Science.gov

Sample records for affect ecosystem productivity

  1. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-01-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381

  2. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  3. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  4. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  5. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  6. A geostatistical synthesis study of factors affecting gross primary productivity in various ecosystems of North America

    NASA Astrophysics Data System (ADS)

    Yadav, V.; Mueller, K. L.; Dragoni, D.; Michalak, A. M.

    2010-09-01

    A coupled Bayesian model selection and geostatistical regression modeling approach is adopted for empirical analysis of gross primary productivity (GPP) at six AmeriFlux sites, including the Kennedy Space Center Scrub Oak, Vaira Ranch, Tonzi Ranch, Blodgett Forest, Morgan Monroe State Forest, and Harvard Forest sites. The analysis is performed at a continuum of temporal scales ranging from daily to monthly, for a period of seven years. A total of 10 covariates representing environmental stimuli and indices of plant physiology are considered in explaining variations in GPP. Similarly to other statistical methods, the presented approach estimates regression coefficients and uncertainties associated with the covariates in a selected regression model. Unlike traditional regression methods, however, the approach also estimates the uncertainty associated with the selection of a single "best" model of GPP. In addition, the approach provides an enhanced understanding of how the importance of specific covariates changes with the examined timescale (i.e. temporal resolution). An examination of changes in the importance of specific covariates across timescales reveals thresholds above or below which covariates become important in explaining GPP. Results indicate that most sites (especially those with a stronger seasonal cycle) exhibit at least one prominent scaling threshold between the daily and 20-day temporal scales. This demonstrates that environmental variables that explain GPP at synoptic scales are different from those that capture its seasonality. At shorter time scales, radiation, temperature, and vapor pressure deficit exert the most significant influence on GPP at most examined sites. At coarser time scales, however, the importance of these covariates in explaining GPP declines. Overall, unique best models are identified at most sites at the daily scale, whereas multiple competing models are identified at longer time scales.

  7. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  8. Nutrient recycling affects autotroph and ecosystem stoichiometry.

    PubMed

    Ballantyne, Ford; Menge, Duncan N L; Ostling, Annette; Hosseini, Parviez

    2008-04-01

    Stoichiometric nutrient ratios are the consequence of myriad interacting processes, both biotic and abiotic. Theoretical explanations for autotroph stoichiometry have focused on species' nutrient requirements but have not addressed the role of nutrient availability in determining autotroph stoichiometry. Remineralization of organic N and P supplies a significant fraction of inorganic N and P to autotrophs, making nutrient recycling a potentially important process influencing autotroph stoichiometry. To quantitatively investigate the relationship between available N and P, autotroph N:P, and nutrient recycling, we analyze a stoichiometrically explicit model of autotroph growth, incorporating Michaelis-Menten-Monod nutrient uptake kinetics, Droop growth, and Liebig's law of the minimum. If autotroph growth is limited by a single nutrient, increased recycling of the limiting nutrient pushes autotrophs toward colimitation and alters both autotroph and environmental stoichiometry. We derive a steady state relationship between input stoichiometry, autotroph N:P, and the stoichiometry of organic losses that allows us to estimate the relative recycling of N to P within an ecosystem. We then estimate relative N and P recycling for a marine, an aquatic, and two terrestrial ecosystems. Preferential P recycling, in conjunction with greater relative P retention at the organismal and ecosystem levels, presents a strong case for the importance of P to biomass production across ecosystems.

  9. Does competition among ecosystem engineering species result in tradeoffs in the production of ecosystem services?

    EPA Science Inventory

    Production of ecosystem services depends on the ecological community structure at a given location. Ecosystem engineering species (EES) can strongly determine community structure, but do they consequently determine the production of ecosystem services? We explore this question ...

  10. Neotropical Amphibian Declines Affect Stream Ecosystem Properties

    NASA Astrophysics Data System (ADS)

    Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.

    2005-05-01

    Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.

  11. Evaluation of Environmental Quality Productive Ecosystem Guayas (Ecuador).

    NASA Astrophysics Data System (ADS)

    Pozo, Wilson; Pardo, Francisco; Sanfeliu, Teófilo; Carrera, Gloria; Jordan, Manuel; Bech, Jaume; Roca, Núria

    2015-04-01

    Natural resources are deteriorating very rapidly in the Gulf of Guayaquil and the area of influence in the Guayas Basin due to human activity. Specific problems are generated by the mismanagement of the aquaculture industry affecting the traditional agricultural sectors: rice, banana, sugarcane, cocoa, coffee, and soya also studied, and by human and industrial settlements. The development of industrial activities such as aquaculture (shrimp building for shrimp farming in ponds) and agriculture, have increasingly contributed to the generation of waste, degrading and potentially toxic elements in high concentrations, which can have adverse effects on organisms in the ecosystems, in the health of the population and damage the ecological and environmental balance. The productive Guayas ecosystem, consists of three interrelated ecosystems, the Gulf of Guayaquil, the Guayas River estuary and the Guayas Basin buffer. The objective of this study was to evaluate the environmental quality of the productive Guayas ecosystem (Ecuador), through operational and specific objectives: 1) Draw up the transition coastal zone in the Gulf of Guayaquil, 2) Set temporal spatial variability of soil salinity in wetlands rice, Lower Guayas Basin, 3) evaluate the heavy metals in wetland rice in the Lower Basin of Guayas. The physical and chemical parameters of the soils have been studied. These are indicators of environmental quality. The multivariate statistical method showed the relations of similarities and dissimilarities between variables and parameter studies as stable. Moreover, the boundaries of coastal transition areas, temporal spatial variability of soil salinity and heavy metals in rice cultivation in the Lower Basin of Guayas were researched. The sequential studies included and discussed represent a broad framework of fundamental issues that has been valued as a basic component of the productive Guayas ecosystem. They are determinants of the environmental quality of the Guayas

  12. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors.

    PubMed

    Marek, Michal V; Janouš, Dalibor; Taufarová, Klára; Havránková, Kateřina; Pavelka, Marian; Kaplan, Věroslav; Marková, Irena

    2011-05-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands.

  13. A model of global net ecosystem production

    SciTech Connect

    Potter, C.S.; Matson, P.A. ); Field, C.B.; Randerson, J. ); Vitousek, P.M.; Mooney, H.A. )

    1993-06-01

    We present an ecosystem modeling approach to resolve global climate and edaphic controls on seasonal NEP patterns. Global remote sensing, climate and land surface data sets are used as inputs to drive a terrestrial carbon cycle model at 1[degrees]lat/lon resolution. monthly net primary productivity (NPP) is calculated using surface radiation and NDVI to determine photosynthesis, which is subsequently adjusted by temperature, water and nitrogen stress factors. Total nitrogen availability is coupled to net mineralization rates from litter soil carbon pools. Soil respiration and NPP balance one another globally at around 60 Gt C yr[sup [minus]1]. The seasonal amplitude of global NEP is 1.2 Gt C. Although substantial month-to-month variation is observed for tropical forest areas, seasonal amplitude is driven globally by boreal and temperate forest ecosystems between 650 and 30[degrees] N latitude.

  14. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It remains unclear whether biodiversity buffers ecosystems against extreme climate events, which are becoming increasingly frequent worldwide. Although early results suggested that biodiversity might provide both resistance and resilience (sensu rapid recovery) of ecosystem productivity to drought, ...

  15. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  16. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  17. How does vineyard management intensity affect ecosystem services and disservices - insights from a meta-analysis

    NASA Astrophysics Data System (ADS)

    Winter, Silvia; Zaller, Johann G.; Kratschmer, Sophie; Pachinger, Bärbel; Strauss, Peter; Bauer, Thomas; Paredes, Daniel; Gómez, José A.; Guzmán, Gema; Landa, Blanca; Nicolai, Annegret; Burel, Francoise; Cluzeau, Daniel; Popescu, Daniela; Bunea, Claudiu-Ioan; Potthoff, Martin; Guernion, Muriel; Batáry, Péter

    2016-04-01

    Viticultural agro-ecosystems provide a range of different ecosystem services which are affected by management decisions of winegrowers. At the global scale, vineyards are often high intensity agricultural systems with bare soil or inter-row vegetation consisting of only a few plant species. These systems primarily aim at optimizing wine production by reducing competition for water and nutrients between grapevines and weeds and by preventing the outbreak of pests and diseases. At the same time, this kind of management is often associated with ecosystem disservices such as high rates of soil erosion, degradation of soil structure and fertility, contamination of groundwater and decline of biodiversity. Recently, several initiatives across the world tried to overcome detrimental effects of that management style by creating biodiversity friendly vineyards. The consequences of establishing divers cover crop mixes or tolerating spontaneous vegetation in vineyards for ecosystem services (including yield) overstretching local case studies has not been investigated yet. This meta-analysis will provide an overview of all published studies comparing the effects of different vineyard management practices on a range of different ecosystem services like biodiversity, pest control, pollination, soil conservation and carbon sequestration. The aggregated effect size will point out which management measures can provide the best overall net sum of ecosystem services. This meta-analysis is part of the transdisciplinary BiodivERsA project VineDivers and will ultimately lead into management and policy recommendations for various stakeholder groups engaged in viticulture.

  18. Chemolithotrophic Primary Production in a Subglacial Ecosystem

    PubMed Central

    Hamilton, Trinity L.; Havig, Jeff R.; Skidmore, Mark L.; Shock, Everett L.

    2014-01-01

    Glacial comminution of bedrock generates fresh mineral surfaces capable of sustaining chemotrophic microbial communities under the dark conditions that pervade subglacial habitats. Geochemical and isotopic evidence suggests that pyrite oxidation is a dominant weathering process generating protons that drive mineral dissolution in many subglacial systems. Here, we provide evidence correlating pyrite oxidation with chemosynthetic primary productivity and carbonate dissolution in subglacial sediments sampled from Robertson Glacier (RG), Alberta, Canada. Quantification and sequencing of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) transcripts suggest that populations closely affiliated with Sideroxydans lithotrophicus, an iron sulfide-oxidizing autotrophic bacterium, are abundant constituents of microbial communities at RG. Microcosm experiments indicate sulfate production during biological assimilation of radiolabeled bicarbonate. Geochemical analyses of subglacial meltwater indicate that increases in sulfate levels are associated with increased calcite and dolomite dissolution. Collectively, these data suggest a role for biological pyrite oxidation in driving primary productivity and mineral dissolution in a subglacial environment and provide the first rate estimate for bicarbonate assimilation in these ecosystems. Evidence for lithotrophic primary production in this contemporary subglacial environment provides a plausible mechanism to explain how subglacial communities could be sustained in near-isolation from the atmosphere during glacial-interglacial cycles. PMID:25085483

  19. Loss of Rare Fish Species from Tropical Floodplain Food Webs Affects Community Structure and Ecosystem Multifunctionality in a Mesocosm Experiment

    PubMed Central

    Pendleton, Richard M.; Hoeinghaus, David J.; Gomes, Luiz C.; Agostinho, Angelo A.

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  20. Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment.

    PubMed

    Pendleton, Richard M; Hoeinghaus, David J; Gomes, Luiz C; Agostinho, Angelo A

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  1. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  2. Net ecosystem production in a subarctic peatland

    SciTech Connect

    Luken, J.O.

    1984-01-01

    A mass balance approach was used to determine the rates of carbon storage in three areas of a subarctic bog near Fairbanks, Alaska (latitude 64/sup 0/52'N). Aboveground net primary production was 20.3, 74.2, and 77.4 gm/sup -2/yr/sup -1/ for nonvascular plants, the shrub and herb layer, and the tree layer of the bog forest, respectively. Aboveground net primary production was 83.7 and 58.2 g m/sup -2/yr/sup -1/ for nonvascular plants and the shrub and herb layer of the Andromeda bog, respectively, in the Carex lawns, aboveground net primary production was 194.9 and 111.7 g m/sup -2/yr/sup -1/ for nonvascular and vascular plants, respectively. Sphagnum mosses are important components of this peatbog ecosystem due to their high rates of net primary production and slow rates of decomposition. Experimental manipulations of light level, water table level, and nutrient availability indicated that terminal extension rates and volumetric density of the Sphagnum stands are controlled primarily by light and water table levels. An explanation of Sphagnum zonation in hummock-hollow complexes is presented which incorporates aspects of growth rate, stand morphology, and reproductive mode. Soil carbon dioxide efflux rates were measured in a number of different hummock-hollow microhabitats. Approximately 75% of the variance associated with soil respiration could be explained by regression equations with soil moisture and soil temperature as independent variables. Carbohydrate limitation of soil microbial populations was demonstrated in both laboratory and field experiments.

  3. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David

    2012-01-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  4. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    PubMed

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  5. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    PubMed

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events. PMID:26466564

  6. Does consideration of water routing affect simulated water and carbon dynamics in terrestrial ecosystems?

    NASA Astrophysics Data System (ADS)

    Tang, G.; Schneiderman, E. M.; Band, L. E.; Hwang, T.; Pierson, D. C.; Pradhanang, S. M.; Zion, M. S.

    2013-10-01

    The cycling of carbon in terrestrial ecosystems is closely coupled with the cycling of water. An important mechanism connecting ecological and hydrological processes in terrestrial ecosystems is lateral flow of water along landscapes. Few studies, however, have examined explicitly how consideration of water routing affects simulated water and carbon dynamics in terrestrial ecosystems. The objective of this study is to explore how consideration of water routing in a process-based hydroecological model affects simulated water and carbon dynamics. To achieve that end, we rasterized the regional hydroecological simulation systems (RHESSys) and employed the rasterized RHESSys (R-RHESSys) in a forested watershed. We performed and compared two contrasting simulations, one with and another without water routing. We found that R-RHESSys is able to correctly simulate major hydrological and ecological variables regardless of whether water routing is considered. When water routing was neglected, however, soil water table depth and saturation deficit were simulated to be smaller and spatially more homogeneous. As a result, evaporation, forest productivity and soil heterotrophic respiration also were simulated to be spatially more homogeneous compared to simulation with water routing. When averaged for the entire watershed, however, differences in simulated water and carbon fluxes are not significant between the two simulations. Overall, the study demonstrated that consideration of water routing enabled R-RHESSys to better capture our preconception of the spatial patterns of water table depth and saturation deficit across the watershed. Because the spatial pattern of soil moisture is fundamental to water efflux from land to the atmosphere, forest productivity and soil microbial activity, ecosystem and carbon cycle models, therefore, need to explicitly represent water routing in order to accurately quantify the magnitudes and patterns of water and carbon fluxes in terrestrial

  7. How stock of origin affects performance of individuals across a meta-ecosystem: an example from sockeye salmon.

    PubMed

    Griffiths, Jennifer R; Schindler, Daniel E; Seeb, Lisa W

    2013-01-01

    Connectivity among diverse habitats can buffer populations from adverse environmental conditions, influence the functioning of meta-ecosystems, and ultimately affect the reliability of ecosystem services. This stabilizing effect on populations is proposed to derive from complementarity in growth and survival conditions experienced by individuals in the different habitats that comprise meta-ecosystems. Here we use the fine scale differentiation of salmon populations between diverse lake habitats to assess how rearing habitat and stock of origin affect the body condition of juvenile sockeye salmon. We use genetic markers (single nucleotide polymorphisms) to assign individuals of unknown origin to stock group and in turn characterize ecologically relevant attributes across habitats and stocks. Our analyses show that the body condition of juvenile salmon is related to the productivity of alternative habitats across the watershed, irrespective of their stock of origin. Emigrants and residents with genetic origins in the high productivity lake were also differentiated by their body condition, poor and high respectively. These emigrants represented a substantial proportion of juvenile sockeye salmon rearing in the lower productivity lake habitat. Despite emigrants originating from the more productive lake, they did not differ in body condition from the individuals spawned in the lower productivity, recipient habitat. Genetic tools allowed us to assess the performance of different stocks groups across the diverse habitats comprising their meta-ecosystem. The ability to characterize the ecological consequences of meta-ecosystem connectivity can help develop strategies to protect and restore ecosystems and the services they provide to humans. PMID:23505539

  8. How Stock of Origin Affects Performance of Individuals across a Meta-Ecosystem: An Example from Sockeye Salmon

    PubMed Central

    Griffiths, Jennifer R.; Schindler, Daniel E.; Seeb, Lisa W.

    2013-01-01

    Connectivity among diverse habitats can buffer populations from adverse environmental conditions, influence the functioning of meta-ecosystems, and ultimately affect the reliability of ecosystem services. This stabilizing effect on populations is proposed to derive from complementarity in growth and survival conditions experienced by individuals in the different habitats that comprise meta-ecosystems. Here we use the fine scale differentiation of salmon populations between diverse lake habitats to assess how rearing habitat and stock of origin affect the body condition of juvenile sockeye salmon. We use genetic markers (single nucleotide polymorphisms) to assign individuals of unknown origin to stock group and in turn characterize ecologically relevant attributes across habitats and stocks. Our analyses show that the body condition of juvenile salmon is related to the productivity of alternative habitats across the watershed, irrespective of their stock of origin. Emigrants and residents with genetic origins in the high productivity lake were also differentiated by their body condition, poor and high respectively. These emigrants represented a substantial proportion of juvenile sockeye salmon rearing in the lower productivity lake habitat. Despite emigrants originating from the more productive lake, they did not differ in body condition from the individuals spawned in the lower productivity, recipient habitat. Genetic tools allowed us to assess the performance of different stocks groups across the diverse habitats comprising their meta-ecosystem. The ability to characterize the ecological consequences of meta-ecosystem connectivity can help develop strategies to protect and restore ecosystems and the services they provide to humans. PMID:23505539

  9. Linking Ecosystem Services Benefit Transfer Databases and Ecosystem Services Production Function Libraries

    EPA Science Inventory

    The quantification or estimation of the economic and non-economic values of ecosystem services can be done from a number of distinct approaches. For example, practitioners may use ecosystem services production function models (ESPFMs) for a particular location, or alternatively, ...

  10. Assessing the transferability of ecosystem service production estimates and functions

    EPA Science Inventory

    Estimates of ecosystem service (ES) production, and their responses to stressors or policy actions, may be obtained by direct measurement, other empirical studies, or modeling. Direct measurement is costly and often impractical, and thus many studies transfer ES production estim...

  11. Sugars proportionately affect artemisinin production.

    PubMed

    Wang, Y; Weathers, P J

    2007-07-01

    Little is known about the effect of sugars in controlling secondary metabolism. In this study, sugars alone or in combination with their analogs were used to investigate their role in the production of the antimalarial drug, artemisinin, in Artemisia annua L. seedlings. Compared to sucrose, a 200% increase in artemisinin by glucose was observed. Different ratios of fructose to glucose yielded artemisinin levels directly proportional to increases in relative glucose concentration. When the glucose analog, 3-O-methylglucose, was added with glucose, artemisinin production was dramatically decreased, but hexokinase activity was significantly increased compared to glucose alone. In contrast, neither mannose nor mannitol had any significant effect on artemisinin yield. In comparison with 30 g/l sucrose, artemisinin levels were significantly reduced by 80% in the presence of 27 g/l sucrose + 3 g/l palatinose, which cannot be transported into cells through the sucrose transporter. Together these results suggest that both monosaccharide and disaccharide sugars are likely acting not only as carbon sources but also as signals to affect the downstream production of artemisinin, and that the mechanism of these effects appears to be complex. PMID:17221224

  12. Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems

    USGS Publications Warehouse

    Randerson, J.T.; Chapin, F. S.; Harden, J.W.; Neff, J.C.; Harmon, M.E.

    2002-01-01

    The conceptual framework used by ecologists and biogeochemists must allow for accurate and clearly defined comparisons of carbon fluxes made with disparate techniques across a spectrum of temporal and spatial scales. Consistent with usage over the past four decades, we define "net ecosystem production" (NEP) as the net carbon accumulation by ecosystems. Past use of this term has been ambiguous, because it has been used conceptually as a measure of carbon accumulation by ecosystems, but it has often been calculated considering only the balance between gross primary production (GPP) and ecosystem respiration. This calculation ignores other carbon fluxes from ecosystems (e.g., leaching of dissolved carbon and losses associated with disturbance). To avoid conceptual ambiguities, we argue that NEP be defined, as in the past, as the net carbon accumulation by ecosystems and that it explicitly incorporate all the carbon fluxes from an ecosystem, including autotrophic respiration, heterotrophic respiration, losses associated with disturbance, dissolved and particulate carbon losses, volatile organic compound emissions, and lateral transfers among ecosystems. Net biome productivity (NBP), which has been proposed to account for carbon loss during episodic disturbance, is equivalent to NEP at regional or global scales. The multi-scale conceptual framework we describe provides continuity between flux measurements made at the scale of soil profiles and chambers, forest inventories, eddy covariance towers, aircraft, and inversions of remote atmospheric flask samples, allowing a direct comparison of NEP estimates made at all temporal and spatial scales.

  13. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  14. Productivity and biomass of trematode (Digenea) parasites in lake ecosystems.

    PubMed

    Yurlova, N I

    2016-01-01

    The first estimation of the annual production and biomass of cercariae (free swimming transmission stage of digenetic trematodes) in a lake ecosystem has been performed. The biomass of cercariae is comparable with that of free-living invertebrates and may make a significant contribution to the energy flow in lake ecosystems. PMID:27021366

  15. Affective Productions of Mathematical Experience

    ERIC Educational Resources Information Center

    Walshaw, Margaret; Brown, Tony

    2012-01-01

    In underscoring the affective elements of mathematics experience, we work with contemporary readings of the work of Spinoza on the politics of affect, to understand what is included in the cognitive repertoire of the Subject. We draw on those resources to tell a pedagogical tale about the relation between cognition and affect in settings of…

  16. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity.

    PubMed

    Isbell, Forest; Reich, Peter B; Tilman, David; Hobbie, Sarah E; Polasky, Stephen; Binder, Seth

    2013-07-16

    Anthropogenic drivers of environmental change often have multiple effects, including changes in biodiversity, species composition, and ecosystem functioning. It remains unknown whether such shifts in biodiversity and species composition may, themselves, be major contributors to the total, long-term impacts of anthropogenic drivers on ecosystem functioning. Moreover, although numerous experiments have shown that random losses of species impact the functioning of ecosystems, human-caused losses of biodiversity are rarely random. Here we use results from long-term grassland field experiments to test for direct effects of chronic nutrient enrichment on ecosystem productivity, and for indirect effects of enrichment on productivity mediated by resultant species losses. We found that ecosystem productivity decreased through time most in plots that lost the most species. Chronic nitrogen addition also led to the nonrandom loss of initially dominant native perennial C4 grasses. This loss of dominant plant species was associated with twice as great a loss of productivity per lost species than occurred with random species loss in a nearby biodiversity experiment. Thus, although chronic nitrogen enrichment initially increased productivity, it also led to loss of plant species, including initially dominant species, which then caused substantial diminishing returns from nitrogen fertilization. In contrast, elevated CO2 did not decrease grassland plant diversity, and it consistently promoted productivity over time. Our results support the hypothesis that the long-term impacts of anthropogenic drivers of environmental change on ecosystem functioning can strongly depend on how such drivers gradually decrease biodiversity and restructure communities.

  17. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity

    PubMed Central

    Isbell, Forest; Reich, Peter B.; Tilman, David; Hobbie, Sarah E.; Polasky, Stephen; Binder, Seth

    2013-01-01

    Anthropogenic drivers of environmental change often have multiple effects, including changes in biodiversity, species composition, and ecosystem functioning. It remains unknown whether such shifts in biodiversity and species composition may, themselves, be major contributors to the total, long-term impacts of anthropogenic drivers on ecosystem functioning. Moreover, although numerous experiments have shown that random losses of species impact the functioning of ecosystems, human-caused losses of biodiversity are rarely random. Here we use results from long-term grassland field experiments to test for direct effects of chronic nutrient enrichment on ecosystem productivity, and for indirect effects of enrichment on productivity mediated by resultant species losses. We found that ecosystem productivity decreased through time most in plots that lost the most species. Chronic nitrogen addition also led to the nonrandom loss of initially dominant native perennial C4 grasses. This loss of dominant plant species was associated with twice as great a loss of productivity per lost species than occurred with random species loss in a nearby biodiversity experiment. Thus, although chronic nitrogen enrichment initially increased productivity, it also led to loss of plant species, including initially dominant species, which then caused substantial diminishing returns from nitrogen fertilization. In contrast, elevated CO2 did not decrease grassland plant diversity, and it consistently promoted productivity over time. Our results support the hypothesis that the long-term impacts of anthropogenic drivers of environmental change on ecosystem functioning can strongly depend on how such drivers gradually decrease biodiversity and restructure communities. PMID:23818582

  18. Nitrogen Additions Affect Root Dynamics in a Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Treseder, K. K.

    2004-12-01

    As with many ecosystems, North American boreal forests are increasingly subjected to anthropogenic nitrogen deposition. To examine potential effects on plant growth, we created nitrogen fertilization plots in three sites along an Alaskan fire chronosequence composed of forests aged 5, 17, and 80 years. Each site had been exposed to two years of nitrogen fertilization, with four control plots and four nitrogen plots per site. General observations indicate that aboveground net primary productivity appears to be nitrogen limited in each site. We hypothesized that nitrogen fertilization would positively influence root dynamics as well, with nitrogen additions resulting in an increase in standing root biomass and length. To test our hypothesis, we used a minirhizotron camera to collect sequential images of roots in the top 10 cm of soil in both nitrogen fertilized and control plots in each site. Images were collected monthly during the growing season, with a total of five sampling times between May 2003 and May 2004. We then analyzed the images with WinRhizotron root measurement software. Nitrogen fertilization had varying effects on root biomass among the three sites, with a significant site by N interaction (P = 0.039). A decrease in root biomass was observed in the 5 and 80 year old sites, dropping from 207 g/m2 to 79 g/m2 and from 230 g/m2 to 129 g/m2 for the youngest and oldest sites, respectively. In contrast, root biomass increased from 52 g/m2 to 107 g/m2 in the 17 year old site. (Values are for the top 10 cm of soil only, and likely underestimate total root stocks.) Patterns in standing root lengths diverged from those of root biomass, with a 2.5-fold overall increase under nitrogen fertilization across all sites (P = 0.004). There were no significant differences among sites in nitrogen response. Standing root biomass and length differed from one another in their responses to nitrogen fertilization because nitrogen additions decreased specific root weight (as g

  19. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    PubMed

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.

  20. Toxins in transgenic crop byproducts may affect headwater stream ecosystems.

    PubMed

    Rosi-Marshall, E J; Tank, J L; Royer, T V; Whiles, M R; Evans-White, M; Chambers, C; Griffiths, N A; Pokelsek, J; Stephen, M L

    2007-10-01

    Corn (Zea mays L.) that has been genetically engineered to produce the Cry1Ab protein (Bt corn) is resistant to lepidopteran pests. Bt corn is widely planted in the midwestern United States, often adjacent to headwater streams. We show that corn byproducts, such as pollen and detritus, enter headwater streams and are subject to storage, consumption, and transport to downstream water bodies. Laboratory feeding trials showed that consumption of Bt corn byproducts reduced growth and increased mortality of nontarget stream insects. Stream insects are important prey for aquatic and riparian predators, and widespread planting of Bt crops has unexpected ecosystem-scale consequences. PMID:17923672

  1. The Coupling of Ecosystem Productivity and Water Availability in Dryland Regions

    NASA Astrophysics Data System (ADS)

    Scott, R. L.; Biederman, J. A.; Barron-Gafford, G.

    2014-12-01

    Land cover and climatic change will alter biosphere-atmosphere exchanges of water vapor and carbon dioxide depending, in part, on feedbacks between biotic activity and water availability. Eddy covariance observations allow us to estimate ecosystem-scale productivity and respiration, and these datasets are now becoming sufficiently mature to advance understanding of these ecohydrological interactions. Here we use a network of sites in semiarid western North America representing gradients of water availability and functional plant type. We examine how precipitation (P) controls evapotranspiration (ET), net ecosystem production (NEP), and its component fluxes of ecosystem respiration (Reco) and gross ecosystem production (GEP). Despite the high variability in seasonal and annual precipitation timing and amounts that we expect to influence ecosystem function, we find persistent overall relationships between P or ET and the fluxes of NEP, Reco and GEP across the network, indicating a commonality and resilience in ecosystem soil and plant response to water availability. But we also observe several important site differences such as prior seasonal legacy effects on subsequent fluxes which vary depending on dominant plant functional type. For example, multiyear droughts, episodic cool-season droughts, and hard winter freezes seem to affect the herbaceous species differently than the woody ones. Nevertheless, the overall, strong coupling between hydrologic and ecologic processes at these sites bolsters our ability to predict the response of dryland ecosystems to future precipitation change.

  2. Tradeoffs in ecosystem services of prairies managed for bioenergy production

    NASA Astrophysics Data System (ADS)

    Jarchow, Meghann Elizabeth

    The use of perennial plant materials as a renewable source of energy may constitute an important opportunity to improve the environmental sustainability of managed land. Currently, the production of energy from agricultural products is primarily in the form of ethanol from corn grain, which used more than 45% of the domestic U.S. corn crop in 2011. Concomitantly, using corn grain to produce ethanol has promoted landscape simplification and homogenization through conversion of Conservation Reserve Program grasslands to annual row crops, and has been implicated in increasing environmental damage, such as increased nitrate leaching into water bodies and increased rates of soil erosion. In contrast, perennial prairie vegetation has the potential to be used as a bioenergy feedstock that produces a substantial amount of biomass as well as numerous ecosystem services. Reincorporating prairies to diversify the landscape of the Midwestern U.S. at strategic locations could provide more habitat for animals, including beneficial insects, and decrease nitrogen, phosphorus, and sediment movement into water bodies. In this dissertation, I present data from two field experiments that examine (1) how managing prairies for bioenergy production affects prairie ecology and agronomic performance and (2) how these prairie systems differ from corn systems managed for bioenergy production. Results of this work show that there are tradeoffs among prairie systems and between corn and prairie systems with respect to the amount of harvested biomass, root production, nutrient export, feedstock characteristics, growing season utilization, and species and functional group diversity. These results emphasize the need for a multifaceted approach to fully evaluate bioenergy feedstock production systems.

  3. Community history affects the predictability of microbial ecosystem development

    PubMed Central

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications. PMID:23985743

  4. Habitat connectivity and ecosystem productivity: implications from a simple model.

    USGS Publications Warehouse

    Cloern, J.E.

    2007-01-01

    The import of resources (food, nutrients) sustains biological production and food webs in resource-limited habitats. Resource export from donor habitats subsidizes production in recipient habitats, but the ecosystem-scale consequences of resource translocation are generally unknown. Here, I use a nutrient-phytoplankton-zooplankton model to show how dispersive connectivity between a shallow autotrophic habitat and a deep heterotrophic pelagic habitat can amplify overall system production in metazoan food webs. This result derives from the finite capacity of suspension feeders to capture and assimilate food particles: excess primary production in closed autotrophic habitats cannot be assimilated by consumers; however, if excess phytoplankton production is exported to food-limited heterotrophic habitats, it can be assimilated by zooplankton to support additional secondary production. Transport of regenerated nutrients from heterotrophic to autotrophic habitats sustains higher system primary production. These simulation results imply that the ecosystem-scale efficiency of nutrient transformation into metazoan biomass can be constrained by the rate of resource exchange across habitats and that it is optimized when the transport rate matches the growth rate of primary producers. Slower transport (i.e., reduced connectivity) leads to nutrient limitation of primary production in autotrophic habitats and food limitation of secondary production in heterotrophic habitats. Habitat fragmentation can therefore impose energetic constraints on the carrying capacity of aquatic ecosystems. The outcomes of ecosystem restoration through habitat creation will be determined by both functions provided by newly created aquatic habitats and the rates of hydraulic connectivity between them.

  5. Diversity, Productivity, and Stability of an Industrial Microbial Ecosystem

    PubMed Central

    Tang, Pei-Zhong; Becker, Scott; Hoang, Tony; Bilgin, Damla; Lim, Yan Wei; Peterson, Todd C.; Mayfield, Stephen; Haerizadeh, Farzad; Shurin, Jonathan B.; Bafna, Vineet; McBride, Robert

    2016-01-01

    Managing ecosystems to maintain biodiversity may be one approach to ensuring their dynamic stability, productivity, and delivery of vital services. The applicability of this approach to industrial ecosystems that harness the metabolic activities of microbes has been proposed but has never been tested at relevant scales. We used a tag-sequencing approach with bacterial small subunit rRNA (16S) genes and eukaryotic internal transcribed spacer 2 (ITS2) to measuring the taxonomic composition and diversity of bacteria and eukaryotes in an open pond managed for bioenergy production by microalgae over a year. Periods of high eukaryotic diversity were associated with high and more-stable biomass productivity. In addition, bacterial diversity and eukaryotic diversity were inversely correlated over time, possibly due to their opposite responses to temperature. The results indicate that maintaining diverse communities may be essential to engineering stable and productive bioenergy ecosystems using microorganisms. PMID:26896141

  6. Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat

    PubMed Central

    Spivak, Amanda C.; Canuel, Elizabeth A.; Duffy, J. Emmett; Richardson, J. Paul

    2009-01-01

    Background Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood. Methodology/Principal Findings Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments. Conclusions/Significance Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing

  7. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure.

    PubMed

    Ferraro, Paul J; Hanauer, Merlin M

    2014-03-18

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare.

  8. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure.

    PubMed

    Ferraro, Paul J; Hanauer, Merlin M

    2014-03-18

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare. PMID:24567397

  9. Does microbial biomass affect pelagic ecosystem efficiency? An experimental study.

    PubMed

    Wehr, J D; Le, J; Campbell, L

    1994-01-01

    Bacteria and other microorganisms in the pelagic zone participate in the recycling of organic matter and nutrients within the water column. The microbial loop is thought to enhance ecosystem efficiency through rapid recycling and reduced sinking rates, thus reducing the loss of nutrients contained in organisms remaining within the photic zone. We conducted experiments with lake communities in 5400-liter mesocosms, and measured the flux of materials and nutrients out of the water column. A factorial design manipulated 8 nutrient treatments: 4 phosphorus levels × 2 nitrogen levels. Total sedimentation rates were greatest in high-N mesocosms; within N-surplus communities, [Symbol: see text]1 µM P resulted in 50% increase in total particulate losses. P additions without added N had small effects on nutrient losses from the photic zone; +2 µM P tanks received 334 mg P per tank, yet after 14 days lost only 69 mg more particulate-P than did control communities. Nutrient treatments resulted in marked differences in phytoplankton biomass (twofold N effect, fivefold P effect in +N mesocosms only), bacterioplankton densities (twofold N-effect, twofold P effects in -N and +N mesocosms), and the relative importance of autotrophic picoplankton (maximum in high NY mesocosms). Multiple regression analysis found that of 8 plankton and water chemistry variables, the ratio of autotrophic picoplankton to total phytoplankton (measured as chlorophyll α) explained the largest portion of the total variation in sedimentation loss rates (65% of P-flux, 57% of N-flux, 26% of total flux). In each case, systems with greater relative importance of autotrophic picoplankton had significantly reduced loss rates. In contrast, greater numbers of planktonic bacteria were associated with increased sedimentation rates and lower system efficiency. We suggest that different microbial components may have contrasting effects on the presumed enhanced efficiency provided by the microbial loop.

  10. Revealing how species loss affects ecosystem function: the trait-based Price Equation partition.

    PubMed

    Fox, Jeremy W; Harpole, W Stanley

    2008-01-01

    Species loss can alter ecosystem function. Recent work proposes a general theoretical framework, the "Price Equation partition," for understanding how species loss affects ecosystem functions that comprise the summed contributions of individual species (e.g., primary production). The Price Equation partition shows how the difference in function between a pre-species-loss site and a post-loss site can be partitioned into effects of random loss of species richness (species-richness effect; SRE), nonrandom loss of high- or low-functioning species (species-composition effect; SCE), and post-loss changes in the functional contributions of the remaining species (context-dependence effect; CDE). However, the Price Equation partition is silent on the underlying determinants of species' functional contributions. Here we extend the Price Equation partition by using multiple regression to describe how species' functional contributions depend on species' traits. This allows us to reexpress the SCE and CDE in terms of nonrandom loss of species with particular traits (trait-based SCE), and post-loss changes in species' traits and in the relationship between species' traits and species' functional contributions (trait-based CDE). We apply this new trait-based Price Equation partition to studies of species loss from grassland plant communities and protist microcosm food webs. In both studies, post-loss changes in the relationship between species' traits and their functional contributions alter ecosystem function more than nonrandom loss of species with particular traits. The protist microcosm data also illustrate how the trait-based Price Equation partition can be applied when species' functional contributions depend in part on the traits of other species. To do this, we define "synecological" traits that quantify how unique species are (e.g., in diet) compared to other species. Context dependence in the protist microcosm experiment arises in part because species loss alters the

  11. Managing for ecosystem services and livestock production: Are there tradeoffs?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most all rangelands have traditionally been managed to provide food and fiber through management practices to achieve sustainable forage and livestock production (Dunn et al. 2010). Yet, society is desiring that these lands also be managed for multiple ecosystem services (defined as provisioning, re...

  12. Roles of benthic algae in the structure, function, and assessment of stream ecosystems affected by acid mine drainage.

    PubMed

    Smucker, Nathan J; Drerup, Samuel A; Vis, Morgan L

    2014-06-01

    Tens of thousands of stream kilometers worldwide are degraded by a legacy of acid loads, high metal concentrations, and altered habitat caused by acid mine drainage (AMD) from abandoned underground and surface mines. As the primary production base in streams, the condition of algal-dominated periphyton communities is particularly important to nutrient cycling, energy flow, and higher trophic levels. Here, we synthesize current knowledge regarding how AMD-associated stressors affect (i) algal communities and their use as ecological indicators, (ii) their functional roles in stream ecosystems, and (iii) how these findings inform management decisions and evaluation of restoration effectiveness. A growing body of research has found ecosystem simplification caused by AMD stressors. Species diversity declines, productivity decreases, and less efficient nutrient uptake and retention occur as AMD severity increases. New monitoring approaches, indices of biological condition, and attributes of algal community structure and function effectively assess AMD severity and effectiveness of management practices. Measures of ecosystem processes, such as nutrient uptake rates, extracellular enzyme activities, and metabolism, are increasingly being used as assessment tools, but remain in their infancy relative to traditional community structure-based approaches. The continued development, testing, and implementation of functional measures and their use alongside community structure metrics will further advance assessments, inform management decisions, and foster progress toward restoration goals. Algal assessments will have important roles in making progress toward improving and sustaining the water quality, ecological condition, and ecosystem services of streams in regions affected by the legacy of unregulated coal mining. PMID:26988317

  13. The use of a new ecosystem services assessment tool, EPA H2O, for identifying, quantifying, and valuing ecosystem services production.

    EPA Science Inventory

    The task of estimating ecosystem service production and delivery deserves special attention. Assessment tools that incorporate both supply and delivery of ecosystem services are needed to better understand how ecosystem services production becomes realized benefits. Here, we de...

  14. Seasonal shift in factors controlling net ecosystem production in a high Arctic terrestrial ecosystem.

    PubMed

    Uchida, Masaki; Kishimoto, Ayaka; Muraoka, Hiroyuki; Nakatsubo, Takayuki; Kanda, Hiroshi; Koizumi, Hiroshi

    2010-01-01

    We examined factors controlling temporal changes in net ecosystem production (NEP) in a high Arctic polar semi-desert ecosystem in the snow-free season. We examined the relationships between NEP and biotic and abiotic factors in a dominant plant community (Salix polaris-moss) in the Norwegian high Arctic. Just after snowmelt in early July, the ecosystem released CO(2) into the atmosphere. A few days after snowmelt, however, the ecosystem became a CO(2) sink as the leaves of S. polaris developed. Diurnal changes in NEP mirrored changes in light incidence (photosynthetic photon flux density, PPFD) in summer. NEP was significantly correlated with PPFD when S. polaris had fully developed leaves, i.e., high photosynthetic activity. In autumn, NEP values decreased as S. polaris underwent senescence. During this time, CO(2) was sometimes released into the atmosphere. In wet conditions, moss made a larger contribution to NEP. In fact, the water content of the moss regulated NEP during autumn. Our results indicate that the main factors controlling NEP in summer are coverage and growth of S. polaris, PPFD, and precipitation. In autumn, the main factor controlling NEP is moss water content.

  15. Maintaining ecosystem services through continued livestock production on California rangelands

    NASA Astrophysics Data System (ADS)

    Barry, S.; Becchetti, T.

    2015-12-01

    Nearly 40% of California is rangeland comprising the largest land type in California and providing forage for livestock, primarily beef cattle. In addition to forage, rangelands provide a host of ecosystem systems services, including habitat for common and endangered species, fire fuels management, pollination services, clean water, viewsheds, and carbon sequestration. Published research has documented that most of these ecosystem services are positively impacted by managed livestock grazing and rancher stewardship. Ranchers typically do not receive any monetary reimbursement for their stewardship in providing these ecosystem services to the public. Markets have been difficult to establish with limited ability to adequately monitor and measure services provided. At the same time, rangelands have been experiencing rapid conversion to urbanization and more profitable and intensive forms of agriculture such as almond and walnut orchards. To prevent further conversion of rangelands and the loss of the services they provide, there needs to be a mechanism to identify and compensate landowners for the value of all products and services being received from rangelands. This paper considers two methods (opportunity cost and avoided cost) to determine the value of Payment for Ecosystem Services (PES) for rangelands. PES can raise the value of rangelands, making them more competitive financially. Real estate values and University of California Cooperative Extension Cost Studies, were used to demonstrate the difference in value (lost opportunity cost) between the primary products of rangelands (livestock production) and the products of the converted rangelands (almond and walnut orchards). Avoided costs for vegetation management and habitat creation and maintenance were used to establish the value of managed grazing. If conversion is to be slowed or stopped and managed grazing promoted to protect the ecosystem services rangelands provide, this value could be compensated through

  16. Increasing donor ecosystem productivity decreases terrestrial consumer reliance on a stream resource subsidy.

    PubMed

    Davis, John M; Rosemond, Amy D; Small, Gaston E

    2011-11-01

    Because nutrient enrichment can increase ecosystem productivity, it may enhance resource flows to adjacent ecosystems as organisms cross ecosystem boundaries and subsidize predators in recipient ecosystems. Here, we quantified the biomass and abundance of aquatic emergence and terrestrial spiders in a reference and treatment stream that had been continuously enriched with nitrogen and phosphorus for 5 years. Because we previously showed that enrichment increased secondary production of stream consumers, we predicted that aquatic emergence flux would be higher in the treatment stream, subsequently increasing the biomass and abundance of terrestrial spiders. Those increases were predicted to be greatest for spiders specializing on aquatic emergence subsidies (e.g., Tetragnathidae). By adding a (15)N stable isotope tracer to both streams, we also quantified nitrogen flow from the stream into the riparian community. Emergence biomass, but not abundance, was higher in the treatment stream. The average body size of emerging adult insects and the relative dominance of Trichoptera adults were also greater in the treatment stream. However, spider biomass did not differ between streams. Spiders also exhibited substantially lower reliance on aquatic emergence nitrogen in the treatment stream. This reduced reliance likely resulted from shifts in the body size distributions and community composition of insect emergence that may have altered predator consumption efficiency in the treatment stream. Despite nutrient enrichment approximately doubling stream productivity and associated cross-ecosystem resource flows, the response of terrestrial predators depended more on the resource subsidy's characteristics that affected the predator's ability to capitalize on such increases.

  17. The allocation of ecosystem net primary productivity in tropical forests

    PubMed Central

    Malhi, Yadvinder; Doughty, Christopher; Galbraith, David

    2011-01-01

    The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of that ecosystem, and an important feature to correctly represent in terrestrial ecosystem models. Here, we collate and analyse a global dataset of NPP allocation in tropical forests, and compare this with the representation of NPP allocation in 13 terrestrial ecosystem models. On average, the data suggest an equal partitioning of allocation between all three main components (mean 34 ± 6% canopy, 39 ± 10% wood, 27 ± 11% fine roots), but there is substantial site-to-site variation in allocation to woody tissue versus allocation to fine roots. Allocation to canopy (leaves, flowers and fruit) shows much less variance. The mean allocation of the ecosystem models is close to the mean of the data, but the spread is much greater, with several models reporting allocation partitioning outside of the spread of the data. Where all main components of NPP cannot be measured, litterfall is a good predictor of overall NPP (r2 = 0.83 for linear fit forced through origin), stem growth is a moderate predictor and fine root production a poor predictor. Across sites the major component of variation of allocation is a shifting allocation between wood and fine roots, with allocation to the canopy being a relatively invariant component of total NPP. This suggests the dominant allocation trade-off is a ‘fine root versus wood’ trade-off, as opposed to the expected ‘root–shoot’ trade-off; such a trade-off has recently been posited on theoretical grounds for old-growth forest stands. We conclude by discussing the systematic biases in estimates of allocation introduced by missing NPP components, including herbivory, large leaf litter and root exudates production. These biases have a moderate effect on overall carbon allocation estimates, but are smaller than the observed range in allocation values across sites. PMID

  18. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  19. Drivers of inter-year variability of plant production and decomposers across contrasting island ecosystems.

    PubMed

    Wardle, David A; Jonsson, Micael; Kalela-Brundin, Maarit; Lagerström, Anna; Bardgett, Richard D; Yeates, Gregor W; Nilsson, Marie-Charlotte

    2012-03-01

    Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well-characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of nine years, and soil microfaunal groups (secondary and tertiary consumers) for each of six of those years. We found that, for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) in some years, but not in other years, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had nine years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands, whereas those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter-year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differ greatly across contrasting ecosystems, with potentially important but largely overlooked

  20. Drivers of inter-year variability of plant production and decomposers across contrasting island ecosystems.

    PubMed

    Wardle, David A; Jonsson, Micael; Kalela-Brundin, Maarit; Lagerström, Anna; Bardgett, Richard D; Yeates, Gregor W; Nilsson, Marie-Charlotte

    2012-03-01

    Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well-characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of nine years, and soil microfaunal groups (secondary and tertiary consumers) for each of six of those years. We found that, for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) in some years, but not in other years, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had nine years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands, whereas those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter-year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differ greatly across contrasting ecosystems, with potentially important but largely overlooked

  1. The marketing implications of affective product design.

    PubMed

    Seva, Rosemary R; Duh, Henry Been-Lirn; Helander, Martin G

    2007-11-01

    Emotions are compelling human experiences and product designers can take advantage of this by conceptualizing emotion-engendering products that sell well in the market. This study hypothesized that product attributes influence users' emotions and that the relationship is moderated by the adherence of these product attributes to purchase criteria. It was further hypothesized that the emotional experience of the user influences purchase intention. A laboratory study was conducted to validate the hypotheses using mobile phones as test products. Sixty-two participants were asked to assess eight phones from a display of 10 phones and indicate their emotional experiences after assessment. Results suggest that some product attributes can cause intense emotional experience. The attributes relate to the phone's dimensions and the relationship between these dimensions. The study validated the notion of integrating affect in designing products that convey users' personalities. PMID:17303064

  2. How does wind-throw disturbance affect the carbon budget of an upland spruce forest ecosystem?

    NASA Astrophysics Data System (ADS)

    Lindauer, Matthias; Schmid, Hans Peter; Grote, Rüdiger; Mauder, Matthias; Wolpert, Benjamin; Steinbrecher, Rainer

    2014-05-01

    Forests, especially in mid-latitudes are generally designated as large carbon sinks. However, stand-replacing disturbance events like fires, insect-infestations, or severe wind-storms can shift an ecosystem from carbon sink to carbon source within short time and keep it as this for a long time. In Addition, extreme weather situations which promote the occurrence of ecosystem disturbances are likely to increase in the future due to climate change. The development and competition of different vegetation types (spruce vs. grass) as well as soil organic matter (SOM), and their contribution to the net ecosystem exchange (NEE), in such disturbed forest ecosystems are largely unknown. In a large wind-throw area (ca. 600 m diameter, due to cyclone Kyrill in January 2007) within a mature upland spruce forest, where dead-wood has not been removed, in the Bavarian Forest National Park (Lackenberg, 1308 m a.s.l., Bavaria, Germany), fluxes of CO2, water vapor and energy have been measured with the Eddy Covariance (EC) method since 2009. Model simulations (MoBiLE) were used to estimate the GPP components from trees and grassland as well as to differentiate between soil and plant respiration, and to get an idea about the long term behavior of the ecosystems carbon exchange. For 2009, 2010, 2011, 2012, and 2013 estimates of annual Net Ecosystem Exchange (NEE) showed that the wind-throw was a marked carbon source. However, the few remaining trees and newly emerging vegetation (grass, sparse young spruce, etc.) lead to an already strong Gross Ecosystem Production (GEP). Model simulations conformed well with the measurements. To our knowledge, we present the worldwide first long-term measurements of NEE within a non-cleared wind-throw-disturbed forest ecosystem.

  3. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    PubMed Central

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  4. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Cloern, J. E.; Foster, S. Q.; Kleckner, A. E.

    2014-05-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land - estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m-2 yr-1, but the range is large: from -105 (net pelagic production in the Scheldt Estuary) to 1890 g C m-2 yr-1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148 reported values of

  5. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  6. Estimating daytime ecosystem respiration to improve estimates of gross primary production of a temperate forest.

    PubMed

    Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie

    2014-01-01

    Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems.

  7. Lead contamination of an old shooting range affecting the local ecosystem--A case study with a holistic approach.

    PubMed

    Rantalainen, Minna-Liisa; Torkkeli, Minna; Strömmer, Rauni; Setälä, Heikki

    2006-10-01

    The aim of this case study was to uncover the consequences of lead pellet-derived heavy lead contamination at a cast-off shooting range in southern Finland, covering aspects from soil chemistry and biology up to ecosystem level. The observed changes in the soil properties of the most contaminated areas suggest that the contamination may be disturbing processes of decomposition and nutrient mineralisation. Also two functionally important groups of soil organisms, microbes (as analysed using the PLFA analysis) and enchytraeid worms, were negatively affected by the contamination. Furthermore, there was an indication of reduced pine litter production at the contaminated areas. On the other hand, lead contamination appears not to have affected pine growth or soil-dwelling nematodes and microarthropods, and the general outlook of the whole ecosystem is that of a healthy forest. Thus, the boreal forest ecosystem studied as a whole appears to bear strong resistance to contamination, despite negative effects of lead on many of its components. This resistance may result from e.g. low bioavailability of lead, avoidance of the most contaminated soil horizons and microsites by the organisms, and functional redundancy and development of lead-tolerant populations amongst the organisms. The relative importance of these factors and the mechanisms behind them will be investigated in forthcoming studies.

  8. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa.

    PubMed

    O'Reilly, Catherine M; Alin, Simone R; Plisnier, Pierre-Denis; Cohen, Andrew S; McKee, Brent A

    2003-08-14

    Although the effects of climate warming on the chemical and physical properties of lakes have been documented, biotic and ecosystem-scale responses to climate change have been only estimated or predicted by manipulations and models. Here we present evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa. This lake has historically supported a highly productive pelagic fishery that currently provides 25-40% of the animal protein supply for the populations of the surrounding countries. In parallel with regional warming patterns since the beginning of the twentieth century, a rise in surface-water temperature has increased the stability of the water column. A regional decrease in wind velocity has contributed to reduced mixing, decreasing deep-water nutrient upwelling and entrainment into surface waters. Carbon isotope records in sediment cores suggest that primary productivity may have decreased by about 20%, implying a roughly 30% decrease in fish yields. Our study provides evidence that the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.

