stream biofilms to two non-steroidal anti-inflammatory-drugs (NSAIDs), ibuprofen and diclofenac. Biofilms came from a stream system receiving the effluent of a wastewater treatment plant (WWTP). The response of biofilms from a non-polluted site (upstream the WWTP) was compared to that of others downstream with relevant and decreasing levels of NSAIDs. Experiments performed in the laboratory following the pollution-induced community tolerance (PICT) approach determined that both algae and microbial communities from biofilms of the sites exposed at the highest concentrations of ibuprofen and diclofenac acquired tolerance to the mixture of these NSAIDs occurring at the sites. It was also observed that the chronic pollution by the WWTP effluent affected the microbial metabolic profile, as well as the structure of the algal community. The low (at ng L(-1) level) but chronic inputs of pharmaceuticals to the river ecosystem result in tolerant communities of lower diversity and altered microbial metabolism. PMID:25048905

  15. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs.

    PubMed

    Porter, Christopher J H; Trevaskis, Natalie L; Charman, William N

    2007-03-01

    Highly potent, but poorly water-soluble, drug candidates are common outcomes of contemporary drug discovery programmes and present a number of challenges to drug development - most notably, the issue of reduced systemic exposure after oral administration. However, it is increasingly apparent that formulations containing natural and/or synthetic lipids present a viable means for enhancing the oral bioavailability of some poorly water-soluble, highly lipophilic drugs. This Review details the mechanisms by which lipids and lipidic excipients affect the oral absorption of lipophilic drugs and provides a perspective on the possible future applications of lipid-based delivery systems. Particular emphasis has been placed on the capacity of lipids to enhance drug solubilization in the intestinal milieu, recruit intestinal lymphatic drug transport (and thereby reduce first-pass drug metabolism) and alter enterocyte-based drug transport and disposition. PMID:17330072

  16. Pharmacokinetic drug interactions with phenytoin (Part I).

    PubMed

    Nation, R L; Evans, A M; Milne, R W

    1990-01-01

    Phenytoin, which is used primarily as an anticonvulsant agent, has a relatively low therapeutic index, and monitoring of plasma phenytoin concentration is often used to help guide therapy. It has properties which predispose it to an involvement in pharmacokinetic interactions, a large number of which have been reported. These properties include: low aqueous solubility and slow rate of gastrointestinal absorption; a relatively high degree of plasma protein binding; a clearance that is non-linear due to saturable oxidative biotransformation; and the ability to induce hepatic microsomal enzymes. Because of its narrow therapeutic range, drug interactions leading to alterations in plasma phenytoin concentration may be clinically important. Such interactions have often been reported initially as either cases of phenytoin intoxication or of decreased effectiveness. Drugs may modify the pharmacokinetics of phenytoin by altering its absorption, plasma protein binding, or hepatic biotransformation; alterations in the absorption and/or biotransformation may lead to changes in both the unbound plasma phenytoin concentration and, as a result, the clinical effect. Preparations which may decrease the gastrointestinal absorption of phenytoin include nutritional formulae and charcoal. There are many reports of drugs which may increase (e.g. folic acid, dexamethasone and rifampicin) or decrease (e.g. valproic acid, sulthiame, isoniazid, cimetidine, phenylbutazone, chloramphenicol and some sulphonamides) the metabolism of phenytoin. It is important to bear in mind that, as a result of its non-linear clearance, changes in phenytoin absorption and/or biotransformation will lead to more than proportionate changes in plasma drug concentration. Drugs which may displace phenytoin from plasma albumin include valproic acid, salicylic acid, phenylbutazone and some sulphonamides. Although an alteration in the unbound fraction of phenytoin in plasma would not, in itself, be expected to alter

  17. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  18. Drug development of intranasally delivered peptides.

    PubMed

    Campbell, Catherine; Morimoto, Bruce H; Nenciu, Daniela; Fox, Anthony W

    2012-04-01

    Intranasal drug delivery has attracted increasing attention as a noninvasive route of administration for therapeutic proteins and peptides. The delivery of therapeutic peptides through the nasal route provides an alternative to intravenous or subcutaneous injections. This review highlights the drug-development considerations unique to nasal therapeutics and discusses some of the factors and strategies that affect and can improve nasal absorption of peptides. The selectivity and good safety profile typical of peptide therapeutics, along with the dose limitation for intranasal administration, can provide challenges in drug development. Therefore, nasal peptide therapeutics often require special considerations in the nonclinical safety evaluations, such as determining drug exposure in the context of the maximum feasible dose in order to adequately prepare nasal products for clinical studies. PMID:22834082

  19. Naproxen, a Nonsteroidal Anti-Inflammatory Drug, Can Affect Daily Hypobaric Hypoxia-Induced Alterations of Monoamine Levels in Different Areas of the Brain in Male Rats.

    PubMed

    Goswami, Ananda Raj; Dutta, Goutam; Ghosh, Tusharkanti

    2016-06-01

    Goswami, Ananda Raj, Goutam Dutta, and Tusharkanti Ghosh. Naproxen, a nonsteroidal anti-inflammatory drug can affect daily hypobaric hypoxia-induced alterations of monoamine levels in different areas of the brain in male rats. High Alt Med Biol. 17:133-140, 2016.-The oxidative stress (OS)-induced prostaglandin (PG) release, in hypobaric hypoxic (HHc) condition, may be linked with the changes of brain monoamines. The present study intends to explore the changes of monoamines in hypothalamus (H), cerebral cortex (CC), and cerebellum (CB) along with the motor activity in rats after exposing them to simulated hypobaric condition and the role of PGs on the daily hypobaric hypoxia (DHH)-induced alteration of brain monoamines by administering, an inhibitor of PG synthesis, naproxen. The rats were exposed to a decompression chamber at 18,000 ft for 8 hours per day for 6 days after administration of vehicle or naproxen (18 mg/kg body wt.). The monoamine levels (epinephrine, E; norepinephrine, NE; dopamine, DA; and 5-hydroxytryptamine, 5-HT) in CC, CB, and H were assayed by high-performance liquid chromatography (HPLC) with electrochemical detection, and the locomotor behavior was measured by open field test. The NE and DA levels were decreased in CC, CB, and H of the rat brain in HHc condition. The E and 5-HT levels were decreased in CC, but in H and CB, they remained unaltered in HHc condition. These DHH-induced changes of monoamines in brain areas were prevented after administration of naproxen in HHc condition. The locomotor behavior remained unaltered in HHc condition and after administration of naproxen in HHc condition. The DHH-induced changes of monoamines in the brain in HHc condition are probably linked with PGs that may be induced by OS. PMID:26894935

  20. Transcriptome modification of white blood cells after dietary administration of curcumin and non-steroidal anti-inflammatory drug in osteoarthritic affected dogs.

    PubMed

    Colitti, M; Gaspardo, B; Della Pria, A; Scaini, C; Stefanon, Bruno

    2012-06-30

    The dietary effect of non-steroidal anti-inflammatory drug (NSAID) or curcumin on the gene expression of peripheral white blood cells in osteoarthritis (OA) affected dogs was investigated using a 44K oligo microarray. Two groups of OA dogs and one group of healthy dogs (6 dogs each) were clinically evaluated and blood was sampled before (T0) and after 20days (T20) of dietary administration of NSAID (NSAID group) or curcumin (CURCUMIN group). Differentially expressed genes (P<0.05) in comparison to the control group were identified with MeV software and were functional annotated and monitored for signaling pathways and candidate biomarkers using the Ingenuity Pathways Analysis (IPA). After 20days of treatment, the differentially expressed transcripts significantly (P<0.05) decreased from 475 to 173 in NSAID group and from 498 to 141 in CURCUMIN group. Genes involved in "inflammatory response" and in "connective tissue development and function" dramatically decreased at T20. Other genes, included in "cellular movement", "cellular compromise" and "immune cell trafficking", were differentially expressed at T0 but not at T20 in both groups. Specific molecular targets of CURCUMIN, not observed for NSAID, were the IkB up regulation in the "TNRF1 signaling pathway" and IL18 down regulation in the "role of cytokines in mediating communication between immune cells". The activity of CURCUMIN was also evidenced from the inhibition of macrophages proliferation (HBEGF), related to a strong down regulation of TNFα and to activation of fibrinolysis (SERPINE1). The results would suggest that curcumin offers a complementary antinflammatory support for OA treatment in dogs. PMID:22591841

  1. Systems Pharmacology in Small Molecular Drug Discovery.

    PubMed

    Zhou, Wei; Wang, Yonghua; Lu, Aiping; Zhang, Ge

    2016-01-01

    Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity), target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level. PMID:26901192

  2. Systems Pharmacology in Small Molecular Drug Discovery

    PubMed Central

    Zhou, Wei; Wang, Yonghua; Lu, Aiping; Zhang, Ge

    2016-01-01

    Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity), target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level. PMID:26901192

  3. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    PubMed Central

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  4. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation.

    PubMed

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10(-6) cm/sec, followed by amodiaquine around 20 x 10(-6) cm/sec; both mefloquine and artesunate were around 10 x 10(-6) cm/sec. Methylene blue was between 2 and 6 x 10(-6) cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  5. Use of transdermal drug formulations in the elderly.

    PubMed

    Kaestli, Laure-Zoé; Wasilewski-Rasca, Anne-Florence; Bonnabry, Pascal; Vogt-Ferrier, Nicole

    2008-01-01

    Transdermal drug delivery systems are pharmaceutical forms designed to administer a drug through the skin to obtain a systemic effect. They ensure a constant rate of drug administration and a prolonged action. Several different types of transdermal delivery devices are available on the market. They are either matrix or reservoir systems and their main current uses are to treat neurological disorders, pain and coronary artery disease, and as hormone replacement therapy. Transdermal drug administration has a number of advantages compared with the oral route: it avoids gastrointestinal absorption and hepatic first-pass metabolism, minimizes adverse effects arising from peak plasma drug concentrations and improves patient compliance. Compared with the parenteral route, transdermal administration entails no risk of infection. For elderly people, who are often polymedicated, transdermal drug delivery can be a good alternative route of administration. Transdermal absorption depends on passive diffusion through the different layers of the skin. As skin undergoes many structural and functional changes with increasing age, it would be useful to know whether these alterations affect the transdermal diffusion of drugs. Studies have shown that age-related changes in hydration and lipidic structure result in an increased barrier function of the stratum corneum only for relatively hydrophilic compounds. In practice, no significant differences in absorption of drugs from transdermal delivery systems have been demonstrated between young and old individuals. The need for dose adaptation in elderly patients using transdermal drug delivery systems is therefore not related to differences in skin absorption but rather to age-related cardiovascular, cerebral, hepatic and/or renal compromise, and to ensuing geriatric pharmacokinetic and pharmacodynamic changes. PMID:18361538

  6. “First, do no harm”: legal guidelines for health programmes affecting adolescents aged 10–17 who sell sex or inject drugs

    PubMed Central

    Conner, Brendan

    2015-01-01

    Introduction There is a strong evidence base that the stigma, discrimination and criminalization affecting adolescent key populations (KPs) aged 10–17 is intensified due to domestic and international legal constructs that rely on law-enforcement-based interventions dependent upon arrest, pre-trial detention, incarceration and compulsory “rehabilitation” in institutional placement. While there exists evidence and rights-based technical guidelines for interventions among older cohorts, these guidelines have not yet been embraced by international public health actors for fear that international law applies different standards to adolescents aged 10–17 who engage in behaviours such as selling sex or injecting drugs. Discussion As a matter of international human rights, health, juvenile justice and child protection law, interventions among adolescent KPs aged 10–17 must not involve arrest, prosecution or detention of any kind. It is imperative that interventions not rely on law enforcement, but instead low-threshold, voluntary services, shelter and support, utilizing peer-based outreach as much as possible. These services must be mobile and accessible, and permit alternatives to parental consent for the provision of life-saving support, including HIV testing, treatment and care, needle and syringe programmes, opioid substitution therapy, safe abortions, antiretroviral therapy and gender-affirming care and hormone treatment for transgender adolescents. To ensure enrolment in services, international guidance indicates that informed consent and confidentiality must be ensured, including by waiver of parental consent requirements. To remove the disincentive to health practitioners and researchers to engaging with adolescent KPs aged 10–17 government agencies and ethical review boards are advised to exempt or grant waivers for mandatory reporting. In the event that, in violation of international law and guidance, authorities seek to involuntarily place adolescent

  7. Adverse drug reactions in veterinary patients associated with drug transporters.

    PubMed

    Mealey, Katrina L

    2013-09-01

    For many drugs used in veterinary practice, plasma and tissue concentrations are highly dependent on the activity of drug transporters. This article describes how functional changes in drug transporters, whether mediated by genetic variability or drug-drug interactions, affect drug disposition and, ultimately, drug safety and efficacy in veterinary patients. A greater understanding of species, breed, and individual (genetic) differences in drug transporter function, as well as drug-drug interactions involving drug transporters, will result in improved strategies for drug design and will enable veterinarians to incorporate individualized medicine in their practices. PMID:23890239

  8. Drugs and Young People

    MedlinePlus

    Drug abuse is a serious public health problem. It affects almost every community and family in some way. Drug abuse in children and teenagers may pose a ... of young people may be more susceptible to drug abuse and addiction than adult brains. Abused drugs ...

  9. “They Don’t Look at What Affects Us”: The Role of Ecodevelopmental Factors on Alcohol and Drug Use among Latinos with Physical Disabilities

    PubMed Central

    Cordova, David; Parra-Cardona, J. Ruben; Blow, Adrian; Johnson, Deborah J.; Prado, Guillermo; Fitzgerald, Hiram E.

    2014-01-01

    Objectives Latinos with disabilities disproportionately report substance use, including binge drinking and drug use. Ecodevelopmental factors, including socioeconomic patterning of poverty, social exclusion and post-colonial racism, have been shown to impact alcohol and drug use. However, this line of research remains under-developed among Latinos with disabilities. The purpose of this study was to obtain rich descriptions of the role of ecodevelopmental factors, including family and community, on alcohol and drug use among Latinos with physical disabilities. Methods We utilized a community-based participatory research design, in conjunction with an innovative methodology referred to as photovoice. Three rounds of photography and focus group interviews were conducted with a total of 17 focus groups. Reflections in each focus group interview were aloud and digitally audiotaped. A total of 28 participants 19–35 years of age (mean age= 27.65, SD= 5.48) participated in each round of photography and focus group interviews. Data analyses followed the tenets of descriptive phenomenology. Results Findings highlight ecodevelopmental family and community risk and protective factors. At the family level, participants reflected on the ways in which family functioning, including family support, communication and cohesion, can serve as risk and promotive factors for alcohol and drug use. Additionally, participants described in detail how experiences of poverty, stigma and discrimination, violence, accessibility to alcohol and drugs, accessibility for persons with disabilities, transportation, community support and cohesion, and access to health and mental health services constitute risk and promotive factors at the community level. Conclusion Findings are suggestive of how ecodevelopmental family and community factors might increase the risk for alcohol and drug use among Latinos with physical disabilities. From this qualitative research, we derive a series of testable

  10. Neuropathy secondary to drugs

    MedlinePlus

    Neuropathy secondary to drugs is a loss of sensation or movement in a part of the body ... weakness. Many medicines may affect the development of neuropathy, including: Heart or blood pressure drugs: Amiodarone Hydralazine ...

