Science.gov

Sample records for affect ecosystem structure

  1. Landscape structure affects the provision of multiple ecosystem services

    NASA Astrophysics Data System (ADS)

    Lamy, T.; Liss, K. N.; Gonzalez, A.; Bennett, E. M.

    2016-12-01

    Understanding how landscape structure, the composition and configuration of land use/land cover (LULC) types, affects the relative supply of ecosystem services (ES), is critical to improving landscape management. While there is a long history of studies on landscape composition, the importance of landscape configuration has only recently become apparent. To understand the role of landscape structure in the provision of multiple ES, we must understand how ES respond to different measures of both composition and configuration of LULC. We used a multivariate framework to quantify the role of landscape configuration and composition in the provision of ten ES in 130 municipalities in an agricultural region in Southern Québec. We identified the relative influence of composition and configuration in the provision of these ES using multiple regression, and on bundles of ES using canonical redundancy analysis. We found that both configuration and composition play a role in explaining variation in the supply of ES, but the relative contribution of composition and configuration varies significantly among ES. We also identified three distinct ES bundles (sets of ES that regularly appear together on the landscape) and found that each bundle was associated with a unique area in the landscape, that mapped to a gradient in the composition and configuration of forest and agricultural LULC. These results show that the distribution of ES on the landscape depends upon both the overall composition of LULC types and their configuration on the landscape. As ES become more widely used to steer land use decision-making, quantifying the roles of configuration and composition in the provision of ES bundles can improve landscape management by helping us understand when and where the spatial pattern of land cover is important for multiple services.

  2. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  3. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  4. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective.

  5. Loss of Rare Fish Species from Tropical Floodplain Food Webs Affects Community Structure and Ecosystem Multifunctionality in a Mesocosm Experiment

    PubMed Central

    Pendleton, Richard M.; Hoeinghaus, David J.; Gomes, Luiz C.; Agostinho, Angelo A.

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  6. Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment.

    PubMed

    Pendleton, Richard M; Hoeinghaus, David J; Gomes, Luiz C; Agostinho, Angelo A

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  7. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent.

    PubMed

    Nicol, S; Pauly, T; Bindoff, N L; Wright, S; Thiele, D; Hosie, G W; Strutton, P G; Woehler, E

    2000-08-03

    Sea ice and oceanic boundaries have a dominant effect in structuring Antarctic marine ecosystems. Satellite imagery and historical data have identified the southern boundary of the Antarctic Circumpolar Current as a site of enhanced biological productivity. Meso-scale surveys off the Antarctic peninsula have related the abundances of Antarctic krill (Euphausia superba) and salps (Salpa thompsoni) to inter-annual variations in sea-ice extent. Here we have examined the ecosystem structure and oceanography spanning 3,500 km of the east Antarctic coastline, linking the scales of local surveys and global observations. Between 80 degrees and 150 degrees E there is a threefold variation in the extent of annual sea-ice cover, enabling us to examine the regional effects of sea ice and ocean circulation on biological productivity. Phytoplankton, primary productivity, Antarctic krill, whales and seabirds were concentrated where winter sea-ice extent is maximal, whereas salps were located where the sea-ice extent is minimal. We found enhanced biological activity south of the southern boundary of the Antarctic Circumpolar Current rather than in association with it. We propose that along this coastline ocean circulation determines both the sea-ice conditions and the level of biological productivity at all trophic levels.

  8. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest

    PubMed Central

    Orwig, David A.; Barker Plotkin, Audrey A.; Davidson, Eric A.; Lux, Heidi; Savage, Kathleen E.

    2013-01-01

    underlying patterns observed consistently in region-wide studies of adelgid-infested hemlock stands. Mechanisms of T. canadensis loss determine rates, magnitudes, and trajectories of ecological changes in hemlock forests. Logging causes abrupt, large changes in vegetation structure whereas girdling (and by inference, A. tsugae) causes sustained, smaller changes. Ecosystem processes depend more on vegetation cover per se than on species composition. We conclude that the loss of this late-successional foundation species will have long-lasting impacts on forest structure but subtle impacts on ecosystem function. PMID:23638378

  9. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest.

    PubMed

    Orwig, David A; Barker Plotkin, Audrey A; Davidson, Eric A; Lux, Heidi; Savage, Kathleen E; Ellison, Aaron M

    2013-01-01

    patterns observed consistently in region-wide studies of adelgid-infested hemlock stands. Mechanisms of T. canadensis loss determine rates, magnitudes, and trajectories of ecological changes in hemlock forests. Logging causes abrupt, large changes in vegetation structure whereas girdling (and by inference, A. tsugae) causes sustained, smaller changes. Ecosystem processes depend more on vegetation cover per se than on species composition. We conclude that the loss of this late-successional foundation species will have long-lasting impacts on forest structure but subtle impacts on ecosystem function.

  10. Evolutionary diversification in stickleback affects ecosystem functioning.

    PubMed

    Harmon, Luke J; Matthews, Blake; Des Roches, Simone; Chase, Jonathan M; Shurin, Jonathan B; Schluter, Dolph

    2009-04-30

    Explaining the ecological causes of evolutionary diversification is a major focus of biology, but surprisingly little has been said about the effects of evolutionary diversification on ecosystems. The number of species in an ecosystem and their traits are key predictors of many ecosystem-level processes, such as rates of productivity, biomass sequestration and decomposition. Here we demonstrate short-term ecosystem-level effects of adaptive radiation in the threespine stickleback (Gasterosteus aculeatus) over the past 10,000 years. These fish have undergone recent parallel diversification in several lakes in coastal British Columbia, resulting in the formation of two specialized species (benthic and limnetic) from a generalist ancestor. Using a mesocosm experiment, we demonstrate that this diversification has strong effects on ecosystems, affecting prey community structure, total primary production, and the nature of dissolved organic materials that regulate the spectral properties of light transmission in the system. However, these ecosystem effects do not simply increase in their relative strength with increasing specialization and species richness; instead, they reflect the complex and indirect consequences of ecosystem engineering by sticklebacks. It is well known that ecological factors influence adaptive radiation. We demonstrate that adaptive radiation, even over short timescales, can have profound effects on ecosystems.

  11. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  12. Factors Affecting Trophic Control of Community Structure and Ecosystem Functioning in Experimental Mesocosms of Seagrass (Zostera marina L.)

    NASA Astrophysics Data System (ADS)

    Lefcheck, J.; Duffy, J.

    2008-12-01

    Nutrient loading of coastal and estuarine waters threatens seagrass communities by promoting the growth of micro- and macroalgae, which then reduce the availability of light and nutrients. However, populations of invertebrate mesograzers are able to mitigate the negative impact of eutrophication through top-down control. We performed a factorial mesocosm experiment to examine the interactive relationships between light, nutrients, and mesograzer presence in structuring experimental ecosystems of eelgrass (Zostera marina). We found that mesograzer presence strongly reduced epiphytic algal biomass in every case, which remains consistent with previous mesocosm studies. We also observed a synergistic light-by-nutrient interaction that enhanced both epiphyte biomass and mesograzer abundance. The timing of this relationship is suggestive of weaker bottom-up control. Unlike previous studies, we found that light alone rarely affected either epiphyte biomass or mesograzer abundance. We believe that this result may be due to a combination of macroalgal shading and persistent grazing. Further processing of primary and secondary producer biomasses and elemental ratios, as well as the completion of feeding assays to gauge mesograzer feeding rates on different types of algae, will serve to reinforce these conclusions and to better define the relationship between these factors.

  13. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control?

    PubMed

    Macfadyen, Sarina; Gibson, Rachel; Polaszek, Andrew; Morris, Rebecca J; Craze, Paul G; Planqué, Robert; Symondson, William O C; Memmott, Jane

    2009-03-01

    While many studies have demonstrated that organic farms support greater levels of biodiversity, it is not known whether this translates into better provision of ecosystem services. Here we use a food-web approach to analyse the community structure and function at the whole-farm scale. Quantitative food webs from 10 replicate pairs of organic and conventional farms showed that organic farms have significantly more species at three trophic levels (plant, herbivore and parasitoid) and significantly different network structure. Herbivores on organic farms were attacked by more parasitoid species on organic farms than on conventional farms. However, differences in network structure did not translate into differences in robustness to simulated species loss and we found no difference in percentage parasitism (natural pest control) across a variety of host species. Furthermore, a manipulative field experiment demonstrated that the higher species richness of parasitoids on the organic farms did not increase mortality of a novel herbivore used to bioassay ecosystem service. The explanation for these differences is likely to include inherent differences in management strategies and landscape structure between the two farming systems.

  14. Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna.

    PubMed

    Fox-Dobbs, Kena; Doak, Daniel F; Brody, Alison K; Palmer, Todd M

    2010-05-01

    The mechanisms by which even the clearest of keystone or dominant species exert community-wide effects are only partially understood in most ecosystems. This is especially true when a species or guild influences community-wide interactions via changes in the abiotic landscape. Using stable isotope analyses, we show that subterranean termites in an East African savanna strongly influence a key ecosystem process: atmospheric nitrogen fixation by a monodominant tree species and its bacterial symbionts. Specifically, we applied the 15N natural abundance method in combination with other biogeochemical analyses to assess levels of nitrogen fixation by Acacia drepanolobium and its effects on co-occurring grasses and forbs in areas near and far from mounds and where ungulates were or were not excluded. We find that termites exert far stronger effects than do herbivores on nitrogen fixation. The percentage of nitrogen derived from fixation in Acacia drepanolobium trees is higher (55-80%) away from mounds vs. near mounds (40-50%). Mound soils have higher levels of plant available nitrogen, and Acacia drepanolobium may preferentially utilize soil-based nitrogen sources in lieu of fixed nitrogen when these sources are readily available near termite mounds. At the scale of the landscape, our models predict that termite/soil derived nitrogen sources influence >50% of the Acacia drepanolobium trees in our system. Further, the spatial extent of these effects combine with the spacing of termite mounds to create highly regular patterning in nitrogen fixation rates, resulting in marked habitat heterogeneity in an otherwise uniform landscape. In summary, we show that termite-associated effects on nitrogen processes are not only stronger than those of more apparent large herbivores in the same system, but also occur in a highly regular spatial pattern, potentially adding to their importance as drivers of community and ecosystem structure.

  15. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded.

  16. Hydrologic dynamics and ecosystem structure.

    PubMed

    Rodríguez-Iturbe, I

    2003-01-01

    Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.

  17. Ecosystem structure and function modeling

    USGS Publications Warehouse

    Humphries, H.C.; Baron, J.S.; Jensen, M.E.; Bourgeron, P.

    2001-01-01

    An important component of ecological assessments is the ability to predict and display changes in ecosystem structure and function over a variety of spatial and temporal scales. These changes can occur over short (less than 1 year) or long time frames (over 100 years). Models may emphasize structural responses (changes in species composition, growth forms, canopy height, amount of old growth, etc.) or functional responses (cycling of carbon, nutrients, and water). Both are needed to display changes in ecosystem components for use in robust ecological assessments. Structure and function models vary in the ecosystem components included, algorithms employed, level of detail, and spatial and temporal scales incorporated. They range from models that track individual organisms to models of broad-scale landscape changes. This chapter describes models appropriate for ecological assessments. The models selected for inclusion can be implemented in a spatial framework and for the most part have been run in more than one system.

  18. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    PubMed

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities.

  19. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  20. Food-web composition affects cross-ecosystem interactions and subsidies.

    PubMed

    Romero, Gustavo Q; Srivastava, Diane S

    2010-09-01

    1. Ecosystems may affect each other through trophic interactions that cross ecosystem boundaries as well as via the transfer of subsidies, but these effects can vary depending on the identity of species involved in the interaction. 2. In this study, we manipulated two terrestrial bromeliad-living spider species (Aglaoctenus castaneus, Corinna gr. rubripes) that have variable hunting modes, to test their individual and combined effects on aquatic invertebrate community structure and ecosystem processes (i.e. decomposition rate and nitrogen cycling). We predicted that these terrestrial predators can affect aquatic invertebrates and nutrient dynamics within water-filled bromeliads. 3. Aglaoctenus spiders reduced the richness, abundance and biomass of aquatic insect larvae via consumptive or non-consumptive effects on ovipositing terrestrial adults, but effects of the two spider species in combination were usually the linear average of their monoculture effects. In contrast, invertebrates with entirely aquatic life cycles were unaffected or facilitated by spiders. Spiders did not affect either net detritivore biomass or the flux of detrital nitrogen to the bromeliad. Instead, Corinna spiders contributed allochthonous nitrogen to bromeliads. 4. Our results provide the novel observations that predators in one ecosystem not only directly reduce taxa whose life cycles cross-ecosystem boundaries, but also indirectly facilitate taxa whose life cycles are entirely within the second ecosystem. This compensatory response between cross-ecosystem and within-ecosystem taxa may have led to an attenuation of top-down effects across ecosystem boundaries. In addition, our results add to a growing consensus that species identity is an important determinant of community structure and ecosystem functioning. Thus, the composition of both terrestrial and aquatic food webs may affect the strength of cross-ecosystem interactions.

  1. Soil community structure and ecosystem C cycling in arid ecosystems experiencing multiple environmental changes

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M. A.; Cable, J. M.; Huxman, T. E.; Scott, R. L.; Williams, D. G.

    2005-12-01

    Despite the importance of soil carbon cycling to the response of water-limited ecosystems to global change, our understanding of this ecosystem component is still in its infancy. Adding to the complexity in knowledge building, ecosystems are exposed to simultaneous multiple shifts within global change scenarios. For example, semiarid grasslands in southern Arizona are currently undergoing encroachment by woody plants at the same time that climate change models predict increases in frequency and magnitude of precipitation inputs over the next 50 years. We are investigating how heterogeneity of plant cover mediates the response of soil community structure and ecosystem C cycling to seasonal monsoon rain inputs. Field plots were established in a mesquite shrubland in the San Pedro River Basin, AZ that are dominated by either: Sporobulus wrightii, medium sized Prosopis velutina, or large Prosopis velutina, additional plots were located in intercanopy areas. Both increased quantity and quality of litter inputs to the soil component, and physical influences of the shrubs on ecosystem water and energy budgets affects plots influenced by the development of Prosopis. Plant species influenced the response of soil microbial biomass to precipitation pulses. Plant cover also influenced the dynamics of soil nematodes. Magnitude of precipitation inputs and plant cover interact to affect the abundance of trophic group abundances and food web structure. These results will be discussed vis-à-vis the importance of soil organisms for driving ecosystem dynamics, and the appropriateness of dominant paradigms in arid land ecology (notably the pulse-reserve paradigm) for understanding soil components of arid ecosystems. Shifts in soil flora and fauna have important implications for ecosystem C-cycling via alterations of trophic dynamics, and the contribution of heterotrophic respiration to C efflux from ecosystems.

  2. How will increases in rainfall intensity affect semiarid ecosystems?

    NASA Astrophysics Data System (ADS)

    Siteur, Koen; Eppinga, Maarten; Karssenberg, Derek; Baudena, Mara; Bierkens, Marc; Rietkerk, Max

    2014-05-01

    Model studies suggest that semiarid ecosystems with patterned vegetation can respond in a non-linear way to climate change. This means that gradual changes can result in a sudden and significant loss of biological productivity, also referred to as desertification. Previous model studies focused on the response of patterned semiarid ecosystems to changes in mean annual rainfall. However, climate projections show that, as a result of global warming, the intensity of rain events may change as well. We studied the effect of changes in rainfall intensity on the functioning of patterned semiarid ecosystems with a spatially explicit model that captures rainwater partitioning and runoff-runon processes with simple event based process descriptions. Analytical and numerical analyses of the model revealed that rainfall intensity is a key parameter in explaining patterning of vegetation in semiarid ecosystems as low mean rainfall intensities do not allow for vegetation patterning to occur. Surprisingly, we found that, for a constant annual rainfall rate, both an increase and a decrease in mean rainfall intensity can trigger desertification. An increase negatively affects productivity as a greater fraction of the rainwater is lost as runoff. This can result in a shift to a bare desert state only if the mean rainfall intensity exceeds the infiltration capacity of bare soil. On the other hand, a decrease in mean rainfall intensity leads to an increased fraction of rainwater infiltrating in bare soils, remaining unavailable to plants. Our findings suggest that considering rainfall intensity as a variable may help in assessing the proximity to regime shifts in patterned semiarid ecosystems and that monitoring losses of resource through runoff and bare soil infiltration could be used to determine ecosystem resilience.

  3. Community structure affects behavior.

    PubMed

    Jaenson, C

    1991-06-01

    AID's prevention efforts can benefit from taking into account 5 main aspects (KEPRA) of community structure identified by anthropologists: 1) kinship patterns, 2) economics, 3) politics, 4) religion, and 5) associations. For example, in Uganda among the Basoga and paternal aunt or senga is responsible for female sex education. Such culturally determined patterns need to be targeted in order to enhance education and effectiveness. Economics can reflect differing systems of family support through sexual means. The example given involves a poor family with a teenager in Thailand who exchanges a water buffalo or basic necessity for this daughter's prostitution. Politics must be considered because every society identifies people who have the power to persuade, influence, exchange resources, coerce, or in some way get people to do what is wanted. Utilizing these resources whether its ministers of health, factory owners, or peers is exemplified in the Monterey, Mexico factor floor supervisor and canteen worker introducing to workers the hows and whys of a new AID's education program. His peer status will command more respect than the director with direct authority. Religious beliefs have explanations for causes of sickness or disease, or provide instruction in sex practices. The example given is of a health workers in Uganda discussing AIDS with rural women by saying that we all know that disease and deaths are caused by spells. "But not AIDS - slim. AIDS is different." Associations can help provide educational, economic, and emotional assistance to the AID's effort or families affected.

  4. How Does Climate Change Affect the Bering Sea Ecosystem?

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Harvey, H. Rodger; Ashjian, Carin J.; Lomas, Michael W.; Napp, Jeffrey M.; Stabeno, Phyllis J.; Van Pelt, Thomas I.

    2010-11-01

    The Bering Sea is one of the most productive marine ecosystems in the world, sustaining nearly half of U.S. annual commercial fish catches and providing food and cultural value to thousands of coastal and island residents. Fish and crab are abundant in the Bering Sea; whales, seals, and seabirds migrate there every year. In winter, the topography, latitude, atmosphere, and ocean circulation combine to produce a sea ice advance in the Bering Sea unmatched elsewhere in the Northern Hemisphere, and in spring the retreating ice; longer daylight hours; and nutrient-rich, deep-ocean waters forced up onto the broad continental shelf result in intense marine productivity (Figure 1). This seasonal ice cover is a major driver of Bering Sea ecology, making this ecosystem particularly sensitive to changes in climate. Predicted changes in ice cover in the coming decades have intensified concern about the future of this economically and culturally important region. In response, the North Pacific Research Board (NPRB) and the U.S. National Science Foundation (NSF) entered into a partnership in 2007 to support the Bering Sea Project, a comprehensive $52 million investigation to understand how climate change is affecting the Bering Sea ecosystem, ranging from lower trophic levels (e.g., plankton) to fish, seabirds, marine mammals, and, ultimately, humans. The project integrates two research programs, the NSF Bering Ecosystem Study (BEST) and the NPRB Bering Sea Integrated Ecosystem Research Program (BSIERP), with substantial in-kind contributions from the U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service.

  5. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    PubMed

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  6. How does vineyard management intensity affect ecosystem services and disservices - insights from a meta-analysis

    NASA Astrophysics Data System (ADS)

    Winter, Silvia; Zaller, Johann G.; Kratschmer, Sophie; Pachinger, Bärbel; Strauss, Peter; Bauer, Thomas; Paredes, Daniel; Gómez, José A.; Guzmán, Gema; Landa, Blanca; Nicolai, Annegret; Burel, Francoise; Cluzeau, Daniel; Popescu, Daniela; Bunea, Claudiu-Ioan; Potthoff, Martin; Guernion, Muriel; Batáry, Péter

    2016-04-01

    Viticultural agro-ecosystems provide a range of different ecosystem services which are affected by management decisions of winegrowers. At the global scale, vineyards are often high intensity agricultural systems with bare soil or inter-row vegetation consisting of only a few plant species. These systems primarily aim at optimizing wine production by reducing competition for water and nutrients between grapevines and weeds and by preventing the outbreak of pests and diseases. At the same time, this kind of management is often associated with ecosystem disservices such as high rates of soil erosion, degradation of soil structure and fertility, contamination of groundwater and decline of biodiversity. Recently, several initiatives across the world tried to overcome detrimental effects of that management style by creating biodiversity friendly vineyards. The consequences of establishing divers cover crop mixes or tolerating spontaneous vegetation in vineyards for ecosystem services (including yield) overstretching local case studies has not been investigated yet. This meta-analysis will provide an overview of all published studies comparing the effects of different vineyard management practices on a range of different ecosystem services like biodiversity, pest control, pollination, soil conservation and carbon sequestration. The aggregated effect size will point out which management measures can provide the best overall net sum of ecosystem services. This meta-analysis is part of the transdisciplinary BiodivERsA project VineDivers and will ultimately lead into management and policy recommendations for various stakeholder groups engaged in viticulture.

  7. Community history affects the predictability of microbial ecosystem development.

    PubMed

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications.

  8. Community history affects the predictability of microbial ecosystem development

    PubMed Central

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications. PMID:23985743

  9. [Advances in study of factors affecting soil N mineralization in grassland ecosystems].

    PubMed

    Wang, Changhui; Xing, Xuerong; Han, Xingguo

    2004-11-01

    The biological and non-biological factors affecting soil N availability in grassland ecosystems were reviewed in this paper. Nitrogen cycling in grassland ecosystems is one of the focuses widely concerned. Nitrogen mineralization is affected by many factors in grassland ecosystem, which can be classified into biological and non-biological ones. Biological factors include soil animals, soil microorganisms and plants. Soil animals could accelerate the organic matter to degrade. The species, structure and function of soil microorganisms correlate significantly with N degradation and mineralization. Different vegetation has different effects on soil nitrogen mineralization. The non-biological factors include environmental factors and anthropogenic disturbance, which have direct and obvious effects on N mineralization. The effects of soil temperature and moisture on N mineralization are given more attention, but many phenomena, such as the effects of soil type, soil structure and vegetation type on N mineralization still could not be explained clearly, and no general agreements were reached. Anthropogenic disturbance such as grazing, firing and fertilization influence N mineralization evidently. It is of great significance to understand the N cycling pattern and N availability in different grassland ecosystems all around the world.

  10. Watershed hydrology, network allometry and ecosystem structure

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.

    2003-04-01

    The lecture covers recent advances relevant to watershed hydrology, in particular derived from the realm of data now available, covering a wide range of scales and objectively collected and analyzed. It is intended to summarize results that are, in the lecturer's opinion, crucial to our current understanding of a variety of issues. Key among them, landscape evolution models, models of the hydrologic response and, indeed a scientific challenge, ecosystem structure. In particular, a new allometric scaling law for loopless networks, confirmed through studies on rivers, exact network results and computer simulations, offers unique insight on a variety of phenomena, ranging from the ubiquity of the 'quarter-power' law in biology to the origin of scaling size spectra in marine microbial ecosystems, to the proper geomorphological description of a river basin and its hydrological implications. In a sense, networks are a byproduct of the hydrologic dynamics, and indeed can be shown to be related to ecosystem structure. Si parva licet, I will provide evidence suggesting that ensemble averaging of the allometric property (where individual realizations are different networks) leads to results in excellent accord with the known limit scaling of efficient and compact networks with remarkably little scatter with implications of somewhat general character. Such results complement recent work suggesting that scaling features are quite robust to geometrical fluctuations of network properties. Finally, I shall gather from the morphological analysis on river networks the potential for predicting the main characters of the hydrologic response in ungauged basins - a task of practical nature with many social implications, possibly relevant to the Session's aims.

  11. Measurement of Family Affective Structure.

    ERIC Educational Resources Information Center

    Lowman, Joseph

    1980-01-01

    Three studies demonstrate that the Inventory of Family Feelings, a measure of family affective structure, has high reliability and construct and concurrent validity. It is appropriate for affective comparisons by age, sex, and ordinal position of children and for measuring change after family or marital therapy, or after predictable stress…

  12. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  13. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    PubMed Central

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-01-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381

  14. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model.

    PubMed

    Harfoot, Michael B J; Newbold, Tim; Tittensor, Derek P; Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J; Scharlemann, Jörn P W; Purves, Drew W

    2014-04-01

    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures.

  15. Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model

    PubMed Central

    Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J.; Scharlemann, Jörn P. W.; Purves, Drew W.

    2014-01-01

    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures. PMID:24756001

  16. Abyssal food limitation, ecosystem structure and climate change.

    PubMed

    Smith, Craig R; De Leo, Fabio C; Bernardino, Angelo F; Sweetman, Andrew K; Arbizu, Pedro Martinez

    2008-09-01

    The abyssal seafloor covers more than 50% of the Earth and is postulated to be both a reservoir of biodiversity and a source of important ecosystem services. We show that ecosystem structure and function in the abyss are strongly modulated by the quantity and quality of detrital food material sinking from the surface ocean. Climate change and human activities (e.g. successful ocean fertilization) will alter patterns of sinking food flux to the deep ocean, substantially impacting the structure, function and biodiversity of abyssal ecosystems. Abyssal ecosystem response thus must be considered in assessments of the environmental impacts of global warming and ocean fertilization.

  17. Ant-mediated ecosystem processes are driven by trophic community structure but mainly by the environment.

    PubMed

    Salas-Lopez, Alex; Mickal, Houadria; Menzel, Florian; Orivel, Jérôme

    2017-01-01

    The diversity and functional identity of organisms are known to be relevant to the maintenance of ecosystem processes but can be variable in different environments. Particularly, it is uncertain whether ecosystem processes are driven by complementary effects or by dominant groups of species. We investigated how community structure (i.e., the diversity and relative abundance of biological entities) explains the community-level contribution of Neotropical ant communities to different ecosystem processes in different environments. Ants were attracted with food resources representing six ant-mediated ecosystem processes in four environments: ground and vegetation strata in cropland and forest habitats. The exploitation frequencies of the baits were used to calculate the taxonomic and trophic structures of ant communities and their contribution to ecosystem processes considered individually or in combination (i.e., multifunctionality). We then investigated whether community structure variables could predict ecosystem processes and whether such relationships were affected by the environment. We found that forests presented a greater biodiversity and trophic complementarity and lower dominance than croplands, but this did not affect ecosystem processes. In contrast, trophic complementarity was greater on the ground than on vegetation and was followed by greater resource exploitation levels. Although ant participation in ecosystem processes can be predicted by means of trophic-based indices, we found that variations in community structure and performance in ecosystem processes were best explained by environment. We conclude that determining the extent to which the dominance and complementarity of communities affect ecosystem processes in different environments requires a better understanding of resource availability to different species.

  18. Habitat structure, trophic structure and ecosystem function: interactive effects in a bromeliad-insect community.

    PubMed

    Srivastava, Diane S

    2006-09-01

    Although previous studies have shown that ecosystem functions are affected by either trophic structure or habitat structure, there has been little consideration of their combined effects. Such interactions may be particularly important in systems where habitat and trophic structure covary. I use the aquatic insects in bromeliads to examine the combined effects of trophic structure and habitat structure on a key ecosystem function: detrital processing. In Costa Rican bromeliads, trophic structure naturally covaries with both habitat complexity and habitat size, precluding any observational analysis of interactions between factors. I therefore designed mesocosms that allowed each factor to be manipulated separately. Increases in mesocosm complexity reduced predator (damselfly larva) efficiency, resulting in high detritivore abundances, indirectly increasing detrital processing rates. However, increased complexity also directly reduced the per capita foraging efficiency of the detritivores. Over short time periods, these trends effectively cancelled each other out in terms of detrital processing. Over longer time periods, more complex patterns emerged. Increases in mesocosm size also reduced both predator efficiency and detritivore efficiency, leading to no net effect on detrital processing. In many systems, ecosystem functions may be impacted by strong interactions between trophic structure and habitat structure, cautioning against examining either effect in isolation.

  19. Synergy of VSWIR and LiDAR for Ecosystem Structure, Biomass, and Canopy Diversity

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Asner, Gregory P.

    2010-01-01

    This slide presentation reviews the use of Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer and LiDAR to study ecosystem structure, biomass and canopy diversity. It is shown that the biophysical data from LiDAR and biochemical information from hyperspectral remote sensing provides complementary data for: (1) describing spatial patterns of vegetation and biodiversity, (2) characterizing relationships between ecosystem form and function, and (3) detecting natural and human induced change that affects the biogeochemical cycles.

  20. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability.

    PubMed

    Yu, Qiang; Chen, Quansheng; Elser, James J; He, Nianpeng; Wu, Honghui; Zhang, Guangming; Wu, Jianguo; Bai, Yongfei; Han, Xingguo

    2010-11-01

    Ecosystem structure, functioning and stability have been a focus of ecological and environmental sciences during the past two decades. The mechanisms underlying their relationship, however, are not well understood. Based on comprehensive studies in Inner Mongolia grassland, here we show that species-level stoichiometric homoeostasis was consistently positively correlated with dominance and stability on both 2-year and 27-year temporal scales and across a 1200-km spatial transect. At the community level, stoichiometric homoeostasis was also positively correlated with ecosystem function and stability in most cases. Thus, homoeostatic species tend to have high and stable biomass; and ecosystems dominated by more homoeostatic species have higher productivity and greater stability. By modulating organism responses to key environmental drivers, stoichiometric homoeostasis appears to be a major mechanism responsible for the structure, functioning and stability of grassland ecosystems.

  1. Climate change, parasitism and the structure of intertidal ecosystems.

    PubMed

    Poulin, R; Mouritsen, K N

    2006-06-01

    Evidence is accumulating rapidly showing that temperature and other climatic variables are driving many ecological processes. At the same time, recent research has highlighted the role of parasitism in the dynamics of animal populations and the structure of animal communities. Here, the likely interactions between climate change and parasitism are discussed in the context of intertidal ecosystems. Firstly, using the soft-sediment intertidal communities of Otago Harbour, New Zealand, as a case study, parasites are shown to be ubiquitous components of intertidal communities, found in practically all major animal species in the system. With the help of specific examples from Otago Harbour, it is demonstrated that parasites can regulate host population density, influence the diversity of the entire benthic community, and affect the structure of the intertidal food web. Secondly, we document the extreme sensitivity of cercarial production in parasitic trematodes to increases in temperature, and discuss how global warming could lead to enhanced trematode infections. Thirdly, the results of a simulation model are used to argue that parasite-mediated local extinctions of intertidal animals are a likely outcome of global warming. Specifically, the model predicts that following a temperature increase of less than 4 degrees C, populations of the amphipod Corophium volutator, a hugely abundant tube-building amphipod on the mudflats of the Danish Wadden Sea, are likely to crash repeatedly due to mortality induced by microphallid trematodes. The available evidence indicates that climate-mediated changes in local parasite abundance will have significant repercussions for intertidal ecosystems. On the bright side, the marked effects of even slight increases in temperature on cercarial production in trematodes could form the basis for monitoring programmes, with these sensitive parasites providing early warning signals of the environmental impacts of global warming.

  2. Structure and functioning of dryland ecosystems in a changing world.

    PubMed

    Maestre, Fernando T; Eldridge, David J; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel

    2016-11-01

    Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.

  3. Structure and functioning of dryland ecosystems in a changing world

    PubMed Central

    Maestre, Fernando T.; Eldridge, David J.; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel

    2017-01-01

    Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change. PMID:28239303

  4. Linking community size structure and ecosystem functioning using metabolic theory.

    PubMed

    Yvon-Durocher, Gabriel; Allen, Andrew P

    2012-11-05

    Understanding how biogeochemical cycles relate to the structure of ecological communities is a central research question in ecology. Here we approach this problem by focusing on body size, which is an easily measured species trait that has a pervasive influence on multiple aspects of community structure and ecosystem functioning. We test the predictions of a model derived from metabolic theory using data on ecosystem metabolism and community size structure. These data were collected as part of an aquatic mesocosm experiment that was designed to simulate future environmental warming. Our analyses demonstrate significant linkages between community size structure and ecosystem functioning, and the effects of warming on these links. Specifically, we show that carbon fluxes were significantly influenced by seasonal variation in temperature, and yielded activation energies remarkably similar to those predicted based on the temperature dependencies of individual-level photosynthesis and respiration. We also show that community size structure significantly influenced fluxes of ecosystem respiration and gross primary production, particularly at the annual time-scale. Assessing size structure and the factors that control it, both empirically and theoretically, therefore promises to aid in understanding links between individual organisms and biogeochemical cycles, and in predicting the responses of key ecosystem functions to future environmental change.

  5. The effects of food web structure on ecosystem function exceeds those of precipitation.

    PubMed

    Trzcinski, M Kurtis; Srivastava, Diane S; Corbara, Bruno; Dézerald, Olivier; Leroy, Céline; Carrias, Jean-François; Dejean, Alain; Céréghino, Régis

    2016-09-01

    Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder-microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder-microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder-microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation.

  6. Structural and functional loss in restored wetland ecosystems.

    PubMed

    Moreno-Mateos, David; Power, Mary E; Comín, Francisco A; Yockteng, Roxana

    2012-01-01

    Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages), and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils), remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha) and wetlands restored in warm (temperate and tropical) climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal) hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.

  7. The importance of structural complexity in coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Graham, N. A. J.; Nash, K. L.

    2013-06-01

    The importance of structural complexity in coral reefs has come to the fore with the global degradation of reef condition; however, the limited scale and replication of many studies have restricted our understanding of the role of complexity in the ecosystem. We qualitatively and quantitatively (where sufficient standardised data were available) assess the literature regarding the role of structural complexity in coral reef ecosystems. A rapidly increasing number of publications have studied the role of complexity in reef ecosystems over the past four decades, with a concomitant increase in the diversity of methods used to quantify structure. Quantitative analyses of existing data indicate a strong negative relationship between structural complexity and algal cover, which may reflect the important role complexity plays in enhancing herbivory by reef fishes. The cover of total live coral and branching coral was positively correlated with structural complexity. These habitat attributes may be creating much of the structure, resulting in a collinear relationship; however, there is also evidence of enhanced coral recovery from disturbances where structural complexity is high. Urchin densities were negatively correlated with structural complexity; a relationship that may be driven by urchins eroding reef structure or by their gregarious behaviour when in open space. There was a strong positive relationship between structural complexity and fish density and biomass, likely mediated through density-dependent competition and refuge from predation. More variable responses were found when assessing individual fish families, with all families examined displaying a positive relationship to structural complexity, but only half of these relationships were significant. Although only corroborated with qualitative data, structural complexity also seems to have a positive effect on two ecosystem services: tourism and shoreline protection. Clearly, structural complexity is an

  8. Observing phytoplankton physiology and ocean ecosystem structure from space

    NASA Astrophysics Data System (ADS)

    Schultz, Patrick

    Changes in ocean circulation in response to anthropogenic climate change affect ocean biology on a global scale. Based on a previously published empirical model that links ocean circulation to chlorophyll and chlorophyll to primary production, I predict an increase in primary production of 10--27% at the end of the 23rd century under four times pre-industrial atmospheric CO 2. The uncertainty in this prediction largely stems from the reliance on chlorophyll as the only model constraint. Chlorophyll concentrations are difficult to interpret, as they depend on phytoplankton biomass and cellular pigmentation, which adjusts to growth conditions. The objective of this thesis is to bridge the gap between laboratory-based knowledge of physiological adjustments to growth conditions and global satellite observations to reduce ambiguities in the interpretation of chlorophyll concentrations on a global scale. Satellite estimates of phytoplankton carbon and the chlorophyll to carbon ratio (Chl:C), a measure of pigmentation, are the foundation of this work. My main contribution is a re-evaluation of chlorophyll variability in the eastern subarctic Pacific, which updates the old paradigm for seasonal phytoplankton dynamics in this iron-limited region. In contrast to previous studies, I conclude that the consistently low chlorophyll concentrations are caused by a suppression of Chl:C by iron stress, rather than by reduced accumulation of phytoplankton biomass. Field observations during iron enrichment experiments and model simulations confirm that the satellite-observed suppression of Chl:C is consistent with physiological adjustments to low iron. On a global scale, I analyze how phytoplankton biomass and pigmentation interact to yield the spatial structure in surface chlorophyll and I employ a mechanistic photoacclimation model to diagnose the contributions of light, nutrients and temperature to the spatial structure in Chl:C. I further argue that the temporal variability of

  9. [Ecosystem service interactions and their affecting factors in Jinghe watershed at county level].

    PubMed

    Pan, Ying; Zhen, Lin; Long, Xin; Cao, Xiao-Chang

    2012-05-01

    Taking the multiple ecosystem services (grain supply, meat supply, fuel-wood supply, water resource conservation and soil retention) as test objects, this paper analyzed the interactions among these services, the interaction modes and the possible affecting factors in 31 counties of Jinghe watershed. At the county level, there existed great differences in the interactions among different pairs of the ecosystem services. The grain supply showed significant positive correlation with meat supply but negative correlation with soil retention, whereas the water resource conservation showed significant positive correlations with fuel-wood supply and soil retention. As for the interaction modes of the ecosystem services, 24 counties were primarily of regulation services, 3 counties were of supply and regulation services in balance, and 4 counties were primarily of grain supply. The total ecosystem service index of the interaction modes in each county varied greatly, with 5.1 times of difference between the maximum (Jingyuan County) and the minimum value (Yanchi County). The total ecosystem service index was significantly positively correlated with precipitation and soil total nitrogen, and negatively correlated with solar hours. The increase of farmland had negative effects, while that of shrub land and grassland had great positive effects on the total ecosystem service index, but the increase of forestland had less effects.

  10. Habitat structure mediates biodiversity effects on ecosystem properties

    PubMed Central

    Godbold, J. A.; Bulling, M. T.; Solan, M.

    2011-01-01

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised. PMID:21227969

  11. Habitat structure mediates biodiversity effects on ecosystem properties.

    PubMed

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  12. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems

    PubMed Central

    Hay, Mark E.

    2012-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized. PMID:21141035

  13. Effect of environmental variables and stand structure on ecosystem respiration components in a Mediterranean beech forest.

    PubMed

    Guidolotti, Gabriele; Rey, Ana; D'Andrea, Ettore; Matteucci, Giorgio; De Angelis, Paolo

    2013-09-01

    The temporal variability of ecosystem respiration (RECO) has been reported to have important effects on the temporal variability of net ecosystem exchange, the net amount of carbon exchanged between an ecosystem and the atmosphere. However, our understanding of ecosystem respiration is rather limited compared with photosynthesis or gross primary productivity, particularly in Mediterranean montane ecosystems. In order to investigate how environmental variables and forest structure (tree classes) affect different respiration components and RECO in a Mediterranean beech forest, we measured soil, stem and leaf CO2 efflux rates with dynamic chambers and RECO by the eddy-covariance technique over 1 year (2007-2008). Ecosystem respiration showed marked seasonal variation, with the highest rates in spring and autumn and the lowest in summer. We found that the soil respiration (SR) was mainly controlled by soil water content below a threshold value of 0.2 m(3) m(-3), above which the soil temperature explained temporal variation in SR. Stem CO2 effluxes were influenced by air temperature and difference between tree classes with higher rates measured in dominant trees than in co-dominant ones. Leaf respiration (LR) varied significantly between the two canopy layers considered. Non-structural carbohydrates were a very good predictor of LR variability. We used these measurements to scale up respiration components to ecosystem respiration for the whole canopy and obtained cumulative amounts of carbon losses over the year. Based on the up-scaled chamber measurements, the relative contributions of soil, stem and leaves to the total annual CO2 efflux were: 56, 8 and 36%, respectively. These results confirm that SR is the main contributor of ecosystem respiration and provided an insight on the driving factors of respiration in Mediterranean montane beech forests.