  9. Gross primary production of global forest ecosystems has been overestimated

    PubMed Central

    Ma, Jianyong; Yan, Xiaodong; Dong, Wenjie; Chou, Jieming

    2015-01-01

    Coverage rate, a critical variable for gridded forest area, has been neglected by previous studies in estimating the annual gross primary production (GPP) of global forest ecosystems. In this study, we investigated to what extent the coverage rate could impact forest GPP estimates from 1982 to 2011. Here we show that the traditional calculation without considering the coverage rate globally overestimated the forest gross carbon dioxide uptake by approximately 8.7%, with a value of 5.12 ± 0.23 Pg C yr−1, which is equivalent to 48% of the annual emissions from anthropogenic activities in 2012. Actually, the global annual GPP of forest ecosystems is approximately 53.71 ± 4.83 Pg C yr−1 for the past 30 years by taking the coverage rate into account. Accordingly, we argue that forest annual GPP calculated by previous studies has been overestimated due to the exaggerated forest area, and therefore, coverage rate may be a required factor to further quantify the global carbon cycle. PMID:26027557

  10. Productivity, Disturbance and Ecosystem Size Have No Influence on Food Chain Length in Seasonally Connected Rivers

    PubMed Central

    Warfe, Danielle M.; Jardine, Timothy D.; Pettit, Neil E.; Hamilton, Stephen K.; Pusey, Bradley J.; Bunn, Stuart E.; Davies, Peter M.; Douglas, Michael M.

    2013-01-01

    The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions. PMID:23776641

  11. Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers.

    PubMed

    Warfe, Danielle M; Jardine, Timothy D; Pettit, Neil E; Hamilton, Stephen K; Pusey, Bradley J; Bunn, Stuart E; Davies, Peter M; Douglas, Michael M

    2013-01-01

    The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions. PMID:23776641

  12. Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers.

    PubMed

    Warfe, Danielle M; Jardine, Timothy D; Pettit, Neil E; Hamilton, Stephen K; Pusey, Bradley J; Bunn, Stuart E; Davies, Peter M; Douglas, Michael M

    2013-01-01

    The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions.

  13. Implications for Ecosystem Services of Watershed Processes that affect the Transport and Transformations of Mercury in an Adirondack Stream Basin

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Bradley, P. M.

    2012-12-01

    Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream

  14. Large Uncertainties in Estimating Grassland Carbon Fluxes: Can Net Ecosystem Production Be Inferred?

    NASA Astrophysics Data System (ADS)

    Cahill, K. N.; Foley, J. A.; Kucharik, C. J.

    2003-12-01

    Despite interest in estimating ecosystem carbon budgets based on easily collected field data, no previous study to our knowledge has compared various methods of estimating total above- and belowground net primary production (NPP) and net ecosystem production (NEP, the annual carbon accumulated by an ecosystem) from commonly measured biomass and soil surface CO2 flux data in grasslands. Here we used field data from two grassland restorations and a row-crop agriculture treatment enrolled in the Conservation Reserve Program as a model for an analysis of methodological uncertainty in estimating ecosystem carbon budgets over a short time period. The goal of this study was to investigate how a range of methods for estimating NPP and NEP suggested in the literature might be used to predict ecosystem carbon budgets based on short-term field measurements. We conclude that it is extremely difficult to close the carbon budget of a temperate grassland using flux-based methods that account for plant-derived carbon inputs and soil surface CO2 losses. Current uncertainties in (1) estimating aboveground NPP, (2) determining belowground NPP, and (3) splitting soil respiration into heterotrophic and autotrophic components strongly affect the magnitude, and even the sign, of NEP. A comparison of these estimates, across a treatment of different plant species mixes and land management, cannot reliably distinguish differences in NEP, nor the absolute sign of the overall carbon budget. These uncertainties likely exist in all grassland carbon budget studies using this approach, so conclusions about whether these systems are truly carbon sinks, or how they should be managed to sequester carbon, must be made with extreme care. Longer-term stocks methods, periodically linked to flux-based measurements of individual processes, may be the only way to close the carbon budget in these systems with any reasonable degree of certainty at the present time.

  15. Tundra disturbance and ecosystem production: Implications for impact assessment

    NASA Astrophysics Data System (ADS)

    Truett, Joe C.; Kertell, Kenneth

    1992-07-01

    Environmental regulations governing industrial activities in tundra environments stem largely from the expected ecological effects of the activities. One of the major ecological effects of industrial activities is the surface subsidence associated with thermokarst, which can result in changes in primary and secondary production. The primary production changes associated with thermokarst are strongly governed by three ecosystem properties—soil temperature, water regime, and nutrient availability. Most disturbances set in motion a more-or-less predictable sequence of landscape change related to these properties: soil warming, thermokarst, surface flooding, accelerated organic matter decomposition, and increased nutrient availability. The warmed soil and the enhanced nutrient availability typically lead to increased annual primary production, increased dominance by graminoids, and reduced plant species diversity. These vegetational changes may in turn potentially enhance secondary production, but in general these second-level responses have yet to be quantified. More information is needed about the food-chain effects of tundra landscape disturbances before regulators can make well-informed predictions of impacts or plan useful habitat rehabilitation.

  16. Synoptic events force biological productivity in Patagonian fjord ecosystems

    NASA Astrophysics Data System (ADS)

    Daneri, Giovanni

    2016-04-01

    an extremely productive bloom of the dinoflagellate Heterocapsa sp. in July 2014, after the passage of a synoptic low pressure front provided, for the first time, strong evidence that phytoplankton blooming in the Patagonian fjord ecosystems is controlled by synoptic processes and that they are not limited by light as previously reported. This research was funded by COPAS Sur-Austral (PFB-31) and FONDECYT 1131063

  17. Not all ski slopes are created equal: disturbance intensity affects ecosystem properties.

    PubMed

    Burt, Jennifer W; Rice, Kevin J

    2009-12-01

    In mountain regions around the world, downhill ski areas represent a significant source of anthropogenic disturbance while also providing recreation and revenue. Ski-run creation always results in some level of disturbance, but disturbance intensity varies greatly with construction method. Ski runs may be established either by clearing (cutting and removing tall vegetation) or by clearing and then machine-grading (leveling the soil surface with heavy equipment). To quantify how these different intensities of initial disturbance affect ecosystem properties, we extensively surveyed vegetation, soils, and environmental characteristics on cleared ski runs, graded ski runs, and adjacent reference forests across seven large downhill ski resorts in the northern Sierra Nevada, USA. We found that the greater disturbance intensity associated with grading resulted in greater impacts on all ecosystem properties considered, including plant community composition and diversity, soil characteristics relating to processes of nutrient cycling and retention, and measures of erosion potential. We also found that cleared ski runs retained many ecological similarities to reference forests and might even offer some added benefits by possessing greater plant species and functional diversity than either forests or graded runs. Because grading is more damaging to multiple indicators of ecosystem function, clearing rather than grading should be used to create ski slopes wherever practical.

  18. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  19. Influence of productivity on the stability of real and model ecosystems

    SciTech Connect

    Moore, J.C. ); Ruiter, P.C. de ); Hunt, H.W. )

    1993-08-13

    The lengths of food chains within ecosystems have been thought to be limited either by the productivity of the ecosystem or by the resilience of that ecosystem after perturbation. Models based on ecological energetics that follow the form of Lotka-Volterra equations and equations that include material (detritus) recycling show that productivity and resilience are inextricably interrelated. The models were initialized with data from 5- to 10-year studies of actual soil food webs. Estimates indicate that most ecological production worldwide is from ecosystems that are themselves sufficiently productive to recover from minor perturbations.

  20. Small diversity effects on ocean primary production under environmental change in a diversity-resolving ocean ecosystem model

    NASA Astrophysics Data System (ADS)

    Prowe, A. E. F.; Pahlow, M.; Dutkiewicz, S.; Oschlies, A.

    2013-07-01

    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic diversity. Diversity, however, can affect functions such as primary production and their sensitivity to environmental changes. Using a global ocean ecosystem model that explicitly resolves phytoplankton diversity within four phytoplankton functional types (PFTs) we investigate the model's ability to capture diversity effects on primary production under environmental change. An idealized scenario with a sudden reduction in vertical mixing causes diversity and primary-production changes that turn out to be largely independent of the number of coexisting phytoplankton types. The model provides a small number of niches with respect to nutrient use in accordance with the PFTs defined in the model, and increasing the number of phytoplankton types increases the resolution within the niches. The variety of traits and trade-offs resolved in the model constrains diversity effects such as niche complementarity, which operate between, but not within PFTs. The number and nature of the niches formulated in the model, for example via trade-offs or different PFTs, thus determines the diversity effects on ecosystem functioning captured in ocean ecosystem models.

  1. Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity.

    PubMed

    Ivits, Eva; Horion, Stephanie; Fensholt, Rasmus; Cherlet, Michael

    2014-02-01

    Drought affects more people than any other natural disaster but there is little understanding of how ecosystems react to droughts. This study jointly analyzed spatio-temporal changes of drought patterns with vegetation phenology and productivity changes between 1999 and 2010 in major European bioclimatic zones. The Standardized Precipitation and Evapotranspiration Index (SPEI) was used as drought indicator whereas changes in growing season length and vegetation productivity were assessed using remote sensing time-series of Normalized Difference Vegetation Index (NDVI). Drought spatio-temporal variability was analyzed using a Principal Component Analysis, leading to the identification of four major drought events between 1999 and 2010 in Europe. Correspondence Analysis showed that at the continental scale the productivity and phenology reacted differently to the identified drought events depending on ecosystem and land cover. Northern and Mediterranean ecosystems proved to be more resilient to droughts in terms of vegetation phenology and productivity developments. Western Atlantic regions and Eastern Europe showed strong agglomerations of decreased productivity and shorter vegetation growing season length, indicating that these ecosystems did not buffer the effects of drought well. In a climate change perspective, increase in drought frequency or intensity may result in larger impacts over these ecosystems, thus management and adaptation strategies should be strengthened in these areas of concerns.

  2. Bedrock composition limits mountain ecosystem productivity and landscape evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Hahm, W.; Lukens, C.

    2013-12-01

    We used measurements of bedrock geochemistry, forest productivity and cosmogenic nuclides to explore connections among lithology, ecosystem productivity and landscape evolution across a lithosequence of 21 sites in the Sierra Nevada Batholith, California. Our sites span a narrow range in elevations and thus share similar climatic conditions. Meanwhile, underlying bedrock varies from granite to diorite and spans nearly the entire range of geochemical compositions observed in Cordilleran granitoids. Land cover varies markedly, from groves of Giant Sequoia, the largest trees on Earth, to pluton-spanning swaths of little or no soil and vegetative cover. This is closely reflected in measures of forest productivity, such as remotely sensed tree-canopy cover, which varies by more than an order of magnitude across our sites and often changes abruptly at mapped contacts between rock types. We find that tree-canopy cover is closely correlated with the concentrations in bedrock of major and minor elements, including several plant-essential nutrients. For example, tree-canopy cover is virtually zero where there is less than 0.3 mg/g phosphorus in bedrock. Erosion rates from these nearly vegetation-free, nutrient deserts are more than 2.5 times slower on average than they are from surrounding, relatively nutrient-rich, soil-mantled bedrock. Thus by influencing soil and forest cover, bedrock nutrient concentrations may provoke weathering-limited erosion and thus may strongly regulate landscape evolution. Our analysis suggests that variations in bedrock nutrient concentrations can also provoke an intrinsic limitation on primary productivity. These limitations appear to apply across all our sites. To the extent that they are broadly representative of conditions in granitic landscapes elsewhere around the world, our results are consistent with widespread, but previously undocumented lithologic control of the distribution and diversity of vegetation in mountainous terrain.

  3. Will Global Change Effect Primary Productivity in Coastal Ecosystems?

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Algae are the base of coastal food webs because they provide the source of organic carbon for the remaining members of the community. Thus, the rate that they produce organic carbon to a large extent controls the productivity of the entire ecosystem. Factors that control algal productivity range from the physical (e.g., temperature, light), chemical (e.g., nutrient levels) to the biological (e.g., grazing). Currently, levels of atmospheric carbon dioxide surficial fluxes of ultraviolet radiation are rising. Both of these environmental variables can have a profound effect on algal productivity. Atmospheric carbon dioxide may increase surficial levels of dissolved inorganic carbon. Our laboratory and field studies of algal mats and phytoplankton cultures under ambient and elevated levels of pCO2 show that elevated levels of inorganic carbon can cause an increase in photosynthetic rates. In some cases, this increase will cause an increase in phytoplankton numbers. There may be an increase in the excretion of fixed carbon, which in turn may enhance bacterial productivity. Alternatively, in analogy with studies on the effect of elevated pCO2 on plants, the phytoplankton could change their carbon to nitrogen ratios, which will effect the feeding of the planktonic grazers. The seasonal depletion of stratospheric ozone has resulted in elevated fluxes of UVB radiation superimposed on the normal seasonal variation. Present surface UV fluxes have a significant impact on phytoplankton physiology, including the inhibition of the light and dark reactions of photosynthesis, inhibition of nitrogenase activity, inhibition of heterocyst formation, reduction in motility, increased synthesis of the UV-screening pigment scytonemin, and mutation. After reviewing these issues, recent work in our lab on measuring the effect of UV radiation on phytoplankton in the San Francisco Bay Estuary will be presented.

  4. Irrigation agriculture affects organic matter decomposition in semi-arid terrestrial and aquatic ecosystems.

    PubMed

    Arroita, Maite; Causapé, Jesús; Comín, Francisco A; Díez, Joserra; Jimenez, Juan José; Lacarta, Juan; Lorente, Carmen; Merchán, Daniel; Muñiz, Selene; Navarro, Enrique; Val, Jonatan; Elosegi, Arturo

    2013-12-15

    Many dryland areas are being converted into intensively managed irrigation crops, what can disrupt the hydrological regime, degrade soil and water quality, enhance siltation, erosion and bank instability, and affect biological communities. Still, the impacts of irrigation schemes on the functioning of terrestrial and aquatic ecosystems are poorly understood. Here we assess the effects of irrigation agriculture on breakdown of coarse organic matter in soil and water. We measured breakdown rates of alder and holm oak leaves, and of poplar sticks in terrestrial and aquatic sites following a gradient of increasing irrigation agriculture in a semi-arid Mediterranean basin transformed into irrigation agriculture in 50% of its surface. Spatial patterns of stick breakdown paralleled those of leaf breakdown. In soil, stick breakdown rates were extremely low in non-irrigated sites (0.0001-0.0003 day(-1)), and increased with the intensity of agriculture (0.0018-0.0044 day(-1)). In water, stick breakdown rates ranged from 0.0005 to 0.001 day(-1), and increased with the area of the basin subject to irrigation agriculture. Results showed that irrigation agriculture affects functioning of both terrestrial and aquatic ecosystems, accelerating decomposition of organic matter, especially in soil. These changes can have important consequences for global carbon budgets.

  5. Irrigation agriculture affects organic matter decomposition in semi-arid terrestrial and aquatic ecosystems.

    PubMed

    Arroita, Maite; Causapé, Jesús; Comín, Francisco A; Díez, Joserra; Jimenez, Juan José; Lacarta, Juan; Lorente, Carmen; Merchán, Daniel; Muñiz, Selene; Navarro, Enrique; Val, Jonatan; Elosegi, Arturo

    2013-12-15

    Many dryland areas are being converted into intensively managed irrigation crops, what can disrupt the hydrological regime, degrade soil and water quality, enhance siltation, erosion and bank instability, and affect biological communities. Still, the impacts of irrigation schemes on the functioning of terrestrial and aquatic ecosystems are poorly understood. Here we assess the effects of irrigation agriculture on breakdown of coarse organic matter in soil and water. We measured breakdown rates of alder and holm oak leaves, and of poplar sticks in terrestrial and aquatic sites following a gradient of increasing irrigation agriculture in a semi-arid Mediterranean basin transformed into irrigation agriculture in 50% of its surface. Spatial patterns of stick breakdown paralleled those of leaf breakdown. In soil, stick breakdown rates were extremely low in non-irrigated sites (0.0001-0.0003 day(-1)), and increased with the intensity of agriculture (0.0018-0.0044 day(-1)). In water, stick breakdown rates ranged from 0.0005 to 0.001 day(-1), and increased with the area of the basin subject to irrigation agriculture. Results showed that irrigation agriculture affects functioning of both terrestrial and aquatic ecosystems, accelerating decomposition of organic matter, especially in soil. These changes can have important consequences for global carbon budgets. PMID:23891536

  6. Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Liberman-Cribbin, Wil; Berner, Logan T.; Natali, Susan M.; Goetz, Scott J.; Alexander, Heather D.; Kholodov, Alexander L.

    2016-09-01

    In arctic tundra and boreal forest ecosystems vegetation structural and functional influences on the surface energy balance can strongly influence permafrost soil temperatures. As such, vegetation changes will likely play an important role in permafrost soil carbon dynamics and associated climate feedbacks. Processes that lead to changes in vegetation, such as wildfire or ecosystem responses to rising temperatures, are of critical importance to understanding the impacts of arctic and boreal ecosystems on future climate. Yet these processes vary within and between ecosystems and this variability has not been systematically characterized across the arctic-boreal region. Here we quantify the distribution of vegetation productivity trends, wildfire, and near-surface soil carbon, by vegetation type, across the zones of continuous and discontinuous permafrost. Siberian larch forests contain more than one quarter of permafrost soil carbon in areas of continuous permafrost. We observe pervasive positive trends in vegetation productivity in areas of continuous permafrost, whereas areas underlain by discontinuous permafrost have proportionally less positive productivity trends and an increase in areas exhibiting negative productivity trends. Fire affects a much smaller proportion of the total area and thus a smaller amount of permafrost soil carbon, with the vast majority occurring in deciduous needleleaf forests. Our results indicate that vegetation productivity trends may be linked to permafrost distribution, fire affects a relatively small proportion of permafrost soil carbon, and Siberian larch forests will play a crucial role in the strength of the permafrost carbon climate feedback.

  7. Realistic changes in seaweed biodiversity affect multiple ecosystem functions on a rocky shore.

    PubMed

    Bracken, Matthew E S; Williams, Susan L

    2013-09-01

    Given current threats to biodiversity, understanding the effects of diversity changes on the functions and services associated with intact ecosystems is of paramount importance. However, limited realism in most biodiversity studies makes it difficult to link the large and growing body of evidence for important functional consequences of biodiversity change to real-world losses of biodiversity. Here, we explored two methods of incorporating realism into biodiversity research: (1) the use of two-, five-, and eight-species assemblages that mimicked those that we observed in surveys of seaweed biodiversity patterns on a northern California (USA) rocky shore and the explicit comparison of those assemblages to random assemblages compiled from the same local species pool; and (2) the measurement of two fundamental ecosystem functions, nitrate uptake and photosynthesis, both of which contribute to growth of primary producers. Specifically, we measured nitrate uptake rates of seaweed assemblages as a function of initial nitrate concentrations and photosynthetic rates as a function of irradiance levels for both realistic and random assemblages of seaweeds. We only observed changes in ecosystem functioning along a richness gradient for realistic assemblages, and both maximum nitrate uptake rates (V(max)) and photosynthetic light use efficiency values (alpha(p) = P(max)/I(K)) were higher in realistic assemblages than in random assemblages. Furthermore, the parameter affected by changes in richness depended on the function being measured. Both V(max) and alpha(p) declined with increasing richness in nonrandom assemblages due to a combination of species identity effects (for V(max) and overyielding effects (for both V(max) and alpha(p)). In contrast, neither nitrate uptake efficiency values (alpha(N) = V(max)/K(s)), nor maximum photosynthetic rates (Pmax) changed along the gradient in seaweed species richness. Furthermore, overyielding was only evident in realistic assemblages

  8. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China

    NASA Astrophysics Data System (ADS)

    Liu, D. Y.; Ding, W. X.; Jia, Z. J.; Cai, Z. C.

    2011-02-01

    Methane (CH4) emissions from natural wetland ecosystems exhibit large spatial variability at regional, national, and global levels related to temperature, water table, plant type and methanogenic archaea etc. To understand the underlying factors that induce spatial differences in CH4 emissions, and the relationship between the population of methanogenic archaea and CH4 production potential in natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical soil profiles sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjiang marsh in the cold temperate zone, and the Ruoergai peatland in the Qinghai-Tibetan Plateau in the alpine climate zone. The top soil layer had the highest population of methanogens (1.07-8.29 × 109 cells g-1 soil) in all wetlands except the Ruoergai peatland and exhibited the maximum CH4 production potential measured at the mean in situ summer temperature. There is a significant logarithmic correlation between the abundance of methanogenic archaea and the soil organic carbon (R2 = 0.72, P < 0.001, n = 13) and between the abundance of methanogenic archaea and the total nitrogen concentrations (R2 = 0.76, P < 0.001, n = 13) in wetland soils. This indicates that the amount of soil organic carbon may affect the population of methanogens in wetland ecosystems. While the CH4 production potential is not significantly related to methanogen population (R2 = 0.01, P > 0.05, n = 13), it is related to the dissolved organic carbon concentration (R2 = 0.31, P = 0.05, n = 13). This suggests that the methanogen population might be not an effective index for predicting the CH4 production in wetland ecosystems. The CH4 production rate of the top soil layer increases with increasing latitude, from 273.64 μg CH4 kg-1 soil d-1 in the Poyang wetland to 664.59 μg CH4 kg-1 soil d-1 in the Carex lasiocarpa marsh of the Sanjiang Plain. We conclude

  9. Managing Bioenergy Production on Arable Field Margins for Multiple Ecosystem Services: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Ferrarini, Andrea; Serra, Paolo; Amaducci, Stefano; Trevisan, Marco; Puglisi, Edoardo

    2013-04-01

    data, it emerges that production of biomass for bioenergy on field margins improves ecosystem services, depending upon the soil/agroecosystem health status of arable land displaced by the bioenergy crop. Considering that climate change is a dominant driver for agroecosystem health and perennial bionergy crops tend to stabilize soil C in arable land, it will be necessary to focus our attention to the improvement of climate regulation ecosystem service value in ecologically-degraded arable field margins. This management option seems to be the most sustainable strategy to enhance a win-win strategy: namely, sequestering carbon, producing biomasses for energetic purposes, improving the whole set of ecosystem services affected by soil organic matter, leaving, at the same time, more arable land for food and fiber crops. * The HEDGE-BIOMASS project is funded by Italian Minister of Agriculture for the period 2013-2016 and is being followed by BIOMASS Research Center at Università Cattolica del Sacro Cuore (Piacenza, Italy).

  10. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function.

    PubMed

    Koide, Roger T; Fernandez, Christopher; Malcolm, Glenna

    2014-01-01

    There is a growing interest amongst community ecologists in functional traits. Response traits determine membership in communities. Effect traits influence ecosystem function. One goal of community ecology is to predict the effect of environmental change on ecosystem function. Environmental change can directly and indirectly affect ecosystem function. Indirect effects are mediated through shifts in community structure. It is difficult to predict how environmental change will affect ecosystem function via the indirect route when the change in effect trait distribution is not predictable from the change in response trait distribution. When response traits function as effect traits, however, it becomes possible to predict the indirect effect of environmental change on ecosystem function. Here we illustrate four examples in which key attributes of ectomycorrhizal fungi function as both response and effect traits. While plant ecologists have discussed response and effect traits in the context of community structuring and ecosystem function, this approach has not been applied to ectomycorrhizal fungi. This is unfortunate because of the large effects of ectomycorrhizal fungi on ecosystem function. We hope to stimulate further research in this area in the hope of better predicting the ecosystem- and landscape-level effects of the fungi as influenced by changing environmental conditions.

  11. The Importance of Context in Development and Application of Ecosystem Services Production Functions

    EPA Science Inventory

    The task of estimating ecosystem service production and delivery deserves special attention. When approached as a function of land cover at any given time, context driven facets of ecosystem service production, delivery, and resulting effects on human well-being can be overlooke...

  12. Characterizing terrestrial ecosystems and productivity from remote sensing data

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Running, Steven W.

    1985-01-01

    Predictive relationships were studied between the leaf area index (LAI) of temperate coniferous forests and the canopy of reflective properties as sensed by satellites. Also, the relationship was examined between this sensible variable, LAI, and functional properties such as net primary productivity (NPP) and nitrogen mineralization. Leaf surface area is a locus of many important material and energy exchanges. If LAI can be reasonably estimated from remote sensing measurements, then it could be used with models to predict evapotranspiration, radiation interception, precipitation interception, and other ecosystem processes over large areas. Nineteen mature closed canopy forest stands were measured for leaf area index distributed along a temperature moisture gradient across Oregon. The LAI varies from 15.4 to 0.6. Infrared radiation is strongly scattered by leaves so that it penetrates deeply and its reflectance is proportional to LAI. Red radiation is strongly absorbed by chlorophyll and its reflectance is inversely related to LAI, becoming asymptotic at LAI values of about 3. The ratio of infrared to red radiation compensates for irradiance variations across this transect.

  13. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective.

  14. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective. PMID:27509764

  15. Controls on the ratio of mesozooplankton production to primary production in marine ecosystems

    NASA Astrophysics Data System (ADS)

    Stock, Charles; Dunne, John

    2010-01-01

    An ecosystem model was used to (1) determine the extent to which global trends in the ratio of mesozooplankton production to primary production (referred to herein as the " z-ratio") can be explained by nutrient enrichment, temperature, and euphotic zone depth, and (2) quantitatively diagnose the mechanisms driving these trends. Equilibrium model solutions were calibrated to observed and empirically derived patterns in phytoplankton biomass and growth rates, mesozooplankton biomass and growth rates, and the fraction of phytoplankton that are large (>5 μm ESD). This constrained several otherwise highly uncertain model parameters. Most notably, half-saturation constants for zooplankton feeding were constrained by the biomass and growth rates of their prey populations, and low zooplankton basal metabolic rates were required to match observations from oligotrophic ecosystems. Calibrated model solutions had no major biases and produced median z-ratios and ranges consistent with estimates. However, much of the variability around the median values in the calibration dataset (72 points) could not be explained. Model results were then compared with an extended global compilation of z-ratio estimates (>10 000 points). This revealed a modest yet significant ( r=0.40) increasing trend in z-ratios from values ˜0.01-0.04 to ˜0.1-0.2 with increasing primary productivity, with the transition from low to high z-ratios occurring at lower primary productivity in cold-water ecosystems. Two mechanisms, both linked to increasing phytoplankton biomass, were responsible: (1) zooplankton gross growth efficiencies increased as their ingestion rates became much greater than basal metabolic rates and (2) the trophic distance between primary producers and mesozooplankton shortened as primary production shifted toward large phytoplankton. Mechanism (1) was most important during the transition from low to moderate productivity ecosystems and mechanism (2) was responsible for a relatively

  16. Linking ecosystems, food webs, and fish production: subsidies in salmonid watersheds

    USGS Publications Warehouse

    Wipfli, Mark S.; Baxter, Colden V.

    2010-01-01

    Physical characteristics of riverine habitats, such as large wood abundance, pool geometry and abundance, riparian vegetation cover, and surface flow conditions, have traditionally been thought to constrain fish production in these ecosystems. Conversely, the role of food resources (quantity and quality) in controlling fish production has received far less attention and consideration, though they can also be key productivity drivers. Traditional freshwater food web illustrations have typically conveyed the notion that most fish food is produced within the local aquatic habitat itself, but the concepts and model we synthesize in this article show that most fish food comes from external or very distant sources—including subsidies from marine systems borne from adult returns of anadromous fishes, from fishless headwater tributaries that transport prey to downstream fish, and from adjacent streamside vegetation and associated habitats. The model we propose further illustrates how key trophic pathways and food sources vary through time and space throughout watersheds. Insights into how food supplies affect fishes can help guide how we view riverine ecosystems, their structure and function, their interactions with marine and terrestrial systems, and how we manage natural resources, including fish, riparian habitats, and forests.

  17. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  18. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  19. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem.

    PubMed

    Zaller, Johann G; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-09

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  20. Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness.

    PubMed

    Chadwick, Michael A; Dobberfuhl, Dean R; Benke, Arthur C; Huryn, Alexander D; Suberkropp, Keller; Thiele, John E

    2006-10-01

    Catchment urbanization can alter physical, chemical, and biological attributes of stream ecosystems. In particular, changes in land use may affect the dynamics of organic matter decomposition, a measure of ecosystem function. We examined leaf-litter decomposition in 18 tributaries of the St. Johns River, Florida, USA. Land use in all 18 catchments ranged from 0% to 93% urban which translated to 0% to 66% total impervious area (TIA). Using a litter-bag technique, we measured mass loss, fungal biomass, and macroinvertebrate biomass for two leaf species (red maple [Acer rubrum] and sweetgum [Liquidambar styraciflua]). Rates of litter mass loss, which ranged from 0.01 to 0.05 per day for red maple and 0.006 to 0.018 per day for sweetgum, increased with impervious catchment area to levels of approximately 30-40% TIA and then decreased as impervious catchment area exceeded 40% TIA. Fungal biomass was also highest in streams draining catchments with intermediate levels of TIA. Macroinvertebrate biomass ranged from 17 to 354 mg/bag for red maple and from 15 to 399 mg/bag for sweetgum. Snail biomass and snail and total invertebrate richness were strongly related to breakdown rates among streams regardless of leaf species. Land-use and physical, chemical, and biological variables were highly intercorrelated. Principal-components analysis was therefore used to reduce the variables into several orthogonal axes. Using stepwise regression, we found that flow regime, snail biomass, snail and total invertebrate richness, and metal and nutrient content (which varied in a nonlinear manner with impervious surface area) were likely factors affecting litter breakdown rates in these streams.

  1. Occurrence of perchloroethylene in surface water and fish in a river ecosystem affected by groundwater contamination.

    PubMed

    Wittlingerová, Zdena; Macháčková, Jiřina; Petruželková, Anna; Zimová, Magdalena

    2016-03-01

    Long-term monitoring of the content of perchloroethylene (PCE) in a river ecosystem affected by groundwater contamination was performed at a site in the Czech Republic. The quality of surface water was monitored quarterly between 1994 and 2013, and fish were collected from the affected ecosystem to analyse the content of PCE in their tissue in 1998, 2011 and 2012. Concentrations of PCE (9-140 μg/kg) in the tissue of fish collected from the contaminated part of the river were elevated compared to the part of the river unaffected by the contamination (ND to 5 μg/kg PCE). The quality of surface water has improved as a result of groundwater remediation during the evaluated period. Before the remedial action, PCE concentrations ranged from 30 to 95 μg/L (1994-1997). Following commencement of remedial activities in September 1997, a decrease in the content of PCE in the surface water to 7.3 μg/L (1998) and further to 1 μg/L (2011) and 1.1 μg/L (2012) led to a progressive decrease in the average concentration of PCE in the fish muscle tissue from 79 μg/kg (1998) to 24 (2011) and 30 μg/kg (2012), respectively. It was determined that the bioconcentration of PCE does not have a linear dependence because the decrease in contamination in the fish muscle tissue is not directly proportional to the decrease in contamination in the river water. The observed average bioconcentration factors were 24 and 28 for the lower concentrations of PCE and 11 for the higher concentrations of PCE in the river. In terms of age, length and weight of the collected fish, weight had the greatest significance for bioconcentration, followed by the length, with age being evaluated as a less significant factor.

  2. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Carvalhais, Nuno; Rödenbeck, Christian; Keeling, Ralph; Heimann, Martin; Thonicke, Kirsten; Zaehle, Sönke; Reichstein, Markus

    2016-04-01

    Atmospheric monitoring has shown an increase in the seasonal cycle of carbon dioxide (CO2) in high northern latitudes (> 40°N) since the 1960s. The much stronger increase of the seasonal CO2 amplitude in high latitudes compared to low latitudes suggests that northern ecosystems are experiencing large changes in carbon cycle dynamics. However the underlying mechanisms are not yet fully understood and current climate/carbon cycle models under-estimate observed changes in the seasonal CO2 amplitude. Here we aim to explain the observed latitudinal gradient of seasonal CO2 amplitude trends by contrasting observations from long-term monitoring sites of atmospheric CO2 concentration, satellite observation of vegetation greenness, and global observation-based datasets of gross primary production and net biome productivity, with results from the LPJmL dynamic global vegetation model coupled to the TM3 atmospheric transport model. Our results demonstrate that the latitudinal gradient of the enhanced seasonal CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in boreal and arctic ecosystems. Climate change affects processes such as plant physiology, phenology, water availability, and vegetation dynamics, ultimately leading to increased plant productivity and vegetation cover in northern ecosystems in the last decades. Thereby photosynthetic carbon uptake has reacted much more strongly to warming than respiratory carbon release processes. Continued long-term observation of atmospheric CO2 together with ground and satellite observations of land surface and vegetation dynamics will be the key to detect, model, and better predict changes in high-latitude land/carbon cycle dynamics.

  3. Can plant phloem properties affect the link between ecosystem assimilation and respiration?

    NASA Astrophysics Data System (ADS)

    Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2012-04-01

    Phloem transport of carbohydrates in plants under field conditions is currently not well understood. This is largely the result of the lack of techniques suitable for measuring phloem physiological properties continuously under field conditions. This lack of knowledge is currently hampering our efforts to link ecosystem-level processes of carbon fixation, allocation and use, especially belowground. On theoretical grounds, the properties of the transport pathway from canopy to roots must be important in affecting the link between carbon assimilation and respiration, but it is unclear whether their effect is partially or entirely masked by processes occurring in other parts of the ecosystem. One can also predict the characteristic time scales over which these effects should occur and, as consequence, predict whether the transfer of turgor and osmotic signals from the site of carbon assimilation to the sites of carbon use are likely to control respiration. We will present two sources of evidence suggesting that the properties of the phloem transport system may affect processes that are dependent on the supply of carbon substrate, such as root or soil respiration. Firstly, we will summarize the results of a literature survey on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy to the soil surface was determined. Estimates of the transfer speed could be grouped according to whether the study employed isotopic or canopy soil flux-based techniques. These two groups provided very different estimates of transfer times likely because transport of sucrose molecules, and pressure-concentration waves, in phloem differed. Secondly, we will argue that simultaneous measurements of bark and xylem diameters provide a novel tool to determine the continuous variations of phloem turgor in vivo in the field. We will present a model that interprets these changes in xylem and live bark diameters and present data testing the model

  4. Use of an ecosystem model for testing ecosystem response to inaccuracies of root and microflora productivity estimates

    SciTech Connect

    Petersen, H.; O'Neill, R.V.; Gardner, R.H.

    1984-01-01

    A seventy-compartment model for a Danish beech forest ecosystem is described in outline. The unmodified model predicts considerable accumulation of wood litter and decreasing accumulation through secondary to final decomposition products. Increment rates are similar for all components of the detritus based food chain. Modification of fine root production rate produces strong, positive response for root litter, and less, but still significant, response for detritus, humus and the components of the decomposer food chain. Increase of microbial biomass with adjustments of metabolism and production causes reduced accumulation of detritus and humus. The soil organisms respond according to food source. The use of the model for testing the sensitivity of the ecosystem to inaccuracies of rroot- and microflora estimates is discussed. 21 references, 3 figures, 1 table.

  5. Grazing-induced losses of biodiversity affect the transpiration of an arid ecosystem.

    PubMed

    Verón, Santiago R; Paruelo, José M; Oesterheld, Martín

    2011-02-01

    Degradation processes often lead to species loss. Such losses would impact on ecosystem functioning depending on the extinction order and the functional and structural aspects of species. For the Patagonian arid steppe, we used a simulation model to study the effects of species loss on the rate and variability (i.e. stability) of transpiration as a key attribute of ecosystem functioning. We addressed (1) the differences between the overgrazing extinction order and other potential orders, and (2) the role of biomass abundance, biomass distribution, and functional diversity on the effect of species loss due to overgrazing. We considered a community composed of ten species which were assigned an order of extinction due to overgrazing based on their preference by livestock. We performed four model simulations to test for overgrazing effects through different combinations of species loss, and reductions of biomass and functional diversity. In general, transpiration rate and variability were positively associated to species richness and remained fairly constant until half the species were lost by overgrazing. The extinction order by overgrazing was the most conservative of all possible orders. The amount of biomass was more important than functional diversity in accounting for the impacts of species richness on transpiration. Our results suggest that, to prevent Patagonian steppes from shifting to stable, low-production systems (by overgrazing), maintaining community biomass is more important than preserving species richness or species functional diversity. PMID:20865282

  6. Is the Climate of Bering Sea Warming and Affecting the Ecosystem?

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Stabeno, Phyllis J.

    2004-08-01

    Observations from the Bering Sea are good indicators of decadal shifts in climate, as the Bering is a transition region between the cold, dry Arctic air mass to the north, and the moist, relatively warm maritime air mass to the south. The Bering Sea is also a transition region between Arctic and sub-Arctic ecosystems; this boundary can be loosely identified with the extent of winter sea-ice cover. Like a similar transition zone in the eastern North Atlantic, the Bering Sea is experiencing a northward biogeographical shift in response to changing temperature and atmospheric forcing. If this shift continues over the next decade, it will have major impacts on commercial and subsistence harvests as Arctic species are displaced by sub-Arctic species. The stakes are enormous, as this rich and diverse ecosystem currently provides 47% of the U.S. fishery production by weight, and is home to 80% of the U.S. sea bird population, 95% of northern fur seals, and major populations of Steller sea lions, walrus, and whales.

  7. Ecosystem Productivity Responses to Saltwater Intrusion and P Loading As a Result of Future Sea Level Rise in the Coastal Everglades

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Troxler, T.; Gaiser, E.; Kominoski, J. S.; Richards, J.; Servais, S.; Stachelek, J.; Kelly, S.; Sklar, F.; Coronado-Molina, C.; Madden, C.; Davis, S. E., III; Mazzi, V.; Schulte, N.; Bauman, L.

    2014-12-01

    Coastal wetlands, which have immense potential to store carbon (C) in vegetation and sediments, are a vital part of the global C cycle. How C storage in coastal wetlands will be affected by accelerated sea level rise as a result of a warming climate, however, is uncertain. In oligotrophic wetlands such as the Everglades in the southeastern USA, saltwater intrusion will bring ions (Cl-, SO42-) and phosphorus (P), a limiting nutrient for ecosystem productivity. It is hypothesized that shifts in stressors and subsidies can shift the soil carbon balance from a net C sink to a source, stimulating peat collapse, which will, in turn, accelerate the effects of sea level rise. The objective of this study is to investigate how simulated saltwater intrusion into freshwater and oligohaline wetlands will change net ecosystem productivity and affect the soil C balance. Using coupled field and mesocosm experiments beginning in August 2014, we are examining how plant gross primary production, plant respiration, ecosystem respiration, and net ecosystem exchange in freshwater and oligohaline wetlands will change when exposed to saltwater and an increase in P loading. We predict that a higher saltwater load will increase ecosystem respiration while decreasing ecosystem productivity, possibly shifting the C balance of these marshes from a net sink to a source. In contrast, increased P loading has been shown to increase ecosystem productivity in oligotrophic wetlands; sawgrass, the dominant macrophyte in Everglades marshes, increases productivity with increased P, but periphyton decreases productivity. Therefore, it is still unknown how the interaction of an increased P subsidy coupled with saltwater intrusion will affect overall net ecosystem productivity and the C balance. Results from this study will reveal how the soil C balance in freshwater and oligohaline wetlands changes with saltwater intrusion due to sea level rise.

  8. Do non-native plant species affect the shape of productivity-diversity relationships?

    USGS Publications Warehouse

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  9. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar N.; Smith, Pete; Davies, Christian; McNamara, Niall P.

    2015-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy with higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by the unpredictable climate change currently going on. The goal of this project is to develop a comprehensive model that covers as many ecosystem services as possible at a Continental level including biodiversity, water, GHG emissions, soil, and cultural services. The distribution and production of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC) and Short Rotation Forestry (SRF), is currently being modelled, and ecosystem models will be used to examine the impacts of these crops on ecosystem services. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be utilised. Research will focus on optimisation of land use change feedbacks on ecosystem services and biodiversity, and weighting of the importance of the individual ecosystem services. Energy crops will be modelled using low, medium and high climate change scenarios for the years between 2015 and 2050. We will present first results for GHG emissions and soil organic carbon change after different land use change scenarios (e.g. arable to Miscanthus, forest to SRF), and with different climate warming scenarios. All this will be complemented by the presentation of a matrix

  10. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  11. Biological Production in Lakes. Physical Processes in Terrestrial and Aquatic Ecosystems, Ecological Processes.

    ERIC Educational Resources Information Center

    Walters, R. A.; Carey, G. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Primary production in aquatic ecosystems is carried out by phytoplankton, microscopic plants…

  12. The Flora Mission for Ecosystem Composition, Disturbance and Productivity

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Knox, Robert G.; Green, Robert O.; Ungar, Stephen G.

    2005-01-01

    Global land use and climate variability alter ecosystem conditions - including structure, function, and biological diversity - at a pace that requires unambiguous observations from satellite vantage points. Current global measurements are limited to general land cover, some disturbances, vegetation leaf area index, and canopy energy absorption. Flora is a pathfinding mission that provides new measurements of ecosystem structure, function, and diversity to understand the spatial and temporal dynamics of human and natural disturbances, and the biogeochemical and physiological responses of ecosystems to disturbance. The mission relies upon high-fidelity imaging spectroscopy to deliver full optical spectrum measurements (400-2500 nm) of the global land surface on a monthly time step at 45 meter spatial resolution for three years. The Flora measurement objectives are: (i) fractional cover of biological materials, (ii) canopy water content, (iii) vegetation pigments and light-use efficiency, (iv) plant functional types, (v) fire fuel load and fuel moisture content, and (vi) disturbance occurrence, type and intensity. These measurements are made using a multi-parameter, spectroscopic analysis approach afforded by observation of the full optical spectrum. Combining these measurements, along with additional observations from multispectral sensors, Flora will far advance global studies and models of ecosystem dynamics and change.

  13. The value of livestock production systems and ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As humans, we are obligated to ensure that our methods to achieve and maintain a food-security infrastructure are compatible with the landscapes that we use. We are aware and reminded daily that carelessly implemented agricultural practices can permanently harm landscapes and the inherent ecosystem ...

  14. Parameters affecting solvent production by Clostridium pasteurianum

    SciTech Connect

    Dabrock, B.; Bahl, H.; Gottschalk, G. )

    1992-04-01

    The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/10 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.

  15. Comparing Measures of Estuarine Ecosystem Production in a Temperate New England Estuary

    EPA Science Inventory

    Anthropogenic nutrient enrichments and concerted efforts at nutrient reductions, compounded with the influences of climate change, are likely changing the net ecosystem production (NEP) of our coastal systems. To quantify these changes, scientists monitor a range of physical, che...

  16. Regulations of evapotranspiration and ecosystem productivity from biophysical and human drivers in drylands Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ouyang, Z.; John, R.; Henebry, G. M.; Xie, Y.; de Beurs, K.; Fan, Y.; Shao, C.; Qi, J.; Wu, J.; Liu, Y.

    2015-12-01

    The concept of coupled human and environmental systems (CHES) has been a dominant framework in the past decade for understanding the cohesive connections between natural and human systems. Here we focus on how socio-ecological services may be regulated by the regional and local water cycles and by ecosystem production in the drylands of Northern Asia (>40 degree N), which includes Inner Mongolia of China, Kazakhstan, Kyrgyzstan, Mongolia, Tajikistan, Turkmenistan, and Uzbekistan. Total precipitation and evapotranspiration are used as the primary drivers to explain ecosystem production (e.g., GPP) and indicators of social function and structure (e.g., GDP, population) using the data collected from 1980 through 2010 of these seven areas. We hypothesize that the changes in the regional and local water cycles in these contrasting regions and socioeconomic settings significantly affect CHES functioning. Institutional changes, including shifts in policy, can play a much stronger role than those caused by the physical changes in determining the relationships between water cycle and CHES functioning. The complex connections among the biophysical and socioeconomic variables are analyzed through structural equation modeling (SEM) at country and regional scales. The highest water use efficiency (GPP:PET=0.57) was found for Uzbekistan, which also had the highest GDP:GPP (0.66) among the seven areas. In contrast, Mongolia exhibited the lowest values during the study period despite its very high GPP:Population value (45.8). The low population in Mongolia appeared responsible for its rank within the dryland region. Regional institutional changes with global ramifications, such as the collapse of Soviet Union and China joining the World Trade Organization, appears to have affected the CHES of the study areas.

  17. Municipal sludge metal contamination of old-field ecosystems: Do liming and tilling affect remediation

    SciTech Connect

    Benninger-Truax, M.; Taylor, D.H. . Dept. of Zoology)

    1993-10-01

    Mechanisms of ecosystem recovery following 11 years of sewage sludge disposal were addressed by examining the effects of tilling and/or liming on soil chemistry and the heavy metal (Cd, Cu, Pb, and Zn) concentrations in soil, earthworms, vegetation, spiders, and crickets. In 1989 and 1990, subplots in each of three former 0.1-ha, long-term treatments (sludge, fertilizer, and control) were either unmanipulated or manipulated via tilling and/or liming. Liming significantly increased the pH of soil from the long-term sludge and fertilizer plots, and the combination of tilling and liming affected the heavy metal concentrations in earthworms, as lower concentrations of Cd, Cu, Pb, and Zn were found in earthworms collected from subplots that had been both tilled and limed. However, most observed significant differences in heavy metal concentrations reflected the long-term treatments, as heavy metal concentrations tended to be greater in the soil and biota collected from sludge-treated plots. Thus, heavy metals remained in the soil in forms available to the biota, regardless of the cessation of sludge application or subplot manipulations (liming and/or tilling) for two years following cessation of sludge application.

  18. Microbial interactions affecting the natural transformation of Bacillus subtilis in a model aquatic ecosystem.

    PubMed

    Matsui, Kazuaki; Ishii, Nobuyoshi; Kawabata, Zen'ichiro

    2003-08-01

    The involvement of microbial interactions in natural transformation of bacteria was evaluated using an aquatic model system. For this purpose, the naturally transformable Bacillus subtilis was used as the model bacterium which was co-cultivated with the protist Tetrahymena thermophila (a consumer) and/or the photosynthetic alga Euglena gracilis (a producer). Co-cultivation with as few as 10(2) individuals ml(-1) of T. thermophila lowered the number of transformants to less than the detectable level (<1x10(0) ml(-1)), while co-cultivation with E. gracilis did not. Metabolites from co-cultures of T. thermophila and B. subtilis also decreased the number of transformants to less than the detectable level, while metabolites from co-culture of T. thermophila and B. subtilis with E. gracilis did not. Thus, the introduction of transformation inhibitory factor(s) by the grazing of T. thermophila and the attenuation of this inhibitory factor(s) by E. gracilis is indicated. These observations suggest that biological components do affect the natural transformation of B. subtilis. The study described is the first to suggest that ecological interactions are responsible not only for the carbon and energy cycles, but also for the processes governing horizontal transfer of genes, in microbial ecosystems.

  19. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients.

    PubMed

    Elmhagen, B; Ludwig, G; Rushton, S P; Helle, P; Lindén, H

    2010-07-01

    1. The Mesopredator Release Hypothesis (MRH) suggests that top predator suppression of mesopredators is a key ecosystem function with cascading impacts on herbivore prey, but it remains to be shown that this top-down cascade impacts the large-scale structure of ecosystems. 2. The Exploitation Ecosystems Hypothesis (EEH) predicts that regional ecosystem structures are determined by top-down exploitation and bottom-up productivity. In contrast to MRH, EEH assumes that interference among predators has a negligible impact on the structure of ecosystems with three trophic levels. 3. We use the recolonization of a top predator in a three-level boreal ecosystem as a natural experiment to test if large-scale biomass distributions and population trends support MRH. Inspired by EEH, we also test if top-down interference and bottom-up productivity impact regional ecosystem structures. 4. We use data from the Finnish Wildlife Triangle Scheme which has monitored top predator (lynx, Lynx lynx), mesopredator (red fox, Vulpes vulpes) and prey (mountain hare, Lepus timidus) abundance for 17 years in a 200 000 km(2) study area which covers a distinct productivity gradient. 5. Fox biomass was lower than expected from productivity where lynx biomass was high, whilst hare biomass was lower than expected from productivity where fox biomass was high. Hence, where interference controlled fox abundance, lynx had an indirect positive impact on hare abundance as predicted by MRH. The rates of change indicated that lynx expansion gradually suppressed fox biomass. 6. Lynx status caused shifts between ecosystem structures. In the 'interference ecosystem', lynx and hare biomass increased with productivity whilst fox biomass did not. In the 'mesopredator release ecosystem', fox biomass increased with productivity but hare biomass did not. Thus, biomass controlled top-down did not respond to changes in productivity. This fulfils a critical prediction of EEH. 7. We conclude that the cascade

  20. Farming for Ecosystem Services: An Ecological Approach to Production Agriculture

    PubMed Central

    Philip Robertson, G.; Gross, Katherine L.; Hamilton, Stephen K.; Landis, Douglas A.; Schmidt, Thomas M.; Snapp, Sieglinde S.; Swinton, Scott M.

    2014-01-01

    A balanced assessment of ecosystem services provided by agriculture requires a systems-level socioecological understanding of related management practices at local to landscape scales. The results from 25 years of observation and experimentation at the Kellogg Biological Station long-term ecological research site reveal services that could be provided by intensive row-crop ecosystems. In addition to high yields, farms could be readily managed to contribute clean water, biocontrol and other biodiversity benefits, climate stabilization, and long-term soil fertility, thereby helping meet society's need for agriculture that is economically and environmentally sustainable. Midwest farmers—especially those with large farms—appear willing to adopt practices that deliver these services in exchange for payments scaled to management complexity and farmstead benefit. Surveyed citizens appear willing to pay farmers for the delivery of specific services, such as cleaner lakes. A new farming for services paradigm in US agriculture seems feasible and could be environmentally significant. PMID:26955069

  1. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    PubMed

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning.

  2. Nitrogen and carbon cycling in a grassland community ecosystem as affected by elevated atmospheric CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing global atmospheric CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystem and the long-term storage of C and N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L.) Willd (...

  3. Laser production for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar

    NASA Astrophysics Data System (ADS)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-05-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS)1. GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  4. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  5. Quantification of Viral and Prokaryotic Production Rates in Benthic Ecosystems: A Methods Comparison

    PubMed Central

    Rastelli, Eugenio; Dell’Anno, Antonio; Corinaldesi, Cinzia; Middelboe, Mathias; Noble, Rachel T.; Danovaro, Roberto

    2016-01-01

    Viruses profoundly influence benthic marine ecosystems by infecting and subsequently killing their prokaryotic hosts, thereby impacting the cycling of carbon and nutrients. Previously conducted studies, based on different methodologies, have provided widely differing estimates of the relevance of viruses on benthic prokaryotes. There has been no attempt so far to compare these independent approaches, including contextual comparisons among different approaches for sample manipulation (i.e., dilution or not of the sediments during incubations), between methods based on epifluorescence microscopy (EFM) or radiotracers, and between the use of different radiotracers. Therefore, it has been difficult to identify the most suitable methodologies and protocols to be used as standard approaches for the quantification of viral infections of prokaryotes. Here, we compared for the first time different methods for determining viral and prokaryotic production rates in marine sediments collected at two benthic sites, differing in depth and environmental conditions. We used a highly replicated experimental design, testing the potential biases associated to the incubation of sediments as diluted or undiluted. In parallel, we also compared EFM counts with the 3H-thymidine incubations for the determination of viral production rates, and the use of 3H-thymidine versus 3H-leucine radiotracers for the determination of prokaryotic production. We show here that, independent from sediment dilution, EFM-based values of viral production ranged from 1.4 to 4.6 × 107 viruses g-1 h-1, and were similar but overall less variable compared to those obtained by the 3H-thymidine method (0.3 to 9.0 × 107 viruses g-1h-1). In addition, the prokaryotic production rates were not affected by sediment dilution, and the use of different radiotracers provided very consistent estimates (10.3–35.1 and 9.3–34.6 ngC g-1h-1 using the 3H-thymidine or 3H-leucine method, respectively). These results indicated

  6. Comparing bioenergy production sites in the Southeastern US regarding ecosystem service supply and demand.

    PubMed

    Meyer, Markus A; Chand, Tanzila; Priess, Joerg A

    2015-01-01

    Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS). This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification schemes are governance

  7. Comparing Bioenergy Production Sites in the Southeastern US Regarding Ecosystem Service Supply and Demand

    PubMed Central

    Meyer, Markus A.; Chand, Tanzila; Priess, Joerg A.