  11. Drug-pyridoxal phosphate interactions.

    PubMed

    Ebadi, M; Gessert, C F; Al-Sayegh, A

    1982-01-01

    In this review it has been pointed out that vitamin B6 and its vitamers can be involved in many interactions with a number of drugs, as well as with the actions of various endocrines and neurotransmitters. Nutritional deficiencies, especially of vitamins and proteins, can affect the manner in which drugs undergo biotransformation, and thereby may also modify the therapeutic efficacy of certain drugs. The differences between nutritional vitamin B6 deficiency and the hereditary disorder producing pyridoxine dependency are discussed. In addition to a pyridoxine deficiency being able to adversely affect drug actions, the improper supplementation with vitamin B6 can in some instances also adversely affect drug efficacy. A decrease by pyridoxine in the efficacy of levodopa used in the treatment of Parkinsonism is an example. The interrelationships and enzymatic interconversions among pyridoxine vitamers, both phosphorylated and non-phosphorylated, are briefly discussed, particularly regarding their pharmacokinetic properties. The ways in which the normal biochemical functions of vitamin B6 may be interfered with by various drugs are reviewed. (1) The chronic administration of isoniazid for the prevention or treatment of tuberculosis can produce peripheral neuropathy which can be prevented by the concurrent administration of pyridoxine. An acute toxic overdose of isoniazid causes generalized convulsions, and the intravenous administration of pyridoxine hydrochloride will prevent or stop these seizures. (2) The acute ingestion of excessive monosodium glutamate will, in some individuals, cause a group of symptoms including among others headache, weakness, stiffness, and heartburn, collectively known as the 'Chinese Restaurant Syndrome.' These symptoms can be prevented by prior supplementation with vitamin B6. The beneficial effect is ascribed to the correction of a deficiency in the activity of glutamic oxaloacetic transaminase, an enzyme that is dependent on pyridoxal

  12. Enhancement of transdermal absorption by switching iontophoresis.

    PubMed

    Ishikawa, Osamu; Kato, Yoshinori; Onishi, Hiraku; Nagai, Tsuneji; Machida, Yoshiharu

    2002-12-01

    The enhancing effect of switching iontophoresis on transdermal absorption of phthalic acid (PA), benzoic acid (BA), salicylic acid (SA), p-phenylenediamine (PD), aniline (AN) and verapamil (VR) and its mechanism were examined. An electric current with pulsed waveform (4 kHz, 50% duty) was passed through the skin for 2 h at 10 V. Iontophoretic application was carried out with switching at intervals of 5, 10 and 20 min, or without switching. Each drug solution was injected into the donor side of the cell, and phosphate buffer (pH 7.4) was injected into the receiver side. Transport of PA, BA and VR was affected by switching the polarity of electrodes but no effect was observed on that of SA, PD and AN. Cumulative amount permeated and apparent permeability coefficients were apparently high at switching intervals with a short period. The partition coefficient suggested that there was no interrelation between the affinity for skin and the permeability of each drug. The resistance values of PA and glucose were low at intervals of 5 min suggesting the participation of enhanced hydration of the skin. These results suggested that enhancement of skin hydration plays an important role in the enhancing effect of switching iontophoresis on skin permeation. PMID:12433436

  13. A Growth Curve Analysis of the Joint Influences of Parenting Affect, Child Characteristics and Deviant Peers on Adolescent Illicit Drug Use

    ERIC Educational Resources Information Center

    Pires, Paulo; Jenkins, Jennifer M.

    2007-01-01

    This study purports that parental rejection and warmth are critical to the development of adolescent drug use, and investigates a model that also considers children's vulnerability and deviant peer affiliations. It tests mediation through the proximal risk factor of deviant peers. Poisson growth curve modeling was used to examine participants from…

  14. Does the theory-driven program affect the risky behavior of drug injecting users in a healthy city? A quasi-experimental study

    PubMed Central

    Karimy, Mahmood; Abedi, Ahmad Reza; Abredari, Hamid; Taher, Mohammad; Zarei, Fatemeh; Rezaie Shahsavarloo, Zahra

    2016-01-01

    Background: The horror of HIV/AIDS as a non-curable, grueling disease is a destructive issue for every country. Drug use, shared needles and unsafe sex are closely linked to the transmission of HIV/AIDS. Modification or changing unhealthy behavior through educational programs can lead to HIV prevention. The aim of this study was to evaluate the efficiency of theory-based education intervention on HIV prevention transmission in drug addicts. Methods: In this quasi-experimental study, 69 male drug injecting users were entered in to the theory- based educational intervention. Data were collected using a questionnaire, before and 3 months after four sessions (group discussions, lecture, film displaying and role play) of educational intervention. Results: The findings signified that the mean scores of constructs (self-efficacy, susceptibility, severity and benefit) significantly increased after the educational intervention, and the perceived barriers decreased (p< 0.001). Also, the history of HIV testing was reported to be 9% before the intervention, while the rate increased to 88% after the intervention. Conclusion: The present research offers a primary founding for planning and implementing a theory based educational program to prevent HIV/AIDS transmission in drug injecting addicts. This research revealed that health educational intervention improved preventive behaviors and the knowledge of HIV/AIDS participants. PMID:27390684

  15. Antitumor drugs as photochemotherapeutic agents

    NASA Astrophysics Data System (ADS)

    Andreoni, Alessandra; Colasanti, Alberto; Kisslinger, Annamaria; Malatesta, Vincenzo; Mastrocinque, Michele; Roberti, Giuseppe

    1991-11-01

    Irradiation with 86 J/cm2 of cultures of Fisher-rate thyroid cells (FRTL5) in the presence of daunomycin derivatives at wavelengths between 488 and 595 nm i.e., in the visible- absorption bands of these drugs, is shown to enhance their cytotoxicity. Daunomycin, its 4- demethoxy derivative, 5-iminodaunomycin, and two amino-substituted 4-demethoxy derivatives of daunomycin are tested. While a 2-h exposure to the drugs in the dark produces 50 short-term cell mortality at dosages (LD50) in the range 23 to 138 (mu) g/ml, irradiation administered during the cell exposure to the drugs is found to lower the LD50 values down to the range 45 to 289 ng/ml. Furthermore, while the LD50 values for all drugs in the absence of photoactivation are similar, if light is administered those for the 4- demethoxy compounds are lowered by 3 orders of magnitude and those for the other derivatives by 2 orders of magnitude. Microfluorimetric investigations reveal that photoactivation causes fading of the drug fluorescence in the perinuclear cytoplasm. The effect is more pronounced for drugs with higher photosensitizing properties. The nonfluorescent photoproducts which are formed in the cells during photoactivation exhibit a cytotoxic activity that is, at long term, lower than that of the original drug. The authors cannot yet assess which excited-state property of anthracyclines plays the key role in the photosensitized reaction(s) responsible for both short-term cell kill and long-term toxic effects. The show, however, that such property is strongly affected by the removal of the methoxy group from the C4 position.

  16. Can access limits on sales representatives to physicians affect clinical prescription decisions? A study of recent events with diabetes and lipid drugs.

    PubMed

    Chressanthis, George A; Khedkar, Pratap; Jain, Nitin; Poddar, Prashant; Seiders, Michael G

    2012-07-01

    The authors explored to what extent important medical decisions by practitioners can be influenced by pharmaceutical representatives and, in particular, whether restricting such access could delay appropriate changes in clinical practice. Medical practices were divided into four categories based on the degree of sales representative access to clinicians: very low, low, medium, and high from a database compiled by ZS Associates called AccessMonitor (Evanston, IL) used extensively by many pharmaceutical companies. Clinical decisions of 58,647 to 72,114 physicians were statistically analyzed using prescription data from IMS Health (Danbury, CT) in three critical areas: an innovative drug for type 2 diabetes (sitagliptin), an older diabetes drug with a new Food and Drug Administration-required black box warning for cardiovascular safety (rosiglitazone), and a combination lipid therapy that had reported negative outcomes in a clinical trial (simvastatin+ezetimbe). For the uptake of the new diabetes agent, the authors found that physicians with very low access to representatives had the lowest adoption of this new therapy and took 1.4 and 4.6 times longer to adopt than physicians in the low- and medium-access restriction categories, respectively. In responding to the black box warning for rosiglitazone, the authors found that physicians with very low access were 4.0 times slower to reduce their use of this treatment than those with low access. Likewise, there was significantly less response in terms of changing prescribing to the negative news with the lipid therapy for physicians in more access-restricted offices. Overall, cardiologists were the most responsive to information changes relative to primary care physicians. These findings emphasize that limiting access to pharmaceutical representatives can have the unintended effect of reducing appropriate responses to negative information about drugs just as much as responses to positive information about innovative

  17. Drugs that may cause impotence

    MedlinePlus

    Impotence caused by medications; Drug-induced erectile dysfunction; Prescription medicines and impotence ... Many medicines and recreational drugs can affect a man's sexual ... What causes impotence in one man may not affect another man. ...

  18. Antiretroviral drug levels and interactions affect lipid, lipoprotein and glucose metabolism in HIV-1 seronegative subjects: A pharmacokinetic-pharmacodynamic analysis

    PubMed Central

    Rosenkranz, Susan L.; Yarasheski, Kevin E.; Para, Michael F.; Reichman, Richard C.; Morse, Gene D.

    2007-01-01

    Background: HIV-infected patients treated with antiretroviral medications (ARVs) develop undesirable changes in lipid and glucose metabolism that mimic the metabolic syndrome and may be proatherogenic. Antiretroviral drug levels and their interactions may contribute to these metabolic alterations. Methods: Fifty-six HIV-seronegative adults were enrolled in an open-label, randomized, pharmacokinetic interaction study, and received a non-nucleoside reverse transcriptase inhibitor (efavirenz on days 1-21) plus a protease inhibitor (PI; amprenavir on days 11-21), with a second PI on days 15-21 (saquinavir, nelfinavir, indinavir, or ritonavir). Fasting triglycerides, total, LDL- and HDL-cholesterol, glucose, insulin and C-peptide levels were measured on days 0, 14, 21, and 2-3 weeks after discontinuing drugs. Regression models were used to estimate changes in these parameters and associations between these changes and circulating levels of study drugs. Results: Short-term efavirenz and amprenavir administration significantly increased cholesterol, triglycerides and glucose levels. Addition of a second protease inhibitor further increased triglycerides, total- and LDL-cholesterol levels. Higher amprenavir levels predicted larger increases in triglycerides, total and LDL-cholesterol. Two weeks after all study drugs were stopped, total, LDL- and HDL-cholesterol remained elevated above baseline. Conclusions: ARV regimens that include a non-nucleoside reverse transcriptase inhibitor plus single or boosted PIs are becoming more common, but the pharmacodynamic interactions associated with these regimens can result in persistent, undesirable alterations in serum lipid/lipoprotein levels. Additional pharmacodynamic studies are needed to examine the metabolic effects of ritonavir-boosted regimens, with and without efavirenz. PMID:18007962

  19. Use of PET Imaging to Evaluate Transporter-Mediated Drug-Drug Interactions.

    PubMed

    Langer, Oliver

    2016-07-01

    Several membrane transporters belonging to the adenosine triphosphate-binding cassette (ABC) and solute carrier (SLC) families can transport drugs and drug metabolites and thereby exert an effect on drug absorption, distribution, and excretion, which may potentially lead to transporter-mediated drug-drug interactions (DDIs). Some transporter-mediated DDIs may lead to changes in organ distribution of drugs (eg, brain, liver, kidneys) without affecting plasma concentrations. Positron emission tomography (PET) is a noninvasive imaging method that allows studying of the distribution of radiolabeled drugs to different organs and tissues and is therefore the method of choice to quantitatively assess transporter-mediated DDIs on a tissue level. There are 2 approaches to how PET can be used in transporter-mediated DDI studies. When the drug of interest is a potential perpetrator of DDIs, it may be administered in unlabeled form to assess its influence on tissue distribution of a generic transporter-specific PET tracer (probe substrate). When the drug of interest is a potential victim of DDIs, it may be radiolabeled with carbon-11 or fluorine-18 and used in combination with a prototypical transporter inhibitor (eg, rifampicin). PET has already been used both in preclinical species and in humans to assess the effects of transporter-mediated DDIs on drug disposition in different organ systems, such as brain, liver, and kidneys, for which examples are given in the present review article. Given the growing importance of membrane transporters with respect to drug safety and efficacy, PET is expected to play an increasingly important role in future drug development. PMID:27385172

  20. [Drugs affecting the incretin system and renal glucose transport: do they meet the expectations of modern therapy of type 2 diabetes?].

    PubMed

    Gumieniczek, Anna

    2016-01-01

    Agents introduced into therapy of type 2 diabetes in the last few years are still the subject of numerous clinical and experimental studies. Although many studies have been completed, we still do not know all aspects of these drugs' action, especially the long-term effects of their use. Most questionable is their impact on the processes of cell proliferation, on the cardiovascular and immune systems, on lipids and uric acid metabolism. A summary of the most important observations on the use of three groups of new drugs - analogs of glucagon-like peptide 1 (GLP-1), inhibitors of dipeptidyl peptidase IV (DPPIV) and inhibitors of sodium glucose cotransporters (SGLT1 and SGLT2) - has been made, based on a review of the literature over the past five years (2010-2014). The information included in the present review concerns the structure and activity relationship, therapeutic efficacy, side effects and the observed additional therapeutic effects, which can determine new standards in therapy of diabetes and also facilitate the development of better antidiabetic drugs. PMID:27180961

  1. Modeling the effects of commonly used drugs on human metabolism.

    PubMed

    Sahoo, Swagatika; Haraldsdóttir, Hulda S; Fleming, Ronan M T; Thiele, Ines

    2015-01-01

    Metabolism contributes significantly to the pharmacokinetics and pharmacodynamics of a drug. In addition, diet and genetics have a profound effect on cellular metabolism with respect to both health and disease. In the present study, we assembled a comprehensive, literature-based drug metabolic reconstruction of the 18 most highly prescribed drug groups, including statins, anti-hypertensives, immunosuppressants and analgesics. This reconstruction captures in detail our current understanding of their absorption, intracellular distribution, metabolism and elimination. We combined this drug module with the most comprehensive reconstruction of human metabolism, Recon 2, yielding Recon2_DM1796, which accounts for 2803 metabolites and 8161 reactions. By defining 50 specific drug objectives that captured the overall drug metabolism of these compounds, we investigated the effects of dietary composition and inherited metabolic disorders on drug metabolism and drug-drug interactions. Our main findings include: (a) a shift in dietary patterns significantly affects statins and acetaminophen metabolism; (b) disturbed statin metabolism contributes to the clinical phenotype of mitochondrial energy disorders; and (c) the interaction between statins and cyclosporine can be explained by several common metabolic and transport pathways other than the previously established CYP3A4 connection. This work holds the potential for studying adverse drug reactions and designing patient-specific therapies. PMID:25345908