  14. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams

    DOE PAGES

    Martin, Erika C.; Gido, Keith B.; Bello, Nora; ...

    2016-04-06

    Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources

  15. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams

    SciTech Connect

    Martin, Erika C.; Gido, Keith B.; Bello, Nora; Dodds, Walter K.; Veach, Allison

    2016-04-06

    Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwater prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources across

  16. Determinants of community structure of zooplankton in heavily polluted river ecosystems.

    PubMed

    Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin

    2016-02-25

    River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are "filtered" by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level.

  17. Determinants of community structure of zooplankton in heavily polluted river ecosystems

    PubMed Central

    Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin

    2016-01-01

    River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are “filtered” by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level. PMID:26912391

  18. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David

    2012-01-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  19. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?

    DOE PAGES

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; ...

    2016-02-24

    In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of processmore » rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.« less

  20. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?

    SciTech Connect

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J. M.; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C.; Glanville, Helen C.; Jones, Davey L.; Angel, Roey; Salminen, Janne; Newton, Ryan J.; Burgmann, Helmut; Ingram, Lachlan J.; Hamer, Ute; Siljanen, Henri M. P.; Peltoniemi, Krista; Potthast, Karin; Baneras, Lluis; Hartmann, Martin; Banerjee, Samiran; Yu, Ri -Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C.; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C.; Lopes, Ana R.; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S.; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindstrom, Eva S.; Basiliko, Nathan; Nemergut, Diana R.

    2016-02-24

    In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

  1. Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

    PubMed Central

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J. M.; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C.; Glanville, Helen C.; Jones, Davey L.; Angel, Roey; Salminen, Janne; Newton, Ryan J.; Bürgmann, Helmut; Ingram, Lachlan J.; Hamer, Ute; Siljanen, Henri M. P.; Peltoniemi, Krista; Potthast, Karin; Bañeras, Lluís; Hartmann, Martin; Banerjee, Samiran; Yu, Ri-Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C.; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C.; Lopes, Ana R.; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S.; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindström, Eva S.; Basiliko, Nathan; Nemergut, Diana R.

    2016-01-01

    Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology. PMID:26941732

  2. An Operational Structure for Clarity in Ecosystem Service Values

    EPA Science Inventory

    Analyses used to value ecosystem services often confuse final ecosystem services with ecological functions that provide only indirect benefit. Extant categorizations of ecosystem services, such as that developed by the Millennium Ecosystem Assessment, do not ameliorate these cha...

  3. Studies on Interpretive Structural Model for Forest Ecosystem Management Decision-Making

    NASA Astrophysics Data System (ADS)

    Liu, Suqing; Gao, Xiumei; Zen, Qunying; Zhou, Yuanman; Huang, Yuequn; Han, Weidong; Li, Linfeng; Li, Jiping; Pu, Yingshan

    Characterized by their openness, complexity and large scale, forest ecosystems interweave themselves with social system, economic system and other natural ecosystems, thus complicating both their researches and management decision-making. According to the theories of sustainable development, hierarchy-competence levels, cybernetics and feedback, 25 factors have been chosen from human society, economy and nature that affect forest ecosystem management so that they are systematically analyzed via developing an interpretive structural model (ISM) to reveal their relationships and positions in the forest ecosystem management. The ISM consists of 7 layers with the 3 objectives for ecosystem management being the top layer (the seventh layer). The ratio between agricultural production value and industrial production value as the bases of management decision-making in forest ecosystems becomes the first layer at the bottom because it has great impacts on the values of society and the development trends of forestry, while the factors of climatic environments, intensive management extent, management measures, input-output ratio as well as landscape and productivity are arranged from the second to sixth layers respectively.

  4. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability

    NASA Astrophysics Data System (ADS)

    Steenberg, James W. N.; Millward, Andrew A.; Nowak, David J.; Robinson, Pamela J.; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  5. Parrots as key multilinkers in ecosystem structure and functioning.

    PubMed

    Blanco, Guillermo; Hiraldo, Fernando; Rojas, Abraham; Dénes, Francisco V; Tella, José L

    2015-09-01

    Mutually enhancing organisms can become reciprocal determinants of their distribution, abundance, and demography and thus influence ecosystem structure and dynamics. In addition to the prevailing view of parrots (Psittaciformes) as plant antagonists, we assessed whether they can act as plant mutualists in the dry tropical forest of the Bolivian inter-Andean valleys, an ecosystem particularly poor in vertebrate frugivores other than parrots (nine species). We hypothesised that if interactions between parrots and their food plants evolved as primarily or facultatively mutualistic, selection should have acted to maximize the strength of their interactions by increasing the amount and variety of resources and services involved in particular pairwise and community-wide interaction contexts. Food plants showed different growth habits across a wide phylogenetic spectrum, implying that parrots behave as super-generalists exploiting resources differing in phenology, type, biomass, and rewards from a high diversity of plants (113 species from 38 families). Through their feeding activities, parrots provided multiple services acting as genetic linkers, seed facilitators for secondary dispersers, and plant protectors, and therefore can be considered key mutualists with a pervasive impact on plant assemblages. The number of complementary and redundant mutualistic functions provided by parrots to each plant species was positively related to the number of different kinds of food extracted from them. These mutually enhancing interactions were reflected in species-level properties (e.g., biomass or dominance) of both partners, as a likely consequence of the temporal convergence of eco-(co)evolutionary dynamics shaping the ongoing structure and organization of the ecosystem. A full assessment of the, thus far largely overlooked, parrot-plant mutualisms and other ecological linkages could change the current perception of the role of parrots in the structure, organization, and

  6. Habitat structural effect on squamata fauna of the restinga ecosystem in northeastern Brazil.

    PubMed

    Dias, Eduardo J R; Rocha, Carlos F D

    2014-03-01

    In this work, we surveyed data on richness and composition of squamatan reptiles and habitat structural effect in nine areas of restinga ecosystem in the State of Bahia, northeastern Brazil. The "restinga" ecosystems are coastal sand dune habitats on the coast of Brazil. Our main hypothesis is that the Squamata fauna composition along these restinga areas would be modulated by habitat structural. After 90 days of field sampling we recorded approximately 5% of reptile species known in Brazil. The composition of Squamata assemblages varied mainly based on the presence or absence of lizards of the genera Ameivula and Tropidurus. Our data showed that habitat structure consistently affected the composition of local Squamata fauna, especially lizards.

  7. Herbivore and predator diversity interactively affect ecosystem properties in an experimental marine community.

    PubMed

    Douglass, James G; Duffy, J Emmett; Bruno, John F

    2008-06-01

    Interacting changes in predator and prey diversity likely influence ecosystem properties but have rarely been experimentally tested. We manipulated the species richness of herbivores and predators in an experimental benthic marine community and measured their effects on predator, herbivore and primary producer performance. Predator composition and richness strongly affected several community and population responses, mostly via sampling effects. However, some predators survived better in polycultures than in monocultures, suggesting complementarity due to stronger intra- than interspecific interactions. Predator effects also differed between additive and substitutive designs, emphasizing that the relationship between diversity and abundance in an assemblage can strongly influence whether and how diversity effects are realized. Changing herbivore richness and predator richness interacted to influence both total herbivore abundance and predatory crab growth, but these interactive diversity effects were weak. Overall, the presence and richness of predators dominated biotic effects on community and ecosystem properties.

  8. Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI)

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Rosen, Paul; Ranson, Jon; Zebker, Howard

    2008-01-01

    The National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommends that DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice), an integrated L-band InSAR and multibeam Lidar mission, launch in the 2010- 2013 timeframe. The mission will measure surface deformation for solid Earth and cryosphere objectives and vegetation structure for understanding the carbon cycle. InSAR has been used to study surface deformation of the solid Earth and cryosphere and more recently vegetation structure for estimates of biomass and ecosystem function. Lidar directly measures topography and vegetation structure and is used to estimate biomass and detect changes in surface elevation. The goal of DESDynI is to take advantage of the spatial continuity of InSAR and the precision and directness of Lidar. There are several issues related to the design of the DESDynI mission, including combining the two instruments into a single platform, optimizing the coverage and orbit for the two techniques, and carrying out the science modeling to define and maximize the scientific output of the mission.

  9. Quantifying Ecosystem Structural Components with Highly Portable Lidar

    NASA Astrophysics Data System (ADS)

    Schaaf, C.; Paynter, I.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.

    2015-12-01

    Terrestrial laser scanners (TLS), which utilize light detection and ranging (lidar) have demonstrated the ability to produce accurate reconstructions of ecosystems, including spatially complex systems such as forests. Reconstructions at the object or plot scale can be used to interpret or simulate satellite observations, particularly for lidar instruments such as those involved in the forthcoming GEDI and ICESat 2 missions. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The rapid scanning of the CBL and similar highly portable TLS improve acquisition of 3D surfaces such as canopy height models and digital elevation models derived from point clouds. This is due to the ability to capture additional scanning points within the window of temporal stability for the ecosystem, mitigating the rapid loss of information density associated with distance and occlusion. Utilizing terrestrial lidar in tandem with airborne lidar profiles vertically distributed structural components of ecosystems, such as the canopy of forests. We will present 3D surfaces documenting the growth of vegetation species including the invasive Phragmites australis over the 2015 growing season at Plum Island Long Term Ecological Research sites, derived from CBL. Additionally we will show vertical structure profiles from voxelization analyses in tropical forest (La Selva, Costa Rica) and temperate forest (Harvard Forest, MA, USA). We will discuss and present results from emerging point cloud reconstruction methods, including the Quantitative Structure Model (QSM) for tree modeling, and their implications particularly for GEDI-related calibration and validation studies.

  10. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning

    PubMed Central

    Seidl, Rupert; Rammer, Werner; Spies, Thomas A.

    2015-01-01

    Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average

  11. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning.

    PubMed

    Seidl, Rupert; Rammer, Werner; Spies, Thomas A

    2014-12-01

    Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average

  12. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem

    NASA Astrophysics Data System (ADS)

    Keller, C. K.; White, T. M.; O'Brien, R.; Smith, J. L.

    2006-09-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground biomass was removed. Lack of physical disturbance, strict prevention of plant regrowth, and a comparison ecosystem without rooted plants facilitated isolation of the microclimatic and biochemical effects of instantaneous canopy removal and cessation of photosynthesis. Preharvest gas-phase CO2 levels fluctuated with growing-season soil temperature but reached their greatest levels (up to 10,000 ppmV) during late winter beneath snow and ice cover. This pattern, and the annual CO2 efflux of ˜500 g C m-2 yr-1, continued for 2 years following harvest; the efflux declined by half in the third year. The surprising continuity of preharvest and postharvest rates of soil CO2 production reflects the replacement of root respiration with microbial respiration of root and litter substrates of declining lability, but boosted by soil temperature increases. Mass balance is consistent with a bulk root+litter exponential decay time (-1/k) of 4-6 years, such that most of the subsurface biomass accumulated over 15 years of tree growth would be lost in a decade after the harvest. The preharvest bicarbonate C efflux, which was less than 0.1% of the gas-phase efflux, trebled after the harvest owing to elimination of evapotranspiration and consequent increases in drainage while soil CO2 levels remained high. A large fraction of this "hydrospheric" sink for atmospheric CO2 is attributed to weathering under high soil CO2 levels before spring snowmelt and soil-water flushing. These observations suggest that disturbance may enhance long-term chemical-weathering CO2 sinks.

  13. Is ecosystem structure the target of concern in ecological effect assessments?

    PubMed

    De Laender, Frederik; De Schamphelaere, Karel A C; Vanrolleghem, Peter A; Janssen, Colin R

    2008-05-01

    The species sensitivity distribution, a technique currently used to derive water-quality standards of chemicals, is associated with a set of inadequately tested assumptions. One of these assumptions is that ecosystem structure is as or more sensitive than ecosystem function, i.e., that structure is the target of concern. In this paper, we tested this assumption for a simple freshwater ecosystem exposed to different toxicants. Using an ecosystem model, we calculated no observed effect concentrations (NOECs) for ecosystem structure (ecosystem structure-NOECs) and function (ecosystem function-NOECs) for each of 1000 hypothetical toxicants. For 979 of these toxicants, the ecosystem structure-NOEC was lower than or equal to the ecosystem function-NOEC, indicating that the tested assumption can be considered valid. For 239 of these 979 toxicants, both NOECs were equal. For half of the 1000 toxicants, the structure of lower trophic levels (i.e., phytoplankton) appears to be more sensitive than the structure of higher trophic levels (i.e., fish). As such, ecosystem structure-NOECs are primarily determined by the sensitivity of the structure of lower trophic levels. In contrast, ecosystem functions associated with higher trophic levels (e.g., total ingestion by fish) are more sensitive than functions associated with lower trophic levels (e.g., total photosynthesis by phytoplankton) for 749 toxicants.

  14. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis.

    PubMed

    Zhou, Guiyao; Zhou, Xuhui; He, Yanghui; Shao, Junjiong; Hu, Zhenhong; Liu, Ruiqiang; Zhou, Huimin; Hosseinibai, Shahla

    2017-03-01

    Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta-analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta-analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62% and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67% and 25.87%, respectively, in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C : N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate-biosphere feedbacks.

  15. Irrigation agriculture affects organic matter decomposition in semi-arid terrestrial and aquatic ecosystems.

    PubMed

    Arroita, Maite; Causapé, Jesús; Comín, Francisco A; Díez, Joserra; Jimenez, Juan José; Lacarta, Juan; Lorente, Carmen; Merchán, Daniel; Muñiz, Selene; Navarro, Enrique; Val, Jonatan; Elosegi, Arturo

    2013-12-15

    Many dryland areas are being converted into intensively managed irrigation crops, what can disrupt the hydrological regime, degrade soil and water quality, enhance siltation, erosion and bank instability, and affect biological communities. Still, the impacts of irrigation schemes on the functioning of terrestrial and aquatic ecosystems are poorly understood. Here we assess the effects of irrigation agriculture on breakdown of coarse organic matter in soil and water. We measured breakdown rates of alder and holm oak leaves, and of poplar sticks in terrestrial and aquatic sites following a gradient of increasing irrigation agriculture in a semi-arid Mediterranean basin transformed into irrigation agriculture in 50% of its surface. Spatial patterns of stick breakdown paralleled those of leaf breakdown. In soil, stick breakdown rates were extremely low in non-irrigated sites (0.0001-0.0003 day(-1)), and increased with the intensity of agriculture (0.0018-0.0044 day(-1)). In water, stick breakdown rates ranged from 0.0005 to 0.001 day(-1), and increased with the area of the basin subject to irrigation agriculture. Results showed that irrigation agriculture affects functioning of both terrestrial and aquatic ecosystems, accelerating decomposition of organic matter, especially in soil. These changes can have important consequences for global carbon budgets.

  16. Realistic changes in seaweed biodiversity affect multiple ecosystem functions on a rocky shore.

    PubMed

    Bracken, Matthew E S; Williams, Susan L

    2013-09-01

    Given current threats to biodiversity, understanding the effects of diversity changes on the functions and services associated with intact ecosystems is of paramount importance. However, limited realism in most biodiversity studies makes it difficult to link the large and growing body of evidence for important functional consequences of biodiversity change to real-world losses of biodiversity. Here, we explored two methods of incorporating realism into biodiversity research: (1) the use of two-, five-, and eight-species assemblages that mimicked those that we observed in surveys of seaweed biodiversity patterns on a northern California (USA) rocky shore and the explicit comparison of those assemblages to random assemblages compiled from the same local species pool; and (2) the measurement of two fundamental ecosystem functions, nitrate uptake and photosynthesis, both of which contribute to growth of primary producers. Specifically, we measured nitrate uptake rates of seaweed assemblages as a function of initial nitrate concentrations and photosynthetic rates as a function of irradiance levels for both realistic and random assemblages of seaweeds. We only observed changes in ecosystem functioning along a richness gradient for realistic assemblages, and both maximum nitrate uptake rates (V(max)) and photosynthetic light use efficiency values (alpha(p) = P(max)/I(K)) were higher in realistic assemblages than in random assemblages. Furthermore, the parameter affected by changes in richness depended on the function being measured. Both V(max) and alpha(p) declined with increasing richness in nonrandom assemblages due to a combination of species identity effects (for V(max) and overyielding effects (for both V(max) and alpha(p)). In contrast, neither nitrate uptake efficiency values (alpha(N) = V(max)/K(s)), nor maximum photosynthetic rates (Pmax) changed along the gradient in seaweed species richness. Furthermore, overyielding was only evident in realistic assemblages

  17. Land use affects the net ecosystem CO(2) exchange and its components in mountain grasslands.

    PubMed

    Schmitt, M; Bahn, M; Wohlfahrt, G; Tappeiner, U; Cernusca, A

    2010-08-01

    Changes in land use and management have been strongly affecting mountain grassland, however, their effects on the net ecosystem exchange of CO(2) (NEE) and its components have not yet been well documented. We analysed chamber-based estimates of NEE, gross primary productivity (GPP), ecosystem respiration (R) and light use efficiency (LUE) of six mountain grasslands differing in land use and management, and thus site fertility, for the growing seasons of 2002 to 2008. The main findings of the study are that: (1) land use and management affected seasonal NEE, GPP and R, which all decreased from managed to unmanaged grasslands; (2) these changes were explained by differences in leaf area index (LAI), biomass and leaf-area-independent changes that were likely related to photosynthetic physiology; (3) diurnal variations of NEE were primarily controlled by photosynthetically active photon flux density and soil and air temperature; seasonal variations were associated with changes in LAI; (4) parameters of light response curves were generally closely related to each other, and the ratio of R at a reference temperature/ maximum GPP was nearly constant across the sites; (5) similarly to our study, maximum GPP and R for other grasslands on the globe decreased with decreasing land use intensity, while their ratio remained remarkably constant. We conclude that decreasing intensity of management and, in particular, abandonment of mountain grassland lead to a decrease in NEE and its component processes. While GPP and R are generally closely coupled during most of the growing season, GPP is more immediately and strongly affected by land management (mowing, grazing) and season. This suggests that management and growing season length, as well as their possible future changes, may play an important role for the annual C balance of mountain grassland.

  18. Assessing mismatches between ecosystem structure and function in Jiaozhou Bay by coordination degree algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyan; Gao, Huiwang; Chen, Zhenhua; Yao, Xiaohong; Sun, Peng

    2017-04-01

    A healthy ecosystem depends on the coordination of ecosystem structure and function. The coordination among ecosystem components, however, is seldom taken into account in current ecosystem health assessments (EHA). Neglect of such coordination may lead to large degrees of uncertainty in EHA and fail to support ecosystem management. We propose an approach to quantify the level of dynamic mismatching between ecosystem structure and function and the impact on ecosystem health by incorporating the ecosystem coordination index into EHA. The coordination degree is calculated using variation coefficient of six proxies for ecosystem structure and functions. The ecosystem at Jiaozhou Bay, as a microcosm of China's coast, has been documented to fluctuate from healthy to unhealthy status over the past three decades. The results indicate that there is a 3%-17% lower health level than that calculated by common methods used in the literature, indicating that the health of Jiaozhou Bay has become worse than expected. Habitat change contributes 20%-52% to ecosystem mismatches and is the most uncoordinated factor. Mismatch-related declines account for approximately one-fourth of the total ecological declines. Restoration scenarios that aim to resolve ecosystem mismatches could increase efficiency by about 50% compared to restoration scenarios that do not consider mismatches. This study investigates ecological declines in a coastal bay due to 30 years of rapid economic development. In doing so, this study provides novel insights and enhances our understanding of the reasons for failure in ecological restoration.

  19. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  20. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  1. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem.

    PubMed

    Zaller, Johann G; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-09

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  2. Occurrence of perchloroethylene in surface water and fish in a river ecosystem affected by groundwater contamination.

    PubMed

    Wittlingerová, Zdena; Macháčková, Jiřina; Petruželková, Anna; Zimová, Magdalena

    2016-03-01

    Long-term monitoring of the content of perchloroethylene (PCE) in a river ecosystem affected by groundwater contamination was performed at a site in the Czech Republic. The quality of surface water was monitored quarterly between 1994 and 2013, and fish were collected from the affected ecosystem to analyse the content of PCE in their tissue in 1998, 2011 and 2012. Concentrations of PCE (9-140 μg/kg) in the tissue of fish collected from the contaminated part of the river were elevated compared to the part of the river unaffected by the contamination (ND to 5 μg/kg PCE). The quality of surface water has improved as a result of groundwater remediation during the evaluated period. Before the remedial action, PCE concentrations ranged from 30 to 95 μg/L (1994-1997). Following commencement of remedial activities in September 1997, a decrease in the content of PCE in the surface water to 7.3 μg/L (1998) and further to 1 μg/L (2011) and 1.1 μg/L (2012) led to a progressive decrease in the average concentration of PCE in the fish muscle tissue from 79 μg/kg (1998) to 24 (2011) and 30 μg/kg (2012), respectively. It was determined that the bioconcentration of PCE does not have a linear dependence because the decrease in contamination in the fish muscle tissue is not directly proportional to the decrease in contamination in the river water. The observed average bioconcentration factors were 24 and 28 for the lower concentrations of PCE and 11 for the higher concentrations of PCE in the river. In terms of age, length and weight of the collected fish, weight had the greatest significance for bioconcentration, followed by the length, with age being evaluated as a less significant factor.

  3. Arctic ecosystem structure and functioning shaped by climate and herbivore body size

    NASA Astrophysics Data System (ADS)

    Legagneux, P.; Gauthier, G.; Lecomte, N.; Schmidt, N. M.; Reid, D.; Cadieux, M.-C.; Berteaux, D.; Bêty, J.; Krebs, C. J.; Ims, R. A.; Yoccoz, N. G.; Morrison, R. I. G.; Leroux, S. J.; Loreau, M.; Gravel, D.

    2014-05-01

    Significant progress has been made in our understanding of species-level responses to climate change, but upscaling to entire ecosystems remains a challenge. This task is particularly urgent in the Arctic, where global warming is most pronounced. Here we report the results of an international collaboration on the direct and indirect effects of climate on the functioning of Arctic terrestrial ecosystems. Our data from seven terrestrial food webs spread along a wide range of latitudes (~1,500 km) and climates (Δ mean July temperature = 8.5 °C) across the circumpolar world show the effects of climate on tundra primary production, food-web structure and species interaction strength. The intensity of predation on lower trophic levels increased significantly with temperature, at approximately 4.5% per °C. Temperature also affected trophic interactions through an indirect effect on food-web structure (that is, diversity and number of interactions). Herbivore body size was a major determinant of predator-prey interactions, as interaction strength was positively related to the predator-prey size ratio, with large herbivores mostly escaping predation. There is potential for climate warming to cause a switch from bottom-up to top-down regulation of herbivores. These results are critical to resolving the debate on the regulation of tundra and other terrestrial ecosystems exposed to global change.

  4. 77 FR 9625 - Recommendations for Establishing an Identity Ecosystem Governance Structure for the National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Governance Structure for the National Strategy for Trusted Identities in Cyberspace AGENCY: National... Establishing an Identity Ecosystem Governance Structure on Tuesday, February 7, 2012. This paper supports the... Recommendations for Establishing an Identity Ecosystem Governance Structure paper was made available on February...

  5. Can plant phloem properties affect the link between ecosystem assimilation and respiration?

    NASA Astrophysics Data System (ADS)

    Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2012-04-01

    Phloem transport of carbohydrates in plants under field conditions is currently not well understood. This is largely the result of the lack of techniques suitable for measuring phloem physiological properties continuously under field conditions. This lack of knowledge is currently hampering our efforts to link ecosystem-level processes of carbon fixation, allocation and use, especially belowground. On theoretical grounds, the properties of the transport pathway from canopy to roots must be important in affecting the link between carbon assimilation and respiration, but it is unclear whether their effect is partially or entirely masked by processes occurring in other parts of the ecosystem. One can also predict the characteristic time scales over which these effects should occur and, as consequence, predict whether the transfer of turgor and osmotic signals from the site of carbon assimilation to the sites of carbon use are likely to control respiration. We will present two sources of evidence suggesting that the properties of the phloem transport system may affect processes that are dependent on the supply of carbon substrate, such as root or soil respiration. Firstly, we will summarize the results of a literature survey on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy to the soil surface was determined. Estimates of the transfer speed could be grouped according to whether the study employed isotopic or canopy soil flux-based techniques. These two groups provided very different estimates of transfer times likely because transport of sucrose molecules, and pressure-concentration waves, in phloem differed. Secondly, we will argue that simultaneous measurements of bark and xylem diameters provide a novel tool to determine the continuous variations of phloem turgor in vivo in the field. We will present a model that interprets these changes in xylem and live bark diameters and present data testing the model

  6. Modelling benthic biophysical drivers of ecosystem structure and biogeochemical response

    NASA Astrophysics Data System (ADS)

    Stephens, Nicholas; Bruggeman, Jorn; Lessin, Gennadi; Allen, Icarus

    2016-04-01

    The fate of carbon deposited at the sea floor is ultimately decided by biophysical drivers that control the efficiency of remineralisation and timescale of carbon burial in sediments. Specifically, these drivers include bioturbation through ingestion and movement, burrow-flushing and sediment reworking, which enhance vertical particulate transport and solute diffusion. Unfortunately, these processes are rarely satisfactorily resolved in models. To address this, a benthic model that explicitly describes the vertical position of biology (e.g., habitats) and biogeochemical processes is presented that includes biological functionality and biogeochemical response capturing changes in ecosystem structure, benthic-pelagic fluxes and biodiversity on inter-annual timescales. This is demonstrated by the model's ability to reproduce temporal variability in benthic infauna, vertical pore water nutrients and pelagic-benthic solute fluxes compared to in-situ data. A key advance is the replacement of bulk parameterisation of bioturbation by explicit description of the bio-physical processes responsible. This permits direct comparison with observations and determination of key parameters in experiments. Crucially, the model resolves the two-way interaction between sediment biogeochemistry and ecology, allowing exploration of the benthic response to changing environmental conditions, the importance of infaunal functional traits in shaping benthic ecological structure and the feedback the resulting bio-physical processes exert on pore water nutrient profiles. The model is actively being used to understand shelf sea carbon cycling, the response of the benthos to climatic change, food provision and other societal benefits.

  7. Variations in the abundance of fisheries resources and ecosystem structure in the Japan/East Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Chang Ik; Lee, Jae Bong; Seo, Young Il; Yoon, Sang Cheol; Kim, Suam

    2004-05-01

    Evidence supports the hypothesis that two climatic regime shifts in the North Pacific and the Japan/East Sea, have affected the dynamics of the marine ecosystem and fisheries resources from 1960 to 2000. Changes in both mixed layer depth (MLD) and primary production were detected in the Japan/East Sea after 1976. The 1976 regime shift appears to have caused the biomass replacement with changes in catch production of major exploited fisheries resources, including Pacific saury, Pacific sardine and filefish. Both fisheries yield and fish distribution are reflected in these decadal fluctuations. In the 1960s and 1990s, common squid dominated the catches whereas in the 1970s and 1980s, it was replaced by walleye pollock. In the post-1988 regime shift, the distribution of horse mackerel shifted westward and southward and its distributional overlap with common mackerel decreased. The habitat of Pacific sardine also shifted away from mackerel habitats during this period. To evaluate changes in the organization and structure of the ecosystem in the Japan/East Sea, a mass-balanced model, Ecopath, was employed. Based on two mass-balanced models, representing before (1970-75) and after (1978-84) the 1976 regime shift, the weighted mean trophic level of catch increased from 3.09 before to 3.28 after. Total biomass of species groups in the Japan/East Sea ecosystem increased by 15% and total catch production increased by 48% due to the 1976 regime shift. The largest changes occurred at mid-trophic levels, occupied by fishes and cephalopods. The dominant predatory species shifted from cephalopods to walleye pollock due to the 1976 regime shift. It is concluded that the climatic regime shifts caused changes in the structure of the ecosystem and the roles of major species, as well as, large variations in biomass and production of fisheries resources.

  8. Microconchids from microbialite ecosystem immediately after end-Permian mass extinction: ecologic selectivity and implications for microbialite ecosystem structure

    NASA Astrophysics Data System (ADS)

    Yang, H.; Chen, Z.; Wang, Y. B.; Ou, W.; Liao, W.; Mei, X.

    2013-12-01

    The Permian-Triassic (P-Tr) carbonate successions are often characterized by the presence of microbialite buildups worldwide. The widespread microbialites are believed as indication of microbial proliferation immediately after the P-Tr mass extinction. The death of animals representing the primary consumer trophic structure of marine ecosystem in the P-Tr crisis allows the bloom of microbes as an important primary producer in marine trophic food web structure. Thus, the PTB microbialite builders have been regarded as disaster taxa of the P-Tr ecologic crisis. Microbialite ecosystems were suitable for most organisms to inhabit. However, increasing evidence show that microbialite dwellers are also considerably abundant and diverse, including mainly foraminifers Earlandia sp. and Rectocornuspira sp., lingulid brachiopods, ostrocods, gastropods, and microconchids. In particular, ostracods are extremely abundant in this special ecosystem. Microconchid-like calcareous tubes are also considerably abundant. Here, we have sampled systematically a PTB microbialite deposit from the Dajiang section, southern Guizhou Province, southwest China and have extracted abundant isolated specimens of calcareous worm tubes. Quantitative analysis enables to investigate stratigraphic and facies preferences of microconchids in the PTB microbialites. Our preliminary result indicates that three microconchid species Microconchus sp., Helicoconchus elongates and Microconchus aberrans inhabited in microbialite ecosystem. Most microconchilds occurred in the upper part of the microbialite buildup and the grainstone-packstone microfacies. Very few microconchilds were found in the rocks bearing well-developed microbialite structures. Their stratigraphic and environmental preferences indicate proliferation of those metazoan organisms is coupled with ebb of the microbialite development. They also proliferated in some local niches in which microbial activities were not very active even if those

  9. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  10. Impacts of drought and crayfish invasion on stream ecosystem structure and function

    USGS Publications Warehouse

    Magoulick, Daniel D.

    2014-01-01

    Drought and seasonal drying can be important disturbance events in many small streams, leading to intermittent or isolated habitats. Many small streams contain crayfish populations that are often keystone or dominant species in these systems. I conducted an experiment in stream mesocosms to examine the effects of drought and potential ecological redundancy of a native and invasive crayfish species. I examined the effects of drought (drought or control) and crayfish presence (none, native crayfish Orconectes eupunctus or invasive crayfish Orconectes neglectus) on stream mesocosm structure and function (leaf breakdown, community metabolism, periphyton, sediment and chironomid densities) in a fully factorial design. Each mesocosm contained a deep and shallow section, and drought treatments had surface water present (5-cm depth) in deep sections where tiles and leaf packs were placed. Drought and crayfish presence did not interact for any response variable. Drought significantly reduced leaf breakdown, and crayfish presence significantly increased leaf breakdown. However, the native and invasive crayfish species did not differ significantly in their effects on leaf breakdown. Drought significantly reduced primary production and community respiration overall, whereas crayfish presence did not significantly affect primary production and community respiration. Neither drought nor crayfish presence significantly affected periphyton overall. However, drought significantly reduced autotrophic index (AI), and crayfish presence increased AI. Inorganic sediment and chironomid density were not affected by drought, but both were significantly reduced by crayfish presence. O. eupunctus reduced AI and sediment more than O. neglectus did. Neither drought nor crayfish species significantly affected crayfish growth or survival. Drought can have strong effects on ecosystem function, but weaker effects on benthic structure. Crayfish can have strong effects on ecosystem

  11. How Stock of Origin Affects Performance of Individuals across a Meta-Ecosystem: An Example from Sockeye Salmon

    PubMed Central

    Griffiths, Jennifer R.; Schindler, Daniel E.; Seeb, Lisa W.

    2013-01-01

    Connectivity among diverse habitats can buffer populations from adverse environmental conditions, influence the functioning of meta-ecosystems, and ultimately affect the reliability of ecosystem services. This stabilizing effect on populations is proposed to derive from complementarity in growth and survival conditions experienced by individuals in the different habitats that comprise meta-ecosystems. Here we use the fine scale differentiation of salmon populations between diverse lake habitats to assess how rearing habitat and stock of origin affect the body condition of juvenile sockeye salmon. We use genetic markers (single nucleotide polymorphisms) to assign individuals of unknown origin to stock group and in turn characterize ecologically relevant attributes across habitats and stocks. Our analyses show that the body condition of juvenile salmon is related to the productivity of alternative habitats across the watershed, irrespective of their stock of origin. Emigrants and residents with genetic origins in the high productivity lake were also differentiated by their body condition, poor and high respectively. These emigrants represented a substantial proportion of juvenile sockeye salmon rearing in the lower productivity lake habitat. Despite emigrants originating from the more productive lake, they did not differ in body condition from the individuals spawned in the lower productivity, recipient habitat. Genetic tools allowed us to assess the performance of different stocks groups across the diverse habitats comprising their meta-ecosystem. The ability to characterize the ecological consequences of meta-ecosystem connectivity can help develop strategies to protect and restore ecosystems and the services they provide to humans. PMID:23505539

  12. A Federated Reference Structure for Open Informational Ecosystems

    ERIC Educational Resources Information Center

    Heinen, Richard; Kerres, Michael; Scharnberg, Gianna; Blees, Ingo; Rittberger, Marc

    2016-01-01

    The paper describes the concept of a federated ecosystem for Open Educational Resources (OER) in the German education system. Here, a variety of OER repositories (ROER) (Muuß-Merholz & Schaumburg, 2014) and reference platforms have been established in the recent past. In order to develop this ecosystem, not only are metadata standards…

  13. Assessing Biogeochemical Cycling in Forested Ecosystems Through Integration of Remotely-Sensed Forest Structure with an Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Dubayah, R.

    2003-12-01

    Forested landscapes are generally composed of a heterogeneous mixture of patches that reflect the complex interaction of processes occurring at many spatial and temporal scales. Whether caused by natural disturbances, such as blow downs and fire, management practices, such as logging and agriculture, or varying climatic factors, both ecosystem structure and carbon fluxes will vary strongly as a result of differences in successional stage. Forest structural measurements, such as canopy characteristics and biomass, are key elements in furthering our understanding of the carbon budgets of forested ecosystems because they provide the observational evidence from which the impacts of various processes may be assessed. They also provide what is often the only means of determining successional status and edaphic controls, and are thus critical for both initialization and validation of carbon modeling approaches. Identifying and tracking these structural differences through space and time has been extraordinarily difficult, given the burden and limited scope of field-based methods, and the limited efficacy of most remote sensing approaches. In this paper we explore the potential for assessments of biogeochemical cycling in forests using a combined field, remote sensing and modeling approach. Our focus is on the fusion of various remote sensing data, including lidar and multispectral methods, with limited field based observations, to provide trajectories of successional status that can then be used to initialize and validate ecosystem models. We provide examples using the Ecosystem Demography (ED) model for both tropical and temperate forests. Our results in these areas show that initialization of the ED model with remotely sensed data on forest structure, in particular canopy height, allows for estimates of carbon stocks within few percent of field-based methods, greatly constrains consequent estimates of carbon flux. This approach thus provides a promising means for

  14. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems

    USGS Publications Warehouse

    Feller, Ilka C.; Lovelock, C.E.; McKee, K.L.

    2007-01-01

    Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL. ?? 2007 Springer Science+Business Media, LLC.

  15. Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleoecological approaches

    USGS Publications Warehouse

    Saros, Jasmine E.; Stone, Jeffery R.; Pederson, Gregory T.; Slemmons, Krista; Spanbauer, Trisha; Schliep, Anna; Cahl, Douglas; Williamson, Craig E.; Engstrom, Daniel R.

    2015-01-01

    Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests might be affected by mixing depth. Comparative lake surveys and growth rate experiments revealed that these species respond to lake thermal structure when nitrogen is sufficient, with species optima ranging from shallower to deeper mixing depths. The diatom-based mixing depth model was applied to sedimentary diatom profiles extending back to 1750 AD in two lakes with moderate nitrate concentrations but differing climate settings. Thermal reconstructions were consistent with expected changes, with shallower mixing depths inferred for an alpine lake where treeline has advanced, and deeper mixing depths inferred for a boreal lake where wind strength has increased. The inference model developed here provides a new tool to expand and refine understanding of climate-induced changes in lake ecosystems.

  16. Municipal sludge metal contamination of old-field ecosystems: Do liming and tilling affect remediation

    SciTech Connect

    Benninger-Truax, M.; Taylor, D.H. . Dept. of Zoology)

    1993-10-01

    Mechanisms of ecosystem recovery following 11 years of sewage sludge disposal were addressed by examining the effects of tilling and/or liming on soil chemistry and the heavy metal (Cd, Cu, Pb, and Zn) concentrations in soil, earthworms, vegetation, spiders, and crickets. In 1989 and 1990, subplots in each of three former 0.1-ha, long-term treatments (sludge, fertilizer, and control) were either unmanipulated or manipulated via tilling and/or liming. Liming significantly increased the pH of soil from the long-term sludge and fertilizer plots, and the combination of tilling and liming affected the heavy metal concentrations in earthworms, as lower concentrations of Cd, Cu, Pb, and Zn were found in earthworms collected from subplots that had been both tilled and limed. However, most observed significant differences in heavy metal concentrations reflected the long-term treatments, as heavy metal concentrations tended to be greater in the soil and biota collected from sludge-treated plots. Thus, heavy metals remained in the soil in forms available to the biota, regardless of the cessation of sludge application or subplot manipulations (liming and/or tilling) for two years following cessation of sludge application.

  17. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure.

    PubMed

    Ferraro, Paul J; Hanauer, Merlin M

    2014-03-18

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare.