    2015-01-01

    Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS). This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification schemes are governance

  8. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  9. Factors affecting patulin production by Penicillium expansum.

    PubMed

    McCallum, J L; Tsao, R; Zhou, T

    2002-12-01

    Patulin, a mycotoxin produced by Penicillium spp. during fruit spoilage, is a major concern with regard to human health because exposure can result in severe acute and chronic toxicity, including carcinogenic, mutagenic, and teratogenic effects. In this study, we investigated the effects of Penicillium expansum isolate, apple cultivar, storage temperature and time, and pH on the production of patulin. Patulin was analyzed by a previously developed micellar electrokinetic capillary electrophoresis method. P. expansum isolates originating from across Ontario produced widely differing levels of patulin, ranging from 0 to >6 mg/g by dry mycelial weight. The highest patulin levels were those for isolates displaying aggressive growth (characterized by rapidly increasing acidity) accompanied by profuse mycelial development. Distinct patterns in fungal growth rates and patulin production were evident among isolates grown in McIntosh, Empire, and Mutsu ciders. Extensive fungal growth and higher patulin levels (538 to 1,822 microg/ml on day 14) in apple ciders were associated with incubation at room temperature (25 degrees C), although potentially toxic patulin levels (75 to 396 microg/ml on day 24) were also found in refrigerated ciders (4 degrees C) inoculated with P. expansum. PMID:12495013

  10. How Glassy States Affect Brown Carbon Production?

    NASA Astrophysics Data System (ADS)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( < 20% RH) at 293 K. Optical properties and the AMS spectra were measured for toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  11. Net Ecosystem Production (NEP) of the Great Plains, United States

    USGS Publications Warehouse

    Howard, Daniel; Gilmanov, Tagir; Gu, Yingxin; Wylie, Bruce; Zhang, Li

    2012-01-01

    Flux tower networks, such as AmeriFlux and FLUXNET, consist of a growing number of eddy covariance flux tower sites that provide a synoptic record of the exchange of carbon, water, and energy between the ecosystem and atmosphere at various temporal frequencies. These towers also detect and measure certain site characteristics, such as wind, temperature, precipitation, humidity, atmospheric pressure, soil features, and phenological progressions. Efforts are continuous to combine flux tower network data with remote sensing data to upscale the conditions observed at specific sites to a regional and, ultimately, worldwide scale. Data-driven regression tree models have the ability to incorporate flux tower records and remote sensing data to quantify exchanges of carbon with the atmosphere (Wylie and others, 2007; Xiao and others, 2010; Zhang and others, 2010; Zhang and others, 2011). Previous study results demonstrated the dramatic effect weather has on NEP and revealed specific ecoregions and times acting as carbon sinks or sources. As of 2012, more than 100 site-years of flux tower measurements, represented by more than 50 individual cropland or grassland sites throughout the Great Plains and surrounding area, have been acquired, quality controlled, and partitioned into gross photosynthesis (Pg) and ecosystem Re using detailed light-response, soil temperature, and vapor pressure deficit (VPD) based analysis.

  12. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    PubMed

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.

  13. Habitat, not resource availability, limits consumer production in lake ecosystems

    USGS Publications Warehouse

    Craig, Nicola; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2015-01-01

    Food web productivity in lakes can be limited by dissolved organic carbon (DOC), which reduces fish production by limiting the abundance of their zoobenthic prey. We demonstrate that in a set of 10 small, north temperate lakes spanning a wide DOC gradient, these negative effects of high DOC concentrations on zoobenthos production are driven primarily by availability of warm, well-oxygenated habitat, rather than by light limitation of benthic primary production as previously proposed. There was no significant effect of benthic primary production on zoobenthos production after controlling for oxygen, even though stable isotope analysis indicated that zoobenthos do use this resource. Mean whole-lake zoobenthos production was lower in high-DOC lakes with reduced availability of oxygenated habitat, as was fish biomass. These insights improve understanding of lake food webs and inform management in the face of spatial variability and ongoing temporal change in lake DOC concentrations.

  14. Convergence of potential net ecosystem production among contrasting C3 grasslands

    PubMed Central

    Peichl, Matthias; Sonnentag, Oliver; Wohlfahrt, Georg; Flanagan, Lawrence B.; Baldocchi, Dennis D.; Kiely, Gerard; Galvagno, Marta; Gianelle, Damiano; Marcolla, Barbara; Pio, Casimiro; Migliavacca, Mirco; Jones, Michael B.; Saunders, Matthew

    2013-01-01

    Metabolic theory and body size dependent constraints on biomass production and decomposition suggest that differences in the intrinsic potential net ecosystem production (NEPPOT) should be small among contrasting C3 grasslands and therefore unable to explain the wide range in the annual apparent net ecosystem production (NEPAPP) reported by previous studies. We estimated NEPPOT for nine C3 grasslands under contrasting climate and management regimes using multi-year eddy covariance data. NEPPOT converged within a narrow range suggesting little difference in the net carbon dioxide uptake capacity across C3 grasslands. Our results indicate a unique feature of C3 grasslands compared to other terrestrial ecosystems and suggest a state of stability in NEPPOT due to tightly coupled production and respiration processes. Consequently, the annual NEPAPP of C3 grasslands is primarily a function of seasonal and short-term environmental and management constraints, and therefore especially susceptible to changes in future climate patterns and associated adaptation of management practices. PMID:23346985

  15. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems

    PubMed Central

    Haberl, Helmut; Erb, K. Heinz; Krausmann, Fridolin; Gaube, Veronika; Bondeau, Alberte; Plutzar, Christoph; Gingrich, Simone; Lucht, Wolfgang; Fischer-Kowalski, Marina

    2007-01-01

    Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest. PMID:17616580

  16. Variation in peak growing season net ecosystem production across the Canadian Arctic.

    PubMed

    Lafleur, Peter M; Humphreys, Elyn R; St Louis, Vincent L; Myklebust, May C; Papakyriakou, Tim; Poissant, Laurier; Barker, Joel D; Pilote, Martin; Swystun, Kyle A

    2012-08-01

    Tundra ecosystems store vast amounts of soil organic carbon, which may be sensitive to climatic change. Net ecosystem production, NEP, is the net exchange of carbon dioxide (CO(2)) between landscapes and the atmosphere, and represents the balance between CO(2) uptake by photosynthesis and release by decomposition and autotrophic respiration. Here we examine CO(2) exchange across seven sites in the Canadian low and high Arctic during the peak growing season (July) in summer 2008. All sites were net sinks for atmospheric CO(2) (NEP ranged from 5 to 67 g C m(-2)), with low Arctic sites being substantially larger CO(2) sinks. The spatial difference in NEP between low and high Arctic sites was determined more by CO(2) uptake via gross ecosystem production than by CO(2) release via ecosystem respiration. Maximum gross ecosystem production at the low Arctic sites (average 8.6 μmol m(-2) s(-1)) was about 4 times larger than for high Arctic sites (average 2.4 μmol m(-2) s(-1)). NEP decreased with increasing temperature at all low Arctic sites, driven largely by the ecosystem respiration response. No consistent temperature response was found for the high Arctic sites. The results of this study clearly indicate there are large differences in tundra CO(2) exchange between high and low Arctic environments and this difference should be a central consideration in studies of Arctic carbon balance and climate change.

  17. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems.

    PubMed

    Haberl, Helmut; Erb, K Heinz; Krausmann, Fridolin; Gaube, Veronika; Bondeau, Alberte; Plutzar, Christoph; Gingrich, Simone; Lucht, Wolfgang; Fischer-Kowalski, Marina

    2007-07-31

    Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest.

  18. Deep Atomic Binding (DAB) Approach in Interpretation of Fission Products Behavior in Terrestrial and Water Ecosystems

    SciTech Connect

    Ajlouni, Abdul-Wali M.S.

    2006-07-01

    A large number of studies and models were established to explain the fission products (FP) behavior within terrestrial and water ecosystems, but a number of behaviors were non understandable, which always attributed to unknown reasons. According to DAB hypothesis, almost all fission products behaviors in terrestrial and water ecosystems could be interpreted in a wide coincidence. The gab between former models predictions, and field behavior of fission products after accidents like Chernobyl have been explained. DAB represents a tool to reduce radio-phobia as well as radiation protection expenses. (author)

  19. The light: nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process.

    PubMed

    Sterner, R W; Elser, J J; Fee, E J; Guildford, S J; Chrzanowski, T H

    1997-12-01

    The amounts of solar energy and materials are two of the chief factors determining ecosystem structure and process. Here, we examine the relative balance of light and phosphorus in a set of freshwater pelagic ecosystems. We calculated a ratio of light: phosphorus by putting mixed-layer mean light in the numerator and total P concentration in the denominator. This light: phosphorus ratio was a good predictor of the C:P ratio of particulate matter (seston), with a positive correlation demonstrated between these two ratios. We argue that the balance between light and nutrients controls "nutrient use efficiency" at the base of the food web in lakes. Thus, when light energy is high relative to nutrient availability, the base of the food web is carbon rich and phosphorus poor. In the opposite case, where light is relatively less available compared to nutrients, the base of the food web is relatively P rich. The significance of this relationship lies in the fact that the composition of sestonic material is known to influence a large number of ecosystem processes such as secondary production, nutrient cycling, and (we hypothesize) the relative strength of microbial versus grazing processes. Using the central result of increased C:P ratio with an increased light: phosphorus ratio, we make specific predictions of how ecosystem structure and process should vary with light and nutrient balance. Among these predictions, we suggest that lake ecosystems with low light: phosphorus ratios should have several trophic levels simultaneously carbon or energy limited, while ecosystems with high light: phosphorus ratios should have several trophic levels simultaneously limited by phosphorus. Our results provide an alternative perspective to the question of what determines nutrient use efficiency in ecosystems.

  20. Modeling gross primary production and ecosystem respiration for terrestrial ecosystems in North China and Tibet Plateau using MODIS imagery

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Yu, G.; Yan, H.; Zhu, X.; Li, S.; Wang, Q.; Zhang, J.; Wang, Y.; Li, Y.; Zhao, L.; Shi, P.

    2013-12-01

    Gross primary production (GPP) and ecosystem respiration (Re) are two large components in the studying of regional and global carbon cycles. Accurate quantification of spatio-temporal variations of GPP and Re for terrestrial ecosystems is of great importance to research carbon budget on regional and global scales. In this study, we proposed two satellite-based models, i.e. Photosynthetic Capacity Model (PCM) and Ecosystem Respiration Model (ERM), to simulate GPP and Re of terrestrial ecosystems, respectively. Multi-year eddy CO2 flux data from five vegetation types in North China (temperate mixed forest, temperate steppe) and Tibet Plateau (alpine shrubland, alpine marsh and alpine meadow-steppe) were used for assessing the model performances. The PCM model was driven by the Enhanced Vegetation Index (EVI) and the Land Surface Water Index (LSWI) from MODIS imagery. In most cases, the PCM-simulated GPP and the observed GPP displayed very consistent seasonal and inter-seasonal variability regardless of vegetation types. The PCM predicted versus observed GPP performed better than the MODIS GPP products, and was compatible with the Vegetation Photosynthesis Model (VPM). Moreover, the model parameter of the PCM could be gained from the linear function of mean annual remote sensing data. Based on this linear function, the PCM model simulated 93% variations of the observed GPP across all five vegetation types. The ERM model was developed based on both GPP and temperature, and was driven by EVI, LSWI and the Land Surface Temperature (LST) from MODIS imagery. In most cases, the seasonal and interannual variations of the simulated Re matched well with the observed Re. Compared with the model driven by temperature, and the model further added GPP in the reference respiration, the ERM model was optimal in each vegetation type. The model parameters of the ERM could also be presented by the liner functions of mean annual remote sensing data. Based on these linear functions, 90

  1. Measuring and modelling ecosystem productivity: a PhenoCam-based approach.

    NASA Astrophysics Data System (ADS)

    Hufkens, K.; Keenan, T. F.; Flanagan, L. B.; Richardson, A. D.

    2015-12-01

    Phenology controls feedbacks to the climate system through abiotic and biotic forces such as albedo or fluxes of water, energy and CO2. Understanding and modelling these vegetation-climate feedbacks is key to accurately predicting a future climate. For the past 6 years the PhenoCam network, a network of near-surface remote sensing cameras, has consistently monitored vegetation phenology in a wide range of ecoregions, climate zones, and plant functional types. Here we explore the tight coupling between canopy greenness and rates of photosynthesis using two studies. A first study highlights how PhenoCam data can be used to quantify the effect of a late spring frost event on ecosystem productivity, introducing a 7-14% loss in annual gross productivity across 8753 km2 in the northeastern United States. This case study emphasizes the use of the PhenoCam data in estimating productivity loss / the opportunity cost of ecosystem disturbance in areas not covered by ecosystem flux measurement equipment. In a more recent, second, study we developed a PhenoCam data-informed pulse-response model of grassland growth to explore potential responses of grasslands to future climate change across North America. Our findings projected widespread and consistent increase in grassland productivity (for the current range of grassland ecosystems of North American) over the coming century, despite a general increase in aridity projected across most of our study area. Once more PhenoCam data allowed us to inform our modelling efforts with data of a high temporal and spatial resolution. In conclusion, both studies illustrate direct applications of the ever growing PhenoCam network (http://phenocam.sr.unh.edu/webcam/) in scaling the effects of ecosystem disturbances, predicting future ecosystem productivity and underscore the complementary nature of PhenoCam data with ecosystem exchange measurements.

  2. Can nitrogen fertilization aid restoration of mature tree productivity in degraded dryland riverine ecosystems?

    USGS Publications Warehouse

    Andersen, Douglas C.; Adair, Elizabeth Carol; Nelson, Sigfrid Mark; Binkley, Dan

    2014-01-01

    Restoration of riparian forest productivity lost as a consequence of flow regulation is a common management goal in dryland riverine ecosystems. In the northern hemisphere, dryland river floodplain trees often include one or another species of Populus, which are fast-growing, nutrient-demanding trees. Because the trees are phreatophytic in drylands, and have water needs met in whole or in part by a shallow water table, their productivity may be limited by nitrogen (N) availability, which commonly limits primary productivity in mesic environments. We added 20 g N m−2 in a 2-m radius around the base of mature Populus fremontii along each of a regulated and free-flowing river in semiarid northwest Colorado, USA (total n = 42) in order to test whether growth is constrained by low soil N. Twelve years after fertilization, we collected increment cores from these and matched unfertilized trees and compared radial growth ratios (growth in the 3-year post-fertilization period/growth in the 3-year pre-fertilization period) in paired t tests. We expected a higher mean ratio in the fertilized trees. No effect from fertilization was detected, nor was a trend evident on either river. An alternative test using analysis of covariance (ANCOVA) produced a similar result. Our results underscore the need for additional assessment of which and to what extent factors other than water control dryland riverine productivity. Positive confirmation of adequate soil nutrients at these and other dryland riparian sites would bolster the argument that flow management is necessary and sufficient to maximize productivity and enhance resilience in affected desert riverine forests.

  3. Does natural selection organize ecosystems for the maintenance of high productivity and diversity?

    PubMed

    Leigh, Egbert Giles; Vermeij, Geerat Jacobus

    2002-05-29

    Three types of evidence suggest that natural ecosystems are organized for high productivity and diversity: (i) changes not previously experienced by a natural ecosystem, such as novel human disturbances, tend to diminish its productivity and/or diversity, just as 'random' changes in a machine designed for a function usually impair its execution of that function; (ii) humans strive to recreate properties of natural ecosystems to enhance productivity of artificial ones, as farmers try to recreate properties of natural soils in their fields; and (iii) productivity and diversity have increased during the Earth's history as a whole, and after every major biotic crisis. Natural selection results in ecosystems organized to maintain high productivity of organic matter and diversity of species, just as competition among individuals in Adam Smith's ideal economy favours high production of wealth and diversity of occupations. In nature, poorly exploited energy attracts more efficient users. This circumstance favours the opening of new ways of life and more efficient recycling of resources, and eliminates most productivity-reducing 'ecological monopolies'. Ecological dominants tend to be replaced by successors with higher metabolism, which respond to more stimuli and engage in more varied interactions. Finally, increasingly efficient predators and herbivores favour faster turnover of resources. PMID:12079531

  4. Does natural selection organize ecosystems for the maintenance of high productivity and diversity?

    PubMed Central

    Leigh, Egbert Giles; Vermeij, Geerat Jacobus

    2002-01-01

    Three types of evidence suggest that natural ecosystems are organized for high productivity and diversity: (i) changes not previously experienced by a natural ecosystem, such as novel human disturbances, tend to diminish its productivity and/or diversity, just as 'random' changes in a machine designed for a function usually impair its execution of that function; (ii) humans strive to recreate properties of natural ecosystems to enhance productivity of artificial ones, as farmers try to recreate properties of natural soils in their fields; and (iii) productivity and diversity have increased during the Earth's history as a whole, and after every major biotic crisis. Natural selection results in ecosystems organized to maintain high productivity of organic matter and diversity of species, just as competition among individuals in Adam Smith's ideal economy favours high production of wealth and diversity of occupations. In nature, poorly exploited energy attracts more efficient users. This circumstance favours the opening of new ways of life and more efficient recycling of resources, and eliminates most productivity-reducing 'ecological monopolies'. Ecological dominants tend to be replaced by successors with higher metabolism, which respond to more stimuli and engage in more varied interactions. Finally, increasingly efficient predators and herbivores favour faster turnover of resources. PMID:12079531

  5. Ecosystem and physiological controls over methane production in northern wetlands

    SciTech Connect

    Valentine, D.W.; Holland, E.A.; Schimel, D.S.

    1994-01-20

    Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C:N and lignin:N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH{sub 4} production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin:N and C:N ratios ({partial_derivative}CH{sub 4}/{partial_derivative}EtOH = 0.9-2.3 mg g{sup {minus}1}) and weakly in the acidic bogs with wide C:N and lignin:N ratios ({partial_derivative}CH{sub 4}/{partial_derivative}EtOH = -0.4-0.02 mg g{sup {minus}1}). Observed Q{sub 10} values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry. 57 refs., 5 figs., 4 tabs.

  6. Ecosystem and physiological controls over methane production in northern wetlands

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.

    1994-01-01

    Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C: N and lignin: N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin: N and C: N ratios (delta CH4/delta EtOH = 0.9-2.3 mg/g) and weakly in the acidic bogs with wide C: N and lignin: N ratios (delta CH4/delta EtOH = -0.04-0.02 mg/g). Observed Q(sub 10) values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.

  7. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  8. MODIS vegetation products as proxies of photosynthetic potential: a look across meteorological and biologic driven ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Restrepo-Coupe, N.; Huete, A.; Davies, K.; Cleverly, J.; Beringer, J.; Eamus, D.; van Gorsel, E.; Hutley, L. B.; Meyer, W. S.

    2015-12-01

    A direct relationship between gross ecosystem productivity (GEP) measured by the eddy covariance (EC) method and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices (VIs) has been observed in many temperate and tropical ecosystems. However, in Australian evergreen forests, and particularly sclerophyll woodlands, MODIS VIs do not capture seasonality of GEP. In this study, we re-evaluate the connection between satellite and flux tower data at four contrasting Australian ecosystems, through comparisons of ecosystem photosynthetic activity (GEP) and potential (e.g. ecosystem light use efficiency and quantum yield) with MODIS vegetation satellite products, including VIs, gross primary productivity (GPPMOD), leaf area index (LAIMOD), and fraction of photosynthetic active radiation (fPARMOD). We found that satellite derived greenness products constitute a measurement of ecosystem structure (e.g. leaf area index - quantity of leaves) and function (e.g. leaf level photosynthetic assimilation capacity - quality of leaves), rather than productivity. Our results show that in primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature and/or precipitation) and relatively aseasonal vegetation photosynthetic potential ecosystems (e.g. evergreen wet sclerophyll forests), there were no statistically significant relationships between GEP and satellite derived measures of greenness. In contrast, for phenology-driven ecosystems (e.g. tropical savannas), changes in the vegetation status drove GEP, and tower-based measurements of photosynthetic activity were best represented by VIs. We observed the highest correlations between MODIS products and GEP in locations where key meteorological variables and vegetation phenology were synchronous (e.g. semi-arid Acacia woodlands) and low correlation at locations where they were asynchronous (e.g. Mediterranean ecosystems). Eddy covariance data offer much more than validation and/or calibration of

  9. Provenance for actionable data products and indicators in marine ecosystem assessments

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Maffei, A. R.; Fox, P. A.; West, P.; Di Stefano, M.; Hare, J. A.; Fogarty, M.

    2013-12-01

    Ecosystem-based management of Large Marine Ecosystems (LMEs) involves the sharing of data and information products among a diverse set of stakeholders - from environmental and fisheries scientists to policy makers, commercial entities, nonprofits, and the public. Often the data products that are shared have resulted from a number of processing steps and may also have involved the combination of a number of data sources. The traceability from an actionable data product or indicator back to its original data source(s) is important not just for trust and understanding of each final data product, but also to compare with similar data products produced by the different stakeholder groups. For a data product to be traceable, its provenance, i.e., lineage or history, must be recorded and preferably machine-readable. We are collaborating on a use case to develop a software framework for the bi-annual Ecosystem Status Report (ESR) for the U.S. Northeast Shelf LME. The ESR presents indicators of ecosystem status including climate forcing, primary and secondary production, anthropogenic factors, and integrated ecosystem measures. Our software framework retrieves data, conducts standard analyses, provides iterative and interactive visualization, and generates final graphics for the ESR. The specific process for each data and information product is updated in a metadata template, including data source, code versioning, attribution, and related contextual information suitable for traceability, repeatability, explanation, verification, and validation. Here we present the use of standard metadata for provenance for data products in the ESR, in particular the W3C provenance (PROV) family of specifications, including the PROV-O ontology which maps the PROV data model to RDF. We are also exploring extensions to PROV-O in development (e.g., PROV-ES for Earth Science Data Systems, D-PROV for workflow structure). To associate data products in the ESR to domain-specific ontologies we are

  10. Estimation of net ecosystem production in Asia using the diagnostic-type ecosystem model with a 10 km grid-scale resolution

    NASA Astrophysics Data System (ADS)

    Sasai, Takahiro; Obikawa, Hiroki; Murakami, Kazutaka; Kato, Soushi; Matsunaga, Tsuneo; Nemani, Ramakrishna R.

    2016-06-01

    The terrestrial carbon cycle in Asia is highly uncertain, and it affects our understanding of global warming. One of the important issues is the need for an enhancement of spatial resolution, since local regions in Asia are heterogeneous with regard to meteorology, land form, and land cover type, which greatly impacts the detailed spatial patterns in its ecosystem. Thus, an important goal of this study is to reasonably reproduce the heterogeneous biogeochemical patterns in Asia by enhancing the spatial resolution of the ecosystem model biosphere model integrating eco-physiological and mechanistic approaches using satellite data (BEAMS). We estimated net ecosystem production (NEP) over eastern Asia and examined the spatial differences in the factors controlling NEP by using a 10 km grid-scale approach over two different decades (2001-2010 and 2091-2100). The present and future meteorological inputs were derived from satellite observations and the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) data set, respectively. The results showed that the present NEP in whole eastern Asia was carbon source (-214.9 TgC yr-1) and in future scenarios, the greatest positive (76.4 TgC yr-1) and least negative (-95.9 TgC yr-1) NEPs were estimated from the Representative Concentration Pathways (RCP) 6.0 and RCP8.5 scenarios, respectively. Calculated annual NEP in RCP8.5 was mostly positive in the southern part of East Asia and Southeast Asia and negative in northern and central parts of East Asia. Under the RCP scenario with higher greenhouse gases emission (RCP8.5), deciduous needleleaf and mixed forests distributed in the middle and high latitudes served as carbon source. In contrast, evergreen broadleaf forests distributed in low latitudes served as carbon sink. The sensitivity study demonstrated that the spatial tendency of NEP was largely influenced by atmospheric CO2 and temperature.

  11. How a clogged canal affects ecological and human health in a tropical urban wetland ecosystem

    EPA Science Inventory

    The coastal city of San Juan, Puerto Rico is a tropical urban ecosystem woven among a series of interconnected bays, lagoons, drains, canals, and mangroves. As the city has expanded, infilling and urban development by the region’s poorest residents has choked an important c...

  12. Comparing the impact of the 2003 and 2010 heatwaves on Net Ecosystem Production in Europe

    NASA Astrophysics Data System (ADS)

    Bastos, A. F.; Gouveia, C. M.; Trigo, R. M.

    2012-12-01

    Climate variability is known to influence primary productivity on land ecosystems (Nemani et al., 2003). In particular, extreme climatic events such as major droughts and heatwaves are known to have severe impact on primary productivity and, therefore, to affect significantly the carbon dioxide uptake by land ecosystems at regional (Ciais et al., 2005) or even global scale (Zhao and Running, 2010). In the last decade, Europe was struck by two outstanding heatwaves, the 2003 event in Western Europe and the recent 2010 episode over Eastern Europe. Both were characterised by record breaking temperatures at the daily, weekly, monthly and seasonal scales, although the amplitude and spatial extent of the 2010 mega-heatwave surpassed the 2003 event (Barriopedro et al., 2011). This work aims to assess the influence of both mega-heatwaves on seasonal and yearly Net Ecosystem Production (NEP). The work relies on monthly NEP data derived from satellite imagery obtained from MODIS (Moderate Resolution Imaging Spectroradiometer) sensor at 1km spatial resolution. Data were selected for the period between 2000 and 2011 over a region extending from 34.6 oN to 73.5 oN and 12.1 oW to 46.8 oE, covering Eurasia. In 2010 very low NEP anomalies are observed over a very large area in Eastern Europe, at the monthly, seasonal and yearly scale. In western Russia, yearly NEP anomalies fall below 50% of average cumulative NEP. These widespread negative anomalous values of NEP fields over the western Russia region match the patterns of very high temperature values combined with below-average precipitation, at the seasonal (summer) scale. Moreover, the impact of the heatwave is not only evident at the regional level but also at the wider continental (European) scale and is significantly more extensive and intense than the corresponding heatwave of 2003 in Western Europe (Ciais et al., 2005). References: Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. Garcia-Herrera (2011

  13. MODIS vegetation products as proxies of photosynthetic potential along a gradient of meteorologically and biologically driven ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Restrepo-Coupe, Natalia; Huete, Alfredo; Davies, Kevin; Cleverly, James; Beringer, Jason; Eamus, Derek; van Gorsel, Eva; Hutley, Lindsay B.; Meyer, Wayne S.

    2016-10-01

    A direct relationship between gross ecosystem productivity (GEP) estimated by the eddy covariance (EC) method and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices (VIs) has been observed in many temperate and tropical ecosystems. However, in Australian evergreen forests, and particularly sclerophyll and temperate woodlands, MODIS VIs do not capture seasonality of GEP. In this study, we re-evaluate the connection between satellite and flux tower data at four contrasting Australian ecosystems, through comparisons of GEP and four measures of photosynthetic potential, derived via parameterization of the light response curve: ecosystem light use efficiency (LUE), photosynthetic capacity (Pc), GEP at saturation (GEPsat), and quantum yield (α), with MODIS vegetation satellite products, including VIs, gross primary productivity (GPPMOD), leaf area index (LAIMOD), and fraction of photosynthetic active radiation (fPARMOD). We found that satellite-derived biophysical products constitute a measurement of ecosystem structure (e.g. leaf area index - quantity of leaves) and function (e.g. leaf level photosynthetic assimilation capacity - quality of leaves), rather than GEP. Our results show that in primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature, and/or precipitation) and relatively aseasonal ecosystems (e.g. evergreen wet sclerophyll forests), there were no statistically significant relationships between GEP and satellite-derived measures of greenness. In contrast, for phenology-driven ecosystems (e.g. tropical savannas), changes in the vegetation status drove GEP, and tower-based measurements of photosynthetic activity were best represented by VIs. We observed the highest correlations between MODIS products and GEP in locations where key meteorological variables and vegetation phenology were synchronous (e.g. semi-arid Acacia woodlands) and low correlation at locations where they were asynchronous (e

  14. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar; Smith, Pete; Davies, Christian; McNamara, Niall

    2016-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy with higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by the unpredictable climate change currently going on. The goal of this project is to develop a comprehensive model that covers high impact, policy relevant ecosystem services at a Continental scale including biodiversity and pollination, water and air security, erosion control and soil security, GHG emissions, soil C and cultural services like tourism value. The technical distribution potential and likely yield of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC) with willow, poplar, eucalyptus and other broadleaf species and Short Rotation Forestry (SRF), is currently being modelled using ECOSSE, DayCent, SalixFor and MiscanFor, and ecosystem models will be used to examine the impacts of these crops on ecosystem services. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be utilised. Research will focus on optimisation of land use change feedbacks on above named ecosystem services, impact on food security, land management practices and impacts from climate change. We will present results for GHG emissions and soil organic carbon change after different land use change scenarios (e.g. arable to Miscanthus, forest to SRF), and

  15. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems

    USGS Publications Warehouse

    Cohen, Andrew S.; Gergurich, Elizabeth L.; Kraemer, Benjamin M.; McGlue, Michael M.; McIntyre, Peter B.; Russell, James M.; Simmons, Jack D.; Swarzenski, Peter W.

    2016-01-01

    Warming climates are rapidly transforming lake ecosystems worldwide, but the breadth of changes in tropical lakes is poorly documented. Sustainable management of freshwater fisheries and biodiversity requires accounting for historical and ongoing stressors such as climate change and harvest intensity. This is problematic in tropical Africa, where records of ecosystem change are limited and local populations rely heavily on lakes for nutrition. Here, using a ∼1,500-y paleoecological record, we show that declines in fishery species and endemic molluscs began well before commercial fishing in Lake Tanganyika, Africa’s deepest and oldest lake. Paleoclimate and instrumental records demonstrate sustained warming in this lake during the last ∼150 y, which affects biota by strengthening and shallowing stratification of the water column. Reductions in lake mixing have depressed algal production and shrunk the oxygenated benthic habitat by 38% in our study areas, yielding fish and mollusc declines. Late-20th century fish fossil abundances at two of three sites were lower than at any other time in the last millennium and fell in concert with reduced diatom abundance and warming water. A negative correlation between lake temperature and fish and mollusc fossils over the last ∼500 y indicates that climate warming and intensifying stratification have almost certainly reduced potential fishery production, helping to explain ongoing declines in fish catches. Long-term declines of both benthic and pelagic species underscore the urgency of strategic efforts to sustain Lake Tanganyika’s extraordinary biodiversity and ecosystem services.

  16. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems.

    PubMed

    Cohen, Andrew S; Gergurich, Elizabeth L; Kraemer, Benjamin M; McGlue, Michael M; McIntyre, Peter B; Russell, James M; Simmons, Jack D; Swarzenski, Peter W

    2016-08-23

    Warming climates are rapidly transforming lake ecosystems worldwide, but the breadth of changes in tropical lakes is poorly documented. Sustainable management of freshwater fisheries and biodiversity requires accounting for historical and ongoing stressors such as climate change and harvest intensity. This is problematic in tropical Africa, where records of ecosystem change are limited and local populations rely heavily on lakes for nutrition. Here, using a ∼1,500-y paleoecological record, we show that declines in fishery species and endemic molluscs began well before commercial fishing in Lake Tanganyika, Africa's deepest and oldest lake. Paleoclimate and instrumental records demonstrate sustained warming in this lake during the last ∼150 y, which affects biota by strengthening and shallowing stratification of the water column. Reductions in lake mixing have depressed algal production and shrunk the oxygenated benthic habitat by 38% in our study areas, yielding fish and mollusc declines. Late-20th century fish fossil abundances at two of three sites were lower than at any other time in the last millennium and fell in concert with reduced diatom abundance and warming water. A negative correlation between lake temperature and fish and mollusc fossils over the last ∼500 y indicates that climate warming and intensifying stratification have almost certainly reduced potential fishery production, helping to explain ongoing declines in fish catches. Long-term declines of both benthic and pelagic species underscore the urgency of strategic efforts to sustain Lake Tanganyika's extraordinary biodiversity and ecosystem services. PMID:27503877

  17. Net Ecosystem Production of Polar Desert and Wetland Landscapes in the Rapidly Changing Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Emmerton, C. A.; St Louis, V. L.; Humphreys, E.; Barker, J. D.; Gamon, J. A.; Pastorello, G.

    2014-12-01

    A rapidly warming and wetting Arctic climate is changing the net ecosystem production (NEP) of northern landscapes and subsequent exchange of carbon dioxide (CO2) with the atmosphere. Assessments of northern terrestrial NEP have focused mostly on the rich peatland landscapes of the low Arctic, with far fewer studies from expansive, but sparse, high Arctic polar landscapes. Consequently, how these ecosystems may respond to a warming and wetting climate is still a key gap in our understanding of global carbon feedbacks. We used multi-season eddy covariance measurements to quantify growing season (June to September) NEP on contrasting polar desert and meadow wetland landscapes near Lake Hazen on northern Ellesmere Island (81ºN), in Canada's high Arctic. We also used variation in contemporary NEP and weather to improve our understanding of potential future carbon cycling in a warmer and wetter high Arctic climate. During a typical growing season, we found that a dry polar desert landscape accumulated only 6.6±1.2 g C m-2 similar to other high Arctic sites and consistent with cold, barren soils with weak plant growth. Desert NEP coincided strongest with landscape moisture, rather than heating, with increased NEP occurring during drier conditions when soil heterotrophic rates were lowest. With a nearly constant but varying supply of water, the productive meadow wetland accumulated 13 times more carbon (86.1±16.9 g C m-2) than the desert during the growing season. NEP at the wetland was similar to comparable landscapes much further south, owing to continuous 24-hour daylight and typically clear-skies surrounding Lake Hazen. Wetland soils showed a consistent strong burst of CO2 to the atmosphere each spring (min. NEP: -2.5 µmol CO2 s-1 m-2) and a well-defined peak in July productivity (3.9-4.4 µmol CO2 s-1 m-2). Wetland NEP associated positively and strongly with both landscape heating and moisture, suggesting that autotrophic limitations other than water or heat

  18. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.

    PubMed

    van der Heijden, Marcel G A; Bardgett, Richard D; van Straalen, Nico M

    2008-03-01

    Microbes are the unseen majority in soil and comprise a large portion of life's genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogen-fixing bacteria are responsible for c. 5-20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.

  19. Metabolic differences in temperamental Brahman cattle can affect productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors may adversely affect the growth and productivity of livestock. These include stressors associated with management practices, such as weaning, handling relative to transportation, and vaccination, that can modulate growth through the production of stress-related hormones (i.e., cortisol,...

  20. Fine sediment as environmental stressor affecting freshwater mussel behavior and ecosystem services.

    PubMed

    Lummer, Eva-Maria; Auerswald, Karl; Geist, Juergen

    2016-11-15

    Fine sediment pollution is considered a major stressor for aquatic ecosystems and their biodiversity. In particular, fine sediments have been suggested to play a crucial role in the declines of freshwater mussels which are considered keystone fauna of streams and rivers. Whereas the effects of deposited fine sediments on recruitment failure are well known, effects of suspended fine sediments on adult mussel behavior are less studied. Therefore the aim of this study was to investigate the effects of fine sediment exposure on freshwater mussel behavior and on mussel-dependent ecosystem services. Unio pictorum mussels were used to test three behavioral endpoints: Hall activity, transition frequency and relative water clearance rate. Mussels were exposed to fine sediments of different particle size classes (<45μm, 45-63μm, 63-125μm) and different concentration (0-10gL(-1)) of the smallest particle size class. Hall sensor technology and turbidity measurements were used to detect mussel behavior in presence of suspended sediments. Results revealed that mussels improve clearance of suspended particles out of the water column by 35%, independent of particle size class and concentration. Transition frequency was determined an unsuitable behavioral endpoint for non-soluble substances. Contrary to previous studies, we could demonstrate that fine sediments do not interfere with filtration by mussels and that mussels have a great influence on water purification, providing a valuable ecosystem service. PMID:27422724

  1. Behavioral factors affecting exposure potential for household cleaning products.

    PubMed

    Kovacs, D C; Small, M J; Davidson, C I; Fischhoff, B

    1997-01-01

    Behavioral experiments were performed on 342 subjects to determine whether behavior, which could affect the level of personal exposure, is exhibited in response to odors and labels which are commonly used for household chemicals. Potential for exposure was assessed by having subjects perform cleaning tasks presented as a product preference test, and noting the amount of cleaning product used, the time taken to complete the cleaning task, the product preference, and the exhibition of avoidance behavior. Product odor was found to affect product preference in the study with the pleasant odored product being preferred to the neutral and unpleasant products. Product odor was also found to influence the amount of product used; less of the odored products was used compared to the neutral product. The experiment also found that very few of the subjects in the study read the product labels, precluding analysis of the effect of such labels on product use. A postexperiment questionnaire on household cleaning product purchasing and use was administered to participants. The results indicate that significant gender differences exist. Women in the sample reported more frequent purchase and use of cleaning products resulting in an estimated potential exposure 40% greater than for the men in the sample. This finding is somewhat countered by the fact that women more frequently reported exposure avoidance behavior, such as using gloves. Additional significant gender differences were found in the stated importance of product qualities, such as odor and environmental quality. This study suggests the need for further research, in a more realistic use setting, on the impact of public education, labels, and product odor on preference, use, and exposure for different types of consumer products. PMID:9306234

  2. Production of EPA and DHA in aquatic ecosystems and their transfer to the land.

    PubMed

    Gladyshev, Michail I; Sushchik, Nadezhda N; Makhutova, Olesia N

    2013-12-01

    Most omnivorous animals, including humans, have to some degree relied on physiologically important polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from food. Only some taxa of microalgae, rather than higher plants can synthesize de novo high amounts of EPA and DHA. Once synthesized by microalgae, PUFA are transferred through trophic chain to organisms of higher levels. Thus, aquatic ecosystems play the unique role in the Biosphere as the principal source of EPA and DHA for most omnivorous animals, including inhabitants of terrestrial ecosystems. PUFA are transferred from aquatic to terrestrial ecosystems through riparian predators, drift of carrion and seaweeds, emergence of amphibiotic insects, and water birds. The essential PUFA are transferred through trophic chains with about twice higher efficiency than bulk carbon. Thereby, PUFA are accumulated, rather than diluted in biomass of organisms of higher trophic levels, e.g., in fish. Mankind is faced with a severe deficiency of EPA and DHA in diet. Although additional sources of PUFA supply for humans, such as aquaculture, biotechnology of microorganisms and transgenic terrestrial oil-seed producing plants are developed, natural fish production of aquatic ecosystems will remain one of the main sources of EPA and DHA for humans. Aquatic ecosystems have to be protected from anthropogenic impacts, such as eutrophication, pollution and warming, which reduce PUFA production.

  3. Use of Remote Sensing Products in a Terrestrial Ecosystems Verified Full Carbon Account: Experiences from Russia

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; McCallum, Ian; Santoro, Maurizio; Schmullius, Christine

    2011-01-01

    The paper considers the specifics, strengths and weaknesses of available remote sensing products within major steps and modules of a verified terrestrial ecosystems full carbon account (FCA) of Russia’s land. The methodology used is based on system integration of all available information sources and major methods of carbon accounting using IIASA’s landscape-ecosystem approach for overall designing of the account. A multi-sensor remote sensing concept is a corner stone of the methodology being substantially used for (1) georeferencing and parametrization of land cover and its change, (2) assessment of important biophysical and ecological parameters of ecosystems and landscapes, and (3) assessment of the impacts of environmental conditions on ecosystem productivity and disturbance regimes. System integration and mutual constraints of remote sensing and ground information allow for substantially decreasing uncertainty of the FCA. In the Russian case-study, the net ecosystem carbon balance of Russia for an individual year (2009) is estimated with uncertainty at 25-30% (CI 0.9), that presumably should satisfy current requirements to the FCA at the national (continental) scale.

  4. Production of EPA and DHA in aquatic ecosystems and their transfer to the land.

    PubMed

    Gladyshev, Michail I; Sushchik, Nadezhda N; Makhutova, Olesia N

    2013-12-01

    Most omnivorous animals, including humans, have to some degree relied on physiologically important polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from food. Only some taxa of microalgae, rather than higher plants can synthesize de novo high amounts of EPA and DHA. Once synthesized by microalgae, PUFA are transferred through trophic chain to organisms of higher levels. Thus, aquatic ecosystems play the unique role in the Biosphere as the principal source of EPA and DHA for most omnivorous animals, including inhabitants of terrestrial ecosystems. PUFA are transferred from aquatic to terrestrial ecosystems through riparian predators, drift of carrion and seaweeds, emergence of amphibiotic insects, and water birds. The essential PUFA are transferred through trophic chains with about twice higher efficiency than bulk carbon. Thereby, PUFA are accumulated, rather than diluted in biomass of organisms of higher trophic levels, e.g., in fish. Mankind is faced with a severe deficiency of EPA and DHA in diet. Although additional sources of PUFA supply for humans, such as aquaculture, biotechnology of microorganisms and transgenic terrestrial oil-seed producing plants are developed, natural fish production of aquatic ecosystems will remain one of the main sources of EPA and DHA for humans. Aquatic ecosystems have to be protected from anthropogenic impacts, such as eutrophication, pollution and warming, which reduce PUFA production. PMID:23500063

  5. Methane production and consumption in grassland and boreal ecosystems

    NASA Technical Reports Server (NTRS)

    Schimel, David S.; Burke, Ingrid C.; Johnston, Carol; Pastor, John

    1994-01-01

    The objectives of the this project were to develop a mechanistic understanding of methane production and oxidation suitable for incorporation into spatially explicit models for spatial extrapolation. Field studies were undertaken in Minnesota, Canada, and Colorado to explore the process controls over the two microbial mediated methane transformations in a range of environments. Field measurements were done in conjunction with ongoing studies in Canada (the Canadian Northern Wetlands Projects: NOWES) and in Colorado (The Shortgrass Steppe Long Term Ecological Research Project: LTER). One of the central hypotheses of the proposal was that methane production should be substrate limited, as well as being controlled by physical variables influencing microbial activity (temperature, oxidation status, and pH). Laboratory studies of peats from Canada and Minnesota (Northern and Southern Boreal) were conducted with amendments of a methanogenic substrate at multiple temperatures and at multiple pHs (the latter by titrating samples). The studies showed control by substrate, pH, and temperature in order in anaerobic samples. Field and laboratory manipulations of natural plant litter, rather than an acetogenic substrate, showed similarly large effects. The studies concluded that substrate is an important control over methanogenesis, that substrate availability in the field is closely coupled to the chemistry of the dominant vegetation influencing its decomposition rate, that most methane is produced from recent plant litter, and that landscape changes in pH are an important control, highly correlated with vegetation.

  6. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Hall, Edward K.

    2012-01-01

    As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet.

  7. Influence of spring and autumn phenological transitions on forest ecosystem productivity.

    PubMed

    Richardson, Andrew D; Black, T Andy; Ciais, Philippe; Delbart, Nicolas; Friedl, Mark A; Gobron, Nadine; Hollinger, David Y; Kutsch, Werner L; Longdoz, Bernard; Luyssaert, Sebastiaan; Migliavacca, Mirco; Montagnani, Leonardo; Munger, J William; Moors, Eddy; Piao, Shilong; Rebmann, Corinna; Reichstein, Markus; Saigusa, Nobuko; Tomelleri, Enrico; Vargas, Rodrigo; Varlagin, Andrej

    2010-10-12

    We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an 'extra' day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.

  8. Regional Scale Prioritisation for Key Ecosystem Services, Renewable Energy Production and Urban Development

    PubMed Central

    Casalegno, Stefano; Bennie, Jonathan J.; Inger, Richard; Gaston, Kevin J.

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services

  9. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    PubMed

    Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.

  10. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    PubMed

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content.

  11. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    PubMed

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. PMID:24604779

  12. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    PubMed

    Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services

  13. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest.

    PubMed

    Orwig, David A; Barker Plotkin, Audrey A; Davidson, Eric A; Lux, Heidi; Savage, Kathleen E; Ellison, Aaron M

    2013-01-01

    Loss of foundation tree species rapidly alters ecological processes in forested ecosystems. Tsuga canadensis, an hypothesized foundation species of eastern North American forests, is declining throughout much of its range due to infestation by the nonnative insect Adelges tsugae and by removal through pre-emptive salvage logging. In replicate 0.81-ha plots, T. canadensis was cut and removed, or killed in place by girdling to simulate adelgid damage. Control plots included undisturbed hemlock and mid-successional hardwood stands that represent expected forest composition in 50-100 years. Vegetation richness, understory vegetation cover, soil carbon flux, and nitrogen cycling were measured for two years prior to, and five years following, application of experimental treatments. Litterfall and coarse woody debris (CWD), including snags, stumps, and fallen logs and branches, have been measured since treatments were applied. Overstory basal area was reduced 60%-70% in girdled and logged plots. Mean cover and richness did not change in hardwood or hemlock control plots but increased rapidly in girdled and logged plots. Following logging, litterfall immediately decreased then slowly increased, whereas in girdled plots, there was a short pulse of hemlock litterfall as trees died. CWD volume remained relatively constant throughout but was 3-4× higher in logged plots. Logging and girdling resulted in small, short-term changes in ecosystem dynamics due to rapid regrowth of vegetation but in general, interannual variability exceeded differences among treatments. Soil carbon flux in girdled plots showed the strongest response: 35% lower than controls after three years and slowly increasing thereafter. Ammonium availability increased immediately after logging and two years after girdling, due to increased light and soil temperatures and nutrient pulses from leaf-fall and reduced uptake following tree death. The results from this study illuminate ecological processes underlying

  14. Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems

    PubMed Central

    Boreux, Virginie; Kushalappa, Cheppudira G.; Vaast, Philippe; Ghazoul, Jaboury

    2013-01-01

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables. PMID:23671073

  15. Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems.

    PubMed

    Boreux, Virginie; Kushalappa, Cheppudira G; Vaast, Philippe; Ghazoul, Jaboury

    2013-05-21

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables.

  16. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  17. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production

    PubMed Central

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  18. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role.

  19. Impacts of extreme hydro-meteorological conditions on ecosystem functioning and productivity patterns across Australia

    NASA Astrophysics Data System (ADS)

    Huete, Alfredo; Ma, Xuanlong; Xie, Zunyi; Restrepo-Coupe, Natalia; Ponce-Campos, Guillermo

    2016-04-01

    As Earth's climate continues to change, the frequency and intensity of warm droughts, extreme precipitation patterns, and heat waves will alter in potentially different ways, ecosystem structure and functioning with major impacts on carbon and water balance, and food security. The extreme hydro-meteorological conditions that are presently impacting Australia approach those anticipated with future climate change and thus provide unique opportunities to study ecological sensitivity and functional responses and cross-biome productivity changes using contemporary, in-situ and satellite observational datasets. Here, we combined satellite vegetation index products from MODIS and AVHRR, total water storage (TWS) from the GRACE twin satellites, precipitation data and in-situ tower flux measurements to characterise ecosystem sensitivity, and analyse climate change impacts on ecosystem productivity and resilience. Recent advances in eddy covariance tower flux measurements and spatially contiguous remote sensing data provide innovative and promising capabilities to extend ecosystem functioning and productivity studies from local to regional and continental scales. In general, Australia exhibited ecosystem-level shifts in water demands with water availability across wet and dry years, and over all biomes analysed (arid grasslands to humid forests). In the drier years, higher ecosystem water use efficiencies (WUEe) enabled plants to maintain higher levels of productivity than would otherwise be expected for the lower amounts of rainfall and available water. Further, there were unique, functional class-specific coping strategies to drought and water availability. With prolonged warm drought conditions, biomes became increasingly water-limited and WUEe continued to increase until reaching a 'dry edge' threshold, a cross biome maximum WUEe, that cannot be sustained with further reductions in water availability and could potentially break down ecosystem resilience and induce

  20. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems

    USGS Publications Warehouse

    Feller, Ilka C.; Lovelock, C.E.; McKee, K.L.

    2007-01-01

    Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL. ?? 2007 Springer Science+Business Media, LLC.

  1. Macroalgal blooms alter community structure and primary productivity in marine ecosystems.

    PubMed

    Lyons, Devin A; Arvanitidis, Christos; Blight, Andrew J; Chatzinikolaou, Eva; Guy-Haim, Tamar; Kotta, Jonne; Orav-Kotta, Helen; Queirós, Ana M; Rilov, Gil; Somerfield, Paul J; Crowe, Tasman P

    2014-09-01

    Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and

  2. Modeling the impacts of warming on the long-term trends in ecosystem productivity in arctic regions of North America

    NASA Astrophysics Data System (ADS)

    Mekonnen, Zelalem; Grant, Robert

    2014-05-01

    Rises in average air temperatures for the Arctic region in particular have been twice as rapid as the global average during the last century. Despite a general warming in most arctic regions, there is large spatial and temporal variation in this warming that affects the productivity of different ecosystems. In this study, we investigated long-term (1979 - 2010) spatial and temporal trends of air temperature change in northern higher latitudes of North America using climate data from the North American Regional Reanalysis (NARR) with 3-hourly time step at spatial resolution of 0.25 degrees. The NARR climate data were used to drive a comprehensive mathematical ecosystem model ecosys which simulated land-atmosphere energy and carbon exchange. Trend analysis of temperatures in different regions of the arctic shows a contrasting pattern along latitudinal and longitudinal gradients. The highest warming trend was observed in the northeast arctic with a trend of +0.72 0C decade-1, demonstrating amplified warming in the Arctic in the recent decades. Gross primary productivity (GPP), net primary productivity (NPP) and leaf area index (LAI) increased in most parts of the northern ecosystems supporting the hypothesis that higher latitudes and cooler regions tend to have greater gains in carbon attributed to warming over the last three decades. However, negative feedback was also observed in parts of Alaska. In annual scale net carbon uptake was increasing by spatial average of 0.22 gCm-2yr-1. Spatial average active layer depth (ALD) has shown an increase in most part of the region, with an average of 2.3cm decade-1. Further warming could increase the deepening of the ALD that could expose the huge volume of carbon beneath the permafrost and accelerate the rate of carbon losses.