  2. Drug therapy for obesity in the elderly.

    PubMed

    Dvorak, R; Starling, R D; Callés-Escandon, J; Sims, E A; Poehlman, E T

    1997-11-01

    The prevalence of obesity is increasing rapidly in the US and other developed countries. Even though the percentage of older individuals is increasing worldwide, obesity has only recently become a recognised problem in this population. Obesity occurs when energy intake chronically exceeds energy expenditure. Moreover, advancing age is associated with an inability to couple energy intake with energy expenditure. Obesity contributes to many adverse health outcomes, including non-insulin-dependent (type II) diabetes mellitus, as well as to an increase in both cardiovascular and all-cause mortality. Only recently has the medical community begun to accept obesity as a disease with a multifactorial pathogenesis that requires systematic lifestyle changes and pharmacological treatment. Several groups of drugs are available for the pharmacotherapy of obesity; anorectic medications (e.g. fenfluramine, dexfenfluramine); substances affecting energy expenditure and body composition [e.g. chromium (chromium picolinate), ephedrine, anabolic steroids, beta 3-adrenoceptor agonists]; and drugs affecting the absorption of nutrients (e.g. orlistat). To date, few drugs have produced and sustained a significant bodyweight loss. However, some drugs induce a significant short term reduction in bodyweight compared with placebo. Moreover, there is a paucity of information regarding the effectiveness of these drugs in the treatment of obesity in the elderly. Furthermore, it is even debated whether obesity should be treated with drug intervention in the elderly. Clinicians prescribing medications for obesity treatment in the elderly need to carefully consider the benefit: risk ratio, given the high prevalence of polypharmacy in elderly patients. Furthermore, physiological changes that occur with aging may affect the pharmacokinetics of administered drugs and need to be taken into consideration. PMID:9359021

  3. Antiepileptic Drug Interactions - Principles and Clinical Implications

    PubMed Central

    Johannessen, Svein I; Landmark, Cecilie Johannessen

    2010-01-01

    Antiepileptic drugs (AEDs) are widely used as long-term adjunctive therapy or as monotherapy in epilepsy and other indications and consist of a group of drugs that are highly susceptible to drug interactions. The purpose of the present review is to focus upon clinically relevant interactions where AEDs are involved and especially on pharmacokinetic interactions. The older AEDs are susceptible to cause induction (carbamazepine, phenobarbital, phenytoin, primidone) or inhibition (valproic acid), resulting in a decrease or increase, respectively, in the serum concentration of other AEDs, as well as other drug classes (anticoagulants, oral contraceptives, antidepressants, antipsychotics, antimicrobal drugs, antineoplastic drugs, and immunosupressants). Conversely, the serum concentrations of AEDs may be increased by enzyme inhibitors among antidepressants and antipsychotics, antimicrobal drugs (as macrolides or isoniazid) and decreased by other mechanisms as induction, reduced absorption or excretion (as oral contraceptives, cimetidine, probenicid and antacides). Pharmacokinetic interactions involving newer AEDs include the enzyme inhibitors felbamate, rufinamide, and stiripentol and the inducers oxcarbazepine and topiramate. Lamotrigine is affected by these drugs, older AEDs and other drug classes as oral contraceptives. Individual AED interactions may be divided into three levels depending on the clinical consequences of alterations in serum concentrations. This approach may point to interactions of specific importance, although it should be implemented with caution, as it is not meant to oversimplify fact matters. Level 1 involves serious clinical consequences, and the combination should be avoided. Level 2 usually implies cautiousness and possible dosage adjustments, as the combination may not be possible to avoid. Level 3 refers to interactions where dosage adjustments are usually not necessary. Updated knowledge regarding drug interactions is important to predict

  4. Multiplex gene expression analysis for high-throughput drug discovery: screening and analysis of compounds affecting genes overexpressed in cancer cells.

    PubMed

    Johnson, Paul H; Walker, Roger P; Jones, Steven W; Stephens, Kathy; Meurer, Janet; Zajchowski, Deborah A; Luke, May M; Eeckman, Frank; Tan, Yuping; Wong, Linda; Parry, Gordon; Morgan, Thomas K; McCarrick, Meg A; Monforte, Joseph

    2002-12-01

    Drug discovery strategies are needed that can rapidly exploit multiple therapeutic targets associated with the complex gene expression changes that characterize a polygenic disease such as cancer. We report a new cell-based high-throughput technology for screening chemical libraries against several potential cancer target genes in parallel. Multiplex gene expression (MGE) analysis provides direct and quantitative measurement of multiple endogenous mRNAs using a multiplexed detection system coupled to reverse transcription-PCR. A multiplex assay for six genes overexpressed in cancer cells was used to screen 9000 chemicals and known drugs in the human prostate cancer cell line PC-3. Active compounds that modulated gene expression levels were identified, and IC50 values were determined for compounds that bind DNA, cell surface receptors, and components of intracellular signaling pathways. A class of steroids related to the cardiac glycosides was identified that potently inhibited the plasma membrane Na(+)K(+)-ATPase resulting in the inhibition of four of the prostate target genes including transcription factors Hoxb-13, hPSE/PDEF, hepatocyte nuclear factor-3alpha, and the inhibitor of apoptosis, survivin. Representative compounds selectively induced apoptosis in PC-3 cells compared with the nonmetastatic cell line BPH-1. The multiplex assay distinguished potencies among structural variants, enabling structure-activity analysis suitable for chemical optimization studies. A second multiplex assay for five toxicological markers, Hsp70, Gadd153, Gadd45, O6-methylguanine-DNA methyltransferase, and cyclophilin, detected compounds that caused DNA damage and cellular stress and was a more sensitive and specific indicator of potential toxicity than measurement of cell viability. MGE analysis facilitates rapid drug screening and compound optimization, the simultaneous measurement of toxicological end points, and gene function analysis. PMID:12516962

  5. Modulation of the poly (ADP-ribose) polymerase inhibitor response and DNA recombination in breast cancer cells by drugs affecting endogenous wild-type p53.

    PubMed

    Ireno, Ivanildce Cristiane; Wiehe, Rahel Stephanie; Stahl, Andreea Iulia; Hampp, Stephanie; Aydin, Sevtap; Troester, Melissa A; Selivanova, Galina; Wiesmüller, Lisa

    2014-10-01

    Synthetic lethal interactions between poly (ADP-ribose) polymerase (PARP) and homologous recombination (HR) repair pathways have been exploited for the development of novel mono- and combination cancer therapies. The tumor suppressor p53 was demonstrated to exhibit indirect and direct regulatory activities in DNA repair, particularly in DNA double-strand break (DSB)-induced and replication-associated HR. In this study, we tested a potential influence of the p53 status on the response to PARP inhibition, which is known to cause replication stress. Silencing endogenous or inducibly expressing p53 we found a protective effect of p53 on PARP inhibitor (PARPi)-mediated cytotoxicities. This effect was specific for wild-type versus mutant p53 and observed in cancer but not in non-transformed cell lines. Enhanced cytotoxicities after treatment with the p53-inhibitory drug Pifithrinα further supported p53-mediated resistance to PARP inhibition. Surprisingly, we equally observed increased PARPi sensitivity in the presence of the p53-activating compound Nutlin-3. As a common denominator, both drug responses correlated with decreased HR activities: Pifithrinα downregulated spontaneous HR resulting in damage accumulation. Nutlin-3 induced a decrease of DSB-induced HR, which was accompanied by a severe drop in RAD51 protein levels. Thus, we revealed a novel link between PARPi responsiveness and p53-controlled HR activities. These data expand the concept of cell and stress type-dependent healer and killer functions of wild-type p53 in response to cancer therapeutic treatment. Our findings have implications for the individualized design of cancer therapies using PARPi and the potentially combined use of p53-modulatory drugs. PMID:25085902

  6. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  7. Regulatory review time for approval of oncology drugs in Japan between 2001 and 2014. Considerations of changes, factors that affect review time, and difference with the United States.

    PubMed

    Maeda, Hideki; Kurokawa, Tatsuo

    2015-05-01

    In this study, we comprehensively and historically studied the review time of oncology drugs approved by the regulatory authorities in Japan with publicly available information. A total of 120 applications of oncology drugs were approved in Japan between April 2001 and July 2014. The review time peaked with 732.0 days (24.4 months) in 2005, and showed a tendency to decline gradually each year thereafter. After 2012, a significant reduction of the review time was seen in comparison to the median of 13-year median time. In addition, we compared the review time with that in the United States. The median review time lag with the United States was significantly peaked in 2005. After 2005, the review time lag with the FDA has decreased, but lag did not significantly reduce by 2014. We also examined factors influencing the review time in Japan with multiple regression analysis. It was found that the factors related to a use of overseas data and expedited program for accelerating the reviews influenced the direction of shortening the review time. We consider that regulatory authorities in Japan need to keep making efforts to reduce the review time further and eliminate the review time lag with the United States. PMID:25560978

  8. Drug interactions involving cimetidine--mechanisms, documentation, implications.

    PubMed

    Greene, W

    1984-01-01

    In summary, cimetidine is a potent inhibitor of liver microsomal activity, which may also decrease hepatic blood flow. Other effects of the drug include inhibition of gastric secretion and intrinsic toxic properties. These effects, combined with the common use of cimetidine in clinical practice, make the risk of adverse drug interactions a relatively frequent risk in the clinical setting. Although a multitude of interactions with cimetidine has been evaluated, many of these are incompletely described or understood. At the present time, a potentially significant alteration of absorption appears to exist with only ketoconazole, elemental iron, vitamin B12 (long-term therapy), and pancreatic enzyme supplements (increased activity). Significant metabolic inhibition or decreased excretion appears to exist with warfarin, propranolol, theophylline, phenytoin, quinidine, possibly lidocaine and procainamide, and certain benzodiazepines. Other potential, but less well ascertained interactions may involve the narcotic analgesics, caffeine, ethanol, pentobarbital, imipramine, chlormethiazole, and metronidazole. In these settings, the clinician must be aware of interaction potential, and astutely monitor the patient during combination therapy. Other data indicate that concomitant administration of antacids may reduce the absorption of cimetidine, that the drug may protect against the toxic effects of acetaminophen overdose, and that combination with certain other myelosuppressants may carry a significant risk. Thus, in regard to these reports, cimetidine is a drug with complex effects on the absorption, elimination, and toxicity of other drugs. When used in the setting of multiple drug therapy, the clinician must be alert to potentially increased or decreased effects of the drugs mentioned in this review. In addition, one must be aware that other hepatically metabolised agents not mentioned here may be affected by the addition of cimetidine therapy. Because of the therapeutic

  9. Drugs that suppress TSH or cause central hypothyroidism.

    PubMed

    Haugen, Bryan R

    2009-12-01

    Many different drugs affect thyroid function. Most of these drugs act at the level of the thyroid in patients with normal thyroid function, or at the level of thyroid hormone absorption or metabolism in patients requiring exogenous levothyroxine. A small subset of medications including glucocorticoids, dopamine agonists, somatostatin analogues and rexinoids affect thyroid function through suppression of TSH in the thyrotrope or hypothalamus. Fortunately, most of these medications do not cause clinically evident central hypothyroidism. A newer class of nuclear hormone receptors agonists, called rexinoids, cause clinically significant central hypothyroidism in most patients and dopamine agonists may exacerbate 'hypothyroidism' in patients with non-thyroidal illness. In this review, we explore mechanisms governing TSH suppression of these drugs and the clinical relevance of these effects. PMID:19942154

  10. Uptake Carriers and Oncology Drug Safety

    PubMed Central

    Sprowl, Jason A.

    2014-01-01

    Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics in multiple tissues. Many of these transporters are highly expressed in the gastrointestinal tract, liver, and kidney and are considered to be of particular importance in governing drug absorption, elimination, and cellular sensitivity of specific organs to a wide variety of oncology drugs. Although the majority of studies on the interaction of oncology drugs with SLC have been restricted to the use of exploratory in vitro model systems, emerging evidence suggests that several SLCs, including OCT2 and OATP1B1, contribute to clinically important phenotypes associated with those agents. Recent literature has indicated that modulation of SLC activity may result in drug-drug interactions, and genetic polymorphisms in SLC genes have been described that can affect the handling of substrates. Alteration of SLC function by either of these mechanisms has been demonstrated to contribute to interindividual variability in the pharmacokinetics and toxicity associated with several oncology drugs. In this report, we provide an update on this rapidly emerging field. PMID:24378324

  11. The Intestinal Absorption of Folates

    PubMed Central

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I. David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  12. The intestinal absorption of folates.

    PubMed

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  13. Immediate Drug Hypersensitivity.

    PubMed

    Wickner, Paige G; Hong, David

    2016-07-01

    Drug allergy affects a large percentage of the general population. A listed drug allergy can also have broad implications for many aspects of patient care. Here, we will review recent advances in the arena of drug allergies with a focus on antibiotics, monoclonals, NSAIDs, and chemotherapeutics. PMID:27333778

  14. Intestinal absorption of water-soluble vitamins in health and disease

    PubMed Central

    Said, Hamid M.

    2014-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  15. Can Platforms Affect the Safety and Efficacy of Drug-Eluting Stents in the Era of Biodegradable Polymers?: A Meta-Analysis of 34,850 Randomized Individuals

    PubMed Central

    Zhang, Ming-Duo; Li, Xin-He; Nie, Mao-Xiao; Feng, Ting-Ting; Zhao, Xin; Wang, Lu-Ya; Zhao, Quan-Ming

    2016-01-01

    Objective In the era of bare metal stents (BMSs), alloys have been considered to be better materials for stent design than stainless steel. In the era of biodegradable polymer drug-eluting stents (BP-DESs), the safety and efficacy of BP-DESs with different metal platforms (stainless steel or alloys) have not yet been reported, although their polymers are eventually absorbed, and only the metal platforms remain in the body. This study sought to determine the clinical safety and efficacy of BP-DESs with different platforms compared with other stents (other DESs and BMSs). Methods PubMed, Embase and Clinical Trials.gov were searched for randomized controlled trials (RCTs) that compared BP-DESs with other stents. After performing pooled analysis of BP-DESs and other stents, we performed a subgroup analysis using two classification methods: stent platform and follow-up time. The study characteristics, patient characteristics and clinical outcomes were abstracted. Results Forty RCTs (49 studies) comprising 34,850 patients were included. Biodegradable polymer stainless drug-eluting stents (BP-stainless DESs) were superior to the other stents [mainly stainless drug-eluting stents (DESs)] in terms of pooled definite/probable stent thrombosis (ST) (OR [95% CI] = 0.76[0.61–0.95], p = 0.02), long-term definite/probable ST (OR [95% CI] = 0.73[0.57–0.94], p = 0.01), very late definite/probable ST (OR [95% CI] = 0.56[0.33–0.93], p = 0.03) and long-term definite ST. BP-stainless DESs had lower rates of pooled, mid-term and long-term target vessel revascularization (TVR) and target lesion revascularization (TLR) than the other stainless DESs and BMSs. Furthermore, BP-stainless DESs were associated with lower rates of long-term death than other stainless DESs and lower rates of mid-term myocardial infarction than BMSs. However, only the mid-term and long-term TVR rates were superior in BP-alloy DESs compared with the other stents. Conclusion Our results indirectly suggest that

  16. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  17. Imaging of Drug-induced Complications in the Gastrointestinal System.