  18. An ecological model of the artificial ecosystem (northern Hangzhou Bay, China): analysis of ecosystem structure and fishing impacts

    NASA Astrophysics Data System (ADS)

    Chen, Zuozhi; Xu, Shannan; He, Peimin

    2011-06-01

    The artificial ecosystem is a large-scale enclosure in northern Hangzhou Bay, China. Using the Ecopath with Ecosim software, a trophic structure model is constructed for 2006-2007 to characterize the food web structure, functioning, and describing the ecosystem impacts of fishing. Input information for the model were gathered from published and unpublished reports and from our own estimates during the period 2006-2007. Pedigree work and simple sensitivity analysis were carried out to evaluate the quality and the uncertainty of the model. Results show that the food web in the enclosed sea area was dominated by a detritus pathway. The trophic levels of the groups varied from 1.00 for primary producers and detritus to 3.90 for piscivorous fish in the artificial system. Using network analysis, the system network was mapped into a linear food chain, and five discrete trophic levels were found with a mean transfer efficiency of 9.8% from detritus, 9.4% from primary producer within the ecosystem. The geometric mean of the trophic transfer efficiencies was 9.5%. Detritus contributed 57% of the total energy flux, and the other 43% came from primary producers. The ecosystem maturity indices-TPP/TR (total primary production/total respiration), FCI (Finn cycling index), A (ascendancy) and TB/TDET were 2.672, 25%, 31.5%, and 0.013, respectively, showing that the artificial system is at developmental stage according to Odum's theory of ecosystem development. The `Keystoneness' result indicates that herbivorous zooplankton was identified as keystone species in this system. Furthermore, a simple dynamical simulation was preformed for varying fishing mortality over 10 years. The biomass of most fish groups has a small increase when the fishing mortality at current level. Increasing fishing mortality by twofold resulted in a marked decrease in biomass of piscivorous fish accompanied by an increase in that of other fish groups, notable zooplanktivorous fish. Generally, this study

  19. Nitrogen and carbon cycling in a grassland community ecosystem as affected by elevated atmospheric CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing global atmospheric CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystem and the long-term storage of C and N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L.) Willd (...

  20. Developing Hierarchical Structures Integrating Cognition and Affect.

    ERIC Educational Resources Information Center

    Hurst, Barbara Martin

    Several categories of the affective domain are important to the schooling process. Schools are delegated the responsibility of helping students to clarify their esthetic, instrumental, and moral values. Three areas of affect are related to student achievement: subject-related affect, school-related affect, and academic self concept. In addition,…

  1. Food web pathway determines how selenium affects aquatic ecosystems: A San francisco Bay case study

    USGS Publications Warehouse

    Stewart, A.R.; Luoma, S.N.; Schlekat, C.E.; Doblin, M.A.; Hieb, K.A.

    2004-01-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean Zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d-1, respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se > 15 ??g g-1 dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of Zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts.

  2. Scale-dependent diversity patterns affect spider assemblages of two contrasting forest ecosystems

    NASA Astrophysics Data System (ADS)

    Schuldt, Andreas; Assmann, Thorsten; Schaefer, Matthias

    2013-05-01

    Spiders are important generalist predators in forests. However, differences in assemblage structure and diversity can have consequences for their functional impact. Such differences are particularly evident across latitudes, and their analysis can help to generate a better understanding of region-specific characteristics of predator assemblages. Here, we analyse the relationships between species richness, family richness and functional diversity (FD) as well as α- and β-components of epigeic spider diversity in semi-natural temperate and subtropical forest sites. As expected, within-plot and overall spider species and family richness were higher in the subtropical plots. In contrast, local FD within plots was similar between sites, and differences in FD only became evident at larger spatial scales due to higher species turnover in the subtropical forests. Our study indicates that the functional effects of predator assemblages can change across spatial scales. We discuss how differences in richness and functional diversity between contrasting forest ecosystems can depend on environmental heterogeneity and the effects of species filters acting at local scales. The high turnover observed in the species-rich subtropical forests also requires a more regional perspective for the conservation of the overall diversity and the ecological functions of predators than in less diverse forests, as strategies need to account for the large spatial heterogeneity among plots.

  3. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  4. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  5. Biodiversity, community structure and function of biofilms in stream ecosystems.

    PubMed

    Besemer, Katharina

    2015-12-01

    Multi-species, surface-attached biofilms often dominate microbial life in streams and rivers, where they contribute substantially to biogeochemical processes. The microbial diversity of natural biofilms is huge, and may have important implications for the functioning of aquatic environments and the ecosystem services they provide. Yet the causes and consequences of biofilm biodiversity remain insufficiently understood. This review aims to give an overview of current knowledge on the distribution of stream biofilm biodiversity, the mechanisms generating biodiversity patterns and the relationship between biofilm biodiversity and ecosystem functioning.

  6. Hyperinsulinemia adversely affects lung structure and function.

    PubMed

    Singh, Suchita; Bodas, Manish; Bhatraju, Naveen K; Pattnaik, Bijay; Gheware, Atish; Parameswaran, Praveen Kolumam; Thompson, Michael; Freeman, Michelle; Mabalirajan, Ulaganathan; Gosens, Reinoud; Ghosh, Balaram; Pabelick, Christina; Linneberg, Allan; Prakash, Y S; Agrawal, Anurag

    2016-05-01

    There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly (P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype.

  7. The Web-Driven Learning Ecosystem: Its Structure and Benefits

    ERIC Educational Resources Information Center

    Raska, David; Shaw, Doris; Keller, Eileen Weisenbach

    2012-01-01

    We have devised a Web-based learning ecosystem (LECOS) that aligns marketing curriculum, course design, technology, instructors, students, as well as external stakeholders--a system that integrates traditional teaching methods with technological advancements in an attempt to enhance marketing students' motivation, engagement, and performance. A…

  8. Provision of ecosystem services by human-made structures in a highly impacted estuary

    NASA Astrophysics Data System (ADS)

    Layman, Craig A.; Jud, Zachary R.; Archer, Stephanie K.; Riera, David

    2014-04-01

    Water filtration is one of the most important ecosystem services provided by sessile organisms in coastal ecosystems. As a consequence of increased coastal development, human-made shoreline structures (e.g., docks and bulkheads) are now common, providing extensive surface area for colonization by filter feeders. We estimate that in a highly urbanized sub-tropical estuary, water filtration capacity supported by filter feeding assemblages on dock pilings accounts for 11.7 million liters of water h-1, or ˜30% of the filtration provided by all natural oyster reef throughout the estuary. Assemblage composition, and thus filtration capacity, varied as a function of piling type, suggesting that the choice of building material has critical implications for ecosystem function. A more thorough depiction of the function of coastal ecosystems necessitates quantification of the extensive ecosystem services associated with human-made structures.

  9. Artificial neural networks and ecological communities (Book Review: Modelling community structure in freshwater ecosystems)

    USGS Publications Warehouse

    DeAngelis, Donald L.

    2005-01-01

    Review info: Modeling community structure in freshwater ecosystems. Edited by Sovan Lek, Michele Scardi, Piet F.M. Verdonschot, Jean-Pierre Descy, and Young-Seuk Park, 2005. ISBN: 3-540-23940-5, 518 pp.

  10. How habitat-modifying organisms structure the food web of two coastal ecosystems

    PubMed Central

    van der Zee, Els M.; Angelini, Christine; Govers, Laura L.; Christianen, Marjolijn J. A.; Altieri, Andrew H.; van der Reijden, Karin J.; Silliman, Brian R.; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A.; van der Veer, Henk W.; Piersma, Theunis; de Ruiter, Peter C.; Olff, Han; van der Heide, Tjisse

    2016-01-01

    The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity. PMID:26962135

  11. How habitat-modifying organisms structure the food web of two coastal ecosystems.

    PubMed

    van der Zee, Els M; Angelini, Christine; Govers, Laura L; Christianen, Marjolijn J A; Altieri, Andrew H; van der Reijden, Karin J; Silliman, Brian R; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A; van der Veer, Henk W; Piersma, Theunis; de Ruiter, Peter C; Olff, Han; van der Heide, Tjisse

    2016-03-16

    The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity.

  12. Ecosystem-Wide Morphological Structure of Leaf-Litter Ant Communities along a Tropical Latitudinal Gradient

    PubMed Central

    Silva, Rogério R.; Brandão, Carlos Roberto F.

    2014-01-01

    General principles that shape community structure can be described based on a functional trait approach grounded on predictive models; increased attention has been paid to factors accounting for the functional diversity of species assemblages and its association with species richness along environmental gradients. We analyze here the interaction between leaf-litter ant species richness, the local communities' morphological structure and fundamental niche within the context of a northeast-southeast latitudinal gradient in one of the world's most species-rich ecosystems, the Atlantic Forest, representing 2,700 km of tropical rainforest along almost 20o of latitude in eastern Brazil. Our results are consistent with an ecosystem-wide pattern in communities' structure, with relatively high species turnover but functionally analogous leaf-litter ant communities' organization. Our results suggest directional shifts in the morphological space along the environmental gradient from overdispersed to aggregated (from North to South), suggesting that primary productivity and environmental heterogeneity (altitude, temperature and precipitation in the case) determine the distribution of traits and regulate the assembly rules, shaping local leaf-litter ant communities. Contrary to the expected and most common pattern along latitudinal gradients, the Atlantic Forest leaf litter ant communities show an inverse pattern in richness, that is, richer communities in higher than in lower latitudes. The morphological specialization of communities showed more morphologically distinct communities at low latitudes and species redundancy at high latitudes. We claim that an inverse latitudinal gradient in primary productivity and environmental heterogeneity across the Atlantic forest may affect morphological diversity and species richness, enhancing species coexistence mechanisms, and producing thus the observed patterns. We suggest that a functional framework based on flexible enough traits

  13. Effects on the structure of Arctic ecosystems in the short- and long-term perspectives.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Henttonen, Heikki

    2004-11-01

    Species individualistic responses to warming and increased UV-B radiation are moderated by the responses of neighbors within communities, and trophic interactions within ecosystems. All of these responses lead to changes in ecosystem structure. Experimental manipulation of environmental factors expected to change at high latitudes showed that summer warming of tundra vegetation has generally led to smaller changes than fertilizer addition. Some of the factors manipulated have strong effects on the structure of Arctic ecosystems but the effects vary regionally, with the greatest response of plant and invertebrate communities being observed at the coldest locations. Arctic invertebrate communities are very likely to respond rapidly to warming whereas microbial biomass and nutrient stocks are more stable. Experimentally enhanced UV-B radiation altered the community composition of gram-negative bacteria and fungi, but not that of plants. Increased plant productivity due to warmer summers may dominate food-web dynamics. Trophic interactions of tundra and sub-Arctic forest plant-based food webs are centered on a few dominant animal species which often have cyclic population fluctuations that lead to extremely high peak abundances in some years. Population cycles of small rodents and insect defoliators such as the autumn moth affect the structure and diversity of tundra and forest-tundra vegetation and the viability of a number of specialist predators and parasites. Ice crusting in warmer winters is likely to reduce the accessibility of plant food to lemmings, while deep snow may protect them from snow-surface predators. In Fennoscandia, there is evidence already for a pronounced shift in small rodent community structure and dynamics that have resulted in a decline of predators that specialize in feeding on small rodents. Climate is also likely to alter the role of insect pests in the birch forest system: warmer winters may increase survival of eggs and expand the range

  14. How a clogged canal affects ecological and human health in a tropical urban wetland ecosystem

    EPA Science Inventory

    The coastal city of San Juan, Puerto Rico is a tropical urban ecosystem woven among a series of interconnected bays, lagoons, drains, canals, and mangroves. As the city has expanded, infilling and urban development by the region’s poorest residents has choked an important c...

  15. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Tecchio, Samuele; Coll, Marta; Christensen, Villy; Company, Joan B.; Ramírez-Llodra, Eva; Sardà, Francisco

    2013-05-01

    There is increasing fishing pressure on the continental margins of the oceans, and this raises concerns about the vulnerability of the ecosystems thriving there. The current knowledge of the biology of deep-water fish species identifies potential reduced resilience to anthropogenic disturbance. However, there are extreme difficulties in sampling the deep sea, resulting in poorly resolved and indirectly obtained food-web relationships. Here, we modelled the flows and biomasses of a Mediterranean deep-sea ecosystem, the Catalan Sea continental slope at depths of 1000-1400 m. This is the first model of a deep-water ecosystem in the Mediterranean Sea. The objectives were to (a) quantitatively describe the food web structure of the ecosystem, (b) examine the role of key species in the ecosystem, and (c) explore the vulnerability of this deep-sea ecosystem to potential future fishing exploitation. We used the Ecopath with Ecosim (EwE) modelling approach and software to model the ecosystem. The trophic model included 18 consumers, a marine snow group, and a sediment detritus group. Trophic network analysis identified low levels of consumer biomass cycling and low system omnivory index when compared with expected values of marine ecosystems, and higher cycling and omnivory when compared with available EwE models of shallower areas of the Mediterranean Sea. The majority of flows in the ecosystem were concentrated at the trophic level of first-order consumers (TL 2). Benthic invertebrates and demersal sharks were identified to have key ecological roles in the ecosystem. We used the dynamic temporal model Ecosim to simulate expansion of the red-shrimp benthic trawl fishery that currently operates at shallower depths, down to 800 m depth. The simulations showed reductions in fish biomass and that the state of the deep continental slope ecosystem in the western Mediterranean seems to be the result of a long-term succession process, which has reached ecological stability, and is

  16. Long term trends of carbon dioxide exchange in a tundra ecosystem affected by permafrost thaw

    NASA Astrophysics Data System (ADS)

    Schuur, E. A.; Bracho, R. G.; Belshe, F.; Crummer, K. G.; Hicks Pries, C.; Krapek, J.; Natali, S.; Pegoraro, E.; Salmon, V.; Trucco, C.; Vogel, J. G.; Webb, E.

    2013-12-01

    Arctic warming has led to permafrost degradation and ground subsidence as a result of ground ice melting. Frozen soil organic matter that thaws can increase carbon (C) emissions to the atmosphere via respiration, but this can be offset in part by increases in plant growth. The balance of plant and microbial processes, and how they change through time, will determine how permafrost ecosystems influence future climate change via the C cycle. This study addressed this question both on short (interannual) and longer (decadal) time periods by measuring C fluxes over a ten-year period at three sites that represent a gradient of time since permafrost thaw. All three sites are upland tundra ecosystems located in Interior Alaska but differed in the extent of permafrost thaw and ground subsidence. Results showed an increasing growing season (May - September) trend in gross primary productivity, net ecosystem exchange, aboveground net primary productivity, and annual net ecosystem exchange at all sites over the study period from 2004-2013. In contrast, there was no directional change in annual and growing season ecosystem respiration, or mass loss from decomposition of a common cellulose substrate. The increasing trends over time as well as inter site differences most closely followed variation in growing season thaw depth over the same time period. During the study period, sites with more permafrost degradation (deeper seasonal thaw) had significantly greater gross primary productivity compared to where degradation was least, but also greater growing season ecosystem respiration. Adding in winter respiration decreased, in part, the summer C sink and left the site with the most permafrost degradation near C neutral, with the other sites annual C sinks. However, annual C balance was strongly dependent on winter respiration, which, compared to the growing season, was relatively data-poor due to extreme environmental conditions. Measurements of growing season and annual C

  17. Ecosystem Screening Approach for Pathogen-Associated Microorganisms Affecting Host Disease▿†

    PubMed Central

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-01-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens. PMID:21742919

  18. Ecosystem screening approach for pathogen-associated microorganisms affecting host disease.

    PubMed

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-09-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens.

  19. The stochastic structure of critical transitions in water-stressed ecosystems

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Dentz, M.; Juanes, R.

    2013-12-01

    Changes in the stochastic structure of natural forcing mechanisms, such as precipitation or temperature, are likely to transform the form and function of ecological systems. Climate models and global datasets show that an increase in global temperature may result in an amplification of the hydrological cycle, not necessarily accompanied by significant changes in mean annual precipitation. In arid and semiarid environments, feedbacks between climate, soil moisture and vegetation are linked to the existence of alternative stable ecosystem states. It has been hypothesized that bistability is associated with tipping points, whereby slow changes in rainfall forcing, and random or anthropogenic disturbances, may trigger catastrophic shifts towards degraded states of the ecosystem. Identifying tipping points and characterizing ecosystem resilience are essential in the assessment of ecological services in a changing environment. We develop a stochastic framework to understand the joint probability density function (pdf) of soil moisture and vegetation biomass under stochastic rainfall. We emphasize the impact of amplified hydrological cycles on ecosystems where alternative states are possible. The joint pdf characterizes the states in which the ecosystem is most likely to be found. We show that the structure of precipitation, not just the mean annual precipitation, controls the most likely state of the ecosystem. We synthesize our analysis by proposing a definition of ecosystem resilience that is based on the modality and time dynamics of the soil moisture-biomass joint pdf.

  20. Lead contamination of an old shooting range affecting the local ecosystem--A case study with a holistic approach.

    PubMed

    Rantalainen, Minna-Liisa; Torkkeli, Minna; Strömmer, Rauni; Setälä, Heikki

    2006-10-01

    The aim of this case study was to uncover the consequences of lead pellet-derived heavy lead contamination at a cast-off shooting range in southern Finland, covering aspects from soil chemistry and biology up to ecosystem level. The observed changes in the soil properties of the most contaminated areas suggest that the contamination may be disturbing processes of decomposition and nutrient mineralisation. Also two functionally important groups of soil organisms, microbes (as analysed using the PLFA analysis) and enchytraeid worms, were negatively affected by the contamination. Furthermore, there was an indication of reduced pine litter production at the contaminated areas. On the other hand, lead contamination appears not to have affected pine growth or soil-dwelling nematodes and microarthropods, and the general outlook of the whole ecosystem is that of a healthy forest. Thus, the boreal forest ecosystem studied as a whole appears to bear strong resistance to contamination, despite negative effects of lead on many of its components. This resistance may result from e.g. low bioavailability of lead, avoidance of the most contaminated soil horizons and microsites by the organisms, and functional redundancy and development of lead-tolerant populations amongst the organisms. The relative importance of these factors and the mechanisms behind them will be investigated in forthcoming studies.

  1. Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial

    PubMed Central

    Corkeron, Peter J.

    2009-01-01

    Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish–fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea. PMID:19126534

  2. Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial.

    PubMed

    Corkeron, Peter J

    2009-04-23

    Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish-fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea.

  3. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  4. Implications for Ecosystem Services of Watershed Processes that affect the Transport and Transformations of Mercury in an Adirondack Stream Basin

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Bradley, P. M.

    2012-12-01

    Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream

  5. Canopy structure of sagebrush ecosystems leading to differences in carbon and water fluxes

    NASA Astrophysics Data System (ADS)

    Reed, D. E.; Ewers, B. E.; Peckham, S. D.; Pendall, E. G.; Kelly, R. D.

    2013-12-01

    The sagebrush steppe ecosystem covers nearly 15% of Western North America, and its productivity is sensitive to warming and increasingly variable precipitation. Previous work has shown that interannual variability of precipitation is the largest factor in carbon and water cycling in these semi-arid ecosystems and that the relationship of traditional drivers of fluxes (VPD, net radiation, soil temperature) to carbon and water fluxes as well as ecosystem water use efficiency does not change along an elevation gradient. We seek to expand on that work by using multiple site-years from eddy covariance data near the upper (2469m) and lower (2069m) elevation range of sagebrush to answer the question 'How does canopy structure and canopy leaf area index combine to control the ecosystem carbon and water fluxes from rocky mountain sagebrush ecosystems'. We are answering this question by quantifying ecosystem scale carbon and water using eddy covariance measurements and a standard suite of atmospheric, soil and vegetation monitoring instruments. This data will be used with the Terrestrial Regional Ecosystem Exchange Simulator (TREES) Bayesian framework model that utilizes a coupled plant hydraulic and carbon uptake. For this work we use the TREES model to simulate canopy structure and leaf area based on seven years of eddy covariance data from the two different locations. This canopy information will be compared with canopy structure ground measurements within the eddy covariance footprint, and then we will compare the relationship between canopy structure and ecosystem fluxes. During well watered growing season time periods, the high elevation site has average water flux of 1.06 mmol m-2 s-1 and carbon flux of 1.54 μmol m-2 s-1 of uptake. Average water and carbon fluxes at the lower elevation site were 0.84 mmol m-2 s-1 and 1.09 μmol m-2 s-1 of uptake respectively. This is a reduction of 20% for water flux and 30% and carbon flux down the elevation gradient. With the

  6. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany.

    PubMed

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.

  7. Large-scale variation in combined impacts of canopy loss and disturbance on community structure and ecosystem functioning.

    PubMed

    Crowe, Tasman P; Cusson, Mathieu; Bulleri, Fabio; Davoult, Dominique; Arenas, Francisco; Aspden, Rebecca; Benedetti-Cecchi, Lisandro; Bevilacqua, Stanislao; Davidson, Irvine; Defew, Emma; Fraschetti, Simonetta; Golléty, Claire; Griffin, John N; Herkül, Kristjan; Kotta, Jonne; Migné, Aline; Molis, Markus; Nicol, Sophie K; Noël, Laure M-L J; Pinto, Isabel Sousa; Valdivia, Nelson; Vaselli, Stefano; Jenkins, Stuart R

    2013-01-01

    Ecosystems are under pressure from multiple human disturbances whose impact may vary depending on environmental context. We experimentally evaluated variation in the separate and combined effects of the loss of a key functional group (canopy algae) and physical disturbance on rocky shore ecosystems at nine locations across Europe. Multivariate community structure was initially affected (during the first three to six months) at six locations but after 18 months, effects were apparent at only three. Loss of canopy caused increases in cover of non-canopy algae in the three locations in southern Europe and decreases in some northern locations. Measures of ecosystem functioning (community respiration, gross primary productivity, net primary productivity) were affected by loss of canopy at five of the six locations for which data were available. Short-term effects on community respiration were widespread, but effects were rare after 18 months. Functional changes corresponded with changes in community structure and/or species richness at most locations and times sampled, but no single aspect of biodiversity was an effective predictor of longer-term functional changes. Most ecosystems studied were able to compensate in functional terms for impacts caused by indiscriminate physical disturbance. The only consistent effect of disturbance was to increase cover of non-canopy species. Loss of canopy algae temporarily reduced community resistance to disturbance at only two locations and at two locations actually increased resistance. Resistance to disturbance-induced changes in gross primary productivity was reduced by loss of canopy algae at four locations. Location-specific variation in the effects of the same stressors argues for flexible frameworks for the management of marine environments. These results also highlight the need to analyse how species loss and other stressors combine and interact in different environmental contexts.

  8. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change

    PubMed Central

    Drinkwater, K. F.; Grant, S. M.; Heymans, J. J.; Hofmann, E. E.; Hunt, G. L.; Johnston, N. M.

    2016-01-01

    The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs. PMID:27928038

  9. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis

    PubMed Central

    Eldridge, David J.; Bowker, Matthew A.; Maestre, Fernando T.; Roger, Erin; Reynolds, James F.; Whitford, Walter G.

    2013-01-01

    Encroachment of woody plants into grasslands has generated considerable interest among ecologists. Syntheses of encroachment effects on ecosystem processes have been limited in extent and confined largely to pastoral land uses or particular geographical regions. We used univariate analyses, meta-analysis and structural equation modeling to test the propositions that 1) shrub encroachment does not necessarily lead to declines in ecosystem functions, and 2) shrub traits influence the functional outcome of encroachment. Analyses of 43 ecosystem attributes from 244 case studies worldwide showed that some attributes consistently increased with encroachment (e.g. soil C, N), and others declined (e.g. grass cover, pH), but most exhibited variable responses. Traits of shrubs were associated with significant, though weak, structural and functional outcomes of encroachment. Our review revealed that encroachment had mixed effects on ecosystem structure and functioning at global scales, and that shrub traits influence the functional outcome of encroachment. Thus, a simple designation of encroachment as a process leading to functionally, structurally or contextually degraded ecosystems is not supported by a critical analysis of existing literature. Our results highlight that the commonly established link between shrub encroachment and degradation is not universal. PMID:21592276

  10. Is the Climate of Bering Sea Warming and Affecting the Ecosystem?

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Stabeno, Phyllis J.

    2004-08-01

    Observations from the Bering Sea are good indicators of decadal shifts in climate, as the Bering is a transition region between the cold, dry Arctic air mass to the north, and the moist, relatively warm maritime air mass to the south. The Bering Sea is also a transition region between Arctic and sub-Arctic ecosystems; this boundary can be loosely identified with the extent of winter sea-ice cover. Like a similar transition zone in the eastern North Atlantic, the Bering Sea is experiencing a northward biogeographical shift in response to changing temperature and atmospheric forcing. If this shift continues over the next decade, it will have major impacts on commercial and subsistence harvests as Arctic species are displaced by sub-Arctic species. The stakes are enormous, as this rich and diverse ecosystem currently provides 47% of the U.S. fishery production by weight, and is home to 80% of the U.S. sea bird population, 95% of northern fur seals, and major populations of Steller sea lions, walrus, and whales.

  11. Scorched earth: how will changes in ozone deposition caused by drought affect human health and ecosystems?

    NASA Astrophysics Data System (ADS)

    Emberson, L. D.; Kitwiroon, N.; Beevers, S.; Büker, P.; Cinderby, S.

    2012-10-01

    This unique study investigates the effect of ozone (O3) deposition on ground level O3 concentrations and subsequent human health and ecosystem risk under hot summer "heat wave" type meteorological events. Under such conditions, extended drought can effectively "turn off" the O3 vegetation sink leading to a substantial increase in ground level O3 concentrations. Two models that have been used for human health (the CMAQ chemical transport model) and ecosystem (the DO3SE O3 deposition model) risk assessment are combined to provide a powerful policy tool capable of novel integrated assessments of O3 risk using methods endorsed by the UNECE Convention on Long-Range Transboundary Air Pollution. This study investigates 2006, a particularly hot and dry year during which a heat wave occurred during the summer across much of the UK and Europe. To understand the influence of variable O3 dry deposition three different simulations were investigated during June and July: (i) actual conditions in 2006; (ii) conditions that assume a perfect vegetation sink for O3 deposition and (iii) conditions that assume an extended drought period that reduces the vegetation sink to a minimum. The risk of O3 to human health, assessed by estimating the number of days during which running 8-h mean O3 concentrations exceeded 100 μg m-3, show that on average across the UK, there is a difference of 16 days exceedance of the threshold between the perfect sink and drought conditions. These average results hide local variation with exceedances reaching as high as 20 days in the East Midlands and Eastern UK. Estimates of acute exposure effects show that O3 removed from the atmosphere through dry deposition during the June and July period would have been responsible for approximately 460 premature deaths. Conversely, reduced O3 dry deposition will decrease the amount of O3 taken up by vegetation and, according to flux-based assessments of vegetation damage, will lead to protection from O3 across the UK

  12. Bio-inspired Autonomic Structures: a middleware for Telecommunications Ecosystems

    NASA Astrophysics Data System (ADS)

    Manzalini, Antonio; Minerva, Roberto; Moiso, Corrado

    Today, people are making use of several devices for communications, for accessing multi-media content services, for data/information retrieving, for processing, computing, etc.: examples are laptops, PDAs, mobile phones, digital cameras, mp3 players, smart cards and smart appliances. One of the most attracting service scenarios for future Telecommunications and Internet is the one where people will be able to browse any object in the environment they live: communications, sensing and processing of data and services will be highly pervasive. In this vision, people, machines, artifacts and the surrounding space will create a kind of computational environment and, at the same time, the interfaces to the network resources. A challenging technological issue will be interconnection and management of heterogeneous systems and a huge amount of small devices tied together in networks of networks. Moreover, future network and service infrastructures should be able to provide Users and Application Developers (at different levels, e.g., residential Users but also SMEs, LEs, ASPs/Web2.0 Service roviders, ISPs, Content Providers, etc.) with the most appropriate "environment" according to their context and specific needs. Operators must be ready to manage such level of complication enabling their latforms with technological advanced allowing network and services self-supervision and self-adaptation capabilities. Autonomic software solutions, enhanced with innovative bio-inspired mechanisms and algorithms, are promising areas of long term research to face such challenges. This chapter proposes a bio-inspired autonomic middleware capable of leveraging the assets of the underlying network infrastructure whilst, at the same time, supporting the development of future Telecommunications and Internet Ecosystems.

  13. The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications

    USGS Publications Warehouse

    Sala, Enric; Ballesteros, Enric; Dendrinos, Panagiotis; Di Franco, Antonio; Ferretti, Francesco; Foley, David; Fraschetti, Simonetta; Friedlander, Alan M.; Garrabou, Joaquim; Guclusoy, Harun; Guidetti, Paolo; Halpern, Benjamin S.; Hereu, Bernat; Karamanlidis, Alexandros A.; Kizilkaya, Zafer; Macpherson, Enrique; Mangialajo, Luisa; Mariani, Simone; Micheli, Fiorenza; Pais, Antonio; Riser, Kristin; Rosenberg, Andrew A.; Sales, Marta; Selkoe, Kimberly A.; Starr, Rick; Tomas, Fiona; Zabala, Mikel

    2012-01-01

    Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m-2). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.

  14. The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications.

    PubMed

    Sala, Enric; Ballesteros, Enric; Dendrinos, Panagiotis; Di Franco, Antonio; Ferretti, Francesco; Foley, David; Fraschetti, Simonetta; Friedlander, Alan; Garrabou, Joaquim; Güçlüsoy, Harun; Guidetti, Paolo; Halpern, Benjamin S; Hereu, Bernat; Karamanlidis, Alexandros A; Kizilkaya, Zafer; Macpherson, Enrique; Mangialajo, Luisa; Mariani, Simone; Micheli, Fiorenza; Pais, Antonio; Riser, Kristin; Rosenberg, Andrew A; Sales, Marta; Selkoe, Kimberly A; Starr, Rick; Tomas, Fiona; Zabala, Mikel

    2012-01-01

    Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.

  15. The Structure of Mediterranean Rocky Reef Ecosystems across Environmental and Human Gradients, and Conservation Implications

    PubMed Central

    Sala, Enric; Ballesteros, Enric; Dendrinos, Panagiotis; Di Franco, Antonio; Ferretti, Francesco; Foley, David; Fraschetti, Simonetta; Friedlander, Alan; Garrabou, Joaquim; Güçlüsoy, Harun; Guidetti, Paolo; Halpern, Benjamin S.; Hereu, Bernat; Karamanlidis, Alexandros A.; Kizilkaya, Zafer; Macpherson, Enrique; Mangialajo, Luisa; Mariani, Simone; Micheli, Fiorenza; Pais, Antonio; Riser, Kristin; Rosenberg, Andrew A.; Sales, Marta; Selkoe, Kimberly A.; Starr, Rick; Tomas, Fiona; Zabala, Mikel

    2012-01-01

    Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m−2). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas. PMID:22393445

  16. Structural Factors Affecting Health Examination Behavioral Intention.

    PubMed

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-04-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates.

  17. Structural Factors Affecting Health Examination Behavioral Intention

    PubMed Central

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-01-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates. PMID:27043606

  18. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  19. Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems

    NASA Astrophysics Data System (ADS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2004-12-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (<10%), largest at the MS (>50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  20. How hydrophobic buckminsterfullerene affects surrounding water structure.

    PubMed

    Weiss, Dahlia R; Raschke, Tanya M; Levitt, Michael

    2008-03-13

    The hydrophobic hydration of fullerenes in water is of significant interest as the most common Buckminsterfullerene (C60) is a mesoscale sphere; C60 also has potential in pharmaceutical and nanomaterial applications. We use an all-atom molecular dynamics simulation lasting hundreds of nanoseconds to determine the behavior of a single molecule of C60 in a periodic box of water, and compare this to methane. A C60 molecule does not induce drying at the surface; however, unlike a hard sphere methane, a hard sphere C60 solute does. This is due to a larger number of attractive Lennard-Jones interactions between the carbon atom centers in C60 and the surrounding waters. In these simulations, water is not uniformly arranged but rather adopts a range of orientations in the first hydration shell despite the spherical symmetry of both solutes. There is a clear effect of solute size on the orientation of the first hydration shell waters. There is a large increase in hydrogen-bonding contacts between waters in the C60 first hydration shell. There is also a disruption of hydrogen bonds between waters in the first and second hydration shells. Water molecules in the first hydration shell preferentially create triangular structures that minimize the net water dipole near the surface near both the methane and C60 surface, reducing the total energy of the system. Additionally, in the first and second hydration shells, the water dipoles are ordered to a distance of 8 A from the solute surface. We conclude that, with a diameter of approximately 1 nm, C60 behaves as a large hydrophobic solute.

  1. Integrating Organic Matter Structure with Ecosystem Function using Advanced Analytical Chemistry Techniques

    NASA Astrophysics Data System (ADS)

    Boot, C. M.

    2012-12-01

    Microorganisms are the primary transformers of organic matter in terrestrial and aquatic ecosystems. The structure of organic matter controls its bioavailability and researchers have long sought to link the chemical characteristics of the organic matter pool to its lability. To date this effort has been primarily attempted using low resolution descriptive characteristics (e.g. organic matter content, carbon to nitrogen ratio, aromaticity, etc .). However, recent progress in linking these two important ecosystem components has been advanced using advanced high resolution tools (e.g. nuclear magnetic resonance (NMR) spectroscopy, and mass spectroscopy (MS)-based techniques). A series of experiments will be presented that highlight the application of high resolution techniques in a variety of terrestrial and aquatic ecosystems with the focus on how these data explicitly provide the foundation for integrating organic matter structure into our concept of ecosystem function. The talk will highlight results from a series of experiments including: an MS-based metabolomics and fluorescence excitation emission matrix approach evaluating seasonal and vegetation based changes in dissolved organic matter (DOM) composition from arctic soils; Fourier transform ion cyclotron resonance (FTICR) MS and MS metabolomics analysis of DOM from three lakes in an alpine watershed; and the transformation of 13C labeled glucose track with NMR during a rewetting experiment from Colorado grassland soils. These data will be synthesized to illustrate how the application of advanced analytical techniques provides novel insight into our understanding of organic matter processing in a wide range of ecosystems.

  2. Shifts and oscillations in a forest-grassland ecosystem affected by fire

    NASA Astrophysics Data System (ADS)

    Spiliotis, Konstantinos G.; Russo, Lucia

    2016-12-01

    The existence of periodic regimes of a forest-grassland ecosystem is here investigated as the main parameters are changed. The model consists of a couple of nonlinear ordinary differential equations which describes the evolution of the forest densities and includes the feed-back mechanisms induced by fires, coupled with the human perceptions of the forest/grassland value. The system shows a rich dynamic behavior such as: transient oscillations; the presence of dynamic regimes which are characterized by periodic oscillations in time; and shifts between steady and dynamic regimes as the parameters are perturbed. Focusing on the periodic regimes, we performed the bifurcation analysis of the system to detect the critical points which are responsible of the appearance of the periodic regimes. In particular, considering as bifurcation parameter the one that regulates the feed-back mechanism induced by fires, we found that Hopf bifurcations are responsible for appearance of periodic regimes, whereas the sudden appearance/ disappearance is related to the presence of catastrophic bifurcations (limit points of the periodic regimes).

  3. Ultraviolet radiation affects invasibility of lake ecosystems by warm-water fish.

    PubMed

    Tucker, Andrew J; Williamson, Craig E; Rose, Kevin C; Oris, James T; Connelly, Sandra J; Olson, Mark H; Mitchell, David L

    2010-03-01

    Predicting where species invasions will occur remains a substantial challenge in ecology, but identifying factors that ultimately constrain the distribution of potential invaders could facilitate successful prediction. Whereas ultraviolet radiation (UVR) is recognized as an important factor controlling species distribution and community composition, the role of UVR in a habitat invasibility context has not been explored. Here we examine how underwater UVR can regulate warm-water fish invasion. In Lake Tahoe, California and Nevada, USA, established populations of exotic bluegill sunfish (Lepomis macrochirus) are currently limited to turbid, low-UVR embayments. An in situ incubation experiment that manipulated incident UVR exposure of larval bluegill, combined with an assessment of UVR exposure levels in nearshore habitats around Lake Tahoe, demonstrates that UVR can mediate habitat invasibility. Our findings suggest that the susceptibility to invasion by UVR sensitive species may increase in transparent aquatic systems threatened by declining water quality, and they highlight the importance of abiotic factors as regulators of invasion risk in ecosystems.

  4. Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining.

    PubMed

    Zizek, Suzana; Horvat, Milena; Gibicar, Darija; Fajon, Vesna; Toman, Mihael J

    2007-05-15

    The presence of mercury in the river Idrijca (Slovenia) is mainly due to 500 years of mercury mining in this region. In order to understand the cycling of mercury in the Idrijca ecosystem it is crucial to investigate the role of biota. This study is part of an ongoing investigation of mercury biogeochemistry in the river Idrijca, focusing on the accumulation and speciation of mercury in the lower levels of the food chain, namely filamentous algae, periphyton and macroinvertebrates. Mercury analysis and speciation in the biota and in water were performed during the spring, summer and autumn seasons at four locations on the river, representing different degrees of mercury contamination. Total (THg) and methyl mercury (MeHg) were measured. The results showed that the highest THg concentrations in biota correlate well with THg levels in sediments and water. The level of MeHg is spatially and seasonally variable, showing higher values at the most contaminated sites during the summer and autumn periods. The percentage of Hg as MeHg increases with the trophic level from water (0.1-0.8%), algae (0.5-1.3%), periphyton (1.6-8.8%) to macroinvertebrates (0.1-100%), which indicates active transformation, accumulation and magnification of mercury in the benthic organism of this heavily contaminated torrential river.

  5. Does microbial community structure matter for predicting ecosystem function? Use of statistical models to examine relationships between the environment, community and processes

    NASA Astrophysics Data System (ADS)

    Nemergut, D.; Graham, E. B.

    2014-12-01

    Microorganisms control all major biogeochemical cycles, yet the importance of microbial community structure for ecosystem function is widely debated. Indeed, few nutrient cycling models directly account for variation in community structure, leading some researchers to speculate that this information could provide important and missing explanatory power to predict ecosystem function. However, if variation in environmental variables strongly correlates with variation in microbial community composition, then information on microbial community composition may not improve models. Here, we use a data synthesis approach to ask when and where information on the microbial community matters for predictions of ecosystem function. We collated data from approximately 100 different studies and used statistical approaches to ask if models with data on microbial community composition significantly improved models of ecosystem function based on environmental data alone. We found that only 25% of models of ecosystem processes were significantly improved with the addition of data on microbial community composition. Specifically, we found that for phylogenetically broad processes, diversity indicators yielded more significant increases in explanatory power than abundance data. Our results also demonstrate that for phylogenetically narrow processes, qPCR data on functional genes yielded higher explanatory power than for broad processes. Further, we found that all types of data on microbial community composition explained more variation in obligate processes compared to facultative processes. Overall, our results suggest that trait distributions both within communities and within individuals affect the relative importance of microbial community composition for explaining ecosystem function.

  6. EFFECTS OF VALLISNERIA AMERICANA (L.) ON COMMUNITY STRUCTURE AND ECOSYSTEM FUNCTION IN LAKE MESOCOSMS

    EPA Science Inventory

    Submerged aquatic vegetation is known as a key structural component and regulator in ecosystems. In this mesocosm study, we examine community- and system-level responses to the presence of Valisneria americana (L), a deep-rooted macrophyte, Phytoplankton, bacteria and filamentous...