  3. Effects of productivity on biodiversity in forest ecosystems across the United States and China.

    PubMed

    Liang, Jingjing; Watson, James V; Zhou, Mo; Lei, Xiangdong

    2016-04-01

    In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem-wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground-sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump-shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity-biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts. PMID:26954431

  4. Response to droughts and heat waves of the productivity of natural and agricultural ecosystems in Europe within ISI-MIP2 historical simulations

    NASA Astrophysics Data System (ADS)

    François, Louis; Henrot, Alexandra-Jane; Dury, Marie; Jacquemin, Ingrid; Munhoven, Guy; Friend, Andrew; Rademacher, Tim T.; Hacket Pain, Andrew J.; Hickler, Thomas; Tian, Hanqin; Morfopoulos, Catherine; Ostberg, Sebastian; Chang, Jinfeng; Rafique, Rashid; Nishina, Kazuya

    2016-04-01

    According to the projections of climate models, extreme events such as droughts and heat waves are expected to become more frequent and more severe in the future. Such events are known to severely impact the productivity of both natural and agricultural ecosystems, and hence to affect ecosystem services such as crop yield and ecosystem carbon sequestration potential. Dynamic vegetation models are conventional tools to evaluate the productivity and carbon sequestration of ecosystems and their response to climate change. However, how far are these models able to correctly represent the sensitivity of ecosystems to droughts and heat waves? How do the responses of natural and agricultural ecosystems compare to each other, in terms of drought-induced changes in productivity and carbon sequestration? In this contribution, we use ISI-MIP2 model historical simulations from the biome sector to tentatively answer these questions. Nine dynamic vegetation models have participated in the biome sector intercomparison of ISI-MIP2: CARAIB, DLEM, HYBRID, JULES, LPJ-GUESS, LPJml, ORCHIDEE, VEGAS and VISIT. We focus the analysis on well-marked droughts or heat waves that occured in Europe after 1970, such as the 1976, 2003 and 2010 events. For most recent studied events, the model results are compared to the response observed at several eddy covariance sites in Europe, and, at a larger scale, to the changes in crop productivities reported in national statistics or to the drought impacts on gross primary productivity derived from satellite data (Terra MODIS instrument). The sensitivity of the models to the climatological dataset used in the simulations, as well as to the inclusion or not of anthropogenic land use, is also analysed within the studied events. Indeed, the ISI-MIP simulations have been run with four different historical climatic forcings, as well as for several land use/land cover configurations (natural vegetation, fixed land use and variable land use).

  5. Food web pathway determines how selenium affects aquatic ecosystems: a San Francisco Bay case study.

    PubMed

    Stewart, A Robin; Luoma, Samuel N; Schlekat, Christian E; Doblin, Martina A; Hieb, Kathryn A

    2004-09-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d(-1), respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se >15 microg g(-1) dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts. PMID:15461158

  6. Food web pathway determines how selenium affects aquatic ecosystems: A San francisco Bay case study

    USGS Publications Warehouse

    Stewart, A.R.; Luoma, S.N.; Schlekat, C.E.; Doblin, M.A.; Hieb, K.A.

    2004-01-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean Zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d-1, respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se > 15 ??g g-1 dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of Zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts.

  7. Oceanographic and behavioural processes affecting invertebrate larval dispersal and supply in the western Iberia upwelling ecosystem

    NASA Astrophysics Data System (ADS)

    Queiroga, Henrique; Cruz, Teresa; dos Santos, Antonina; Dubert, Jesus; González-Gordillo, Juan Ignácio; Paula, José; Peliz, Álvaro; Santos, A. Miguel P.

    2007-08-01

    The present review addresses recent findings made in the western Iberia ecosystem on the behavioural and physical interactions that regulate dispersal, supply to coastal habitats and settlement of invertebrate larvae. These studies used the barnacle Chthamalus spp. and the crab Carcinus maenas as model organisms. The observations made on the Iberian shelf showed extensive diel vertical migrations along the water column by representatives of both groups that have never been reported before. The interaction of the diel vertical migration with the two-layer flow structure of upwelling/downwelling circulation suggests a mechanism that may help to retain larvae in shelf waters during upwelling conditions. Measurements of daily supply of C. maenas megalopae to estuaries separated by 500 km disclosed a semilunar pattern, with highest supply around highest amplitude tides, indicating that supply of megalopae to estuaries is accomplished by selective tidal stream transport. Relaxation of equatorward winds also played a role in supply, by enhancing translocation of megalopae to the nearshore. Concerning Chthamalus larvae, the observations on daily settlement made at rocky shores also separated by 500 km showed unclear patterns between locations and years. The relationship of settlement with water temperature, tidal range and upwelling indices indicated that supply of barnacle cyprids may be controlled by multiple mechanisms, viz. upwelling/downwelling circulation, internal tidal bores and sea breezes.

  8. Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining.

    PubMed

    Zizek, Suzana; Horvat, Milena; Gibicar, Darija; Fajon, Vesna; Toman, Mihael J

    2007-05-15

    The presence of mercury in the river Idrijca (Slovenia) is mainly due to 500 years of mercury mining in this region. In order to understand the cycling of mercury in the Idrijca ecosystem it is crucial to investigate the role of biota. This study is part of an ongoing investigation of mercury biogeochemistry in the river Idrijca, focusing on the accumulation and speciation of mercury in the lower levels of the food chain, namely filamentous algae, periphyton and macroinvertebrates. Mercury analysis and speciation in the biota and in water were performed during the spring, summer and autumn seasons at four locations on the river, representing different degrees of mercury contamination. Total (THg) and methyl mercury (MeHg) were measured. The results showed that the highest THg concentrations in biota correlate well with THg levels in sediments and water. The level of MeHg is spatially and seasonally variable, showing higher values at the most contaminated sites during the summer and autumn periods. The percentage of Hg as MeHg increases with the trophic level from water (0.1-0.8%), algae (0.5-1.3%), periphyton (1.6-8.8%) to macroinvertebrates (0.1-100%), which indicates active transformation, accumulation and magnification of mercury in the benthic organism of this heavily contaminated torrential river.

  9. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity

    NASA Astrophysics Data System (ADS)

    Tian, Dashuan; Wang, Hong; Sun, Jian; Niu, Shuli

    2016-02-01

    The continually increasing nitrogen (N) deposition is expected to increase ecosystem aboveground net primary production (ANPP) until it exceeds plant N demand, causing a nonlinear response and N saturation for ANPP. However, the nonlinear response of ANPP to N addition gradient and the N saturation threshold have not been comprehensively quantified yet for terrestrial ecosystems. In this study, we compiled a global dataset of 44 experimental studies with at least three levels of N treatment. Nitrogen response efficiency (NRE, ANPP response per unit N addition) and the difference in NRE between N levels (ΔNRE) were quantified to test the nonlinearity in ANPP response. We found a universal response pattern of N saturation for ANPP with N addition gradient across all the studies and in different ecosystems. An averaged N saturation threshold for ANPP nonlinearity was found at the N addition rates of 5-6 g m-2 yr-1. The extent to which ANPP approaches N saturation varied with ecosystem type, N addition rate and environmental factors. ANPP in grasslands had lower NRE than those in forests and wetlands. Plant NRE decreased with reduced soil C:N ratio, and was the highest at intermediate levels of rainfall and temperature. These findings suggest that ANPP in grassland or the ecosystems with low soil C:N ratio (or low and high rainfall or temperature) is easier to be saturated with N enrichment. Overall, these results indicate that the beneficial effect of N deposition on plant productivity likely diminishes with continuous N enrichment when N loading surpasses the N saturation threshold for ANPP nonlinearity.

  10. Managing wastewater effluent to enhance aquatic receiving ecosystem productivity: a coastal lagoon in Western Australia.

    PubMed

    Machado, Daniel A; Imberger, Jörg

    2012-05-30

    Large amounts of waste are generated in urban centers that if properly managed could promote ecological services. In order to promote nutrient cycling and productivity without endangering aquatic ecosystems, management of wastewater treatment and effluent discharges to receiving waters must be assessed on a case-by-case basis. We applied this premise to examine a municipal wastewater treated effluent discharge in a shallow oligotrophic coastal lagoon in Western Australia. Three-dimensional hydrodynamic-ecological modeling (ELCOM-CAEDYM) was used to assess the reaction of ecosystem for effluent quality. Two scenarios were evaluated for the summer 2000-2001 period, the actual or "current" (conventional secondary treatment) and an "alternative" (involving substitution of biological nutrient removal by advanced treatment). The residence time of the simulated numerical domain averaged 8.4 ± 1.3 days. For the current scenario the model successfully estimated phytoplankton biomass, as chlorophyll-a concentration (Chl-a), that is within field-measured ranges and previously recorded levels. The model was able to reproduce nitrogen as the main limiting nutrient for primary production in the coastal ecosystem. Simulated surface Chl-a means were 0.26 (range 0.19-0.38) μg Chl-a/L for the current scenario and 0.37 (range 0.19-0.67) μg Chl-a/L for the alternative one. Comparison of the alternative scenario with field-measured Chl-a levels suggests moderate primary production increase (16-42%), within local historical variability. These results, suggest that such a scenario could be used, as part of a comprehensive wastewater management optimization strategy, to foster receiving ecosystem's productivity and related ecological services maintaining its oligotrophic state. PMID:22322127

  11. Reconstruction of the Dynamics of Mammoth Tundra-Steppe Ecosystem Productivity

    NASA Astrophysics Data System (ADS)

    Zimov, S. A.; Chapin, F. S.

    2001-12-01

    During periods of glaciation, the mammoth tundra-steppe (MTS) ecosystem was the largest biome.The productivity of this ecosystem is under discussion. During the Pleistocene, a thick layer of frozen loess accumulated on the lowlands of northern Siberia. As loess deposited on the surface, the bottom of the soil profile was incorporated into permafrost. Present-day frozen loess soils of Siberia are cryo-preserved soils of the MTS. These soils have little humus but contain large quantities of grass roots and live Pleistocene microorganisms. As the soil melts, they start to respire actively. Analysis of vertical distribution of respiration in different types of modern soil and permafrost showed that respiration potential of cryo-preserved soil is similar to respiration of low soil horizons. On the basis of the correlation of photosynthesis to respiration, we calculated productivity of the MTS ecosystem and reconstructed its dynamics. Dynamics of MTS productivity was evaluated through the dynamics of the relative quantities of herbivorous animals. We analyzed the distribution of about 600 14C dates of mammoths, bison, and rhinoceroses. An estimate of the absolute density of mammoths in the north of Siberia was calculated on the basis of data collected on the density of skeletons buried in the permafrost. Our investigations showed that vegetation productivity and density of herbivorous animals in the MTS ecosystem varied within a wide range depending on climate. Dynamics of these parameters correlate with data of temperature and atmospheric CH4 obtained from Greenland cores. During periods of climate warming the quantity of mammoths in the north of Siberia was comparable to the quantity of elephants in present-day undisturbed African savanna.

  12. Modeled Climate and Disturbance Impacts to Carbon Sequestration of Recent Interior Boreal Alaska Ecosystem Productivity Declines

    NASA Astrophysics Data System (ADS)

    Neigh, C. S.; Carvalhais, N.; Collatz, G. J.; Tucker, C. J.

    2010-12-01

    Terrestrial Higher Northern Latitude Boreal ecosystems over the past half century have and are expected to incur substantial future climate warming altering long-term biophysical processes that mediate carbon sink status. Boreal ecosystems are one of the primary terrestrial pools with high organic and mineral soil carbon concentrations due to reduced decomposition from extended periods below freezing. Direct impacts of changing local to regional climate have altered Interior Alaska disturbance regimes shifting patterns of net primary production (NPP), soil heterotrophic respiration (Rh), net ecosystem production (NEP = NPP - Rh) and net biome production (NBP = NEP - De) which includes disturbance events (De). We investigated ecosystem dynamics with a satellite remote sensing driven model accounting for fine-scale heterogeneous events observed from multi temporal-spectral index vectors derived from Landsat. Our intent was to elucidate local to regional processes which have resulted in negative trends observed from the NOAA series of Advanced Very High Resolution Radiometers (AVHRR) over the past decade. The Carnegie-Ames-Stanford approach (CASA) model was run with changing fractional burned area to simulate bi-monthly patterns of net plant carbon fixation, biomass and nutrient allocation, litterfall, soil nitrogen mineralization, combustion emissions, and microbial CO2 production. Carbon reallocation was based on fire disturbances identified with remote sensing data (Landsat, IKONOS, and aerial photography) and disturbance perimeter maps from land management agencies. Warming coupled with insect and fire disturbance emissions reduced interior Boreal forest recalcitrant carbon pools for which losses greatly exceed the North Slope Tundra sink. Our multi spatial-temporal approach confirms substantial forested NPP declines in Landsat and AVHRR while distinguishing abiotic and biophysical disturbance frequency impacts upon NBP.

  13. Role of bacterioplankton as producers in two high-productivity marine ecosystems

    SciTech Connect

    Krempin, D.W.

    1986-01-01

    This dissertation addresses the quantitative role of bacterioplankton as producers of particulate biomass in two marine planktonic environments. Some of the assumptions involved in using the incorporation of /sup 3/H-thymidine into cold trichloroacetic acid insoluble material to estimate bacterioplankton production may be improved, or eliminated, with use of /sup 3/H-thymidine or /sup 3/P-orthophosphate to label cells, followed by enzymatic hydrolysis with DNAse to measure newly synthesized DNA. Large increases in the rates of primary production and secondary production were observed during seasonal upwelling events examined for the Organization of Persistent Upwelling Structures (OPUS) study. While chlorophyll a concentration also increased bacterioplankton biomass remained relatively constant. Secondary production was roughly 10% of primary production. During the Antarctic Marine Ecosystem Research at the Ice Edge Zone (AMERIEZ) study, chlorophyll a, which varied by 2 orders of magnitude, and bacterioplankton biomass, which changed by less than 1 order of magnitude, were greatest near the ice edge, where maxima in the rates of primary production and secondary production also were observed. The covariability of microbial standing stocks and rate processes in different zones of an upwelling and an ice edge ecosystem was used to support the concepts of ecological succession, zonation and trophic coupling of phytoplankton and bacterioplankton assemblages in the OPUS and AMERIEZ studies.

  14. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  15. Change in the Beaufort Sea ecosystem: Diverging trends in body condition and/or production in five marine vertebrate species

    NASA Astrophysics Data System (ADS)

    Harwood, L. A.; Smith, T. G.; George, J. C.; Sandstrom, S. J.; Walkusz, W.; Divoky, G. J.

    2015-08-01

    Studies of the body condition of five marine vertebrate predators in the Beaufort Sea, conducted independently during the past 2-4 decades, suggest each has been affected by biophysical changes in the marine ecosystem. We summarize a temporal trend of increasing body condition in two species (bowhead whale subadults, Arctic char), in both cases influenced by the extent and persistence of annual sea ice. Three other species (ringed seal, beluga, black guillemot chicks), consumers with a dietary preference for Arctic cod, experienced declines in condition, growth and/or production during the same time period. The proximate causes of these observed changes remain unknown, but may reflect an upward trend in secondary productivity, and a concurrent downward trend in the availability of forage fishes, such as the preferred Arctic cod. To further our understanding of these apparent ecosystem shifts, we urge the use of multiple marine vertebrate species in the design of biophysical sampling studies to identify causes of these changes. Continued long-term, standardized monitoring of vertebrate body condition should be paired with concurrent direct (stomach contents) or indirect (isotopes, fatty acids) monitoring of diet, detailed study of movements and seasonal ranges to establish and refine baselines, and identification of critical habitats of the marine vertebrates being monitored. This would be coordinated with biophysical and oceanographic sampling, at spatial and temporal scales, and geographic locations, that are relevant to the home range, critical habitats and prey of the vertebrate indicator species showing changes in condition and related parameters.

  16. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    PubMed

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. PMID:27065416

  17. Sensitivity of Spruce/Moss Boreal Forest Net Ecosystem Productivity to Seasonal Anomalies in Weather

    NASA Technical Reports Server (NTRS)

    Frolking, Steve

    1997-01-01

    Abstract. A process-oriented, daily time step model of a spruce/moss boreal ecosystem simulated 1994 and 1995 productivity for a Boreal Ecosystem-Atmosphere Study site near Thompson, Manitoba. Simulated black spruce net primary productivity (NPP) was 139 g C m(exp -2) in 1994 and 112 in 1995; feathermoss NPP was 13.0 g C m(exp -2) in 1994 and 9.7 in 1995; decomposition was 126 g C m(exp -2) in 1994 and 130 in 1995; net ecosystem productivity (NEP) was an uptake of 26.3 g C m(exp -2)in 1994 and 2.5 in 1995. A very dry period for the first half of the 1995 summer was the major cause of that year's lower productivity. Sensitivity simulations explored the impact of 2-month long warmer, cooler, wetter, and drier spells on ecosystem productivity. Warmer summers decreased spruce NPP, moss NPP, and NEP; cooler summers had the opposite effect. Earlier snowmelt (due to either warmer spring temperatures or reduced winter precipitation) increased moss and spruce NPP; later snowmelt had the opposite effect. The largest effect on decomposition was a 5% reduction due to a drier summer. One-month droughts (April through October) were also imposed on 1975 base year weather. Early summer droughts reduced moss annual NPP by -30-40%; summer droughts reduced spruce annual NPP by 10%; late summer droughts increased moss NPP by about 20% due to reduced respiration; May to September monthly droughts reduced heterotrophic respiration by about 10%. Variability in NEP was up to roughly +/- 35%. Finally, 1975 growing season precipitation was redistributed into frequent, small rainstorms and infrequent, large rainstorms. These changes had no effect on spruce NPP. Frequent rainstorms increased decomposition by a few percent, moss NPP by 50%, and NEP by 20%. Infrequent rainstorms decreased decomposition by 5%, moss NPP by 50% and NEP by 15%. The impact of anomalous weather patterns on productivity of this ecosystem depended on their timing during the year. Multiyear data sets are necessary to

  18. Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities.

    PubMed

    Kerkhoff, Andrew J; Enquist, Brian J

    2006-04-01

    A principal challenge in ecology is to integrate physiological function (e.g. photosynthesis) across a collection of individuals (e.g. plants of different species) to understand the functioning of the entire ensemble (e.g. primary productivity). The control that organism size exerts over physiological and ecological function suggests that allometry could be a powerful tool for scaling ecological processes across levels of organization. Here we use individual plant allometries to predict how nutrient content and productivity scale with total plant biomass (phytomass) in whole plant communities. As predicted by our model, net primary productivity as well as whole community nitrogen and phosphorus content all scale allometrically with phytomass across diverse plant communities, from tropical forest to arctic tundra. Importantly, productivity data deviate quantitatively from the theoretically derived prediction, and nutrient productivity (production per unit nutrient) of terrestrial plant communities decreases systematically with increasing total phytomass. These results are consistent with the existence of pronounced competitive size hierarchies. The previously undocumented generality of these 'ecosystem allometries' and their basis in the structure and function of individual plants will likely provide a useful quantitative framework for research linking plant traits to ecosystem processes.

  19. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses

    PubMed Central

    Meysman, Filip J. R.; Bruers, Stijn

    2010-01-01

    The idea that entropy production puts a constraint on ecosystem functioning is quite popular in ecological thermodynamics. Yet, until now, such claims have received little quantitative verification. Here, we examine three ‘entropy production’ hypotheses that have been forwarded in the past. The first states that increased entropy production serves as a fingerprint of living systems. The other two hypotheses invoke stronger constraints. The state selection hypothesis states that when a system can attain multiple steady states, the stable state will show the highest entropy production rate. The gradient response principle requires that when the thermodynamic gradient increases, the system's new stable state should always be accompanied by a higher entropy production rate. We test these three hypotheses by applying them to a set of conventional food web models. Each time, we calculate the entropy production rate associated with the stable state of the ecosystem. This analysis shows that the first hypothesis holds for all the food webs tested: the living state shows always an increased entropy production over the abiotic state. In contrast, the state selection and gradient response hypotheses break down when the food web incorporates more than one trophic level, indicating that they are not generally valid. PMID:20368259

  20. Application of a Lower Food Web Ecosystem Productivity Model to Investigate Population Dynamics of Invasive Species in Lake Michigan

    EPA Science Inventory

    A Lake Michigan Ecosystem Model (LM-Eco) that includes a detailed description of trophic levels and their interactions was developed for Lake Michigan. The LM-Eco model constitutes a first step toward a comprehensive Lake Michigan ecosystem productivity model to investigate ecosy...

  1. Mechanistic models as a transferable framework for projecting effects of habitat change on production and delivery of ecosystem services

    EPA Science Inventory

    Drawing a link between habitat change and the production and delivery of ecosystem services is a priority in coastal estuarine ecosystems. Mechanistic modeling tools are highly functional for exploring this link because they allow for the synthesis of multiple ecological and beh...

  2. Point Estimate Transfers in Ecosystem Services Research: Applying Principles from Economics to Improve the Transfer of Ecological Production Estimates

    EPA Science Inventory

    There is increasing demand to describe and account for the benefits that humans derive from ecosystem functions in decision-making. Comprehensive descriptions of these benefits, referred to as ecosystem services (ES), and their production can be limited because there is limited ...

  3. Quantifying the effect of trend, fluctuation, and extreme event of climate change on ecosystem productivity.

    PubMed

    Liu, Yupeng; Yu, Deyong; Su, Yun; Hao, Ruifang

    2014-12-01

    Climate change comprises three fractions of trend, fluctuation, and extreme event. Assessing the effect of climate change on terrestrial ecosystem requires an understanding of the action mechanism of these fractions, respectively. This study examined 11 years of remotely sensed-derived net primary productivity (NPP) to identify the impacts of the trend and fluctuation of climate change as well as extremely low temperatures caused by a freezing disaster on ecosystem productivity in Hunan province, China. The partial least squares regression model was used to evaluate the contributions of temperature, precipitation, and photosynthetically active radiation (PAR) to NPP variation. A climatic signal decomposition and contribution assessment model was proposed to decompose climate factors into trend and fluctuation components. Then, we quantitatively evaluated the contributions of each component of climatic factors to NPP variation. The results indicated that the total contribution of the temperature, precipitation, and PAR to NPP variation from 2001 to 2011 in Hunan province is 85 %, and individual contributions of the temperature, precipitation, and PAR to NPP variation are 44 % (including 34 % trend contribution and 10 % fluctuation contribution), 5 % (including 4 % trend contribution and 1 % fluctuation contribution), and 36 % (including 30 % trend contribution and 6 % fluctuation contribution), respectively. The contributions of temperature fluctuation-driven NPP were higher in the north and lower in the south, and the contributions of precipitation trend-driven NPP and PAR fluctuation-driven NPP are higher in the west and lower in the east. As an instance of occasionally triggered disturbance in 2008, extremely low temperatures and a freezing disaster produced an abrupt decrease of NPP in forest and grass ecosystems. These results prove that the climatic trend change brought about great impacts on ecosystem productivity and that climatic fluctuations and

  4. Monotoring of mangrove ecosystem in relation with exploration and production activities

    SciTech Connect

    Alamsyah, C.; Dwistiadi, D.

    1996-11-01

    From Indonesia`s initial 13 million hectares of mangrove forests, presently only 2.6 million hectares remains which must be certainly protected. Mangrove swamps are of considerable ecological importance not only because of their use as spawning and feeding grounds for a many variety of fish and shrimps but also of economical importance and last but not least as coastal protection. In such a sensitive ecosystem, i.e. in the mangrove swamp area of Mahakam Delta in East Kalimantan, Indonesia, TOTAL Indonesie, an affiliate of the French oil company {open_quotes}TOTAL{close_quotes} and one of the production sharing contractors of PERTAMINA, the Indonesian owned state oil company, has undertaken its E&P operations since 1974. Realizing the sensitivity of the mangrove area, TOTAL Indonesie has undertaken continuous monitoring of the environment as part of its Environmental Management System. This monitoring is very important not only to measure the impact to the mangrove ecosystem in particular due to TOTAL Indonesie activities but also as a feed back for the environmental management. Physicochemical and biological aspects of the environment are monitored and various measurements are taken covering: (1) Hydrology and hydrodynamics of the water streams i.e. the water quality, productivity and flow characteristic of the region (2) Sedimentation and biodegradation (3) The influence of accidental and chronic pollution mangrove ecosystem (3) Sensitivity of the mangroves. The above monitoring has led to the conclusion that after more than 20 years of operation, there has significant adverse impact to the mangrove ecosystem by the exploration and production activities of Indonesie.

  5. Processes Affecting Carbon Fluxes of Grassland Ecosystems Under Elevated CO{sub 2}

    SciTech Connect

    Owensby, C.E.; Ham, J.M.; Rice, C.W.; Knapp, A.K.

    1998-03-14

    Final report of a project which exposed native tallgrass prairie to twice-ambient atmospheric CO{sub 2}. Improved water use efficiency increased biomass production and increased soil organic matter. Twice ambient CO{sub 2} decreased canopy evapotranspiration by 22%, but, maintained an increased net carbon sequestration.

  6. Spatial and Temporal Trends in terrestrial Ecosystems Net primary Production: A Model-Data Comparison

    NASA Astrophysics Data System (ADS)

    Rafique, R.; Asrar, G.; Zhao, F.; Zeng, N.

    2015-12-01

    The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. The global NPP, highly variable over space and time, cannot be directly observed; however, satellite based observations of Normalized Difference Vegetation Index (NDVI) are used as a proxy to understand and monitor the NPP dynamics. In this study, we used a combination of most recent NDVI dataset and modeled NPP (from TRENDY project) for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that 67% and 80% of the global land showed positive NDVI and NPP values, respectively, for this period. The global spatial trends of NPP and NDVI were consistent, and in general agreement; however, this consistency was more prominent regionally in Western Europe, Eurasia, Sahel region of Africa, India, and China. Generally, on temporal scale, both global NPP and NDVI showed a corresponding pattern of increase (decrease) for the duration of this study except, for few years (e.g. 1990 and 1995-98). Northern hemisphere showed higher NDVI and NPP increasing trends over time compared to Southern hemisphere. Overall, the results of this study suggest that NDVI was able to capture the broader pattern of vegetation production as estimated by the ecosystem models. This pattern was stronger in temperate and boreal regions compared to tropical and extra tropical regions.

  7. Drought effects on soil carbon dioxide production in two ecosystems in Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    van Straaten, Oliver

    2010-05-01

    Drought response on soil CO2 production dynamics were examined in two tropical ecosystems in central Sulawesi, Indonesia. Large-scale throughfall displacement roofs were built in a cacao (Theobroma cacao) / Gliricidia sepium agroforestry plantation (560 m.a.s.l.) and in a sub-montane tropical rainforest (1050 m.a.s.l.) to simulate drought conditions. At each site, ecosystem drought responses from three roof plots were compared to three undisturbed control plots. Soil CO2 production was measured spatially at the soil surface and vertically within the soil profile to 2.5 m depth every two weeks. 1. The cacao / Gliricidia ecosystem exhibited a mild drought response. Here, soil CO2 production decreased by 13% in comparison to the control plots during the 13 month induced drought. The mild drought response is attributed to two reasons. First, soil CO2 efflux exhibited an inverse parabolic relationship with soil moisture (R2 = 0.32): soil CO2 efflux peaked at intermediate moisture conditions, but was low when soil conditions became dry (in the induced drought plots), and when the soil became water saturated (in the control plots). This means that respiration differences between control and roof plots may have been masked when soil moisture conditions were saturated in the control and concurrently dry in roof plots. Secondly, the shallow rooted cacao understory grown next to the deeper rooted Gliricidia overstory created a favourable set of site conditions that enabled the ecosystem to mitigate serious drought stress. The experiment had a CO2 neutral effect overall: emissions were initially reduced during the induced drought period but rebounded and surpassed the control during the five month rewetting phase, thus compensating for earlier declines. 2. In contrast, the sub-montane tropical rainforest experienced a severe decrease in soil CO2 production. Here, soil CO2 efflux decreased by an average of 39% in comparison to the control during the 24 month induced drought

  8. Carbon cycling and net ecosystem production at an early stage of secondary succession in an abandoned coppice forest.

    PubMed

    Ohtsuka, Toshiyuki; Shizu, Yoko; Nishiwaki, Ai; Yashiro, Yuichiro; Koizumi, Hiroshi

    2010-07-01

    Secondary mixed forests are one of the dominant forest cover types in human-dominated temperate regions. However, our understanding of how secondary succession affects carbon cycling and carbon sequestration in these ecosystems is limited. We studied carbon cycling and net ecosystem production (NEP) over 4 years (2004-2008) in a cool-temperate deciduous forest at an early stage of secondary succession (18 years after clear-cutting). Net primary production of the 18-year-old forest in this study was 5.2 tC ha(-1 )year(-1), including below-ground coarse roots; this was partitioned into 2.5 tC ha(-1 )year(-1) biomass increment, 1.6 tC ha(-1 )year(-1) foliage litter, and 1.0 tC ha(-1 )year(-1) other woody detritus. The total amount of annual soil surface CO(2) efflux was 6.8 tC ha(-1 )year(-1), which included root respiration (1.9 tC ha(-1 )year(-1)) and heterotrophic respiration (RH) from soils (4.9 tC ha(-1 )year(-1)). The 18-year forest at this study site exhibited a great increase in biomass pool as a result of considerable total tree growth and low mortality of tree stems. In contrast, the soil organic matter (SOM) pool decreased markedly (-1.6 tC ha(-1 )year(-1)), although further study of below-ground detritus production and RH of SOM decomposition is needed. This young 18-year forest was a weak carbon sink (0.9 tC ha(-1 )year(-1)) at this stage of secondary succession. The NEP of this 18-year forest is likely to increase gradually because biomass increases with tree growth and with the improvement of the SOM pool through increasing litter and dead wood production with stand development.

  9. Carbon cycling and net ecosystem production at an early stage of secondary succession in an abandoned coppice forest.

    PubMed

    Ohtsuka, Toshiyuki; Shizu, Yoko; Nishiwaki, Ai; Yashiro, Yuichiro; Koizumi, Hiroshi

    2010-07-01

    Secondary mixed forests are one of the dominant forest cover types in human-dominated temperate regions. However, our understanding of how secondary succession affects carbon cycling and carbon sequestration in these ecosystems is limited. We studied carbon cycling and net ecosystem production (NEP) over 4 years (2004-2008) in a cool-temperate deciduous forest at an early stage of secondary succession (18 years after clear-cutting). Net primary production of the 18-year-old forest in this study was 5.2 tC ha(-1 )year(-1), including below-ground coarse roots; this was partitioned into 2.5 tC ha(-1 )year(-1) biomass increment, 1.6 tC ha(-1 )year(-1) foliage litter, and 1.0 tC ha(-1 )year(-1) other woody detritus. The total amount of annual soil surface CO(2) efflux was 6.8 tC ha(-1 )year(-1), which included root respiration (1.9 tC ha(-1 )year(-1)) and heterotrophic respiration (RH) from soils (4.9 tC ha(-1 )year(-1)). The 18-year forest at this study site exhibited a great increase in biomass pool as a result of considerable total tree growth and low mortality of tree stems. In contrast, the soil organic matter (SOM) pool decreased markedly (-1.6 tC ha(-1 )year(-1)), although further study of below-ground detritus production and RH of SOM decomposition is needed. This young 18-year forest was a weak carbon sink (0.9 tC ha(-1 )year(-1)) at this stage of secondary succession. The NEP of this 18-year forest is likely to increase gradually because biomass increases with tree growth and with the improvement of the SOM pool through increasing litter and dead wood production with stand development. PMID:20033468

  10. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation▿

    PubMed Central

    Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R.

    2008-01-01

    Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection. PMID:17993562

  11. Nuclear DNA content affects the productivity of conifer forests by altering hydraulic architecture

    NASA Astrophysics Data System (ADS)

    Alday, Josu; Resco de Dios, Víctor

    2014-05-01

    Predictions of future global climate rely on feedbacks between terrestrial vegetation and the global carbon cycle, but the exact mechanisms underlying this relationship are still being discussed. One of the key knowledge gaps lies on the scaling of cellular processes to the ecosystem level. Here we examine whether an under-explored plant trait, inter-specific variation in the bulk amount of DNA in unreplicated somatic cells (2C DNA content), can explain inter-specific variation in the maximum productivity of conifer forests. We expected 2C DNA content to be negatively related to conifer productivity because: 1) it is positively correlated with cell volume (which, in turn, potentially affects structural features such as leaf mass area, a strong predictor of photosynthetic capacity); 2) it is positively correlated with stomatal size (with larger stomata leading to lower overall stomatal conductance and, by extension, lower CO2 uptake); and 3) larger genome sizes may reduce P availability in RNA (which has been hypothesized to slow growth). We present the results of regression and independent contrasts in different monospecific forests encompassing a 52º latitudinal gradient, each being dominated by 1 of 35 different conifer species. Contrary to expectations, we observed a positive correlation between genome size and maximum Gross Primary Productivity (R2 = 0.47) and also between genome size maximum tree height (R2 = 0.27). This correlation was apparently driven by the effects of genome size on stem hydraulics, since 2C DNA was positively correlated with wood density (R2 = 0.40) and also with resistance to cavitation (P50, R2 = 0.28). That is, increased genome sizes have a positive effect on the productivity of conifer forests by affecting the vascular tissues to increase their capacity for water transport. Our results shed a new light on the evolution of the vascular system of conifer forests and how they affect ecosystem productivity, and indicate the potential to

  12. Project AProWa: a national view on managing trade-offs between agricultural production and conservation of aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Dietzel, Anne; Rahn, Eric; Stamm, Christian

    2014-05-01

    Swiss agriculture is legally committed to fulfill several, partially conflicting goals such as agricultural production on the one hand and the conservation of natural resources on the other hand. In the context of the research project AProWa ("Agricultural Production and Water"), the relationships between the production aspect and the conservation of aquatic ecosystems is analyzed with a holistic approach. Agricultural production and the protection of water resources have high potential for conflicts: Farmers use ground and surface water to irrigate their fields. On the other hand, drainage systems enable the production on otherwise unfavorably wet soils. These in turn often affect ground water recharge and divert precipitation directly into surface waters, which changes their hydrological regime. Typically, drainage systems also elevate the input of nutrients and pesticides into the water bodies. In general, applied fertilizers, plant protection products, veterinary drugs and phytohormones of cultivated plants are introduced into the ground and surface waters through different processes such as drift, leaching, runoff, preferential flow or erosion. They influence the nutrient cycles and ecological health of aquatic systems. The nutrient and pesticide loss processes themselves can be altered by tillage operations and other agricultural practices. Furthermore, the competition for space can lead to additional conflicts between agriculture and the protection of aquatic ecosystems. For example, channelized or otherwise morphologically changed rivers do not have a natural discharge pattern and are often not suitable for the local flora and fauna; but naturally meandering rivers need space that cannot be used for agriculture. In a highly industrialized and densely populated country like Switzerland, all these potential conflicts are of importance. Although it is typically seen as a water-rich country, local and seasonal overexploitation of rivers through water extraction

  13. African dust carries microbes across the ocean: are they affecting human and ecosystem health?

    USGS Publications Warehouse

    Kellogg, Christina A.; Griffin, Dale W.

    2003-01-01

    Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion (eutrophication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans-ported annually at relatively low altitudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in collaboration with the NASA/Goddard Spaceflight Center, is conducting a study to identify microbes--bacteria, fungi, viruses--transported across the Atlantic in African soil dust. Each year, millions of tons of desert dust blow off the west African coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Florida receives about 50 percent, while the rest may range as far north as Maine or as far west as Colorado. The dust storms can be tracked by satellite and take about one week to cross the Atlantic.

  14. Review: phytoplankton primary production in the world's estuarine-coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Cloern, J. E.; Foster, S. Q.; Kleckner, A. E.

    2013-11-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land - estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m-2 yr-1, but the range is large: from -105 (net pelagic production in the Scheldt Estuary) to 1890 g C m-2 yr-1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year-to-year (but we only found 8 APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148 reported values of APPP, 958 come from sites

  15. Net ecosystem production in a Little Ice Age moraine: the role of plant functional traits

    NASA Astrophysics Data System (ADS)

    Varolo, E.; Zanotelli, D.; Tagliavini, M.; Zerbe, S.; Montagnani, L.

    2015-07-01

    Current glacier retreat allows vast mountain ranges available for vegetation establishment and growth. Little is known about the effective carbon (C) budget of these new ecosystems and how the presence of different vegetation communities, characterized by their specific physiology and life forms influences C fluxes. In this study, using a comparative analysis of the C fluxes of two contrasting vegetation types, we intend to evaluate if the different physiologies of the main species have an effect on Ecosystem Respiration (Reco), Gross Primary Production (GPP), annual cumulated Net Ecosystem Exchange (NEE), and long-term carbon accumulation in soil. The NEE of two plant communities present on a Little Ice Age moraine in the Matsch glacier forefield (Alps, Italy) was measured over two growing seasons. They are a typical C3 grassland, dominated by Festuca halleri All. and a community dominated by CAM rosettes Sempervivum montanum L. on rocky soils. Using transparent and opaque chambers, we extrapolated the ecophysiological responses to the main environmental drivers and performed the partition of NEE into Reco and GPP. Soil samples were collected from the same site to measure long-term C accumulation in the ecosystem. The two communities showed contrasting GPP but similar Reco patterns and as a result significantly different in NEE. The grassland acted mainly as a carbon sink with a total cumulated value of -46.4 ± 35.5 g C m-2 NEE while the plots dominated by the CAM rosettes acted as a source with 31.9 ± 22.4 g C m-2. In spite of the NEE being different in the two plant communities, soil analysis did not reveal significant differences in carbon accumulation. Grasslands showed 1.76 ± 0.12 kg C m-2, while CAM rosettes showed 2.06 ± 0.23 kg C m-2. This study demonstrates that carbon dynamics of two vegetation communities can be distinct even though the growing environment is similar. The physiological traits of the dominant species determine large differences in

  16. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  17. Relationship Between Ecosystem Productivity and Photosynthetically Active Radiation for Northern Peatlands

    NASA Technical Reports Server (NTRS)

    Frolking, S. E.; Bubier, J. L.; Moore, T. R.; Ball, T.; Bellisario, L. M.; Bhardwaj, A.; Carroll, P.; Crill, P. M.; Lafleur, P. M.; McCaughey, J. H.; Roulet, N. T.; Suyker, A. E.; Verma, S. B.; Waddington, J. M.; Whiting, G. J.

    1998-01-01

    We analyzed the relationship between net ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density or PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe, NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data sets by peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = alpha PPFD P(sub max)/(alpha PPFD + P(sub max) + R) better described the NEE-PPFD relationship than did a linear fit (NEE = beta PPFD + R). Poor and rich fens generally had similar NEE-PPFD relationships, while bogs had lower respiration rates (R = -2.0 micro mol m(exp -2) s(exp -1) for bogs and -2.7 micro mol m(exp -2) s(exp -1)) for fens) and lower NEE at moderate and high light levels (P(sub max)= 5.2 micro mol m(exp -2) s(exp -1) for bogs and 10.8 micro mol m(exp -2) s(exp -1) for fens). As a single class, northern peatlands had much smaller ecosystem respiration (R = -2.4 micro mol m(exp -2) s(exp -1)) and NEE rates (alpha = 0.020 and P(sub max)= 9.2 micro mol m(exp -2) s(exp -1)) than the upland ecosystems (closed canopy forest, grassland, and cropland). Despite this low productivity, northern peatland soil carbon pools are generally 5-50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils.

  18. On Extrapolating Nighttime Ecosystem Respiration To Daytime Conditions and Implications for Gross Primary Productivity Estimation

    NASA Astrophysics Data System (ADS)

    Galvagno, M.; Wohlfahrt, G.

    2015-12-01

    Gross primary productivity (GPP) is a key term in the carbon cycle science. Being difficult or even impossible, at the ecosystem scale to directly quantify, various methods are used to estimate GPP, such as: eddy covariance CO2 flux partitioning, carbonyl sulfide exchange, sun-induced fluorescence, isotopes of CO2, and the photochemical reflectance index. The primary source of global GPP estimates is the FLUXNET project within which GPP is estimated in a consistent fashion through eddy covariance flux partitioning at more than 700 sites globally. Since the net ecosystem CO2 exchange (NEE) reflects net uptake during daytime, when photosynthesis exceeds respiration, and net emission during nighttime due to ecosystem respiration (RECO), the eddy covariance flux partitioning is based on the idea that daytime RECO may be inferred from nighttime NEE direct measurements, and consequently GPP can be obtained by subtracting RECO from NEE. However, the main assumption underlying this approach, which is that a temperature-dependent model of RECO parametrised based on nighttime temperatures may be extrapolated to daytime temperatures, has not been conclusively tested. This study investigates whether nighttime measurements of RECO provide unbiased estimates of daytime RECO. To this end we used ecosystem respiration chambers in a mountain grassland which, by keeping the vegetation in the dark during the measurement, allowed us to directly quantify RECO during both day and night. These data, pooled by day, night or day and night, were then used to parametrise temperature dependent models of RECO. Results show that day and night RECO do not follow the same relationship with temperature and that RECO inferred by using the nighttime parametrisation overestimates the true respiration. Potential reasons of this observed bias, like the overestimation of daytime mitochondrial respiration and implications for the quantification of GPP are discussed.

  19. Importance of Past Human and Natural Disturbance in Present-Day Net Ecosystem Productivity

    NASA Astrophysics Data System (ADS)

    Felzer, B. S.; Phelps, P.

    2014-12-01

    Gridded datasets of Net Ecosystem Exchange derived from eddy covariance and remote sensing measurements provide a means of validating Net Ecosystem Productivity (NEP, opposite of NEE) from terrestrial ecosystem models. While most forested regions in the U.S. are observed to be moderate to strong carbon sinks, models not including human or natural disturbances will tend to be more carbon neutral, which is expected of mature ecosystems. We have developed the Terrestrial Ecosystems Model Hydro version (TEM-Hydro) to include both human and natural disturbances to compare against gridded NEP datasets. Human disturbances are based on the Hurtt et al. (2006) land use transition dataset and include transient agricultural (crops and pasture) conversion and abandonment and timber harvest. We include natural disturbances of storms and fires based on stochastic return intervals. Tropical storms and hurricane return intervals are based on Zheng et al. (2009) and occur only along the U.S. Atlantic and Gulf coasts. Fire return intervals are based on LANDFIRE Rapid Assessment Vegetation Models and vegetation types from the Hurtt dataset. We are running three experiments with TEM-Hydro from 1700-2011 for the conterminous U.S.: potential vegetation (POT), human disturbance only (agriculture and timber harvest, LULC), and human plus natural disturbance (agriculture, timber harvest, storms, and fire, DISTURB). The goal is to compare our NEP values to those obtained by FLUXNET-MTE (Jung et al. 2009) from 1982-2008 and ECMOD (Xiao et al., 2008) from 2000-2006 for different plant functional types (PFTs) within the conterminous U.S. Preliminary results show that, for the entire U.S., potential vegetation yields an NEP of 10.8 gCm-2yr-1 vs 128.1 gCm-2yr-1 for LULC and 89.8 gCm-2yr-1 for DISTURB from 1982-2008. The effect of regrowth following agricultural and timber harvest disturbance therefore contributes substantially to the present-day carbon sink, while stochastic storms and fires

  20. Water use efficiency of net primary production in global terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Xia, Lei; Wang, Fei; Mu, Xingmin; Jin, Kai; Sun, Wenyi; Gao, Peng; Zhao, Guangju

    2015-07-01

    The carbon and water cycles of terrestrial ecosystems, which are strongly coupled via water use efficiency (WUE), are influenced by global climate change. To explore the relationship between the carbon and water cycles and predict the effect of climate change on terrestrial ecosystems, it is necessary to study the WUE in global terrestrial ecosystems. In this study, the 13-year WUE (i.e., net primary production (NPP)/evapotranspiration (ET)) of global terrestrial ecosystems was calculated based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) NPP (MOD17A3) and ET (MOD16A3) products from 2000 to 2012. The results indicate that the annual average WUE decreased but not significantly, and the 13-year mean value was 868.88 mg C m -2 mm -1. The variation trend of WUE value for each pixel differed greatly across the terrestrial ecosystems. A significant variation ( P<0.05) occurred in about 18.50% of the land surface. WUE was spatially distributed from 0 to 2541 mg C m -2 mm -1, and 58.78% of the WUE values were concentrated in the interval of 600-1200 mg C m -2 mm -1. The WUE increased from north to south in Africa and Oceania and from east to west in Europe and South America. Both latitudinal and longitudinal gradients existed in Asia and North America. The following trends in the WUE of different continents and Köppen-Geiger climates were observed: Europe (1129.71 mg C m -2 mm -1)> Oceania (1084.46 mg C m -2 mm -1)> Africa (893.51 mg C m -2 mm -1)> South America (893.07 mg C m -2 mm -1)> North America (870.79 mg C m -2 mm -1)> Asia (738.98 mg C m -2 mm -1) and warm temperate climates (1094 mg C m -2 mm -1)> snowy climates (862 mg C m -2 mm -1)> arid climates (785 mg C m -2 mm -1)> equatorial climates (732 mg C m -2 mm -1)> polar climates (435 mg C m -2 mm -1). Based on the WUE value and the present or future rainfall, the maximum carbon that fixed in one region may be theoretically calculated. Also, under the background of global climatic change, WUE may

  1. Enhanced ergonomics approaches for product design: a user experience ecosystem perspective and case studies.

    PubMed

    Xu, Wei

    2014-01-01

    This paper first discusses the major inefficiencies faced in current human factors and ergonomics (HFE) approaches: (1) delivering an optimal end-to-end user experience (UX) to users of a solution across its solution lifecycle stages; (2) strategically influencing the product business and technology capability roadmaps from a UX perspective and (3) proactively identifying new market opportunities and influencing the platform architecture capabilities on which the UX of end products relies. In response to these challenges, three case studies are presented to demonstrate how enhanced ergonomics design approaches have effectively addressed the challenges faced in current HFE approaches. Then, the enhanced ergonomics design approaches are conceptualised by a user-experience ecosystem (UXE) framework, from a UX ecosystem perspective. Finally, evidence supporting the UXE, the advantage and the formalised process for executing UXE and methodological considerations are discussed. Practitioner Summary: This paper presents enhanced ergonomics approaches to product design via three case studies to effectively address current HFE challenges by leveraging a systematic end-to-end UX approach, UX roadmaps and emerging UX associated with prioritised user needs and usages. Thus, HFE professionals can be more strategic, creative and influential.

  2. Enhanced ergonomics approaches for product design: a user experience ecosystem perspective and case studies.

    PubMed

    Xu, Wei

    2014-01-01

    This paper first discusses the major inefficiencies faced in current human factors and ergonomics (HFE) approaches: (1) delivering an optimal end-to-end user experience (UX) to users of a solution across its solution lifecycle stages; (2) strategically influencing the product business and technology capability roadmaps from a UX perspective and (3) proactively identifying new market opportunities and influencing the platform architecture capabilities on which the UX of end products relies. In response to these challenges, three case studies are presented to demonstrate how enhanced ergonomics design approaches have effectively addressed the challenges faced in current HFE approaches. Then, the enhanced ergonomics design approaches are conceptualised by a user-experience ecosystem (UXE) framework, from a UX ecosystem perspective. Finally, evidence supporting the UXE, the advantage and the formalised process for executing UXE and methodological considerations are discussed. Practitioner Summary: This paper presents enhanced ergonomics approaches to product design via three case studies to effectively address current HFE challenges by leveraging a systematic end-to-end UX approach, UX roadmaps and emerging UX associated with prioritised user needs and usages. Thus, HFE professionals can be more strategic, creative and influential. PMID:24405167

  3. Regional Application of an Ecosystem Production Model for Studies of Biogeochemistry in the...

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Klooster, S.; Brooks, V.; Peterson, David L. (Technical Monitor)

    1997-01-01

    The degree to which primary production, soil carbon, and trace gas fluxes in tropical forests of the Amazon are limited by moisture availability and other environmental factors was examined using an ecosystem modeling application for the country of Brazil. A regional geographic information system (GIS) serves as the data source of climate drivers, satellite images, land cover, and soil properties for input to the NASA Ames-CASA (Carnegie-Ames-Stanford Approach) model over a 8-km grid resolution. Simulation results supports the hypothesis that net primary production (NPP) is limited by cloud interception of solar radiation over the humid northwestern portion of the region. Peak annual rates for NPP of nearly 1.4 kg C m-2yr -1are localized in the seasonally dry eastern Amazon in areas that we assume are primarily deep-rooted evergreen forest cover. Regional effects of forest conversion on NPP and soil carbon content are indicated in the model results, especially in seasonally dry areas. Comparison of model flux predictions along selected eco-climatic transects reveal moisture, soil, and land use controls on gradients of ecosystem production and soil trace gas emissions (CO2, N2O, and NO). These results are used to formulate a series of research hypotheses for testing in the next phase of regional modeling, which includes recalibration of the light-use efficiency term in CASA using field measurements of NPP, and refinements of vegetation index and soil property (texture and potential rooting depth) maps for the region.

  4. Softwares Product Lines, Global Development and Ecosystems: Collaboration in Software Engineering

    NASA Astrophysics Data System (ADS)

    Bosch, Jan; Bosch-Sijtsema, Petra M.

    Effective collaboration in software engineering is very important and yet increasingly complicated by trends that increase complexity of dependencies between software development teams and organizations. These trends include the increasing adoption of software product lines, the globalization of software engineering and the increasing use of and reliance on 3rd party developers in the context of software ecosystems. Based on action research, the paper discusses problems of in effective collaboration and success-factors of five approaches to collaboration in large-scale software engineering.

  5. Model calculation of radiocaesium transfer into food products in semi-natural forest ecosystems in the Czech Republic after a nuclear reactor accident and an estimate of the population dose burden.

    PubMed

    Svadlenková, M; Konecný, J; Smutný, V

    1996-01-01

    Radioactivity of food products from semi-natural forest ecosystems can contribute appreciably to the radiological burden of the human population following a nuclear accident, as found after the Chernobyl disaster in 1986. In the Czech Republic, radiocaesium radioactivity has been measured since 1986 in various components of forest ecosystems, such as soil, mushrooms, bilberries, deer and boar. In this work, the data are employed to predict how a model accident of the Temelín nuclear power plant in southern Bohemia (which is under construction) would affect selected forest ecosystems in its surroundings. The dose commitment to the critical population group is also estimated.

  6. Soil functional zone management: a vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increasing demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has made great gains in production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as Conservation ...

  7. A Screening-Level Approach for Comparing Risks Affecting Aquatic Ecosystem Services over Socio-Environmental Gradients

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.; Conde, D.; Villamizar, S. R.; Reid, B.; Escobar, J.; Rusak, J.; Hoyos, N.; Scordo, F.; Perillo, G. M.; Piccolo, M. C.; Zilio, M.; Velez, M.