    PubMed

    McGettigan, Melissa J; Menias, Christine O; Gao, Zhenqiang J; Mellnick, Vincent M; Hara, Amy K

    2016-01-01

    Drug-induced injury commonly affects the gastrointestinal and hepatobiliary systems because of the mechanisms of absorption and metabolism. In pill esophagitis, injury is frequently related to direct contact with the esophageal mucosa, resulting in small superficial ulcers in the mid esophagus. Nonsteroidal anti-inflammatory drugs can lead to gastrointestinal tract ulcers and small bowel mucosal diaphragms (thin weblike strictures). Injury to the pancreatic and hepatobiliary systems can manifest as pancreatitis, acute or chronic hepatitis, cholestasis, or steatosis and steatohepatitis (which may progress to cirrhosis). Various drugs may also insult the hepatic vasculature, resulting in Budd-Chiari and sinusoidal obstructive syndromes. Focal lesions such as hepatic adenomas may develop after use of oral contraceptives or anabolic steroids. Ultrasonography, computed tomography, and magnetic resonance imaging can aid in diagnosis of drug-induced injuries and often are necessary to exclude other causes. PMID:26761532

  18. Tuberculosis after gastrectomy, plasmatic concentration of antitubercular drugs.

    PubMed

    Vittorio, De Socio Giuseppe; Antonio, D'Avolio; Alessio, Sgrelli; Lorena, Baietto; Malincarne, Lisa; Giovanni, Di Perri; Franco, Baldelli

    2012-01-01

    We report pharmacokinetic data on two gastrectomized, patients affected by tuberculosis. Drugs plasmatic concentrations were measured after seven days of oral therapy by a validated high performance liquid chromatography-mass spectrometry (HPLC-MS) method and the area under the concentration-time-curve (AUC) over 24 hours (AUC(0-24)) was calculated. A sub-therapeutic level of isoniazid was found in a patient with total gastrectomy with a C(max) of 0,395 mg\\L and AUC(0-24) level of 4.75 hr*mg/L. The level of the other antitubercular drugs was adequate. These findings support the need to monitor anti tubercular drug levels to facilitate early detection of therapeutic failure, above all in patients treated with isoniazid and with potential problems on oral drugs absorption. PMID:22348189

  19. Tuberculosis After Gastrectomy, Plasmatic Concentration of Antitubercular Drugs

    PubMed Central

    De Socio, Giuseppe Vittorio; D’Avolio, Antonio; Sgrelli, Alessio; Baietto, Lorena; Malincarne, Lisa; Di Perri, Giovanni; Baldelli, Franco

    2012-01-01

    We report pharmacokinetic data on two gastrectomized, patients affected by tuberculosis. Drugs plasmatic concentrations were measured after seven days of oral therapy by a validated high performance liquid chromatography-mass spectrometry (HPLC-MS) method and the area under the concentration-time-curve (AUC) over 24 hours (AUC0–24) was calculated. A sub-therapeutic level of isoniazid was found in a patient with total gastrectomy with a Cmax of 0,395 mg\\L and AUC0–24 level of 4.75 hr*mg/L. The level of the other antitubercular drugs was adequate. These findings support the need to monitor anti tubercular drug levels to facilitate early detection of therapeutic failure, above all in patients treated with isoniazid and with potential problems on oral drugs absorption. PMID:22348189

  20. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells

    PubMed Central

    Colangelo, T; Polcaro, G; Ziccardi, P; Muccillo, L; Galgani, M; Pucci, B; Rita Milone, M; Budillon, A; Santopaolo, M; Mazzoccoli, G; Matarese, G; Sabatino, L; Colantuoni, V

    2016-01-01

    Immunogenic cell death (ICD) evoked by chemotherapeutic agents implies emission of selected damage-associated molecular patterns (DAMP) such as cell surface exposure of calreticulin, secretion of ATP and HMGB1. We sought to verify whether miR-27a is implicated in ICD, having demonstrated that it directly targets calreticulin. To this goal, we exposed colorectal cancer cell lines, genetically modified to express high or low miR-27a levels, to two bona fide ICD inducers (mitoxantrone and oxaliplatin). Low miR-27a-expressing cells displayed more ecto-calreticulin on the cell surface and increased ATP and HMGB1 secretion than high miR-27a-expressing ones in time-course experiments upon drug exposure. A calreticulin target protector counteracted the miR-27a effects while specific siRNAs mimicked them, confirming the results reported. In addition, miR-27a negatively influenced the PERK-mediated route and the late PI3K-dependent secretory step of the unfolded protein response to endoplasmic reticulum stress, suggesting that miR-27a modulates the entire ICD program. Interestingly, upon chemotherapeutic exposure, low miR-27a levels associated with an earlier and stronger induction of apoptosis and with morphological and molecular features of autophagy. Remarkably, in ex vivo setting, under the same chemotherapeutic induction, the conditioned media from high miR-27a-expressing cells impeded dendritic cell maturation while increased the secretion of specific cytokines (interleukin (IL)-4, IL-6, IL-8) and negatively influenced CD4+ T-cell interferon γ production and proliferation, all markers of a tumor immunoevasion strategy. In conclusion, we provide the first evidence that miR-27a impairs the cell response to drug-induced ICD through the regulatory axis with calreticulin. PMID:26913599

  1. Chronic nifedipine dosing enhances cephalexin bioavailability and intestinal absorption in conscious rats.

    PubMed

    Berlioz, F; Lepére-Prevot, B; Julien, S; Tsocas, A; Carbon, C; Rozé, C; Farinotti, R

    2000-11-01

    Cephalexin, a beta-lactam antibiotic, is rapidly absorbed via the di-and tripeptide intestinal transporters, as for many peptidomimetic drugs. Acute nifedipine has been shown to increase intestinal absorption of several beta-lactams: amoxicillin and cefixime in humans, and cephalexin in the rat. We showed previously that the nervous system was involved in the increasing effect of nifedipine on cephalexin intestinal absorption in anesthetized rats. The aim of the present study was 2-fold: 1) to investigate whether the effect of nifedipine is maintained in conscious rats, and 2) to determine whether the nifedipine effect will persist during chronic nifedipine administration. Acute and chronic oral administration of nifedipine significantly increased oral cephalexin area under the plasma concentration-time curve (34 and 25%, respectively) and maximum concentration in plasma (57 and 51%, respectively), while the distribution and elimination parameters of intra-arterial cephalexin were not affected by acute or chronic nifedipine administration. In conclusion, acute nifedipine effect on intestinal absorption of cephalexin is independent of anesthesia in rats. Since nifedipine could still enhance cephalexin intestinal absorption after a 7-day b.i.d. treatment, it can be envisaged to apply this effect to increase bioavailability of poorly absorbed peptidomimetic drugs in man. PMID:11038150

  2. Clinically and pharmacologically relevant interactions of antidiabetic drugs.

    PubMed

    May, Marcus; Schindler, Christoph

    2016-04-01

    Patients with type 2 diabetes mellitus often require multifactorial pharmacological treatment due to different comorbidities. An increasing number of concomitantly taken medications elevate the risk of the patient experiencing adverse drug effects or drug interactions. Drug interactions can be divided into pharmacokinetic and pharmacodynamic interactions affecting cytochrome (CYP) enzymes, absorption properties, transporter activities and receptor affinities. Furthermore, nutrition, herbal supplements, patient's age and gender are of clinical importance. Relevant drug interactions are predominantly related to sulfonylureas, thiazolidinediones and glinides. Although metformin has a very low interaction potential, caution is advised when drugs that impair renal function are used concomitantly. With the exception of saxagliptin, dipeptidyl peptidase-4 (DPP-4) inhibitors also show a low interaction potential, but all drugs affecting the drug transporter P-glycoprotein should be used with caution. Incretin mimetics and sodium-glucose cotransporter-2 (SGLT-2) inhibitors comprise a very low interaction potential and are therefore recommended as an ideal combination partner from the clinical-pharmacologic point of view. PMID:27092232

  3. Clinically and pharmacologically relevant interactions of antidiabetic drugs

    PubMed Central

    May, Marcus; Schindler, Christoph

    2016-01-01

    Patients with type 2 diabetes mellitus often require multifactorial pharmacological treatment due to different comorbidities. An increasing number of concomitantly taken medications elevate the risk of the patient experiencing adverse drug effects or drug interactions. Drug interactions can be divided into pharmacokinetic and pharmacodynamic interactions affecting cytochrome (CYP) enzymes, absorption properties, transporter activities and receptor affinities. Furthermore, nutrition, herbal supplements, patient’s age and gender are of clinical importance. Relevant drug interactions are predominantly related to sulfonylureas, thiazolidinediones and glinides. Although metformin has a very low interaction potential, caution is advised when drugs that impair renal function are used concomitantly. With the exception of saxagliptin, dipeptidyl peptidase-4 (DPP-4) inhibitors also show a low interaction potential, but all drugs affecting the drug transporter P-glycoprotein should be used with caution. Incretin mimetics and sodium–glucose cotransporter-2 (SGLT-2) inhibitors comprise a very low interaction potential and are therefore recommended as an ideal combination partner from the clinical–pharmacologic point of view. PMID:27092232

  4. [Drug interaction and estroprogestin efficacy].

    PubMed

    Rozenbaum, H

    1977-01-01

    Various mechanisms exist in female physiology which can impair the contraceptive action of estroprogestins. These hormones can be susceptivle to absorption by certain bacterial flora within the digestive tract. Some drugs, notably the cytochrome P 450, lead to the rapid deterioration of the sexual hormones. Estroprogestins and estrogens themselves are susceptible to modification by the action of protein plasma clearance. Through the inhibition of the excretion of hepatic enzymes, other hepatic metabolisms can be altered affecting the balance and metabolism of the sexual hormones. Certain phenomena of fixation competition exist at the receptor level, particularly in regard to corticoids. Estroprogestins are also noted to diminish the efficacy of anticoagulants dependent on Vitamin-K. The interaction of estroprogestins and certain medications, often used in conjunctive treatment, can reduce both the contraceptive efficacy of the hormone and of the other preparation. PMID:12260077

  5. How Illegal Drug Use, Alcohol Use, Tobacco Use, and Depressive Symptoms Affect Adolescent Suicidal Ideation: A Secondary Analysis of the 2011 Youth Risk Behavior Survey.

    PubMed

    Gart, Rachel; Kelly, Sarah

    2015-08-01

    The purpose of this study was to identify the major risk factors among adolescents who have either contemplated or attempted suicide. Along with successful suicides, suicide attempts and contemplation are coexisting factors that are prominent in the adolescent population and therefore warrant major concern. A secondary data analysis of the Youth Risk Behavior Survey (YRBS) was completed to explore the factors that may influence adolescents' thoughts or actions about suicidal behavior. The YRBS represents high-school students throughout 50 states. Nine questions from the YRBS were used to elicit information about the relationships among the risk factors: (1) Suicidal thoughts and attempts; (2) illegal drug use; (3) alcohol use; (4) tobacco use; and (5) depressive symptoms. Statistically significant relationships among the risk factors were found for adolescents. Adolescents considered suicide (15.8%); attempted suicide at least once (7.8%); were injured while attempting suicide (n = 2.7%). Our findings support the idea that illegal substance use can lead to suicidal thoughts and actions. Depression had a positive relationship with suicidal ideations, supporting similar studies suggesting that depression leads to suicidal action. PMID:26379135

  6. Mouse ECG findings in aging, with conduction system affecting drugs and in cardiac pathologies: Development and validation of ECG analysis algorithm in mice.

    PubMed

    Merentie, Mari; Lipponen, Jukka A; Hedman, Marja; Hedman, Antti; Hartikainen, Juha; Huusko, Jenni; Lottonen-Raikaslehto, Line; Parviainen, Viktor; Laidinen, Svetlana; Karjalainen, Pasi A; Ylä-Herttuala, Seppo

    2015-12-01

    Mouse models are extremely important in studying cardiac pathologies and related electrophysiology, but very few mouse ECG analysis programs are readily available. Therefore, a mouse ECG analysis algorithm was developed and validated. Surface ECG (lead II) was acquired during transthoracic echocardiography from C57Bl/6J mice under isoflurane anesthesia. The effect of aging was studied in young (2-3 months), middle-aged (14 months) and old (20-24 months) mice. The ECG changes associated with pharmacological interventions and common cardiac pathologies, that is, acute myocardial infarction (AMI) and progressive left ventricular hypertrophy (LVH), were studied. The ECG raw data were analyzed with an in-house ECG analysis program, modified specially for mouse ECG. Aging led to increases in P-wave duration, atrioventricular conduction time (PQ interval), and intraventricular conduction time (QRS complex width), while the R-wave amplitude decreased. In addition, the prevalence of arrhythmias increased during aging. Anticholinergic atropine shortened PQ time, and beta blocker metoprolol and calcium-channel blocker verapamil increased PQ interval and decreased heart rate. The ECG changes after AMI included early JT elevation, development of Q waves, decreased R-wave amplitude, and later changes in JT/T segment. In progressive LVH model, QRS complex width was increased at 2 and especially 4 weeks timepoint, and also repolarization abnormalities were seen. Aging, drugs, AMI, and LVH led to similar ECG changes in mice as seen in humans, which could be reliably detected with this new algorithm. The developed method will be very useful for studies on cardiovascular diseases in mice. PMID:26660552

  7. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  8. Attitudes towards drug legalization among drug users.

    PubMed

    Trevino, Roberto A; Richard, Alan J

    2002-01-01

    Research shows that support for legalization of drugs varies significantly among different sociodemographic and political groups. Yet there is little research examining the degree of support for legalization of drugs among drug users. This paper examines how frequency and type of drug use affect the support for legalization of drugs after adjusting for the effects of political affiliation and sociodemographic characteristics. A sample of 188 drug users and non-drug users were asked whether they would support the legalization of marijuana, cocaine, and heroin. Respondents reported their use of marijuana, crack, cocaine, heroin, speedball, and/or methamphetamines during the previous 30 days. Support for legalization of drugs was analyzed by estimating three separate logistic regressions. The results showed that the support for the legalization of drugs depended on the definition of "drug user" and the type of drug. In general, however, the results showed that marijuana users were more likely to support legalizing marijuana, but they were less likely to support the legalization of cocaine and heroin. On the other hand, users of crack, cocaine, heroin, speedball, and/or methamphetamines were more likely to support legalizing all drugs including cocaine and heroin. PMID:11853137

  9. Exploratory Investigation of the Limiting Steps of Oral Absorption of Fluconazole and Ketoconazole in Children Using an In Silico Pediatric Absorption Model.

    PubMed

    Cristofoletti, Rodrigo; Charoo, Naseem A; Dressman, Jennifer B

    2016-09-01

    Due to the higher total clearance of certain drugs in children than in adults, it is recommended that, in such cases, higher relative doses on a milligram/kilogram basis should be administered to children in order to achieve similar systemic exposure to adults. This is the case for fluconazole and ketoconazole. Even though the lower absorptive surface area and smaller volumes of intestinal fluids in children does not affect fluconazole absorption, cumulative fraction absorbed of ketoconazole seems to be dose dependent. A dose of 200 mg of ketoconazole, which belongs to the class 2a of the Developability Classification System (DCS) in adults, seems to be higher than the maximum absorbable dose in children, and ketoconazole absorption is expected to be solubility limited (i.e., DCS class 2b) in this population, indicating a DCS class migration. Therefore, extrapolating DCS and DCS drug classification from adults to pediatric groups does not seem to be straightforward and the development of specific pediatric classification systems should be a high priority. PMID:26987949

  10. Finasteride. Does it affect spermatogenesis and pregnancy?

    PubMed Central

    Pole, M.; Koren, G.

    2001-01-01

    QUESTION: A few women have asked me whether finasteride, taken by their partners for male pattern baldness, will affect their pregnancies. The product monograph is very alarming: it sounds as if even handling the medication could cause harm, especially to a male fetus. Should a man stop taking finasteride if his partner is planning pregnancy or is pregnant? What is the risk to the fetus if its mother accidentally handles crushed or broken tablets? ANSWER: To date, there are no reports of adverse pregnancy outcomes among women exposed to finasteride. Taking 1 mg of finasteride daily did not have any clinically significant effect on men's semen. Absorption through the skin while handling tablets is extremely unlikely to cause fetal exposure or harm. There is no reason to discontinue the drug. Motherisk is currently following up women who are pregnant or planning pregnancy and whose partners are taking finasteride. PMID:11785276

  11. Club Drugs

    MedlinePlus

    ... Rohypnol, ketamine, as well as MDMA (ecstasy) and methamphetamine ( Drug Facts: Club Drugs , National Institute on Drug ... Club Drugs , National Institute on Drug Abuse, 2010). Methamphetamine is a powerfully addictive stimulant associated with serious ...