  7. How Does Grasping the Underlying Causal Structures of Ecosystems Impact Students' Understanding?

    ERIC Educational Resources Information Center

    Grotzer, Tina A.; Basca, Belinda Bell

    2003-01-01

    Students have difficulty understanding ecosystem concepts. This article argues that the difficulty stems partly from not grasping the underlying causality that structures the concepts. We report on an intervention study designed to teach eight- and nine-year-olds to reason about domino, cyclic, and mutual causality by infusing causally focused…

  8. Affect networks: a structural analysis of the relationship between work ties and job-related affect.

    PubMed

    Totterdell, Peter; Wall, Toby; Holman, David; Diamond, Holly; Epitropaki, Olga

    2004-10-01

    The relationship between organizational networks and employees' affect was examined in 2 organizations. In Study 1, social network analysis of work ties and job-related affect for 259 employees showed that affect converged within work interaction groups. Similarity of affect between employees depended on the presence of work ties and structural equivalence. Affect was also related to the size and density of employees' work networks. Study 2 used a 10-week diary study of 31 employees to examine a merger of 2 organizational divisions and found that negative changes in employees' affect were related to having fewer cross-divisional ties and to experiencing greater reductions in network density. The findings suggest that affect permeates through and is shaped by organizational networks.

  9. Topography-induced changes in ecosystem structure and its implications for response of terrestrial ecosystem to future climate variability and change

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Guan, H.

    2006-12-01

    It is well known that climate is a primary control of the structure of terrestrial ecosystems. Ecosystems adapt to climate by adjusting either the type of vegetation or the canopy density. Within an established ecosystem is difficult to estimate the role of climate because there is little climate contrast, but this is remedied by observing the larger climate gradient across climate-controlled ecotones. In particular the complex topography of mountainous terrain provides a unique opportunity to constrain the climatic boundary condition of neighboring ecosystems and revealing the vegetation-climate relationship. We use a newly developed topography- and vegetation-based surface energy partitioning model (TVET) to quantify the boundary conditions for a juniper-creosote bush ecotone in central New Mexico, and demonstrate how extreme climate variability (e.g., sustainined drought) can lead to an ecotone shift. We also investigate the relationship between vegetation density and climate using remote sensing imagery for a nearby pinyon-juniper ecosystem in central New Mexico, and demonstrate how an ecosystem adapts to a small climate gradient by adjusting its density. Such studies help build a predictive understanding about the future evolution of terrestrial ecosystems due to climate variability and change.

  10. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    PubMed

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.

  11. [Multi-scenario simulation and prediction of ecosystem services as affected by urban expansion: A case study in coastal area of Tianjin, North China].

    PubMed

    Huang, Huan-Chun; Yun, Ying-Xia; Miao, Zhan-Tang; Hao, Cui; Li, Hong-yuan

    2013-03-01

    Based on the modified Logistic-CA model, and taking the coastal area of Tianjin as a case, this paper simulated the spatial evolution patterns of ecosystem services as affected by the urban expansion in 2011-2020 under the scenarios of historical extrapolation, endogenous development, and exogenous development. Overall, the total ecosystem services of the study area under the three scenarios were generally the same, and the functional region with the lowest level ecosystem services had the identical spatial pattern. However, the spatial evolution patterns of the ecosystem services of the study area under the three scenarios had a great difference. The functional regions with lower-level ecosystem services grew in a cross-shaped pattern, with the Tanggu downtown as a center, and finally formed a full connectivity area along the Haihe River and coastal zone.

  12. [Analysis on the ecosystem structure and function of Lake Taihu based on ecopath model].

    PubMed

    Li, Yun-Kai; Liu, En-Sheng; Wang, Hui; Gong, Yi

    2014-07-01

    Based on the data of lake survey conducted during 2008-2009 and the published data of the trophic ecology of key species, the exploited freshwater ecosystem of Lake Taihu was described using Ecopath with Ecosim 6.1 with the aim of characterizing its functioning and structure. The model comprised 20 functional groups including primary producers, the main species of fishes, nonfish vertebrates, and detritus. Results showed that the functional groups were organized into four aggregated trophic levels with the highest levels corresponding to the top predators, culters. Two trophic pathways were found in Lake Taihu, the detrital pathway and grazing pathway. The detrital pathway dominated in the ecosystem. As a consequence of the low ecotrophic efficiency of primary producer and detritus (trophic level I ), the accumulating detrital sediments continually released waste nutrients back into the system, resulting in its internal pollution. Considering Odum and Ulanowicz's theory of ecosystem development, the ecosystem was placed on a low developmental stage with high net primary production (NPP), net primary production/total respiration (NPP/R) and lower connectance index (CI), system omnivory index (SOI), and Finn' s cycling index (FCI). The results of mixed trophic impacts and keystone species selection showed that the increasingly intensive fishing exerted a negative effect on the ecosystem, and the top-down effects of top predators were becoming much obviously reduced.

  13. Ecosystem structure and resilience—A comparison between the Norwegian and the Barents Sea

    NASA Astrophysics Data System (ADS)

    Yaragina, Natalia A.; Dolgov, Andrey V.

    2009-10-01

    Abundance and biomass of the most important fish species inhabited the Barents and Norwegian Sea ecosystems have shown considerable fluctuations over the last decades. These fluctuations connected with fishing pressure resulted in the trophic structure alterations of the ecosystems. Resilience and other theoretical concepts (top-down, wasp-waste and bottom-up control, trophic cascades) were viewed to examine different response of the Norwegian and Barents Sea ecosystems on disturbing forces. Differences in the trophic structure and functioning of Barents and Norwegian Sea ecosystems as well as factors that might influence the resilience of the marine ecosystems, including climatic fluctuation, variations in prey and predator species abundance, alterations in their regular migrations, and fishing exploitation were also considered. The trophic chain lengths in the deep Norwegian Sea are shorter, and energy transfer occurs mainly through the pelagic fish/invertebrates communities. The shallow Barents Sea is characterized by longer trophic chains, providing more energy flow into their benthic assemblages. The trophic mechanisms observed in the Norwegian Sea food webs dominated by the top-down control, i.e. the past removal of Norwegian Spring spawning followed by zooplankton development and intrusion of blue whiting and mackerel into the area. The wasp-waist response is shown to be the most pronounced effect in the Barents Sea, related to the position of capelin in the ecosystem; large fluctuations in the capelin abundance have been strengthened by intensive fishery. Closer links between ecological and fisheries sciences are needed to elaborate and test various food webs and multispecies models available.

  14. Management intensity at field and landscape levels affects the structure of generalist predator communities.

    PubMed

    Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara

    2014-07-01

    Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.

  15. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  16. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords

    USGS Publications Warehouse

    Arimitsu, Mayumi; Piatt, John F.; Mueter, Franz J.

    2016-01-01

    To better understand the influence of glacier runoff on fjord ecosystems, we sampled oceanographic conditions, nutrients, zooplankton, forage fish and seabirds within 4 fjords in coastal areas of the Gulf Alaska. We used generalized additive models and geostatistics to identify the range of glacier runoff influence into coastal waters within fjords of varying estuarine influence and topographic complexity. We also modeled the response of depth-integrated chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. The effects of glacial runoff were traced at least 10 km into coastal fjords by cold, turbid, stratified and generally nutrient-rich near-surface conditions. Glacially modified physical gradients, nutrient availability and among-fjord differences explained 67% of the variation in phytoplankton abundance, which is a driver of ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were related to environmental gradients that could be traced to glacial freshwater input, particularly turbidity and temperature. Seabird density was predicted by prey availability and silicate concentrations, which may be a proxy for upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were attributable to an influx of cold, fresh and sediment-laden water, whereas differences were likely related to fjord topography and local differences in estuarine vs. ocean influence. We anticipate that continued changes in the timing and volume of glacial runoff will ultimately alter coastal ecosystems in the future.

  17. SYSTEM ANALYSIS OF THE STRUCTURE OF CULTURAL ECOSYSTEM SERVICES ENERATION AND INTAKE USING ONE HUNDRED WAKA POEMS

    NASA Astrophysics Data System (ADS)

    Matsui, Takanori; Ikeno, Yuko

    It is needed to evaluate ecosystem services in order to make appropriate decision for ecosystem management. In this background the purpose of this study is to analyze structural processes of human enjoying culture-related ecosystem services. As a database including processes of enjoying cultural ecosystem services, "one hundred waka poems" was selected and coded from the context of symbiotic systems conce pts. To the dataset SOM (self organizational map) and agglomerative hierarchical clustering method, which were kinds of data mining method, were conducted. As the result, seven structures as design knowledge of cultural ecosystem services generation and in take, and for detail, (1) cultural ecosystem services are based on the visual contact to environmental objects, (2) there is a possibility of interaction between ecosystems, climate conditions, weather phenomena and activity modes of human system under the process of generating and taking cultural ecosystem services, and (3) it is possible that not only the presence of ecosystem but also products made of natural resources generate cultural ecosystem services.

  18. African dust carries microbes across the ocean: are they affecting human and ecosystem health?

    USGS Publications Warehouse

    Kellogg, Christina A.; Griffin, Dale W.

    2003-01-01

    Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion (eutrophication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans-ported annually at relatively low altitudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in collaboration with the NASA/Goddard Spaceflight Center, is conducting a study to identify microbes--bacteria, fungi, viruses--transported across the Atlantic in African soil dust. Each year, millions of tons of desert dust blow off the west African coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Florida receives about 50 percent, while the rest may range as far north as Maine or as far west as Colorado. The dust storms can be tracked by satellite and take about one week to cross the Atlantic.

  19. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts.

    PubMed

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E G; Robinson, Christopher T

    2013-12-01

    Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning.

  20. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts

    PubMed Central

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart EG; Robinson, Christopher T

    2013-01-01

    Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning. PMID:23842653

  1. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  2. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat

    PubMed Central

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased

  3. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.

    PubMed

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased

  4. Long-Distance Interactions Regulate the Structure and Resilience of Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    van de Koppel, Johan; van der Heide, Tjisse; Altieri, Andrew H.; Eriksson, Britas Klemens; Bouma, Tjeerd J.; Olff, Han; Silliman, Brian R.

    2015-01-01

    Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that interactions that operate at long distances, beyond the direct neighborhood of individual organisms, are more common and have much more far-reaching implications for coastal ecosystems than was previously realized. We review studies from a variety of ecosystem types—including cobble beaches, mussel beds, coral reefs, seagrass meadows, and mangrove forests—that reveal a startling interplay of positive and negative interactions between habitats across distances of up to a kilometer. In addition to classical feeding relations, alterations of physical conditions constitute an important part of these long-distance interactions. This entanglement of habitats has crucial implications for how humans manage coastal ecosystems, and evaluations of anthropogenic impact should explicitly address long-distance and system-wide effects before we deem these human activities to be causing little harm.

  5. Long-distance interactions regulate the structure and resilience of coastal ecosystems.

    PubMed

    van de Koppel, Johan; van der Heide, Tjisse; Altieri, Andrew H; Eriksson, Britas Klemens; Bouma, Tjeerd J; Olff, Han; Silliman, Brian R

    2015-01-01

    Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that interactions that operate at long distances, beyond the direct neighborhood of individual organisms, are more common and have much more far-reaching implications for coastal ecosystems than was previously realized. We review studies from a variety of ecosystem types-including cobble beaches, mussel beds, coral reefs, seagrass meadows, and mangrove forests-that reveal a startling interplay of positive and negative interactions between habitats across distances of up to a kilometer. In addition to classical feeding relations, alterations of physical conditions constitute an important part of these long-distance interactions. This entanglement of habitats has crucial implications for how humans manage coastal ecosystems, and evaluations of anthropogenic impact should explicitly address long-distance and system-wide effects before we deem these human activities to be causing little harm.

  6. Ecosystem Structure Changes in the Turkish Seas as a Response to Overfishing

    NASA Astrophysics Data System (ADS)

    Gazihan Akoglu, Ayse; Salihoglu, Baris; Akoglu, Ekin; Kideys, Ahmet E.

    2013-04-01

    Human population in Turkey has grown more than five-fold since its establishment in 1923 and more than 73 million people are currently living in the country. Turkey is surrounded by partially connected seas (the Black Sea, the Sea of Marmara, the Aegean Sea and the Mediterranean Sea) each of which has significantly different productivity levels and ecosystem characteristics. Increasing human population with its growing socio-economic needs has generated an intensive fishing pressure on the fish stocks in its exclusive economic zone. Fishing grounds in the surrounding seas were exploited with different fishing intensities depending upon their productivity level and catch rates. Hence, the responses of these different ecosystems to overfishing have been realized differently. In this study, changes of the ecosystem structures in the Turkish Seas were comparatively investigated by ecosystem indices such as Marine Trophic Index (MTI), Fishing in Balance (FiB) and Primary Production Required (PPR) to assess the degree of sustainability of the fish stocks for future generations.

  7. Lake Michigan offshore ecosystem structure and food web changes from 1987 to 2008

    USGS Publications Warehouse

    Rogers, Mark W.; Bunnell, David B.; Madenjian, Charles P.; Warner, David M.

    2014-01-01

    Ecosystems undergo dynamic changes owing to species invasions, fisheries management decisions, landscape modifications, and nutrient inputs. At Lake Michigan, new invaders (e.g., dreissenid mussels (Dreissena spp.), spiny water flea (Bythotrephes longimanus), round goby (Neogobius melanostomus)) have proliferated and altered energy transfer pathways, while nutrient concentrations and stocking rates to support fisheries have changed. We developed an ecosystem model to describe food web structure in 1987 and ran simulations through 2008 to evaluate changes in biomass of functional groups, predator consumption, and effects of recently invading species. Keystone functional groups from 1987 were identified as Mysis, burbot (Lota lota), phytoplankton, alewife (Alosa pseudoharengus), nonpredatory cladocerans, and Chinook salmon (Oncorhynchus tshawytscha). Simulations predicted biomass reductions across all trophic levels and predicted biomasses fit observed trends for most functional groups. The effects of invasive species (e.g., dreissenid grazing) increased across simulation years, but were difficult to disentangle from other changes (e.g., declining offshore nutrient concentrations). In total, our model effectively represented recent changes to the Lake Michigan ecosystem and provides an ecosystem-based tool for exploring future resource management scenarios.

  8. How Habitat Change and Rainfall Affect Dung Beetle Diversity in Caatinga, a Brazilian Semi-Arid Ecosystem

    PubMed Central

    Liberal, Carolina Nunes; de Farias, Ângela Maria Isidro; Meiado, Marcos Vinicius; Filgueiras, Bruno K. C.; Iannuzzi, Luciana

    2011-01-01

    The aim of the present study was to evaluate how dung beetle communities respond to both environment and rainfall in the Caatinga, a semi-arid ecosystem in northeastern Brazil. The communities were sampled monthly from May 2006 to April 2007 using pitfall traps baited with human feces in two environments denominated “land use area” and “undisturbed area.” Abundance and species richness were compared between the two environments and two seasons (dry and wet season) using a generalized linear model with a Poisson error distribution. Diversity was compared between the two environments (land use area and undisturbed area) and seasons (dry and wet) using the Two-Way ANOVA test. Non-metric multidimensional scaling was performed on the resemblance matrix of Bray-Curtis distances (with 1000 random restarts) to determine whether disturbance affected the abundance and species composition of the dung beetle communities. Spearman's correlation coefficient was used to determine whether rainfall was correlated with abundance and species richness. A total of 1097 specimens belonging to 13 species were collected. The most abundant and frequent species was Dichotomius geminatus Arrow (Coleoptera: Scarabaeidae). The environment exerted an influence over abundance. Abundance and diversity were affected by season, with an increase in abundance at the beginning of the wet season. The correlation coefficient values were high and significant for abundance and species richness, which were both correlated to rainfall. In conclusion, the restriction of species to some environments demonstrates the need to preserve these areas in order to avoid possible local extinction. Therefore, in extremely seasonable environments, such as the Caatinga, seasonal variation strongly affects dung beetle communities. PMID:22224924

  9. How habitat change and rainfall affect dung beetle diversity in Caatinga, a Brazilian semi-arid ecosystem.

    PubMed

    Liberal, Carolina Nunes; de Farias, Ângela Maria Isidro; Meiado, Marcos Vinicius; Filgueiras, Bruno K C; Iannuzzi, Luciana

    2011-01-01

    The aim of the present study was to evaluate how dung beetle communities respond to both environment and rainfall in the Caatinga, a semi-arid ecosystem in northeastern Brazil. The communities were sampled monthly from May 2006 to April 2007 using pitfall traps baited with human feces in two environments denominated "land use area" and "undisturbed area." Abundance and species richness were compared between the two environments and two seasons (dry and wet season) using a generalized linear model with a Poisson error distribution. Diversity was compared between the two environments (land use area and undisturbed area) and seasons (dry and wet) using the Two-Way ANOVA test. Non-metric multidimensional scaling was performed on the resemblance matrix of Bray-Curtis distances (with 1000 random restarts) to determine whether disturbance affected the abundance and species composition of the dung beetle communities. Spearman's correlation coefficient was used to determine whether rainfall was correlated with abundance and species richness. A total of 1097 specimens belonging to 13 species were collected. The most abundant and frequent species was Dichotomius geminatus Arrow (Coleoptera: Scarabaeidae). The environment exerted an influence over abundance. Abundance and diversity were affected by season, with an increase in abundance at the beginning of the wet season. The correlation coefficient values were high and significant for abundance and species richness, which were both correlated to rainfall. In conclusion, the restriction of species to some environments demonstrates the need to preserve these areas in order to avoid possible local extinction. Therefore, in extremely seasonable environments, such as the Caatinga, seasonal variation strongly affects dung beetle communities.

  10. A Screening-Level Approach for Comparing Risks Affecting Aquatic Ecosystem Services over Socio-Environmental Gradients

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.; Conde, D.; Villamizar, S. R.; Reid, B.; Escobar, J.; Rusak, J.; Hoyos, N.; Scordo, F.; Perillo, G. M.; Piccolo, M. C.; Zilio, M.; Velez, M.

    2015-12-01

    Assessing risks to aquatic ecosystems services (ES) is challenging and time-consuming, and effective strategies for prioritizing more detailed assessment efforts are needed. We propose a screening-level risk analysis (SRA) approach that scales ES risk using socioeconomic and environmental indices to capture anthropic and climatic pressures, as well as the capacity for institutional responses to those pressures. The method considers ES within a watershed context, and uses expert input to prioritize key services and the associated pressures that threaten them. The SRA approach focuses on estimating ES risk affect factors, which are the sum of the intensity factors for all hazards or pressures affecting the ES. We estimate the pressure intensity factors in a novel manner, basing them on the nation's (i) human development (proxied by Inequality-adjusted Human Development Index, IHDI), (ii) environmental regulatory and monitoring state (Environmental Performance Index, EPI) and (iii) the current level of water stress in the watershed (baseline water stress, BWS). Anthropic intensity factors for future conditions are derived from the baseline values based on the nation's 10-year trend in IHDI and EPI; ES risks in nations with stronger records of change are rewarded more/penalized less in estimates for good/poor future management scenarios. Future climatic intensity factors are tied to water stress estimates based on two general circulation model (GCM) outcomes. We demonstrate the method for an international array of six sites representing a wide range of socio-environmental settings. The outcomes illustrate novel consequences of the scaling scheme. Risk affect factors may be greater in a highly developed region under intense climatic pressure, or in less well-developed regions due to human factors (e.g., poor environmental records). As a screening-level tool, the SRA approach offers considerable promise for ES risk comparisons among watersheds and regions so that

  11. Structure and Affect: The Influence of Social Structure on Affective Meaning in American Kinship

    ERIC Educational Resources Information Center

    Malone, Martin J.

    2004-01-01

    Structural variables differentiating kinship identities, such as sex, generation, and type of relationship (lineal, collateral, conjugal), are reflected in sentiments about family identities. In particular, componential variations in kinship terms predict Evaluation, Potency, and Activity ratings of the terms fairly accurately. Between 44 and 92…

  12. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review

    USGS Publications Warehouse

    Cannicci, Stefano; Burrows, Damien; Fratini, Sara; Smith, Thomas J.; Offenberg, Joachim; Dahdouh-Guebas, Farid

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about the great importance of these herbivorous crabs in structuring and functioning Old world ecosystems. Although Sesarmidae are still considered very important in shaping mangrove structure and functioning, recent literature emphasizes the significance of other invertebrates. The Ocypodidae have now been shown to have the same role as Sesarmidae in terms of retention of forest products and organic matter processing in New world mangroves. In both New and Old world mangroves, crabs process large amounts of algal primary production, contribute consistently to retention of mangrove production and as ecosystem engineers, change particle size distribution and enhance soil aeration. Our understanding of the strong impact of gastropods, by means of high intake rates of mangrove products and differential consumption of propagules, has changed only recently. The role of insects must also be stressed. It is now clear that older techniques used to assess herbivory rates by insects strongly underestimate their impact, both in case of leaf eating and wood boring species and that

  13. Fishery-Induced Changes in the Subtropical Pacific Pelagic Ecosystem Size Structure: Observations and Theory

    PubMed Central

    Polovina, Jeffrey J.; Woodworth-Jefcoats, Phoebe A.

    2013-01-01

    We analyzed a 16-year (1996–2011) time series of catch and effort data for 23 species with mean weights ranging from 0.8 kg to 224 kg, recorded by observers in the Hawaii-based deep-set longline fishery. Over this time period, domestic fishing effort, as numbers of hooks set in the core Hawaii-based fishing ground, has increased fourfold. The standardized aggregated annual catch rate for 9 small (<15 kg) species increased about 25% while for 14 large species (>15 kg) it decreased about 50% over the 16-year period. A size-based ecosystem model for the subtropical Pacific captures this pattern well as a response to increased fishing effort. Further, the model projects a decline in the abundance of fishes larger than 15 kg results in an increase in abundance of animals from 0.1 to 15 kg but with minimal subsequent cascade to sizes smaller than 0.1 kg. These results suggest that size-based predation plays a key role in structuring the subtropical ecosystem. These changes in ecosystem size structure show up in the fishery in various ways. The non-commercial species lancetfish (mean weight 7 kg) has now surpassed the target species, bigeye tuna, as the species with the highest annual catch rate. Based on the increase in snake mackerel (mean weight 0.8 kg) and lancetfish catches, the discards in the fishery are estimated to have increased from 30 to 40% of the total catch. PMID:23620824

  14. Consumer return chronology alters recovery trajectory of stream ecosystem structure and function following drought.

    PubMed

    Murdock, Justin N; Gido, Keith B; Dodds, Walter K; Bertrand, Katie N; Whiles, Matt R

    2010-04-01

    Consumers are increasingly being recognized as important drivers of ecological succession, yet it is still hard to predict the nature and direction of consumer effects in nonequilibrium environments. We used stream consumer exclosures and large outdoor mesocosms to study the impact of macroconsumers (i.e., fish and crayfish) on recovery of intermittent prairie streams after drying. In the stream, macroconsumers altered system recovery trajectory by decreasing algal and macroinvertebrate biomass, primary productivity, and benthic nutrient uptake rates. However, macroconsumer influence was transient, and differences between exclosures and controls disappeared after 35 days. Introducing and removing macroconsumers after 28 days resulted mainly in changes to macroinvertebrates. In mesocosms, a dominant consumer (the grazing minnow Phoxinus erythrogaster) reduced macroinvertebrate biomass but had little effect on algal assemblage structure and ecosystem rates during recovery. The weak effect of P. erythrogaster in mesocosms, in contrast to the strong consumer effect in the natural stream, suggests that both timing and diversity of returning consumers are important to their overall influence on stream recovery patterns. Although we found that consumers significantly altered ecosystem structure and function in a system experiencing rapid changes in abiotic and biotic factors following disturbance, consumer effects diminished over time and trajectories converged to similar states with respect to primary producers, in spite of differences in consumer colonization history. Thus, consumer impacts can be substantial in recovering ecosystems and are likely to be dependent on the disturbance regime and diversity of the consumer community.

  15. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective.

    PubMed

    Morris, Rebecca J

    2010-11-27

    Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity.

  16. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective

    PubMed Central

    Morris, Rebecca J.

    2010-01-01

    Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity. PMID:20980318

  17. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    NASA Astrophysics Data System (ADS)

    Tecchio, Samuele; Coll, Marta; Sardà, Francisco

    2015-06-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate

  18. Endangered light-footed clapper rail affects parasite community structure in coastal wetlands.

    PubMed

    Whitney, Kathleen L; Hechinger, Ryan F; Kuris, Armand M; Lafferty, Kevin D

    2007-09-01

    An extinction necessarily affects community members that have obligate relationships with the extinct species. Indirect or cascading effects can lead to even broader changes at the community or ecosystem level. However, it is not clear whether generalist parasites should be affected by the extinction of one of their hosts. We tested the prediction that loss of a host species could affect the structure of a generalist parasite community by investigating the role of endangered Light-footed Clapper Rails (Rallus longirostris levipes) in structuring trematode communities in four tidal wetlands in southern California, U.S.A. (Carpinteria Salt Marsh, Mugu Lagoon) and Mexico (Estero de Punta Banda, Bahia Falsa-San Quintin). We used larval trematode parasites in first intermediate host snails (Cerithidea californica) as windows into the adult trematodes that parasitize Clapper Rails. Within and among wetlands, we found positive associations between Clapper Rails and four trematode species, particularly in the vegetated marsh habitat where Clapper Rails typically occur. This suggests that further loss of Clapper Rails is likely to affect the abundance of several competitively dominant trematode species in wetlands with California horn snails, with possible indirect effects on the trematode community and changes in the impacts of these parasites on fishes and invertebrates.

  19. Decade time scale plot to landscape scale change in tundra ecosystem structure and function near Barrow, AK

    NASA Astrophysics Data System (ADS)

    Lin, D. H.; Johnson, D. R.; Lara, M. J.; Villarreal, S.; Hollister, R. D.; Webber, P. J.; Tweedie, C. E.

    2012-12-01

    Several models suggest shifts in tundra ecosystem structure and function are likely to affect the future state of the Arctic system and how these shifts may impact the global system. Validation of such predictions remains a challenge, however, due to the lack of sustained environmental observations throughout much of the Arctic. In the absence of sustained monitoring, relocating, rescuing, and retrospectively resampling historic research sites and datasets has proven to be an effective means to establish likely change scenarios and develop hypotheses of future change trajectories. This study, synthesizes several recently published works that have used this retrospective approach to explore plot to landscape change in tundra ecosystem structure and function near Barrow, Alaska over the past half Century. This study is a contribution to the International Polar Year 'Back to the Future' project IPY-BTF, IPY # 512). At the landscape level, analysis of land cover change of time series high spatial resolution aerial and satellite imagery spanning 1948-2008 show an overall increase in the extent of dry and moist land cover and open water, and a decrease in the extent of wet and aquatic, land cover types. The 'drying' trend noted for the coastal landscape of Barrow is similar to that noted for four other Alaskan tundra landscapes but in the same study, the Barrow landscape also showed the most dramatic change in wet and aquatic land cover types. Plot level studies of sites, established in 1972 during the International Biological Program, that have been resampled three times show that species richness and diversity has increased and that wet plant communities have changed more than dry plant communities. An analysis of ecosystem function coupled to this plot level study suggests the greatest functional change has occurred in aquatic and wet plant communities where methane efflux and net ecosystem production (NEP) has increased and albedo and the normalized difference

  20. Ecosystem modeling of coastal acidification and hypoxia and structural uncertainties in the representation of sediment-water exchanges

    EPA Science Inventory

    Numerical ecosystem models of coastal acidification (CA) and hypoxia have been developed to synthesize current scientific understanding and provide predictions for nutrient management and policy. However, there is not a scientific consensus about the structure of these models an...

  1. Interactions between surface structures, runoff and erosion in an artificial watershed during the initial ecosystem development

    NASA Astrophysics Data System (ADS)

    Gerwin, W.; Raab, T.; Dimitrov, M.

    2009-04-01

    In its initial phase an ecosystem can be characterized as a Geo-(Hydro-)System since biotic compartments are still missing to a large extent. In this very first stage of the ecosystem development the hydrological processes forming the first surface structures are mainly controlled by runoff patterns and by the physical properties of the surface and the substrate. Based on that, it can be hypothesized that the initially formed structures are responsible for the future development of the ecosystem and define later structures. However, initial structures are very dynamic, and few alterations of surface properties may initiate the development of completely new patches and patterns which again control surface processes like erosion and sedimentation. Loose sand and other fine particles are transported directly by wind and water from the upper initial soil surface and a first physical soil crust is formed very quickly. This new surface exhibits clearly different properties compared with the original initial surface. For example, infiltration can be minimized and surface runoff is promoted by this crusting. In contrast, sandy or silty substrate that has been relocated by erosion processes into small hollows of the surface changes the soil physical properties of these parts of the landscape as well but into another direction. In these parts of the system the sedimentation may create small patches with higher infiltration rates and eventually better water storage capacities. This may result into the formation of initial vegetation patches and patterns which in turn influence the further quality and quantity as well as the location of soil surface processes. Against this background this paper presents a recently launched research project using an artificially created water catchment of 6 ha in size. This site called ‘Chicken Creek' (‘Hühnerwasser') was established in 2005 in Lusatia (Germany) and is the central research site of a German-Swiss Collaborative Research

  2. Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions.

    PubMed

    Goberna, M; García, C; Insam, H; Hernández, M T; Verdú, M

    2012-07-01

    Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.

  3. The magnitude of lost ecosystem structure and function in urban streams and the effectiveness of watershed-based management (Invited)

    NASA Astrophysics Data System (ADS)

    Smucker, N. J.; Detenbeck, N. E.; Kuhn, A.

    2013-12-01

    Watershed development is a leading cause of stream impairment and increasingly threatens the availability, quality, and sustainability of freshwater resources. In a recent global meta-analysis, we found that measures of desirable ecological structure (e.g., algal, macroinvertebrate, and fish communities) and functions (e.g., metabolism, nutrient uptake, and denitrification) in streams with developed watersheds were only 23% and 34%, respectively, of those in minimally disturbed reference streams. As humans continue to alter watersheds in response to growing and migrating populations, characterizing ecological responses to watershed development and management practices is urgently needed to inform future development practices, decisions, and policy. In a study of streams in New England, we found that measures of macroinvertebrate and algal communities had threshold responses between 1-10% and 1-5% impervious cover, respectively. Macroinvertebrate communities had decreases in sensitive taxa and predators occurring from 1-3.5% and transitions in trophic and habitat guilds from 4-9% impervious cover. Sensitive algal taxa declined at 1%, followed by increases in tolerant taxa at 3%. Substantially altered algal communities persisted above 5% impervious cover and were dominated by motile taxa (sediment resistant) and those with high nutrient demands. Boosted regression tree analysis showed that sites with >65% and ideally >80% forest and wetland cover in near-stream buffers were associated with a 13-34% decrease in the effects of watershed impervious cover on algal communities. While this reduction is substantial, additional out-of-stream management efforts are needed to protect and restore stream ecosystems (e.g., created wetlands and stormwater ponds), but understanding their effectiveness is greatly limited by sparse ecological monitoring. Our meta-analysis found that restoration improved ecological structure and functions in streams by 48% and 14%, respectively, when

  4. Structural damages in adsorbed vaccines affected by freezing.

    PubMed

    Kurzątkowski, Wiesław; Kartoğlu, Ümit; Staniszewska, Monika; Górska, Paulina; Krause, Aleksandra; Wysocki, Mirosław Jan

    2013-03-01

    This study was planned to evaluate structural damages in adsorbed vaccines affected by freezing using scanning electron microscopy and X-ray analysis of the elements. Randomly selected 42 vials of eight different types of WHO pre-qualified adsorbed freeze-sensitive vaccines from 10 manufacturers were included in the study. Vaccines were kept at 5 °C. Selected numbers of vials from each type were then exposed to -25 °C for 24 h periods. All samples were evaluated for their structure using scanning electron microscopy, X-ray analysis of the elements and precipitation time. Scanning electron microscopy of vaccines affected by freezing showed either smooth or rough surfaced conglomerates associated with phosphate content of the precipitate. These vaccines precipitated 2-15 times faster compared to non-frozen samples. Non-frozen samples showed uniform flocculent structure either dense or dispersed. X-ray analysis of precipitates in frozen samples confirmed that the precipitate is mainly aluminium clutters. Scanning electron microscopy confirmed that the lattice structure of bonds between adsorbent and the antigen is broken and aluminium forms conglomerates that grow in size and weight. The precipitation time of vaccines affected by freezing is 4.5 times faster on average compared to non-frozen samples. These facts form the basis of the "shake test".

  5. Effects of municipal wastewater on aquatic ecosystem structure and function in the receiving stream.

    PubMed

    Englert, Dominic; Zubrod, Jochen P; Schulz, Ralf; Bundschuh, Mirco

    2013-06-01

    During recent years, increasing incidences of summer droughts - likely driven by climate change - reduced the dilution potential of low-order streams for secondary treated wastewater also in temperate Europe. Despite the potential risks to ecosystem integrity, there is a paucity of knowledge regarding the effects of different wastewater dilution potentials on ecosystem functions. The present study investigated the implications of secondary treated wastewater released into a third-order stream (Queich, southwest Germany) during a season with low dilution potential (summer; ~90% wastewater) as compared to a season with high dilution potential (winter; ~35% wastewater) in terms of leaf litter decomposition and macroinvertebrate communities. Adverse effects in macroinvertebrate mediated leaf mass loss (~65%), gammarids' feeding rate (~80%), leaf associated fungal biomass (>40%) and shifts in macroinvertebrate community structure were apparent up to 100 and 300 m (partially 500 m) downstream of the wastewater treatment plant effluent during winter and summer, respectively. In addition, a Gammarus fossarum laboratory feeding trial demonstrated the potential of powdered activated carbon to reduce the ecotoxicity of released wastewater. These results urge the development and evaluation of adequate management strategies, e.g. the application of advanced wastewater treatment technologies, to protect the integrity of freshwater ecosystems, which is required by the European Water Framework Directive - also considering decreasing dilution potential of streams as projected by climate change scenarios.

  6. Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems.

    PubMed

    Mohanty, Anee; Wu, Yichao; Cao, Bin

    2014-10-01

    In natural and engineered environments, microorganisms often exist as complex communities, which are key to the health of ecosystems and the success of bioprocesses in various engineering applications. With the rapid development of nanotechnology in recent years, engineered nanomaterials (ENMs) have been considered one type of emerging contaminants that pose great potential risks to the proper function of microbial communities in natural and engineered ecosystems. The impacts of ENMs on microorganisms have attracted increasing research attentions; however, most studies focused on the antimicrobial activities of ENMs at single cell and population level. Elucidating the influence of ENMs on microbial communities represents a critical step toward a comprehensive understanding of the ecotoxicity of ENMs. In this mini-review, we summarize and discuss recent research work on the impacts of ENMs on microbial communities in natural and engineered ecosystems, with an emphasis on their influences on the community structure and function. We also highlight several important research topics which may be of great interest to the research community.

  7. Ice cream structural elements that affect melting rate and hardness.

    PubMed

    Muse, M R; Hartel, R W

    2004-01-01

    Statistical models were developed to reveal which structural elements of ice cream affect melting rate and hardness. Ice creams were frozen in a batch freezer with three types of sweetener, three levels of the emulsifier polysorbate 80, and two different draw temperatures to produce ice creams with a range of microstructures. Ice cream mixes were analyzed for viscosity, and finished ice creams were analyzed for air cell and ice crystal size, overrun, and fat destabilization. The ice phase volume of each ice cream were calculated based on the freezing point of the mix. Melting rate and hardness of each hardened ice cream was measured and correlated with the structural attributes by using analysis of variance and multiple linear regression. Fat destabilization, ice crystal size, and the consistency coefficient of the mix were found to affect the melting rate of ice cream, whereas hardness was influenced by ice phase volume, ice crystal size, overrun, fat destabilization, and the rheological properties of the mix.

  8. Chitinolytic and pectinolytic community in the vertical structure of chernozem's zone ecosystems

    NASA Astrophysics Data System (ADS)

    Lukacheva, E.; Manucharova, N.

    2012-04-01

    Chitin is a long-chain polymer of a N-acetylglucosamine and is found in many places throughout the natural world. Pectin is a structural heteropolysaccharide contained in the primary cell walls of terrestrial plants. Roots of the plants and root crops contain pectin. Chitin and pectin are widely distributed throughout the natural world. For this reason it is important to investigate the structural and functional properties of complex organisms, offering degradation of these biopolymers in the terrestrial and soil ecosystems. It is known that ecosystems have their own structure. It is possible to allocate some vertical tiers: phylloplane, litter (soil covering), soil. We investigated chitinolytic and pektinolytic microbial communities dedicated to different layers of the ecosystem of the chernozem zone. Quantity of eukaryote and procaryote organisms increased in the test samples with chitin and pectin. Increasing of eukaryote in samples with pectin was more then in samples with chitin. Also should be noted the significant increasing of actinomycet`s quantity in the samples with chitin in comparison with samples with pectin. The variety and abundance of bacteria in the litter samples increased an order of magnitude as compared to other options investigated. Further prokaryote community was investigated by method FISH (fluorescence in situ hybridization). FISH is a cytogenetic technique developed that is used to detect and localize the presence or absence of specific DNA sequences on chromosomes. Quantity of Actinomycets and Firmicutes was the largest among identified cells with metabolic activity in soil samples. Should be noted significant increasing of the quantity of Acidobateria and Bacteroidetes in pectinolytic community and Alphaproteobacteria in chitinolytic community. In considering of the phylogenetic structure investigated communities in samples of the litter should be noted increase in the segment of Proteobacteria. Increasing of this group of

  9. Bacterioplankton community responses to key environmental variables in plateau freshwater lake ecosystems: A structural equation modeling and change point analysis.

    PubMed

    Cao, Xiaofeng; Wang, Jie; Liao, Jingqiu; Gao, Zhe; Jiang, Dalin; Sun, Jinhua; Zhao, Lei; Huang, Yi; Luan, Shengji

    2017-02-15

    Elevated environmental pressures negatively affect the bacterial community structure. However, little knowledge about the nonlinear responses of spatially related environmental variable across multiple plateau lake ecosystems on bacterioplankton communities has been gathered. Here, we used 454 pyrosequencing of 16S rRNA genes to study the associations of bacterial communities in terms of environmental characteristics as well as the potentially ecological threshold-inducing shifts of the bacterial community structure along the key environmental variables based on hypothesized structural equation models and the SEGMENTED method in 21 plateau lakes. Our results showed that water transparency was the major driving force and that total nitrogen was more significant than total phosphorus in determining the taxon composition of the bacterioplankton community. Significant community threshold estimates for bacterioplankton were observed at 7.36 for pH and 25.6% for the percentage of the agricultural area, while the remarkable change point of the cyanobacteria community structure responding to pH was at 7.74. Furthermore, the findings indicated that increasing nutrient loads can induce a distinct shift in dominance from Proteobacteria to Cyanobacteria, as well as a sharp decrease and adjacent increase when crossing the change point for Actinobacteria and Bacteroidetes along the gradient of the agricultural area.