    2015-12-01

    Assessing risks to aquatic ecosystems services (ES) is challenging and time-consuming, and effective strategies for prioritizing more detailed assessment efforts are needed. We propose a screening-level risk analysis (SRA) approach that scales ES risk using socioeconomic and environmental indices to capture anthropic and climatic pressures, as well as the capacity for institutional responses to those pressures. The method considers ES within a watershed context, and uses expert input to prioritize key services and the associated pressures that threaten them. The SRA approach focuses on estimating ES risk affect factors, which are the sum of the intensity factors for all hazards or pressures affecting the ES. We estimate the pressure intensity factors in a novel manner, basing them on the nation's (i) human development (proxied by Inequality-adjusted Human Development Index, IHDI), (ii) environmental regulatory and monitoring state (Environmental Performance Index, EPI) and (iii) the current level of water stress in the watershed (baseline water stress, BWS). Anthropic intensity factors for future conditions are derived from the baseline values based on the nation's 10-year trend in IHDI and EPI; ES risks in nations with stronger records of change are rewarded more/penalized less in estimates for good/poor future management scenarios. Future climatic intensity factors are tied to water stress estimates based on two general circulation model (GCM) outcomes. We demonstrate the method for an international array of six sites representing a wide range of socio-environmental settings. The outcomes illustrate novel consequences of the scaling scheme. Risk affect factors may be greater in a highly developed region under intense climatic pressure, or in less well-developed regions due to human factors (e.g., poor environmental records). As a screening-level tool, the SRA approach offers considerable promise for ES risk comparisons among watersheds and regions so that

  8. Phonological overlap affects lexical selection during sentence production.

    PubMed

    Jaeger, T Florian; Furth, Katrina; Hilliard, Caitlin

    2012-09-01

    Theories of lexical production differ in whether they allow phonological processes to affect lexical selection directly. Whereas some accounts, such as interactive activation accounts, predict (weak) early effects of phonological processes during lexical selection via feedback connections, strictly serial architectures do not make this prediction. We present evidence from lexical selection during unscripted sentence production that lexical selection is affected by the phonological form of recently produced words. In a video description experiment, participants described scenes that were compatible with several near-meaning-equivalent verbs. We found that speakers were less likely than expected by chance to select a verb form that would result in phonological onset overlap with the subject of the sentence. Additional evidence from the distribution of disfluencies immediately preceding the verb argues that this effect is due to early effects on lexical selection, rather than later corrective processes, such as self-monitoring. Taken together, these findings support accounts that allow early feedback from phonological processes to word-level nodes, even during lexical selection. PMID:22468803

  9. An Ecosystem Simulation Model for Methane Production and Emission from Wetlands

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Previous experimental studies suggest that methane emission from wetland is influenced by multiple interactive pathways of gas production and transport through soil and sediment layers to the atmosphere. The objective of this study is to evaluate a new simulation model of methane production and emission in wetland soils that was developed initially to help identify key processes that regulate methanogenesis and net flux of CH4 to the air, but which is designed ultimately for regional simulation using remotely sensed inputs for land cover characteristics. The foundation for these computer simulations is based on a well-documented model (CASA) of ecosystem production and carbon cycling in the terrestrial blaspheme. Modifications to represent flooded wetland soils and anaerobic decomposition include three new sub-models for: (1) layered soil temperature and water table depth (WTD) as a function of daily climate drivers, (2) CH4 production within the anoxic soil layer as a function of WTD and CO2 production under poorly drained conditions, and (3) CH4 gaseous transport pathways (molecular diffusion, ebullition, and plant vascular transport) as a function of WTD and ecosystem type. The model was applied and tested using climate and ecological data to characterize tundra wetland sites near Fairbanks, Alaska studied previously by Whalen and Reeburgh. Comparison of model predictions to measurements of soil temperature and thaw depth, water-table depth, and CH4 emissions over a two year period suggest that inter-site differences in soil physical conditions and methane fluxes could be reproduced accurately for selected periods. Day-to-day comparison of predicted emissions to measured CH4 flux rates reveals good agreement during the early part of the thaw season, but the model tends to underestimate production of CH4 during the months of July and August in both test years. Important seasonal effects, including that of falling WTD during these periods, are apparently

  10. Methane Consumption and Production in Desert Ecosystems Experiencing Mesquite Invasion and Control

    NASA Astrophysics Data System (ADS)

    McLain, J. E.; Martens, D. A.

    2003-12-01

    We are studying the influences of vegetation change on soil fluxes of methane (CH4) in semi-arid ecosystems. Soils under the natural grass vegetation are a strong sink of atmospheric CH4 year-round, consuming -35.1 +/- 8.3 μ g CH4 m-2 h-1 during the monsoon summer and -24.3 +/- 11.2 μ g CH4 m-2 h-1 during winter, but consumption falls to near zero in June. The depth of maximum CH4 oxidation varies during the year, corresponding to the presence or absence of surface soil moisture. Invasion of mesquite (Prosopis spp.) significantly (p < 0.001) reduces the monsoon CH4 oxidation (-24.4 +/- 8.3 μ g CH4 m-2 h-1), possibly due to the formation of a moist litter layer impeding CH4 diffusion into the soil surface or from ammonium inhibition from the N-rich mesquite litter. CH4 consumption is equally high in mesquite and grassland during the winter. Historically, ranchers have attempted to control invasion of mesquite onto grazing lands. Our work indicates that mesquite eradication may result in pockets of strong CH4 production (42.3 +/- 17.6 μ g CH4 m-2 h-1) as the mesquite trunk and roots decay. Pool dilution experiments with 13CH4 are being performed to ascertain if CH4 production is from soil methanogens or from termites. This work, when coupled with ecosystem C and N inventories and quantification of net N2O and CO2 respired, will help determine the potential for vegetation management in semi-arid ecosystems to mitigate or force potential climate change.

  11. Seasonal and interannual patterns in primary production, respiration and net ecosystem metabolism in three estuaries in the northeast Gulf of Mexico

    EPA Science Inventory

    Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism par...

  12. Comparing the Net Ecosystem Exchange of Two Cropping Systems for Dairy Feed Production

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. F.; Wagner-Riddle, C.; Brown, S. E.

    2015-12-01

    A three-year study was conducted from 2012 to 2014 to determine the net CO2 fluxes from corn and hay, the two main feed crops used in dairy production. The aim of this study is to better understand the net ecosystem exchange (NEE) in annual and perennial cropping systems used in dairy production to benefit greenhouse gas emission model developments and the life cycle analysis of dairy production. The study was conducted on two 4-ha plots where one plot was a 5-year old hayfield and the other plot was planted in a continuous cycle corn. All plots were continuously monitored using the flux-gradient method deployed with a tunable diode laser trace gas analyzer and sonic anemometers. All plots received dairy manure as fertilizer applied according to common practice. The cumulative NEE for the three years of the study was -873.15 g C m-2 for corn and -409.36 g C m-2 for hay. Differences in respiration between the two cropping systems was found to be the larger factor compared to differences in gross ecosystem production (GEP) that resulted in the contrasting cumulative NEE where cumulative respiration for the three years for hay was 3094.23 g C m-2 as opposed to 2078.11 g C m-2 for corn. Cumulative GEP for the three years was 3503.60 and 2951.31 g C m-2 for hay and corn respectively. Inter-annual and inter-crop variability of the NEE, GEP and respiration will be discussed in relation to biomass production, climatic conditions and crop physiological characteristics.

  13. Ecosystem experiments

    SciTech Connect

    Mooney, H.A.; Medina, E.; Schindler, D.W.; Schulze, E.D.; Walker, B.H.

    1991-01-01

    Large scale, human-induced modifications to terrestrial and hydrological systems have been a major factor in contributing to global change. The objective of this book is to explore the potential of ecosystem experimentation as a tool to understanding and predicting more precisely the consequences of our changing biosphere. The papers in this book are the result of two SCOPE workshops to evaluated understanding of the response of ecosystems to large scale perturbations and to design ecosystem experiments to study the impace of increased atmospheric carbon dioxide concentrations on ecosystem processes. The general topics addressed include the following: how changes in driving variables affect different biotic interactions within ecosystems; the human role in modifying forest structure and the resulting ecosystem processes; the role of ecosystem experiments in the study of controlling factors such as hydrological controls, temperature, and biotic controlles; analysis of ecosystem dynamics as a complex and chaotic system; role of ecosystem experiments in the study of the impact of acid deposition; role of ecosystem experimentation in the study of global change impace on the biosphere and the biospheric feedbacks to global environmental change.

  14. Factors affecting the estimate of primary production from space

    NASA Technical Reports Server (NTRS)

    Balch, W. M.; Byrne, C. F.

    1994-01-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface

  15. Factors affecting the estimate of primary production from space

    NASA Astrophysics Data System (ADS)

    Balch, W. M.; Byrne, C. F.

    1994-04-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge of photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from space. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of ψ, the water column light utilization index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, "balanced carbon/nitrogen assimilation" was calculated assuming the Redfield ratio. It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships, and the carbon/chlorophyll ratio. These predictions were compared with sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface mixed

  16. Assessing the potential for algae and macrophytes to degrade crop protection products in aquatic ecosystems.

    PubMed

    Thomas, Kevin A; Hand, Laurence H

    2011-03-01

    Rates of pesticide degradation in aquatic ecosystems often differ between those observed within laboratory studies and field trials. Under field conditions, a number of additional processes may well have a significant role, yet are excluded from standard laboratory studies, for example, metabolism by aquatic plants, phytoplankton, and periphyton. These constituents of natural aquatic ecosystems have been shown to be capable of metabolizing a range of crop protection products. Here we report the rate of degradation of six crop protection products assessed in parallel in three systems, under reproducible, defined laboratory conditions, designed to compare aquatic sediment systems which exclude macrophytes and algae against those in which macrophytes and/or algae are included. All three systems remained as close as possible to the Organisation for Economic Co-operation and Development (OECD) 308 guidelines, assessing degradation of parent compound in the total system in mass balanced studies using ((14) C) labeled compounds. We observed, in all cases where estimated, significant increases in the rate of degradation in both the algae and macrophyte systems when compared to the standard systems. By assessing total system degradation within closed, mass balanced studies, we have shown that rates of degradation are enhanced in water/sediment systems that include macrophytes and algae. The contribution of these communities should therefore be considered if the aquatic fate of pesticides is to be fully understood. PMID:21298708

  17. Factors Affecting Trophic Control of Community Structure and Ecosystem Functioning in Experimental Mesocosms of Seagrass (Zostera marina L.)

    NASA Astrophysics Data System (ADS)

    Lefcheck, J.; Duffy, J.

    2008-12-01

    Nutrient loading of coastal and estuarine waters threatens seagrass communities by promoting the growth of micro- and macroalgae, which then reduce the availability of light and nutrients. However, populations of invertebrate mesograzers are able to mitigate the negative impact of eutrophication through top-down control. We performed a factorial mesocosm experiment to examine the interactive relationships between light, nutrients, and mesograzer presence in structuring experimental ecosystems of eelgrass (Zostera marina). We found that mesograzer presence strongly reduced epiphytic algal biomass in every case, which remains consistent with previous mesocosm studies. We also observed a synergistic light-by-nutrient interaction that enhanced both epiphyte biomass and mesograzer abundance. The timing of this relationship is suggestive of weaker bottom-up control. Unlike previous studies, we found that light alone rarely affected either epiphyte biomass or mesograzer abundance. We believe that this result may be due to a combination of macroalgal shading and persistent grazing. Further processing of primary and secondary producer biomasses and elemental ratios, as well as the completion of feeding assays to gauge mesograzer feeding rates on different types of algae, will serve to reinforce these conclusions and to better define the relationship between these factors.

  18. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem.

    PubMed

    Grecian, W James; Witt, Matthew J; Attrill, Martin J; Bearhop, Stuart; Becker, Peter H; Egevang, Carsten; Furness, Robert W; Godley, Brendan J; González-Solís, Jacob; Grémillet, David; Kopp, Matthias; Lescroël, Amélie; Matthiopoulos, Jason; Patrick, Samantha C; Peter, Hans-Ulrich; Phillips, Richard A; Stenhouse, Iain J; Votier, Stephen C

    2016-08-01

    Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action. PMID:27531154

  19. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem.

    PubMed

    Grecian, W James; Witt, Matthew J; Attrill, Martin J; Bearhop, Stuart; Becker, Peter H; Egevang, Carsten; Furness, Robert W; Godley, Brendan J; González-Solís, Jacob; Grémillet, David; Kopp, Matthias; Lescroël, Amélie; Matthiopoulos, Jason; Patrick, Samantha C; Peter, Hans-Ulrich; Phillips, Richard A; Stenhouse, Iain J; Votier, Stephen C

    2016-08-01

    Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action.

  20. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem

    PubMed Central

    Attrill, Martin J.; Becker, Peter H.; Egevang, Carsten; Furness, Robert W.; Grémillet, David; Kopp, Matthias; Lescroël, Amélie; Matthiopoulos, Jason; Peter, Hans-Ulrich; Phillips, Richard A.

    2016-01-01

    Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action. PMID:27531154

  1. Methylmercury in Marine Ecosystems: Spatial Patterns and Processes of Production, Bioaccumulation, and Biomagnification

    PubMed Central

    Chen, Celia; Amirbahman, Aria; Fisher, Nicholas; Harding, Gareth; Lamborg, Carl; Nacci, Diane; Taylor, David

    2008-01-01

    The spatial variation of MeHg production, bioaccumulation and biomagnification in marine food webs is poorly characterized but critical to understanding the links between sources and higher trophic levels such as fish that are ultimately vectors of human and wildlife exposure. This paper discusses both large and local scale processes controlling Hg supply, methylation, bioaccumulation and transfer in marine ecosystems. While global estimates of Hg supply suggest important open ocean reservoirs of MeHg, only coastal processes and food webs are known sources of MeHg production, bioaccumulation, and bioadvection. The patterns observed to date suggest that not all sources and biotic receptors are spatially linked and that physical and ecological processes are important in transferring MeHg from source regions to bioaccumulation in marine food webs and from lower to higher trophic levels. PMID:19015919

  2. The Ecohydrological Consequences of Woody Plant Encroachment: How Accessibility to Deep Soil Water Resources Affects Ecosystem Carbon and Water Exchange

    NASA Astrophysics Data System (ADS)

    Scott, R. L.; Huxman, T. E.; Barron-Gafford, G.; Jenerette, D.; Young, J. M.

    2013-12-01

    Woody plant encroachment into grassland systems, a process that has increased rapidly over the last century, has potentially broad ecohydrological consequences by affecting the way ecosystems use water and cycle carbon. This study examines the influence of precipitation- and groundwater-derived water availability by comparing eddy covariance measurements of water vapor and carbon dioxide fluxes over a riparian grassland, shrubland, and woodland, and an upland grassland site in southeastern Arizona USA. Compared to the upland grassland, the riparian sites exhibited greater net carbon uptake (NEP) and higher evapotranspiration (ET) across a longer portion of the year. Among the riparian sites, however, the grassland was less able to take advantage of the stable groundwater supply. Increasing woody plant density facilitated greater water and carbon exchange that became increasingly decoupled from incident precipitation (P). How groundwater accessibility affected NEP was more complex than ET. Respiration (Reco) costs were higher for the riparian grassland so, while it had a similar ET and gross carbon uptake (GEP) to the shrubland, its NEP was substantially less. Also, riparian grassland fluxes were much more variable due to flooding that occurred at the site, which could stimulate or inhibit NEP. Woodland NEP was largest but surprisingly similar to the less mature and dense shrubland even while having much greater GEP. Woodland NEP responded negatively to P, due to the stimulation of Reco likely due to greater amounts of aboveground and soil carbon. With many areas of the world experiencing woody plants encroachment, encroachment into areas where there are additional deep soil water sources, such as in riparian settings or in areas of deep soil moisture recharge, will likely increase carbon sequestration but at the expense of higher water use.

  3. Measures of the Effects of Agricultural Practices on Ecosystem Services

    SciTech Connect

    Dale, Virginia H; Polasky, Stephen

    2007-01-01

    Agriculture produces more than just crops. Agricultural practices have environmental impacts that affect a wide range of ecosystem services, including water quality, pollination, nutrient cycling, soil retention, carbon sequestration, and biodiversity conservation. In turn, ecosystem services affect agricultural productivity. Understanding the contribution of various agricultural practices to the range of ecosystem services would help inform choices about the most beneficial agricultural practices. To accomplish this, however, we must overcome a big challenge in measuring the impact of alternative agricultural practices on ecosystem services and of ecosystem services on agricultural production.

  4. Characterizing isotopic variability of primary production and consumers in Great Plains ecosystems during protracted regional drought

    NASA Astrophysics Data System (ADS)

    Haveles, A. W.; Fox-Dobbs, K.; Talmadge, K. A.; Fetrow, A.; Fox, D. L.

    2012-12-01

    Over the last few years (2010-2012), the Great Plains of the central USA experienced protracted drought conditions, including historically severe drought during Summer, 2011. Drought severity in the region generally decreases with increasing latitude, but episodic drought is a fundamental trait of grassland ecosystems. Documenting above ground energy and nutrient flow with current drought is critical to understanding responses of grassland ecosystems in the region to predicted increased episodicity of rainfall and recurrence of drought due to anthropogenic climate change. Characterization of biogeochemical variability of modern ecosystems at the microhabitat, local landscape, and regional scales is also necessary to interpret biogeochemical records of ancient grasslands based on paleosols and fossil mammals. Here, we characterize three grassland ecosystems that span the drought gradient in the Great Plains (sites in the Texas panhandle, southwest Kansas, and northwest Nebraska). We measured δ13C and δ15N values of plants and consumers to characterize the biogeochemical variability within each ecosystem. Vegetation at each site is a mix of trees, shrubs, herbs, and cool- and warm-growing season grasses (C3 and C4, respectively). Thus, consumers have access to isotopically distinct sources of forage that vary in abundance with microhabitat (e.g., open grassland, shrub thicket, riparian woodland). Observations indicate herbivorous arthropod (grasshoppers and crickets) abundance follows drought severity, with high abundance of many species in Texas, and low abundance of few species in Nebraska. Small mammal (rodents) abundance follows the inverse pattern with 0.8%, 3.2% and 17.2% capture success in Texas, Kansas and Nebraska, respectively. The inverse abundance patterns of consumer groups may result from greater sensitivity of small mammal consumers with high metabolic needs to lower local net primary productivity and forage quality under drought conditions. As a

  5. Does word frequency affect lexical selection in speech production?

    PubMed

    Navarrete, Eduardo; Basagni, Benedetta; Alario, F-Xavier; Costa, Albert

    2006-10-01

    We evaluated whether lexical selection in speech production is affected by word frequency by means of two experiments. In Experiment 1 participants named pictures using utterances with the structure "pronoun + verb + adjective". In Experiment 2 participants had to perform a gender decision task on the same pictures. Access to the noun's grammatical gender is needed in both tasks, and therefore lexical selection (lemma retrieval) is required. However, retrieval of the phonological properties (lexeme retrieval) of the referent noun is not needed to perform the tasks. In both experiments we observed faster latencies for high-frequency pictures than for low-frequency pictures. This frequency effect was stable over four repetitions of the stimuli. Our results suggest that lexical selection (lemma retrieval) is sensitive to word frequency. This interpretation runs against the hypothesis that a word's frequency exerts its effects only at the level at which the phonological properties of words are retrieved.

  6. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    PubMed

    Dickson, Timothy L; Gross, Katherine L

    2015-01-01

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments

  7. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    SciTech Connect

    Dickson, Timothy L.; Gross, Katherine L.

    2015-09-11

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Finally, production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity

  8. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    DOE PAGES

    Dickson, Timothy L.; Gross, Katherine L.

    2015-09-11

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studiesmore » of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Finally, production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of

  9. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    PubMed Central

    Dickson, Timothy L.; Gross, Katherine L.

    2015-01-01

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments

  10. New insights into relationships between active and dormant organisms, phylogenetic diversity and ecosystem productivity.

    PubMed

    Cram, Jacob A

    2015-12-01

    Marine microbes make up a key part of ocean food webs and drive ocean chemistry through a range of metabolic processes. A fundamental question in ecology is whether the diversity of organisms in a community shapes the ecological functions of that community. While there is substantial evidence to support a positive link between diversity and ecological productivity for macro-organisms in terrestrial environments, this relationship has not previously been verified for marine microbial communities. One factor complicating the understanding of this relationship is that many marine microbes are dormant and are easily dispersed by ocean currents, making it difficult to ensure that the organisms found in a given environmental sample accurately reflect processes occurring in that environment. Another complication is that, due to microbes great range of genotypic and phenotypic variability, communities with distantly related species may have greater range of metabolic functions than communities have the same richness and evenness, but in which the species present are more closely related to each other. In this issue of Molecular Ecology, Galand et al. (2015) provide compelling evidence that the most metabolically active communities are those in which the nondormant portion of the microbial community has the highest phylogenetic diversity. They also illustrate that focusing on the active portion of the community allows for detection of temporal patterns in community structure that would not be otherwise evident. The authors' point out that the presence of many dormant organisms that do not contribute to ecosystem functioning is a feature that makes microbial ecosystems fundamentally different from macro-ecosystems and that this difference needs to be accounted for in microbial ecology theory. PMID:26607213

  11. Benthic methylmercury production in lacustrine ecosystems of Nahuel Huapi National Park, Patagonia, Argentina

    USGS Publications Warehouse

    Ribeiro, Guevara S.; Catan, S.P.; Marvin-DiPasquale, M.

    2009-01-01

    Seasonal trends of benthic methylmercury (methyl-Hg) production were examined in both littoral and open water sites of three lakes (Escondido, Moreno, and Morenito) in the North Andean Patagonia region of Argentina. Potentials of methyl-Hg production were measured by amending sediment samples with inorganic 197Hg(II), incubating for either 24 and 32 h at room temperature, and subsequently assaying the radiolabelled organomercury produced. Seasonal variations of benthic methyl-Hg production were studied but no significant correlation was observed. Lake littoral sites exhibited up to two fold higher methyl-Hg production potentials in most cases. Sediment from lakes Moreno and Morenito generally exhibited much lower (up to 10 fold) methyl-Hg production potentials than those from Lake Escondido, possibly due to differences in particulate and dissolved organic matter quantity and quality, which is higher in Lake Escondido and primarily allochthonous, whereas in lakes Moreno and Morenito is primarily autochthonous. This study represents the first to directly examine benthic microbial Hg(II)-methylation in aquatic ecosystems of Patagonia. ?? 2009 Elsevier Ltd. All rights reserved.

  12. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yongguang; Susan Moran, M.; Nearing, Mark A.; Ponce Campos, Guillermo E.; Huete, Alfredo R.; Buda, Anthony R.; Bosch, David D.; Gunter, Stacey A.; Kitchen, Stanley G.; Henry McNab, W.; Morgan, Jack A.; McClaran, Mitchel P.; Montoya, Diane S.; Peters, Debra P. C.; Starks, Patrick J.

    2013-03-01

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary production (ANPP) by combining a greenness index from satellite measurements and climatic records during 2000-2009 from 11 long-term experimental sites in multiple biomes and climates. Results showed that extreme precipitation patterns decreased the sensitivity of ANPP to total annual precipitation (PT) at the regional and decadal scales, leading to decreased rain use efficiency (RUE; by 20% on average) across biomes. Relative decreases in ANPP were greatest for arid grassland (16%) and Mediterranean forest (20%) and less for mesic grassland and temperate forest (3%). The cooccurrence of heavy rainfall events and longer dry intervals caused greater water stress conditions that resulted in reduced vegetation production. A new generalized model was developed using a function of both PT and an index of precipitation extremes and improved predictions of the sensitivity of ANPP to changes in precipitation patterns. Our results suggest that extreme precipitation patterns have substantially negative effects on vegetation production across biomes and are as important as PT. With predictions of more extreme weather events, forecasts of ecosystem production should consider these nonlinear responses to altered extreme precipitation patterns associated with climate change.

  13. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem

    PubMed Central

    Hardman-Mountford, Nick J.; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J. W.; Aiken, Jim

    2013-01-01

    Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches. PMID:24132201

  14. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem.

    PubMed

    Hardman-Mountford, Nick J; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J W; Aiken, Jim

    2013-12-01

    Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches.

  15. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem.

    PubMed

    Hardman-Mountford, Nick J; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J W; Aiken, Jim

    2013-12-01

    Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches. PMID:24132201

  16. Impact of bioenergy production on ecosystem dynamics and services-a case study on U.K. Heathlands.

    PubMed

    Martinez-Hernandez, Elias; Leach, Matthew; Yang, Aidong

    2015-05-01

    For sustainability's sake, the establishment of bioenergy production can no longer overlook the interactions between ecosystem and technological processes, to ensure the preservation of ecosystem functions that provide energy and other goods and services to the human being. In this paper, a bioenergy production system based on heathland biomass is investigated with the aim to explore how a system dynamics approach can help to analyze the impact of bioenergy production on ecosystem dynamics and services and vice versa. The effect of biomass harvesting on the heathland dynamics, ecosystem services such as biomass production and carbon capture, and its capacity to balance nitrogen inputs from atmospheric deposition and nitrogen recycling were analyzed. Harvesting was found to be beneficial for the maintenance of the heathland ecosystem if the biomass cut fraction is higher than 0.2 but lower than 0.6, but this will depend on the specific conditions of nitrogen deposition and nitrogen recycling. With 95% recycling of nitrogen, biomass production was increased by up to 25% for a cut fraction of 0.4, but at the expense of higher nitrogen accumulation and the system being less capable to withstand high atmospheric nitrogen deposition.

  17. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  18. Initial pH of medium affects organic acids production but do not affect phosphate solubilization

    PubMed Central

    Marra, Leandro M.; de Oliveira-Longatti, Silvia M.; Soares, Cláudio R.F.S.; de Lima, José M.; Olivares, Fabio L.; Moreira, Fatima M.S.

    2015-01-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  19. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    PubMed

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  20. Factors affecting production rates of cosmogenic nuclides in extraterrestrial matter

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.

    2015-10-01

    Good production rates are needed for cosmic-ray-produced nuclides to interpret their measurements. Rates depend on many factors, especially the pre-atmospheric object's size, the location of the sample in that object (such as near surface or deep inside), and the object's bulk composition. The bulk composition affects rates, especially in objects with very low and very high iron contents. Extraterrestrial materials with high iron contents usually have higher rates for making nuclides made by reactions with energetic particles and lower rates for the capture of thermal neutrons. In small objects and near the surface of objects, the cascade of secondary neutrons is being developed as primary particles are being removed. Deep in large objects, that secondary cascade is fully developed and the fluxes of primary particles are low. Recent work shows that even the shape of an object in space has a small but measureable effect. Work has been done and continues to be done on better understanding those and other factors. More good sets of measurements in meteorites with known exposure geometries in space are needed. With the use of modern Monte Carlo codes for the production and transport of particles, the nature of these effects have been and is being studied. Work needs to be done to improve the results of these calculations, especially the cross sections for making spallogenic nuclides.

  1. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    NASA Technical Reports Server (NTRS)

    Olson, R. J.; Scurlock, J. M. O.; Turner, R. S.; Jennings, S. V.

    1995-01-01

    Estimating terrestrial net primary production (NPP) using remote-sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Program's (IGBP's) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  2. Phytoplankton blooms on the western shelf of Tasmania: evidence of a highly productive ecosystem

    NASA Astrophysics Data System (ADS)

    Kämpf, J.

    2015-01-01

    Satellite-derived chlorophyll a data using the standard NASA-OC3 (ocean colour) algorithm are strongly biased by coloured dissolved organic matter and suspended sediment of river discharges, which is a particular problem for the western Tasmanian shelf. This work reconstructs phytoplankton blooms in the study region using a quadratic regression between OC3 data and chlorophyll fluorescence based on the fluorescence line height (FLH) data. This regression is derived from satellite data of the nearby Bonney upwelling region, which is devoid of river influences. To this end, analyses of 10 years of MODIS-aqua satellite data reveal the existence of a highly productive ecosystem on the western Tasmanian shelf. The region normally experiences two phytoplankton blooms per annum. The first bloom occurs during late austral summer months as a consequence of upwelling-favourable coastal winds. Hence, the western Tasmanian shelf forms a previously unknown upwelling centre of the regional upwelling system, known as Great South Australian Coastal Upwelling System. The second phytoplankton bloom is a classical spring bloom also developing in the adjacent Tasman Sea. The author postulates that this region forms another important biological hot spot for the regional marine ecosystem.

  3. Monitoring Thermal Status of Ecosystems with MODIS Land-Surface Temperature and Vegetation Index Products

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    2002-01-01

    The global land-surface temperature (LST) and normalized difference vegetation index (NDVI) products retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data in 2001 were used in this study. The yearly peak values of NDVI data at 5km grids were used to define six NDVI peak zones from -0.2 to 1 in steps of 0.2, and the monthly NDVI values at each grid were sorted in decreasing order, resulting in 12 layers of NDVI images for each of the NDVI peak zones. The mean and standard deviation of daytime LSTs and day-night LST differences at the grids corresponding to the first layer of NDVI images characterize the thermal status of terrestrial ecosystems in the NDVI peak zones. For the ecosystems in the 0.8-1 NDVI peak zone, daytime LSTs distribute from 0-35 C and day-night LST differences distribute from -2 to 22 C. The daytime LSTs and day-night LST differences corresponding to the remaining layers of NDVI images show that the growth of vegetation is limited at low and high LSTs. LSTs and NDVI may be used to monitor photosynthetic activity and drought, as shown in their applications to a flood-irrigated grassland in California and an unirrigated grassland in Nevada.

  4. Status of ecosystems in radioactive waste reservoirs of the Mayak Production Association in 2009.

    PubMed

    Pryakhin, Evgeny A; Tryapitsina, Galina A; Deryabina, Larisa V; Atamanyuk, Natalia I; Stukalov, Pavel M; Ivanov, Ivan A; Kostyuchenko, Vladimir A; Akleyev, Alexander V

    2012-07-01

    Liquid radioactive waste from the Mayak Production Association (Chelyabinsk Region, Russia) is contained in industrial reservoirs (R-11, R-10, R-4, R-17, and R-9) that have different levels of radioactive contamination, increased from R-11 to R-17. A study of the ecosystems in these reservoirs was performed in 2009 to determine if there was any association with the level of contamination. No significant change in the status of biota was found in the reservoir with the lowest radionuclide concentrations (R-11) in comparison to other reservoirs in the region with a similar geography that are unaffected by radioactive contamination. In reservoir R-10, changes in the zoobenthos indices were registered. In reservoir R-4, changes in the zoobenthos and zooplankton communities were registered. In reservoir R-17, there was no ichthyofauna, but strong changes in the phytoplankton, zooplankton, and zoobenthos communities were registered. In reservoir R-9, under the conditions of the heaviest radioactive contamination of water ecosystems in the biosphere, there was no ichthyofauna, and phytoplankton and zooplankton consisted of almost a monoculture of cyanobacteriae and rotifers.

  5. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    SciTech Connect

    Olson, R.J.; Turner, R.S.; Scurlock, J.M.O.; Jennings, S.V.

    1995-12-31

    Estimating terrestrial net primary production (NPP) using remote- sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Programme`s (IGBP`s) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  6. Do ecohydrology and community dynamics feed back to banded-ecosystem structure and productivity?

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Ursino, Nadia

    2016-04-01

    Mixed communities including grass, shrubs and trees are often reported to populate self-organized vegetation patterns. Patterns of survey data suggest that species diversity and complementarity strengthen the dynamics of banded environments. Resource scarcity and local facilitation trigger self organization, whereas coexistence of multiple species in vegetated self-organizing patches, implying competition for water and nutrients and favorable reproduction sites, is made possible by differing adaptation strategies. Mixed community spatial self-organization has so far received relatively little attention, compared with local net facilitation of isolated species. We assumed that soil moisture availability is a proxy for the environmental niche of plant species according to Ursino and Callegaro (2016). Our modelling effort was focused on niche differentiation of coexisting species within a tiger bush type ecosystem. By minimal numerical modelling and stability analysis we try to answer a few open scientific questions: Is there an adaptation strategy that increases biodiversity and ecosystem functioning? Does specific adaptation to environmental niches influence the structure of self-organizing vegetation pattern? What specific niche distribution along the environmental gradient gives the highest global productivity?

  7. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.

    PubMed

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.

    2001-08-01

    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  8. The Beddington-De Angelis and the HTII product response functions: Application to polluted ecosystems biodegradation

    NASA Astrophysics Data System (ADS)

    Bulai, Iulia Martina; Venturino, Ezio

    2016-06-01

    In this paper we consider an aquatic ecosystem consisting of bacteria, organic pollutants and dissolved oxygen. By formulating two suitable mathematical models for their interactions, we investigate the sustainability in time of this ecosystem.

  9. Relationships between primary production and crop yields in semi-arid and arid irrigated agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Jaafar, H. H.; Ahmad, F. A.

    2015-04-01

    In semi-arid areas within the MENA region, food security problems are the main problematic imposed. Remote sensing can be a promising too early diagnose food shortages and further prevent the population from famine risks. This study is aimed at examining the possibility of forecasting yield before harvest from remotely sensed MODIS-derived Enhanced Vegetation Index (EVI), Net photosynthesis (net PSN), and Gross Primary Production (GPP) in semi-arid and arid irrigated agro-ecosystems within the conflict affected country of Syria. Relationships between summer yield and remotely sensed indices were derived and analyzed. Simple regression spatially-based models were developed to predict summer crop production. The validation of these models was tested during conflict years. A significant correlation (p<0.05) was found between summer crop yield and EVI, GPP and net PSN. Results indicate the efficiency of remotely sensed-based models in predicting summer yield, mostly for cotton yields and vegetables. Cumulative summer EVI-based model can predict summer crop yield during crisis period, with deviation less than 20% where vegetables are the major yield. This approach prompts to an early assessment of food shortages and lead to a real time management and decision making, especially in periods of crisis such as wars and drought.

  10. Relationship between C:N/C:O Stoichiometry and Ecosystem Services in Managed Production Systems

    PubMed Central

    Ghaley, Bhim B.; Sandhu, Harpinder S.; Porter, John R.

    2015-01-01

    Land use and management intensity can influence provision of ecosystem services (ES). We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat), a combined food and energy system (CFE) and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US$ 1089 ha-1 yr-1) followed by CFE (US$ 800 ha-1 yr-1) and Cwheat (US$ 339 ha-1 yr-1). The combined economic value was highest in the CFE (US$ 3143 ha-1 yr-1) as compared to the Cwheat (US$ 2767 ha-1 yr-1) and beech forest (US$ 2365 ha-1 yr-1). We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management. PMID:25894553

  11. CHARACTERIZATION OF COAL COMBUSTION BY-PRODUCTS FOR THE RE-EVOLUTION OF MERCURY INTO ECOSYSTEMS

    SciTech Connect

    A.M. Schwalb; J.A. Withum; R.M. Statnick

    2002-07-01

    The U.S. Environmental Protection Agency (EPA) and state environmental agencies are suggesting that mercury (Hg) in coal combustion by-products is re-emitted into local ecosystems by additional processing to final products (i.e., wallboard, etc.), by dissolution into groundwater, or by reactions with anaerobic bacteria. This perception may limit the opportunities to use coal combustion by-products in recycle/reuse applications. In this program, CONSOL Energy Inc., Research & Development (CONSOL) is conducting a comprehensive sampling and analytical program to address this concern. If the results of this work demonstrate that re-emissions of Hg from waste disposal and by-product utilization are over-stated, additional regulations regarding coal combustion, waste disposal, and waste material utilization will not be required. This will result in continued low energy cost that is beneficial to the national economy and stability of local economies that are dependent on coal. The main activities for this quarter were: fly ash and FGD slurry samples from four coal-fired utilities were leached and the analysis was completed; the re-volatilization study has begun; the literature review was completed.

  12. Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico

    NASA Astrophysics Data System (ADS)

    Verduzco, Vivian S.; Garatuza-Payán, Jaime; Yépez, Enrico A.; Watts, Christopher J.; Rodríguez, Julio C.; Robles-Morua, Agustin; Vivoni, Enrique R.

    2015-10-01

    Due to their large extent and high primary productivity, tropical dry forests (TDF) are important contributors to atmospheric carbon exchanges in subtropical and tropical regions. In northwest Mexico, a bimodal precipitation regime that includes winter precipitation derived from Pacific storms and summer precipitation from the North American monsoon (NAM) couples water availability with ecosystem processes. We investigated the net ecosystem production of a TDF ecosystem using a 4.5 year record of water and carbon fluxes obtained from the eddy covariance method complemented with remotely sensed data. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer that respiration is mainly due to decomposition of soil organic matter accumulated from the prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production but can be overwhelmed by the strength of the primary productivity during the NAM. Precipitation characteristics during NAM have significant controls on sustaining carbon fixation in the TDF into the fall season. We identified that a threshold of ~350 to 400 mm of monsoon precipitation leads to a switch in the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This monsoonal precipitation threshold is typically exceeded one out of every 2 years. The close coupling of winter and summer periods with respect to carbon fluxes suggests that the annual carbon balance is dependent on precipitation amounts in both seasons in TDF ecosystems.

  13. Production and remineralization in continental shelf ecosystems: A test of the SEEP hypothesis

    SciTech Connect

    Rowe, G.T.

    1986-09-01

    The hypothesis that continental shelf ecosystems export a major fraction of the carbon produced by the phytoplankton during the spring bloom was tested during the Shelf Edge Exchange Processes (SEEP) experiment off the northeast US coast in 1984. This study, along with a reanalysis of traditional concepts, leads to the conclusion that only a small fraction of continental shelf phytodetritus is exported across a distinct shelf-slope hydrographic frontal system. What is not consumed in the spring is utilized on the shelf during the ensuing stratified season. More open ended ecosystems may export production more readily. The total benthic standing stocks in terms of organic carbon (macrofauna, meiofauna, and bacteria) have been estimated in the SEEP area. Their preponderance on the continental shelf was partial evidence that little organic matter escapes to the upper continental slope. Measurements of the metabolism of the biota allowed calculation of turnover times of organic detritius and the total biota. The turnover time of detritus increased as grain size decreased, suggesting that fine-grained deposits contain mostly refractory, nonreactive compounds, especially on the deep slope. Turnover times of the total biota were about the same in the coarse versus fine-grained shelf deposits, but a far larger fraction of the turnover was attributed to the bacteria in the fine sediments than in the coarse. On average, about 25% of the primary production appeared to be utilized by the aerobic benthos on the continental shelf in the SEEP area. The role of anaerobes at depth in the sediments remains uncertain.

  14. Carbon storage, timber production, and biodiversity: comparing ecosystem services with multi-criteria decision analysis.

    PubMed

    Schwenk, W Scott; Donovan, Therese M; Keeton, William S; Nunery, Jared S

    2012-07-01

    Increasingly, land managers seek ways to manage forests for multiple ecosystem services and functions, yet considerable challenges exist in comparing disparate services and balancing trade-offs among them. We applied multi-criteria decision analysis (MCDA) and forest simulation models to simultaneously consider three objectives: (1) storing carbon, (2) producing timber and wood products, and (3) sustaining biodiversity. We used the Forest Vegetation Simulator (FVS) applied to 42 northern hardwood sites to simulate forest development over 100 years and to estimate carbon storage and timber production. We estimated biodiversity implications with occupancy models for 51 terrestrial bird species that were linked to FVS outputs. We simulated four alternative management prescriptions that spanned a range of harvesting intensities and forest structure retention. We found that silvicultural approaches emphasizing less frequent harvesting and greater structural retention could be expected to achieve the greatest net carbon storage but also produce less timber. More intensive prescriptions would enhance biodiversity because positive responses of early successional species exceeded negative responses of late successional species within the heavily forested study area. The combinations of weights assigned to objectives had a large influence on which prescriptions were scored as optimal. Overall, we found that a diversity of silvicultural approaches is likely to be preferable to any single approach, emphasizing the need for landscape-scale management to provide a full range of ecosystem goods and services. Our analytical framework that combined MCDA with forest simulation modeling was a powerful tool in understanding trade-offs among management objectives and how they can be simultaneously accommodated. PMID:22908717

  15. Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems

    USGS Publications Warehouse

    Park, B.B.; Yanai, R.D.; Fahey, T.J.; Bailey, S.W.; Siccama, T.G.; Shanley, J.B.; Cleavitt, N.L.

    2008-01-01

    Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha-1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y-1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha-1 y-1 for hardwood stands and from 0.9 to 2.3 Mg ha-1 y -1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems. ?? 2008 Springer Science+Business Media, LLC.

  16. Modelling Macroalgae Productivity In An Estuary. A Biorremediation To Nutrient Discharges In The Ecosystems.

    NASA Astrophysics Data System (ADS)

    Alvera-Azcárate, A.; Ferreira, J. G.; Nunes, J. P.

    Enhanced nutrient load to estuaries and coastal waters due to anthropogenic activities is damaging aquatic ecosystems, resulting in water pollution and eutrophication prob- lems. It is important to quantify the production of photosynthetic organisms, as they play an important role in controlling nitrogen removal and nitrogen fluxes between the sediments and the water column. In turbid estuaries, such as those on the NE Atlantic coast of Europe, benthic primary producers such as macroalgae may play an important part in carbon fixation and nutrient removal, since pelagic production is often strongly light-limited. Estuarine seaweeds are primarily located in intertidal areas, which are characterised by shallow waters and strong tidal currents. Due to high concentrations of suspended particulate matter in the water column, light is rapidly attenuated, limiting macroal- gae production during part of the tidal cycle. An accurate representation of sediment dynamics is essential for the determination of the light energy available for the algae, which is a key factor in reliable primary production estimates. In tidal flats, the sedi- ment dynamics is made more complex by the formation of tidal pools during low tide, where water quickly becomes clear, allowing more light to penetrate through the water column. In the present work a model is developed to calculate macroalgae production in the intertidal areas of estuaries, considering the factors mentioned above. The model is tested for the Tagus estuary (Portugal), and a Gross Primary Production of 3300 g m-2 y-1 was obtained. That results in a total nitrogen removal of 440 gN m-2 y-1. The results show that the macroalgae community plays an impor- tant role in the nitrogen cycle in estuaries and nutrient export to the open sea, acting as a biorremediation for the increased nutrient loading problem.

  17. Application of ecosystem model and Markov Chain Monte Carlo method for parameter optimization and ecosystem productivity prediction at seven forest flux sites across North America

    NASA Astrophysics Data System (ADS)

    Peng, C.; Zhou, X.

    2015-12-01

    To reduce simulation uncertainties due to inaccurate model parameters, the Markov Chain Monte Carlo (MCMC) method was applied in this study to improve the estimations of four key parameters used in the process-based ecosystem model of TRIPLEX-FLUX. These four key parameters include a maximum photosynthetic carboxylation rate of 25°C (Vcmax), an electron transport (Jmax) light-saturated rate within the photosynthetic carbon reduction cycle of leaves, a coefficient of stomatal conductance (m), and a reference respiration rate of 10ºC (R10). Seven forest flux tower sites located across North America were used to investigate and facilitate understanding of the daily variation in model parameters for three deciduous forests, three evergreen temperate forests, and one evergreen boreal forest. Eddy covariance CO2 exchange measurements were assimilated to optimize the parameters in the year 2006. After parameter optimization and adjustment took place, net ecosystem production prediction significantly improved (by approximately 25%) compared to the CO2 flux measurements taken at the seven forest ecosystem sites.

  18. Insecticide use in hybrid onion seed production affects pre- and postpollination processes.

    PubMed

    Gillespie, Sandra; Long, Rachael; Seitz, Nicola; Williams, Neal

    2014-02-01

    Research on threats to pollination service in agro-ecosystems has focused primarily on the negative impacts of land use change and agricultural practices such as insecticide use on pollinator populations. Insecticide use could also affect the pollination process, through nonlethal impacts on pollinator attraction and postpollination processes such as pollen viability or pollen tube growth. Hybrid onion seed (Allium cepa L., Alliaceae) is an important pollinator-dependent crop that has suffered yield declines in California, concurrent with increased insecticide use. Field studies suggest that insecticide use reduces pollination service in this system. We conducted a field experiment manipulating insecticide use to examine the impacts of insecticides on 1) pollinator attraction, 2) pollen/stigma interactions, and 3) seed set and seed quality. Select insecticides had negative impacts on pollinator attraction and pollen/stigma interactions, with certain products dramatically reducing pollen germination and pollen tube growth. Decreased pollen germination was not associated with reduced seed set; however, reduced pollinator attraction was associated with lower seed set and seed quality, for one of the two female lines examined. Our results highlight the importance of pesticide effects on the pollination process. Overuse may lead to yield reductions through impacts on pollinator behavior and postpollination processes. Overall, in hybrid onion seed production, moderation in insecticide use is advised when controlling onion thrips, Thrips tabaci, on commercial fields. PMID:24665681

  19. Nutrient dynamics and primary production in a pristine coastal mangrove ecosystem: Andaman Islands, India

    NASA Astrophysics Data System (ADS)

    Jenkins, E. N.; Nickodem, K.; Siemann, A. L.; Hoeher, A.; Sundareshwar, P. V.; Ramesh, R.; Purvaja, R.; Banerjee, K.; Manickam, S.; Haran, H.

    2012-12-01

    Mangrove ecosystems play a key role in supporting coastal food webs and nutrient cycles in the coastal zone. Their strategic position between the land and the sea make them important sites for land-ocean interaction. As part of an Indo-US summer field course we investigated changes in the water chemistry in a pristine mangrove creek located at Wright Myo in the Andaman Islands, India. This study was conducted during the wet season (June 2012) to evaluate the influence of the coastal mangrove wetlands on the water quality and productivity in adjoining pelagic waters. Over a full tidal cycle spanning approximately 24 hrs, we measured nutrient concentrations and other ancillary parameters (e.g. dissolved oxygen, turbidity, salinity, etc.) hourly to evaluate water quality changes in incoming and ebbing tides. Nutrient analyses had the following concentration ranges (μM): nitrite 0.2-0.9, nitrate 2.0-11.5, ammonium 1.3-7.5, dissolved inorganic phosphate 0.7-2.8. The dissolved inorganic nitrogen to dissolved inorganic phosphate (DIN/DIP) ratio was very low relative to an optimal ratio, suggesting growth is nitrogen limited. In addition, we conducted primary production assays to investigate the factors that controlled primary production in this pristine creek. The experiment was carried out in situ using the Winkler method at low and high tide. Four-hour incubation of light and dark bottles representing a fixed control, non-fertilized, fertilized with nitrate, and fertilized with phosphate enabled the measurement of both net oxygen production and dark respiration. The low tide experiment suggests the ecosystem is heterotrophic because the oxygen measured in the light bottles was consistently less than that of the dark bottles. This result may be an experimental artifact of placing the glass bottles in the sun for too long prior to incubation, potentially leading to photolysis of large organic molecules in the light bottles. The high tide experiment also displayed

  20. Net Ecosystem Exchange and Net Biome Productivity of different land use in eastern Germany

    NASA Astrophysics Data System (ADS)

    Grünwald, Thomas; Prescher, Anne-Katrin; Bernhofer, Christian

    2010-05-01

    The carbon (CO2-C) budgets of a managed forest (spruce), grassland and a cropland (crop rotation) have been determined and compared. The sites are part of the Tharandt cluster which features low intersite variability in climate due to the small distances between the sites. This allows the comparison of management effects on the carbon budget of different land use among other things. At the forest site, continuous CO2 flux measurements are available from 1997 to 2008, the common observation period of the grassland and cropland sites was 2005 to 2008. With regard to annual net ecosystem exchange NEE (based on eddy covariance flux measurements), the forest showed the highest net sink (-698 g C m-2 (1999) to -444 g C m-2 (2003)). In contrast the grassland and cropland sites were significantly lower sinks in terms of NEE (-177 g C m-2 (2004) to -62 g C m-2 (2005) and -115 g C m-2 (2005) to -32 g C m-2 (2007 and 2008), respectively). To quantify the net biome productivity (NBP) carbon exports due to thinning or harvest as well as carbon imports due to organic fertilisation are considered besides NEE. Carbon exports and imports change the carbon budget in terms of NBP. At the forest site only the 2002 NBP is a carbon source (+221 g C m-2) due to the thinning in April 2002 when around 43 m3 ha-1 solid wood was removed from the ecosystem. After the thinning the annual NEE is reduced by around 100 g C m-2 until 2007. The grassland NBP alternated between carbon source and sink (+25 g C m-2 (2008) to -28 g C m-2 (2006)) indicating the carbon balance was approximately neutral. Low NEE and NBP values at the grassland site were a consequence of carbon export due to several cuts per year. The NBP of the cropland ecosystem was mainly influenced by the crop type (winter or spring crop) and the application of organic fertiliser (manure) resulting in carbon budgets between +484 g C m-2 (2007) and -89 g C m-2 (2006). The different timing and length of the growing season of winter and

  1. Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems.

    PubMed

    Alexander, Brittany E; Liebrand, Kevin; Osinga, Ronald; van der Geest, Harm G; Admiraal, Wim; Cleutjens, Jack P M; Schutte, Bert; Verheyen, Fons; Ribes, Marta; van Loon, Emiel; de Goeij, Jasper M

    2014-01-01

    This study describes in vivo cell turnover (the balance between cell proliferation and cell loss) in eight marine sponge species from tropical coral reef, mangrove and temperate Mediterranean reef ecosystems. Cell proliferation was determined through the incorporation of 5-bromo-2'-deoxyuridine (BrdU) and measuring the percentage of BrdU-positive cells after 6 h of continuous labeling (10 h for Chondrosia reniformis). Apoptosis was identified using an antibody against active caspase-3. Cell loss through shedding was studied quantitatively by collecting and weighing sponge-expelled detritus and qualitatively by light microscopy of sponge tissue and detritus. All species investigated displayed substantial cell proliferation, predominantly in the choanoderm, but also in the mesohyl. The majority of coral reef species (five) showed between 16.1±15.9% and 19.0±2.0% choanocyte proliferation (mean±SD) after 6 h and the Mediterranean species, C. reniformis, showed 16.6±3.2% after 10 h BrdU-labeling. Monanchora arbuscula showed lower choanocyte proliferation (8.1±3.7%), whereas the mangrove species Mycale microsigmatosa showed relatively higher levels of choanocyte proliferation (70.5±6.6%). Choanocyte proliferation in Haliclona vansoesti was variable (2.8-73.1%). Apoptosis was negligible and not the primary mechanism of cell loss involved in cell turnover. All species investigated produced significant amounts of detritus (2.5-18% detritus bodyweight(-1)·d(-1)) and cell shedding was observed in seven out of eight species. The amount of shed cells observed in histological sections may be related to differences in residence time of detritus within canals. Detritus production could not be directly linked to cell shedding due to the degraded nature of expelled cellular debris. We have demonstrated that under steady-state conditions, cell turnover through cell proliferation and cell shedding are common processes to maintain tissue homeostasis in a variety of sponge

  2. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination

    NASA Astrophysics Data System (ADS)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.

    2011-12-01

    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P < 0.001) and T predictions from an ecosystem model (MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P < 0.001). As an alternative to estimating T, Δ measurements can be used to estimate GPP by combining Ci / Ca estimates with Gs estimates from sapflow data. Estimates of GPP were determined in this fashion and were highly correlated to GPP values derived from EC (y = 0.82 + 0.07; r2 = 0.61; slope P < 0.001) and GPP predictions from MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  3. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity.