  12. Fluid absorption in the isolated midgut of adult female yellow fever mosquitoes (Aedes aegypti)

    PubMed Central

    Onken, Horst; Moffett, David F.

    2015-01-01

    ABSTRACT The transepithelial voltage (Vte) and the volume of isolated posterior midguts of adult female yellow fever mosquitoes (Aedes aegypti) were monitored. In all experiments, the initial Vte after filling the midgut was lumen negative, but subsequently became lumen positive at a rate of approximately 1 mV min−1. Simultaneously, the midgut volume decreased, indicating spontaneous fluid absorption. When the midguts were filled and bathed with mosquito saline, the average rate of fluid absorption was 36.5±3.0 nl min−1 (N=4, ±s.e.m.). In the presence of theophylline (10 mmol l−1), Vte reached significantly higher lumen-positive values, but the rate of fluid absorption was not affected (N=6). In the presence of NaCN (5 mmol l−1), Vte remained close to 0 mV (N=4) and fluid absorption was reduced (14.4±1.3 nl min−1, N=3, ±s.e.m.). When midguts were filled with buffered NaCl (154 mmol l−1 plus 1 mmol l−1 HEPES) and bathed in mosquito saline with theophylline, fluid absorption was augmented (50.0±5.8 nl min−1, N=12, ±s.e.m.). Concanamycin A (10 µmol l−1), ouabain (1 mmol l−1), and acetazolamide (1 mmol l−1) affected Vte in different ways, but all reduced fluid absorption by 60–70% of the value before addition of the drugs. PMID:25944920

  13. Absolute bioavailability and effect of formulation change, food, or elevated pH with rabeprazole on cobimetinib absorption in healthy subjects.

    PubMed

    Musib, Luna; Choo, Edna; Deng, Yuzhong; Eppler, Steve; Rooney, Isabelle; Chan, Iris T; Dresser, Mark J

    2013-11-01

    Cobimetinib is a potent and highly selective inhibitor of MEK1/2. Since cobimetinib exhibited absorption variability in cancer patients, a series of single-dose studies in healthy subjects were conducted to determine absolute bioavailability and elucidate potential effects of formulation, food, and elevated gastric pH on cobimetinib bioavailability. Three crossover trials were performed with a 20 mg cobimetinib oral dose: absolute bioavailability using a 2 mg intravenous infusion (n = 13), relative bioavailability of tablets versus capsules and food effect (n = 20), and drug interaction with a proton pump inhibitor (20 mg of rabeprazole daily for 5 days prior to cobimetinib administration; n = 20). Absolute bioavailability of cobimetinib was 46.2% (24.2, CV %), likely due to metabolism rather than incomplete absorption. The mean systemic clearance of cobimetinib was low (11.7 L/h [28.2, CV %]). Administration of cobimetinib tablets with a high-fat meal delayed drug absorption (prolonged tmax) but had no statistically significant effect on cobimetinib exposure (Cmax and AUC0-∞). Tablet and capsule formulations of cobimetinib showed comparable exposures. Cobimetinib exhibited delayed absorption (tmax) in the presence of rabeprazole, with no statistically significant effects on drug exposure (Cmax and AUC0-∞) in the fasted state. In conclusion, cobimetinib oral absorption was not affected by change in formulation, food, or elevated gastric pH. PMID:24010577

  14. Drug delivery systems.

    PubMed

    Robinson, D H; Mauger, J W

    1991-10-01

    New and emerging drug delivery systems for traditional drugs and the products of biotechnology are discussed, and the role of the pharmacist in ensuring the appropriate use of these systems is outlined. Advantages of advanced drug delivery systems over traditional systems are the ability to deliver a drug more selectively to a specific site; easier, more accurate, less frequent dosing; decreased variability in systemic drug concentrations; absorption that is more consistent with the site and mechanism of action; and reductions in toxic metabolites. Four basic strategies govern the mechanisms of advanced drug delivery: physical, chemical, biological, and mechanical. Oral drug delivery systems use natural and synthetic polymers to deliver the product to a specific region in the gastrointestinal tract in a timely manner that minimizes adverse effects and increases drug efficacy. Innovations in injectable and implantable delivery systems include emulsions, particulate delivery systems, micromolecular products and macromolecular drug adducts, and enzymatic-controlled delivery. Options for noninvasive drug delivery include the transdermal, respiratory, intranasal, ophthalmic, lymphatic, rectal, intravaginal, and intrauterine routes as well as topical application. Rapid growth is projected in the drug delivery systems market worldwide in the next five years. Genetic engineering has mandated the development of new strategies to deliver biotechnologically derived protein and peptide drugs and chemoimmunoconjugates. The role of the pharmacist in the era of advanced drug delivery systems will be broad based, including administering drugs, compounding, calculating dosages based on pharmacokinetic and pharmacodynamic monitoring, counseling, and research. The advent of advanced drug delivery systems offers pharmacists a new opportunity to assume an active role in patient care. PMID:1772110

  15. Drugs that may cause impotence

    MedlinePlus

    Impotence caused by medications; Drug-induced erectile dysfunction; Prescription medicines and impotence ... Many medicines and recreational drugs can affect a man's sexual arousal and sexual performance. What causes impotence in one ...

  16. In vitro prediction of gastrointestinal absorption and bioavailability: an experts' meeting report.

    PubMed

    Pelkonen, O; Boobis, A R; Gundert-Remy, U

    2001-11-01

    The most convenient route of drug administration is peroral. To reach their target, drug molecules must be absorbed from the gastrointestinal tract and enter the systemic circulation in sufficient quantities. For this reason, understanding and anticipating the mechanisms and factors affecting gastrointestinal absorption and metabolism are of the utmost importance in developing new drugs. In contrast to drugs, which are administered intentionally for therapeutic reasons, chemical residues in food and other matrices enter the body unintentionally. Hence, in this case, a low systemic availability would be advantageous. For many reasons, but particularly because of financial and ethical (reduced used of animals) considerations, in vitro and ex vivo approaches to this problem have been pursued over the last few years. The use of in vitro methods, however, inherently creates questions about the validity of extrapolation to the in vivo situation. The purpose of this report is to review the current status of the field and to identify major gaps in our knowledge. Currently, there are a number of in silico, in vitro, cultured cell-based and ex vivo approaches available to predict the cell permeation, absorption and gastrointestinal metabolism of molecules. Some strengths and weaknesses of these approaches are presented, together with a discussion of genetic, environmental, physiological and pathological factors responsible for interspecies and inter-individual variability in these processes. Recent advances in our understanding of active processes such as gut epithelial transporters, involved in absorption, and drug-metabolising enzymes, responsible for intestinal presystemic metabolism, are highlighted. Some major research priorities are identified, including the need for high-quality, information-rich databases against which testing methods being developed can be prevalidated and validated. Preclinical drug development is changing rapidly, and the role of in vitro and ex

  17. Food-Drug Interactions

    PubMed Central

    Bushra, Rabia; Aslam, Nousheen; Khan, Arshad Yar

    2011-01-01

    The effect of drug on a person may be different than expected because that drug interacts with another drug the person is taking (drug-drug interaction), food, beverages, dietary supplements the person is consuming (drug-nutrient/food interaction) or another disease the person has (drug-disease interaction). A drug interaction is a situation in which a substance affects the activity of a drug, i.e. the effects are increased or decreased, or they produce a new effect that neither produces on its own. These interactions may occur out of accidental misuse or due to lack of knowledge about the active ingredients involved in the relevant substances. Regarding food-drug interactions physicians and pharmacists recognize that some foods and drugs, when taken simultaneously, can alter the body's ability to utilize a particular food or drug, or cause serious side effects. Clinically significant drug interactions, which pose potential harm to the patient, may result from changes in pharmaceutical, pharmacokinetic, or pharmacodynamic properties. Some may be taken advantage of, to the benefit of patients, but more commonly drug interactions result in adverse drug events. Therefore it is advisable for patients to follow the physician and doctors instructions to obtain maximum benefits with least food-drug interactions. The literature survey was conducted by extracting data from different review and original articles on general or specific drug interactions with food. This review gives information about various interactions between different foods and drugs and will help physicians and pharmacists prescribe drugs cautiously with only suitable food supplement to get maximum benefit for the patient. PMID:22043389

  18. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  19. Influence of food on the bioavailability of drugs.

    PubMed

    Melander, A

    1978-01-01

    Food intake exerts a complex influence on the bioavailability of drugs. It may interfere not only with tablet disintegration, drug dissolution and drug transit through the gastrointestinal tract, but may also affect the metabolic transformation of drugs in the gastrointestinal wall and in the liver. Different food components can have different effects, and food may interact in opposite ways, even with drugs that are chemically related. Therefore, the net effect of food on drug bioavailability can be predicted only by direct clinical studies of the drug in question. As judged mainly from single meal, single dose studies, food intake enhances the bioavailability of several different drugs, such as propranolol, metoprolol, hydrallazine, hydrochlorothiazide, canrenone (from spironolactone), nitrofurantoin, erythromycin (stearate), dicoumarol, phenytoin and carbamazepine, but reduces that of drugs such as isoniazid, rifampicin, tetracycline, penicillin and ampicillin, while having no consistent effect on the bioavailability of metronidazole, oxazepam, melperone, propylthiouracil, sulphasomidine and sulphonylureas. For some drugs such as digoxin and paracetamol, the rate but not the extent of absorption is reduced. Food may enhance bioavailability even though, or rather because, the rate of gastric emptying is reduced; this is apparently the case with hydrochlorothiazide and nitrofurantoin. The food induced enhancement of bioavailability of propranolol, metoprolol and hydrallazine is probably due to reduced first pass metabolism of these drugs, while food induced improvement of drug dissolution may explain the enhanced bioavailability of carbamazepine, canrenone, dicoumarol and phenytoin. An increased gastrointestinal pH may be in part the cause of the food induced reduction of the bioavailability of drugs such as isoniazid and tetracycline. In addition to single meal effects, repeated intake of protein-rich meals enhance, while carbohydrate-rich meals reduce, the rate

  20. Effect of migraine attacks on paracetamol absorption.

    PubMed Central

    Tokola, R A; Neuvonen, P J

    1984-01-01

    The absorption of effervescent paracetamol (1000 mg) was investigated in nine female patients during a migraine attack and in the same patients when headache free. Migraine attack decreased (P less than 0.05) the areas under the serum paracetamol concentration-time curves (AUC) of 0-2 h, 0-4 h and 0-6 h and the peak serum concentration. The severity of nausea correlated significantly with the decrease in the AUC values. Our results support findings of delayed gastric emptying in migraine attacks. Both a delay and an impairment of drug absorption may follow. PMID:6529526

  1. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  2. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  3. In Vivo Formation of Cubic Phase in Situ after Oral Administration of Cubic Phase Precursor Formulation Provides Long Duration Gastric Retention and Absorption for Poorly Water-Soluble Drugs.

    PubMed

    Pham, Anna C; Hong, Linda; Montagnat, Oliver; Nowell, Cameron J; Nguyen, Tri-Hung; Boyd, Ben J

    2016-01-01

    Lipid-based liquid crystalline systems based on the combination of digestible and nondigestible lipids have been proposed as potential sustained release delivery systems for oral delivery of poorly water-soluble drugs. The potential for cubic phase liquid crystal formation to induce dramatically extended gastric retention in vivo has been shown previously to strongly influence the resulting pharmacokinetics of incorporated drug. In vitro studies showing the in situ formation of cubic phase from a disordered precursor comprising a mixture of digestible and nondigestible lipids under enzymatic digestion have also recently been reported. Combining both concepts, here we show the potential for such systems to form in vivo, increasing gastric retention, and providing a sustained release effect for a model poorly water-soluble drug cinnarizine. A mixture of phytantriol and tributyrin at an 85:15 mass ratio, shown previously to form cubic phase under the influence of digestion, induced a similar pharmacokinetic profile to that in the absence of tributyrin, but completely different from tributyrin alone. The gastric retention of the formulation, assessed using micro-X-ray CT imaging, was also consistent with the pharmacokinetic behavior, where phytantriol alone and with 15% tributyrin was greater than that of tributyrin in the absence of phytantriol. Thus, the concept of precursor lipid systems that form cubic phase in situ during digestion in vivo has been demonstrated and opens new opportunities for sustained release of poorly water-soluble drugs. PMID:26567591

  4. 21 CFR 211.94 - Drug product containers and closures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drug product containers and closures. 211.94... Components and Drug Product Containers and Closures § 211.94 Drug product containers and closures. (a) Drug product containers and closures shall not be reactive, additive, or absorptive so as to alter the...

  5. The role of the equilibrative and concentrative nucleoside transporters in the intestinal absorption of the nucleoside drug, ribavirin, in wild-type and Ent1(−/−) mice

    PubMed Central

    Moss, Aaron M.; Endres, Christopher J.; Ruiz-Garcia, Ana; Choi, Doo-Sup; Unadkat, Jashvant D.

    2012-01-01

    Ribavirin is frontline treatment for hepatitis C virus infection. To determine the role of nucleoside transporters in the intestinal absorption of orally administered ribavirin, we perfused the intestines of Ent1(−/−) and wild-type mice, in situ, with [3H] ribavirin (20, 200 and 5000 μM) in the presence and absence of sodium. The decrease in luminal ribavirin concentration over 30 minutes was measured at 5-minute intervals. Blood samples were collected approximately every 10 minutes. Ribavirin plus phosphorylated metabolite concentrations (hereafter referred to as ribavirin) were determined in tissue, blood and plasma by HPLC fractionation and scintillation counting. There was no significant difference between wild-type and Ent1(−/−) mice in intestinal loss of ribavirin at any ribavirin concentration studied. Perfusions without sodium drastically reduced the intestinal loss of ribavirin in both wild-type and Ent1(−/−) mice. After 20 μM ribavirin perfusions, Ent1(−/−) intestinal tissue contained 8-fold greater ribavirin than wild-type mice (p<0.01). Ribavirin concentrations in the wild-type intestinal tissue were 70-fold higher after 200 vs. 20 μM perfusions (p<0.001), indicating saturation of intestinal ribavirin efflux and possibly other processes as well. Ribavirin plasma concentrations were significantly higher in wild-type mice (2.7-fold) vs. Ent1(−/−) mice at 30 minutes after the 20 μM perfusion (p<0.01). These results suggest that, at lower intestinal concentrations of ribavirin, concentrative and equilibrative nucleoside transporters are important in the intestinal absorption of ribavirin. At higher intestinal concentrations, these transporters are saturated and other processes in the intestine (transport and/or metabolism) play an important role in the absorption of ribavirin. PMID:22812541

  6. Drug allergies

    MedlinePlus

    Allergic reaction - drug (medication); Drug hypersensitivity; Medication hypersensitivity ... A drug allergy involves an immune response in the body that produces an allergic reaction to a medicine. The ...

  7. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  8. Student Drug Use.

    ERIC Educational Resources Information Center

    Nowlis, Helen H.

    This paper discusses the nature and extent of student drug use, its meaning and significance, society's response to it, and some of the problems resulting from efforts to control it. Drugs are any substance which by its chemical nature affects the structure or function of the living organism. Abuse refers to any use of a non-medically approved…

  9. Drug allergies

    MedlinePlus

    Allergic reaction - drug (medication); Drug hypersensitivity; Medication hypersensitivity ... Adverse reactions to drugs are common. (adverse means unwanted or unexpected.) Almost any drug can cause an adverse reaction. Reactions range from irritating ...