  10. Changes in algal community structure via density- and trait-mediated indirect interactions in a marine ecosystem.

    PubMed

    Wada, Yoko; Iwasaki, Keiji; Yusa, Yoichi

    2013-11-01

    In various terrestrial and aquatic ecosystems, predators affect resources indirectly via intermediate prey. Such indirect interactions involve reducing the density of the prey (density-mediated indirect interactions, DMIIs) or changing the behavioral, morphological, or life history traits of the prey (trait-mediated indirect interactions, TMIIs). Although the importance of TMIIs has been highlighted recently, the strengths of both DMIIs and TMIIs under natural conditions have rarely been evaluated, especially in the context of resource community structure. We studied a three-level marine food chain involving the carnivorous snail Thais clavigera, its limpet prey Siphonaria sirius, and the limpet's food sources, the algae Lithoderma sp. and Ulva sp. We measured the strengths of DMIIs and TMIIs and observed how the algal community changes under the pressure of natural predation by T. clavigera on S. sirius. Neither DMIIs nor TMIIs affected the total algal cover or chlorophyll content per unit area. However, both types of indirect interactions caused similar changes in algal composition by increasing the cover of Ulva and decreasing the cover of Lithoderma. This change in the algal community was caused by a reduction in the limpet's preferential consumption of the competitively dominant Ulva over Lithoderma. These results suggest that both DMIIs and TMIIs have similar effects on the changes in resource community structure under natural conditions.

  11. Partitioning the effects of an ecosystem engineer: kangaroo rats control community structure via multiple pathways.

    PubMed

    Prugh, Laura R; Brashares, Justin S

    2012-05-01

    1. Ecosystem engineers impact communities by altering habitat conditions, but they can also have strong effects through consumptive, competitive and other non-engineering pathways. 2. Engineering effects can lead to fundamentally different community dynamics than non-engineering effects, but the relative strengths of these interactions are seldom quantified. 3. We combined structural equation modelling and exclosure experiments to partition the effects of a keystone engineer, the giant kangaroo rat (Dipodomys ingens), on plants, invertebrates and vertebrates in a semi-arid California grassland. 4. We separated the effects of burrow creation from kangaroo rat density and found that kangaroo rats increased the diversity and abundance of other species via both engineering and non-engineering pathways. 5. Engineering was the primary factor structuring plant and small mammal communities, whereas non-engineering effects structured invertebrate communities and increased lizard abundance. 6. These results highlight the importance of the non-engineering effects of ecosystem engineers and shed new light on the multiple pathways by which strong-interactors shape communities.

  12. Food-web structure and ecosystem services: insights from the Serengeti.

    PubMed

    Dobson, Andy

    2009-06-27

    The central organizing theme of this paper is to discuss the dynamics of the Serengeti grassland ecosystem from the perspective of recent developments in food-web theory. The seasonal rainfall patterns that characterize the East African climate create an annually oscillating, large-scale, spatial mosaic of feeding opportunities for the larger ungulates in the Serengeti; this in turn creates a significant annual variation in the food available for their predators. At a smaller spatial scale, periodic fires during the dry season create patches of highly nutritious grazing that are eaten in preference to the surrounding older patches of less palatable vegetation. The species interactions between herbivores and plants, and carnivores and herbivores, are hierarchically nested in the Serengeti food web, with the largest bodied consumers on each trophic level having the broadest diets that include species from a large variety of different habitats in the ecosystem. The different major habitats of the Serengeti are also used in a nested fashion; the highly nutritious forage of the short grass plains is available only to the larger migratory species for a few months each year. The longer grass areas, the woodlands and kopjes (large partially wooded rocky islands in the surrounding mosaic of grassland) contain species that are resident throughout the year; these species often have smaller body size and more specialized diets than the migratory species. Only the larger herbivores and carnivores obtain their nutrition from all the different major habitat types in the ecosystem. The net effect of this is to create a nested hierarchy of subchains of energy flow within the larger Serengeti food web; these flows are seasonally forced by rainfall and operate at different rates in different major branches of the web. The nested structure that couples sequential trophic levels together interacts with annual seasonal variation in the fast and slow chains of nutrient flow in a way that

  13. Food-web structure and ecosystem services: insights from the Serengeti

    PubMed Central

    Dobson, Andy

    2009-01-01

    The central organizing theme of this paper is to discuss the dynamics of the Serengeti grassland ecosystem from the perspective of recent developments in food-web theory. The seasonal rainfall patterns that characterize the East African climate create an annually oscillating, large-scale, spatial mosaic of feeding opportunities for the larger ungulates in the Serengeti; this in turn creates a significant annual variation in the food available for their predators. At a smaller spatial scale, periodic fires during the dry season create patches of highly nutritious grazing that are eaten in preference to the surrounding older patches of less palatable vegetation. The species interactions between herbivores and plants, and carnivores and herbivores, are hierarchically nested in the Serengeti food web, with the largest bodied consumers on each trophic level having the broadest diets that include species from a large variety of different habitats in the ecosystem. The different major habitats of the Serengeti are also used in a nested fashion; the highly nutritious forage of the short grass plains is available only to the larger migratory species for a few months each year. The longer grass areas, the woodlands and kopjes (large partially wooded rocky islands in the surrounding mosaic of grassland) contain species that are resident throughout the year; these species often have smaller body size and more specialized diets than the migratory species. Only the larger herbivores and carnivores obtain their nutrition from all the different major habitat types in the ecosystem. The net effect of this is to create a nested hierarchy of subchains of energy flow within the larger Serengeti food web; these flows are seasonally forced by rainfall and operate at different rates in different major branches of the web. The nested structure that couples sequential trophic levels together interacts with annual seasonal variation in the fast and slow chains of nutrient flow in a way that

  14. Silicified structures affect leaf optical properties in grasses and sedge.

    PubMed

    Klančnik, Katja; Vogel-Mikuš, Katarina; Gaberščik, Alenka

    2014-01-05

    Silicon (Si) is an important structural element that can accumulate at high concentrations in grasses and sedges, and therefore Si structures might affect the optical properties of the leaves. To better understand the role of Si in light/leaf interactions in species rich in Si, we examined the total Si and silica phytoliths, the biochemical and morphological leaf properties, and the reflectance and transmittance spectra in grasses (Phragmites australis, Phalaris arundinacea, Molinia caerulea, Deschampsia cespitosa) and sedge (Carex elata). We show that these grasses contain >1% phytoliths per dry mass, while the sedge contains only 0.4%. The data reveal the variable leaf structures of these species and significant differences in the amount of Si and phytoliths between developing and mature leaves within each species and between grasses and sedge, with little difference seen among the grass species. Redundancy analysis shows the significant roles of the different near-surface silicified leaf structures (e.g., prickle hairs, cuticle, epidermis), phytoliths and Si contents, which explain the majority of the reflectance and transmittance spectra variability. The amount of explained variance differs between mature and developing leaves. The transmittance spectra are also significantly affected by chlorophyll a content and calcium levels in the leaf tissue.

  15. Forest to reclaimed mine land use change leads to altered ecosystem structure and function

    SciTech Connect

    Simmons, J.A.; Currie, W.S.; Eshleman, K.N.; Kuers, K.; Monteleone, S.; Negley, T.L.; Pohlad, B.R.; Thomas, C.L.

    2008-01-15

    The United States' use of coal results in many environmental alterations. In the Appalachian coal belt region, one widespread alteration is conversion of forest to reclaimed mineland. The goal of this study was to quantify the changes to ecosystem structure and function associated with a conversion from forest to reclaimed mine grassland by comparing a small watershed containing a 15-year-old reclaimed mine with a forested, reference watershed in western Maryland. Major differences were apparent between the two watersheds in terms of biogeochemistry. Total C, N, and P pools were all substantially lower at the mined site, mainly due to the removal of woody biomass but also, in the case of P, to reductions in soil pools. Mineral soil C, N, and P pools were 96%, 79%, and 69% of native soils, respectively. Although annual runoff from the watersheds was similar, the mined watershed exhibited taller, narrower storm peaks as a result of a higher soil bulk density and decreased infiltration rates. Stream export of N was much lower in the mined watershed due to lower net nitrification rates and nitrate concentrations in soil. However, stream export of sediment and P and summer stream temperature were much higher. Stream leaf decomposition was reduced and macroinvertebrate community structure was altered as a result of these changes to the stream environment. This land use change leads to substantial, long-term changes in ecosystem capital and function.

  16. Where the woodland ends: How edges affect landscape structure and physiological responses of Quercus agrifolia

    NASA Astrophysics Data System (ADS)

    de Chant, Timothy Paul

    Forests and woodlands are integral parts of ecosystems across the globe, but they are threatened by a variety of factors, including urbanization and introduced forest pathogens. These two forces are fundamentally altering ecosystems, both by removing forest cover and reshaping landscapes. Comprehending how these two processes have changed forest ecosystems is an important step toward understanding how the affected systems will function in the future. I investigated the range of edge effects that result from disturbance brought about by forest pathogens and urbanization in two coastal oak woodlands in Marin County, California. Oak woodlands are a dynamic part of California's landscape, reacting to changes in their biotic and abiotic environments across a range of spatial and temporal scales. Sudden Oak Death, caused by the introduced forest pathogen Phytophthora ramorum, has led to widespread mortality of many tree species in California's oak woodlands. I investigated how the remaining trees respond to such rapid changes in canopy structure (Chapter 2), and my results revealed a forest canopy quick to respond to the new openings. Urbanization, another disturbance regime, operates on a longer time scale. Immediately following urban development, forest edges are strikingly linear, but both forest processes and homeowner actions likely work in concert to disrupt the straight edge (Chapter 3). Forest edges grew more sinuous within 14 years of the initial disturbance, and continued to do so for the remainder of the study, another 21 years. Individual Quercus agrifolia trees also respond to urban edges decades after disturbance (Chapter 4), and their reaction is reflected in declining stable carbon isotope values (delta13C). This change suggests trees may have increased their stomatal conductance in response to greater water availability, reduced their photosynthetic rate as a result of stress, or some combination of both. Edges have far reaching and long lasting effects

  17. An overview of APECOSM, a spatialized mass balanced “Apex Predators ECOSystem Model” to study physiologically structured tuna population dynamics in their ecosystem

    NASA Astrophysics Data System (ADS)

    Maury, Olivier

    2010-01-01

    This paper gives an overview of the ecosystem model APECOSM (Apex Predators ECOSystem Model) which is developed in the framework of the GLOBEC-CLIOTOP Programme. APECOSM represents the flow of energy through the ecosystem with a size-resolved structure in both space and time. The uptake and use of energy for growth, maintenance and reproduction by the organisms are modelled according to the DEB (dynamic energy budget) theory ( Kooijmann, 2000) and the size-structured nature of predation is explicit. The pelagic community is divided into epipelagic and mesopelagic groups, the latter being subdivided into vertically migrant and non-migrant species. The model is mass-conservative. Energy is provided as the basis of the model through primary production and transferred through 3D spatially explicit size-spectra. Focus species (tunas at present, but any predator species can be considered) are “extracted” from the global size-spectra without losing mass balance and represented with more physiological and behavioural details. The forcing effects of temperature, currents, light, oxygen, primary production and fishing are explicitly taken into account.

  18. A dynamic ecosystem growth model for forests at high complexity structure

    NASA Astrophysics Data System (ADS)

    Collalti, A.; Perugini, L.; Chiti, T.; Matteucci, G.; Oriani, A.; Santini, M.; Papale, D.; Valentini, R.

    2012-04-01

    Forests ecosystem play an important role in carbon cycle, biodiversity conservation and for other ecosystem services and changes in their structure and status perturb a delicate equilibrium that involves not only vegetation components but also biogeochemical cycles and global climate. The approaches to determine the magnitude of these effects are nowadays various and one of those include the use of models able to simulate structural changes and the variations in forests yield The present work shows the development of a forest dynamic model, on ecosystem spatial scale using the well known light use efficiency to determine Gross Primary Production. The model is predictive and permits to simulate processes that determine forest growth, its dynamic and the effects of forest management using eco-physiological parameters easy to be assessed and to be measured. The model has been designed to consider a tri-dimensional cell structure composed by different vertical layers depending on the forest type that has to be simulated. These features enable the model to work on multi-layer and multi-species forest types, typical of Mediterranean environment, at the resolution of one hectare and at monthly time-step. The model simulates, for each layer, a value of available Photosynthetic Active Radiation (PAR) through Leaf Area Index, Light Extinction Coefficient and cell coverage, the transpiration rate that is closely linked to the intercepted light and the evaporation from soil. Using this model it is possible to evaluate the possible impacts of climate change on forests that may result in decrease or increase of productivity as well as the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities during the forest harvesting cycle. The model has been parameterised, validated and applied in a multi-layer, multi-age and multi-species Italian turkey oak forest (Q. cerris L., C. betulus L. and C. avellana L

  19. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem.

    PubMed

    Edwards, Kyle F; Litchman, Elena; Klausmeier, Christopher A

    2013-01-01

    A fundamental yet elusive goal of ecology is to predict the structure of communities from the environmental conditions they experience. Trait-based approaches to terrestrial plant communities have shown that functional traits can help reveal the mechanisms underlying community assembly, but such approaches have not been tested on the microbes that dominate ecosystem processes in the ocean. Here, we test whether functional traits can explain community responses to seasonal environmental fluctuation, using a time series of the phytoplankton of the English Channel. We show that interspecific variation in response to major limiting resources, light and nitrate, can be well-predicted by lab-measured traits characterising light utilisation, nitrate utilisation and maximum growth rate. As these relationships were predicted a priori, using independently measured traits, our results show that functional traits provide a strong mechanistic foundation for understanding the structure and dynamics of ecological communities.

  20. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    NASA Astrophysics Data System (ADS)

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  1. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    PubMed Central

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198

  2. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest.

    PubMed

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-18

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  3. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange.

    PubMed

    Domec, Jean-Christophe; King, John S; Noormets, Asko; Treasure, Emrys; Gavazzi, Michael J; Sun, Ge; McNulty, Steven G

    2010-07-01

    *Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. *By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of normal and below-normal precipitation, and examined its effects on tree transpiration, ecosystem water use and carbon exchange. *The occurrence of HR was explained by courses of reverse flow through roots. As the drought progressed, HR maintained soil moisture above 0.15 cm(3) cm(-3) and increased transpiration by 30-50%. HR accounted for 15-25% of measured total site water depletion seasonally, peaking at 1.05 mm d(-1). The understory species depended on water redistributed by the deep-rooted overstory pine trees for their early summer water supply. Modeling carbon flux showed that in the absence of HR, gross ecosystem productivity and net ecosystem exchange could be reduced by 750 and 400 g C m(-2) yr(-1), respectively. *Hydraulic redistribution mitigated the effects of soil drying on understory and stand evapotranspiration and had important implications for net primary productivity by maintaining this whole ecosystem as a carbon sink.

  4. Affective journeys: the emotional structuring of medical tourism in India.

    PubMed

    Solomon, Harris

    2011-04-01

    This paper examines the grid of sentiment that structures medical travel to India. In contrast to studies that render emotion as ancillary, the paper argues that affect is fundamental to medical travel's ability to ease the linked somatic, emotional, financial, and political injuries of being ill 'back home'. The ethnographic approach follows the scenes of medical travel within the Indian corporate hospital room, based on observations and interviews among foreign patients, caregivers, and hospital staff in Mumbai, New Delhi, Chennai, and Bangalore. Foreign patients conveyed diverse sentiments about their journey to India ranging from betrayal to gratitude, and their expressions of risk, healthcare costs, and cultural difference help sustain India's popularity as a medical travel destination. However, although the affective dimensions of medical travel promise a remedy for foreign patients, they also reveal the fault lines of market medicine in India.

  5. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  6. How spatio-temporal habitat connectivity affects amphibian genetic structure

    USGS Publications Warehouse

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  7. Arboreal habitat structure affects route choice by rat snakes.

    PubMed

    Mansfield, Rachel H; Jayne, Bruce C

    2011-01-01

    In arboreal habitats gaps between branches and branch structure profoundly affect the ability of animals to move; hence, an ability to perceive such attributes could facilitate choosing routes that enhance the speed and ease of locomotion. Although many snakes are arboreal, no previous study has determined whether they can perceive structural variation of branches that is mechanically relevant to their locomotion. We tested whether the gap distance, location, and attributes of two destination perches on the far side of a crossable gap affected the route travelled by North American rat snakes (Pantherophis), which are proficient climbers. Snakes usually chose routes with shorter gaps. Within a horizontal plane, the snakes usually went straight rather than crossing an equal distance gap with a 90° turn, which was consistent with our finding that crossing a straight gap was easier. However, decreasing the distance of the gap with a 90° turn eliminated the preference for going straight. Additional factors, such as the width of the landing surface and the complexity of branching of the destination perches, resulted in non-random route choice. Thus, many of the observed biases in route choice suggested abilities to perceive structural variation and select routes that are mechanically beneficial.

  8. Understanding the structure of Exmoor's peatland ecosystems using laser-scanning technologies

    NASA Astrophysics Data System (ADS)

    Luscombe, D. J.; Anderson, K.; Wetherelt, A.; Grand-Clement, E.; Le-Feuvre, N.; Smith, D.; Brazier, R. E.

    2012-04-01

    Upland blanket peatlands in the UK are of high conservation value and in an intact state, provide important landscape services, such as carbon sequestration and flood attenuation. The drainage of many such wetlands for agricultural reclamation has resulted in changes to upland blanket mire topography, ecology, hydrological processes and carbon fluxes. There is a need for spatially explicit monitoring approaches at peatland sites in the UK as although there has been a national effort to restore drained peat uplands, baseline and post restoration monitoring of changes to ecosystem structure and function is largely absent. Climate change policy and the emerging carbon markets also necessitate the need for enhanced system understanding to inform carbon targets and understand the impacts of restoration. Exmoor is the focus of this research because many areas of upland peat have, in the past, been extensively drained through government "moorland reclamation" programs. A large restoration project funded by South West Water is currently underway in association with Exmoor National Park, The Environment Agency and Natural England. Exmoor also provides an analogue for other westerly peatlands in the British Isles in terms of its climate, ecology and drainage characteristics. Our approach employed airborne LiDAR data gathered by the Environment Agency Geomatics Group coupled with Terrestrial Laser Scanning (TLS) surveys. LiDAR data were processed to produce digital surface models (DSM) of the peatland surface at a 0.5m resolution. These data were further interrogated to separate vegetation structures and geomorphic features such as man-made drainage channels which have damaged the peatland. Over small extents the LiDAR derived DSM surface was then compared to a TLS derived DSM to examine the ability of these models to describe fine scale vegetation and geomorphic structure, which could then be extrapolated to larger spatial extents. Exploration of the data has shown that

  9. Arabinoxylan‐oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem

    PubMed Central

    Sanchez, J. I.; Marzorati, M.; Grootaert, C.; Baran, M.; Van Craeyveld, V.; Courtin, C. M.; Broekaert, W. F.; Delcour, J. A.; Verstraete, W.; Van de Wiele, T.

    2009-01-01

    Summary Arabinoxylan‐oligosaccharides (AXOS) are a recently newly discovered class of candidate prebiotics as – depending on their structure – they are fermented in different regions of gastrointestinal tract. This can have an impact on the protein/carbohydrate fermentation balance in the large intestine and, thus, affect the generation of potentially toxic metabolites in the colon originating from proteolytic activity. In this study, we screened different AXOS preparations for their impact on the in vitro intestinal fermentation activity and microbial community structure. Short‐term fermentation experiments with AXOS with an average degree of polymerization (avDP) of 29 allowed part of the oligosaccharides to reach the distal colon, and decreased the concentration of proteolytic markers, whereas AXOS with lower avDP were primarily fermented in the proximal colon. Additionally, prolonged supplementation of AXOS with avDP 29 to the Simulator of Human Intestinal Microbial Ecosystem (SHIME) reactor decreased levels of the toxic proteolytic markers phenol and p‐cresol in the two distal colon compartments and increased concentrations of beneficial short‐chain fatty acids (SCFA) in all colon vessels (25–48%). Denaturant gradient gel electrophoresis (DGGE) analysis indicated that AXOS supplementation only slightly modified the total microbial community, implying that the observed effects on fermentation markers are mainly caused by changes in fermentation activity. Finally, specific quantitative PCR (qPCR) analysis showed that AXOS supplementation significantly increased the amount of health‐promoting lactobacilli as well as of Bacteroides–Prevotella and Clostridium coccoides–Eubacterium rectale groups. These data allow concluding that AXOS are promising candidates to modulate the microbial metabolism in the distal colon. PMID:21261885

  10. Community structure affects trophic ontogeny in a predatory fish.

    PubMed

    Sánchez-Hernández, Javier; Eloranta, Antti P; Finstad, Anders G; Amundsen, Per-Arne

    2017-01-01

    While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout-only systems, (ii) two-species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three-species systems (brown trout, Arctic charr, and three-spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor-prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout-only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three-species communities. Our findings revealed that the presence of a small-sized prey fish species (stickleback) rather than a mixed competitor-prey fish species (charr) was

  11. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    NASA Astrophysics Data System (ADS)

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T. J.

    2016-05-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term data set on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted 7 days earlier over the past 33 years and that spring weather conditions—especially snowfall—drive yearly variation in ice-off timing. In the most well studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  12. Emerging methods for the study of coastal ecosystem landscape structure and change

    USGS Publications Warehouse

    Brock, John C.; Danielson, Jeffrey J.; Purkis, Sam

    2013-01-01

    Coastal landscapes are heterogeneous, dynamic, and evolve over a range of time scales due to intertwined climatic, geologic, hydrologic, biologic, and meteorological processes, and are also heavily impacted by human development, commercial activities, and resource extraction. A diversity of complex coastal systems around the globe, spanning glaciated shorelines to tropical atolls, wetlands, and barrier islands are responding to multiple human and natural drivers. Interdisciplinary research based on remote-sensing observations linked to process studies and models is required to understand coastal ecosystem landscape structure and change. Moreover, new techniques for coastal mapping and monitoring are increasingly serving the needs of policy-makers and resource managers across local, regional, and national scales. Emerging remote-sensing methods associated with a diversity of instruments and platforms are a key enabling element of integrated coastal ecosystem studies. These investigations require both targeted and synoptic mapping, and involve the monitoring of formative processes such as hydrodynamics, sediment transport, erosion, accretion, flooding, habitat modification, land-cover change, and biogeochemical fluxes.

  13. Do ecohydrology and community dynamics feed back to banded-ecosystem structure and productivity?

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Ursino, Nadia

    2016-04-01

    Mixed communities including grass, shrubs and trees are often reported to populate self-organized vegetation patterns. Patterns of survey data suggest that species diversity and complementarity strengthen the dynamics of banded environments. Resource scarcity and local facilitation trigger self organization, whereas coexistence of multiple species in vegetated self-organizing patches, implying competition for water and nutrients and favorable reproduction sites, is made possible by differing adaptation strategies. Mixed community spatial self-organization has so far received relatively little attention, compared with local net facilitation of isolated species. We assumed that soil moisture availability is a proxy for the environmental niche of plant species according to Ursino and Callegaro (2016). Our modelling effort was focused on niche differentiation of coexisting species within a tiger bush type ecosystem. By minimal numerical modelling and stability analysis we try to answer a few open scientific questions: Is there an adaptation strategy that increases biodiversity and ecosystem functioning? Does specific adaptation to environmental niches influence the structure of self-organizing vegetation pattern? What specific niche distribution along the environmental gradient gives the highest global productivity?

  14. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    USGS Publications Warehouse

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.

    2016-01-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  15. How motivation affects academic performance: a structural equation modelling analysis.

    PubMed

    Kusurkar, R A; Ten Cate, Th J; Vos, C M P; Westers, P; Croiset, G

    2013-03-01

    Few studies in medical education have studied effect of quality of motivation on performance. Self-Determination Theory based on quality of motivation differentiates between Autonomous Motivation (AM) that originates within an individual and Controlled Motivation (CM) that originates from external sources. To determine whether Relative Autonomous Motivation (RAM, a measure of the balance between AM and CM) affects academic performance through good study strategy and higher study effort and compare this model between subgroups: males and females; students selected via two different systems namely qualitative and weighted lottery selection. Data on motivation, study strategy and effort was collected from 383 medical students of VU University Medical Center Amsterdam and their academic performance results were obtained from the student administration. Structural Equation Modelling analysis technique was used to test a hypothesized model in which high RAM would positively affect Good Study Strategy (GSS) and study effort, which in turn would positively affect academic performance in the form of grade point averages. This model fit well with the data, Chi square = 1.095, df = 3, p = 0.778, RMSEA model fit = 0.000. This model also fitted well for all tested subgroups of students. Differences were found in the strength of relationships between the variables for the different subgroups as expected. In conclusion, RAM positively correlated with academic performance through deep strategy towards study and higher study effort. This model seems valid in medical education in subgroups such as males, females, students selected by qualitative and weighted lottery selection.

  16. Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.

    PubMed

    Antonarakis, Alexander S; Saatchi, Sassan S; Chazdon, Robin L; Moorcroft, Paul R

    2011-06-01

    Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate how Lidar-derived forest heights and Radar-derived aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere model. Four-year simulations initialized with Lidar and Radar structure variables were compared against simulations initialized from forest-inventory data and output from a long-term potential-vegtation simulation. Both height and biomass initializations from Lidar and Radar measurements significantly improved the representation of forest structure within the model, eliminating the bias of too many large trees that arose in the potential-vegtation-initialized simulation. The Lidar and Radar initializations decreased the proportion of larger trees estimated by the potential vegetation by approximately 20-30%, matching the forest inventory. This resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics compared to predictions from the potential-vegtation simulation. The Radar initialization produced biomass values that were 75% closer to the forest inventory, with Lidar initializations producing canopy height values closest to the forest inventory. Net primary production values for the Radar and Lidar initializations were around 6-8% closer to the forest inventory. Correcting the Lidar and Radar initializations for forest composition resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting the Lidar and Radar initializations for forest composition and fine-scale structure by combining the remote-sensing measurements with ground-based inventory data further improved

  17. Seven-Year Trends of Carbon Dioxide Exchange in a Tundra Ecosystem Affected by Long-Term Permafrost Thaw

    NASA Astrophysics Data System (ADS)

    Schuur, E. A.; Trucco, C.; Natali, S.; Belshe, E. F.; Bracho, R.; Vogel, J. G.; Hicks Pries, C. E.; Webb, E.

    2012-12-01

    Arctic warming has led to permafrost degradation and ground subsidence as a result of ground ice melting. Frozen soil organic matter that thaws can increase carbon (C) emissions to the atmosphere via respiration, but this can be offset in part by increases in plant growth. The balance of plant and microbial processes, and how they change through time, will determine how permafrost ecosystems influence future climate change via the C cycle. This study addressed this question both on short (interannual) and longer (decadal) time periods by measuring C fluxes over a seven-year period at three sites that represent a gradient of time since permafrost thaw. All three sites are upland tundra ecosystems located in Interior Alaska but differed in the extent of permafrost thaw and ground subsidence. Results showed an increasing growing season (May - September) trend in gross primary productivity, net ecosystem exchange, aboveground net primary productivity, and annual net ecosystem exchange at all sites over the seven-year study period from 2004-2010. In contrast, there was no directional change in annual and growing season ecosystem respiration, or mass loss from decomposition of a common cellulose substrate. The increasing trends over time as well as inter site differences most closely followed variation in growing season thaw depth over the same time period. During the seven-year period, sites with more permafrost degradation (deeper seasonal thaw) had significantly greater gross primary productivity compared to where degradation was least, but also greater growing season ecosystem respiration. Adding in winter respiration decreased, in part, the summer C sink and left the site with the most permafrost degradation near C neutral, with the other sites annual C sinks. However, annual C balance was strongly dependent on winter respiration, which, compared to the growing season, was relatively data-poor due to extreme environmental conditions. As a result, we cannot yet

  18. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Hall, Edward K.

    2012-01-01

    As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet.

  19. How differentiated do children experience affect? An investigation of the within- and between-person structure of children's affect.

    PubMed

    Leonhardt, Anja; Könen, Tanja; Dirk, Judith; Schmiedek, Florian

    2016-05-01

    Research on the structure of children's affect is limited. It is possible that children's perception of their own affect might be less differentiated than that of adults. Support for the 2-factor model of positive and negative affect and the pleasure-arousal model suggests that children in middle childhood can distinguish positive and negative affect as well as valence and arousal. Whether children are able to differentiate further aspects of affect, as proposed by the 3-dimensional model of affect (good-bad mood, alertness-tiredness, calmness-tension), is an unresolved issue. The aim of our study was the comparison of these 3 affect models to establish how differentiated children experience their affect and which model best describes affect in children. We examined affect structures on the between- and within-person level, acknowledging that affect varies across time and that no valid interpretation of either level is feasible if both are confounded. For this purpose, 214 children (age 8-11 years) answered affect items once a day for 5 consecutive days on smartphones. We tested all affect models by means of 2-level confirmatory factor analysis. Although all affect models had an acceptable fit, the 3-dimensional model best described affect in children on both the within- and between-person level. Thus, children in middle childhood can already describe affect in a differentiated way. Also, affect structures were similar on the within- and between-person level. We conclude that in order to acquire a thorough picture of children's affect, measures for children should include items of all 3 affect dimensions. (PsycINFO Database Record

  20. [Structure and bioassessment of benthic communities of a lagoonal ecosystem of the Atlantic Moroccan coast].

    PubMed

    Bazairi, Hocein; Bayed, Abdellatif; Hily, Christian

    2005-01-01

    The Merja Zerga lagoon is a semi-enclosed marine ecosystem in which various types of human activities have been developed. This paper characterizes the biosedimentary units of the lagoon and defines a reference status of the quality and health of the macrozoobenthic communities that can be used as bioindicators of the quality of the global marine environment. Specific and functional diversity were high: 147 taxa were identified; they were distributed within seven main trophic groups. Trophic structure is dominated by the suspension-feeding bivalve Cerastoderma edule and the deposit-feeding bivalve Scrobicularia plana, while micrograzers and macroherbivores remain low. Biotic index values indicated that the site is moderately perturbed and that the benthic communities are unbalanced. Nevertheless, the communities showed a seasonal stability of abundances and a high specific richness all through the year.

  1. Can benthic community structure be used to predict the process of bioturbation in real ecosystems?

    NASA Astrophysics Data System (ADS)

    Queirós, Ana M.; Stephens, Nicholas; Cook, Richard; Ravaglioli, Chiara; Nunes, Joana; Dashfield, Sarah; Harris, Carolyn; Tilstone, Gavin H.; Fishwick, James; Braeckman, Ulrike; Somerfield, Paul J.; Widdicombe, Stephen

    2015-09-01

    Disentangling the roles of environmental change and natural environmental variability on biologically mediated ecosystem processes is paramount to predict future marine ecosystem functioning. Bioturbation, the biogenic mixing of sediments, has a regulating role in marine biogeochemical processes. However, our understanding of bioturbation as a community level process and of its environmental drivers is still limited by loose use of terminology, and a lack of consensus about what bioturbation is. To help resolve these challenges, this empirical study investigated the links between four different attributes of bioturbation (bioturbation depth, activity and distance, and biodiffusive transport); the ability of an index of bioturbation (BPc) to predict each of them; and their relation to seasonality, in a shallow coastal system - the Western Channel Observatory, UK. Bioturbation distance depended on changes in benthic community structure, while the other three attributes were more directly influenced by seasonality in food availability. In parallel, BPc successfully predicted bioturbation distance but not the other attributes of bioturbation. This study therefore highlights that community bioturbation results from this combination of processes responding to environmental variability at different time-scales. However, community level measurements of bioturbation across environmental variability are still scarce, and BPc is calculated using commonly available data on benthic community structure and the functional classification of invertebrates. Therefore, BPc could be used to support the growth of landscape scale bioturbation research, but future uses of the index need to consider which bioturbation attributes the index actually predicts. As BPc predicts bioturbation distance, estimated here using a random-walk model applicable to community settings, studies using either of the metrics should be directly comparable and contribute to a more integrated future for

  2. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation

    PubMed Central

    Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli

    2014-01-01

    This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd. PMID:26167100

  3. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation.

    PubMed

    Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli

    2014-06-01

    This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km(2) eelgrass (maximum >2100 km(2)), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4-6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m(-2) d(-1)) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3-10 g dw m(-2) d(-1)) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd.

  4. Does Question Structure Affect Exam Performance in the Geosciences?

    NASA Astrophysics Data System (ADS)

    Day, E. A.; D'Arcy, M. K.; Craig, L.; Streule, M. J.; Passmore, E.; Irving, J. C. E.

    2015-12-01

    The jump to university level exams can be challenging for some students, often resulting in poor marks, which may be detrimental to their confidence and ultimately affect their overall degree class. Previous studies have found that question structure can have a strong impact on the performance of students in college level exams (see Gibson et al., 2015, for a discussion of its impact on physics undergraduates). Here, we investigate the effect of question structure on the exam results of geology and geophysics undergraduate students. Specifically, we analyse the performance of students in questions that have a 'scaffolded' framework and compare them to their performance in open-ended questions and coursework. We also investigate if observed differences in exam performance are correlated with the educational background and gender of students, amongst other factors. It is important for all students to be able to access their degree courses, no matter what their backgrounds may be. Broadening participation in the geosciences relies on removing systematic barriers to achievement. Therefore we recommend that exams are either structured with scaffolding in questions at lower levels, or students are explicitly prepared for this transition. We also recommend that longitudinal studies of exam performance are conducted within individual departments, and this work outlines one approach to analysing performance data.

  5. Predicted changes in vegetation structure affect the susceptibility to invasion of bryophyte-dominated subarctic heath

    PubMed Central

    Eckstein, R. Lutz; Pereira,, Eva; Milbau, Ann; Graae, Bente Jessen

    2011-01-01

    Background and Aims A meta-analysis of global change experiments in arctic tundra sites suggests that plant productivity and the cover of shrubs, grasses and dead plant material (i.e. litter) will increase and the cover of bryophytes will decrease in response to higher air temperatures. However, little is known about which effects these changes in vegetation structure will have on seedling recruitment of species and invasibility of arctic ecosystems. Methods A field experiment was done in a bryophyte-dominated, species-rich subarctic heath by manipulating the cover of bryophytes and litter in a factorial design. Three phases of seedling recruitment (seedling emergence, summer seedling survival, first-year recruitment) of the grass Anthoxanthum alpinum and the shrub Betula nana were analysed after they were sown into the experimental plots. Key Results Bryophyte and litter removal significantly increased seedling emergence of both species but the effects of manipulations of vegetation structure varied strongly for the later phases of recruitment. Summer survival and first-year recruitment were significantly higher in Anthoxanthum. Although bryophyte removal generally increased summer survival and recruitment, seedlings of Betula showed high mortality in early August on plots where bryophytes had been removed. Conclusions Large species-specific variation and significant effects of experimental manipulations on seedling recruitment suggest that changes in vegetation structure as a consequence of global warming will affect the abundance of grasses and shrubs, the species composition and the susceptibility to invasion of subarctic heath vegetation. PMID:21624960

  6. How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile river watershed of Uganda?

    PubMed

    Alele, Peter O; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  7. How Does Conversion of Natural Tropical Rainforest Ecosystems Affect Soil Bacterial and Fungal Communities in the Nile River Watershed of Uganda?

    PubMed Central

    Alele, Peter O.; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H.

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  8. Seven-year trends of CO2 exchange in a tundra ecosystem affected by long-term permafrost thaw

    NASA Astrophysics Data System (ADS)

    Trucco, Christian; Schuur, Edward A. G.; Natali, Susan M.; Belshe, E. Fay; Bracho, Rosvel; Vogel, Jason

    2012-06-01

    Arctic warming has led to permafrost degradation and ground subsidence, created as a result of ground ice melting. Frozen soil organic matter that thaws can increase carbon (C) emissions to the atmosphere, but this can be offset in part by increases in plant growth. The balance of plant and microbial processes, and how this balance changes through time, determines how permafrost ecosystems influence future climate change via the C cycle. This study addressed this question both on short (interannual) and longer (decadal) time periods by measuring C fluxes over a seven-year period at three sites representing a gradient of time since permafrost thaw. All three sites were upland tundra ecosystems located in Interior Alaska but differed in the extent of permafrost thaw and ground subsidence. Results showed an increasing growing season (May - September) trend in gross primary productivity (GPP), net ecosystem exchange (NEE), aboveground net primary productivity (ANPP), and annual NEE at all sites over the seven year study period from 2004 to 2010, but no change in annual and growing season ecosystem respiration (Reco). These trends appeared to most closely follow increases in the depth to permafrost that occurred over the same time period. During the seven-year period, sites with more permafrost degradation had significantly greater GPP compared to where degradation was least, but also greater growing season Reco. Adding in winter Reco decreased, in part, the summer C sink and left only the site with the most permafrost degradation C neutral, with the other sites still C sinks. Annual C balance was strongly dependent on winter Reco, which, compared to the growing season, was relatively data-poor due to extreme environmental conditions. As a result, we cannot yet conclude whether the increased NEE in the growing season is truly sustained on an annual basis. If it turns out that winter measurements shown here are an underestimate, we may indeed find these systems are

  9. Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function

    PubMed Central

    Hentzer, Morten; Teitzel, Gail M.; Balzer, Grant J.; Heydorn, Arne; Molin, Søren; Givskov, Michael; Parsek, Matthew R.

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments. PMID:11514525

  10. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    PubMed Central

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-01-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests. PMID:27974832

  11. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-12-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.

  12. [Structure and function of Fenshuijiang Reservoir ecosystem based on the analysis with Ecopath model].

    PubMed

    Wu, Zhen; Jia, Pei-Qiao; Hu, Zhong-Jun; Chen, Li-Qiao; Gu, Zhi-Min; Liu, Qi-Gen

    2012-03-01

    Based on the 2008-2009 survey data of fishery resources and eco-environment of Fenshuijiang Reservoir, a mass balance model for the Reservoir ecosystem was constructed by Ecopath with Ecosim software. The model was composed of 14 functional groups, including silver carp, bighead carp, Hemibarbus maculates, Cutler alburnus, Microlepis and other fishes, Oligochaeta, aquatic insect, zooplankton, phytoplankton, and organic detritus, etc. , being able to better simulate Fenshuijiang Reservoir ecosystem. In this ecosystem, there were five trophic levels (TLs), and the nutrient flow mainly occurred in the first three TLs. Grazing and detritus food chains were the main energy flows in the ecosystem, but the food web was simpler and susceptible to be disturbed by outer environment. The transfer efficiency at lower TLs was relatively low, indicating that the ecosystem had a lower capability in energy utilization, and the excessive stock of nutrients in the ecosystem could lead to eutrophication. The lower connectance index, system omnivory index, Finn' s cycled index, and Finn's mean path length demonstrated that the ecosystem was unstable, while the high ecosystem property indices such as Pp/R and Pp/B showed that the ecosystem was immature and highly productive. It was suggested that Fenshuijiang Reservoir was still a developing new reservoir ecosystem, with a very short history and comparatively high primary productivity.

  13. Structured populations of the oriental fruit moth in an agricultural ecosystem.

    PubMed

    Torriani, Marco V G; Mazzi, Dominique; Hein, Silke; Dorn, Silvia

    2010-07-01

    Intercontinental trade has led to multiple introductions of invasive pest species at a global scale. Molecular analyses of the structure of populations support the understanding of ecological strategies and evolutionary patterns that promote successful biological invasions. The oriental fruit moth, Grapholita (= Cydia) molesta, is a cosmopolitan and economically destructive pest of stone and pome fruits, expanding its distribution range concomitantly with global climate warming. We used ten newly developed polymorphic microsatellite markers to examine the genetic structure of G. molesta populations in an agricultural ecosystem in the Emilia-Romagna region of northern Italy. Larvae collected in eight sampling sites were assigned to a mosaic of five populations with significant intra-regional structure. Inferred measures of gene flow within populations implicated both active dispersal, and passive dispersal associated with accidental anthropogenic displacements. Small effective population sizes, coupled with high inbreeding levels, highlighted the effect of orchard management practices on the observed patterns of genetic variation within the sampling sites. Isolation by distance did not appear to play a major role at the spatial scale considered. Our results provide new insights into the population genetics and dynamics of an invasive pest species at a regional scale.