    PubMed

    Janisch, J E; Harmon, M E

    2002-02-01

    If forests are to be used in CO2 mitigation projects, it is essential to understand and quantify the impacts of disturbance on net ecosystem productivity (NEP; i.e., the change in ecosystem carbon (C) storage with time). We examined the influence of live tree and coarse woody debris (CWD) on NEP during secondary succession based on data collected along a 500-year chronosequence on the Wind River Ranger District, Washington. We developed a simple statistical model of live and dead wood accumulation and decomposition to predict changes in the woody component of NEP, which we call NEP(w). The transition from negative to positive NEP(w), for a series of scenarios in which none to all wood was left after disturbance, occurred between 0 and 57 years after disturbance. The timing of this transition decreased as live-tree growth rates increased, and increased as CWD left after disturbance increased. Maximum and minimum NEP(w) for all scenarios were 3.9 and -14.1 Mg C ha-1 year-1, respectively. Maximum live and total wood C stores of 319 and 393 Mg C ha(-1), respectively, were reached approximately 200 years after disturbance. Decomposition rates (k) of CWD ranged between 0.013 and 0.043 year-1 for individual stands. Regenerating stands took 41 years to attain a mean live wood mass equivalent to the mean mass of CWD left behind after logging, 40 years to equal the mean CWD mass in 500-year-old forest, and more than 150 years to equal the mean total live and dead wood in an old-growth stand. At a rotation age of 80 years, regenerating stands stored approximately half the wood C of the remaining nearby old-growth forests (predominant age 500 years), indicating that conversion of old-growth forests to younger managed forests results in a significant net release of C to the atmosphere. PMID:11830405

  4. Considerations for Sustainable Biomass Production in Quercus-Dominated Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor; Yan, Shuai; Hochbichler, Eduard

    2013-04-01

    Our current energy system is mainly based on carbon (C) intensive metabolisms, resulting in great effects on the earth's biosphere. The majority of the energy sources are fossil (crude oil, coal, natural gas) and release CO2 in the combustion (oxidation) process which takes place during utilization of the energy. C released to the atmosphere was once sequestered by biomass over a time span of millions of years and is now being released back into the atmosphere within a period of just decades. In the context of green and CO2 neutral Energy, there is an on-going debate regarding the potentials of obtaining biomass from forests on multiple scales, from stand to international levels. Especially in the context of energy, it is highlighted that biomass is an entirely CO2 neutral feedstock since the carbon stored in wood originates from the atmospheric CO2 pool and it was taken up during plant growth. It needs systems approaches in order to justify this statement and ensure sustainability covering the whole life-cycle from biomass production to (bio)energy consumption. There are a number of Quercus woodland management systems focussing solely on woody biomass production for energetic utilization or a combination with traditional forestry and high quality timber production for trades and industry. They have often developed regionally as a consequence of specific demands and local production capacities, which are mainly driven by environmental factors such as climate and soil properties. We assessed the nutritional status of a common Quercus-dominated forest ecosystem in northern Austria, where we compared biomass- with belowground C and nutrient pools in order to identify potential site limits if the management shifts towards systems with a higher level of nutrient extraction. Heterogeneity of soils, and soil processes are considered, as well as other, growth-limiting factors (e.g. precipitation) and species-specific metabolisms and element translocation.

  5. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate.

    PubMed

    Lloyd, Jon; Bird, Michael I; Vellen, Lins; Miranda, Antonio Carlos; Veenendaal, Elmar M; Djagbletey, Gloria; Miranda, Heloisa S; Cook, Garry; Farquhar, Graham D

    2008-03-01

    To estimate the relative contributions of woody and herbaceous vegetation to savanna productivity, we measured the 13C/12C isotopic ratios of leaves from trees, shrubs, grasses and the surface soil carbon pool for 22 savannas in Australia, Brazil and Ghana covering the full savanna spectrum ranging from almost pure grassland to closed woodlands on all three continents. All trees and shrubs sampled were of the C3 pathway and all grasses of the C4 pathway with the exception of Echinolaena inflexa (Poir.) Chase, a common C3 grass of the Brazilian cerrado. By comparing the carbon isotopic compositions of the plant and carbon pools, a simple model relating soil delta 13C to the relative abundances of trees + shrubs (woody plants) and grasses was developed. The model suggests that the relative proportions of a savanna ecosystem's total foliar projected cover attributable to grasses versus woody plants is a simple and reliable index of the relative contributions of grasses and woody plants to savanna net productivity. Model calibrations against woody tree canopy cover made it possible to estimate the proportion of savanna productivity in the major regions of the world attributable to trees + shrubs and grasses from ground-based observational maps of savanna woodiness. Overall, it was estimated that 59% of the net primary productivity (Np) of tropical savannas is attributable to C4 grasses, but that this proportion varies significantly within and between regions. The C4 grasses make their greatest relative contribution to savanna Np in the Neotropics, whereas in African regions, a greater proportion of savanna Np is attributable to woody plants. The relative contribution of C4 grasses in Australian savannas is intermediate between those in the Neotropics and Africa. These differences can be broadly ascribed to large scale differences in soil fertility and rainfall. PMID:18171668

  6. Temperature response of methane oxidation and production potentials in peatland ecosystems across Finland

    NASA Astrophysics Data System (ADS)

    Welti, Nina; Korrensalo, Aino; Kerttula, Johanna; Maljanen, Marja; Uljas, Salli; Lohila, Annalea; Laine, Anna; Vesala, Timo; Elliott, David; Tuittila, Eeva-Stiina

    2016-04-01

    It has been suggested that the ecosystems located in the high latitudes are especially sensitive to warming. Therefore, we compared 14 peatland systems throughout Finland along a latitudinal gradient from 69°N to 61°N to examine the response of methane production and methane oxidation with warming climate. Peat samples were taken at the height of the growing season in 2015 from 0 - 10cm below the water table depth. The plant communities in sampling locations were described by estimating cover of each plant species and pH of water was measured. Upon return to the lab, we made two parallel treatments, under anoxic and oxic conditions in order to calculate the CH4 production and consumption potentials of the peat and used three temperatures, 4°C, 17.5°C, and 30°C to examine the temperature effect on the potentials. We hypothesized that there will be an observable response curve in CH4 production and oxidation relative to temperature with a greater response with increasing latitude. In general, increasing temperature increased the potential for CH4 production and oxidation, at some sites, the potential was highest at 17.5°C, indicating that there is an optimum temperature threshold for the in situ methane producing and oxidizing microbial communities. Above this threshold, the peat microbial communities are not able to cope with increasing temperature. This is especially noticeable for methane oxidation at sites above 62°N. As countries are being expected to adequately account for their greenhouse gas budgets with increasing temperature models, knowing where the temperature threshold exists is of critical importance.

  7. A dynamic model to assess tradeoffs in power production and riverine ecosystem protection.

    PubMed

    Miara, Ariel; Vörösmarty, Charles J

    2013-06-01

    Major strategic planning decisions loom as society aims to balance energy security, economic development and environmental protection. To achieve such balance, decisions involving the so-called water-energy nexus must necessarily embrace a regional multi-power plant perspective. We present here the Thermoelectric Power & Thermal Pollution Model (TP2M), a simulation model that simultaneously quantifies thermal pollution of rivers and estimates efficiency losses in electricity generation as a result of fluctuating intake temperatures and river flows typically encountered across the temperate zone. We demonstrate the model's theoretical framework by carrying out sensitivity tests based on energy, physical and environmental settings. We simulate a series of five thermoelectric plants aligned along a hypothetical river, where we find that warm ambient temperatures, acting both as a physical constraint and as a trigger for regulatory limits on plant operations directly reduce electricity generation. As expected, environmental regulation aimed at reducing thermal loads at a single plant reduces power production at that plant, but ironically can improve the net electricity output from multiple plants when they are optimally co-managed. On the technology management side, high efficiency can be achieved through the use of natural gas combined cycle plants, which can raise the overall efficiency of the aging population of plants, including that of coal. Tradeoff analysis clearly shows the benefit of attaining such high efficiencies, in terms of both limiting thermal loads that preserve ecosystem services and increasing electricity production that benefits economic development. PMID:23636670

  8. Diurnal patterns of productivity of arbuscular mycorrhizal fungi revealed with the Soil Ecosystem Observatory.

    PubMed

    Hernandez, Rebecca R; Allen, Michael F

    2013-10-01

    Arbuscular mycorrhizal (AM) fungi are the most abundant plant symbiont and a major pathway of carbon sequestration in soils. However, their basic biology, including their activity throughout a 24-h day : night cycle, remains unknown. We employed the in situ Soil Ecosystem Observatory to quantify the rates of diurnal growth, dieback and net productivity of extra-radical AM fungi. AM fungal hyphae showed significantly different rates of growth and dieback over a period of 24 h and paralleled the circadian-driven photosynthetic oscillations observed in plants. The greatest rates (and incidences) of growth and dieback occurred between noon and 18:00 h. Growth and dieback events often occurred simultaneously and were tightly coupled with soil temperature and moisture, suggesting a rapid acclimation of the external phase of AM fungi to the immediate environment. Changes in the environmental conditions and variability of the mycorrhizosphere may alter the diurnal patterns of productivity of AM fungi, thereby modifying soil carbon sequestration, nutrient cycling and host plant success.

  9. A dynamic model to assess tradeoffs in power production and riverine ecosystem protection.

    PubMed

    Miara, Ariel; Vörösmarty, Charles J

    2013-06-01

    Major strategic planning decisions loom as society aims to balance energy security, economic development and environmental protection. To achieve such balance, decisions involving the so-called water-energy nexus must necessarily embrace a regional multi-power plant perspective. We present here the Thermoelectric Power & Thermal Pollution Model (TP2M), a simulation model that simultaneously quantifies thermal pollution of rivers and estimates efficiency losses in electricity generation as a result of fluctuating intake temperatures and river flows typically encountered across the temperate zone. We demonstrate the model's theoretical framework by carrying out sensitivity tests based on energy, physical and environmental settings. We simulate a series of five thermoelectric plants aligned along a hypothetical river, where we find that warm ambient temperatures, acting both as a physical constraint and as a trigger for regulatory limits on plant operations directly reduce electricity generation. As expected, environmental regulation aimed at reducing thermal loads at a single plant reduces power production at that plant, but ironically can improve the net electricity output from multiple plants when they are optimally co-managed. On the technology management side, high efficiency can be achieved through the use of natural gas combined cycle plants, which can raise the overall efficiency of the aging population of plants, including that of coal. Tradeoff analysis clearly shows the benefit of attaining such high efficiencies, in terms of both limiting thermal loads that preserve ecosystem services and increasing electricity production that benefits economic development.

  10. Coupled ecosystem/supply chain modelling of fish products from sea to shelf: the Peruvian anchoveta case.

    PubMed

    Avadí, Angel; Fréon, Pierre; Tam, Jorge

    2014-01-01

    Sustainability assessment of food supply chains is relevant for global sustainable development. A framework is proposed for analysing fishfood (fish products for direct human consumption) supply chains with local or international scopes. It combines a material flow model (including an ecosystem dimension) of the supply chains, calculation of sustainability indicators (environmental, socio-economic, nutritional), and finally multi-criteria comparison of alternative supply chains (e.g. fates of landed fish) and future exploitation scenarios. The Peruvian anchoveta fishery is the starting point for various local and global supply chains, especially via reduction of anchoveta into fishmeal and oil, used worldwide as a key input in livestock and fish feeds. The Peruvian anchoveta supply chains are described, and the proposed methodology is used to model them. Three scenarios were explored: status quo of fish exploitation (Scenario 1), increase in anchoveta landings for food (Scenario 2), and radical decrease in total anchoveta landings to allow other fish stocks to prosper (Scenario 3). It was found that Scenario 2 provided the best balance of sustainability improvements among the three scenarios, but further refinement of the assessment is recommended. In the long term, the best opportunities for improving the environmental and socio-economic performance of Peruvian fisheries are related to sustainability-improving management and policy changes affecting the reduction industry. Our approach provides the tools and quantitative results to identify these best improvement opportunities.

  11. Coupled Ecosystem/Supply Chain Modelling of Fish Products from Sea to Shelf: The Peruvian Anchoveta Case

    PubMed Central

    Avadí, Angel; Fréon, Pierre; Tam, Jorge

    2014-01-01

    Sustainability assessment of food supply chains is relevant for global sustainable development. A framework is proposed for analysing fishfood (fish products for direct human consumption) supply chains with local or international scopes. It combines a material flow model (including an ecosystem dimension) of the supply chains, calculation of sustainability indicators (environmental, socio-economic, nutritional), and finally multi-criteria comparison of alternative supply chains (e.g. fates of landed fish) and future exploitation scenarios. The Peruvian anchoveta fishery is the starting point for various local and global supply chains, especially via reduction of anchoveta into fishmeal and oil, used worldwide as a key input in livestock and fish feeds. The Peruvian anchoveta supply chains are described, and the proposed methodology is used to model them. Three scenarios were explored: status quo of fish exploitation (Scenario 1), increase in anchoveta landings for food (Scenario 2), and radical decrease in total anchoveta landings to allow other fish stocks to prosper (Scenario 3). It was found that Scenario 2 provided the best balance of sustainability improvements among the three scenarios, but further refinement of the assessment is recommended. In the long term, the best opportunities for improving the environmental and socio-economic performance of Peruvian fisheries are related to sustainability-improving management and policy changes affecting the reduction industry. Our approach provides the tools and quantitative results to identify these best improvement opportunities. PMID:25003196

  12. Coupled ecosystem/supply chain modelling of fish products from sea to shelf: the Peruvian anchoveta case.

    PubMed

    Avadí, Angel; Fréon, Pierre; Tam, Jorge

    2014-01-01

    Sustainability assessment of food supply chains is relevant for global sustainable development. A framework is proposed for analysing fishfood (fish products for direct human consumption) supply chains with local or international scopes. It combines a material flow model (including an ecosystem dimension) of the supply chains, calculation of sustainability indicators (environmental, socio-economic, nutritional), and finally multi-criteria comparison of alternative supply chains (e.g. fates of landed fish) and future exploitation scenarios. The Peruvian anchoveta fishery is the starting point for various local and global supply chains, especially via reduction of anchoveta into fishmeal and oil, used worldwide as a key input in livestock and fish feeds. The Peruvian anchoveta supply chains are described, and the proposed methodology is used to model them. Three scenarios were explored: status quo of fish exploitation (Scenario 1), increase in anchoveta landings for food (Scenario 2), and radical decrease in total anchoveta landings to allow other fish stocks to prosper (Scenario 3). It was found that Scenario 2 provided the best balance of sustainability improvements among the three scenarios, but further refinement of the assessment is recommended. In the long term, the best opportunities for improving the environmental and socio-economic performance of Peruvian fisheries are related to sustainability-improving management and policy changes affecting the reduction industry. Our approach provides the tools and quantitative results to identify these best improvement opportunities. PMID:25003196

  13. Assessment of regional-scale primary production in terrestrial ecosystems to estimate the possible influence of future climate change on biodiversity

    NASA Astrophysics Data System (ADS)

    Noda, Hibiki; Nishina, Kazuya; Ito, Akihiko

    2015-04-01

    In recent decades, climate change including global warming has progressed worldwide and their influences on ecosystem structure and function that provide various goods and services to humans' well-being are of the greatest concerns. The ecosystem function and services are tightly coupled with the biodiversity particularly via food web and biogeochemical cycles, and here carbon is one of the central elements that also affect atmospheric CO2 concentration. Therefore mechanistic and quantitative understandings of the consequences among on-going climate change, ecosystem function, and biodiversity are urgent issues for seeking a better adaptation strategy. In order to tackle such tasks in the current environmental and ecological sciences, efforts have been made by numerous scientists and/or organizations to clarify the current status of and threats to biodiversity, responses of biogeochemical cycles to meteorological variables, and to construct climate change scenarios considering economic activities. However, to gain insights into the possible influence of climate change on biodiversity via altered ecosystem functions over broad temporal and spatial scales ranging from past to near-future periods and from landscape to global scales, further efforts to find the consequences are required, since the assessment of the influence of climate change on biodiversity is straightforward but difficult. For decades in climate change science, carbon flux between the atmosphere and terrestrial ecosystems has attracted intensive attention as it connects the atmosphere and biosphere. Carbon flux in the biosphere is not only a process of biogeochemical material flux but also is an element to drive biological and ecological processes in ecosystems via food web beginning from photosynthetic carbon fixation by plants. Therefore focusing on photosynthetic production by plants, i.e. primary production of the ecosystem, may help us to estimate the possible influence of climate change on

  14. Integration of Process Models and Remote Sensing for Estimating Productivity, Soil Moisture, and Energy Fluxes in a Tallgrass Prairie Ecosystem

    EPA Science Inventory

    We describe a research program aimed at integrating remotely sensed data with an ecosystem model (VELMA) and a soil-vegetation-atmosphere transfer (SVAT) model (SEBS) for generating spatially explicit, regional scale estimates of productivity (biomass) and energy\\mass exchanges i...

  15. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    PubMed

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  16. Responses of Plant Community Composition and Biomass Production to Warming and Nitrogen Deposition in a Temperate Meadow Ecosystem

    PubMed Central

    Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China. PMID:25874975

  17. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  18. The global view: issues affecting US production agriculture.

    PubMed

    Goldsmith, Peter

    2010-07-01

    This paper discusses small events occurring among developing countries, particularly but not exclusively in Asia, and their subsequent large impacts on net food exporting countries in the world, particularly, but not exclusively, located in the Western hemisphere. A Green Revolution II is underway as a result where the world's agricultural system will produce more (output) with less (inputs). Agriculture will meet the rapidly growing demand for bio-based foods, fuels, feeds, and fiber while reducing input usage, preserving the natural environment, and maintaining native ecosystems. In turn agricultural workers will receive a health dividend as chemical usage falls, automation, metering, and sensing technologies rise, and exposure to harsh environmental, both natural and man-made, conditions is reduced. This paper was prepared for the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health Conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas. PMID:20665304

  19. The global view: issues affecting US production agriculture.

    PubMed

    Goldsmith, Peter

    2010-07-01

    This paper discusses small events occurring among developing countries, particularly but not exclusively in Asia, and their subsequent large impacts on net food exporting countries in the world, particularly, but not exclusively, located in the Western hemisphere. A Green Revolution II is underway as a result where the world's agricultural system will produce more (output) with less (inputs). Agriculture will meet the rapidly growing demand for bio-based foods, fuels, feeds, and fiber while reducing input usage, preserving the natural environment, and maintaining native ecosystems. In turn agricultural workers will receive a health dividend as chemical usage falls, automation, metering, and sensing technologies rise, and exposure to harsh environmental, both natural and man-made, conditions is reduced. This paper was prepared for the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health Conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas.

  20. Ecosystem Science: measuring, mapping and predicting the production of nature’s goods and services

    EPA Science Inventory

    Our existence, let alone our well-being, depends on “goods and services” produced by ecosystems (food, purification of water and air, outdoor recreation, etc.). Humans have the power to enhance, protect, or degrade nature’s capacity to provide these ecosystem s...

  1. Integrating ecosystem services into crop protection and pest management: Case study with the soil fumigant 1,3-dichloropropene and its use in tomato production in Italy.

    PubMed

    Deacon, Samantha; Alix, Anne; Knowles, Steve; Wheeler, James; Tescari, Enzo; Alvarez, Lara; Nicolette, Joseph; Rockel, Mark; Burston, Peter; Quadri, Giorgia

    2016-10-01

    Ecosystems provide the conditions for producing food, regulating water, and providing wildlife habitats; these, among others, are known as ecosystem services (ESs). Food production is both economically and culturally important to southern European farmers, particularly in Italy where farmers grow flavorsome tomatoes with passion and pride. Growers rely on pesticides for crop protection, the potential environmental impact of which is often questioned by regulators and other stakeholders. The European regulatory system for the approval of pesticides includes a thorough evaluation of risks to the environment and is designed to be protective of ecosystems. The consideration of ESs in environmental decision making is a growing trend, and the present case study provides an example of how ESs evaluation could be used to enhance agricultural practices and regulatory policy for crop protection. By attacking plant roots, nematodes may affect the growth and yield of fruit and vegetable crops, and the income earned by farmers at harvest time. Available solutions include chemical treatments such as 1,3-dichloropropene (1,3-D), physical treatments (solarization), and biological treatments (biofumigation). In order to characterize the risks and benefits associated with the use of 1,3-D in crop protection, ESs and socioeconomic analyses were applied to its use in the control of nematodes in tomato cultivation in southern Italy. The present study confirmed the benefits of 1,3-D to tomato production in Italy, with significant positive effects on production yields and farm income when compared to limited and transient potential impacts on services such as soil function. It was confirmed that 1,3-D allows farm income to be maintained and secures tomato production in these regions for the future. Integr Environ Assess Manag 2016;12:801-810. © 2016 SETAC. PMID:26822540

  2. Integrating ecosystem services into crop protection and pest management: Case study with the soil fumigant 1,3-dichloropropene and its use in tomato production in Italy.

    PubMed

    Deacon, Samantha; Alix, Anne; Knowles, Steve; Wheeler, James; Tescari, Enzo; Alvarez, Lara; Nicolette, Joseph; Rockel, Mark; Burston, Peter; Quadri, Giorgia

    2016-10-01

    Ecosystems provide the conditions for producing food, regulating water, and providing wildlife habitats; these, among others, are known as ecosystem services (ESs). Food production is both economically and culturally important to southern European farmers, particularly in Italy where farmers grow flavorsome tomatoes with passion and pride. Growers rely on pesticides for crop protection, the potential environmental impact of which is often questioned by regulators and other stakeholders. The European regulatory system for the approval of pesticides includes a thorough evaluation of risks to the environment and is designed to be protective of ecosystems. The consideration of ESs in environmental decision making is a growing trend, and the present case study provides an example of how ESs evaluation could be used to enhance agricultural practices and regulatory policy for crop protection. By attacking plant roots, nematodes may affect the growth and yield of fruit and vegetable crops, and the income earned by farmers at harvest time. Available solutions include chemical treatments such as 1,3-dichloropropene (1,3-D), physical treatments (solarization), and biological treatments (biofumigation). In order to characterize the risks and benefits associated with the use of 1,3-D in crop protection, ESs and socioeconomic analyses were applied to its use in the control of nematodes in tomato cultivation in southern Italy. The present study confirmed the benefits of 1,3-D to tomato production in Italy, with significant positive effects on production yields and farm income when compared to limited and transient potential impacts on services such as soil function. It was confirmed that 1,3-D allows farm income to be maintained and secures tomato production in these regions for the future. Integr Environ Assess Manag 2016;12:801-810. © 2016 SETAC.

  3. Propagule supply controls grazer community structure and primary production in a benthic marine ecosystem

    PubMed Central

    Lee, Sarah C.; Bruno, John F.

    2009-01-01

    Early theories of species diversity proposed that communities at equilibrium are saturated with species. However, experiments in plant communities suggest that many communities are unsaturated and species richness can be increased by adding propagules of new species. We experimentally tested for community saturation and measured the effects of propagule supply on community structure in a benthic marine system. We manipulated propagule supply (arrival of individuals of numerous species) of mobile grazers in experimental mesocosms over multiple generations and, unlike previous tests, we examined the cascading effects of propagule supply on prey (macroalgae) biomass. We found little evidence for saturation, despite the absence of processes such as disturbance and predation that are thought to alleviate saturation in nature. Increasing propagule supply increased the total number of species and made rare species more abundant. Perhaps surprisingly, given the strong effect of propagule supply on species richness, supply-related changes in body size and composition suggest that competitive interactions remained important. Grazer supply also had strong cascading effects on primary production, possibly because of dietary complementarity modified by territorial behavior. Our results indicate that propagule supply can directly influence the diversity and composition of communities of mobile animals. Furthermore, the supply of consumer propagules can have strong indirect effects on prey and fundamental ecosystem properties. PMID:19359487

  4. An ecosystem of products and systems for ambient intelligence - the AAL4ALL users perspective.

    PubMed

    Sousa, Filipe; Viola, Lara; Ferreira, Liliana; Trevisan, Gabriela; Cunha, David; Alves, José; Simões, Ricardo

    2012-01-01

    Developed societies are currently facing severe demographic changes: the world is getting older at an unprecedented rate. In 2000, about 420 million people, or approximately 7 percent of the world population, were aged 65 or older. By 2050, that number will be nearly 1.5 billion people, about 16 percent of the world population. This demographic trend will be also followed by an increase of people with physical limitations. The traditional health care systems, not only in Portugal, but also in all other European states, will be faced with new challenges. There is an urgent need to find solutions that allow extending the time people can live in their preferred environment by increasing their autonomy, self-confidence and mobility. AAL4ALL presents an idea for an answer through the development of an ecosystem of products and services for Ambient Assisted Living (AAL) associated to a business model and validated through large scale trial. This paper presents the results of the first survey developed within the AAL4ALL project: the users' survey targeted at the Portuguese seniors and pre-seniors. In this way, this paper addresses the lives of the Portuguese population aged 50 and over. PMID:22942066

  5. The response of aboveground plant productivity to earlier snowmelt and summer warming in an Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Livensperger, C.; Steltzer, H.; Darrouzet-Nardi, A.; Sullivan, P.; Wallenstein, M. D.; Weintraub, M. N.

    2012-12-01

    Plant communities in the Arctic are undergoing changes in structure and function due to shifts in seasonality from changing winters and summer warming. These changes will impact biogeochemical cycling, surface energy balance, and functioning of vertebrate and invertebrate communities. To examine seasonal controls on aboveground net primary production (ANPP) in a moist acidic tundra ecosystem in northern Alaska, we shifted the growing season by accelerating snowmelt (using radiation absorbing shadecloth) and warming air and soil temperature (using 1 m2 open-top chambers), individually and in combination. After three years, we measured ANPP by harvesting up to 16 individual ramets, tillers and rhizomes for each of 7 plant species, including two deciduous shrubs, two graminoids, two evergreen shrubs and one forb during peak season. Our results show that ANPP per stem summed across the 7 species increased when snow melt occurred earlier. However, standing biomass, excluding current year growth, was also greater. The ratio of ANPP/standing biomass decreased in all treatments compared to the control. ANPP per unit standing biomass summed for the four shrub species decreases due to summer warming alone or in combination with early snowmelt; however early snowmelt alone did not lead to lower ANPP for the shrubs. ANPP per tiller or rhizome summed for the three herbaceous species increased in response to summer warming. Understanding the differential response of plants to changing seasonality will inform predictions of future Arctic plant community structure and function.

  6. Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion.

    PubMed

    Xun, Weibing; Xu, Zhihui; Li, Wei; Ren, Yi; Huang, Ting; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-09-01

    Natural ecosystems comprise the planet's wild plant and animal resources, but large tracts of land have been converted to agroecosystems to support the demand for agricultural products. This conversion limits the number of plant species and decreases the soil biological diversity. Here we used high-throughput 16S rRNA gene sequencing to evaluate the responses of soil bacterial communities in long-term converted and fertilized red soils (a type of Ferralic Cambisol). We observed that soil bacterial diversity was strongly affected by different types of fertilization management. Oligotrophic bacterial taxa demonstrated large relative abundances in chemically fertilized soil, whereas copiotrophic bacterial taxa were found in large relative abundances in organically fertilized and fallow management soils. Only organic-inorganic fertilization exhibited the same local taxonomic and phylogenetic diversity as that of a natural ecosystem. However, the independent use of organic or inorganic fertilizer reduced local taxonomic and phylogenetic diversity and caused biotic homogenization. This study demonstrated that the homogenization of bacterial communities caused by natural-to-agricultural ecosystem conversion can be mitigated by employing rational organic-inorganic fertilization management. PMID:27572510

  7. Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion.

    PubMed

    Xun, Weibing; Xu, Zhihui; Li, Wei; Ren, Yi; Huang, Ting; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-09-01

    Natural ecosystems comprise the planet's wild plant and animal resources, but large tracts of land have been converted to agroecosystems to support the demand for agricultural products. This conversion limits the number of plant species and decreases the soil biological diversity. Here we used high-throughput 16S rRNA gene sequencing to evaluate the responses of soil bacterial communities in long-term converted and fertilized red soils (a type of Ferralic Cambisol). We observed that soil bacterial diversity was strongly affected by different types of fertilization management. Oligotrophic bacterial taxa demonstrated large relative abundances in chemically fertilized soil, whereas copiotrophic bacterial taxa were found in large relative abundances in organically fertilized and fallow management soils. Only organic-inorganic fertilization exhibited the same local taxonomic and phylogenetic diversity as that of a natural ecosystem. However, the independent use of organic or inorganic fertilizer reduced local taxonomic and phylogenetic diversity and caused biotic homogenization. This study demonstrated that the homogenization of bacterial communities caused by natural-to-agricultural ecosystem conversion can be mitigated by employing rational organic-inorganic fertilization management.

  8. Discourse Goals Affect the Process and Product of Nominal Metaphor Production.

    PubMed

    Utsumi, Akira; Sakamoto, Maki

    2015-10-01

    Although a large number of studies have addressed metaphor comprehension, only a few attempts have so far been made at exploring the process of metaphor production. Therefore, in this paper, we address the problem of how people generate nominal metaphors or identify an apt vehicle for a given topic of nominal metaphors. Specifically, we examine how the process and product of metaphor production differ between two discourse goals of metaphor, namely an explanatory purpose (e.g., to clarify) and a literary purpose (e.g., to aesthetically pleasing). Experiment 1 analyzed the metaphors (or vehicles) generated in the metaphor production task, and demonstrated that people identified more prototypical exemplars of the property to be attributed to the topic as a vehicle for explanatory metaphors than for literary metaphors. In addition, it was found that metaphors generated for the explanatory purpose were more apt and conventional, and had high topic-vehicle similarity than those generated for the literary purpose, while metaphors generated for the literary purpose were more familiar and imageable than those for the explanatory purpose. Experiment 2 used a priming paradigm to assess the online availability of prototypical and less prototypical members of the topic property during metaphor production. The result was that both prototypical and less prototypical members were activated in producing literary metaphors, while neither members were activated in the production of explanatory metaphors. These findings indicate that the process of metaphor production is affected by discourse goals of metaphor; less prototypical members of the category are searched for a vehicle during the production of literary metaphors, and thus literary metaphors are generated with less prototypical vehicles than explanatory metaphors.

  9. Reassessing culture media and critical metabolites that affect adenovirus production.

    PubMed

    Shen, Chun Fang; Voyer, Robert; Tom, Roseanne; Kamen, Amine

    2010-01-01

    Adenovirus production is currently operated at low cell density because infection at high cell densities still results in reduced cell-specific productivity. To better understand nutrient limitation and inhibitory metabolites causing the reduction of specific yields at high cell densities, adenovirus production in HEK 293 cultures using NSFM 13 and CD 293 media were evaluated. For cultures using NSFM 13 medium, the cell-specific productivity decreased from 3,400 to 150 vp/cell (or 96% reduction) when the cell density at infection was increased from 1 to 3 x 10(6) cells/mL. In comparison, only 50% of reduction in the cell-specific productivity was observed under the same conditions for cultures using CD 293 medium. The effect of medium osmolality was found critical on viral production. Media were adjusted to an optimal osmolality of 290 mOsm/kg to facilitate comparison. Amino acids were not critical limiting factors. Potential limiting nutrients including vitamins, energy metabolites, bases and nucleotides, or inhibitory metabolites (lactate and ammonia) were supplemented to infected cultures to further investigate their effect on the adenovirus production. Accumulation of lactate and ammonia in a culture infected at 3 x 10(6) cells/mL contributed to about 20% reduction of the adenovirus production yield, whereas nutrient limitation appeared primarily responsible for the decline in the viral production when NSFM 13 medium was used. Overall, the results indicate that multiple factors contribute to limiting the specific production yield at cell densities beyond 1 x 10(6) cells/mL and underline the need to further investigate and develop media for better adenoviral vector productions.

  10. Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Jin, Meibing; Popova, Ekaterina E.; Zhang, Jinlun; Ji, Rubao; Pendleton, Daniel; Varpe, Øystein; Yool, Andrew; Lee, Younjoo J.

    2016-01-01

    Previous observational studies have found increasing primary production (PP) in response to declining sea ice cover in the Arctic Ocean. In this study, under-ice PP was assessed based on three coupled ice-ocean-ecosystem models participating in the Forum for Arctic Modeling and Observational Synthesis (FAMOS) project. All models showed good agreement with under-ice measurements of surface chlorophyll-a concentration and vertically integrated PP rates during the main under-ice production period, from mid-May to September. Further, modeled 30-year (1980-2009) mean values and spatial patterns of sea ice concentration compared well with remote sensing data. Under-ice PP was higher in the Arctic shelf seas than in the Arctic Basin, but ratios of under-ice PP over total PP were spatially correlated with annual mean sea ice concentration, with higher ratios in higher ice concentration regions. Decreases in sea ice from 1980 to 2009 were correlated significantly with increases in total PP and decreases in the under-ice PP/total PP ratio for most of the Arctic, but nonsignificantly related to under-ice PP, especially in marginal ice zones. Total PP within the Arctic Circle increased at an annual rate of between 3.2 and 8.0 Tg C/yr from 1980 to 2009. This increase in total PP was due mainly to a PP increase in open water, including increases in both open water area and PP rate per unit area, and therefore much stronger than the changes in under-ice PP. All models suggested that, on a pan-Arctic scale, the fraction of under-ice PP declined with declining sea ice cover over the last three decades.

  11. Chemical factors affecting fission product transport in severe LMFBR accidents

    SciTech Connect

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly.

  12. Soil development as trigger for lake productivity in a high alpine ecosystem

    NASA Astrophysics Data System (ADS)

    Koinig, Karin A.; Drescher, Ruth; Hirt, Ann; Ilyashuk, Elena; Lami, Andrea; Tessadri, Richard; Psenner, Roland

    2010-05-01

    In high alpine catchments, soil development significantly affects the lake's biogeochemistry and productivity. Here we present a Holocene multi-proxy sediment record of an oligothrophic high alpine lake. The multi-proxy analyses include geochemistry, mineralogy, magnetic properties, pollen, diatoms, chironomids, and pigment records. The sediment cores cover the entire lake history from the last deglaciation to present. The lake is located at 2800 m a.s.l., far above the potential tree line. Currently the catchment consists of bare rocks and scree and discontinuous small patches of thin soil. Alpine herbs and cushion plants account for the major part of the vegetation. After deglaciation, during a warm and presumably dry climate, the lake was rapidly colonized as seen from the diatom and chironomid record. However, it took over 2000 years (until 8000 cal BP) until the lake became more productive as reflected in an increase in organic carbon content and algae and chironomid concentrations. During this period the climate was still warm but wetter. The increase in productivity is consistent with a shift from a plankton dominated C/N ratio (between 9 and 12) to a higher C/N ratio that reflects a higher input of organic matter from terrestrial plants. This increase also triggered the development of anoxic - alkaline bottom water conditions and thus affected the whole biogeochemistry of the lake. With the onset of a colder period around 4500 cal BP, the C/N ratio decreased again and the lake became less productive. Although the catchment had only a scarce and thin soil layer, the development of a slightly more productive soil layer during favorable climatic conditions had significant effects on the lake properties.

  13. Some factors affecting tannase production by Aspergillus niger Van Tieghem

    PubMed Central

    Aboubakr, Hamada A.; El-Sahn, Malak A.; El-Banna, Amr A.

    2013-01-01

    One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production. PMID:24294255

  14. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G

    2011-10-01

    Life cycle assessment is increasingly used to assess the environmental performance of fossil energy systems. Two of the dominant emissions of offshore oil and gas production to the marine environment are the discharge of produced water and drilling waste. Although environmental impacts of produced water are predominantly due to chemical stressors, a major concern regarding drilling waste discharge is the potential physical impact due to particles. At present, impact indicators for particulate emissions are not yet available in life cycle assessment. Here, we develop characterization factors for 2 distinct impacts of particulate emissions: an increased turbidity zone in the water column and physical burial of benthic communities. The characterization factor for turbidity is developed analogous to characterization factors for toxic impacts, and ranges from 1.4 PAF (potentially affected fraction) · m(3) /d/kg(p) (kilogram particulate) to 7.0 x 10³ [corrected] for drilling mud particles discharged from the rig. The characterization factor for burial describes the volume of sediment that is impacted by particle deposition on the seafloor and equals 2.0 × 10(-1) PAF · m(3) /d/kg(p) for cutting particles. This characterization factor is quantified on the basis of initial deposition layer characteristics, such as height and surface area, the initial benthic response, and the recovery rate. We assessed the relevance of including particulate emissions in an impact assessment of offshore oil and gas production. Accordingly, the total impact on the water column and on the sediment was quantified based on emission data of produced water and drilling waste for all oil and gas fields on the Norwegian continental shelf in 2008. Our results show that cutting particles contribute substantially to the total impact of offshore oil and gas production on marine sediments, with a relative contribution of 55% and 31% on the regional and global scale, respectively. In contrast, the

  15. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G

    2011-10-01

    Life cycle assessment is increasingly used to assess the environmental performance of fossil energy systems. Two of the dominant emissions of offshore oil and gas production to the marine environment are the discharge of produced water and drilling waste. Although environmental impacts of produced water are predominantly due to chemical stressors, a major concern regarding drilling waste discharge is the potential physical impact due to particles. At present, impact indicators for particulate emissions are not yet available in life cycle assessment. Here, we develop characterization factors for 2 distinct impacts of particulate emissions: an increased turbidity zone in the water column and physical burial of benthic communities. The characterization factor for turbidity is developed analogous to characterization factors for toxic impacts, and ranges from 1.4 PAF (potentially affected fraction) · m(3) /d/kg(p) (kilogram particulate) to 7.0 x 10³ [corrected] for drilling mud particles discharged from the rig. The characterization factor for burial describes the volume of sediment that is impacted by particle deposition on the seafloor and equals 2.0 × 10(-1) PAF · m(3) /d/kg(p) for cutting particles. This characterization factor is quantified on the basis of initial deposition layer characteristics, such as height and surface area, the initial benthic response, and the recovery rate. We assessed the relevance of including particulate emissions in an impact assessment of offshore oil and gas production. Accordingly, the total impact on the water column and on the sediment was quantified based on emission data of produced water and drilling waste for all oil and gas fields on the Norwegian continental shelf in 2008. Our results show that cutting particles contribute substantially to the total impact of offshore oil and gas production on marine sediments, with a relative contribution of 55% and 31% on the regional and global scale, respectively. In contrast, the

  16. Developing a Data Driven Process-Based Model for Remote Sensing of Ecosystem Production

    NASA Astrophysics Data System (ADS)

    Elmasri, B.; Rahman, A. F.

    2010-12-01

    Estimating ecosystem carbon fluxes at various spatial and temporal scales is essential for quantifying the global carbon cycle. Numerous models have been developed for this purpose using several environmental variables as well as vegetation indices derived from remotely sensed data. Here we present a data driven modeling approach for gross primary production (GPP) that is based on a process based model BIOME-BGC. The proposed model was run using available remote sensing data and it does not depend on look-up tables. Furthermore, this approach combines the merits of both empirical and process models, and empirical models were used to estimate certain input variables such as light use efficiency (LUE). This was achieved by using remotely sensed data to the mathematical equations that represent biophysical photosynthesis processes in the BIOME-BGC model. Moreover, a new spectral index for estimating maximum photosynthetic activity, maximum photosynthetic rate index (MPRI), is also developed and presented here. This new index is based on the ratio between the near infrared and the green bands (ρ858.5/ρ555). The model was tested and validated against MODIS GPP product and flux measurements from two eddy covariance flux towers located at Morgan Monroe State Forest (MMSF) in Indiana and Harvard Forest in Massachusetts. Satellite data acquired by the Advanced Microwave Scanning Radiometer (AMSR-E) and MODIS were used. The data driven model showed a strong correlation between the predicted and measured GPP at the two eddy covariance flux towers sites. This methodology produced better predictions of GPP than did the MODIS GPP product. Moreover, the proportion of error in the predicted GPP for MMSF and Harvard forest was dominated by unsystematic errors suggesting that the results are unbiased. The analysis indicated that maintenance respiration is one of the main factors that dominate the overall model outcome errors and improvement in maintenance respiration estimation

  17. Modeling topographic effects on net ecosystem productivity of boreal black spruce forests.

    PubMed

    Grant, Robert F

    2004-01-01

    Current regional estimates of net primary productivity (NPP) of boreal black spruce overlook the large variation in NPP caused by small-scale topographic effects on soil water, temperature and nutrient availability. Topographic effects on black spruce NPP could likely be modeled by simulating the lateral and vertical movement of water, and its effects on soil nutrient transformation and uptake, through three-dimensional watersheds defined by aspects and slopes of their topographic positions. To examine this likelihood, the ecosystem model 'ecosys' was run for 120 years on a transect that included upper- and lower-slope positions and a basin in which a basal water table was set 0.5 m below the soil surface. For the run, we used soil properties and weather conditions recorded at the 115-year-old BOREAS Southern Old Black Spruce site. Short-term model performance was tested by comparing diurnal and annual carbon (C) transfers simulated under 1994 weather conditions during the 115th year of the model run with those measured at this site during 1994 by eddy covariance, surface chambers and allometry. After 115 years, annual spruce NPP simulated at the upper-slope positions was twice that at the basin (350 versus 170 g C m-2), whereas accumulated wood C was almost three times as large (6.8 versus 2.4 kg C m-2). In the model, increases in NPP and wood growth in upper-slope positions were caused by lower soil water contents, higher soil temperatures, and more rapid O2 uptake that accelerated heterotrophic respiration and hence nutrient mineralization and uptake. Modeled differences in wood growth with topographic position were quantitatively consistent with measurements of boreal black spruce at several research sites differing in water table depth. Modeled differences also agreed with differences in wood growth rates derived from allometric measurements at boreal black spruce sites differing in productivity indices as a result of differences in subsurface hydrology. The

  18. Primary Production and C Flow in the Chukchi Sea Land-Fast Ice-Ocean Ecosystem and Sensitivity to Environmental Factors

    NASA Astrophysics Data System (ADS)

    Deal, C. J.; Jin, M.; Wang, J.; Whitledge, T. E.; Lee, S. H.

    2005-12-01

    The recent downward trend in Arctic sea ice extent and thickness is a compelling indicator of climate change. These changes in sea ice affect the arctic marine ecosystem, which may depend on sea ice algal primary production for over 50% of the fixed C in the permanently ice-covered Arctic (Gosselin et al., 1997) and up to 25% in the surrounding marginal seas (Kirst and Wiencke, 1995). Since land-fast ice is generally the most accessible of the four sea ice regimes (perennial pack ice, coastal zone - including fast ice, seasonal pack ice and marginal ice zone), and in its own right is important in terms of aereal extent, on-going environmental changes along the coast and a platform for significant biological activity, our research group has focused on time series observations in the land-fast ice near Barrow, Alaska over the last several years. We have utilized the resultant data and those available from other research groups to develop a 1-D marine ecosystem model from which we have constructed an organic C budget based on observations including ice algal biomass (chl a), phytoplankton biomass (chl a), POC, PON, indicators of zooplankton and ice meiofaunal grazing, nutrients, in situ carbon and nutrient uptake, temperature, salinity, ice thickness and snow cover. Through model sensitivity studies, we found that doubling of the initial nutrient concentrations has a significant impact on sea ice primary production, being roughly proportional. Also, a doubling of light (PAR) shifts the exponential accumulation of sea ice algal biomass ahead approximately one week. These model results provide evidence that changes in river discharge that alter nutrient concentrations, and changes in the light regime linked to ongoing environmental changes such as sediment loading, lessening sea ice thickness, and interannual variations in snow cover significantly impact the marine ecosystem. These influences may cascade through the marine ecosystem to affect the food web and hence

  19. Charcoal production in the Mopane woodlands of Mozambique: what are the trade-offs with other ecosystem services?

    PubMed

    Woollen, Emily; Ryan, Casey M; Baumert, Sophia; Vollmer, Frank; Grundy, Isla; Fisher, Janet; Fernando, Jone; Luz, Ana; Ribeiro, Natasha; Lisboa, Sá N

    2016-09-19

    African woodlands form a major part of the tropical grassy biome and support the livelihoods of millions of rural and urban people. Charcoal production in particular is a major economic activity, but its impact on other ecosystem services is little studied. To address this, our study collected biophysical and social datasets, which were combined in ecological production functions, to assess ecosystem service provision and its change under different charcoal production scenarios in Gaza Province, southern Mozambique. We found that villages with longer histories of charcoal production had experienced declines in wood suitable for charcoal, firewood and construction, and tended to have lower perceived availabilities of these services. Scenarios of future charcoal impacts indicated that firewood and woody construction services were likely to trade-off with charcoal production. However, even under the most extreme charcoal scenario, these services were not completely lost. Other provisioning services, such as wild food, medicinal plants and grass, were largely unaffected by charcoal production. To reduce the future impacts of charcoal production, producers must avoid increased intensification of charcoal extraction by avoiding the expansion of species and sizes of trees used for charcoal production. This is a major challenge to land managers and policymakers in the area.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. PMID:27502380

  20. Charcoal production in the Mopane woodlands of Mozambique: what are the trade-offs with other ecosystem services?

    PubMed

    Woollen, Emily; Ryan, Casey M; Baumert, Sophia; Vollmer, Frank; Grundy, Isla; Fisher, Janet; Fernando, Jone; Luz, Ana; Ribeiro, Natasha; Lisboa, Sá N

    2016-09-19

    African woodlands form a major part of the tropical grassy biome and support the livelihoods of millions of rural and urban people. Charcoal production in particular is a major economic activity, but its impact on other ecosystem services is little studied. To address this, our study collected biophysical and social datasets, which were combined in ecological production functions, to assess ecosystem service provision and its change under different charcoal production scenarios in Gaza Province, southern Mozambique. We found that villages with longer histories of charcoal production had experienced declines in wood suitable for charcoal, firewood and construction, and tended to have lower perceived availabilities of these services. Scenarios of future charcoal impacts indicated that firewood and woody construction services were likely to trade-off with charcoal production. However, even under the most extreme charcoal scenario, these services were not completely lost. Other provisioning services, such as wild food, medicinal plants and grass, were largely unaffected by charcoal production. To reduce the future impacts of charcoal production, producers must avoid increased intensification of charcoal extraction by avoiding the expansion of species and sizes of trees used for charcoal production. This is a major challenge to land managers and policymakers in the area.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'.

  1. Charcoal production in the Mopane woodlands of Mozambique: what are the trade-offs with other ecosystem services?

    PubMed Central

    Baumert, Sophia; Vollmer, Frank; Grundy, Isla; Fisher, Janet; Fernando, Jone; Luz, Ana; Lisboa, Sá N.

    2016-01-01

    African woodlands form a major part of the tropical grassy biome and support the livelihoods of millions of rural and urban people. Charcoal production in particular is a major economic activity, but its impact on other ecosystem services is little studied. To address this, our study collected biophysical and social datasets, which were combined in ecological production functions, to assess ecosystem service provision and its change under different charcoal production scenarios in Gaza Province, southern Mozambique. We found that villages with longer histories of charcoal production had experienced declines in wood suitable for charcoal, firewood and construction, and tended to have lower perceived availabilities of these services. Scenarios of future charcoal impacts indicated that firewood and woody construction services were likely to trade-off with charcoal production. However, even under the most extreme charcoal scenario, these services were not completely lost. Other provisioning services, such as wild food, medicinal plants and grass, were largely unaffected by charcoal production. To reduce the future impacts of charcoal production, producers must avoid increased intensification of charcoal extraction by avoiding the expansion of species and sizes of trees used for charcoal production. This is a major challenge to land managers and policymakers in the area. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502380

  2. Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements

    NASA Astrophysics Data System (ADS)

    Raj, Rahul; Hamm, Nicholas Alexander Samuel; van der Tol, Christiaan; Stein, Alfred

    2016-03-01

    Gross primary production (GPP) can be separated from flux tower measurements of net ecosystem exchange (NEE) of CO2. This is used increasingly to validate process-based simulators and remote-sensing-derived estimates of simulated GPP at various time steps. Proper validation includes the uncertainty associated with this separation. In this study, uncertainty assessment was done in a Bayesian framework. It was applied to data from the Speulderbos forest site, The Netherlands. We estimated the uncertainty in GPP at half-hourly time steps, using a non-rectangular hyperbola (NRH) model for its separation from the flux tower measurements. The NRH model provides a robust empirical relationship between radiation and GPP. It includes the degree of curvature of the light response curve, radiation and temperature. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October) in 2009. We defined the prior distribution of each NRH parameter and used Markov chain Monte Carlo (MCMC) simulation to estimate the uncertainty in the separated GPP from the posterior distribution at half-hourly time steps. This time series also allowed us to estimate the uncertainty at daily time steps. We compared the informative with the non-informative prior distributions of the NRH parameters and found that both choices produced similar posterior distributions of GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.

  3. Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Longhini, Cybelle M.; Souza, Marcelo F. L.; Silva, Ananda M.

    2015-12-01

    The carbon cycle in coral reefs is usually dominated by the organic carbon metabolism and precipitation-dissolution of CaCO3, processes that control the CO2 partial pressure (pCO2) in seawater and the CO2 fluxes through the air-sea interface. In order to characterize these processes and the carbonate system, four sampling surveys were conducted at the reef flat of Coroa Vermelha during low tide (exposed flat). Net ecosystem production (NEP), net precipitation-dissolution of CaCO3 (G) and CO2 fluxes across the air-water interface were calculated. The reef presented net autotrophy and calcification at daytime low tide. The NEP ranged from -8.7 to 31.6 mmol C m-2 h-1 and calcification from -13.1 to 26.0 mmol C m-2 h-1. The highest calcification rates occurred in August 2007, coinciding with the greater NEP rates. The daytime CO2 fluxes varied from -9.7 to 22.6 μmol CO2 m-2 h-1, but reached up to 13,900 μmol CO2 m-2 h-1 during nighttime. Carbon dioxide influx to seawater was predominant in the reef flat during low tide. The regions adjacent to the reef showed a supersaturation of CO2, acting as a source of CO2 to the atmosphere (from -22.8 to -2.6 mol CO2 m-2 h-1) in the reef flat during ebbing tide. Nighttime gas release to the atmosphere indicates a net CO2 release from the Coroa Vermelha reef flat within 24 h, and that these fluxes can be important to carbon budget in coral reefs.

  4. Continental Margins: Linking Ecosystems

    NASA Astrophysics Data System (ADS)

    Kelly-Gerreyn, Boris; Rabalais, Nancy; Middelburg, Jack; Roy, Sylvie; Liu, Kon-Kee; Thomas, Helmuth; Zhang, Jing

    2008-02-01

    Impacts of Global, Local and Human Forcings on Biogeochemical Cycles and Ecosystems, IMBER/LOICZ Continental Margins Open Science Conference; Shanghai, China, 17-21 September 2007; More than 100 scientists from 25 countries came together to address global, regional, local, and human pressures interactively affecting continental margin biogeochemical cycles, marine food webs, and society. Continental margins cover only 12% of the global ocean area yet account for more than 30% of global oceanic primary production. In addition, continental margins are the most intensely used regions of the world's ocean for natural commodities, including productive fisheries and mineral and petroleum resources. The land adjacent to continental margins hosts about 50% of the world's population, which will bear many direct impacts of global change on coastal margins. Understanding both natural and human-influenced alterations of biogeochemical cycles and ecosystems on continental margins and the processes (including feedbacks) that threaten sustainability of these systems is therefore of global interest.

  5. Sex of littermate twin affects lifetime ewe productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ewe productivity is synonymous with annual litter-weight weaned (LWW) per ewe exposed to rams for breeding, and LWW is largely a function of number of lambs born (NLB) and weaned (NLW). Selecting for LWW should increase litter size and numbers of ewe-ram co-twins. Thus, we used historical records to...

  6. How lingering representations of abandoned context words affect speech production.

    PubMed

    Tydgat, Ilse; Diependaele, Kevin; Hartsuiker, Robert J; Pickering, Martin J

    2012-07-01

    Four experiments tested whether and how initially planned but then abandoned speech can influence the production of a subsequent resumption. Participants named initial pictures, which were sometimes suddenly replaced by target pictures that were related in meaning or word form or were unrelated. They then had to stop and resume with the name of the target picture. Target picture naming latencies were measured separately for trials in which the initial speech was skipped, interrupted, or completed. Semantically related initial pictures helped the production of the target word, although the effect dissipated once the utterance of the initial picture name had been completed. In contrast, phonologically related initial pictures hindered the production of the target word, but only for trials in which the name of the initial picture had at least partly been uttered. This semantic facilitation and phonological interference did not depend on the time interval between the initial and target picture, which was either varied between 200 ms and 400 ms (Experiments 1-2) or was kept constant at 300 ms (Experiments 3-4). We discuss the implications of these results for models of speech self-monitoring and for models of problem-free word production.