  10. Drug Safety

    MedlinePlus

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  11. Club Drugs

    MedlinePlus

    ... uses. Other uses of these drugs are abuse. Club drugs are also sometimes used as "date rape" drugs, to make someone unable to say no to or fight back against sexual assault. Abusing these drugs can ...

  12. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and...

  13. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and...

  14. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and...

  15. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and...

  16. Mechanistic understanding of the effect of PPIs and acidic carbonated beverages on the oral absorption of itraconazole based on absorption modeling with appropriate in vitro data.

    PubMed

    Fotaki, Nikoletta; Klein, Sandra

    2013-11-01

    Proton pump inhibitors (PPIs) are potent gastric acid suppressing agents and are among the most widely sold drugs in the world. However, even though these antisecretory agents are regarded as safe, they can alter the pharmacokinetics of coadministered drugs. Due to the suppression of gastric acid secretion, they can significantly alter the intragastric pH conditions and are thus likely to affect the bioavailability of coadministered drugs requiring an acidic gastric environment for dissolution and subsequent absorption. Among these drugs can be found itraconazole, a poorly soluble triazole-type antifungal compound. Based on observations reported in the literature, gastric pH alterations due to the coadministration of PPIs or acidic beverages can significantly decrease (PPI) or increase (e.g., Coca-Cola) the bioavailability of this compound. In the present work we estimated the fraction of itraconazole that can be absorbed (fabs) from Sporanox capsules or an itraconazole-HBenBCD complex formulation after oral administration with and without coadministration of a PPI or an acidic (carbonated) beverage. For this purpose, the sensitivity of the two formulations toward the impact of various gastric variations (pH, volume, and emptying rate) as they can result from such administration conditions was studied using solubility and dissolution experiments and a physiologically based absorption model. Simulating coadministration of the two formulations with a PPI resulted in a significant (∼ 10-fold) decrease in itraconazole fabs, indicating the pH to be essential for in vivo dissolution and subsequent absorption. The fabs of itraconazole after coadministration of an acidic beverage (Coca-Cola) was far lower than the fabs obtained for itraconazole alone and did not support the observations reported in the literature. These results clearly indicate that in contrast to PPIs, which seem to affect itraconazole bioavailability mainly via intragastric pH changes, coadministered

  17. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  19. Dipeptide absorption in man

    PubMed Central

    Hellier, M. D.; Holdsworth, C. D.; McColl, I.; Perrett, D.

    1972-01-01

    A quantitative perfusion method has been used to study intestinal absorption of two dipeptides—glycyl-glycine and glycyl-l-alanine—in normal subjects. In each case, the constituent amino acids were absorbed faster when presented as dipeptides than as free amino acids, suggesting intact dipeptide transport. During absorption constituent amino acids were measured within the lumen and it is suggested that these represent amino acids which have diffused back to the lumen after absorption as dipeptide. Portal blood analyses during absorption of a third dipeptide, glycyl-l-lysine, have shown that this dipeptide, known to be transported intact from the intestinal lumen, is hydrolysed to its constitutent amino acids before it reaches portal venous blood. PMID:4652039

  20. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  1. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  2. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  3. Nasal Absorption of Macromolecules from Powder Formulations and Effects of Sodium Carboxymethyl Cellulose on Their Absorption.

    PubMed

    Tanaka, Akiko; Furubayashi, Tomoyuki; Matsushita, Akifumi; Inoue, Daisuke; Kimura, Shunsuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-01-01

    The nasal absorption of macromolecules from powder formulations and the effect of sodium carboxymethyl cellulose (CMC-Na) as a pharmaceutical excipient on their absorption were studied. Model macromolecules were fluorescein isothiocyanate-labeled dextran (average molecular weight of 4.4kDa, FD4) and insulin. The plasma concentration of FD4 after application of the powder containing 50% starch (control) was higher than that after application of the solution, and the absorption from 50% starch powder was enhanced by the substitution of starch with CMC-Na. The fractional absorption of FD4 after administration of the CMC-Na powder formulation was 30% and 40% higher than that after administration from the solution and the starch powder, respectively. The nasal absorption of insulin from the powder and the effect of CMC-Na were similar with those of FD4. The effective absorption of FD4 and insulin after application of powder with CMC-Na could be due to the increase in the nasal residence of FD4 and insulin. No damage in the nasal mucosa or dysfunction of the mucociliary clearance was observed after application of the drug powder and CMC-Na. The present findings indicate that nasal delivery of powder formulations with the addition of CMC-Na as an excipient is a promising approach for improving the nasal absorption of macromolecules. PMID:27598527

  4. Serious drug interactions.

    PubMed

    Aronson, J

    1993-10-01

    Of the many varieties of drug interactions, which occur when the disposition or actions of one drug are changed by another, only a few are serious or potentially fatal. A representative outline of some of these illustrates the problem. Precipitant drugs are those which produce the interaction, and object drugs are those whose effects are changed. The interactions which are usually significant are those which alter the metabolism, involve renal excretion, or change the effects of the object drug, especially when the object drug has a low therapeutic index (cardiovascular drugs, anticoagulants, drugs acting on the brain, hypoglycemic drugs, hormones, and cytotoxic drugs). Warfarin toxicity, for example, is produced by aspirin, phenylbutazone, and azapropazone. The dosage requirements of warfarin are reduced by chloramphenicol, ciprofloxacin and other quinolones, erythromycin and some of the other macrolides, metronidazole and other imidazoles, tetracyclines, amiodarone, cimetidine (but not ranitidine), and fibrates. Potassium-depleting drugs can potentiate the action of digoxin, and the elimination of digoxin can be reduced by amiodarone, propafenone, quinidine, and verapamil. Combined oral contraceptives can lose effectiveness through the interaction of carbamazepine, griseofulvin, phenytoin, or rifampicin, which increase estrogen metabolism. In addition, broad-spectrum antibiotics such as ampicillin or tetracyclines also reduce contraceptive effectiveness by altering gut absorption. Even a single drink of an alcoholic beverage may be dangerous to people taking antidepressants, antihistamines, antipsychotic drugs, benzodiazepines, or lithium. Antihistamines suffer inhibited metabolism in the liver if taken in conjunction with the antifungal imidazoles and some of the macrolide antibiotics. Cardiotoxicity of antihistamines is also enhanced by drugs with similar cardiotoxic effects. Lithium potentiation is enhanced by the new serotonin-reuptake inhibitors, and lithium

  5. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement.

    PubMed

    Stuurman, Frederik E; Nuijen, Bastiaan; Beijnen, Jos H; Schellens, Jan H M

    2013-06-01

    The use of oral anticancer drugs has increased during the last decade, because of patient preference, lower costs, proven efficacy, lack of infusion-related inconveniences, and the opportunity to develop chronic treatment regimens. Oral administration of anticancer drugs is, however, often hampered by limited bioavailability of the drug, which is associated with a wide variability. Since most anticancer drugs have a narrow therapeutic window and are dosed at or close to the maximum tolerated dose, a wide variability in the bioavailability can have a negative impact on treatment outcome. This review discusses mechanisms of low bioavailability of oral anticancer drugs and strategies for improvement. The extent of oral bioavailability depends on many factors, including release of the drug from the pharmaceutical dosage form, a drug's stability in the gastrointestinal tract, factors affecting dissolution, the rate of passage through the gut wall, and the pre-systemic metabolism in the gut wall and liver. These factors are divided into pharmaceutical limitations, physiological endogenous limitations, and patient-specific limitations. There are several strategies to reduce or overcome these limitations. First, pharmaceutical adjustment of the formulation or the physicochemical characteristics of the drug can improve the dissolution rate and absorption. Second, pharmacological interventions by combining the drug with inhibitors of transporter proteins and/or pre-systemic metabolizing enzymes can overcome the physiological endogenous limitations. Third, chemical modification of a drug by synthesis of a derivative, salt form, or prodrug could enhance the bioavailability by improving the absorption and bypassing physiological endogenous limitations. Although the bioavailability can be enhanced by various strategies, the development of novel oral products with low solubility or cell membrane permeability remains cumbersome and is often unsuccessful. The main reasons are

  6. Perspectives on Preventing Student Drug Abuse.

    ERIC Educational Resources Information Center

    Pedone, Ronald, Ed.; Gwaltney, Margaret K., Ed.

    This set of papers is one part of the United States Department of Education's effort to establish a research agenda for drug use. It consists of a foreword and 10 papers that examine issues of drug abuse, students, and schools. It presents different views on the drug abuse problem in order to affect research on schools, drugs, and drug education.…

  7. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  8. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  9. Drugs, drugs--who has the drugs?

    PubMed

    Blair, James

    2012-01-01

    Drug diversion, although on the increase, is not the only problem involving drugs that hospital security officials should be concerned with. Growing drug shortages, offshore production, counterfeiting, and weaknesses in the drug supply chain in case of a world-wide pandemic, are even greater causes for concern, the author claims. PMID:22423518

  10. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: a provisional biopharmaceutical classification of the list of national essential medicines of Pakistan

    PubMed Central

    Shawahna, R.; Rahman, NU.

    2011-01-01

    Background and the purpose of the study Partition coefficients (log D and log P) and molecular surface area (PSA) are potential predictors of the intestinal permeability of drugs. The aim of this investigation was to evaluate and compare these intestinal permeability indicators. Methods Aqueous solubility data were obtained from literature or calculated using ACD/Labs and ALOGPS. Permeability data were predicted based on log P, log D at pH 6.0 (log D6.0), and PSA. Results Metoprolol's log P, log D6.0, and a PSA of <65 Å correctly predicted 55.9%, 50.8% and 54.2% of permeability classes, respectively. Labetalol's log P, log D6.0 and PSA correctly predicted 54.2%, 64.4% and 61% of permeability classes, respectively. Log D6.0 correlated well (81%) with Caco-2 permeability (Papp). Of the list of national essential medicines, 135 orally administered drugs were classified into biopharmaceutical classification system (BCS). Of these, 57 (42.2%), 28 (20.7%), 44 (32.6%), and 6 (4.4%) were class I, II, III and IV respectively. Conclusion Log D6.0 showed better prediction capability than log P. Metoprolol as permeability internal standard was more conservative than labetalol. PMID:22615645

  11. An analytical method to screen for six thyreostatic drug residues in the thyroid gland and muscle tissues of food producing animals by liquid chromatography with ultraviolet absorption detection and liquid chromatography/mass spectrometry.

    PubMed

    Asea, Philip E; MacNeil, James D; Boison, Joe O

    2006-01-01

    A method was developed and validated to screen for residues of the thyreostatic drugs, tapazole (TAP), mercaptobenzimidazole (MBI), thiouracil (TU), methylthiouracil (MTU), propylthiouracil (PrTU), and phenylthiouracil (PhTU) in bovine, equine, ovine, and porcine thyroid and muscle tissues at concentrations > or = 5 ng/g using 2-methoxy-mercaptobenzimidazole (MeMBI) and dimethylthiouracil (DMTU) as internal standards. In this method, the drugs were solvent extracted from thyroid and muscle tissue and cleaned up on an amino-propyl solid-phase extraction (SPE) cartridge. The unretained fraction containing TAP and MBI and the internal standard, MeMBI, was collected as Fraction 1. The retained fraction containing TU, MTU, PrTU, PhTU, and the internal standard, DMTU, was eluted with 3% acetic acid-isopropanol as Fraction 2. Fraction 1 was further cleaned up on an alumina B SPE cartridge and analyzed by gradient elution on a C18 high-performance liquid chromatography (HPLC) column with ultraviolet detection at wavelengths of 255 and 300 nm. Fraction 2 was taken to dryness, derivatized with 4-chloro-7-nitrobenzo-2-furazan at pH 8, and analyzed by gradient elution on a C18 LC column with mass spectrometry (MS) detection. Any "presumptive positive" test results were submitted for further analysis by LC/MS/MS. The validated method was applied to the analysis of over 300 thyroid tissue samples. PMID:16640308

  12. Transporters and drug-drug interactions: important determinants of drug disposition and effects.

    PubMed

    König, Jörg; Müller, Fabian; Fromm, Martin F

    2013-07-01

    Uptake and efflux transporters determine plasma and tissue concentrations of a broad variety of drugs. They are localized in organs such as small intestine, liver, and kidney, which are critical for drug absorption and elimination. Moreover, they can be found in important blood-tissue barriers such as the blood-brain barrier. Inhibition or induction of drug transporters by coadministered drugs can alter pharmacokinetics and pharmacodynamics of the victim drugs. This review will summarize in particular clinically observed drug-drug interactions attributable to inhibition or induction of intestinal export transporters [P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)], to inhibition of hepatic uptake transporters [organic anion transporting polypeptides (OATPs)], or to inhibition of transporter-mediated [organic anion transporters (OATs), organic cation transporter 2 (OCT2), multidrug and toxin extrusion proteins (MATEs), P-gp] renal secretion of xenobiotics. Available data on the impact of nutrition on transport processes as well as genotype-dependent, transporter-mediated drug-drug interactions will be discussed. We will also present and discuss data on the variable extent to which information on the impact of transporters on drug disposition is included in summaries of product characteristics of selected countries (SPCs). Further work is required regarding a better understanding of the role of the drug metabolism-drug transport interplay for drug-drug interactions and on the extrapolation of in vitro findings to the in vivo (human) situation. PMID:23686349

  13. The Zone of Inertia: Absorptive Capacity and Organizational Change

    ERIC Educational Resources Information Center

    Godkin, Lynn

    2010-01-01

    Purpose: The purpose of this paper is to describe how interruptions in organizational learning effect institutional absorptive capacity and contribute to organizational inertia. Design/methodology/approach: An exploratory model is presented as a heuristic to describe how interruptions in organizational learning affect absorptive capacity.…

  14. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  15. Adverse ocular reactions to drugs.

    PubMed Central

    Spiteri, M. A.; James, D. G.

    1983-01-01

    Drugs acting on various parts of the body may also affect the eye insidiously. Increased awareness of such drug toxicity by the prescribing doctor should encourage him to consider effects on the cornea, lens, retina, optic nerve and elsewhere when checking the patient's progress. The following review concerns adverse ocular effects of systemic drug administration. PMID:6356101

  16. Percutaneous absorption from soil.

    PubMed

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  17. HIV Infection Seems to Affect Nervous System

    MedlinePlus

    ... fullstory_159344.html HIV Infection Seems to Affect Nervous System But symptoms tend to subside once antiretroviral drugs ... mild, it is clear that HIV affects the nervous system within days of infection," she said in a ...

  18. Drug-Induced Hematologic Syndromes

    PubMed Central

    Mintzer, David M.; Billet, Shira N.; Chmielewski, Lauren

    2009-01-01

    Objective. Drugs can induce almost the entire spectrum of hematologic disorders, affecting white cells, red cells, platelets, and the coagulation system. This paper aims to emphasize the broad range of drug-induced hematological syndromes and to highlight some of the newer drugs and syndromes. Methods. Medline literature on drug-induced hematologic syndromes was reviewed. Most reports and reviews focus on individual drugs or cytopenias. Results. Drug-induced syndromes include hemolytic anemias, methemoglobinemia, red cell aplasia, sideroblastic anemia, megaloblastic anemia, polycythemia, aplastic anemia, leukocytosis, neutropenia, eosinophilia, immune thrombocytopenia, microangiopathic syndromes, hypercoagulability, hypoprothrombinemia, circulating anticoagulants, myelodysplasia, and acute leukemia. Some of the classic drugs known to cause hematologic abnormalities have been replaced by newer drugs, including biologics, accompanied by their own syndromes and unintended side effects. Conclusions. Drugs can induce toxicities spanning many hematologic syndromes, mediated by a variety of mechanisms. Physicians need to be alert to the potential for iatrogenic drug-induced hematologic complications. PMID:19960059

  19. Multiplasmon Absorption in Graphene

    NASA Astrophysics Data System (ADS)

    Jablan, Marinko; Chang, Darrick E.