  14. The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem.

    PubMed

    Lee, Seung-Hoon; Kang, Hojeong

    2016-02-01

    The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to

  15. Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function.

    PubMed

    Bott, Thomas L; Jackson, John K; McTammany, Matthew E; Newbold, J Denis; Rier, Steven T; Sweeney, Bernard W; Battle, Juliann M

    2012-12-01

    The effects of abandoned mine drainage (AMD) on streams and responses to remediation efforts were studied using three streams (AMD-impacted, remediated, reference) in both the anthracite and the bituminous coal mining regions of Pennsylvania (USA). Response variables included ecosystem function as well as water chemistry and macroinvertebrate community composition. The bituminous AMD stream was extremely acidic with high dissolved metals concentrations, a prolific mid-summer growth of the filamentous alga, Mougeotia, and > 10-fold more chlorophyll than the reference stream. The anthracite AMD stream had a higher pH, substrata coated with iron hydroxide(s), and negligible chlorophyll. Macroinvertebrate communities in the AMD streams were different from the reference streams, the remediated streams, and each other. Relative to the reference stream, the AMD stream(s) had (1) greater gross primary productivity (GPP) in the bituminous region and undetectable GPP in the anthracite region, (2) greater ecosystem respiration in both regions, (3) greatly reduced ammonium uptake and nitrification in both regions, (4) lower nitrate uptake in the bituminous (but not the anthracite) region, (5) more rapid phosphorus removal from the water column in both regions, (6) activities of phosphorus-acquiring, nitrogen-acquiring, and hydrolytic-carbon-acquiring enzymes that indicated extreme phosphorus limitation in both regions, and (7) slower oak and maple leaf decomposition in the bituminous region and slower oak decomposition in the anthracite region. Remediation brought chlorophyll concentrations and GPP nearer to values for respective reference streams, depressed ecosystem respiration, restored ammonium uptake, and partially restored nitrification in the bituminous (but not the anthracite) region, reduced nitrate uptake to an undetectable level, restored phosphorus uptake to near normal rates, and brought enzyme activities more in line with the reference stream in the bituminous

  16. Ecosystem growth and development.

    PubMed

    Fath, Brian D; Jørgensen, Sven E; Patten, Bernard C; Straskraba, Milan

    2004-11-01

    One of the most important features of biosystems is how they are able to maintain local order (low entropy) within their system boundaries. At the ecosystem scale, this organization can be observed in the thermodynamic parameters that describe it, such that these parameters can be used to track ecosystem growth and development during succession. Thermodynamically, ecosystem growth is the increase of energy throughflow and stored biomass, and ecosystem development is the internal reorganization of these energy mass stores, which affect transfers, transformations, and time lags within the system. Several proposed hypotheses describe thermodynamically the orientation or natural tendency that ecosystems follow during succession, and here, we consider five: minimize specific entropy production, maximize dissipation, maximize exergy storage (includes biomass and information), maximize energy throughflow, and maximize retention time. These thermodynamic orientors were previously all shown to occur to some degree during succession, and here we present a refinement by observing them during different stages of succession. We view ecosystem succession as a series of four growth and development stages: boundary, structural, network, and informational. We demonstrate how each of these ecological thermodynamic orientors behaves during the different growth and development stages, and show that while all apply during some stages only maximizing energy throughflow and maximizing exergy storage are applicable during all four stages. Therefore, we conclude that the movement away from thermodynamic equilibrium, and the subsequent increase in organization during ecosystem growth and development, is a result of system components and configurations that maximize the flux of useful energy and the amount of stored exergy. Empirical data and theoretical models support these conclusions.

  17. Changing ecosystem service values following technological change.

    PubMed

    Honey-Rosés, Jordi; Schneider, Daniel W; Brozović, Nicholas

    2014-06-01

    Research on ecosystem services has focused mostly on natural areas or remote places, with less attention given to urban ecosystem services and their relationship with technological change. However, recent work by urban ecologists and urban designers has more closely examined and appreciated the opportunities associated with integrating natural and built infrastructures. Nevertheless, a perception remains in the literature on ecosystem services that technology may easily and irreversibly substitute for services previously obtained from ecosystems, especially when the superiority of the engineered system motivated replacement in the first place. We emphasize that the expected tradeoff between natural and manufactured capital is false. Rather, as argued in other contexts, the adoption of new technologies is complementary to ecosystem management. The complementarity of ecosystem services and technology is illustrated with a case study in Barcelona, Spain where the installation of sophisticated water treatment technology increased the value of the ecosystem services found there. Interestingly, the complementarity between natural and built infrastructures may remain even for the very ecosystems that are affected by the technological change. This finding suggests that we can expect the value of ecosystem services to co-evolve with new technologies. Technological innovation can generate new opportunities to harness value from ecosystems, and the engineered structures found in cities may generate more reliance on ecosystem processes, not less.

  18. Changing Ecosystem Service Values Following Technological Change

    NASA Astrophysics Data System (ADS)

    Honey-Rosés, Jordi; Schneider, Daniel W.; Brozović, Nicholas

    2014-06-01

    Research on ecosystem services has focused mostly on natural areas or remote places, with less attention given to urban ecosystem services and their relationship with technological change. However, recent work by urban ecologists and urban designers has more closely examined and appreciated the opportunities associated with integrating natural and built infrastructures. Nevertheless, a perception remains in the literature on ecosystem services that technology may easily and irreversibly substitute for services previously obtained from ecosystems, especially when the superiority of the engineered system motivated replacement in the first place. We emphasize that the expected tradeoff between natural and manufactured capital is false. Rather, as argued in other contexts, the adoption of new technologies is complementary to ecosystem management. The complementarity of ecosystem services and technology is illustrated with a case study in Barcelona, Spain where the installation of sophisticated water treatment technology increased the value of the ecosystem services found there. Interestingly, the complementarity between natural and built infrastructures may remain even for the very ecosystems that are affected by the technological change. This finding suggests that we can expect the value of ecosystem services to co-evolve with new technologies. Technological innovation can generate new opportunities to harness value from ecosystems, and the engineered structures found in cities may generate more reliance on ecosystem processes, not less.

  19. Community Structure and Ecosystem Functioning of Ectomycorrhizal Fungi Across an N Deposition Gradient in Temperate North America

    NASA Astrophysics Data System (ADS)

    Lucas, R. W.; Casper, B. B.

    2006-12-01

    Over the past century, human activities have resulted in a substantial increase in atmospheric nitrogen (N) deposition throughout eastern North America, effectively doubling the amount of inorganic nitrogen entering terrestrial ecosystems. Increased atmospheric N deposition has the potential to alter terrestrial plant and microbial communities by increasing available NO3- and NH4+ in forest soil. Ectomycorrhizal fungi, a central member of the soil microbial community, live in association with most tree species of temperate and boreal ecosystems and are important contributors to many ecosystem functions. Previous work in boreal systems suggests that the availability of organic and inorganic nitrogen (N) resources are important contributing factors structuring belowground communities of ectomycorrhizal fungi. We do not yet understand the importance or the implications of changes in the ectomycorrhizal community as measured by effects on forest ecosystems or ecosystem functions such as N cycling or carbon storage. We examined ectomycorrhizal community structure morphologically over a natural atmospheric N deposition gradient across the northeastern United States. We also measured peroxidase, phenol oxidase, and general proteolytic activity, three ecosystem functions in which ectomycorrhizal fungi are involved. Using detrended correspondence analysis (DCA), we found significant differences in ectomycorrhizal communities across the gradient with the first three axes describing 48% of the observed variation. Most community differences are driven by the relative abundance of 17 morphotypes across the gradient. Peroxidase and phenol oxidase activity were both significantly lower (p = 0.0323 and 0.0342 respectively) in areas of high atmospheric N deposition. Our data support the hypothesis that with increased atmospheric N deposition ectomycorrhizal communities shift from those using more organic forms of N to those using more inorganic forms of N. Such changes in the

  20. Risk and markets for ecosystem services.

    PubMed

    Bendor, Todd K; Riggsbee, J Adam; Doyle, Martin

    2011-12-15

    Market-based environmental regulations (e.g., cap and trade, "payments for ecosystem services") are increasingly common. However, few detailed studies of operating ecosystem markets have lent understanding to how such policies affect incentive structures for improving environmental quality. The largest U.S. market stems from the Clean Water Act provisions requiring ecosystem restoration to offset aquatic ecosystems damaged during development. We describe and test how variations in the rules governing this ecosystem market shift risk between regulators and entrepreneurs to promote ecological restoration. We analyze extensive national scale data to assess how two critical aspects of market structure - (a) the geographic scale of markets and (b) policies dictating the release of credits - affect the willingness of entrepreneurs to enter specific markets and produce credits. We find no discernible relationship between policies attempting to ease market entry and either the number of individual producers or total credits produced. Rather, market entry is primarily related to regional geography (the prevalence of aquatic ecosystems) and regional economic growth. Any improvements to policies governing ecosystem markets require explicit evaluation of the interplay between policy and risk elements affecting both regulators and entrepreneurial credit providers. Our findings extend to emerging, regulated ecosystem markets, including proposed carbon offset mechanisms, biodiversity banking, and water quality trading programs.

  1. Structural and functional changes in early successional stages of a semiarid ecosystem

    SciTech Connect

    Redente, E.F.; Cook, C.W.

    1986-02-01

    The objective of our research was to study structural and functional changes that occur within and between ecosystem compartments during secondary succession in disturbed semiarid environments. First year data clearly showed an increase in resource abundance after disturbance which produced not only alteration of the soil surface but a decrease in available organic matter. In addition, marked increases in NO3 and soil water potentials were evident at all depths in the disturbed sites as compared to the undisturbed community. Soil disturbance as well as manipulation of the microflora compartment by fumigation had a significant impact on microflora structure and function. The mycorrhizal population was also drastically reduced by disturbance and fumigation. The floristic composition of the primary producers on the disturbed site was highly correlated with the propagule supply, with composition of the seed bank being the main driving force. Competition studies between bluebunch wheatgrass (Agropyron inerme), western wheatgrass, big sagebrush (Artemisia tridentata), and winterfat (Ceratoides lanata) showed that these four species were able to coexist under a wide range of water availability conditions. The final phase of an experiment designed to determine the effects of retorted shale recarbonation on plant uptake of toxic trace elements was completed. These initial studies indicate that both plant community characteristics and the presence of a functioning belowground community will be important in secondary succession processes which occur in disturbed semiarid environments. 36 figs., 41 tabs.

  2. A three-dimensional, multinutrient, and size-structured ecosystem model for the North Atlantic

    NASA Astrophysics Data System (ADS)

    Lima, Ivan D.; Doney, Scott C.

    2004-09-01

    We incorporate multinutrient and size-structured ecosystem dynamics into a three-dimensional ocean general circulation model for the North Atlantic. The model reproduces the magnitude and general spatial and temporal patterns in nutrients, chlorophyll and primary production seen in in situ (BATS, NABE, and OWSI) and satellite (SeaWiFS) data, showing substantial improvements over prior basin-scale simulations. Model skill is evaluated quantitatively against SeaWiFS data using a Taylor diagram approach. Model-data correlation R for the overall surface chlorophyll time-space distribution is ˜0.6, with comparable model and observed total variability. The agreement relative to satellite-based primary production is somewhat weaker (0.2 < R < 0.5). The simulations capture observed ecological characteristics, e.g., the dominance of picoplankton and episodic diatom blooms in the subtropics, nutrient-controlled plankton succession at higher latitudes, and associated seasonal/depth changes in new and regenerated production and particle export. In a sensitivity experiment that mimics behavior of simpler single-species models, removal of diatom silica limitation leads to major shifts in community structure and export and larger model-data errors similar to previous model studies. Model results also suggest that episodic diatom blooms at BATS may be related to interannual variations in the southward transport of nutrients, mainly SiO3, and plankton cells.

  3. Structural Ecosystems Therapy for HIV-Seropositive African American Women: Effects on Psychological Distress, Family Hassles, and Family Support

    ERIC Educational Resources Information Center

    Szapocznik, Jose; Feaster, Daniel J.; Mitrani, Victoria B.; Prado, Guillermo; Smith, Lila; Robinson-Batista, Carleen; Schwartz, Seth J.; Mauer, Magaly H.; Robbins, Michael S.

    2004-01-01

    This study tests the efficacy of Structural Ecosystems Therapy (SET), a family-ecological intervention, in improving psychosocial functioning when compared with an attention-comparison person-centered condition and a community control condition. A sample of 209 HIV-seropositive, urban, low-income, African American women was randomized into 1 of…

  4. Artificial structures in sediment-dominated estuaries and their possible influences on the ecosystem.

    PubMed

    Wetzel, Markus A; Scholle, Jörg; Teschke, Katharina

    2014-08-01

    Artificial substrates are omnipresent today in most estuaries mostly in form of massive rip-rap used for groynes and jetties. In the Weser estuary, Germany, 60% of the shoreline is covered with such artificial substrates while, natural rocky substrate is lacking, as in all Wadden Sea estuaries. This large quantity of artificial substrates may be colonized by a benthic hard-substrate community which differs from the local natural soft-substrate assemblage. In this study we examined species compositions, abundances, biomass, and numbers of species of subtidal benthic communities on groynes and in the natural habitat, the sediment, along the salinity gradient of the Weser estuary. Species composition changed on both substrates significantly with salinity and was also significantly different between the substrates. In a comparison with the sediment, the groynes did not provide any benefit for non-indigenous nor for endangered species in terms of abundance, biomass, and number of species, but represent habitats with higher total abundances and biomass; though some non-indigenous species even occurred exclusively on groynes. In particular, groynes supported filter-feeding organisms which play an important role by linking benthic and pelagic food webs. The dominance of the suspension feeders affects crucial estuarine ecosystem services and may have important implications for the estuarine management by altering the estuarine ecological quality status. Hence, artificial substrates should be considered in future conservation planning and in ecological quality monitoring of the benthic fauna according to the European Water Framework Directive.

  5. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    PubMed

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  6. Solar ultraviolet-B radiation affects plant-insect interactions in a natural ecosystem of Tierra del Fuego (southern Argentina).

    PubMed

    Rousseaux, M Cecilia; Ballaré, Carlos L; Scopel, Ana L; Searles, Peter S; Caldwell, Martyn M

    1998-10-01

    We examined the effects of solar ultraviolet-B radiation (UVB) on plant-herbivore interactions in native ecosystems of the Tierra del Fuego National Park (southern Argentina), an area of the globe that is frequently under the Antarctic "ozone hole" in early spring. We found that filtering out solar UVB from the sunlight received by naturally-occurring plants of Gunnera magellanica, a creeping perennial herb, significantly increased the number of leaf lesions caused by chewing insects. Field surveys suggested that early-season herbivory was principally due to the activity of moth larvae (Lepidoptera: Noctuidae). Manipulative field experiments showed that exposure to solar UVB changes the attractiveness of G. magellanica leaf tissue to natural grazers. In a laboratory experiment, locally caught moth caterpillars tended to eat more tissue from leaves grown without UVB than from leaves exposed to natural UVB during development; however, the difference between treatments was not significant. Leaves grown under solar UVB had slightly higher N levels than leaves not exposed to UVB; no differences between UVB treatments in specific leaf mass, relative water content, and total methanol-soluble phenolics were detected. Our results show that insect herbivory in a natural ecosystem is influenced by solar UVB, and that this influence could not be predicted from crude measurements of leaf physical and chemical characteristics and a common laboratory bioassay.

  7. Structural features affecting variant surface glycoprotein expression in Trypanosoma brucei.

    PubMed

    Wang, Jun; Böhme, Ulrike; Cross, George A M

    2003-05-01

    The glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) of Trypanosoma brucei is the most abundant GPI-anchored protein expressed on any cell, and is an essential virulence factor. To determine what structural features affect efficient expression of VSG, we made a series of mutations in two VSGs. Inserting 18 amino acids, between the amino- and carboxy-terminal domains, reduced the expression of VSG 221 to about 3% of the wild-type level. When this insertion was combined with deletion of the single carboxy-terminal subdomain, expression was reduced a further three-fold. In VSG 117, which contains two carboxy-terminal subdomains, point mutation of the intervening N-glycosylation site reduced expression about 15-fold. Deleting the most carboxy-terminal subdomain and intervening region, including the N-glycosylation site, reduced expression to 15-20% of wild type VSG, and deletion of both subdomains reduced expression to <1%. Despite their low abundance, all VSG mutants were GPI anchored on the cell surface. Our results suggest that, for a protein to be efficiently displayed on the surface of bloodstream-form T. brucei, it is essential that it contains the conserved structural motifs of a T. brucei VSG. Serum resistance-associated protein (SRA), which confers human infectivity on T. brucei, strongly resembles a VSG deletion mutant. Expression of three epitope-tagged versions of SRA in T. brucei conferred total resistance to human serum. SRA possesses a canonical GPI signal sequence, but we were unable to obtain unequivocal evidence for the presence of a GPI anchor. SRA was not released during osmotic lysis, indicating that it is not GPI anchored on the cell surface.

  8. Interactive effects between N addition and disturbance on boreal forest ecosystem structure and function

    NASA Astrophysics Data System (ADS)

    Nordin, Annika; Strengbom, Joachim; From, Fredrik

    2014-05-01

    In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This

  9. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe.

    PubMed

    Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk

    2014-11-12

    The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.

  10. Subterranean ventilation: a key but poorly known process affecting the carbon balance of semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    López Ballesteros, Ana; Sánchez Cañete, Enrique P.; Serrano Ortiz, Penélope; Kowalski, Andrew S.; Oyonarte, Cecilio; Domingo, Francisco

    2016-04-01

    Subterranean ventilation, conceived as the advective transport of CO2-rich air from the vadose zone to the atmosphere through a porous media (i.e. soil or snow; Sánchez-Cañete et al., 2013), has arisen as an important process contributing to the carbon (C) balance of Mediterranean ecosystems (Kowalski et al., 2008; Sánchez-Cañete et al., 2011; Serrano-Ortiz et al., 2014), apart from other well-known biotic processes (i.e. plant photosynthesis, autotrophic and heterotrophic respiration). Recent studies have linked this subterranean CO2 release to fluctuations in the friction velocity or wind speed under drought conditions when water-free soil pores enable air transport (Rey et al., 2012a, 2013), however, barometric pressure variations has been suggested as another important driver (Sánchez-Cañete et al., 2013). In this study, we investigate this process in newly studied semi-arid grassland located in SE Spain, as the ideal ecosystem to do so given the great length of the dry season and the slight biotic activity limited to the winter season. Preliminary results, based on unpublished analyzed eddy covariance data and subterranean CO2 molar fraction measurements, confirm the presence of ventilation events from May to October for seven years 2009-2015. During these events, increases in the friction velocity correlates with sizeable CO2 emissions of up to ca.10 μmol m-2 s-1, and CO2 molar fraction regularly drops 2000-3000 ppm just after the turbulence peak, at several depths below the soil surface (0.15 and 1.5 m). Additionally, during the driest period (July-August), the friction velocity explains from 37% to 57% of the net C emission variability. On the other hand, the model residuals do not show a significant relationship, neither with air pressure nor with soil water content. Overall, the results found in this newly monitored site demonstrate, as shown by past research, the relevance of subterranean ventilation as a key process in the C balance of

  11. The Global Ecosystem Dynamics Investigation

    NASA Astrophysics Data System (ADS)

    Dubayah, R.; Goetz, S. J.; Blair, J. B.; Fatoyinbo, T. E.; Hansen, M.; Healey, S. P.; Hofton, M. A.; Hurtt, G. C.; Kellner, J.; Luthcke, S. B.; Swatantran, A.

    2014-12-01

    Spaceborne lidar has been identified as a key technology by the international ecosystem science community because it enables accurate estimates of canopy structure and biomass and forms the basis for fusion approaches that extend the capabilities of existing and planned radar missions, such as the NASA-ISRO SAR and the ESA BIOMASS mission. The Global Ecosystems Dynamics Investigation Lidar (GEDI Lidar) was recently selected by NASA's Earth Ventures Instrument (EVI) program. From its vantage point on the International Space Station, GEDI Lidar provides high-resolution observations of forest vertical structure and addresses three, core science questions: What is the aboveground carbon balance of the land surface? What role will the land surface play in mitigating atmospheric CO2 in the coming decades? How does ecosystem structure affect habitat quality and biodiversity? GEDI informs these science questions by making billions of lidar waveform observations of canopy structure over its nominal one year mission length. The instrument uses three laser transmitters to produce 14 parallel tracks of 25 m footprints. These canopy measurements are then used to measure biomass and in fusion with radar and other remote sensing data to quantify changes in biomass resulting from disturbance and recovery. GEDI further marries ecosystem structure from lidar with ecosystem modeling to predict the sequestration potential of existing forests and to evaluate the impact of policy-driven afforestation and reforestation actions on sequestering additional carbon. Lastly, GEDI's observations of ecosystem structure provide a mapping of critical habitat metrics at the fine scales required for understanding the patterns, processes, and controls on biodiversity and habitat quality. The selection of GEDI Lidar, when combined with the rapid advancement of new radar missions and the availability of long-term land cover archives from passive optical sensors, ushers in an exciting new era of land

  12. Microbial Community Structure and Function of Soil Following Ecosystem Conversion from Native Forests to Teak Plantation Forests

    PubMed Central

    de Gannes, Vidya; Bekele, Isaac; Dipchansingh, Denny; Wuddivira, Mark N.; De Cairies, Sunshine; Boman, Mattias; Hickey, William J.

    2016-01-01

    Soil microbial communities can form links between forest trees and functioning of forest soils, yet the impacts of converting diverse native forests to monoculture plantations on soil microbial communities are limited. This study tested the hypothesis that conversion from a diverse native to monoculture ecosystem would be paralleled by a reduction in the diversity of the soil microbial communities. Soils from Teak (Tectona grandis) plantations and adjacent native forest were examined at two locations in Trinidad. Microbial community structure was determined via Illumina sequencing of bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) regions, and by phospholipid fatty acid (PLFA) analysis. Functional characteristics of microbial communities were assessed by extracellular enzyme activity (EEA). Conversion to Teak plantation had no effect on species richness or evenness of bacterial or fungal communities, and no significant effect on EEA. However, multivariate analyses (nested and two-way crossed analysis of similarity) revealed significant effects (p < 0.05) of forest type (Teak vs. native) upon the composition of the microbial communities as reflected in all three assays of community structure. Univariate analysis of variance identified two bacterial phyla that were significantly more abundant in the native forest soils than in Teak soils (Cyanobacteria, p = 0.0180; Nitrospirae, p = 0.0100) and two more abundant in Teak soils than in native forest (candidate phyla TM7, p = 0.0004; WS6, p = 0.044). Abundance of an unidentified class of arbuscular mycorrhizal fungi (AMF) was significantly greater in Teak soils, notable because Teak is colonized by AMF rather than by ectomycorrihzal fungi that are symbionts of the native forest tree species. In conclusion, microbial diversity indices were not affected in the conversion of native forest to teak plantation, but examination of specific bacterial taxa showed that there were significant differences in

  13. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition

    USGS Publications Warehouse

    Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.

    2013-01-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  14. Modeling compensatory responses of ecosystem-scale water fluxes in forests affected by pine and spruce beetle mortality

    NASA Astrophysics Data System (ADS)

    Millar, D.; Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Reed, D. E.

    2015-12-01

    Mountain pine beetle (Dendroctonus ponderosae) and spruce beetle (Dendroctonus rufipennis) epidemics have led to extensive mortality in lodgepole pine (Pinus contorta) and Engelmann spruce (Picea engelmannii) forests in the Rocky Mountains of the western US. In both of these tree species, mortality results from hydraulic failure within the xylem, due to blue stain fungal infection associated with beetle attack. However, the impacts of these disturbances on ecosystem-scale water fluxes can be complex, owing to their variable and transient nature. In this work, xylem scaling factors that reduced whole-tree conductance were initially incorporated into a forest ecohydrological model (TREES) to simulate the impact of beetle mortality on evapotranspiration (ET) in both pine and spruce forests. For both forests, simulated ET was compared to observed ET fluxes recorded using eddy covariance techniques. Using xylem scaling factors, the model overestimated the impact of beetle mortality, and observed ET fluxes were approximately two-fold higher than model predictions in both forests. The discrepancy between simulated and observed ET following the onset of beetle mortality may be the result of spatial and temporal heterogeneity of plant communities within the foot prints of the eddy covariance towers. Since simulated ET fluxes following beetle mortality in both forests only accounted for approximately 50% of those observed in the field, it is possible that newly established understory vegetation in recently killed tree stands may play a role in stabilizing ecosystem ET fluxes. Here, we further investigate the unaccounted for ET fluxes in the model by breaking it down into multiple cohorts that represent live trees, dying trees, and understory vegetation that establishes following tree mortality.

  15. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition.

    PubMed

    Pound, Katrina L; Lawrence, Gregory B; Passy, Sophia I

    2013-09-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification,' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  16. Phytoplankton chytridiomycosis: community structure and infectivity of fungal parasites in aquatic ecosystems.

    PubMed

    Rasconi, Serena; Niquil, Nathalie; Sime-Ngando, Télesphore

    2012-08-01

    Fungal parasitism is recurrent in plankton communities, especially in the form of parasitic chytrids. However, few attempts have been made to study the community structure and activity of parasites at the natural community level. To analyse the dynamics of zoosporic fungal parasites (i.e. chytrids) of phytoplankton, samples were collected from February to December 2007 in two freshwater lakes. Infective chytrids were omnipresent in lakes, with higher diversity of parasites and infected phytoplankton than in previous studies. The abundance and biomass of parasites were significantly higher in the productive Lake Aydat than in the oligomesotrophic Lake Pavin, while the infection prevalence in both lakes were similar and averaged about 20%. The host species composition and their size appeared as critical for chytrid infectivity, the larger hosts being more vulnerable, including pennate diatoms and desmids in both lakes. The highest prevalence (98%) was noted for the autumn bloom of the cyanobacterium Anabaena flosaquae facing the parasite Rhizosiphon crassum in Lake Aydat. Because parasites killed their hosts, this implies that cyanobacterial blooms, and other large size inedible phytoplankton blooms as well, may not totally represent trophic bottlenecks because their zoosporic parasites can release dissolved substrates for microbial processes through host destruction, and provide energetic particles as zoospores for grazers. Overall, we conclude that the parasitism by zoosporic fungi represents an important ecological driving force in the food web dynamics of aquatic ecosystems, and infer general empirical models on chytrid seasonality and trophodynamics in lakes.

  17. Rapid Morphological Change in the Masticatory Structures of an Important Ecosystem Service Provider.

    PubMed

    Doudna, John W; Danielson, Brent J

    2015-01-01

    Humans have altered the biotic and abiotic environmental conditions of most organisms. In some cases, such as intensive agriculture, an organism's entire ecosystem is converted to novel conditions. Thus, it is striking that some species continue to thrive under such conditions. The prairie deer mouse (Peromyscus maniculatus bairdii) is an example of such an organism, and so we sought to understand what role evolutionary adaptation played in the success of this species, with particular interest in adaptations to novel foods. In order to understand the evolutionary history of this species' masticatory structures, we examined the maxilla, zygomatic plate, and mandible of historic specimens collected prior to 1910 to specimens collected in 2012 and 2013. We found that mandibles, zygomatic plates, and maxilla have all changed significantly since 1910, and that morphological development has shifted significantly. We present compelling evidence that these differences are due to natural selection as a response to a novel and ubiquitous food source, waste grain (corn, Zea mays and soybean, Glycine max).

  18. Structural Ecosystems Therapy for Recovering HIV-Positive Women: Child, Mother, and Parenting Outcomes

    PubMed Central

    Mitrani, Victoria B.; McCabe, Brian E.; Robinson, Carleen; Weiss-Laxer, Nomi S.; Feaster, Daniel J.

    2011-01-01

    This study presents results of a subgroup analysis from a randomized trial to examine whether Structural Ecosystems Therapy (SET), a family intervention intended to improve medication adherence and reduce drug relapse of HIV-seropositive (HIV+) women recovering from drug abuse, provided benefits for families with children. Data from 42 children and 25 mothers were analyzed at baseline, and 4, 8, and 12 months post-baseline. Results of longitudinal Generalized Estimating Equations analyses suggested that SET was more efficacious than the Health Group (HG) control condition in decreasing children's internalizing and externalizing problems and reducing mothers' psychological distress and drug relapse. Children in SET reported improvements in positive parenting as compared to the children in HG, but there were no differences in mother-reported positive parenting, or parental involvement as reported by either the children or mothers. These findings suggest that family interventions such as SET may be beneficial for mothers and children. An adaptation of SET specifically for families with children could further enhance benefits and improve acceptability and cost-effectiveness. PMID:21171773

  19. Use of structured decision making to identify monitoring variables and management priorities for salt marsh ecosystems

    USGS Publications Warehouse

    Neckles, Hilary A.; Lyons, James E.; Guntenspergen, Glenn R.; Shriver, W. Gregory; Adamowicz, Susan C.

    2015-01-01

    Most salt marshes in the USA have been degraded by human activities, and coastal managers are faced with complex choices among possible actions to restore or enhance ecosystem integrity. We applied structured decision making (SDM) to guide selection of monitoring variables and management priorities for salt marshes within the National Wildlife Refuge System in the northeastern USA. In general, SDM is a systematic process for decomposing a decision into its essential elements. We first engaged stakeholders in clarifying regional salt marsh decision problems, defining objectives and attributes to evaluate whether objectives are achieved, and developing a pool of alternative management actions for achieving objectives. Through this process, we identified salt marsh attributes that were applicable to monitoring National Wildlife Refuges on a regional scale and that targeted management needs. We then analyzed management decisions within three salt marsh units at Prime Hook National Wildlife Refuge, coastal Delaware, as a case example of prioritizing management alternatives. Values for salt marsh attributes were estimated from 2 years of baseline monitoring data and expert opinion. We used linear value modeling to aggregate multiple attributes into a single performance score for each alternative, constrained optimization to identify alternatives that maximized total management benefits subject to refuge-wide cost constraints, and used graphical analysis to identify the optimal set of alternatives for the refuge. SDM offers an efficient, transparent approach for integrating monitoring into management practice and improving the quality of management decisions.

  20. Rapid Morphological Change in the Masticatory Structures of an Important Ecosystem Service Provider

    PubMed Central

    Doudna, John W.; Danielson, Brent J.

    2015-01-01

    Humans have altered the biotic and abiotic environmental conditions of most organisms. In some cases, such as intensive agriculture, an organism’s entire ecosystem is converted to novel conditions. Thus, it is striking that some species continue to thrive under such conditions. The prairie deer mouse (Peromyscus maniculatus bairdii) is an example of such an organism, and so we sought to understand what role evolutionary adaptation played in the success of this species, with particular interest in adaptations to novel foods. In order to understand the evolutionary history of this species’ masticatory structures, we examined the maxilla, zygomatic plate, and mandible of historic specimens collected prior to 1910 to specimens collected in 2012 and 2013. We found that mandibles, zygomatic plates, and maxilla have all changed significantly since 1910, and that morphological development has shifted significantly. We present compelling evidence that these differences are due to natural selection as a response to a novel and ubiquitous food source, waste grain (corn, Zea mays and soybean, Glycine max). PMID:26061880

  1. Community structure and nutrient content of canopy arthropods in clearcut and uncut forest ecosystems

    SciTech Connect

    Schowalter, T.D.; Webb, J.W.; Crossley, D.A. Jr.

    1981-08-01

    This paper describes differences in canopy arthropod community structure, major cation content, and calculated nutrient consumption between clearcut and undisturbed hardwood forest watersheds at Coweeta Hydrologic Laboratory, North Carolina, USA, during the first two growing seasons following cutting. Although canopy arthropod biomass was about 0.08% of foliage biomass on both watersheds, aphid mass increased 23-fold and ant mass increased 6-fold per unit foliage mass following cutting. These groups in general had lower nutrient concentrations than did chewing herbivores and predators. Arthropod K concentrations were 33% lower on the clearcut; Na, K, and Mg concentrations were 20 to 50% higher in 1978 than in 1977. Arthropod Mg and Ca concentrations, but not Na and K, were reduced significantly more by the greater effect of drought on the clearcut watershed. Consumption estimates based in part on consumption rates reported by others indicated increased nutrient translocation from foilage via arthropods following cutting. These data indicated that canopy arthropod responses to changes in nutrient availability following disturbance could have increased nutrient cycling rates and contributed to nutrient retention by the recovering ecosystem.

  2. Architecture of collapse: regime shift and recovery in an hierarchically structured marine ecosystem.

    PubMed

    Daskalov, Georgi M; Boicenco, Laura; Grishin, Alexandre N; Lazar, Luminita; Mihneva, Vesselina; Shlyakhov, Vladislav A; Zengin, Mustafa

    2017-04-01

    By the late 20th century, a series of events or 'natural experiments', for example the depletion of apex predators, extreme eutrophication and blooms of invasive species, had suggested that the Black Sea could be considered as a large ecosystem 'laboratory'. The events resulted in regime shifts cascading through all trophic levels, disturbing ecosystem functioning and damaging the water environment. Causal pathways by which the external (hydroclimate, overfishing) and internal (food web interactions) drivers provoke regime shifts are investigated. Statistical data analyses supported by an interpretative framework based on hierarchical ecosystem theory revealed mechanisms of hierarchical incorporation of environmental factors into the ecosystem. Evidence links Atlantic teleconnections to Black Sea hydroclimate, which together with fishing shapes variability in fish stocks. The hydroclimatic signal is conveyed through the food web via changes in productivity at all levels, to planktivorous fish. Fluctuating fish abundance is believed to induce a lagged change in competitor jelly plankton that cascades down to phytoplankton and influences water quality. Deprived of the stabilising role of apex predators, the Black Sea's hierarchical ecosystem organisation is susceptible to both environmental and anthropogenic stresses, and increased fishing makes fish stock collapses highly probable. When declining stocks are confronted with burgeoning fishing effort associated with the inability of fishery managers and decision-makers to adapt rapidly to changes in fish abundance, there is overfishing and stock collapse. Management procedures are ineffective at handling complex phenomena such as ecosystem regime shifts because of the shortage of suitable explanatory models. The proposed concepts and models reported here relate the hydroclimate, overfishing and invasive species to shifts in ecosystem functioning and water quality, unravelling issues such as the causality of ecosystem

  3. Multiple plant-wax compounds record differential sources and ecosystem structure in large river catchments

    NASA Astrophysics Data System (ADS)

    Hemingway, Jordon D.; Schefuß, Enno; Dinga, Bienvenu Jean; Pryer, Helena; Galy, Valier V.

    2016-07-01

    n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.

  4. Methods to test the interactive effects of drought and plant invasion on ecosystem structure and function using complementary common garden and field experiments.

    PubMed

    Alba, Christina; NeSmith, Julienne E; Fahey, Catherine; Angelini, Christine; Flory, Stephen Luke

    2017-03-01

    Abiotic global change drivers affect ecosystem structure and function, but how they interact with biotic factors such as invasive plants is understudied. Such interactions may be additive, synergistic, or offsetting, and difficult to predict. We present methods to test the individual and interactive effects of drought and plant invasion on native ecosystems. We coupled a factorial common garden experiment containing resident communities exposed to drought (imposed with rainout shelters) and invasion with a field experiment where the invader was removed from sites spanning a natural soil moisture gradient. We detail treatments and their effects on abiotic conditions, including soil moisture, light, temperature, and humidity, which shape community and ecosystem responses. Ambient precipitation during the garden experiment exceeded historic norms despite severe drought in prior years. Soil moisture was 48% lower in drought than ambient plots, but the invader largely offset drought effects. Additionally, temperature and light were lower and humidity higher in invaded plots. Field sites spanned up to a 10-fold range in soil moisture and up to a 2.5-fold range in light availability. Invaded and resident vegetation did not differentially mediate soil moisture, unlike in the garden experiment. Herbicide effectively removed invaded and resident vegetation, with removal having site-specific effects on soil moisture and light availability. However, light was generally higher in invader-removal than control plots, whereas resident removal had less effect on light, similar to the garden experiment. Invasion mitigated a constellation of abiotic conditions associated with drought stress in the garden experiment. In the field, where other factors co-varied, these patterns did not emerge. Still, neither experiment suggested that drought and invasion will have synergistic negative effects on ecosystems, although invasion can limit light availability. Coupling factorial garden

  5. Scorched Earth: how will changes in the strength of the vegetation sink to ozone deposition affect human health and ecosystems?

    NASA Astrophysics Data System (ADS)

    Emberson, L. D.; Kitwiroon, N.; Beevers, S.; Büker, P.; Cinderby, S.

    2013-07-01

    This study investigates the effect of ozone (O3) deposition on ground level O3 concentrations and subsequent human health and ecosystem risk under hot summer "heat wave" type meteorological events. Under such conditions, extended drought can effectively "turn off" the O3 vegetation sink leading to a substantial increase in ground level O3 concentrations. Two models that have been used for human health (the CMAQ chemical transport model) and ecosystem (the DO3SE O3 deposition model) risk assessment are combined to provide a powerful policy tool capable of novel integrated assessments of O3 risk using methods endorsed by the UNECE Convention on Long-Range Transboundary Air Pollution. This study investigates 2006, a particularly hot and dry year during which a heat wave occurred over the summer across much of the UK and Europe. To understand the influence of variable O3 dry deposition three different simulations were investigated during June and July: (i) actual conditions in 2006, (ii) conditions that assume a perfect vegetation sink for O3 deposition and (iii) conditions that assume an extended drought period that reduces the vegetation sink to a minimum. The risks of O3 to human health, assessed by estimating the number of days during which running 8 h mean O3 concentrations exceeded 100 μg m-3, show that on average across the UK, there is a difference of 16 days exceedance of the threshold between the perfect sink and drought conditions. These average results hide local variation with exceedances between these two scenarios reaching as high as 20 days in the East Midlands and eastern UK. Estimates of acute exposure effects show that O3 removed from the atmosphere through dry deposition during the June and July period would have been responsible for approximately 460 premature deaths. Conversely, reduced O3 dry deposition will decrease the amount of O3 taken up by vegetation and, according to flux-based assessments of vegetation damage, will lead to a reduction in

  6. Does human pressure affect the community structure of surf zone fish in sandy beaches?

    NASA Astrophysics Data System (ADS)

    Costa, Leonardo Lopes; Landmann, Júlia G.; Gaelzer, Luiz R.; Zalmon, Ilana R.