  7. How lingering representations of abandoned context words affect speech production.

    PubMed

    Tydgat, Ilse; Diependaele, Kevin; Hartsuiker, Robert J; Pickering, Martin J

    2012-07-01

    Four experiments tested whether and how initially planned but then abandoned speech can influence the production of a subsequent resumption. Participants named initial pictures, which were sometimes suddenly replaced by target pictures that were related in meaning or word form or were unrelated. They then had to stop and resume with the name of the target picture. Target picture naming latencies were measured separately for trials in which the initial speech was skipped, interrupted, or completed. Semantically related initial pictures helped the production of the target word, although the effect dissipated once the utterance of the initial picture name had been completed. In contrast, phonologically related initial pictures hindered the production of the target word, but only for trials in which the name of the initial picture had at least partly been uttered. This semantic facilitation and phonological interference did not depend on the time interval between the initial and target picture, which was either varied between 200 ms and 400 ms (Experiments 1-2) or was kept constant at 300 ms (Experiments 3-4). We discuss the implications of these results for models of speech self-monitoring and for models of problem-free word production. PMID:22673067

  8. How Soil Roughness Affects Runoff and Sediment Production?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of soil surface roughness on runoff and sediment production have not been clearly quantified, mostly due to the lack of a logical separation between geometric (i.e., surface microtopography) and process (i.e., runoff generation, soil detachment by raindrop and runoff) scales. In this resea...

  9. Long-term dynamics of production, respiration, and net CO2 exchange in two sagebrush-steppe ecosystems

    USGS Publications Warehouse

    Gilmanov, T.G.; Svejcar, T.J.; Johnson, D.A.; Angell, R.F.; Saliendra, Nicanor Z.; Wylie, B.K.

    2006-01-01

    We present a synthesis of long-term measurements of CO2 exchange in 2 US Intermountain West sagebrush-steppe ecosystems. The locations near Burns, Oregon (1995-2001), and Dubois, Idaho (1996-2001), are part of the AgriFlux Network of the Agricultural Research Service, United States Department of Agriculture. Measurements of net ecosystem CO2 exchange (F c) during the growing season were continuously recorded at flux towers using the Bowen ratio-energy balance technique. Data were partitioned into gross primary productivity (Pg) and ecosystem respiration (Re) using the light-response function method. Wintertime fluxes were measured during 1999/2000 and 2000/2001 and used to model fluxes in other winters. Comparison of daytime respiration derived from light-response analysis with nighttime tower measurements showed close correlation, with daytime respiration being on the average higher than nighttime respiration. Maxima of Pg and Re at Burns were both 20 g CO2?? m-2??d-1 in 1998. Maxima of Pg and R e at Dubois were 37 and 35 g CO2??m -2??d-1, respectively, in 1997. Mean annual gross primary production at Burns was 1 111 (range 475-1 715) g CO2?? m-2??y-1 about 30% lower than that at Dubois (1 602, range 963-2 162 g CO2??m-2??y-1). Across the years, both ecosystems were net sinks for atmospheric CO2 with a mean net ecosystem CO2 exchange of 82 g CO2?? m-2??y-1 at Burns and 253 g CO2?? m-2??y-1 at Dubois, but on a yearly basis either site could be a C sink or source, mostly depending on precipitation timing and amount. Total annual precipitation is not a good predictor of carbon sequestration across sites. Our results suggest that Fc should be partitioned into Pg and Re components to allow prediction of seasonal and yearly dynamics of CO2 fluxes.

  10. Environmental Impacts of the Use of Ecosystem Services: Case Study of Birdwatching

    NASA Astrophysics Data System (ADS)

    Kronenberg, Jakub

    2014-09-01

    The main reason for promoting the concept of ecosystem services lies in its potential to contribute to environmental conservation. Highlighting the benefits derived from ecosystems fosters an understanding of humans' dependence on nature, as users of ecosystem services. However, the act of using ecosystem services may not be environmentally neutral. As with the use of products and services generated within an economy, the use of ecosystem services may lead to unintended environmental consequences throughout the `ecosystem services supply chain.' This article puts forward a framework for analyzing environmental impacts related to the use of ecosystem services, indicating five categories of impact: (1) direct impacts (directly limiting the service's future availability); and four categories of indirect impacts, i.e., on broader ecosystem structures and processes, which can ultimately also affect the initial service: (2) impacts related to managing ecosystems to maximize the delivery of selected services (affecting ecosystems' capacity to provide other services); (3) impacts associated with accessing ecosystems to use their services (affecting other ecosystem components); (4) additional consumption of products, infrastructure or services required to use a selected ecosystem service, and their life-cycle environmental impacts; and (5) broader impacts on the society as a whole (environmental awareness of ecosystem service users and other stakeholders). To test the usefulness of this framework, the article uses the case study of birdwatching, which demonstrates all of the above categories of impacts. The article justifies the need for a broader consideration of environmental impacts related to the use of ecosystem services.

  11. Environmental impacts of the use of ecosystem services: case study of birdwatching.

    PubMed

    Kronenberg, Jakub

    2014-09-01

    The main reason for promoting the concept of ecosystem services lies in its potential to contribute to environmental conservation. Highlighting the benefits derived from ecosystems fosters an understanding of humans' dependence on nature, as users of ecosystem services. However, the act of using ecosystem services may not be environmentally neutral. As with the use of products and services generated within an economy, the use of ecosystem services may lead to unintended environmental consequences throughout the 'ecosystem services supply chain.' This article puts forward a framework for analyzing environmental impacts related to the use of ecosystem services, indicating five categories of impact: (1) direct impacts (directly limiting the service's future availability); and four categories of indirect impacts, i.e., on broader ecosystem structures and processes, which can ultimately also affect the initial service: (2) impacts related to managing ecosystems to maximize the delivery of selected services (affecting ecosystems' capacity to provide other services); (3) impacts associated with accessing ecosystems to use their services (affecting other ecosystem components); (4) additional consumption of products, infrastructure or services required to use a selected ecosystem service, and their life-cycle environmental impacts; and (5) broader impacts on the society as a whole (environmental awareness of ecosystem service users and other stakeholders). To test the usefulness of this framework, the article uses the case study of birdwatching, which demonstrates all of the above categories of impacts. The article justifies the need for a broader consideration of environmental impacts related to the use of ecosystem services. PMID:24993794

  12. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control?

    PubMed

    Macfadyen, Sarina; Gibson, Rachel; Polaszek, Andrew; Morris, Rebecca J; Craze, Paul G; Planqué, Robert; Symondson, William O C; Memmott, Jane

    2009-03-01

    While many studies have demonstrated that organic farms support greater levels of biodiversity, it is not known whether this translates into better provision of ecosystem services. Here we use a food-web approach to analyse the community structure and function at the whole-farm scale. Quantitative food webs from 10 replicate pairs of organic and conventional farms showed that organic farms have significantly more species at three trophic levels (plant, herbivore and parasitoid) and significantly different network structure. Herbivores on organic farms were attacked by more parasitoid species on organic farms than on conventional farms. However, differences in network structure did not translate into differences in robustness to simulated species loss and we found no difference in percentage parasitism (natural pest control) across a variety of host species. Furthermore, a manipulative field experiment demonstrated that the higher species richness of parasitoids on the organic farms did not increase mortality of a novel herbivore used to bioassay ecosystem service. The explanation for these differences is likely to include inherent differences in management strategies and landscape structure between the two farming systems.

  13. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    PubMed

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  14. Net ecosystem productivity of temperate grasslands in northern China: An upscaling study

    USGS Publications Warehouse

    Zhang, Li; Guo, Huadong; Jia, Gensuo; Wylie, Bruce; Gilmanov, Tagir; Howard, Daniel M.; Ji, Lei; Xiao, Jingfeng; Li, Jing; Yuan, Wenping; Zhao, Tianbao; Chen, Shiping; Zhou, Guangsheng; Kato, Tomomichi

    2014-01-01

    Grassland is one of the widespread biome types globally, and plays an important role in the terrestrial carbon cycle. We examined net ecosystem production (NEP) for the temperate grasslands in northern China from 2000 to 2010. We combined flux observations, satellite data, and climate data to develop a piecewise regression model for NEP, and then used the model to map NEP for grasslands in northern China. Over the growing season, the northern China's grassland had a net carbon uptake of 158 ± 25 g C m−2 during 2000–2010 with the mean regional NEP estimate of 126 Tg C. Our results showed generally higher grassland NEP at high latitudes (northeast) than at low latitudes (central and west) because of different grassland types and environmental conditions. In the northeast, which is dominated by meadow steppes, the growing season NEP generally reached 200–300 g C m−2. In the southwest corner of the region, which is partially occupied by alpine meadow systems, the growing season NEP also reached 200–300 g C m−2. In the central part, which is dominated by typical steppe systems, the growing season NEP generally varied in the range of 100–200 g C m−2. The NEP of the northern China's grasslands was highly variable through years, ranging from 129 (2001) to 217 g C m−2 growing season−1 (2010). The large interannual variations of NEP could be attributed to the sensitivity of temperate grasslands to climate changes and extreme climatic events. The droughts in 2000, 2001, and 2006 reduced the carbon uptake over the growing season by 11%, 29%, and 16% relative to the long-term (2000–2010) mean. Over the study period (2000–2010), precipitation was significantly correlated with NEP for the growing season (R2 = 0.35, p-value < 0.1), indicating that water availability is an important stressor for the productivity of the temperate grasslands in semi-arid and arid regions in northern China. We conclude that northern temperate grasslands have the potential to

  15. Lipid biomarker production and preservation in acidic ecosystems: Relevance to early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Jahnke, L. L.; Parenteau, M. N.; Harris, R.; Bristow, T.; Farmer, J. D.; Des Marais, D. J.

    2013-12-01

    Compared to relatively benign carbonate buffered marine environments, terrestrial Archean and Paleoproterozoic life was forced to cope with a broader range of pH values. In particular, acidic terrestrial ecosystems arose from the oxidation of reduced species in hydrothermal settings and crustal reservoirs of metal sulfides, creating acid sulfate conditions. While oxidation of reduced species is facilitated by reactions with molecular oxygen, acidic conditions also arose in Archean hydrothermal systems before the rise of oxygen (Van Kranendonk, 2006), expanding the range of time over which acidophiles could have existed on the early Earth. Acidic terrestrial habitats would have included acidic hydrothermal springs, acid sulfate soils, and possibly lakes and streams lacking substantial buffering capacity with sources of acidity in their catchments. Although acidic hot springs are considered extreme environments on Earth, robust and diverse microbial communities thrive in these habitats. Such acidophiles are found across all three domains of life and include both phototrophic and chemotrophic members. In this presentation, we examine hopanes and sterols that are characteristic of microbial communities living in acidic hydrothermal environments. Moreover we discuss taphonomic processes governing the capture and preservation of these biosignatures in acid environments. In particular, we discuss the production and early preservation of hopanoids and sterols in the following geological/mineralogical settings: 1) rapid entombment of microbes and organic matter by predominantly fine-grained silica; 2) rapid burial of organic matter by clay-rich, silica poor sediments; 3) and the survival of organics in iron oxide and sulfate rich sediments. We discovered and isolated an acid-tolerant purple non-sulfur anoxygenic phototroph from Lassen Volcanic National Park that synthesizes 3methyl-bacteriohopanepolyols. These compounds were previously thought to be exclusively made by

  16. Spatial patterns of forest composition, successional pathways, and biomass production among landscape ecosystems of northwestern Lower Michigan

    SciTech Connect

    Host, G.E.

    1987-01-01

    Spatial patterns of forest composition, successional pathways, and biomass production were related to glacial landforms in a regional area of northwestern Lower Michigan. There were three general objectives: (1) to develop a geomorphic map of the study area, (2) to define and describe upland forest ecosystems, and (3) to study variation in species composition, successional pattern, and biomass production among landforms and ecosystems. Glacial landforms were mapped using field observation, airphoto interpretation, and topographic profile analysis. Eighty sample stands were located in upland landscape positions using a landform-based stratified random sampling design. Compositional patterns detected in multivariate analysis of floristic data were used to form ecological species groups and relate vegetation pattern to environmental factors. Chi-squared analyses showed significant patterns of species distribution related to landform. Potential successional pathways were studied by comparing seedling and sapling densities with current overstory composition. Total above ground biomass and biomass increment varied significantly among landforms and ecosystems. Variation in the composition, production, and structure of upland forests exhibits a pattern that corresponds closely to the geomorphic surface on which the forests developed.

  17. Culture conditions affect cytotoxin production by Serratia marcescens.

    PubMed

    Carbonell, G V; Fonseca, B A; Figueiredo, L T; Darini, A L; Yanaguita, R M

    1996-12-31

    Cytotoxins have been implicated in the pathogenesis of bacterial infections. In this study, the influence of different culture conditions was evaluated on cytotoxin production of Serratia marcescens. Parameters such as culture media, incubation temperature, starting pH of culture medium, aeration, anaerobiosis, carbon sources, iron concentration in he culture media, and release of cell-bond toxin by polymyxin B were investigated. The data suggest that this cytotoxin is predominantly extracellular and is not induced by iron limitation. Aerobic culture with shaking resulted in higher cytotoxicity than static aerobic or anaerobic culture. Bacteria grown in glucose, sucrose or galactose were more cytotoxic than those grown in inositol or maltose. The culture conditions that were identified as optimal for cytotoxin production by Serratia marcescens were incubation temperature ranging from 30 to 37 degrees C, in medium adjusted pH 8.5, with shaking. This work will contribute to further studies on the identification of this cytotoxic activity.

  18. ECOSYSTEM GROWTH AND DEVELOPMENT

    EPA Science Inventory

    Thermodynamically, ecosystem growth and development is the process by which energy throughflow and stored biomass increase. Several proposed hypotheses describe the natural tendencies that occur as an ecosystem matures, and here, we consider five: minimum entropy production, maxi...

  19. Subterranean ventilation: a key but poorly known process affecting the carbon balance of semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    López Ballesteros, Ana; Sánchez Cañete, Enrique P.; Serrano Ortiz, Penélope; Kowalski, Andrew S.; Oyonarte, Cecilio; Domingo, Francisco

    2016-04-01

    Subterranean ventilation, conceived as the advective transport of CO2-rich air from the vadose zone to the atmosphere through a porous media (i.e. soil or snow; Sánchez-Cañete et al., 2013), has arisen as an important process contributing to the carbon (C) balance of Mediterranean ecosystems (Kowalski et al., 2008; Sánchez-Cañete et al., 2011; Serrano-Ortiz et al., 2014), apart from other well-known biotic processes (i.e. plant photosynthesis, autotrophic and heterotrophic respiration). Recent studies have linked this subterranean CO2 release to fluctuations in the friction velocity or wind speed under drought conditions when water-free soil pores enable air transport (Rey et al., 2012a, 2013), however, barometric pressure variations has been suggested as another important driver (Sánchez-Cañete et al., 2013). In this study, we investigate this process in newly studied semi-arid grassland located in SE Spain, as the ideal ecosystem to do so given the great length of the dry season and the slight biotic activity limited to the winter season. Preliminary results, based on unpublished analyzed eddy covariance data and subterranean CO2 molar fraction measurements, confirm the presence of ventilation events from May to October for seven years 2009-2015. During these events, increases in the friction velocity correlates with sizeable CO2 emissions of up to ca.10 μmol m‑2 s‑1, and CO2 molar fraction regularly drops 2000-3000 ppm just after the turbulence peak, at several depths below the soil surface (0.15 and 1.5 m). Additionally, during the driest period (July-August), the friction velocity explains from 37% to 57% of the net C emission variability. On the other hand, the model residuals do not show a significant relationship, neither with air pressure nor with soil water content. Overall, the results found in this newly monitored site demonstrate, as shown by past research, the relevance of subterranean ventilation as a key process in the C balance of

  20. Subterranean ventilation: a key but poorly known process affecting the carbon balance of semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    López Ballesteros, Ana; Sánchez Cañete, Enrique P.; Serrano Ortiz, Penélope; Kowalski, Andrew S.; Oyonarte, Cecilio; Domingo, Francisco

    2016-04-01

    Subterranean ventilation, conceived as the advective transport of CO2-rich air from the vadose zone to the atmosphere through a porous media (i.e. soil or snow; Sánchez-Cañete et al., 2013), has arisen as an important process contributing to the carbon (C) balance of Mediterranean ecosystems (Kowalski et al., 2008; Sánchez-Cañete et al., 2011; Serrano-Ortiz et al., 2014), apart from other well-known biotic processes (i.e. plant photosynthesis, autotrophic and heterotrophic respiration). Recent studies have linked this subterranean CO2 release to fluctuations in the friction velocity or wind speed under drought conditions when water-free soil pores enable air transport (Rey et al., 2012a, 2013), however, barometric pressure variations has been suggested as another important driver (Sánchez-Cañete et al., 2013). In this study, we investigate this process in newly studied semi-arid grassland located in SE Spain, as the ideal ecosystem to do so given the great length of the dry season and the slight biotic activity limited to the winter season. Preliminary results, based on unpublished analyzed eddy covariance data and subterranean CO2 molar fraction measurements, confirm the presence of ventilation events from May to October for seven years 2009-2015. During these events, increases in the friction velocity correlates with sizeable CO2 emissions of up to ca.10 μmol m-2 s-1, and CO2 molar fraction regularly drops 2000-3000 ppm just after the turbulence peak, at several depths below the soil surface (0.15 and 1.5 m). Additionally, during the driest period (July-August), the friction velocity explains from 37% to 57% of the net C emission variability. On the other hand, the model residuals do not show a significant relationship, neither with air pressure nor with soil water content. Overall, the results found in this newly monitored site demonstrate, as shown by past research, the relevance of subterranean ventilation as a key process in the C balance of

  1. Food-web constraints on biodiversity–ecosystem functioning relationships

    PubMed Central

    Thébault, Elisa; Loreau, Michel

    2003-01-01

    The consequences of biodiversity loss for ecosystem functioning and ecosystem services have aroused considerable interest during the past decade. Recent work has focused mainly on the impact of species diversity within single trophic levels, both experimentally and theoretically. Experiments have usually showed increased plant biomass and productivity with increasing plant diversity. Changes in biodiversity, however, may affect ecosystem processes through trophic interactions among species as well. An important current challenge is to understand how these trophic interactions affect the relationship between biodiversity and ecosystem functioning. Here we present a mechanistic model of an ecosystem with multiple trophic levels in which plants compete for a limiting soil nutrient. In contrast to previous studies that focused on single trophic levels, we show that plant biomass does not always increase with plant diversity and that changes in biodiversity can lead to complex if predictable changes in ecosystem processes. Our analysis demonstrates that food-web structure can profoundly influence ecosystem properties. PMID:14638942

  2. A Simulation Model for Studying Effects of Pollution and Freshwater Inflow on Secondary Productivity in an Ecosystem. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1974-01-01

    A mathematical model of an ecosystem is developed. Secondary productivity is evaluated in terms of man related and controllable factors. Information from an existing physical parameters model is used as well as pertinent biological measurements. Predictive information of value to estuarine management is presented. Biological, chemical, and physical parameters measured in order to develop models of ecosystems are identified.

  3. Application of a Lower Food Web Ecosystem Productivity Model for Investigating Dynamics of the Invasive Species Bythortrephes longimanus in Lake Michigan

    EPA Science Inventory

    A Lake Michigan Ecosystem Model (LM-Eco) that includes a detailed description of trophic levels and their interactions was developed for Lake Michigan. The LM-Eco model constitutes a first step toward a comprehensive Lake Michigan ecosystem productivity model to investigate ecos...

  4. On the causes of rising gross ecosystem productivity in a regenerating clearcut environment: leaf area vs. species composition.

    PubMed

    Khomik, Myroslava; Williams, Christopher A; Vanderhoof, Melanie K; MacLean, Richard G; Dillen, Sophie Y

    2014-07-01

    Clearcutting a forest ecosystem can result in a drastic reduction of stand productivity. Despite the severity of this disturbance type, past studies have found that the productivity of young regenerating stands can quickly rebound, approaching that of mature undisturbed stands within a few years. One of the obvious reasons is increased leaf area (LA) with each year of recovery. However, a less obvious reason may be the variability in species composition and distribution during the natural regeneration process. The purpose of this study was to investigate to what extent the increase in gross ecosystem productivity (GEP), observed during the first 4 years of recovery in a naturally regenerating clearcut stand, was due to (i) an overall expansion of leaf area and (ii) an increase in the canopy's photosynthetic capacity stemming from either species compositional shifts or drift in physiological traits within species. We found that the multi-year rise in GEP following harvest was clearly attributed to the expansion of LA rather than a change in vegetation composition. Sizeable changes in the relative abundance of species were masked by remarkably similar leaf physiological attributes for a range of vegetation types present in this early-successional environment. Comparison of upscaled leaf-chamber estimates with eddy-covariance-based estimates of light-response curves revealed a broad consistency in both maximum photosynthetic capacity and quantum yield efficiency. The approaches presented here illustrate how chamber- and ecosystem-scale measurements of gas exchange can be blended with species-level LA data to draw conclusive inferences about changes in ecosystem processes over time in a highly dynamic environment.

  5. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    PubMed

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  6. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    PubMed

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  7. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems

    PubMed Central

    Williams, Alwyn; Kane, Daniel A.; Ewing, Patrick M.; Atwood, Lesley W.; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S.; Grandy, A. Stuart; Huerd, Sheri C.; Hunter, Mitchell C.; Koide, Roger T.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde S.; Spokas, Kurt A.; Yannarell, Anthony C.; Jordan, Nicholas R.

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services); and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services

  8. Annual primary production: Patterns and mechanisms of change in a nutrient-rich tidal ecosystem

    USGS Publications Warehouse

    Jassby, Alan D.; Cloern, James E.; Cole, B.E.

    2002-01-01

    Although nutrient supply often underlies long-term changes in aquatic primary production, other regulatory processes can be important. The Sacramento-San Joaquin River Delta, a complex of tidal waterways forming the landward portion of the San Francisco Estuary, has ample nutrient supplies, enabling us to examine alternate regulatory mechanisms over a 21-yr period. Delta-wide primary productivity was reconstructed from historical water quality data for 1975–1995. Annual primary production averaged 70 g C m−2, but it varied by over a factor of five among years. At least four processes contributed to this variability: (1) invasion of the clam Potamocorbula amurensis led to a persistent decrease in phytoplankton biomass (chlorophyll a) after 1986; (2) a long-term decline in total suspended solids—probably at least partly because of upstream dam construction—increased water transparency and phytoplankton growth rate; (3) river inflow, reflecting climate variability, affected biomass through fluctuations in flushing and growth rates through fluctuations in total suspended solids; and (4) an additional pathway manifesting as a long-term decline in winter phytoplankton biomass has been identified, but its genesis is uncertain. Overall, the Delta lost 43% in annual primary production during the period. Given the evidence for food limitation of primary consumers, these findings provide a partial explanation for widespread Delta species declines over the past few decades. Turbid nutrient-rich systems such as the Delta may be inherently more variable than other tidal systems because certain compensatory processes are absent. Comparisons among systems, however, can be tenuous because conclusions about the magnitude and mechanisms of variability are dependent on length of data record.  

  9. Factors affecting the bioaccessibility of fluoride from seafood products.

    PubMed

    Rocha, R A; de la Fuente, B; Clemente, M J; Ruiz, A; Vélez, D; Devesa, V

    2013-09-01

    Fluoride is considered important for health because of its beneficial effect on the prevention of dental caries and on bone development in the child population. However, excessive intake has negative effects. The main pathway for exposure is oral, through consumption of drinking water, and some food products. Therefore its bioaccessibility (quantity of the element solubilized during the digestive process) is a parameter to be considered when estimating the risk/benefit associated with this element. The aim of the present study was to evaluate the influence of the digestion phase, gastrointestinal digestion factors (pH, pepsin and bile salt concentrations) and the presence of cations on the bioaccessibility of fluoride from seafood products. The results show that the solubilization of fluoride takes place entirely during the gastric phase. Its bioaccessibility is strongly influenced by conditions that favor the formation of insoluble complexes of fluoride with other elements present in the matrix. The factors that are most influential in reducing its bioaccessibility are the increase in pH in the gastric phase, the presence of cations, especially in the intestinal phase, and a low concentration of bile salts.

  10. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition.

    PubMed

    Pound, Katrina L; Lawrence, Gregory B; Passy, Sophia I

    2013-09-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification,' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  11. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition

    USGS Publications Warehouse

    Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.

    2013-01-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  12. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition.

    PubMed

    Pound, Katrina L; Lawrence, Gregory B; Passy, Sophia I

    2013-09-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification,' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  13. Modeling compensatory responses of ecosystem-scale water fluxes in forests affected by pine and spruce beetle mortality

    NASA Astrophysics Data System (ADS)

    Millar, D.; Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Reed, D. E.

    2015-12-01

    Mountain pine beetle (Dendroctonus ponderosae) and spruce beetle (Dendroctonus rufipennis) epidemics have led to extensive mortality in lodgepole pine (Pinus contorta) and Engelmann spruce (Picea engelmannii) forests in the Rocky Mountains of the western US. In both of these tree species, mortality results from hydraulic failure within the xylem, due to blue stain fungal infection associated with beetle attack. However, the impacts of these disturbances on ecosystem-scale water fluxes can be complex, owing to their variable and transient nature. In this work, xylem scaling factors that reduced whole-tree conductance were initially incorporated into a forest ecohydrological model (TREES) to simulate the impact of beetle mortality on evapotranspiration (ET) in both pine and spruce forests. For both forests, simulated ET was compared to observed ET fluxes recorded using eddy covariance techniques. Using xylem scaling factors, the model overestimated the impact of beetle mortality, and observed ET fluxes were approximately two-fold higher than model predictions in both forests. The discrepancy between simulated and observed ET following the onset of beetle mortality may be the result of spatial and temporal heterogeneity of plant communities within the foot prints of the eddy covariance towers. Since simulated ET fluxes following beetle mortality in both forests only accounted for approximately 50% of those observed in the field, it is possible that newly established understory vegetation in recently killed tree stands may play a role in stabilizing ecosystem ET fluxes. Here, we further investigate the unaccounted for ET fluxes in the model by breaking it down into multiple cohorts that represent live trees, dying trees, and understory vegetation that establishes following tree mortality.

  14. Root Diseases and Exotic Ecosystems: Implications for Long-Term Site Productivity

    SciTech Connect

    Otrosina, W. J.; Garbelotto, M.

    1997-09-01

    Management activities and various land uses have taken place recently that have dramatically altered edaphic and environmental conditions under which forest tree species and ecosystems have evolved. Sequoia giganteum stands, fire suppression in this fire dependent ecosystem has resulted in increased mortality due to Heterobasidion annosum. On hypothesis is that fire suppression results in increased encroachment of true firs, easily infected by S-group Heterobasidion annosum, thereby transferring the disease via root contacts with S. giganteum. Existence of a hybrid with S and P ISG's of H. annosum may be evidence for anthropogenic influences on evolutionary pathways in this pathogen.

  15. Factors Affecting the Production of Vietnamese Tones: A Study of American Learners

    ERIC Educational Resources Information Center

    Nguyen, Hanh thi; Macken, Marlys A.

    2008-01-01

    This study investigates factors that affect the accuracy of tone production by American students of Vietnamese as a second language (L2). Nine hypotheses are examined, each of which isolates a factor expected to affect production accuracy: (a) task type, (b) the position of a tone in a clause, (c) discourse distance between a model provided by a…

  16. How hollow melanosomes affect iridescent colour production in birds.

    PubMed

    Eliason, Chad M; Bitton, Pierre-Paul; Shawkey, Matthew D

    2013-09-22

    Developmental constraints and trade-offs can limit diversity, but organisms have repeatedly evolved morphological innovations that overcome these limits by expanding the range and functionality of traits. Iridescent colours in birds are commonly produced by melanin-containing organelles (melanosomes) organized into nanostructured arrays within feather barbules. Variation in array type (e.g. multilayers and photonic crystals, PCs) is known to have remarkable effects on plumage colour, but the optical consequences of variation in melanosome shape remain poorly understood. Here, we used a combination of spectrophotometric, experimental and theoretical methods to test how melanosome hollowness--a morphological innovation largely restricted to birds--affects feather colour. Optical analyses of hexagonal close-packed arrays of hollow melanosomes in two species, wild turkeys (Meleagris gallopavo) and violet-backed starlings (Cinnyricinclus leucogaster), indicated that they function as two-dimensional PCs. Incorporation of a larger dataset and optical modelling showed that, compared with solid melanosomes, hollow melanosomes allow birds to produce distinct colours with the same energetically favourable, close-packed configurations. These data suggest that a morphological novelty has, at least in part, allowed birds to achieve their vast morphological and colour diversity. PMID:23902909

  17. How hollow melanosomes affect iridescent colour production in birds

    PubMed Central

    Eliason, Chad M.; Bitton, Pierre-Paul; Shawkey, Matthew D.

    2013-01-01

    Developmental constraints and trade-offs can limit diversity, but organisms have repeatedly evolved morphological innovations that overcome these limits by expanding the range and functionality of traits. Iridescent colours in birds are commonly produced by melanin-containing organelles (melanosomes) organized into nanostructured arrays within feather barbules. Variation in array type (e.g. multilayers and photonic crystals, PCs) is known to have remarkable effects on plumage colour, but the optical consequences of variation in melanosome shape remain poorly understood. Here, we used a combination of spectrophotometric, experimental and theoretical methods to test how melanosome hollowness—a morphological innovation largely restricted to birds—affects feather colour. Optical analyses of hexagonal close-packed arrays of hollow melanosomes in two species, wild turkeys (Meleagris gallopavo) and violet-backed starlings (Cinnyricinclus leucogaster), indicated that they function as two-dimensional PCs. Incorporation of a larger dataset and optical modelling showed that, compared with solid melanosomes, hollow melanosomes allow birds to produce distinct colours with the same energetically favourable, close-packed configurations. These data suggest that a morphological novelty has, at least in part, allowed birds to achieve their vast morphological and colour diversity. PMID:23902909

  18. How hollow melanosomes affect iridescent colour production in birds.

    PubMed

    Eliason, Chad M; Bitton, Pierre-Paul; Shawkey, Matthew D

    2013-09-22

    Developmental constraints and trade-offs can limit diversity, but organisms have repeatedly evolved morphological innovations that overcome these limits by expanding the range and functionality of traits. Iridescent colours in birds are commonly produced by melanin-containing organelles (melanosomes) organized into nanostructured arrays within feather barbules. Variation in array type (e.g. multilayers and photonic crystals, PCs) is known to have remarkable effects on plumage colour, but the optical consequences of variation in melanosome shape remain poorly understood. Here, we used a combination of spectrophotometric, experimental and theoretical methods to test how melanosome hollowness--a morphological innovation largely restricted to birds--affects feather colour. Optical analyses of hexagonal close-packed arrays of hollow melanosomes in two species, wild turkeys (Meleagris gallopavo) and violet-backed starlings (Cinnyricinclus leucogaster), indicated that they function as two-dimensional PCs. Incorporation of a larger dataset and optical modelling showed that, compared with solid melanosomes, hollow melanosomes allow birds to produce distinct colours with the same energetically favourable, close-packed configurations. These data suggest that a morphological novelty has, at least in part, allowed birds to achieve their vast morphological and colour diversity.

  19. Drivers and uncertainties of future global marine primary production in marine ecosystem models

    NASA Astrophysics Data System (ADS)

    Laufkötter, C.; Vogt, M.; Gruber, N.; Aita-Noguchi, M.; Aumont, O.; Bopp, L.; Buitenhuis, E.; Doney, S. C.; Dunne, J.; Hashioka, T.; Hauck, J.; Hirata, T.; John, J.; Le Quéré, C.; Lima, I. D.; Nakano, H.; Seferian, R.; Totterdell, I.; Vichi, M.; Völker, C.

    2015-02-01

    Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean and mostly ignored the large inter-model differences. Here, we analyze model simulated changes of NPP for the 21st century under IPCC's high emission scenario RCP8.5 using a suite of nine coupled carbon-climate Earth System Models with embedded marine ecosystem models with a focus on the spread between the different models and the underlying reasons. Globally, five out of the nine models show a decrease in NPP over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between -25 and +40%. In this region, the inter-quartile range of the differences between the 2012-2031 average and the 2081-2100 average is up to 3 mol C m-2 yr-1. These large differences in future change mirror large differences in present day NPP. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification and reduced upwelling. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduces NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while the remaining model simulates changes of less than 0.5%. While there is more consistency in the modeled increase in NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but is also

  20. Drivers and uncertainties of future global marine primary production in marine ecosystem models

    NASA Astrophysics Data System (ADS)

    Laufkötter, C.; Vogt, M.; Gruber, N.; Aita-Noguchi, M.; Aumont, O.; Bopp, L.; Buitenhuis, E.; Doney, S. C.; Dunne, J.; Hashioka, T.; Hauck, J.; Hirata, T.; John, J.; Le Quéré, C.; Lima, I. D.; Nakano, H.; Seferian, R.; Totterdell, I.; Vichi, M.; Völker, C.

    2015-12-01

    Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon-climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between -25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve

  1. Establishing Research Strategies, Methodologies and Technologies to Link Genomics and Proteomics to Seagrass Productivity, Community Metabolism, and Ecosystem Carbon Fluxes

    PubMed Central

    Mazzuca, Silvia; Björk, M.; Beer, S.; Felisberto, P.; Gobert, S.; Procaccini, G.; Runcie, J.; Silva, J.; Borges, A. V.; Brunet, C.; Buapet, P.; Champenois, W.; Costa, M. M.; D’Esposito, D.; Gullström, M.; Lejeune, P.; Lepoint, G.; Olivé, I.; Rasmusson, L. M.; Richir, J.; Ruocco, M.; Serra, I. A.; Spadafora, A.; Santos, Rui

    2013-01-01

    A complete understanding of the mechanistic basis of marine ecosystem functioning is only possible through integrative and interdisciplinary research. This enables the prediction of change and possibly the mitigation of the consequences of anthropogenic impacts. One major aim of the European Cooperation in Science and Technology (COST) Action ES0609 “Seagrasses productivity. From genes to ecosystem management,” is the calibration and synthesis of various methods and the development of innovative techniques and protocols for studying seagrass ecosystems. During 10 days, 20 researchers representing a range of disciplines (molecular biology, physiology, botany, ecology, oceanography, and underwater acoustics) gathered at The Station de Recherches Sous-marines et Océanographiques (STARESO, Corsica) to study together the nearby Posidonia oceanica meadow. STARESO is located in an oligotrophic area classified as “pristine site” where environmental disturbances caused by anthropogenic pressure are exceptionally low. The healthy P. oceanica meadow, which grows in front of the research station, colonizes the sea bottom from the surface to 37 m depth. During the study, genomic and proteomic approaches were integrated with ecophysiological and physical approaches with the aim of understanding changes in seagrass productivity and metabolism at different depths and along daily cycles. In this paper we report details on the approaches utilized and we forecast the potential of the data that will come from this synergistic approach not only for P. oceanica but for seagrasses in general. PMID:23515425

  2. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China.

    PubMed

    Hou, Enqing; Chen, Chengrong; McGroddy, Megan E; Wen, Dazhi

    2012-01-01

    Nitrogen (N) is considered the dominant limiting nutrient in temperate regions, while phosphorus (P) limitation frequently occurs in tropical regions, but in subtropical regions nutrient limitation is poorly understood. In this study, we investigated N and P contents and N:P ratios of foliage, forest floors, fine roots and mineral soils, and their relationships with community biomass, litterfall C, N and P productions, forest floor turnover rate, and microbial processes in eight mature and old-growth subtropical forests (stand age >80 yr) at Dinghushan Biosphere Reserve, China. Average N:P ratios (mass based) in foliage, litter (L) layer and mixture of fermentation and humus (F/H) layer, and fine roots were 28.3, 42.3, 32.0 and 32.7, respectively. These values are higher than the critical N:P ratios for P limitation proposed (16-20 for foliage, ca. 25 for forest floors). The markedly high N:P ratios were mainly attributed to the high N concentrations of these plant materials. Community biomass, litterfall C, N and P productions, forest floor turnover rate and microbial properties were more strongly related to measures of P than N and frequently negatively related to the N:P ratios, suggesting a significant role of P availability in determining ecosystem production and productivity and nutrient cycling at all the study sites except for one prescribed disturbed site where N availability may also be important. We propose that N enrichment is probably a significant driver of the potential P limitation in the study area. Low P parent material may also contribute to the potential P limitation. In general, our results provided strong evidence supporting a significant role for P availability, rather than N availability, in determining ecosystem primary productivity and ecosystem processes in subtropical forests of China.

  3. Nutrient Limitation on Ecosystem Productivity and Processes of Mature and Old-Growth Subtropical Forests in China

    PubMed Central

    Hou, Enqing; Chen, Chengrong; McGroddy, Megan E.; Wen, Dazhi

    2012-01-01

    Nitrogen (N) is considered the dominant limiting nutrient in temperate regions, while phosphorus (P) limitation frequently occurs in tropical regions, but in subtropical regions nutrient limitation is poorly understood. In this study, we investigated N and P contents and N:P ratios of foliage, forest floors, fine roots and mineral soils, and their relationships with community biomass, litterfall C, N and P productions, forest floor turnover rate, and microbial processes in eight mature and old-growth subtropical forests (stand age >80 yr) at Dinghushan Biosphere Reserve, China. Average N:P ratios (mass based) in foliage, litter (L) layer and mixture of fermentation and humus (F/H) layer, and fine roots were 28.3, 42.3, 32.0 and 32.7, respectively. These values are higher than the critical N:P ratios for P limitation proposed (16–20 for foliage, ca. 25 for forest floors). The markedly high N:P ratios were mainly attributed to the high N concentrations of these plant materials. Community biomass, litterfall C, N and P productions, forest floor turnover rate and microbial properties were more strongly related to measures of P than N and frequently negatively related to the N:P ratios, suggesting a significant role of P availability in determining ecosystem production and productivity and nutrient cycling at all the study sites except for one prescribed disturbed site where N availability may also be important. We propose that N enrichment is probably a significant driver of the potential P limitation in the study area. Low P parent material may also contribute to the potential P limitation. In general, our results provided strong evidence supporting a significant role for P availability, rather than N availability, in determining ecosystem primary productivity and ecosystem processes in subtropical forests of China. PMID:23284873

  4. Clinorotation affects morphology and ethylene production in soybean seedlings

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Peterson, B. V.; Guikema, J. A.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1996-01-01

    The microgravity environment of spaceflight influences growth, morphology and metabolism in etiolated germinating soybean. To determine if clinorotation will similarly impact these processes, we conducted ground-based studies in conjunction with two space experiment opportunities. Soybean (Glycine max [L.] Merr.) seeds were planted within BRIC (Biological Research In Canister) canisters and grown for seven days at 20 degrees C under clinorotation (1 rpm) conditions or in a stationary upright mode. Gas samples were taken daily and plants were harvested after seven days for measurement of growth and morphology. Compared to the stationary upright controls, plants exposed to clinorotation exhibited increased root length (125% greater) and fresh weight (42% greater), whereas shoot length and fresh weight decreased by 33% and 16% respectively. Plants grown under clinorotation produced twice as much ethylene as the stationary controls. Seedlings treated with triiodo benzoic acid (TIBA), an auxin transport inhibitor, under clinorotation produced 50% less ethylene than the untreated control subjected to the same gravity treatment, whereas a treatment with 2,4-D increased ethylene by five-fold in the clinorotated plants. These data suggest that slow clinorotation influences biomass partitioning and ethylene production in etiolated soybean plants.

  5. Examining Ecological and Ecosystem Level Impacts of Aquatic Invasive Species in Lake Michigan Using An Ecosystem Productivity Model, LM-Eco

    EPA Science Inventory

    Ecological and ecosystem-level impacts of aquatic invasive species in Lake Michigan were examined using the Lake Michigan Ecosystem Model (LM-Eco). The LM-Eco model includes a detailed description of trophic levels and their interactions within the lower food web of Lake Michiga...

  6. Need for ecosystem management of large rivers and their floodplains: These phenomenally productive ecosystems produce fish and wildlife and preserve species

    SciTech Connect

    Sparks, R.E.

    1995-03-01

    Most of the 79 large river floodplain ecosystems in the world have been altered by human activities and the rest are likely to be altered soon. Ecosystem management works to guide rather than thwart, natural processes. This article describes briefly the history of floodplain and flood plain management and then focuses on the importance of large river-floodplain ecosystems and some of the consequences of altering the natural river processes, functions, and connectivity. The species-focused management system typically employed by natural resource agencies is contrasted to the ecosystem approach to river-flood plain management. Ecological management is defined as working with the natural driving forces and variability of the ecosystems with the goal of maintaining or recovering biological integrity. Flood-pulses are also a focus because they drive the system and the great floods on several continents in the last years. 88 refs., 10 figs.

  7. Predicting future US water yield and ecosystem productivity by linking an ecohydrological model to WRF dynamically downscaled climate projections

    NASA Astrophysics Data System (ADS)

    Sun, S.; Sun, G.; Cohen, E.; McNulty, S. G.; Caldwell, P.; Duan, K.; Zhang, Y.

    2015-12-01

    Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. We evaluated the future (2031-2060) changes in evapotranspiration (ET), water yield (Q) and gross primary productivity (GPP) from the baseline period of 1979-2007 across the 82 773 watersheds (12 digit Hydrologic Unit Code level) in the conterminous US (CONUS), and evaluated the future annual and monthly changes of hydrology and ecosystem productivity for the 18 Water Resource Regions (WRRs) or 2-digit HUCs. Across the CONUS, the future multi-year means show increases in annual precipitation (P) of 45 mm yr-1 (6 %), 1.8 °C increase in temperature (T), 37 mm yr-1 (7 %) increase in ET, 9 mm yr-1 (3 %) increase in Q, and 106 g C m-2 yr-1 (9 %) increase in GPP. Response to climate change was highly variable across the 82, 773 watersheds, but in general, the majority would see consistent increases in all variables evaluated. Over half of the 82 773 watersheds, mostly found in the northeast and the southern part of the southwest would have an increase in annual Q (>100 mm yr-1 or 20 %). This study provides an integrated method and example for comprehensive assessment of the potential impacts of climate change on watershed water balances and ecosystem productivity at high spatial and temporal resolutions. Results will be useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources in the face of climate change.

  8. Impacts of soil faunal community composition on model grassland ecosystems.

    PubMed

    Bradford, M A; Jones, T H; Bardgett, R D; Black, H I J; Boag, B; Bonkowski, M; Cook, R; Eggers, T; Gange, A C; Grayston, S J; Kandeler, E; McCaig, A E; Newington, J E; Prosser, J I; Setälä, H; Staddon, P L; Tordoff, G M; Tscherko, D; Lawton, J H

    2002-10-18

    Human impacts, including global change, may alter the composition of soil faunal communities, but consequences for ecosystem functioning are poorly understood. We constructed model grassland systems in the Ecotron controlled environment facility and manipulated soil community composition through assemblages of different animal body sizes. Plant community composition, microbial and root biomass, decomposition rate, and mycorrhizal colonization were all markedly affected. However, two key ecosystem processes, aboveground net primary productivity and net ecosystem productivity, were surprisingly resistant to these changes. We hypothesize that positive and negative faunal-mediated effects in soil communities cancel each other out, causing no net ecosystem effects.

  9. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem

    NASA Astrophysics Data System (ADS)

    Laufkötter, C.; Vogt, M.; Gruber, N.; Aumont, O.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Hauck, J.; John, J. G.; Lima, I. D.; Seferian, R.; Völker, C.

    2015-12-01

    Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralization of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under IPCC's high emission scenario RCP8.5, and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12 %. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralization is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralization or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralization. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11-94 % in the Southern Ocean) and the diatom contribution to particle formation (0.6-3.8 times lower/higher than their contribution to biomass). As a consequence, changes in diatom concentration are a strong driver

  10. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem

    NASA Astrophysics Data System (ADS)

    Laufkötter, Charlotte; Vogt, Meike; Gruber, Nicolas; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Hauck, Judith; John, Jasmin G.; Lima, Ivan D.; Seferian, Roland; Völker, Christoph

    2016-07-01

    Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12 %. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11-94 % in the Southern Ocean) and the diatom contribution to particle formation (0.6-3.8 times higher than their

  11. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems.

    PubMed

    Forkel, Matthias; Carvalhais, Nuno; Rödenbeck, Christian; Keeling, Ralph; Heimann, Martin; Thonicke, Kirsten; Zaehle, Sönke; Reichstein, Markus

    2016-02-12

    Atmospheric monitoring of high northern latitudes (above 40°N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s, but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes relative to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. We found that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems. Our results underscore the importance of climate-vegetation-carbon cycle feedbacks at high latitudes; moreover, they indicate that in recent decades, photosynthetic carbon uptake has reacted much more strongly to warming than have carbon release processes.

  12. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded.

  13. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded. PMID:18707753

  14. Grazing management as it affects nutrition, animal production and economics of beef production.

    PubMed

    Parsons, S D; Allison, C D

    1991-03-01

    Until recently, the nutritional fate of the grazing animal has been largely ignored by both animal and range scientists despite the economic dependence of the extensive livestock industry on nutrition from grass. Of the three factors that can be manipulated to improve profit gross margin per animal, is one that is directly affected by nutrition and, hence, grazing management. The relationship between economics and grazing management may be summarized as: Gross margin = f(Animal Performance); Animal Performance = f(nutrition); Nutrition = f(grazing). Economical beef production must consider the needs of the animal and the forage plant at the same time. The health of the sward must be maintained while improving individual animal performance and simultaneously increasing stocking rate. Generally, plants that have been defoliated require a period of recovery before again being grazed. A sward is kept in a vigorous state by preventing repetitive defoliation at the one extreme, and avoiding excessive shading (mature growth) of photosynthetic material at the other. This state is best achieved where livestock grazing is controlled. For any individual paddock, periods of grazing are followed by periods that allow adequate physiologic recovery of the plants. A grazing regimen that keeps the plant in a healthy state is fortuitously also well suited to the nutritional requirements of the animal. Animals on overgrazed pastures are likely to suffer from inadequate feed intake because of deficiencies in feed quantity. Conversely, on over-rested pastures, intake deficiency results from paucity in feed quality. On most unmanaged ranges, overgrazed and over-rested plants are likely to be found side by side. By controlling duration of the rest period as well as duration of the grazing period through pasture subdivision, requirements of both the plant and the animal can be met. With artificially high economic demands placed on animal production, some form of supplementation is

  15. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems.

    PubMed

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-04-19

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle.

  16. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-04-01

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle.

  17. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems

    PubMed Central

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-01-01

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle. PMID:27091439

  18. Attenuation of pharmaceuticals and their transformation products in a wastewater treatment plant and its receiving river ecosystem.

    PubMed

    Aymerich, I; Acuña, V; Barceló, D; García, M J; Petrovic, M; Poch, M; Rodriguez-Mozaz, S; Rodríguez-Roda, I; Sabater, S; von Schiller, D; Corominas, Ll

    2016-09-01

    Pharmaceuticals are designed to improve human and animal health, but may also be a threat to freshwater ecosystems, particularly after receiving urban or wastewater treatment plant (WWTP) effluents. Knowledge on the fate and attenuation of pharmaceuticals in engineered and natural ecosystems is rather fragmented, and comparable methods are needed to facilitate the comprehension of those processes amongst systems. In this study the dynamics of 8 pharmaceuticals (acetaminophen, sulfapyridine, sulfamethoxazole, carbamazepine, venlafaxine, ibuprofen, diclofenac, diazepam) and 11 of their transformation products were investigated in a WWTP and the associated receiving river ecosystem. During 3 days, concentrations of these compounds were quantified at the influents, effluents, and wastage of the WWTP, and at different distances downstream the effluent at the river. Attenuation (net balance between removal and release from and to the water column) was estimated in both engineered and natural systems using a comparable model-based approach by considering different uncertainty sources (e.g. chemical analysis, sampling, and flow measurements). Results showed that pharmaceuticals load reduction was higher in the WWTP, but attenuation efficiencies (as half-life times) were higher in the river. In particular, the load of only 5 out of the 19 pharmaceuticals was reduced by more than 90% at the WWTP, while the rest were only partially or non-attenuated (or released) and discharged into the receiving river. At the river, only the load of ibuprofen was reduced by more than 50% (out of the 6 parent compounds present in the river), while partial and non-attenuation (or release) was observed for some of their transformation products. Linkages in the routing of some pharmaceuticals (venlafaxine, carbamazepine, ibuprofen and diclofenac) and their corresponding transformation products were also identified at both WWTP and river. Finally, the followed procedure showed that dynamic

  19. Attenuation of pharmaceuticals and their transformation products in a wastewater treatment plant and its receiving river ecosystem.

    PubMed

    Aymerich, I; Acuña, V; Barceló, D; García, M J; Petrovic, M; Poch, M; Rodriguez-Mozaz, S; Rodríguez-Roda, I; Sabater, S; von Schiller, D; Corominas, Ll

    2016-09-01

    Pharmaceuticals are designed to improve human and animal health, but may also be a threat to freshwater ecosystems, particularly after receiving urban or wastewater treatment plant (WWTP) effluents. Knowledge on the fate and attenuation of pharmaceuticals in engineered and natural ecosystems is rather fragmented, and comparable methods are needed to facilitate the comprehension of those processes amongst systems. In this study the dynamics of 8 pharmaceuticals (acetaminophen, sulfapyridine, sulfamethoxazole, carbamazepine, venlafaxine, ibuprofen, diclofenac, diazepam) and 11 of their transformation products were investigated in a WWTP and the associated receiving river ecosystem. During 3 days, concentrations of these compounds were quantified at the influents, effluents, and wastage of the WWTP, and at different distances downstream the effluent at the river. Attenuation (net balance between removal and release from and to the water column) was estimated in both engineered and natural systems using a comparable model-based approach by considering different uncertainty sources (e.g. chemical analysis, sampling, and flow measurements). Results showed that pharmaceuticals load reduction was higher in the WWTP, but attenuation efficiencies (as half-life times) were higher in the river. In particular, the load of only 5 out of the 19 pharmaceuticals was reduced by more than 90% at the WWTP, while the rest were only partially or non-attenuated (or released) and discharged into the receiving river. At the river, only the load of ibuprofen was reduced by more than 50% (out of the 6 parent compounds present in the river), while partial and non-attenuation (or release) was observed for some of their transformation products. Linkages in the routing of some pharmaceuticals (venlafaxine, carbamazepine, ibuprofen and diclofenac) and their corresponding transformation products were also identified at both WWTP and river. Finally, the followed procedure showed that dynamic

  20. Evaporation, transpiration, and ecosystem water use efficiency in a multi-annual sugarcane production system in Hawai'i, USA

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Tirado-corbala, R.; Wang, D.; Ayars, J. E.