    2015-06-01

    We show that graphene possesses a strong nonlinear optical response in the form of multiplasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nanoribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nanodisks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.

  20. Chaotic Systems with Absorption

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions Dq obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D1 in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.

  1. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  2. Drug Facts

    MedlinePlus Videos and Cool Tools

    ... Weed, Pot) Facts Meth (Crank, Ice) Facts Pain Medicine (Oxy, Vike) Facts Other Drugs of Abuse What ... About Drugs Alcohol Cocaine Heroin Marijuana Meth Pain Medicines Tobacco Other Drugs You can call 1-800- ...

  3. Drug Reactions

    MedlinePlus

    ... problem is interactions, which may occur between Two drugs, such as aspirin and blood thinners Drugs and food, such as statins and grapefruit Drugs and supplements, such as gingko and blood thinners ...

  4. Drug Resistance

    MedlinePlus

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  5. Line shape studies in CW dye laser intracavity absorption

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Brink, G. O.; Spence, S.; Lakkaraju, H. S.

    1980-01-01

    The line shape of the signals observed by intracavity absorption in an atomic beam of barium is studied as a function of absorber density. Complex structure is observed consisting of both absorption and enhancement features. Comparison is made with models of intracavity absorption, and it is concluded that the rate equation model in its present form does not explain the structure. On the other hand the super-regen model does seem able to partially account for the observed structure. The complexity of the line shape will directly affect those workers who are using intracavity absorption as a spectroscopic technique.

  6. Drugs and vitamin B12 and folate metabolism.

    PubMed

    Lindenbaum, J

    1983-01-01

    Deficiency of either folic acid or vitamin B12 may interfere with DNA synthesis and result in megaloblastic anemia or other conditions. These 2 vitamins have dissimilar molecular structures and are present in different foods; they are also absorbed and metabolized differently. In 201 consecutive cases of megaloblastic anemia, for 90% the cause was alcoholism and poor diet; 0.5% (1 case) was related to oral contraceptives (OCs). Megaloblastic anemia due to folate deficiency has occasionally been reported in patients with inflammatory bowel disease and has been attributed to poor diet, impaired absorption, and increased tissue utilization of folate. Sulfasalazine, a compound containing a sulfa drug and a salicylate that is broken down to its active components by the gut flora, is widely used in the treatment of inflammatory bowel disease and has been shown to impair the absorption of folic acid, polyglutamyl folate, and methyl-tetrahydrofolic acid in patients with these disorders. There is also evidence suggesting an interaction between anticonvulsant drugs and folate balance. A number of cases of megaloblastic anemia due to folate deficiency have been reported in women taking OCs. While in some cases no apparent cause for the megaloblastic anemia other than contraceptive therapy was demonstrated, in many patients other underlying disorders that were likely to disturb folate balance such as celiac disease, decreased dietary vitamin intake, and the administration of other drugs known to affect folate status have also been present. There is no convincing evidence that sex steroids affect folate absorption; about 20% of women taking OCs were found to have mild megaloblastic changes on Papanicolaou smears. These changes disappered after folic acid therapy, suggesting that OCs may cause an increased demand for folate limited to the reproductive system. Another finding is of low serum cobalamin levels in women using OCs; this appears however to be a laboratory abnormality

  7. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  8. Total absorption Cherenkov spectrometers

    NASA Astrophysics Data System (ADS)

    Malinovski, E. I.

    2015-05-01

    A short review of 50 years of work done with Cherenkov detectors in laboratories at the Lebedev Physical Institute is presented. The report considers some issues concerning the use of Cherenkov total absorption counters based on lead glass and heavy crystals in accelerator experiments.

  9. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  10. ZINC ABSORPTION BY INFANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  11. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  12. Empathic features of absorption and incongruence.

    PubMed

    Wickramasekera, Ian E

    2007-07-01

    A study was undertaken to examine whether empathy could be related to absorption and incongruence (repressive coping). The participants were 71 graduate students who completed measures of empathy, absorption, and incongruence (repressive coping). The results confirmed a previous finding that empathy appears positively related to absorption (r = .42, p < .001). The results also suggest that affective components of empathy are inversely related to repressive coping (r = -.29, p < .05) while cognitive components are positively related to the social desirability aspects of incongruence (r = .31, p < .01). The findings are collectively discussed in terms of the Empathic Involvement Hypothesis of Hypnosis (Wickramasekera II, 2001), the Four-factor theory of Repressive Coping (Eysenck, 1997), Incongruence (Rogers, 1957), and the High Risk Model of Threat Perception (I. E. Wickramasekera I, 1998). PMID:17685245

  13. Projecting future drug expenditures--1994.

    PubMed

    Santell, J P

    1994-01-15

    The use of information on inflation, generic competition, market introduction of new drug entities, institution-specific drug-use patterns, and federal legislation to project drug expenditures is discussed. Inflation of pharmaceutical prices has been decreasing over the past few years. Increases in the producer price index for drugs and pharmaceuticals diminished from 6.9% in 1991 to 4.3% in the first half of 1993; the specter of government regulation may be one reason. Pharmacy group purchasing organizations (GPOs) predicted that in 1994 expenditures would increase an average of 2.1% for contracted drug items and 8.3% for noncontracted items. Expenditures for biotechnology drugs in January through July 1993 increased 16% over the same period in 1992; such agents are now hospital pharmacies' third most costly drug category, at 10% of total expenditures. Future price competition by generic drug products can be predicted from information on patent or market-exclusivity expiration. To predict the market release of new drug products, new-drug applications filed with FDA can be monitored. The most important component in projecting drug expenditures is a specific institution's pattern of use of high-cost drugs. Mechanisms that can be used to monitor changes in therapeutic strategies and drug-use protocols include drug cost indexes, assessment of drug-use patterns by outside companies, and computerized models for specific high-cost drugs. Drug expenditures can be affected by legislative changes such as the Medicaid rebate provisions of the Omnibus Budget Reconciliation Act of 1990 and the Medicare outpatient drug benefit in the proposed American Health Security Act. The accuracy of projections of drug expenditures can be improved by examining inflation, generic competition, the introduction of new drug entities, institution-specific drug-use patterns, and legislative issues. Pharmacy managers need better methods for estimating institution-specific use of high-cost drugs

  14. [Intestinal absorption kinetics of Polygonum capitatum extract in rats].

    PubMed

    Yang, Wu; Hou, Jia; Lu, Yuan; Chen, Peng-cheng; Liao, Shang-gao; Huang, Yong

    2015-11-01

    A UPLC-ESI-MS/MS method was used to determinate the main active fractions gallic acid, protocatechuic acid, myricetrin, hyperoside and quercitrin in Polygonum capitatum extracts by in situ intestinal perfusion models; the absorption rate constants and cumulative penetration rate of absorption were calculated. The effect of different drug concentrations, different intestine segments, bile and P-gp inhibitors on the absorption mechanism of Gallic acid and other compositions in P. capitatum extracts. The experimental results showed that gallic acid, protocatechuic acid, myricetrin and quercitrin were observed saturated at high concentration (P < 0.05). Bile had significant inhibition effect on protocatechuic acid absorption and had promotion effect on myricetrin and hyperoside absorption (P < 0.05). P-gp inhibitor verapamil could significantly enhance the absorption of Protocatechuic acid (P < 0.05). The overall trend for absorption of various compositions was that small intestine > colon. This indicated that the absorption mechanism of P. capitatum extracts in rat intestine was in line with fist-order kinetics characteristics. The composition could be absorbed in all of the different intestinal segments, and the absorption was mainly concentrated in small intestine. The protocatechuic acid may be the substrate of P-gp. PMID:27071271

  15. Drug Disposition and Therapy in Adolescence: The Effects of Puberty

    PubMed Central

    Carr, Roxane R.; Ensom, Mary H.H.

    2003-01-01

    Puberty, a part of adolescence, is a time of rapid physical, psychological, and psychosocial changes. Variability in drug absorption, distribution, metabolism and excretion occurs due to physical and hormonal changes, as well as those of body composition. Environmental factors affecting nutrition and compliance in the pubescent individual also affect success in achieving desired pharmacologic effects while minimizing toxicities. Based on available data, pharmacologic research has been relatively inadequate in providing information about drug disposition during puberty. The majority of available studies have neglected to provide staging for pubescent adolescents or have altogether excluded this population from their investigations. However, data are available that describe the effects of puberty on the pharmacokinetics of agents such as theophylline, digoxin, carbamazepine, lamotragine, vigabatrin and benzodiazepines. To date, few clinically significant changes in drug disposition have been noted during puberty. However, factors such as compliance, concomitant drug use, and the potentially rebellious nature of adolescents must be taken into consideration in the medical management of the adolescent. PMID:23300397

  16. Drug Abuse

    MedlinePlus

    ... as drugged driving, violence, stress, and child abuse. Drug abuse can lead to homelessness, crime, and missed work or problems with keeping a job. It harms unborn babies and destroys families. There are different types of treatment for drug abuse. But the best is to prevent drug ...

  17. Controlled drugs.

    PubMed

    2016-05-18

    Essential facts Controlled drugs are defined and governed by the Misuse of Drugs Act 1971 and associated regulations. Examples of controlled drugs include morphine, pethidine and methadone. Since 2012, appropriately qualified nurses and midwives can prescribe controlled drugs for medical conditions within their competence. There are some exceptions when treating addiction. PMID:27191427

  18. Membrane transporters in drug development

    PubMed Central

    2011-01-01

    Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labeling. PMID:20190787

  19. Drug diversion

    PubMed Central

    Wood, Danielle

    2015-01-01

    SUMMARY Prescription drug diversion has significant health, legal and social implications. Deaths from misuse of prescription drugs account for a significant proportion of overdose deaths. The drugs most commonly involved are analgesics, particularly opioids, and psychoactive drugs, particularly benzodiazepines. Diverted drugs are most often sourced from a family member or friend, but are also sourced from overseas pharmacies or laboratories, or bought from drug dealers. Drug diversion can be mitigated by good prescribing practices. Systems for monitoring the prescribing and dispensing of medicines are being instituted across Australia. PMID:26648654

  20. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  1. Chaotic systems with absorption.

    PubMed

    Altmann, Eduardo G; Portela, Jefferson S E; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions D(q) obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D(1) in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results. PMID:24138240

  2. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  3. Supramolecular approaches for drug development.

    PubMed

    Kawakami, K; Ebara, M; Izawa, H; Sanchez-Ballester, N M; Hill, J P; Ariga, K

    2012-01-01

    Various supramolecular systems can be used as drug carriers to alter physicochemical and pharmacokinetic characteristics of drugs. Representative supramolecular systems that can be used for this purpose include surfactant/polymer micelles, (micro)emulsions, liposomes, layer-by-layer assemblies, and various molecular conjugates. Notably, liposomes are established supramolecular drug carriers, which have already been marketed in formulations including AmBisome(®) (for treatment of fungal infection), Doxil(®) (for Kaposi's sarcoma), and Visudyne(®) (for age-related macular degeneration and choroidal neovascularization). Microemulsions have been used oral drug delivery of poorly soluble drugs due to improvements in bioavailability and predictable of absorption behavior. Neoral(®), an immunosuppressant used after transplant operations, is one of the most famous microemulsion-based drugs. Polymer micelles are being increasingly investigated as novel drug carriers and some formulations have already been tested in clinical trials. Supramolecular systems can be functionalized by designing the constituent molecules to achieve efficient delivery of drugs to desired sites in the body. In this review, representative supramolecular drug delivery systems, that may improve usability of candidate drugs or add value to existing drugs, are introduced. PMID:22455591

  4. The Influence of Intestinal Tract and Probiotics on the Fate of Orally Administered Drugs.

    PubMed

    Stojančević, Maja; Bojić, Gordana; Salami, Hani Al; Mikov, Momir

    2014-01-01

    Although the liver has long been considered as a main organ responsible for drug metabolism, the role of the gut metabolizing enzymes and the gut microflora is becoming more profoundly evident in drug metabolism, absorption and overall efficacy. This review will explore various mechanisms by which the gut-microflora influences drug pharmacokinetics including biotransformation, bioactivation, and biodegradation as well as up- or down-regulation of the epithelial transporters. The gut-luminal fluids, intestinal mucosa and gut microflora contain high concentrations of various enzymes which are responsible for the oxidation, hydrolysis and conjugation of drugs. Such metabolic reactions may lead to either drug over- or under-dosing, which impacts the drugs efficacy and safety. The processes, by which the intestinal enzymes and gut-protein transporters influence drug pharmacokinetic parameters, will be detailed. Since the intestinal microflora plays an important role in physiological, nutritional, metabolic, and immunological processes in human body, there is currently some interest in the manipulation of its composition and activity by administering probiotics. This review will also examine the capacity of probiotics to interact with resident microbial community, affecting the respective enzymes or by providing their own specific enzymatic activities that may consequently change the bioavailability and pharmacological activity of concomitantly taken drugs. PMID:24002548

  5. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  6. The colon: Absorptive, seccretory and metabolic functions.

    PubMed

    Cummings, J G

    1975-01-01

    The role which the human colon fulfils in digestion and metabolism remains largely undocumented. Its capacity to conserve water and electrolytes is well known although how this is controlled is uncertain. In the animal kingdom, calcium and magnesium absorption from the colon are improtant as are absorption and synthesis of vitamins. The abundant microflora of the human colon gives it unique properties. Dietary residue is metabolised forming short-chain fatty acids, hydrogen, carbon dioxide and methane; whilst 20% of urea synthesised in man is broken down in the colon to ammonia, which is reabsorbed, and carbonic acid. The microflora also degrades a wide variety of organic compounds including food additives, drugs, bile salts, and cholesterol which may be relevant to the development of colon cancer. Regional differences in colonic function also exist making interpretation of data from this relatively inaccessible organ more difficult. PMID:1205009

  7. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  8. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  9. Effect of antacid on imatinib absorption

    PubMed Central

    Sparano, Brian A.; Egorin, Merrill J.; Parise, Robert A.; Walters, Jennifer; Komazec, Kristin A.; Redner, Robert L.; Beumer, Jan H.