    2017-01-01

    Intense tourism and human activities have resulted in habitat destruction in sandy beach ecosystems with negative impacts on the associated communities. To investigate whether urbanized beaches affect surf zone fish communities, fish and their benthic macrofaunal prey were collected during periods of low and high human pressure at two beaches on the Southeastern Brazilian coast. A BACI experimental design (Before-After-Control-Impact) was adapted for comparisons of tourism impact on fish community composition and structure in urbanized, intermediate and non-urbanized sectors of each beach. At the end of the summer season, we observed a significant reduction in fish richness, abundance, and diversity in the high tourist pressure areas. The negative association between visitors' abundance and the macrofaunal density suggests that urbanized beaches are avoided by surf zone fish due to higher human pressure and the reduction of food availability. Our results indicate that surf zone fish should be included in environmental impact studies in sandy beaches, including commercial species, e.g., the bluefish Pomatomus saltatrix. The comparative results from the less urbanized areas suggest that environmental zoning and visitation limits should be used as effective management and preservation strategies on beaches with high conservation potential.

  7. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.

    PubMed

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.

    2001-08-01

    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  8. An ecological model of the Northern and Central Adriatic Sea: Analysis of ecosystem structure and fishing impacts

    NASA Astrophysics Data System (ADS)

    Coll, Marta; Santojanni, Alberto; Palomera, Isabel; Tudela, Sergi; Arneri, Enrico

    2007-08-01

    A trophic mass-balance model was developed to characterise the food web structure and functioning of the Northern and Central Adriatic Sea and to quantify the ecosystem impacts of fishing during the 1990s. Forty functional groups were described, including target and non-target fish and invertebrate groups, and three detritus groups (natural detritus, discards and by-catch of cetaceans and marine turtles). Results highlighted that there was an important coupling between pelagic-benthic production of plankton, benthic invertebrates and detritus. Organisms located at low and medium trophic levels, (i.e. benthic invertebrates, zooplankton and anchovy), as well as dolphins, were identified as keystone groups of the ecosystem. Jellyfish were an important element in terms of consumption and production of trophic flows within the ecosystem. The analysis of trophic flows of zooplankton and detritus groups indirectly underlined the importance of the microbial food web in the Adriatic Sea. Fishing activities inflicted notable impacts on the ecosystem during the 1990s, with a high gross efficiency of the fishery, a high consumption of fishable production, high exploitation rates for various target and non target species, a low trophic level of the catch and medium values of primary production required to sustain the fishery. Moreover, the analysis of Odum's ecological indicators highlighted that the ecosystem was in a low-medium developmental stage. Bottom trawling ( Strascico), mid-water trawling ( Volante) and beam trawling ( Rapido) fleets had the highest impacts on both target and non target ecological groups. On the contrary, purse seining ( Lampara) showed medium to low impacts on the ecosystem; cetaceans, marine turtles and sea birds were not significantly involved in competition with fishing activity.

  9. Environmental Impacts of the Use of Ecosystem Services: Case Study of Birdwatching

    NASA Astrophysics Data System (ADS)

    Kronenberg, Jakub

    2014-09-01

    The main reason for promoting the concept of ecosystem services lies in its potential to contribute to environmental conservation. Highlighting the benefits derived from ecosystems fosters an understanding of humans' dependence on nature, as users of ecosystem services. However, the act of using ecosystem services may not be environmentally neutral. As with the use of products and services generated within an economy, the use of ecosystem services may lead to unintended environmental consequences throughout the `ecosystem services supply chain.' This article puts forward a framework for analyzing environmental impacts related to the use of ecosystem services, indicating five categories of impact: (1) direct impacts (directly limiting the service's future availability); and four categories of indirect impacts, i.e., on broader ecosystem structures and processes, which can ultimately also affect the initial service: (2) impacts related to managing ecosystems to maximize the delivery of selected services (affecting ecosystems' capacity to provide other services); (3) impacts associated with accessing ecosystems to use their services (affecting other ecosystem components); (4) additional consumption of products, infrastructure or services required to use a selected ecosystem service, and their life-cycle environmental impacts; and (5) broader impacts on the society as a whole (environmental awareness of ecosystem service users and other stakeholders). To test the usefulness of this framework, the article uses the case study of birdwatching, which demonstrates all of the above categories of impacts. The article justifies the need for a broader consideration of environmental impacts related to the use of ecosystem services.

  10. Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country.

    PubMed

    Quadra, Gabrielle Rabelo; Oliveira de Souza, Helena; Costa, Rafaela Dos Santos; Fernandez, Marcos Antonio Dos Santos

    2017-01-01

    Pharmaceutical residues are not completely removed in wastewater treatment plants (WWTPs) becoming contaminants in aquatic ecosystems. Thereby, it is important to investigate their concentrations in the environment and the possible consequences of their occurrence, including for human health. Here, we briefly reviewed the paths of pharmaceuticals to reach the environment, their behavior and fate in the environment, and the possible consequences of their occurrence. Moreover, we synthetized all the studies about the detection of pharmaceuticals in Brazilian water bodies and the available ecotoxicological knowledge on their effects. In this study, when we compare the data found on these compounds worldwide, we observed that Brazilian surface waters present considerable concentrations of 17α-ethinylestradiol, 17β-estradiol, and caffeine. In general, concentrations found in aquatic systems worldwide seems to be low; however, ecotoxicological tests showed that even these low concentrations can cause sublethal effects in biota. The knowledge about the effects of continuous exposure and mixtures is sparse. In summary, new research is urgently required about the effects of these compounds in biota-including long-term exposition and mixture tests-and on specific technologies to remove these compounds in water bodies and WWTPs, besides the introduction of new policies for pharmaceutical use.

  11. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers.

    PubMed

    Edwards, Arwyn; Mur, Luis A J; Girdwood, Susan E; Anesio, Alexandre M; Stibal, Marek; Rassner, Sara M E; Hell, Katherina; Pachebat, Justin A; Post, Barbara; Bussell, Jennifer S; Cameron, Simon J S; Griffith, Gareth Wyn; Hodson, Andrew J; Sattler, Birgit

    2014-08-01

    Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction fragment length polymorphism and Fourier transform infrared metabolite fingerprinting of cryoconite from glaciers in Austria, Greenland and Svalbard demonstrated cryoconite bacterial communities are closely correlated with cognate metabolite fingerprints. The influence of bacterial-associated fatty acids and polysaccharides was inferred, underlining the importance of bacterial community structure in the properties of cryoconite. Thus, combined application of T-RFLP and FT-IR metabolite fingerprinting promises high throughput, and hence, rapid assessment of community structure-function relationships. Pyrosequencing revealed Proteobacteria were particularly abundant, with Cyanobacteria likely acting as ecosystem engineers in both alpine and Arctic cryoconite communities. However, despite these generalities, significant differences in bacterial community structures, compositions and metabolomes are found between alpine and Arctic cryoconite habitats, reflecting the impact of local and regional conditions on the challenges of thriving in glacial ecosystems.

  12. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    PubMed

    Zaller, Johann G; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2)). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  13. Environmental conditions and biotic interactions influence ecosystem structure and function in a drying stream

    USGS Publications Warehouse

    Ludlam, J.P.; Magoulick, D.D.

    2010-01-01

    Benthic consumers influence stream ecosystem structure and function, but these interactions depend on environmental context. We experimentally quantified the effects of central stoneroller minnows (Campostoma anomalum (Rafinesque) and Meek's crayfish (Orconectes meeki meeki (Faxon)) on benthic communities using electric exclusion quadrats in Little Mulberry Creek before (June) and during (August) seasonal stream drying. Unglazed ceramic tiles were deployed in June and August to measure periphyton and invertebrate abundance, and leafpack decomposition and primary production were also measured in August. Relationships between stoneroller and crayfish density and the size of consumer effects were evaluated with multiple linear regression models. Average chlorophyll a abundance was greater on exposed than exclusion tiles in August, but not in June. Sediment dry mass, periphyton ash-free dry mass (AFDM), and chironomid densities on tiles did not differ among treatments in either period. Leaf packs decayed faster in exposed than exclusion treatments (kexposed = 0.038 ?? 0.013, kexclusion = 0.007 ?? 0.002), but consumer effects were stronger in some pools than others. Leafpack invertebrate biomass and abundance and tile primary productivity did not differ among treatments. Consumer effects on chlorophyll a were related to crayfish and stoneroller density, and effects on chironomid density were related to stoneroller density. These results contrast with a previous exclusion experiment in Little Mulberry Creek that demonstrated strong consumer effects. The influence of stream drying on consumer effects appears to have been reduced by strong spates, underscoring the importance of conducting multi-year studies to determine the magnitude of variability in ecological interactions. ?? US Government: USGS 2010.

  14. Importance of storm events in controlling ecosystem structure and function in a Florida Gulf Coast estuary

    USGS Publications Warehouse

    Davis, S. E.; Cable, J.E.; Childers, D.L.; Coronado-Molina, C.; Day, J.W.; Hittle, C.D.; Madden, C.J.; Reyes, E.; Rudnick, D.; Sklar, F.

    2004-01-01

    From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such

  15. Effect of Changes in Seasonal Rain Regime on Coastal Ecosystem Structure and Aquaculture Activities

    NASA Astrophysics Data System (ADS)

    Cosimo, S.; Melaku Canu, D.; Libralato, S.; Cossarini, G.; Giorgi, F.

    2008-12-01

    A downscaling experiment linked climate forcing produced by a Regional Climate Model for Europe to a 3D high resolution coupled transport biogeochemical model for the Lagoon of Venice, which in turn forced: a) a food web model for evaluation of cascading effects on ecosystem structure and b) a population dynamic bioenergetic filter feeders bivalvae model for evaluation of effects on aquaculture activities. The hierarchy of models was used to compare result for a reference situation (RF, 1961-1990) with results for two future IPCC scenarios (2071-2100), representing market oriented and local sustainability policies (scenarios A2 and B2, respectively). Future climate projections suggest that, locally, annual mean rain will not change much but the seasonal patterns will likely do so. Summer and spring will be more dry and winter and autumn more rainy. This will potentially increase winter nutrient concentrations but -because of unfavourable timing - primary and secondary productions will decrease, and nutrient surplus will be exported from the Lagoon of Venice to the Adriatic Sea. The impacts on higher trophic levels could be softened thanks to presence of alternative energy pathways and role of omnivory. However, in our future scenario of the lagoon food web the suitability for higher trophic level organisms seems lower. A more detailed analysis on clam aquaculture indicates that this activity will suffer the decrease of primary productivity, and point to the need of implementation of proper aquaculture management policies. In the light of adaptive management. These policies cannot be a straightfoward extrapolation of present practises, but need to be defined basing on future conditions.

  16. Wetland-stream ecosystems of the western Kentucky coalfield: environmental disturbance and the shaping of aquatic community structure

    SciTech Connect

    Hill, P.L. Jr.

    1983-01-01

    The effects of surface mining effluents of the shaping of aquatic community structure in wetland-stream ecosystems of the western Kentucky coalfield were examined. Three variously impacted drainage systems were utilized for the investigation of cause-and-effect relationships. Clear Creek wetland-stream ecosystem had a uniformly low pH, high conductivity and high dissolved minerals load linked to the oozing of old, unreclaimed surface mine spoils. Cypress Creek wetland-stream ecosystem exhibited a slug-pulsing of mine drainage effluents tied to active surface mining limited to the headwaters region. Henderson Sloughs-Pond Creek wetland-stream ecosystem had no mining impact and was utilized as a comparison site. Macroinvertebrate taxa and diversity were considerably lowered in the systems receiving mine drainage. The Shannon-Weaver diversity index (H) was 0.61 for Clear Creek, 1.80 for Cypress Creek and 2.01 for Henderson Sloughs. Large numbers of chironomid larvae dominated the benthic community of Clear Creek while mayflies, caddisflies and crustaceans were the major components of the Cypress Creek community. Henderson Sloughs-Pond Creek had an even more diverse community of mayflies, caddisflies, crustaceans, molluscs and odonates. Fishes followed the same general trend, being almost absent in Clear Creek (H - 0.47), slightly depressed in Cypress Creek (H = 1.74) and generally diverse in Henderson Sloughs (H = 2.37).

  17. [Biomass flow and structure of a tropical upwelling ecosystem in La Guajira, Colombian Caribbean].

    PubMed

    Criales-Hernández, Maria Isabel; García, Camilo B; Wolff, Matthias

    2006-12-01

    La Guajira is an exploited tropical upwelling ecosystem in the Colombian Caribbean coast. A trophic model of 27 functional groups was constructed using the ECOPATH 5.0 Beta software to integrate the available information on the ecosystem. The model allowed a comparison with other trophic flow models of upwelling ecosystems. Total system biomass (68 t/km2/year), net system production (1,248.5 t/km2/year), and total system throughput (3,275 t/km2/year) make La Guajira moderate when compared with other systems. The largest amount of energy throughput is achieved from trophic level I to II (68.93 %), although an important proportion of the total flow originates from detritus (32 %). The production/respiration ratio exceeds 1, suggesting that La Guajira is an immature ecosystem and is in development, as determined by its low ascendency (33.7 %) and high development capacity (66.3 %), similar to other upwellings that have values of ascendency between 20 % and 35 %. Although the basic input data were good and covered 1995 to 2000, appropriate information is still not available on some trophic groups such as biomass (for phytoplankton, invertebrates, catfishes and pelagic predator fishes), secondary production data (invertebrates, pelagic predator fishes, and small pelagic fishes), and seabird and mammal populations, which are top trophic levels and an essential part of upwelling ecosystems.

  18. Structure, Behavior, Function as a Framework For Teaching and Learning about Complexity In Ecosystems: Lessons from Middle School Classrooms (Invited)

    NASA Astrophysics Data System (ADS)

    Hmelo-Silver, C.; Gray, S.; Jordan, R.

    2010-12-01

    Complex systems surround us, and as Sabelli (2006) has argued, understanding complex systems is a critical component of science literacy. Understanding natural and designed systems are also prominent in the new draft science standards (NRC, 2010) and therefore of growing importance in the science classroom. Our work has focused on promoting an understanding of one complex natural system, aquatic ecosystems, which given current events, is fast becoming a requisite for informed decision-making as citizens (Jordan et al. 2008). Learners have difficulty understanding many concepts related to complex natural systems (e.g., Hmelo-Silver, Marathe, & Liu, 2007; Jordan, Gray, Liu, Demeter, & Hmelo-Silver, 2009). Studies of how students think about complex ecological systems (e.g; Hmelo-Silver, Marathe, & Liu, 2007; Hogan, 2000, Hogan & Fisherkeller, 1996: Covitt & Gunkel, 2008) have revealed difficulties in thinking beyond linear flow, single causality, and visible structure. Helping students to learn about ecosystems is a complex task that requires providing opportunities for students to not only engage directly with ecosystems but also with resources that provide relevant background knowledge and opportunities for learners to make their thinking visible. Both tasks can be difficult given the large spatial and temporal scales on which ecosystems operate. Additionally, visible components interact with often invisible components which can obscure ecosystem processes for students. Working in the context of aquatic ecosystems, we sought to provide learners with representations and simulations that make salient the relationship between system components. In particular, we provided learners with opportunities to experience both the micro-level and macro-level phenomena that are key to understanding ecosystems (Hmelo-Silver, Liu, Gray, & Jordan, submitted; Liu & Hmelo-Silver, 2008; Jacobson & Wilensky, 2006). To accomplish this, we needed to help learners make connections across

  19. Referent Predictability Is Affected by Syntactic Structure: Evidence from Chinese

    ERIC Educational Resources Information Center

    Cheng, Wei; Almor, Amit

    2017-01-01

    This paper examines the effect of syntactic structures on referent predictability. Focusing on stimulus-experiencer (SE) verbs, we conducted two sentence-completion experiments in Chinese by contrasting SE verbs in three structures (active canonical, active "ba," and passive). The results showed that although verb semantics and discourse…

  20. How Knowledge Management Is Affected by Organizational Structure

    ERIC Educational Resources Information Center

    Mahmoudsalehi, Mehdi; Moradkhannejad, Roya; Safari, Khalil

    2012-01-01

    Purpose: Identifying the impact of organizational structure on knowledge management (KM) is the aim of this study, as well as recognizing the importance of each variable indicator in creating, sharing and utility of knowledge. Design/methodology/approach: For understanding relationships between the main variables (organizational structure-KM), the…

  1. Fire as an ecosystem process: Chapter 3

    USGS Publications Warehouse

    Keeley, Jon E.; Safford, Hugh D.; Mooney, Harold A.; Zavaleta, Erika S.

    2016-01-01

    This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.

  2. Variations in ecosystem structure, carbon, and nutrient storage along a fertility gradient in tropical savanna of southern Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Vourlitis, G. L.; Lobo, F. D.; Lawrence, S.; Holt, K.; Pinto Junior, O. B.; Dalmagro, H. J.; Nogueira, J. D.

    2013-12-01

    Brazilian savanna (cerrado) is composed of vegetation and soil types that are spatially variable, and links between cerrado physiognomy and soil properties are poorly understood. To reduce this uncertainty, we measured the plant community structure and carbon (C) and nutrient (N, P, K, and Ca) stocks in aboveground wood, foliage, and litter, and soil (0-50 cm) pools in a variety of cerrado vegetation types located in the Cuiaba Basin and the Pantanal, Mato Grosso, Brazil. We hypothesized that aboveground and surface soil C and nutrient stocks would be correlated with soil fertility and vegetation structure (including tree species composition, density and tree species diversity). Our results indicate that aboveground woody (AGW), foliage, and soil C stocks were significantly (p < 0.05) correlated with indices of soil fertility but not texture. Since AGWC was the largest C pool, total ecosystem C stocks increase significantly as a function of soil fertility. Similarly, AGWC and foliage C stocks were significantly correlated with tree species diversity (H'), but not soil texture. These data suggest that small-scale (m2-ha) variations in soil fertility are important controls on ecosystem C storage in Brazilian cerrado, and that ecosystem C and nutrient storage is positively related to tree species diversity. These results are qualitatively similar to those reported for tropical forests across regional fertility gradients in the Amazon Basin. These results have implications for the maintenance of soil C storage and fertility and tree species diversity in cerrado.

  3. Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem

    USGS Publications Warehouse

    Macleod, Amy C.; Boyd, Kristina L; Boulanger, John; Royle, J. Andrew; Kasworm, Wayne F.; Paetkau, David; Proctor, Michael F; Annis, Kim; Graves, Tabitha A.

    2016-01-01

    The conservation status of the 2 threatened grizzly bear (Ursus arctos) populations in the Cabinet-Yaak Ecosystem (CYE) of northern Montana and Idaho had remained unchanged since designation in 1975; however, the current demographic status of these populations was uncertain. No rigorous data on population density and distribution or analysis of recent population genetic structure were available to measure the effectiveness of conservation efforts. We used genetic detection data from hair corral, bear rub, and opportunistic sampling in traditional and spatial capture–recapture models to generate estimates of abundance and density of grizzly bears in the CYE. We calculated mean bear residency on our sampling grid from telemetry data using Huggins and Pledger models to estimate the average number of bears present and to correct our superpopulation estimates for lack of geographic closure. Estimated grizzly bear abundance (all sex and age classes) in the CYE in 2012 was 48–50 bears, approximately half the population recovery goal. Grizzly bear density in the CYE (4.3–4.5 grizzly bears/1,000 km2) was among the lowest of interior North American populations. The sizes of the Cabinet (n = 22–24) and Yaak (n = 18–22) populations were similar. Spatial models produced similar estimates of abundance and density with comparable precision without requiring radio-telemetry data to address assumptions of geographic closure. The 2 populations in the CYE were demographically and reproductively isolated from each other and the Cabinet population was highly inbred. With parentage analysis, we documented natural migrants to the Cabinet and Yaak populations by bears born to parents in the Selkirk and Northern Continental Divide populations. These events supported data from other sources suggesting that the expansion of neighboring populations may eventually help sustain the CYE populations. However, the small size, isolation, and inbreeding documented by this study

  4. Exploring biological, chemical and geomorphological patterns in fluvial ecosystems with Structural Equation Modelling

    NASA Astrophysics Data System (ADS)

    Bizzi, S.; Surridge, B.; Lerner, D. N.:

    2009-04-01

    River ecosystems represent complex networks of interacting biological, chemical and geomorphological processes. These processes generate spatial and temporal patterns in biological, chemical and geomorphological variables, and a growing number of these variables are now being used to characterise the status of rivers. However, integrated analyses of these biological-chemical-geomorphological networks have rarely been undertaken, and as a result our knowledge of the underlying processes and how they generate the resulting patterns remains weak. The apparent complexity of the networks involved, and the lack of coherent datasets, represent two key challenges to such analyses. In this paper we describe the application of a novel technique, Structural Equation Modelling (SEM), to the investigation of biological, chemical and geomorphological data collected from rivers across England and Wales. The SEM approach is a multivariate statistical technique enabling simultaneous examination of direct and indirect relationships across a network of variables. Further, SEM allows a-priori conceptual or theoretical models to be tested against available data. This is a significant departure from the solely exploratory analyses which characterise other multivariate techniques. We took biological, chemical and river habitat survey data collected by the Environment Agency for 400 sites in rivers spread across England and Wales, and created a single, coherent dataset suitable for SEM analyses. Biological data cover benthic macroinvertebrates, chemical data relate to a range of standard parameters (e.g. BOD, dissolved oxygen and phosphate concentration), and geomorphological data cover factors such as river typology, substrate material and degree of physical modification. We developed a number of a-priori conceptual models, reflecting current research questions or existing knowledge, and tested the ability of these conceptual models to explain the variance and covariance within the

  5. Nonlinear response of stream ecosystem structure to low-level phosphorus enrichment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthropogenic inputs of nitrogen (N) and phosphorus (P) create novel environmental conditions that alter biological organization and ecosystem functioning in freshwaters. We studied 38 wadeable streams spanning an N and P gradient to contrast responses of algal and fish assemblages to nutrient enric...

  6. [Soil bacterial community structure in primeval forest and degraded ecosystem in Karst region].

    PubMed

    Chen, Xiang-Bi; Su, Yi-Rong; He, Xun-Yang; Wei, Wen-Xue; Wei, Ya-Wei; Dai, Xiao-Yan

    2009-04-01

    By using PCR-RFLP, this paper studied the 16S rDNA gene diversity and phylogenesis of soil bacteria in primeval forest and degraded ecosystem in Karst region of Northwest Guangxi. More genotypes and higher diversity index were observed in the soil of primeval forest than in that of degraded ecosystem, and only two common genotypes were observed in the two soils. A clone from each genotype was randomly selected as representative for sequencing. The obtained 16S rDNA gene sequences had a similarity of 87%-100% with those in the GenBank (www. ncbi. nlm. nih. gov), and more than half of them had a similarity lower than 97%, being of new species. Based on phylogenetic analysis, the bacteria in the two soils were classified into 10 groups, with 5 groups in common. The dominant bacterial groups in the two soils differed obviously. In primeval forest soil, the dominant group was Proteobacteria, which had 39 genotypes, occupying 58.0% of all the clones; while in the soil of degraded ecosystem, the dominant groups were Acidobacteria and Proteobacteria, which had 19 and 15 genotypes, occupying 32.5% and 30.5% of all the clones, respectively. In the soil of degraded ecosystem, Proteobacteria group decreased while Acidobacteria group increased markedly, compared with those in primeval forest soil. Soil physical and chemical properties and environmental factors should be responsible for the difference of soil bacterial community between the two soils.

  7. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning

    PubMed Central

    Escolar, Cristina; Martínez, Isabel; Bowker, Matthew A.; Maestre, Fernando T.

    2012-01-01

    Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect the structure and composition of BSCs, and the functioning of their constituents. Using a manipulative experiment conducted over 3 years in a semi-arid site from central Spain, we evaluated how the composition, structure and performance of lichen-dominated BSCs respond to a 2.4°C increase in temperature, and to an approximately 30 per cent reduction of total annual rainfall. In areas with well-developed BSCs, warming promoted a significant decrease in the richness and diversity of the whole BSC community. This was accompanied by important compositional changes, as the cover of lichens suffered a substantial decrease with warming (from 70 to 40% on average), while that of mosses increased slightly (from 0.3 to 7% on average). The physiological performance of the BSC community, evaluated using chlorophyll fluorescence, increased with warming during the first year of the experiment, but did not respond to rainfall reduction. Our results indicate that ongoing climate change will strongly affect the diversity and composition of BSC communities, as well as their recovery after disturbances. The expected changes in richness and composition under warming could reduce or even reverse the positive effects of BSCs on important soil processes. Thus, these changes are likely to promote an overall reduction in ecosystem processes that sustain and control nutrient cycling, soil stabilization and water dynamics. PMID:23045707

  8. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning.

    PubMed

    Escolar, Cristina; Martínez, Isabel; Bowker, Matthew A; Maestre, Fernando T

    2012-11-19

    Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect the structure and composition of BSCs, and the functioning of their constituents. Using a manipulative experiment conducted over 3 years in a semi-arid site from central Spain, we evaluated how the composition, structure and performance of lichen-dominated BSCs respond to a 2.4°C increase in temperature, and to an approximately 30 per cent reduction of total annual rainfall. In areas with well-developed BSCs, warming promoted a significant decrease in the richness and diversity of the whole BSC community. This was accompanied by important compositional changes, as the cover of lichens suffered a substantial decrease with warming (from 70 to 40% on average), while that of mosses increased slightly (from 0.3 to 7% on average). The physiological performance of the BSC community, evaluated using chlorophyll fluorescence, increased with warming during the first year of the experiment, but did not respond to rainfall reduction. Our results indicate that ongoing climate change will strongly affect the diversity and composition of BSC communities, as well as their recovery after disturbances. The expected changes in richness and composition under warming could reduce or even reverse the positive effects of BSCs on important soil processes. Thus, these changes are likely to promote an overall reduction in ecosystem processes that sustain and control nutrient cycling, soil stabilization and water dynamics.

  9. Water Track Control of Active Layer Thermal Properties and Ecosystem Structure in the Lake Hoare Basin, Taylor Valley, Antarctica: Water, Carbon, and the Future of the Dry Valleys

    NASA Astrophysics Data System (ADS)

    Levy, J.; Fountain, A. G.

    2011-12-01

    Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. In the Arctic, they are major hydrogeological features that mediate sedimentation, solute transport, carbon cycling, and permafrost thermal properties. In Antarctica, water tracks are not well described, although our observations suggest that they occupy ~5% of the soil-covered land area of the McMurdo Dry Valleys (MDV). We present physical, hydrological, and geochemical evidence collected in Taylor Valley, McMurdo Dry Valleys, Antarctica, which suggests that previously unexplored water tracks provide structure to Antarctic soil ecosystems. Water tracks are some of the most salt-, nutrient-, and silica-rich waters in the MDV. As in the Arctic, water tracks are shown to significantly affect the distribution of soil moisture, heat, soil salinity, soil pH, soil carbon, and phosphate in permafrost affected soils. These results suggest that water tracks are ecological hotspots in Taylor Valley, providing long-range (km to multi-km) structure to Antarctic hillslope ecosystems through physical control on soil moisture and nutrient content. Also, monitoring of multi-year active layer thaw records illustrate a strong dependence of permafrost thermal properties and heating history/hysteresis on soil water content. Wet soils are found to be icy soils in the winter, but are also shown to be warm soils in the summer. As a result, deep active layer thawing is associated with wet soils. These results suggest that additions of soil moisture to MDV soils (through increased snowfall/snowmelt, glacier runoff, or ground ice melt) will result in a deepening of active layer thaw in the Dry Valleys, potentially resulting in rapid, landscape change.

  10. Climate change impacts on body size and food web structure on mountain ecosystems.

    PubMed

    Lurgi, Miguel; López, Bernat C; Montoya, José M

    2012-11-05

    The current distribution of climatic conditions will be rearranged on the globe. To survive, species will have to keep pace with climates as they move. Mountains are among the most affected regions owing to both climate and land-use change. Here, we explore the effects of climate change in the vertebrate food web of the Pyrenees. We investigate elevation range expansions between two time-periods illustrative of warming conditions, to assess: (i) the taxonomic composition of range expanders; (ii) changes in food web properties such as the distribution of links per species and community size-structure; and (iii) what are the specific traits of range expanders that set them apart from the other species in the community-in particular, body mass, diet generalism, vulnerability and trophic position within the food web. We found an upward expansion of species at all elevations, which was not even for all taxonomic groups and trophic positions. At low and intermediate elevations, predator : prey mass ratios were significantly reduced. Expanders were larger, had fewer predators and were, in general, more specialists. Our study shows that elevation range expansions as climate warms have important and predictable impacts on the structure and size distribution of food webs across space.

  11. Climate change impacts on body size and food web structure on mountain ecosystems

    PubMed Central

    Lurgi, Miguel; López, Bernat C.; Montoya, José M.

    2012-01-01

    The current distribution of climatic conditions will be rearranged on the globe. To survive, species will have to keep pace with climates as they move. Mountains are among the most affected regions owing to both climate and land-use change. Here, we explore the effects of climate change in the vertebrate food web of the Pyrenees. We investigate elevation range expansions between two time-periods illustrative of warming conditions, to assess: (i) the taxonomic composition of range expanders; (ii) changes in food web properties such as the distribution of links per species and community size-structure; and (iii) what are the specific traits of range expanders that set them apart from the other species in the community—in particular, body mass, diet generalism, vulnerability and trophic position within the food web. We found an upward expansion of species at all elevations, which was not even for all taxonomic groups and trophic positions. At low and intermediate elevations, predator : prey mass ratios were significantly reduced. Expanders were larger, had fewer predators and were, in general, more specialists. Our study shows that elevation range expansions as climate warms have important and predictable impacts on the structure and size distribution of food webs across space. PMID:23007094

  12. Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs?

    PubMed

    Paes, T A S V; Costa, I A S; Silva, A P C; Eskinazi-Sant'Anna, E M

    2016-06-01

    The aim of our study was to assess whether cyanotoxins (microcystins) can affect the composition of the zooplankton community, leading to domination of microzooplankton forms (protozoans and rotifers). Temporal variations in concentrations of microcystins and zooplankton biomass were analyzed in three eutrophic reservoirs in the semi-arid northeast region of Brazil. The concentration of microcystins in water proved to be correlated with the cyanobacterial biovolume, indicating the contributions from colonial forms such as Microcystis in the production of cyanotoxins. At the community level, the total biomass of zooplankton was not correlated with the concentration of microcystin (r2 = 0.00; P > 0.001), but in a population-level analysis, the biomass of rotifers and cladocerans showed a weak positive correlation. Cyclopoid copepods, which are considered to be relatively inefficient in ingesting cyanobacteria, were negatively correlated (r2 = - 0.01; P > 0.01) with the concentration of cyanotoxins. Surprisingly, the biomass of calanoid copepods was positively correlated with the microcystin concentration (r2 = 0.44; P > 0.001). The results indicate that allelopathic control mechanisms (negative effects of microcystin on zooplankton biomass) do not seem to substantially affect the composition of mesozooplankton, which showed a constant and high biomass compared to the microzooplankton (rotifers). These results may be important to better understand the trophic interactions between zooplankton and cyanobacteria and the potential effects of allelopathic compounds on zooplankton.

  13. Affecting non-Markovian behaviour by changing bath structures

    NASA Astrophysics Data System (ADS)

    Venkataraman, V.; Plato, A. D. K.; Tufarelli, Tommaso; Kim, M. S.

    2014-01-01

    For many open quantum systems, a master equation approach employing the Markov approximation cannot reliably describe the dynamical behaviour. This is the case, for example, in a number of solid state or biological systems, and it has motivated a line of research aimed at quantifying the amount of non-Markovian behaviour (NMB) in a given model. Within this framework, we investigate the dynamics of a quantum harmonic oscillator linearly coupled to a bosonic bath. We focus on Gaussian states, which are suitably treated using a covariance matrix approach. Concentrating on an entanglement based NMB quantifier (NMBQ) proposed by Rivas et al (2010 Phys. Rev. Lett. 105 050403), we consider the role that near resonant and off-resonant modes play in affecting the NMBQ. By using a large but finite bath of oscillators for both Ohmic and super Ohmic spectral densities we find, by systematically increasing the coupling strength, initially the near resonant modes provide the most significant non-Markovian effects, while after a certain threshold of coupling strength the off-resonant modes play the dominant role. We also consider the NMBQ for two other models where we add a single strongly coupled oscillator to the model in extra bath mode and ‘buffer’ configurations, which affects the modes that determine NMB.

  14. Processes affecting oxygen isotope ratios of atmospheric and ecosystem sulfate in two contrasting forest catchments in Central Europe

    SciTech Connect

    Martin Novak; Myron J. Mitchell; Iva Jackova; Frantisek Buzek; Jana Schweigstillova; Lucie Erbanova; Richard Prikryl; Daniela Fottova

    2007-02-15

    Sulfate aerosols are harmful as respirable particles. They also play a role as cloud condensation nuclei and have radiative effects on global climate. A combination of {delta}{sup 18}O-SO{sub 4} data with catchment sulfur mass balances was used to constrain processes affecting S cycling in the atmosphere and spruce forests of the Czech Republic. Extremely high S fluxes via spruce throughfall and runoff were measured at Jezeri (49 and 80 kg S ha{sup -1} yr{sup -1}, respectively). The second catchment, Na Lizu, was 10 times less polluted. In both catchments, {delta}{sup 18}O-SO{sub 4} decreased in the following order: open-area precipitation {gt} throughfall {gt} runoff. The 180-SO{sub 4} values of throughfall exhibited a seasonal pattern at both sites, with maxima in summer and minima in winter. This seasonal pattern paralleled {delta}{sup 18}O-H{sub 2}O values, which were offset by -18{per_thousand}. Sulfate in throughfall was predominantly formed by heterogeneous (aqueous) oxidation of SO{sub 2}. Wet-deposited sulfate in an open area did not show systematic {delta}{sup 18}O-SO{sub 4} trends, suggesting formation by homogeneous (gaseous) oxidation and/or transport from large distances. The percentage of incoming S that is organically cycled in soil was similar under the high and the low pollution. High-temperature {sup 18}O-rich sulfate was not detected, which contrasts with North American industrial sites. 29 refs., 4 figs., 3 tabs.

  15. Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a high arctic mire

    NASA Astrophysics Data System (ADS)

    Falk, Julie Maria; Schmidt, Niels Martin; Christensen, Torben R.; Ström, Lena

    2015-04-01

    Herbivory is an important part of most ecosystems and affects the ecosystems’ carbon balance both directly and indirectly. Little is known about herbivory and its impact on the carbon balance in high arctic mire ecosystems. We hypothesized that trampling and grazing by large herbivores influences the vegetation density and composition and thereby also the carbon balance. In 2010, we established fenced exclosures in high arctic Greenland to prevent muskoxen (Ovibos moschatus) from grazing. During the growing seasons of 2011 to 2013 we measured CO2 and CH4 fluxes in these ungrazed blocks and compared them to blocks subjected to natural grazing. Additionally, we measured depth of the water table and active layer, soil temperature, and in 2011 and 2013 an inventory of the vegetation density and composition were made. In 2013 a significant decrease in total number of vascular plant (33-44%) and Eriophorum scheuchzeri (51-53%) tillers were found in ungrazed plots, the moss-layer and amount of litter had also increased substantially in these plots. This resulted in a significant decrease in net ecosystem uptake of CO2 (47%) and likewise a decrease in CH4 emission (44%) in ungrazed plots in 2013. While the future of the muskoxen in a changing arctic is unknown, this experiment points to a potentially large effect of large herbivores on the carbon balance in natural Arctic ecosystems. It thus sheds light on the importance of grazing mammals, and hence adds to our understanding of natural ecosystem greenhouse gas balance in the past and in the future.

  16. Wasp waist or beer belly? Modeling food web structure and energetic control in Alaskan marine ecosystems, with implications for fishing and environmental forcing

    NASA Astrophysics Data System (ADS)

    Gaichas, Sarah; Aydin, Kerim; Francis, Robert C.

    2015-11-01

    The Eastern Bering Sea (EBS) and Gulf of Alaska (GOA) continental shelf ecosystems show some similar and some distinctive groundfish biomass dynamics. Given that similar species occupy these regions and fisheries management is also comparable, similarities might be expected, but to what can we attribute the differences? Different types of ecosystem structure and control (e.g. top-down, bottom-up, mixed) can imply different ecosystem dynamics and climate interactions. Further, the structural type identified for a given ecosystem may suggest optimal management for sustainable fishing. Here, we use information on the current system state derived from food web models of both the EBS and the GOA combined with dynamic ecosystem models incorporating uncertainty to classify each ecosystem by its structural type. We then suggest how this structure might be generally related to dynamics and predictability. We find that the EBS and GOA have fundamentally different food web structures both overall, and when viewed from the perspective of the same commercially and ecologically important species in each system, walleye pollock (Gadus chalcogrammus). EBS food web structure centers on a large mass of pollock, which appears to contribute to relative system stability and predictability. In contrast, GOA food web structure features high predator biomass, which contributes to a more dynamic, less predictable ecosystem. Mechanisms for climate influence on pollock production in the EBS are increasingly understood, while climate forcing mechanisms contributing to the potentially destabilizing high predator biomass in the GOA remain enigmatic. We present results of identical pollock fishing and climate-driven pollock recruitment simulations in the EBS and GOA which show different system responses, again with less predictable response in the GOA. Overall, our results suggest that identifying structural properties of fished food webs is as important for sustainable fisheries management as

  17. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change.

    PubMed

    Sibert, Elizabeth; Norris, Richard; Cuevas, Jose; Graves, Lana

    2016-05-25

    While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep-sea sediment cores from the North and South Pacific gyres over the past 85 million years (Myr). We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma) was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Palaeogene Ocean (66-20 Ma), initiated by the Cretaceous/Palaeogene mass extinction, had nearly four times the abundance of fish teeth compared with elasmobranch denticles. This Palaeogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene-Oligocene glaciation (34 Ma), despite large changes in the overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages approximately 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups.

  18. Habitat structure and body size distributions: Cross-ecosystem comparison for taxa with determinate and indeterminate growth

    USGS Publications Warehouse

    Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.

    2014-01-01

    Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions

  19. Arctic Ocean Atmosphere Sea Ice Snowpack (OASIS) Interactions Affecting Atmospheric Biogeochemistry, Climate and Ecosystems in the Arctic

    NASA Astrophysics Data System (ADS)

    Beine, H.

    2006-12-01

    The Arctic Ocean is central to the understanding of climate and global environmental change. As a critical component of the Earth system, the Arctic region both influences and responds rapidly to natural variations and to human-induced perturbations, such as warming, contaminant accumulation, and associated impacts. While it is clear that there are dramatic changes occurring in the Arctic, the interactions between the air and surfaces are still not understood. The international, multidisciplinary Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) program addresses the knowledge gaps and coordinates studies of Arctic atmosphere-surface interactions and associated feedbacks to the climate system. OASIS is planned as a long term science program for the next decade. OASIS is linked to a number of international organizations and activities, including AMAP, the IGBP programs IGAC under the AICI (Air Ice Chemical Interactions) activity, and SOLAS (Surface Ocean Lower Atmosphere Study), and the WCRP project CliC (Climate and Cryosphere). The abundant snowpack in the Arctic is not just a white cover: an array of intriguing reactions has been observed within and on snowpacks and sea-ice during springtime Arctic sunrise that dramatically influences the composition of the atmosphere. Building on these discoveries, the OASIS research approach is aimed at a better understanding of air-surface chemical exchange in the context of a changing climate. Fundamental physical, chemical, and biologically-mediated chemical exchange processes will be studied to answer questions such as: Will climate change increase or decrease the amount of mercury deposited in the Arctic? How will warming affect regional and global climate? How are sea ice and snow chemistry and physics changing? What is the role of biological processes in producing reactive atmospheric gases? What is the role of sea-salt in ozone depletion? What are ecological and human health impacts of toxic materials such as mercury and

  20. Structural and leakage integrity of tubes affected by circumferential cracking

    SciTech Connect

    Hernalsteen, P.