    2013-12-01

    Food and biofuel production will require practices that increase water use efficiency in order to have future sustainability in a water-constrained environment. One possible practice is the use of food and energy crops with multi-annual growing periods, which could reduce bare soil evaporation. We integrated field water budgets, micrometeorology, and plant sampling to observe plant growth and evapotranspiration (ET) in two sugarcane (Saccharum officinarum L.) fields in Hawai'i, USA in contrasting environments with unusually long (18-24 month) growing periods. We partitioned observed ET into evaporation and transpiration using a flux partitioning model and calculated ecosystem water use efficiency (EWUE=Net Ecosystem Productivity/ET) and harvest WUE (HWUE=Aboveground Net Ecosystem Productivity/ET) to assess sugarcane water use efficiency. After the start of the mid-period, our higher elevation, less windy field ('Lee') had a slightly higher mean EWUE (31.5 kg C ha-1 mm-1) than our lower elevation, windier ('Windy') field (mean EWUE of 30.7 kg C ha-1 mm-1). HWUE was also very high (HWUE >27 kg C ha-1 mm-1) in both fields due to aboveground biomass composing >87% of total biomass. Transpiration, as a fraction of total ET, increased rapidly with canopy cover in both fields; during the mid-period, transpiration was an average of 84% of total ET in Windy and 80% in Lee, with Lee showing greater variation than Windy. As expected, daily EWUE increased with canopy cover during the initial growing stages; more significantly, EWUE showed no substantial decrease during the 2nd year with an aging crop. The results illustrate the potential for longer-rotation crop cycles for increasing water use efficiency, particularly in tropical regions.

  1. Temporal variability and drivers of net ecosystem production of a Turkey oak forest in Italy under coppice management

    NASA Astrophysics Data System (ADS)

    Belelli Marchesini, Luca; Rey, Ana; Papale, Dario; Valentini, Riccardo

    2010-05-01

    The progress in the understanding of the carbon exchange between forests and the atmosphere has been dramatic over the last few years, yet largely based on observations of middle-aged or mature stands in the temperate and boreal region while quite a few studies report on the temporal dynamics of carbon balance in forest stand chronosequences taking into account the effect of forest management (Law et al., 2003; Kowalski et al., 2003; Kolari et al, 2004; Zha et al., 2009). In order to quantify the temporal variability of CO2 fluxes at ecosystem level following coppicing, we analyze eddy covariance data of a deciduous oak (Quercus cerris L.) coppice forest in central Italy (Roccarespampani, VT) collected over two differently aged forest stands in the period 2000-2006 and covering most of the rotation period (0-6; 11-15 years). Data processing was performed evenly for whole data-set according to the CarboEurope database standard (Papale et al., 2006). The inter-annual variability and seasonal dynamics of net ecosystem exchange (NEE), partitioned into ecosystem respiration (Reco) and gross primary production (GPP), were analyzed looking at the relationships with the main structural (biomass) and environmental drivers (air and soil temperature, precipitation, soil water content, vapour pressure deficit, global radiation) to understand which factors control the carbon dynamics of these intensively managed forests After harvesting the forest acted as a carbon source of 69 gC m-2, while in the following years NEE ranged from -18.9 (stand age: 2 years) to -1077.9 g C m-2yr-1 (stand age: 15 years). Evidently the ecosystem promptly recovers its carbon sink capacity already in the years shortly after the harvest and increases its carbon sequestration capacity with stand age (R2= 0.75, P

  2. Environmental fate of five radio-labeled coal conversion by-products evaluated in a laboratory model ecosystem

    PubMed Central

    Lu, Po-Yung; Metcalf, Robert L.; Carlson, Elaine M.

    1978-01-01

    Anthracene, fluorene, carbazole, dibenzofuran, and dibenzothiophene are five typical by-products of coal conversion which are likely to be environmental pollutants. These were radiolabeled to high specific activity and purity by simple tritium exchange and evaluated for environmental fate in laboratory model ecosystems. Anthracene and fluorene were biologically converted to hydroxy and keto analogs. Carbazole was N-methylated and N-acetylated. Dibenzothiophene was microsomally oxidized to the sulfoxide and sulfone. Dibenzofuran was relatively inert to biodegradation. The octanol/water partition coefficient for the parent compounds was well correlated with ecological magnification indicating the possibility of predicting environmental behavior from physicochemical parameters. PMID:17539148

  3. CO2, nitrogen, and diversity differentially affect seed production of prairie plants.

    PubMed

    HilleRisLambers, J; Harpole, W S; Schnitzer, S; Tilman, D; Reich, P B

    2009-07-01

    Plant species composition and diversity is often influenced by early life history stages; thus, global change could dramatically affect plant community structure by altering seed production. Unfortunately, plant reproductive responses to global change are rarely studied in field settings, making it difficult to assess this possibility. To address this issue, we quantified the effects of elevated CO2, nitrogen deposition, and declining diversity on inflorescence production and inflorescence mass of 11 perennial grassland species in central Minnesota, U.S.A. We analyzed these data to ask whether (1) global change differentially affects seed production of co-occurring species; (2) seed production responses to global change are similar for species within the same functional group (defined by ecophysiology and growth form); and (3) seed production responses to global change match productivity responses: We found that, on average, allocation to seed production decreased under elevated CO2, although individual species responses were rarely significant due to low power (CO2 treatment df = 2). The effects of nitrogen deposition on seed production were similar within functional groups: C4 grasses tended to increase while C3 grasses tended to decrease allocation to seed production. Responses to nitrogen deposition were negatively correlated to productivity responses, suggesting a trade-off. Allocation to seed production of some species responded to a diversity gradient, but responses were uncorrelated to productivity responses and not similar within functional groups. Presumably, species richness has complex effects on the biotic and abiotic variables that influence seed production. In total, our results suggest that seed production of co-occurring species will be altered by global change, which may affect plant communities in unpredictable ways. Although functional groups could be used to generalize seed production responses to nitrogen deposition in Minnesota prairies, we

  4. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Bao, Yuhai; Qin, Zhihao; Xin, Xiaoping; Bao, Yulong; Bayarsaikan, Sainbuyin; Zhou, Yi; Chuntai, Bilegtmandakh

    2016-04-01

    Since the estimate of moisture stress coefficients (MSC) in the current Carnegie-Ames-Stanford-Approach (CASA) model still requires considerable inputs from ground meteorological data and many soil parameters, here we present a modified CASA model by introducing the land-surface water index (LSWI) and scaled precipitation to model the vegetation net primary productivity (NPP) in the arid and semiarid climate of the Mongolian Plateau. The field-observed NPP data and a previously proposed model (the Yu-CASA model) were used to evaluate the performance of our LSWI-based CASA model. The results show that the NPP predicted by both the LSWI-based CASA model and the Yu-CASA model showed good agreement with the observed NPP in the grassland ecosystems in the study area, with coefficients of determination of 0.717 and 0.714, respectively. The LSWI-based CASA model also performed comparably with the Yu-CASA model at both biome and per-pixel scales when keeping other inputs unchanged, with a difference of approximately 16 g C in the growing-season total NPP and an average value of 2.3 g C bias for each month. This indicates that, unlike an earlier method that estimated MSC based entirely on climatic variables or a soil moisture model, the method proposed here simplifies the model structure, reduces the need for ground measurements, and can provide results comparable with those from earlier models. The LSWI-based CASA model is potentially an alternative method for modelling NPP for a wide range of vegetation types in the Mongolian Plateau.

  5. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    PubMed

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities. PMID:26626912

  6. Applying principles from economics to improve the transfer of ecological production estimates in fisheries ecosystem services research

    EPA Science Inventory

    Ecosystem services (ES) represent a way to represent and quantify multiple uses, values as well as connectivity between ecosystem processes and human well-being. Ecosystem-based fisheries management approaches may seek to quantify expected trade-offs in ecosystem services due to ...

  7. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    NASA Technical Reports Server (NTRS)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS). GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  8. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    NASA Technical Reports Server (NTRS)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS)1. GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  9. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    USGS Publications Warehouse

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  10. Ecosystem productivity and water stress in tropical East Africa: A Case Study of the 2010-11 drought

    NASA Astrophysics Data System (ADS)

    Robinson, E. S.; Yang, X.; Lee, J. E.

    2015-12-01

    The characterization of changes in ecosystem productivity as a consequence of water stress and changing precipitation regimes is critical in defining the response of tropical ecosystems to water stress and projecting future land cover transitions in the East African tropics. Through the analysis of solar-induced chlorophyll fluorescence (SIF), soil moisture, rainfall and reanalysis data, this paper characterizes the 2010-11 drought in tropical East Africa. We demonstrated that SIF, a proxy of ecosystem productivity, varied with water availability during the 2010-11 drought. A comparison of the 2010-11 drought to previous regional droughts revealed that the consecutive failure of rainy seasons in fall 2010 and spring 2011 yielded a drought that is distinguished not only in intensity, but also in spatial and temporal extent as compared to an average of previous regional droughts: the 2010-11 event extended further east and with greater intensity in the southern hemisphere. Anomalously low SIF values during the 2010-11 drought are strongly correlated with those of soil moisture and precipitation. SIF also demonstrated a stronger temporal sensitivity to accumulated water deficit as compared to the conventional Normalized Difference Vegetation Index (NDVI), which approximates photosynthetic potential (chlorophyll content and leaf mass), from the Moderate Resolution Imaging Spectroradiometer (MODIS). Anomalously high rainfall during the dry seasons preceding failed rainy seasons suggest that the seasonality of East African rainfall may be transitioning from a regime characterized by biannual monsoons to one with increasing convective rainfall. Rising boundary layer height during the dry season further substantiates this conclusion by suggesting a transition towards increased deep convection during the summers. This work demonstrated the unique characteristics of the 2010-11 East African drought, and the ability of SIF to track the levels of water stress during the

  11. Inhibitors produced by algae as an ecological factor affecting bacteria in water ecosystems. I. Dependence between phytoplankton and bacteria development.

    PubMed

    Chróst, R J

    1975-01-01

    Studies were conducted on the eutrophic Mikołajskie Lake in the Mazurian Lake District. Over the period of investigation three maxima of the development of phytoplankton were observed: in the spring, summer and autumn. During the algal blooms the total number of bacteria in the lake strongly decreased and was between several and a dozen time smaller than between blooms. The decrease in the total number of bacteria in water and the elimination of gram positive bacteria during the algal blooms is most probably caused by the production by the algae of substances inhibiting bacterial development. PMID:810003

  12. Metabolic theory predicts whole-ecosystem properties

    PubMed Central

    Schramski, John R.; Dell, Anthony I.; Grady, John M.; Sibly, Richard M.; Brown, James H.

    2015-01-01

    Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude—from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers—as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere. PMID:25624499

  13. The spatial and temporal shifts of biofuel production in the ecosystem-level carbon and water dynamics in the central plains of US

    NASA Astrophysics Data System (ADS)

    Lin, P.; Brunsell, N. A.

    2011-12-01

    The grasslands of the central plains US are the leading producer of wheat, sorghum and a significant amount of corn and soybean. By linking the food production and energy cycles, increasing demand for ethanol, biodiesel, and food, not only regional ecosystems are altered by the influences of Land-Use Land-Cover (LULC), but it is also a challenge for us to gain more knowledge about the carbon balance on fuel and food. In order to ascertain the impacts of changing LULC on carbon and water dynamics, more specifically, to examine the impacts of altering current land cover to increase biofuel production in this region, we used Normalized Difference Vegetation Index (NDVI) data and precipitation record for the period from 1982 to 2003 to show the temporal dynamics associated with different landcover types as a function of location along the mean precipitation gradient; and then employed Biome-BGC model to estimate key carbon fluxes and storage pools associated with each of the different landcover classes, as well as the fluxes resulting from landcover changes. Results show an increasing trend of NDVI is from the west to the east, which agreed with the spatial distribution of precipitation, however due to some of LULC types are grown by irrigation, precipitation is not the main effect for vegetation development in west portion. However, overall within the study area, indicated by the temporal distributed plots of wavelet analysis for NDVI and precipitation, vegetation dynamics is obviously affected by long-term regional climatic factors, i.e. precipitation, not by short-term or individual local factors instead. On the other hand, by inputting actual land cover and interpolated meteorological data, as well as important ecosystem variables that govern carbon dynamics, we can better define the impacts of biofuel productions; moreover, this ecosystem carbon cycling simulation by Bio-BGC model illustrates that the extent of those landcover responses depend not only on the rate

  14. Selenium biotransformations in an engineered aquatic ecosystem for bioremediation of agricultural wastewater via brine shrimp production.

    PubMed

    Schmidt, Radomir; Tantoyotai, Prapakorn; Fakra, Sirine C; Marcus, Matthew A; Yang, Soo In; Pickering, Ingrid J; Bañuelos, Gary S; Hristova, Krassimira R; Freeman, John L

    2013-05-21

    An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filter-feeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp ( Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested. PMID:23621086

  15. Link between continuous stem radius changes and net ecosystem productivity of a subalpine Norway spruce forest in the Swiss Alps.

    PubMed

    Zweifel, R; Eugster, W; Etzold, S; Dobbertin, M; Buchmann, N; Häsler, R

    2010-08-01

    *Continuous stem radius changes (DR) include growth and water-related processes on the individual tree level. DR is assumed to provide carbon turnover information complementary to net ecosystem productivity (NEP) which integrates fluxes over the entire forest ecosystem. Here, we investigated the unexpectedly close relationship between NEP and DR and asked for causalities. *NEP (positive values indicate carbon sink) measured by eddy covariance over 11 yr was analysed at three time scales alongside automated point dendrometer DR data from a Swiss subalpine Norway spruce forest. *On annual and monthly scales, the remarkably close relationship between NEP and DR was positive, whereas on a half-hourly scale the relationship was negative. Gross primary production (GPP) had a similar explanatory power at shorter time scales, but was significantly less correlated with DR on an annual scale. *The causal explanation for the NEP-DR relationship is still fragmentary; however, it is partially attributable to the following: radial stem growth with a strong effect on monthly and annual increases in NEP and DR; frost-induced bark tissue dehydration with a parallel decrease in both measures on a monthly scale; and transpiration-induced DR shrinkage which is negatively correlated with assimilation and thus with NEP on a half-hourly scale. PMID:20497351

  16. How Were Southwest Pacific Pelagic Ecosystems Affected by Extreme Global Warming During the Initial Eocene Thermal Maximum?

    NASA Astrophysics Data System (ADS)

    Hollis, C. J.; Crouch, E. M.; Dickens, G. R.

    2004-12-01

    neritic symbiotrophes within the radiolarian assemblage during the IETM recovery phase suggests warm, stratified, oligotrophic oceanic conditions. Radiolarians are scarce and upwelling indicators are very rare in sediments overlying the IETM. In the Southwest Pacific, global warming during the IETM increased terrestrial discharge, which enhanced productivity in shallow marine environments. Reduced productivity in deeper marine settings may have been caused by the poleward expansion of oligotrophic subtropical surface waters, impinging on a southern cyclonic system that had promoted upwelling along the eastern New Zealand margin through the Paleocene. Little evidence is found for local plankton productivity having a role in the gradual decrease in global temperatures that defines the upper IETM.

  17. Processes affecting oxygen isotope ratios of atmospheric and ecosystem sulfate in two contrasting forest catchments in Central Europe.

    PubMed

    Novák, Martin; Mitchell, Myron J; Jacková, Iva; Buzek, Frantisek; Schweigstillová, Jana; Erbanová, Lucie; Prikryl, Richard; Fottová, Daniela

    2007-02-01

    Sulfate aerosols are harmful as respirable particles. They also play a role as cloud condensation nuclei and have radiative effects on global climate. A combination of delta18O-SO4 data with catchment sulfur mass balances was used to constrain processes affecting S cycling in the atmosphere and spruce forests of the Czech Republic. Extremely high S fluxes via spruce throughfall and runoff were measured at Jezeri (49 and 80 kg S ha(-1) yr(-1), respectively). The second catchment, Na Lizu, was 10 times less polluted. In both catchments, delta18O-SO4 decreased in the following order: open-area precipitation > throughfall > runoff. The delta18O-SO4 values of throughfall exhibited a seasonal pattern at both sites, with maxima in summer and minima in winter. This seasonal pattern paralleled delta18O-H2O values, which were offset by -18 per thousand. Sulfate in throughfall was predominantly formed by heterogeneous (aqueous) oxidation of SO2. Wet-deposited sulfate in an open area did not show systematic delta18O-SO4 trends, suggesting formation by homogeneous (gaseous) oxidation and/or transport from large distances. The percentage of incoming S that is organically cycled in soil was similar under the high and the low pollution. High-temperature 18O-rich sulfate was not detected, which contrasts with North American industrial sites.

  18. Processes affecting oxygen isotope ratios of atmospheric and ecosystem sulfate in two contrasting forest catchments in Central Europe

    SciTech Connect

    Martin Novak; Myron J. Mitchell; Iva Jackova; Frantisek Buzek; Jana Schweigstillova; Lucie Erbanova; Richard Prikryl; Daniela Fottova

    2007-02-15

    Sulfate aerosols are harmful as respirable particles. They also play a role as cloud condensation nuclei and have radiative effects on global climate. A combination of {delta}{sup 18}O-SO{sub 4} data with catchment sulfur mass balances was used to constrain processes affecting S cycling in the atmosphere and spruce forests of the Czech Republic. Extremely high S fluxes via spruce throughfall and runoff were measured at Jezeri (49 and 80 kg S ha{sup -1} yr{sup -1}, respectively). The second catchment, Na Lizu, was 10 times less polluted. In both catchments, {delta}{sup 18}O-SO{sub 4} decreased in the following order: open-area precipitation {gt} throughfall {gt} runoff. The 180-SO{sub 4} values of throughfall exhibited a seasonal pattern at both sites, with maxima in summer and minima in winter. This seasonal pattern paralleled {delta}{sup 18}O-H{sub 2}O values, which were offset by -18{per_thousand}. Sulfate in throughfall was predominantly formed by heterogeneous (aqueous) oxidation of SO{sub 2}. Wet-deposited sulfate in an open area did not show systematic {delta}{sup 18}O-SO{sub 4} trends, suggesting formation by homogeneous (gaseous) oxidation and/or transport from large distances. The percentage of incoming S that is organically cycled in soil was similar under the high and the low pollution. High-temperature {sup 18}O-rich sulfate was not detected, which contrasts with North American industrial sites. 29 refs., 4 figs., 3 tabs.

  19. Sea Level Rise Enhanced Halocarbon Production in Low-lying Coastal Ecosystem in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Conner, W.; Williams, T.; Song, B.

    2010-12-01

    Saltwater tides bring high concentrations of chloride and bromide inland where it mixes with terrestrial humic substances from surrounding forested watersheds and ferric/ferrous ions from shallow groundwater. With all the essential precursors (i.e., chloride, bromide, and humic substances) and catalysts (ferric/ferrous ions with sunlight), low-lying coastal ecosystems could be a hotspot for halocarbon formation. Fluctuating water levels and salinity due to the tidal cycle alter both redox reactions and water chemistry, influencing the formation and fate of halocarbons. A controlled study was conducted to confirm the abiotic formation of trihalomethanes (THMs) by the photo-Fenton reaction and the effects of the precursors on their formation. Four THM species, including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), were examined. Sets of aqueous solutions were prepared using filtered Waccamaw River samples and synthesized NaCl / NaBr, and Fe2(SO4)3 and H2O2 solutions. Solutions were enclosed in quartz tubes and exposed for 7 days to natural sunlight. Although total THM formation increased with DOC concentration, the reactivity of C in forming THM was relatively consistent across DOC concentrations, with an average of 2.6 nmol-THM mmol-C-1. The reactivity in forming THMs through the photo-Fenton reaction was significantly lower than that in chlorinated water. Reactivity generally ranged from 3-20 mmol-THM mol-C-1. The differences in reactivity suggested that greater yield of THMs could be produced under the right reaction condition. In particular, the study showed that bromide increases the reactivity of DOC in forming THMs and enhances the formation of brominated THMs. The bromine substitution factor in the NaCl treatment ranged from 19 to 24% but increased to 43 and 46% when NaBr was added. Results suggest that increased salinity and bromide concentration in saltwater-impacted coastal ecosystems could

  20. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    NASA Astrophysics Data System (ADS)

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies

  1. Past and future climate patterns affecting temperate, sub-tropical and tropical horticultural crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial horticultural crop production will be impacted by climate change effects on temperature, water availability, solar radiation, air pollution, and carbon dioxide. Horticultural crop value is derived from both the quantity and the quality of the harvested product; both of which are affected ...

  2. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration.

    PubMed

    Cornejo, Pablo; Meier, Sebastián; Borie, Gilda; Rillig, Matthias C; Borie, Fernando

    2008-11-15

    The amount of glomalin-related soil protein (GRSP), a glycoprotein produced by arbuscular mycorrhizal fungi (AMF), its contribution to the sequestering of Cu and Zn in the soil, and the microsite variation of other soil traits (pH, water-stable aggregates--[WSA], soil organic carbon--[SOC]) was studied in a semi-arid Mediterranean ecosystem near a copper smelter and affected by deposit of metal-rich particles since 1964. Rhizospheric (R) and non-rhizospheric (NR) soil of four representative plants (Argemone subfusiformis, Baccharis linearis, Oenothera affinis and Polypogon viridis) was analyzed. The results showed a strong variability in GRSP (6.6-36.8 mg g(-1)), Cu content (62-831 mg kg(-1) for the total Cu and 5.8-326 mg kg(-1) for the available Cu) and pH (4.2-5.5) in the different plant and rhizospheric zones analyzed. A strong relationship between the GRSP with the soil Cu and Zn contents was found (r=0.89 and 0.76 for Cu and Zn respectively, p<0.001). The GRSP-bound Cu ranged from 3.76 to 89.0 mg g(-1) soil and represents 1.44-27.5% of the total Cu content in soil. Moreover, the WSA reached 89% in P. viridis R. For this plant, the C contained in GRSP represented up to 89% of SOC, and this coincided with the most extreme conditions of soil degradation within the ecosystem (the highest content of heavy metals and low pH values). This study provides evidence on the role of the GRSP in Cu and Zn sequestration and suggests a highly efficient mechanism of AMF to mitigate stress leading to stabilization of soils highly polluted by mining activities. PMID:18762323

  3. A geomorphic perspective on terrain-modulated organization of vegetation productivity: Analysis in two semiarid grassland ecosystems in Southwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial patterns of ecosystem productivity arise from the terrain-modulated wetting and drying of the landscape. Using a daily relative greenness (rG) index we explore the relations between spatial variability of plant productivity and landscape morphology, and how these relations change over time...

  4. Production of arabitol from glycerol: strain screening and study of factors affecting production yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol is a major byproduct from biodiesel production, and developing new uses for glycerol is imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 yeast strains, many osmotole...

  5. First world wide annual time-series of silica production and dissolution rates in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Beucher, C.; Treguer, P.; Corvaisier, R.

    2003-04-01

    This study was conducted, from April 2001 to April 2002, in the surface waters of SOMLIT-Brest station located at the outlet of the bay of Brest, a well-mixed anthropogenically nitrate-enriched macrotidal ecosystem, typical of western Europe. This study presents: (1) the first world wide annual time-series of the weekly variability of the rates of production (P) and dissolution (D) of biosilica (BSiO2) measured using 30Si stable isotope technique and validated by mass balance, and (2) the first evidence of the end of the year-round dominance of diatoms in this ecosystem. From spring to mid-summer the successive phytoplankton blooms were dominated by diatoms. The silicic acid concentration, although severely depleted relative to winter, was not completely exhausted (mean: 1.62 µM); the BSiO2 concentration, production and dissolution rates were high, averaging 1.26 µmol L-1, 0.96 µmol L-1 d-1, and 0.40 µmol L-1 d-1, respectively. From mid-summer to mid-fall the non-siliceous phytoplankters predominated, silicic acid being poorly used (mean : 4.67 µM); the BSiO2 concentration, production and dissolution rates were low averaging 0.69 µmol L-1, 0.10 µmol L-1 d-1, and 0.04 µmol L-1 d-1, respectively. The shift from diatoms to dinoflagellates dominance was under bottom-up control (phosphate and dissolved inorganic nitrogen being at limiting concentrations contrary to silicic acid).

  6. Ecosystem Disturbance Effects on Land Surface Temperature, Forest Carbon Stocks, and Primary Productivity in the Western United States

    NASA Astrophysics Data System (ADS)

    Cooper, L. A.; Ballantyne, A.; Holden, Z. A.; Landguth, E.

    2015-12-01

    Disturbance plays an important role in the structure, composition, and nutrient cycling of forest ecosystems. Climate change is resulting in an increase in disturbance frequency and intensity, making it critical that we quantify the physical and chemical impacts of disturbances on forests. The impacts of disturbance are thought to vary widely depending on disturbance type, location, and climate. More specifically, fires, insect infestations, and other types of disturbances differ in their timing, extent, and intensity making it difficult to assess the true impact of disturbances on local energy budgets and carbon cycling. Here, we provide a regional analysis of the impacts of fire, insect attack, and other disturbances on land surface temperature (LST), carbon stocks, and gross primary productivity (GPP). Using disturbances detected with MODIS Enhanced Vegetation Index (EVI) time series between 2002 and 2012, we find that the impacts of disturbance on LST, carbon stocks, and GPP vary widely according to local climate, vegetation, and disturbance type and intensity. Fires resulted in the most distinct impacts on all response variables. Forest responses to insect epidemics were more varied in their magnitude and timing. The results of this study provide an important estimation of the variability of climate and ecosystem responses to disturbance across a large and heterogeneous landscape. With disturbance projected to increase in both frequency and intensity around the globe in the coming years, this information is vitally important to effectively manage forests into the future.

  7. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity.

    PubMed

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-09-25

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function.

  8. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity.

    PubMed

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-01-01

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function. PMID:26403303

  9. Influence of nonnative and native ungulate biomass and seasonal precipitation on vegetation production in a Great Basin ecosystem

    USGS Publications Warehouse

    Zeigenfuss, Linda C.; Schoenecker, Kathryn A.; Ransom, Jason I.; Ignizio, Drew A.; Mask, Tracy

    2014-01-01

    The negative effects of equid grazers in semiarid ecosystems of the American West have been considered disproportionate to the influence of native ungulates in these systems because of equids' large body size, hoof shape, and short history on the landscape relative to native ungulates. Tools that can analyze the degree of influence of various ungulate herbivores in an ecosystem and separate effects of ungulates from effects of other variables (climate, anthropomorphic disturbances) can be useful to managers in determining the location of nonnative herbivore impacts and assessing the effect of management actions targeted at different ungulate populations. We used remotely sensed data to determine the influence of native and nonnative ungulates and climate on vegetation productivity at wildlife refuges in Oregon and Nevada. Our findings indicate that ungulate biomass density, particularly equid biomass density, and precipitation in winter and spring had the greatest influence on normalized difference vegetation index (NDVI) values. Our results concur with those of other researchers, who found that drought exacerbated the impacts of ungulate herbivores in arid systems.

  10. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity

    PubMed Central

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-01-01

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function. PMID:26403303

  11. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 6. Distribution and Productivity of Unmanaged Ecosystems

    SciTech Connect

    Izaurralde, Roberto C.; Thomson, Allison M.; Rosenberg, Norman J.; Brown, Robert A.

    2005-04-01

    In this study, we characterize the range in response of unmanaged ecosystems to 12 climate change scenarios. We obtained this response by simulating the climatically induced shifts in net primary productivity and geographical distribution of major biomes of the conterminous U.S. with the BIOME3 model. Under current or baseline climate, BIOME3 captured well the potential distribution of major biomes across the U.S. BIOME3 also reproduced the general trends of observed NPP acceptably. The NPP predictions were accurate for forests but not for grasslands where the simulated values were always greater than those observed. In general, the inclusion of a CO2-fertilization effect as a modeling factor either favored an increase or alleviated the loss in NPP brought about by the climate change scenarios. Changes in NPP were associated with changes in the geographic distribution of major biomes. The methods and models employed here were useful to identify (a) the range in response of unmanaged ecosystem in the U.S. to climate change and (b) the areas of the country where, for a particulate scenario of climate change, land cover changes would be most likely.

  12. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems

    PubMed Central

    Ochoa-Hueso, Raúl; Maestre, Fernando T.; Ríos, Asunción de los; Valea, Sergio; Theobald, Mark R.; Vivanco, Marta G.; Manrique, Esteban; Bowker, Mathew A.

    2015-01-01

    Nitrogen (N) deposition is a threat to European Mediterranean ecosystems, but the evidence of real ecological impacts is still scarce. We combined data from a real N deposition gradient (4.3-7.3 kg N ha−1 yr−1) from semiarid portions of Spain with data from a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community structure. Soil organic N did not increase along the extant deposition gradient, whereas C:N ratios decreased in most locations. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Nitrogen mineralization rates were reduced by N fertilization, suggesting ecosystem N saturation. Soil organic C content and the activity of β-glucosidase decreased along the extant gradient. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions to the atmosphere when experiencing increased N deposition. PMID:23685631

  13. East meets West: Differing views of the Aleutian Low's role in affecting Holocene productivity in the Subarctic North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Addison, J. A.; Finney, B. P.; Harada, N.

    2012-12-01

    Modern instrumental and monitoring observations indicate strong multi-decadal changes and spatial heterogeneities affect climate and marine ecosystems in the North Pacific Ocean. Networks of high-resolution paleoclimate archives from this dynamic region are therefore required to describe changes prior to historical records. We present new decadally-resolved marine sediment core data from the Kuril Islands in the Sea of Okhotsk, together with sub-decadal data from the temperate fjords of the Gulf of Alaska (GoAK). These distant sites are located along the western (Kuril) and eastern (GoAK) boundaries of the Subarctic North Pacific Ocean, where micronutrient-rich coastal waters interact with North Pacific high-nutrient-low-chlorophyll (HNLC) waters to drive highly productive marine ecosystems. In the Sea of Okhotsk, a notable increase in opal concentrations (a proxy for past siliceous primary productivity) occurs during the middle Holocene between ~5000 and 6000 yrs ago, while alkenone-based warm season SST proxies either decline or remain relatively constant. A similar middle Holocene increase in opal concentrations is also observed in the GoAK during an interval of declining warm season coastal SAT as inferred from pollen transfer functions [Heusser et al., 1985]. Declining summer solar insolation during the middle Holocene can explain the overall decline in warm-season SST in both the Sea of Okhotsk and the Gulf of Alaska. However, as the increase in opal likely reflects an improvement in North Pacific phytoplankton growing conditions during the spring/summer bloom season, then the opal increase seems unlikely to be related directly to summer solar insolation. We propose a middle Holocene intensification of the Aleutian Low (AL) pressure cell and concomitant changes in North Pacific circulation may be responsible. In both regions, several potential mechanisms related to an intensified AL could result in greater productivity including: (i) increased advection

  14. Soil health for improved food securities: natural ecosystems, row crop, and livestock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent environmental and ecological awareness has resulted in consideration of soil as more than just a medium for root growth and livestock production. In order to meet the expected growing world population and subsequent food production demands, producers are reevaluating traditional management sy...

  15. Economic incentives to capture ecosystem services through increased temporal intensification of crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land resources are becoming progressively more constrained with increasing demands for food, feed, fiber, and now fuel production. Developing strategies to intensify crop production without increasing the negative impacts on water, soil, and air resources are critical. Much of the best agricultural ...

  16. Evaluating management tradeoffs between economic fiber production and other ecosystem services in a Chinese-fir dominated forest plantation in Fujian Province.

    PubMed

    Kang, Haijun; Seely, Brad; Wang, Guangyu; Innes, John; Zheng, Dexiang; Chen, Pingliu; Wang, Tongli; Li, Qinglin

    2016-07-01

    Chinese fir (Cunninghamia lanceolata) is not only a valuable timber species, but also plays an important role in the provision of ecosystem services. Forest management decisions to increase the production of fiber for economic gain may have negative impacts on the long-term flow of ecosystem services from forest resources. Such tradeoffs should be taken into account to fulfill the requirements of sustainable forest management. Here we employed an established, ecosystem-based, stand-level model (FORECAST) in combination with a simplified harvest-scheduling model to evaluate the potential tradeoffs among indicators of provisional, regulating and supporting ecosystem services in a Chinese-fir-dominated landscape located in Fujian Province as a case study. Indicators included: merchantable volume harvested, biomass harvested, ecosystem carbon storage, CO2 fixation, O2 released, biomass nitrogen content, pollutant absorption, and soil fertility. A series of alternative management scenarios, representing different combinations of rotation length and harvest intensity, were simulated to facilitate the analysis. Results from the analysis were summarized in the form of a decision matrix designed to provide a method for forest managers to evaluate management alternatives and tradeoffs in the context of key indicators of ecosystem services. The scenario analysis suggests that there are considerable tradeoffs in terms of ecosystem services associated with stand and landscape-level management decisions. Longer rotations and increased retention tended to favor regulating and supporting services while the opposite was true for provisional services.

  17. Terroir et vignoble: how the farming management can affect the production of a quality wine

    NASA Astrophysics Data System (ADS)

    Gallo, Alba; Bini, Claudio

    2016-04-01

    added to soil as fertilizer. In grape leaves, Al concentration is releated to Al content in soil, Cu could derive from foliar fungicides and no signs of toxicity from high content of Fe and Zn are visible. LPO test values are below the reference value, therefore vegetation in the study area is not affected by oxidative stress. Concerning the biological soil quality, 3 different classes (4, 5 and 6) were recorded (with noteworthy microarthropods adaption to soil conditions. This result suggest that the study area presents good grade ecosystem stability and limited stress evident. In conclusion, it is possible to assert that the study area is characterized by not polluted soils of good quality and without environmental stress. It is likely that the agronomic practices do not produce any negative effect on plant growth and, thus, on quality of wine.

  18. Impacts of climate and land use change on ecosystem hydrology and net primary productivity: Linking water availability to food security in Asia

    NASA Astrophysics Data System (ADS)

    Dangal, S. R. S.; Tian, H.; Pan, S.; Zhang, B.; Yang, J.

    2015-12-01

    The nexus approach to food, water and energy security in Asia is extremely important and relevant as the region has to feed two-third of the world's population and accounts for 59% of the global water consumption. The distribution pattern of food, water and energy resources have been shaped by the legacy effect of both natural and anthropogenic disturbances and therefore are vulnerable to climate change and human activities including land use/cover change (LUCC) and land management (irrigation and nitrogen fertilization). In this study, we used the Dynamic Land Ecosystem Model (DLEM) to examine the effects of climate change, land use/cover change, and land management practices (irrigation and nitrogen fertilization) on the spatiotemporal trends and variability in water availability and its role in limiting net primary productivity (NPP) and food security in the 20th and early 21st centuries. Our specific objectives are to quantify how climate change, LUCC and other environmental changes have interactively affected carbon and water dynamics across the Asian region. In particular, we separated the Asian region into several sub-region based on the primary limiting factor - water, food and energy. We then quantified how changes in environmental factors have altered the water and food resources during the past century. We particularly focused on Net Primary Productivity (NPP) and water cycle (Evapotranspiration, discharge, and runoff) as a measure of available food and water resources, respectively while understanding the linkage between food and water resources in Asia.

  19. Impacts of climate change on marine ecosystem production in societies dependent on fisheries

    NASA Astrophysics Data System (ADS)

    Barange, M.; Merino, G.; Blanchard, J. L.; Scholtens, J.; Harle, J.; Allison, E. H.; Allen, J. I.; Holt, J.; Jennings, S.

    2014-03-01

    Growing human populations and changing dietary preferences are increasing global demands for fish, adding pressure to concerns over fisheries sustainability. Here we develop and link models of physical, biological and human responses to climate change in 67 marine national exclusive economic zones, which yield approximately 60% of global fish catches, to project climate change yield impacts in countries with different dependencies on marine fisheries. Predicted changes in fish production indicate increased productivity at high latitudes and decreased productivity at low/mid latitudes, with considerable regional variations. With few exceptions, increases and decreases in fish production potential by 2050 are estimated to be <10% (mean +3.4%) from present yields. Among the nations showing a high dependency on fisheries, climate change is predicted to increase productive potential in West Africa and decrease it in South and Southeast Asia. Despite projected human population increases and assuming that per capita fish consumption rates will be maintained, ongoing technological development in the aquaculture industry suggests that projected global fish demands in 2050 could be met, thus challenging existing predictions of inevitable shortfalls in fish supply by the mid-twenty-first century. This conclusion, however, is contingent on successful implementation of strategies for sustainable harvesting and effective distribution of wild fish products from nations and regions with a surplus to those with a deficit. Changes in management effectiveness and trade practices will remain the main influence on realized gains or losses in global fish production.

  20. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States

    SciTech Connect

    Yavitt, J.B.; Lang, G.E.; Downey, D.M. )

    1988-09-01

    Potential rates of methane production and carbon dioxide production were measured on 11 dates in 1986 in peat from six plant communities typical of moss-dominated peatlands in the Appalachian Mountains. Annual methane production ranged from 2.7 to 17.5 mol/sq m, and annual carbon dioxide production ranged from 30.6 to 79.0 mol/sq m. The wide range in methane production values among the communities found within a single peatland indicates that obtaining one production value for a peatland may not be appropriate. Low temperature constrained the potential for methane production in winter, while the chemical quality of the peat substrate appears to control methane production in the summer. Methane oxidation was measured throughout the peat profile to a depth of 30 cm. Values for methane oxidation ranged from 0.08 to 18.7 microM/hr among the six plant communities. Aerobic methane-oxidizing bacteria probably mediated most of the activity. On a daily basis during the summer, between 11 and 100% of the methane produced is susceptible to oxidation within the peat column. Pools of dissolved methane and dissolved carbon dioxide in pore waters were less than 0.2 and less than 1.0 mol/sq m, respectively, indicating that methane does not accumulate in the pore waters. Peatlands have been considered as an important source of biologically produced methane. Despite the high rates of methane production, the high rates of methane oxidation dampen the potential emission of methane to the atmosphere. 41 refs., 7 figs., 4 tabs.

  1. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams.

    PubMed

    Kamjunke, Norbert; Herzsprung, Peter; Neu, Thomas R

    2015-02-15

    Streams and rivers are important sites of organic carbon mineralization which is dependent on the land use within river catchments. Here we tested whether planktonic and epilithic biofilm bacteria differ in their response to the quality of dissolved organic carbon (DOC). Thus, planktonic and biofilm bacterial production was compared with patterns of DOC along a land-use gradient in the Bode catchment area (Germany). The freshness index of DOC was positively related to the proportion of agricultural area in the catchment. The humification index correlated with the proportion of forest area. Abundance and production of planktonic bacteria were lower in headwaters than at downstream sites. Planktonic production was weakly correlated to the total concentration of DOC but more strongly to quality-measures as revealed by spectra indexes, i.e. positively to the freshness index and negatively to the humification index. In contrast to planktonic bacteria, abundance and production of biofilm bacteria were independent of DOC quality. This finding may be explained by the association of biofilm bacteria with benthic algae and an extracellular matrix which represent additional substrate sources. The data show that planktonic bacteria seem to be regulated at a landscape scale controlled by land use, whereas biofilm bacteria are regulated at a biofilm matrix scale controlled by autochthonous production. Thus, the effects of catchment-scale land use changes on ecosystem processes are likely lower in small streams dominated by biofilm bacteria than in larger streams dominated by planktonic bacteria. PMID:25460970

  2. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams.

    PubMed

    Kamjunke, Norbert; Herzsprung, Peter; Neu, Thomas R

    2015-02-15

    Streams and rivers are important sites of organic carbon mineralization which is dependent on the land use within river catchments. Here we tested whether planktonic and epilithic biofilm bacteria differ in their response to the quality of dissolved organic carbon (DOC). Thus, planktonic and biofilm bacterial production was compared with patterns of DOC along a land-use gradient in the Bode catchment area (Germany). The freshness index of DOC was positively related to the proportion of agricultural area in the catchment. The humification index correlated with the proportion of forest area. Abundance and production of planktonic bacteria were lower in headwaters than at downstream sites. Planktonic production was weakly correlated to the total concentration of DOC but more strongly to quality-measures as revealed by spectra indexes, i.e. positively to the freshness index and negatively to the humification index. In contrast to planktonic bacteria, abundance and production of biofilm bacteria were independent of DOC quality. This finding may be explained by the association of biofilm bacteria with benthic algae and an extracellular matrix which represent additional substrate sources. The data show that planktonic bacteria seem to be regulated at a landscape scale controlled by land use, whereas biofilm bacteria are regulated at a biofilm matrix scale controlled by autochthonous production. Thus, the effects of catchment-scale land use changes on ecosystem processes are likely lower in small streams dominated by biofilm bacteria than in larger streams dominated by planktonic bacteria.

  3. Spatially cascading effect of perturbations in experimental meta-ecosystems.

    PubMed

    Harvey, Eric; Gounand, Isabelle; Ganesanandamoorthy, Pravin; Altermatt, Florian

    2016-09-14

    Ecosystems are linked to neighbouring ecosystems not only by dispersal, but also by the movement of subsidy. Such subsidy couplings between ecosystems have important landscape-scale implications because perturbations in one ecosystem may affect community structure and functioning in neighbouring ecosystems via increased/decreased subsidies. Here, we combine a general theoretical approach based on harvesting theory and a two-patch protist meta-ecosystem experiment to test the effect of regional perturbations on local community dynamics. We first characterized the relationship between the perturbation regime and local population demography on detritus production using a mathematical model. We then experimentally simulated a perturbation gradient affecting connected ecosystems simultaneously, thus altering cross-ecosystem subsidy exchanges. We demonstrate that the perturbation regime can interact with local population dynamics to trigger unexpected temporal variations in subsidy pulses from one ecosystem to another. High perturbation intensity initially led to the highest level of subsidy flows; however, the level of perturbation interacted with population dynamics to generate a crash in subsidy exchange over time. Both theoretical and experimental results show that a perturbation regime interacting with local community dynamics can induce a collapse in population levels for recipient ecosystems. These results call for integrative management of human-altered landscapes that takes into account regional dynamics of both species and resource flows. PMID:27629038

  4. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    NASA Astrophysics Data System (ADS)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  5. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden.

    PubMed

    Felton, Adam; Nilsson, Urban; Sonesson, Johan; Felton, Annika M; Roberge, Jean-Michel; Ranius, Thomas; Ahlström, Martin; Bergh, Johan; Björkman, Christer; Boberg, Johanna; Drössler, Lars; Fahlvik, Nils; Gong, Peichen; Holmström, Emma; Keskitalo, E Carina H; Klapwijk, Maartje J; Laudon, Hjalmar; Lundmark, Tomas; Niklasson, Mats; Nordin, Annika; Pettersson, Maria; Stenlid, Jan; Sténs, Anna; Wallertz, Kristina

    2016-02-01

    Whereas there is evidence that mixed-species approaches to production forestry in general can provide positive outcomes relative to monocultures, it is less clear to what extent multiple benefits can be derived from specific mixed-species alternatives. To provide such insights requires evaluations of an encompassing suite of ecosystem services, biodiversity, and forest management considerations provided by specific mixtures and monocultures within a region. Here, we conduct such an assessment in Sweden by contrasting even-aged Norway spruce (Picea abies)-dominated stands, with mixed-species stands of spruce and birch (Betula pendula or B. pubescens), or spruce and Scots pine (Pinus sylvestris). By synthesizing the available evidence, we identify positive outcomes from mixtures including increased biodiversity, water quality, esthetic and recreational values, as well as reduced stand vulnerability to pest and pathogen damage. However, some uncertainties and risks were projected to increase, highlighting the importance of conducting comprehensive interdisciplinary evaluations when assessing the pros and cons of mixtures.

  6. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    PubMed Central

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-01-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs. PMID:27725742

  7. Analysis of integrated animal-fish production system under subtropical hill agro ecosystem in India: growth performance of animals, total biomass production and monetary benefit.

    PubMed

    Kumaresan, A; Pathak, K A; Bujarbaruah, K M; Vinod, K

    2009-03-01

    The present study assessed the benefits of integration of animals with fish production in optimizing the bio mass production from unit land in subtropical hill agro ecosystem. Hampshire pigs and Khaki Campbell ducks were integrated with composite fish culture. The pig and duck excreta were directly allowed into the pond and no supplementary feed was given to fish during the period of study. The average levels of N, P and K in dried pig and duck manure were 0.9, 0.7 and 0.6 per cent and 1.3, 0.6 and 0.5 per cent, respectively. The average body weight of pig and duck at 11 months age was 90 and 1.74 kg with an average daily weight gain of 333.33 and 6.44 g, respectively. The fish production in pig-fish and duck-fish systems were 2209 and 2964 kg/ha, respectively while the fish productivity in control pond was only 820 kg/ha. The total biomass (animal and fish) production was higher (p<0.05) in commercial feeding system compared to the traditional system, however the input/output ratio was 1:1.2 and 1:1.55 for commercial and traditional systems, respectively. It was inferred that the total biomass production per unit land was high (p<0.05) when animal and fish were integrated together.

  8. A guided search genetic algorithm using mined rules for optimal affective product design

    NASA Astrophysics Data System (ADS)

    Fung, Chris K. Y.; Kwong, C. K.; Chan, Kit Yan; Jiang, H.

    2014-08-01

    Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies to develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this article, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimization model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design.

  9. Using the DayCent Ecosystem Model to Predict Methane Emissions from Wetland Rice Production in Support for Mitigation Efforts

    NASA Astrophysics Data System (ADS)

    Ogle, S. M.; Parton, W. J.; Cheng, K.; Pan, G.

    2014-12-01

    Wetland rice production is a major source of greenhouse gas (GHG) emissions to the atmosphere, and rice production is predicted to increase dramatically in the future due to expected growth in human populations. Mitigating GHG emissions from future rice production is possible with best management practices for water management, residue management and organic amendments. Policy initiatives and programs that promote practices to reduce GHG emissions from rice production will likely need robust methods for quantifying emission reductions. Frameworks based on process-based model provide one alternative for estimating emissions reductions. The advantages of this approach are that the models are relatively inexpensive to apply, incorporate a variety of management and environmental drivers influencing emissions, and can be used to predict future emissions for planning purposes. The disadvantages are that the models can be challenging to parameterize and evaluate, and require a relatively large amount of data. The DayCent ecosystem model simulates plant and soil processes, and is an example of a model that could be used to quantify emission reductions for reporting mitigation activities associated with rice production systems. DayCent estimates methane emissions, which is the major source of GHG emissions from wetland rice, but also estimates nitrous oxide emissions and soil organic C stock changes. DayCent has been evaluated using data from China, explaining 83% of the variation in methane emissions from 72 experimental rice fields. In addition, DayCent has been applied regionally in the United States to estimate methane, nitrous oxide emissions, and soil C stock changes, in compliance with the guidelines for reporting GHG emissions to the UN Framework Convention on Climate Change. Given the cost of alternatives, process-based models such as DayCent may offer the best way forward for estimating GHG emissions from rice production, and with quantification of uncertainty

  10. Production and optimization of L-asparaginase by an actinobacterium isolated from Nizampatnam mangrove ecosystem.

    PubMed

    Kiranmayi, M Usha; Poda, Sudhakar; Vijayalakshmi, M

    2014-09-01

    The aim of the present study was to isolate and screen actinomycetes from the mangrove sediments of Nizampatnam that are potent to produce L-asparaginase, an enzyme that catalyses the hydrolysis of asparagine. A total of 31 actinomycetes strains were isolated, of which 6 strains were positive for L-asparaginase. Several physico-chemical parameters were optimized for maximizing L-asparaginase production by the potent strain identified as Pseudonocardia endophytica VUK-10. Production of L-asparaginase by the strain was high in modified Asparagine glucose salts broth (FM-4)(3.96 IU/ml) as compared to other tested media. Maltose(6.99 IU ml(-1)) and L-asparagine (7.42 IU ml(-1)) were found to be the most suitable carbon and nitrogen sources for optimum enzyme production. Maximum production of L-asparaginase was found in the culture medium with pH 8 and temperature 30 degrees C incubated for four days. This is the first report on the production of L-asparaginase by Pseudonocardia endophytica VUK-10 from Nizampatnam mangrove sediments.

  11. CHARACTERIZATION OF COAL COMBUSTION BY-PRODUCTS FOR THE RE-EVOLUTION OF MERCURY INTO ECOSYSTEMS

    SciTech Connect

    A.M. Schwalb; J.A. Withum

    2003-07-01

    There is some concern that mercury (Hg) in coal combustion by-products can be emitted into the environment during processing to other products, by volatilization or by dissolution into groundwater. This perception may limit the opportunities to use coal combustion by-products after disposal in recycle/reuse applications. In this program, CONSOL Energy Inc., Research & Development (CONSOL) is conducting a comprehensive sampling and analytical program to address this concern. The objective is to evaluate the potential for Hg emissions by leaching or volatilization, and to provide data that will allow a scientific assessment of the issue. The main activities for this quarter were: the re-volatilization study was continued; the literature review was updated; and the ground water study was continued.

  12. Assessing the impacts of livestock production on biodiversity in rangeland ecosystems.

    PubMed

    Alkemade, Rob; Reid, Robin S; van den Berg, Maurits; de Leeuw, Jan; Jeuken, Michel

    2013-12-24

    Biodiversity in rangelands is decreasing, due to intense utilization for livestock production and conversion of rangeland into cropland; yet the outlook of rangeland biodiversity has not been considered in view of future global demand for food. Here we assess the impact of future livestock production on the global rangelands area and their biodiversity. First we formalized existing knowledge about livestock grazing impacts on biodiversity, expressed in mean species abundance (MSA) of the original rangeland native species assemblages, through metaanalysis of peer-reviewed literature. MSA values, ranging from 1 in natural rangelands to 0.3 in man-made grasslands, were entered in the IMAGE-GLOBIO model. This model was used to assess the impact of change in food demand and livestock production on future rangeland biodiversity. The model revealed remarkable regional variation in impact on rangeland area and MSA between two agricultural production scenarios. The area of used rangelands slightly increases globally between 2000 and 2050 in the baseline scenario and reduces under a scenario of enhanced uptake of resource-efficient production technologies increasing production [high levels of agricultural knowledge, science, and technology (high-AKST)], particularly in Africa. Both scenarios suggest a global decrease in MSA for rangelands until 2050. The contribution of livestock grazing to MSA loss is, however, expected to diminish after 2030, in particular in Africa under the high-AKST scenario. Policies fostering agricultural intensification can reduce the overall pressure on rangeland biodiversity, but additional measures, addressing factors such as climate change and infrastructural development, are necessary to totally halt biodiversity loss.

  13. Assessing the impacts of livestock production on biodiversity in rangeland ecosystems

    PubMed Central

    Alkemade, Rob; Reid, Robin S.; van den Berg, Maurits; de Leeuw, Jan; Jeuken, Michel

    2013-01-01

    Biodiversity in rangelands is decreasing, due to intense utilization for livestock production and conversion of rangeland into cropland; yet the outlook of rangeland biodiversity has not been considered in view of future global demand for food. Here we assess the impact of future livestock production on the global rangelands area and their biodiversity. First we formalized existing knowledge about livestock grazing impacts on biodiversity, expressed in mean species abundance (MSA) of the original rangeland native species assemblages, through metaanalysis of peer-reviewed literature. MSA values, ranging from 1 in natural rangelands to 0.3 in man-made grasslands, were entered in the IMAGE-GLOBIO model. This model was used to assess the impact of change in food demand and livestock production on future rangeland biodiversity. The model revealed remarkable regional variation in impact on rangeland area and MSA between two agricultural production scenarios. The area of used rangelands slightly increases globally between 2000 and 2050 in the baseline scenario and reduces under a scenario of enhanced uptake of resource-efficient production technologies increasing production [high levels of agricultural knowledge, science, and technology (high-AKST)], particularly in Africa. Both scenarios suggest a global decrease in MSA for rangelands until 2050. The contribution of livestock grazing to MSA loss is, however, expected to diminish after 2030, in particular in Africa under the high-AKST scenario. Policies fostering agricultural intensification can reduce the overall pressure on rangeland biodiversity, but additional measures, addressing factors such as climate change and infrastructural development, are necessary to totally halt biodiversity loss. PMID:22308313