    2009-01-01

    Purpose Imatinib often causes gastric upset resulting in frequent co-administration of an antacid. Elevated gastric pH, delayed gastric emptying, or introduction of Mg2+/Al3+ could potentially change imatinib absorption, thereby affecting the therapeutic effectiveness of imatinib. Indeed, antacid co-administration with dasatinib does result in a two-fold decrease in dasatinib absorption. We aimed to define the effect of antacid on the pharmacokinetics of imatinib. Methods Twelve healthy subjects were enrolled in a 2-period, open-label, randomized cross-over, fixed-sequence study. In one period, each subject received 400 mg imatinib p.o., and in the other, the same dose of imatinib preceded by 20 mL antacid, containing 1.6 g Al(OH)3 + 1.6 g Mg(OH)2, 15 min before imatinib. Plasma concentrations of imatinib and its active N-desmethyl metabolite CGP74588 were determined by LC-MS, and data were analyzed non-compartmentally. Results Antacid administration did not significantly affect the area under the plasma imatinib concentration versus time curve (AUC) (31.7 μg/mL·h alone versus 32.6 μg/mL·h with antacid, P=0.37; 80% power). Conclusions Our results indicate that the use of a Mg2+-Al3+-based antacid does not significantly affect imatinib absorption. PMID:18500518

  10. Grapefruit and drug interactions.

    PubMed

    2012-12-01

    Since the late 1980s, grapefruit juice has been known to affect the metabolism of certain drugs. Several serious adverse effects involving drug interactions with grapefruit juice have been published in detail. The components of grapefruit juice vary considerably depending on the variety, maturity and origin of the fruit, local climatic conditions, and the manufacturing process. No single component accounts for all observed interactions. Other grapefruit products are also occasionally implicated, including preserves, lyophylised grapefruit juice, powdered whole grapefruit, grapefruit seed extract, and zest. Clinical reports of drug interactions with grapefruit juice are supported by pharmacokinetic studies, each usually involving about 10 healthy volunteers, in which the probable clinical consequences were extrapolated from the observed plasma concentrations. Grapefruit juice inhibits CYP3A4, the cytochrome P450 isoenzyme most often involved in drug metabolism. This increases plasma concentrations of the drugs concerned, creating a risk of overdose and dose-dependent adverse effects. Grapefruit juice also inhibits several other cytochrome P450 isoenzymes, but they are less frequently implicated in interactions with clinical consequences. Drugs interacting with grapefruit and inducing serious clinical consequences (confirmed or very probable) include: immunosuppressants, some statins, benzodiazepines, most calcium channel blockers, indinavir and carbamazepine. There are large inter-individual differences in enzyme efficiency. Along with the variable composition of grapefruit juice, this makes it difficult to predict the magnitude and clinical consequences of drug interactions with grapefruit juice in a given patient. There is increasing evidence that transporter proteins such as organic anion transporters and P-glycoprotein are involved in interactions between drugs and grapefruit juice. In practice, numerous drugs interact with grapefruit juice. Although only a few

  11. Affective Learning.

    ERIC Educational Resources Information Center

    Brown, Charles T.

    This paper addresses itself to the question, "What does feeling have to do with knowing?" Two movements in affective education are discussed which have come into focus in recent years and which attempt to define the relationship between knowing and feeling. The first, a conscious application of the role of arousal in learning, emphasizes arousal…

  12. Absorption Reconstruction Improves Biodistribution Assessment of Fluorescent Nanoprobes Using Hybrid Fluorescence-mediated Tomography

    PubMed Central

    Gremse, Felix; Theek, Benjamin; Kunjachan, Sijumon; Lederle, Wiltrud; Pardo, Alessa; Barth, Stefan; Lammers, Twan; Naumann, Uwe; Kiessling, Fabian

    2014-01-01

    Aim: Fluorescence-mediated tomography (FMT) holds potential for accelerating diagnostic and theranostic drug development. However, for proper quantitative fluorescence reconstruction, knowledge on optical scattering and absorption, which are highly heterogeneous in different (mouse) tissues, is required. We here describe methods to assess these parameters using co-registered micro Computed Tomography (µCT) data and nonlinear whole-animal absorption reconstruction, and evaluate their importance for assessment of the biodistribution and target site accumulation of fluorophore-labeled drug delivery systems. Methods: Besides phantoms with varying degrees of absorption, mice bearing A431 tumors were imaged 15 min and 48 h after i.v. injection of a fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) using µCT-FMT. The outer shape of mice and a scattering map were derived using automated segmentation of the µCT data. Furthermore, a 3D absorption map was reconstructed from the trans-illumination data. We determined the absorption of five interactively segmented regions (heart, liver, kidney, muscle, tumor). Since blood is the main near-infrared absorber in vivo, the absorption was also estimated from the relative blood volume (rBV), determined by contrast-enhanced µCT. We compared the reconstructed absorption with the rBV-based values and analyzed the effect of using the absorption map on the fluorescence reconstruction. Results: Phantom experiments demonstrated that absorption reconstruction is possible and necessary for quantitative fluorescence reconstruction. In vivo, the reconstructed absorption showed high values in strongly blood-perfused organs such as the heart, liver and kidney. The absorption values correlated strongly with the rBV-based absorption values, confirming the accuracy of the absorption reconstruction. Usage of homogenous absorption instead of the reconstructed absorption map resulted in reduced values in the heart, liver and kidney, by

  13. Osmotically controlled drug delivery system with associated drugs.

    PubMed

    Gupta, Brahma Prakash; Thakur, Navneet; Jain, Nishi P; Banweer, Jitendra; Jain, Surendra

    2010-01-01

    Conventional drug delivery systems have slight control over their drug release and almost no control over the effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the controlled or modified release drug delivery systems. They include dosage forms for oral and transdermal administration as well as injectable and implantable systems. For most of drugs, oral route remains as the most acceptable route of administration. Certain molecules may have low oral bioavailability because of solubility or permeability limitations. Development of an extended release dosage form also requires reasonable absorption throughout the gastro-intestinal tract (GIT). Among the available techniques to improve the bioavailability of these drugs fabrication of osmotic drug delivery system is the most appropriate one. Osmotic drug delivery systems release the drug with the zero order kinetics which does not depend on the initial concentration and the physiological factors of GIT. This review brings out new technologies, fabrication and recent clinical research in osmotic drug delivery. PMID:21486532

  14. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  15. Light absorption by organic carbon from wood combustion

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Bond, T. C.

    2010-02-01

    Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While black carbon (BC) is highly absorbing, some organic carbon (OC) also has significant absorption, especially at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to positive direct aerosol radiative forcing. Quantification of that absorption is necessary so that radiative-transfer models can evaluate the net radiative effect of OC. In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble OC contributes to light absorption at both ultraviolet and visible wavelengths. However, a larger portion of the absorption comes from OC that is extractable only by methanol. Absorption spectra of water-soluble OC are similar to literature reports. We compare spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating OC with higher absorption; changing wood temperature from a devolatilizing state of 210 °C to a near-flaming state of 360 °C causes about a factor of four increase in mass-normalized absorption at visible wavelengths. A clear-sky radiative transfer model suggests that, despite the absorption, both high-temperature and low-temperature OC result in negative top-of-atmosphere radiative forcing over a surface with an albedo of 0.19 and positive radiative forcing over bright surfaces. Unless absorption by real ambient aerosol is higher than that measured here, it probably affects global average clear-sky forcing very little, but could be important in energy balances over bright surfaces.

  16. Approaches for the Development of Drugs for Treatment of Obesity and Metabolic Syndrome.

    PubMed

    Maksimov, Maksim L; Svistunov, Andrey A; Tarasov, Vadim V; Chubarev, Vladimir N; Ávila-Rodriguez, Marco; Barreto, George E; Dralova, Olga V; Aliev, Gjumrakch

    2016-01-01

    Obesity and metabolic syndrome (MS) are risk factors for diabetes, cancer, some cardiovascular and musculoskeletal diseases. Pharmacotherapy should be used when the body mass index (BMI) exceeds 30 kg/m² or 27 kg/m² with comorbidity. Efficacy and safety of pharmacotherapy depend on the mechanism of action of drugs. In this context, drugs affecting the central and peripheral mediator systems such as cannabinoid receptor antagonists (Rimonabant), neuronal reuptake inhibitor of NE and 5 HT (Sibutramine), neuronal reuptake inhibitor of NE 5-HT DA (Tesofensine), agonist of 5 HT 2C receptors (Lorcaserin) have a high risk of side effects on the central nervous and cardiovascular systems when used for a long period. Apparently, the drugs design targeting obesity should screen safer drugs that affect fat absorption (Orlistat), activate energy metabolism (Adipokines), inhibit MetAP2 (Beloranib) and other peripheral metabolic processes. The use of synergies of anti-obesity drugs with different mechanisms of action is an effective approach for developing new combined pharmaceutical compositions (Contrave®, EmpaticTM, Qsymia et al). The purpose of this article is to review the currently available anti-obesity drugs and some new promising trends in development of anti-obesity therapy. PMID:26648466

  17. Age does not alter acetaminophen absorption.

    PubMed

    Divoll, M; Ameer, B; Abernethy, D R; Greenblatt, D J

    1982-04-01

    Twenty-eight healthy volunteers (age range, 22-78 years) received 650 mg of acetaminophen (AAP) on three separate occasions. The modes of administration were 1) intravenous, 5-minute infusion; 2) oral, with two 325-mg tablets; and 3) oral, with 650 mg as an elixir preparation. Plasma levels of AAP were determined in blood samples drawn up to 12 hours after the dose. The mean (+/- sd) kinetic variables for absorption of AAP from tablets in young and elderly were peak plasma concentration, 11.8 (+/- 4.2) vs 10.9 (+/- 4.1) micrograms/ml; peak time, 0.79 (+/- .54) vs 0.69 (+/- .40) hours after the dose; absorption half-life, 12.6 (+/- 9.8) vs. 8.2 (+/- 5.3) minutes; and absolute systemic availability, 79 (+/- 9) vs 72 (+/- 11) per cent. For AAP elixir, the corresponding values were 12.6 (+/- 5.4) vs 13.7 (+/- 6.0) micrograms/ml; 0.52 (+/- .24) vs 0.54 (+/- .51) hours; 8.6 (+/- 6.2) vs 6.1 (+/- 6.6) minutes; and 87 (+/- 9) vs 80 (+/- 9) per cent. Absolute bioavailability of both oral dosage forms was significantly less then 100 per cent in all groups. Elderly subjects tended to show lower availability of both oral preparations, but the difference was of borderline significance (P less than .50). Age did not influence any other measures of absorption. Since the absorption rate of acetaminophen may be indicative of the gastric emptying rate, age does not appear to alter this rate-limiting step in drug absorption. PMID:7069091

  18. Absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  19. pH-dependent drug-drug interactions for weak base drugs: potential implications for new drug development.

    PubMed

    Zhang, L; Wu, F; Lee, S C; Zhao, H; Zhang, L

    2014-08-01

    Absorption of an orally administered drug with pH-dependent solubility may be altered when it is coadministered with a gastric acid-reducing agent (ARA). Assessing a drug's potential for pH-dependent drug-drug interactions (DDIs), considering study design elements for such DDI studies, and interpreting and communicating study results in the drug labeling to guide drug dosing are important for drug development. We collected pertinent information related to new molecular entities approved from January 2003 to May 2013 by the US Food and Drug Administration for which clinical DDI studies with ARAs were performed. On the basis of assessments of data on pH solubility and in vivo DDIs with ARAs, we proposed a conceptual framework for assessing the need for clinical pH-dependent DDI studies for weak base drugs (WBDs). Important study design considerations include selection of ARAs and timing of dosing of an ARA relative to the WBD in a DDI study. Labeling implications for drugs having DDIs with ARAs are also illustrated. PMID:24733008

  20. Scattering with absorptive interaction

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Stingl, M.; Weiguny, A.

    1982-07-01

    The S matrix for a wide class of complex and nonlocal potentials is studied, with special attention given to the motion of singularities in the complex k plane as a function of the imaginary coupling strength. Modifications of Levinson's theorem are obtained and discussed. Analytic approximations to the S matrix in the vicinity of narrow resonances are exhibited and compared to numerical results of resonating-group calculations. The problem of defining resonances in the case of complex interactions is discussed, making contact with the usual analysis of scattering in terms of Argand diagrams. NUCLEAR REACTIONS Scattering theory, S matrix for absorptive potentials.

  1. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  2. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, Michael E.; Bien, Fritz; Bernstein, Lawrence S.

    1986-01-01

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

  3. Interoception and Drug Addiction

    PubMed Central

    Paulus, Martin P.; Stewart, Jennifer L.

    2013-01-01

    The role of interoception and its neural basis with relevance to drug addiction is reviewed. Interoception consists of the receiving, processing, and integrating body-relevant signals with external stimuli to affect ongoing motivated behavior. The insular cortex is the central nervous system hub to process and integrate these signals. Interoception is an important component of several addiction relevant constructs including arousal, attention, stress, reward, and conditioning. Imaging studies with drug-addicted individuals show that the insular cortex is hypo-active during cognitive control processes but hyperactive during cue reactivity and drug-specific, reward-related processes. It is proposed that interoception contributes to drug addiction by incorporating an “embodied” experience of drug uses together with the individual’s predicted versus actual internal state to modulate approach or avoidance behavior, i.e. whether to take or not to take drugs. This opens the possibility of two types of interventions. First, one may be able to modulate the embodied experience by enhancing insula reactivity where necessary, e.g. when engaging in drug seeking behavior, or attenuating insula when exposed to drug-relevant cues. Second, one may be able to reduce the urge to act by increasing the frontal control network, i.e. inhibiting the urge to use by employing cognitive training. PMID:23855999

  4. Interoception and drug addiction.

    PubMed

    Paulus, Martin P; Stewart, Jennifer L

    2014-01-01

    The role of interoception and its neural basis with relevance to drug addiction is reviewed. Interoception consists of the receiving, processing, and integrating body-relevant signals with external stimuli to affect ongoing motivated behavior. The insular cortex is the central nervous system hub to process and integrate these signals. Interoception is an important component of several addiction relevant constructs including arousal, attention, stress, reward, and conditioning. Imaging studies with drug-addicted individuals show that the insular cortex is hypo-active during cognitive control processes but hyperactive during cue reactivity and drug-specific, reward-related processes. It is proposed that interoception contributes to drug addiction by incorporating an "embodied" experience of drug uses together with the individual's predicted versus actual internal state to modulate approach or avoidance behavior, i.e. whether to take or not to take drugs. This opens the possibility of two types of interventions. First, one may be able to modulate the embodied experience by enhancing insula reactivity where necessary, e.g. when engaging in drug seeking behavior, or attenuating insula when exposed to drug-relevant cues. Second, one may be able to reduce the urge to act by increasing the frontal control network, i.e. inhibiting the urge to use by employing cognitive training. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. PMID:23855999

  5. Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development

    PubMed Central

    Pignatello, R.; Musumeci, T.; Basile, L.; Carbone, C.; Puglisi, G.

    2011-01-01

    Contact with many different biological membranes goes along the destiny of a drug after its systemic administration. From the circulating macrophage cells to the vessel endothelium, to more complex absorption barriers, the interaction of a biomolecule with these membranes largely affects its rate and time of biodistribution in the body and at the target sites. Therefore, investigating the phenomena occurring on the cell membranes, as well as their different interaction with drugs in the physiological or pathological conditions, is important to exploit the molecular basis of many diseases and to identify new potential therapeutic strategies. Of course, the complexity of the structure and functions of biological and cell membranes, has pushed researchers toward the proposition and validation of simpler two- and three-dimensional membrane models, whose utility and drawbacks will be discussed. This review also describes the analytical methods used to look at the interactions among bioactive compounds with biological membrane models, with a particular accent on the calorimetric techniques. These studies can be considered as a powerful tool for medicinal chemistry and pharmaceutical technology, in the steps of designing new drugs and optimizing the activity and safety profile of compounds already used in the therapy. PMID:21430952

  6. Drugged Driving

    MedlinePlus

    ... Infographics » Drugged Driving Drugged Driving Email Facebook Twitter Text Description of Infographic Top Right Figure : In 2009, ... crash than those who don't smoke. Bottom Text: Develop Social Strategies Offer to be a designated ...

  7. Drug Control

    ERIC Educational Resources I