    1997-02-01

    In this paper the author deals with the notion that circumferential cracks are generally considered unacceptable. He argues for the need to differentiate two facets of such cracks: the issue of the size and growth rate of a crack; and the issue of the structural strength and leakage potential of the tube in the presence of the crack. In this paper the author tries to show that the second point is not a major concern for such cracks. The paper presents data on the structural strength or burst pressure characteristics of steam generator tubes derived from models and data bases of experimental work. He also presents a leak rate model, and compares the performance of circumferential and axial cracks as far as burst strength and leak rate. The final conclusion is that subject to improvement in NDE capabilities (sizing, detection, growth), that Steam Generator Defect Specific Management can be used to allow circumferentially degraded tubes to remain in service.

  1. Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection

    PubMed Central

    Denison, Rachel N.; Driver, Jon; Ruff, Christian C.

    2013-01-01

    Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067

  2. Stage structure alters how complexity affects stability of ecological networks

    USGS Publications Warehouse

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  3. Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe.

    PubMed

    Schäfer, Ralf Bernhard; Caquet, Thierry; Siimes, Katri; Mueller, Ralf; Lagadic, Laurent; Liess, Matthias

    2007-09-01

    There is a paucity of large-scale field investigations on the effects of organic toxicants on stream macroinvertebrate community structure and ecosystem functions. We investigated a total of 29 streams in two study areas of France and Finland for pesticide exposure, invertebrates and leaf-litter breakdown. To link pesticide exposure and community composition we applied the trait-based Species At Risk (SPEAR) indicator system. In the French region, pesticide stress was associated with a decrease in the relative abundance and number of sensitive species in the communities. The presence of undisturbed upstream reaches partly compensated the effects of pesticide contamination. Functional effects of pesticides were identified by a 2.5-fold reduction of the leaf-litter breakdown rate that was closely correlated with the structural changes in the contaminated streams. No effects of pesticides were observed in Finnish streams since contamination with pesticides was very low. In a follow-up analysis, the SPEAR approach successfully discriminated between reference and contaminated sites across different biogeographical regions, also including results of a previous field study in North Germany. Furthermore, change of the community structure was detectable at a concentration range as low as 1/100 to 1/1000 the acute 48 h-LC50 of Daphnia magna. Our findings demonstrate that pesticides may influence the structure and function of lotic ecosystems and that the SPEAR approach can be used as a powerful tool in biomonitoring over large spatial scales.

  4. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    PubMed

    Huntley, Brian; Allen, Judy R M; Collingham, Yvonne C; Hickler, Thomas; Lister, Adrian M; Singarayer, Joy; Stuart, Anthony J; Sykes, Martin T; Valdes, Paul J

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  5. Do cell-autonomous and non-cell-autonomous effects drive the structure of tumor ecosystems?

    PubMed

    Tissot, Tazzio; Ujvari, Beata; Solary, Eric; Lassus, Patrice; Roche, Benjamin; Thomas, Frédéric

    2016-04-01

    By definition, a driver mutation confers a growth advantage to the cancer cell in which it occurs, while a passenger mutation does not: the former is usually considered as the engine of cancer progression, while the latter is not. Actually, the effects of a given mutation depend on the genetic background of the cell in which it appears, thus can differ in the subclones that form a tumor. In addition to cell-autonomous effects generated by the mutations, non-cell-autonomous effects shape the phenotype of a cancer cell. Here, we review the evidence that a network of biological interactions between subclones drives cancer cell adaptation and amplifies intra-tumor heterogeneity. Integrating the role of mutations in tumor ecosystems generates innovative strategies targeting the tumor ecosystem's weaknesses to improve cancer treatment.

  6. Trophic structure in the Gulf of Lions marine ecosystem (north-western Mediterranean Sea) and fishing impacts

    NASA Astrophysics Data System (ADS)

    Bănaru, D.; Mellon-Duval, C.; Roos, D.; Bigot, J.-L.; Souplet, A.; Jadaud, A.; Beaubrun, P.; Fromentin, J.-M.

    2013-02-01

    The Gulf of Lions ecosystem was described using the Ecopath mass-balance model to characterise its structure and functioning and to examine the effects of the multispecific fisheries operating in this area. The model is composed of 40 compartments, including 1 group of seabirds, 2 groups of cetaceans, 18 groups of fish, 12 groups of invertebrates, 5 groups of primary producers, detritus and discards. Input data were based on several recurrent scientific surveys, two alternative datasets for fishing data, stock assessment outputs, stomach content analyses and published information. Results showed that the functional groups were organised into five trophic levels with the highest one represented by dolphins, anglerfish, Atlantic bluefin tuna, European hake and European conger. European pilchard and European anchovy dominated in terms of fish biomass and catch. Other fish with high biomass such as Atlantic mackerel and blue whiting were highly important in the food web. Seabirds, dolphins and cuttlefish-squids represented keystone species. Important coupled pelagic-demersal-benthic interactions were described. The 7 different fisheries analysed were operating at mean trophic levels situated between 2.6 for small artisanal boats, and 4.1 for purse seines (> 24 m) targeting large pelagic fish, indicating an intensively exploited ecosystem. Large trawlers (24-40 m) had the highest impact on most of the groups considered; while purse seines (12-24 m) targeting small pelagic fish had the lowest impact. Preliminary results highlighted the importance of data sources for further ecosystem and fisheries analyses and management scenarios.

  7. Effects of vegetation structure on soil carbon, nutrients and greenhouse gas exchange in a savannah ecosystem of Mount Kilimanjaro Region

    NASA Astrophysics Data System (ADS)

    Becker, J.

    2015-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. The canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. Concentrations and stocks of C and N fractions, CEC and K+ decreased up to 50% outside the crown covered area. Microbial C:N ratio and CO2 efflux was about 30% higher outside the crown. This indicates N limitation and low C use efficiency in soil outside the crown area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial variance in nutrient limitation. Therefore, the capability of a savanna ecosystem

  8. Net ecosystem CO2 exchange of an invasive plant infestation: new insights on the effects of phenology and management practices on structure and functioning

    NASA Astrophysics Data System (ADS)

    Sonnentag, Oliver; Detto, Matteo; Runkle, Benjamin; Hatala, Jaclyn; Vargas, Rodrigo; Kelly, Maggi; Baldocchi, Dennis

    2010-05-01

    The net ecosystem carbon dioxide (CO2) exchange (FC) of invasive plant infestations has been subject of few studies only. Perennial pepperweed (Lepidium latifolium L.) is an aggressive invasive plant with severe economic and environmental consequences for infested ecosystems. A characteristic feature of pepperweed's phenological cycle is the dense arrangement of small white flowers during secondary inflorescence. Little is known about how pepperweed flowering and management practices such as mowing affect canopy structure and canopy photosynthesis (FA) and autotrophic respiration (FAR) and thus ecosystem respiration (FER; FC=FER-FA with FER=FAR+heterotrophic respiration [FHR]). To examine these effects we analyzed three years (2007-2010) of CO2 flux measurements made with eddy covariance, supporting environmental measurements and near-surface remote sensing data (canopy-scale reflectance, digital camera imagery) from a pepperweed-infested pasture in California's Sacramento-San Joaquin River Delta. The measurements cover three meteorologically similar summers (1 May - 30 September) that slightly differed in terms of land use practices. In 2007-2010, the site was subjected to year-round grazing by beef cattle, and in 2008, the site was additionally mowed in mid-May during flowering. We described structural changes in canopy development through seasonal changes in surface roughness for momentum transfer (z0m). Weekly soil CO2 efflux (≈ FHR) estimates from static chamber measurements made over bare soil were used to separate FER into FAR and FHR. We identified the onset of pepperweed's key phenological phases (i.e., germination, early vegetative growth, flowering, seed maturation, senescence, dormancy) through the integrated analysis of albedo of photosynthetically active radiation (PAR), a broad-band green normalized difference vegetation index, and a digital camera-based color index. We used non-linear mixed-effects model analysis to investigate the combined

  9. Variability in ecosystem structure and functioning in a low order stream: Implications of land use and season.

    PubMed

    Englert, Dominic; Zubrod, Jochen P; Schulz, Ralf; Bundschuh, Mirco

    2015-12-15

    Human activity can degrade the habitat quality for aquatic communities, which ultimately impacts the functions these communities provide. Disentangling the complex interaction between environmental and anthropogenic parameters as well as their alteration both along the stream channel, over the seasons, and finally their impact in the aquatic ecosystem represents a fundamental challenge for environmental scientists. Therefore, the present study investigates the implications of successive land uses (i.e., vineyard, urban area, highway and wastewater treatment plant (WWTP)) on structural and functional endpoints related to the ecosystem process of leaf litter breakdown during a winter and summer season in a five km stretch of a second-order stream in southern Germany. This sequence of the different land uses caused, among others, a downstream decline of the ecological status from "high" to "bad" judged based on the SPEARpesticides index together with significant shifts in the macroinvertebrate community composition, which coincided with substantial impairments (up to 100%) in the macroinvertebrate-mediated leaf decomposition. These effects, seem to be mainly driven by alterations in water quality rather than morphological modifications of the stream's habitat since the key shredder Gammarus was not in direct contact with the local habitat during in situ bioassays but showed similar response patterns than the other endpoints. While the relative effect size for most endpoints deviated considerably (sometimes above 2-fold) among seasons, the general response pattern pointed to reductions in energy supply for local and downstream communities. Although the present study focused on a single low-order stream with the main purpose of describing the impact of different land uses on various levels of biological organization, which limits the direct transferability and thus applicability of results to other stream ecosystems, the findings point to the need to develop adequate

  10. Ecosystem Services

    EPA Pesticide Factsheets

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  11. Reducing Uncertainty In Ecosystem Structure Inventories From Spaceborne Lidar Using Alternate Spatial Sampling Approaches

    NASA Astrophysics Data System (ADS)

    Lefsky, M. A.; Ramond, T.; Weimer, C. S.

    2010-12-01

    Current and proposed spaceborne lidar sensors sample the land surface using observations along transects in which consecutive observations in the along-track dimension are either contiguous (e.g. VCL, DESDynI, Livex) or spaced (ICESat). These sampling patterns are inefficient because multiple observations are made of a spatially autocorrelated phenomenon (i.e. vegetation patches) while large areas of the landscape are left un-sampled. This results in higher uncertainty in estimates of average ecosystem structure than would be obtained using either random sampling or sampling in regular grids. We compared three sampling scenarios for spaceborne lidar: five transects spaced every 850 m across-track with contiguous 25m footprints along-track, the same number of footprints distributed randomly, and a hybrid approach that retains the central transect of contiguous 25m footprints and distributes the remainder of the footprints into a grid with 178 m spacing. We used simulated ground tracks at four latitudes for a realistic spaceborne lidar mission and calculated the amount of time required to achieve 150 m spacing between transects and the number of near-coincident observations for each scenario. We used four lidar height datasets collected using the Laser Vegetation Imaging Sensor (La Selva, Costa Rica, Sierra Nevada, California, Duke Forest, North Carolina and Harvard Forest, Massachusetts) to calculate the standard error of estimates of landscape height for each scenario. We found that a hybrid sampling approach reduced the amount of time required to reach a transect spacing of 150 m by a factor of three at all four latitudes, and that the number of near-coincident observations was greater by a factor of five at the equator and at least equal throughout the range of latitudes sampled. The standard error of landscape height was between 2 and 2.5 times smaller using either hybrid or random sampling than using transect sampling. As the pulses generated by a spaceborne

  12. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  13. Effects of grazing on spatiotemporal variations in community structure and ecosystem function on the grasslands of Inner Mongolia, China.

    PubMed

    Su, Rina; Cheng, Junhui; Chen, Dima; Bai, Yongfei; Jin, Hua; Chao, Lumengqiqige; Wang, Zhijun; Li, Junqing

    2017-12-01

    Grasslands worldwide are suffering from overgrazing, which greatly alters plant community structure and ecosystem functioning. However, the general effects of grazing on community structure and ecosystem function at spatial and temporal scales has rarely been examined synchronously in the same grassland. Here, during 2011-2013, we investigated community structure (cover, height, and species richness) and aboveground biomass (AGB) using 250 paired field sites (grazed vs. fenced) across three vegetation types (meadow, typical, and desert steppes) on the Inner Mongolian Plateau. Grazing, vegetation type, and year all had significant effects on cover, height, species richness, and AGB, although the primary factor influencing variations in these variables was vegetation type. Spatially, grazing significantly reduced the measured variables in meadow and typical steppes, whereas no changes were observed in desert steppe. Temporally, both linear and quadratic relationships were detected between growing season precipitation and cover, height, richness, or AGB, although specific relationships varied among observation years and grazing treatments. In each vegetation type, the observed community properties were significantly correlated with each other, and the shape of the relationship was unaffected by grazing treatment. These findings indicate that vegetation type is the most important factor to be considered in grazing management for this semi-arid grassland.

  14. Ecosystem structure and fishing impacts in the northwestern Mediterranean Sea using a food web model within a comparative approach

    NASA Astrophysics Data System (ADS)

    Corrales, Xavier; Coll, Marta; Tecchio, Samuele; Bellido, José María; Fernández, Ángel Mario; Palomera, Isabel

    2015-08-01

    We developed an ecological model to characterize the structure and functioning of the marine continental shelf and slope area of the northwestern Mediterranean Sea, from Toulon to Cape La Nao (NWM model), in the early 2000s. The model included previously modeled areas in the NW Mediterranean (the Gulf of Lions and the Southern Catalan Sea) and expanded their ranges, covering 45,547 km2, with depths from 0 to 1000 m. The study area was chosen to specifically account for the connectivity between the areas and shared fish stocks and fleets. Input data were based on local scientific surveys and fishing statistics, published data on stomach content analyses, and the application of empirical equations to estimate consumption and production rates. The model was composed of 54 functional groups, from primary producers to top predators, and Spanish and French fishing fleets were considered. Results were analyzed using ecological indicators and compared with outputs from ecosystem models developed in the Mediterranean Sea and the Gulf of Cadiz prior to this study. Results showed that the main trophic flows were associated with detritus, phytoplankton, zooplankton and benthic invertebrates. Several high trophic level organisms (such as dolphins, benthopelagic cephalopods, large demersal fishes from the continental shelf, and other large pelagic fishes), and the herbivorous salema fish, were identified as keystone groups within the ecosystem. Results confirmed that fishing impact was high and widespread throughout the food web. The comparative approach highlighted that, despite productivity differences, the ecosystems shared common features in structure and functioning traits such as the important role of detritus, the dominance of the pelagic fraction in terms of flows and the importance of benthic-pelagic coupling.

  15. Biotic interactions as determinants of ecosystem structure in prairie wetlands: An example using fish

    USGS Publications Warehouse

    Hanson, M.A.; Zimmer, K.D.; Butler, Malcolm G.; Tangen, B.A.; Herwig, B.R.; Euliss, N.H.

    2005-01-01

    Wetlands are abundant throughout the prairie pothole region (PPR), an area comprising over 700,000 km2 in central North America. Prairie wetland communities are strongly influenced by regional physiography and climate, resulting in extreme spatial and temporal variability relative to other aquatic ecosystems. Given the strong influence of abiotic factors, PPR wetland communities have been viewed traditionally in the context of their responses to chemical and physical features of landscape and climate. Although useful, this physical-chemical paradigm may fail to account for ecosystem variability due to biotic influences, particularly those associated with presence of fish. Spatial and temporal variability in fish populations, in turn, may reflect anthropogenic activities, landscape characteristics, and climate-mediated effects on water levels, surface connectivity, and hydroperiods. We reviewed studies assessing influences of fish on prairie wetlands and examined precipitation patterns and biological data from PPR wetlands in east-central North Dakota and western Minnesota, USA. Our review and analysis indicated that native fish influence many characteristics of permanently flooded prairie wetlands, including water clarity and abundance of phytoplankton, submerged macrophytes, and aquatic invertebrates. We suggest that ecologists and managers will benefit from conceptual paradigms that better meld biotic interactions associated with fish, and perhaps other organisms, with chemical and physical influences on prairie wetland communities. ?? 2005, The Society of Wetland Scientists.

  16. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Comte, Jérôme; Lovejoy, Connie

    2015-01-01

    Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters.

  17. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Comte, Jérôme; Lovejoy, Connie

    2015-01-01

    Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters. PMID:25926816

  18. Tropical Forest Fragmentation Affects Floral Visitors but Not the Structure of Individual-Based Palm-Pollinator Networks

    PubMed Central

    Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo

    2015-01-01

    Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests

  19. Tropical forest fragmentation affects floral visitors but not the structure of individual-based palm-pollinator networks.

    PubMed

    Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo

    2015-01-01

    Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.

  20. Does competition among ecosystem engineering species result in tradeoffs in the production of ecosystem services?

    EPA Science Inventory

    Production of ecosystem services depends on the ecological community structure at a given location. Ecosystem engineering species (EES) can strongly determine community structure, but do they consequently determine the production of ecosystem services? We explore this question ...

  1. Monitoring of an hydraulic structure affected by ASR: A case study

    SciTech Connect

    Rivard, Patrice; Ballivy, Gerard; Gravel, Clermont; Saint-Pierre, Francois

    2010-04-15

    Relevant and effective instruments and techniques must be selected for monitoring hydraulic structures affected by Alkali-Silica Reaction ('ASR'). A program aiming at assessing the condition of a hydraulic structure affected by ASR is presented in this paper. The structure has been exhibiting signs of ASR for more than 30 years and shows various levels of damage. The program encompassed different components, consisting of: (1) stress measurement, (2) evaluation of concrete condition by nondestructive methods without drilling (seismic tomography), (3) the evaluation of the mechanical, physical and petrographic properties of the concrete determined from cores recovered from full-length boreholes. The results of this case study suggest that ASR may generate relatively little damage in structures and that the concrete mechanical properties do not seem to be significantly affected despite high expansion levels measured in this structure. A major crack was localized with the seismic tomography. The monitoring program will be used to follow the development of ASR in the structure.

  2. Biogeochemical processes underpin ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elemental cycling is critical to the function of ecosystems and delivery of key ecosystem services because many of these elements are essential nutrients or detrimental toxicants that directly affect the health of organisms and ecosystems. A team of authors from North Carolina State University and ...

  3. Trophic structure of the Peruvian marine ecosystem in 2000-2006: Insights on the effects of management scenarios for the hake fishery using the IBM trophic model Osmose

    NASA Astrophysics Data System (ADS)

    Marzloff, Martin; Shin, Yunne-Jai; Tam, Jorge; Travers, Morgane; Bertrand, Arnaud

    2009-01-01

    The individual-based trophic model Osmose is applied to the upwelling marine ecosystem off the coast of Peru. The dynamics and life cycle of eight major species of the Peruvian marine ecosystem are explicitly considered in the model. Reference simulations provide an overview of the trophic structure of the Peruvian ecosystem during the period 2000-2006. Results of model calibration and simulations are discussed in the light of current empirical knowledge on the trophic functioning of the Peruvian ecosystem and are compared to outputs obtained recently using the trophic model Ecopath. The impacts on the ecosystem of restoration plans for the depleted hake ( Merluccius gayi peruanus) population are explored through two management scenarios: a) a long term reduction of fishing effort targeting hake and b) a moratorium on the hake fishery. The simulations help better understand the recent failure of a 20 month hake moratorium and provide long-term strategic support to ecosystem-based management. Limits of our approach are discussed and recommendations are detailed for future developments of the Osmose model and ecosystem approach to fishery management in the Peruvian context.

  4. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    DTIC Science & Technology

    2016-10-12

    Estimated Heat -Affected-Zone Edges October 12, 2016 Approved for public release; distribution is unlimited. S.G. LambrakoS Center for Computational Materials...PAGES 17. LIMITATION OF ABSTRACT Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat -Affected-Zone Edges S.G. Lambrakos...experimentally measured estimates of the heat -affected-zone edge to examine the consistency of calculated temperature histories for steel welds. 12-10-2016 NRL

  5. Ecosystem Processes at the Watershed Scale: Stability and Resilience of Catchment Spatial Structure and Function to Disturbance

    NASA Astrophysics Data System (ADS)

    Baron, J.; Mast, A.; Clow, D. W.; Wetherbee, G. A.

    2014-12-01

    Ecohydrological systems evolve spontaneously in response to geologic, hydroclimate and biodiversity drivers. The stability and resilience of these systems to multiple disturbances can be addressed over specific temporal extents, potentially embedded within long term transience in response to geologic or climate change. The limits of ecohydrological resilience of system state in terms of vegetation canopy and soil catenae and the space/time distribution of water, carbon and nutrient cycling is determined by a set of critical feedbacks and potential substitutions of plant functional forms in response to disturbance. The ability of forest systems to return to states functionally similar to states prior to major disturbance, or combinations of multiple disturbances, is a critical question given increasing hydroclimate extremes, biological invasions, and human disturbance. Over the past century, forest landscape ecological patterns appear to have the ability to recover from significant disturbance and re-establish similar hydrological and ecological function in humid, biodiverse regions such as the southern Appalachians, and potentially drier forest ecosystems. Understanding and prediction of past and future long term dynamics requires explicit representation of spatial and temporal feedbacks and dependencies between hydrological, ecosystem and geomorphic processes, and the spatial pattern of species or plant functional type (PFT). Comprehensive models of watershed ecohydrological resilience requires careful balance between the level of process and parameter detail between the interacting components, relative to the structure, organization, space and time scales of the landscape.

  6. Ecosystem Processes at the Watershed Scale: Stability and Resilience of Catchment Spatial Structure and Function to Disturbance

    NASA Astrophysics Data System (ADS)

    Band, L. E.

    2015-12-01

    Ecohydrological systems evolve spontaneously in response to geologic, hydroclimate and biodiversity drivers. The stability and resilience of these systems to multiple disturbances can be addressed over specific temporal extents, potentially embedded within long term transience in response to geologic or climate change. The limits of ecohydrological resilience of system state in terms of vegetation canopy and soil catenae and the space/time distribution of water, carbon and nutrient cycling is determined by a set of critical feedbacks and potential substitutions of plant functional forms in response to disturbance. The ability of forest systems to return to states functionally similar to states prior to major disturbance, or combinations of multiple disturbances, is a critical question given increasing hydroclimate extremes, biological invasions, and human disturbance. Over the past century, forest landscape ecological patterns appear to have the ability to recover from significant disturbance and re-establish similar hydrological and ecological function in humid, biodiverse regions such as the southern Appalachians, and potentially drier forest ecosystems. Understanding and prediction of past and future long term dynamics requires explicit representation of spatial and temporal feedbacks and dependencies between hydrological, ecosystem and geomorphic processes, and the spatial pattern of species or plant functional type (PFT). Comprehensive models of watershed ecohydrological resilience requires careful balance between the level of process and parameter detail between the interacting components, relative to the structure, organization, space and time scales of the landscape.

  7. The Internal Structure of Positive and Negative Affect: A Confirmatory Factor Analysis of the PANAS

    ERIC Educational Resources Information Center

    Tuccitto, Daniel E.; Giacobbi, Peter R., Jr.; Leite, Walter L.

    2010-01-01

    This study tested five confirmatory factor analytic (CFA) models of the Positive Affect Negative Affect Schedule (PANAS) to provide validity evidence based on its internal structure. A sample of 223 club sport athletes indicated their emotions during the past week. Results revealed that an orthogonal two-factor CFA model, specifying error…

  8. Changes within a single land-use category alter microbial diversity and community structure: molecular evidence from wood-inhabiting fungi in forest ecosystems.

    PubMed

    Purahong, Witoon; Hoppe, Björn; Kahl, Tiemo; Schloter, Michael; Schulze, Ernst-Detlef; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-06-15

    The impact of changes within a single land-use category or land-use intensity on microbial communities is poorly understood, especially with respect to fungi. Here we assessed how forest management regimes and a change in forest type affect the richness and community structure of wood-inhabiting fungi across Germany. We used molecular methods based on the length polymorphism of the internal transcribed spacers and the 5.8S rRNA gene to assess fungal operational taxonomic units (OTUs). A cloning/sequencing approach was used to identify taxonomic affinities of the fungal OTUs. Overall, 20-24% and 25-27% of native fungal OTUs from forest reserves and semi-natural forests became undetectable or were lost in managed and converted forests, respectively. Fungal richness was significantly reduced during a regeneration phase in age-class beech forests with a high level of wood extraction (P = 0.017), whereas fungal community structures were not significantly affected. Conversion of forests from native, deciduous to coniferous species caused significant changes in the fungal community structure (R = 0.64-0.66, P = 0.0001) and could reduce fungal richness (P < 0.05) which may depend on which coniferous species was introduced. Our results showed that Ascocoryne cylichnium, Armillaria sp., Exophiala moniliae, Hyphodontia subalutacea and Fomes fomentarius, all known for wood-decaying abilities were strongly reduced in their abundances when forests were converted from beech to coniferous. We conclude that changes within a single land-use category can be regarded as a major threat to fungal diversity in temperate forest ecosystems.

  9. Relating biomass and vegetation structure in water limited ecosystems using a celluar automata based model

    NASA Astrophysics Data System (ADS)

    Frechen, Nanu; Hinz, Christoph; McGrath, Gavan

    2015-04-01

    Within arid and semiarid regions banded vegetation patterns are wide spread. While the soil-vegetation feedback causing this self-organized has been well understood and implemented in various models, the relationship between the actual pattern, e.g. band width and spacing as well as plant density, has not been well understood. In this study we use a cellular automaton [1] to investigate the effect of infiltration properties and rainfall on patter formation as well as on biomass production and vegetation coverage. The first part of the investigation showed that the model is consistent with the existing knowledge on the dependence of wavelength on annual rainfall. We use the same parameter space to assess biomass and fractional coverage. We found that there is a nonlinear relationship between biomass and infiltration capacity normalized with rainfall input. This indicates that the degree of organisation is not directly related to the productivity as expressed with biomass. Similar results were found for fractional surface cover of the vegetation. [1] McGrath, G. S., K. Paik, and C. Hinz. 2012. Microtopography alters self-organized vegetation patterns in water-limited ecosystems, Journal of Geophysical Research: Biogeosciences (2005-2012) 117, G03021, doi:10.1029/2011JG001870

  10. IMPACTS OF INTERACTING ELEVATED ATMOSPHERIC CO2 AND O3 ON THE STRUCTURE AND FUNCTIONING OF A NORTHERN FOREST ECOSYSTEM: OPERATING AND DECOMMISSIONING THE ASPEN FACE PROJECT

    SciTech Connect

    Burton, Andrew J.; Zak, Donald R.; Kubiske, Mark E.; Pregitzer, Kurt S.

    2014-06-30

    Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: “What are the effects of elevated [CO2] and [O3], alone and in combination, on the structure and functioning of northern hardwood forest ecosystems?” From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem to compare the responses of early-successional, rapid-growing shade intolerant trembling aspen and paper birch to those of a late successional, slower growing shade tolerant sugar maple. Fumigations with elevated CO2 (560 ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date. Response variables quantified during the experiment included growth, competitive interactions and stand dynamics, physiological processes, plant nutrient status and uptake, tissue biochemistry, litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. In 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. Throughout the experiment, aspen and birch

  11. Understanding relationships between morphology and ecosystem structure in a shallow tidal basins of Venice lagoon

    NASA Astrophysics Data System (ADS)

    Giuseppina Persichillo, Maria; Taramelli, Andrea; Valentini, Emiliana; Filipponi, Federico; Meisina, Claudia; Zucca, Francesco

    2014-05-01

    Coastal wetlands represent complex ecosystems prone to continue fluctuation of their internal equilibrium. They are valuable natural resources characterized by the continue interactions between geomorphological and biological components. Their adaptation to changing conditions is highly dependent on the rate and extent of spatial and temporal processes and their responses are still poorly understood. According to this, the vulnerability assessment to natural and human made hazard have became fundamental to analyse the resilience of these areas, their ability to cope with the impacts from externally driven forces or the efforts needed to minimize the impacts (Gitay et al., 2011). The objective of this research is to develop a comprehensive and replicable method through the application of Multi-Source data analysis, based on the integration of Earth Observation data and field survey, to analyse a shallow tidal basin of salt marshes, located in the northern part of the Venice lagoon. The study site is characterised by relatively elevated areas colonized by halophytic vegetation, and tidal flats, with not vegetated areas, characterized by lower elevations. Sub-pixel processing techniques (Spectral Mixing Analysis - SMA) were used to analyse the spatial distribution of both vegetation and sediments typology. Furthermore the classifications were assayed in terms of spatial (Power law) and temporal (Empirical Orthogonal Functions) patterns, in order to find the main characteristics of the aforementioned spatial trends and their variation over time. The principal aim is to study the spatio-temporal evolution of this coastal wetland area, in order to indentify tipping points, namely thresholds, beyond which the system reaches critical state and the main climatic, hydrodynamic and morphological variables that may influence and increase this behaviour. This research represents a new approach to study the geomorphological processes and to improve the management and

  12. Non-Redfield carbon and nitrogen cycling in the Arctic: Effects of ecosystem structure and dynamics

    NASA Astrophysics Data System (ADS)

    Daly, Kendra L.; Wallace, Douglas W. R.; Smith, Walker O.; Skoog, Annelie; Lara, RubéN.; Gosselin, Michel; Falck, Eva; Yager, Patricia L.

    1999-02-01

    The C:N ratio is a critical parameter used in both global ocean carbon models and field studies to understand carbon and nutrient cycling as well as to estimate exported carbon from the euphotic zone. The so-called Redfield ratio (C:N = 6.6 by atoms) [Redfield et al., 1963] is widely used for such calculations. Here we present data from the NE Greenland continental shelf that show that most of the C:N ratios for particulate (autotrophic and heterotrophic) and dissolved pools and rates of transformation among them exceed Redfield proportions from June to August, owing to species composition, size, and biological interactions. The ecosystem components that likely comprised sinking particles and had relatively high C:N ratios (geometric means) included (1) the particulate organic matter (C:N = 8.9) dominated by nutrient-deficient diatoms, resulting from low initial nitrate concentrations (approximately 4 μM) in Arctic surface waters; (2) the dominant zooplankton, herbivorous copepods (C:N = 9.6), having lipid storage typical of Arctic copepods; and (3) copepod fecal pellets (C:N = 33.2). Relatively high dissolved organic carbon concentrations (median 105 μM) were approximately 25 to 45 μM higher than reported for other systems and may be broadly characteristic of Arctic waters. A carbon-rich dissolved organic carbon pool also was generated during summer. Since the magnitude of carbon and nitrogen uncoupling in the surface mixed layer appeared to be greater than in other regions and occurred throughout the productive season, the C:N ratio of particulate organic matter may be a better conversion factor than the Redfield ratio to estimate carbon export for broad application in northern high-latitude systems.

  13. School and Classroom Goal Structures: Effects on Affective Responses in Physical Education

    ERIC Educational Resources Information Center

    Barkoukis, Vassilis; Koidou, Eirini; Tsorbatzoudis, Haralambos; Grouios, George

    2012-01-01

    The current study examined the relative impact of school and classroom goal structures on students' affective responses and the mediating role of motivation. The sample of the study consisted of 368 high school students, who completed measures of school and classroom goal structures, motivational regulations in physical education, boredom, and…

  14. Ecosystem Journalism

    ERIC Educational Resources Information Center

    Robertson, Amy; Mahlin, Kathryn

    2005-01-01

    If the organisms in a prairie ecosystem created a newspaper, what would it look like? What important news topics of the ecosystem would the organisms want to discuss? Imaginative and enthusiastic third-grade students were busy pondering these questions as they tried their hands at "ecosystem journalism." The class had recently completed…

  15. Natural ecosystems

    USGS Publications Warehouse

    Fleishman, Erica; Belnap, Jayne; Cobb, Neil; Enquist, Carolyn A.F.; Ford, Karl; MacDonald, Glen; Pellant, Mike; Schoennagel, Tania; Schmit, Lara M.; Schwartz, Mark; van Drunick, Suzanne; Westerling, Anthony LeRoy; Keyser, Alisa; Lucas, Ryan

    2013-01-01

    Natural Ecosystems analyzes the association of observed changes in climate with changes in the geographic distributions and phenology (the timing of blossoms or migrations of birds) for Southwestern ecosystems and their species, portraying ecosystem disturbances—such as wildfires and outbreaks of forest pathogens—and carbon storage and release, in relation to climate change.

  16. Ecosystem Jenga!

    ERIC Educational Resources Information Center

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  17. Intraspecific variation in a predator affects community structure and cascading trophic interactions.

    PubMed

    Post, David M; Palkovacs, Eric P; Schielke, Erika G; Dodson, Stanley I

    2008-07-01

    Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.

  18. Is increasing industrialization affecting remote ecosystem health in the South Americas? Insights from ocean surface water measurements of As, Sb and Pb from a GEOTRACES transect

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Salaun, Pascal; Van den Berg, Stan; Bi, Zaoshun

    2014-05-01

    Continued industrial development of the South Americas with increasing atmospheric emission of toxic trace metals has lead to a growing concern about possible effects on pristine ecosystem health. Concentration measurements of trace metals in ocean surface waters in the North Atlantic have successfully revealed the global extent of atmospheric pollution in the Northern Hemisphere during economical growth in the USA and Europe, suggesting a similar approach can be applied to the Southern Hemisphere. To this end, we determined concentrations of lead (Pb), antimony (Sb) and arsenic (As) using voltammetry in surface water samples of the South Atlantic Ocean collected during the third leg of the GEOTRACES West Atlantic Cruise. These elements are volatile and therefore most likely suitable tracer elements of industrial emissions from South America. The samples were not filtered and the solutions were acidified and UV digested. Total concentrations of Pb were detected. Detected As levels correspond to the sum of inorganic species (AsIII + AsV) plus the mono methyl arsenic acid (MMA) while the dimethyl arsenic acid (DMA) is not detected in such conditions. For Sb, detected levels correspond at least to the sum of inorganic fractions (SbIII + SbV). The measured concentrations for Pb varied from 6 to 23 pM. Concentrations were highest at -35° latitude and lowest at -40° and -50° latitude. We found a decreasing trend from about -35° latitude southwards. The average concentrations of As was 20 nM and of Sb 1.2 nM. Arsenic showed a more significant north to south trend than Sb. Arsenic concentration was highest at -23 ° latitude (21 nM) and the lowest at -43 ° latitude (17.7 nM). Antimony concentration was highest at -31 ° latitude (1.5 nM) and lowest at -35 ° latitude (1.0 nM). Our preliminary data suggests that the major industrial centres in Brazil (i.e., Sao Paolo, Rio de Janeiro) and Argentina (i.e., Buenos Aires) affect atmospheric metal fluxes to remote

  19. Assessing the structure and temporal dynamics of seabird communities: the challenge of capturing marine ecosystem complexity.

    PubMed

    Moreno, Rocío; Stowasser, Gabriele; McGill, Rona A R; Bearhop, Stuart; Phillips, Richard A

    2016-01-01

    Understanding interspecific interactions, and the influences of anthropogenic disturbance and environmental change on communities, are key challenges in ecology. Despite the pressing need to understand these fundamental drivers of community structure and dynamics, only 17% of ecological studies conducted over the past three decades have been at the community level. Here, we assess the trophic structure of the procellariiform community breeding at South Georgia, to identify the factors that determine foraging niches and possible temporal changes. We collected conventional diet data from 13 sympatric species between 1974 and 2002, and quantified intra- and inter-guild, and annual variation in diet between and within foraging habits. In addition, we tested the reliability of stable isotope analysis (SIA) of seabird feathers collected over a 13-year period, in relation to those of their potential prey, as a tool to assess community structure when diets are diverse and there is high spatial heterogeneity in environmental baselines. Our results using conventional diet data identified a four-guild community structure, distinguishing species that mainly feed on crustaceans; large fish and squid; a mixture of crustaceans, small fish and squid; or carrion. In total, Antarctic krill Euphausia superba represented 32%, and 14 other species a further 46% of the combined diet of all 13 predators, underlining the reliance of this community on relatively few types of prey. Annual variation in trophic segregation depended on relative prey availability; however, our data did not provide evidence of changes in guild structure associated with a suggested decline in Antarctic krill abundance over the past 40 years. Reflecting the differences in δ(15) N of potential prey (crustaceans vs. squid vs. fish and carrion), analysis of δ(15) N in chick feathers identified a three-guild community structure that was constant over a 13-year period, but lacked the trophic cluster representing

  20. Predicting Consumer Biomass, Size-Structure, Production, Catch Potential, Responses to Fishing and Associated Uncertainties in the World's Marine Ecosystems.

    PubMed

    Jennings, Simon; Collingridge, Kate

    2015-01-01

    can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts.

  1. Environmental impacts of the use of ecosystem services: case study of birdwatching.

    PubMed

    Kronenberg, Jakub

    2014-09-01

    The main reason for promoting the concept of ecosystem services lies in its potential to contribute to environmental conservation. Highlighting the benefits derived from ecosystems fosters an understanding of humans' dependence on nature, as users of ecosystem services. However, the act of using ecosystem services may not be environmentally neutral. As with the use of products and services generated within an economy, the use of ecosystem services may lead to unintended environmental consequences throughout the 'ecosystem services supply chain.' This article puts forward a framework for analyzing environmental impacts related to the use of ecosystem services, indicating five categories of impact: (1) direct impacts (directly limiting the service's future availability); and four categories of indirect impacts, i.e., on broader ecosystem structures and processes, which can ultimately also affect the initial service: (2) impacts related to managing ecosystems to maximize the delivery of selected services (affecting ecosystems' capacity to provide other services); (3) impacts associated with accessing ecosystems to use their services (affecting other ecosystem components); (4) additional consumption of products, infrastructure or services required to use a selected ecosystem service, and their life-cycle environmental impacts; and (5) broader impacts on the society as a whole (environmental awareness of ecosystem service users and other stakeholders). To test the usefulness of this framework, the article uses the case study of birdwatching, which demonstrates all of the above categories of impacts. The article justifies the need for a broader consideration of environmental impacts related to the use of ecosystem services.

  2. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems.

    PubMed

    Violin, Christy R; Cada, Peter; Sudduth, Elizabeth B; Hassett, Brooke A; Penrose, David L; Bernhardt, Emily S

    2011-09-01

    Streams, as low-lying points in the landscape, are strongly influenced by the stormwaters, pollutants, and warming that characterize catchment urbanization. River restoration projects are an increasingly popular method for mitigating urban insults. Despite the growing frequency and high expense of urban stream restoration projects, very few projects have been evaluated to determine whether they can successfully enhance habitat structure or support the stream biota characteristic of reference sites. We compared the physical and biological structure of four urban degraded, four urban restored, and four forested streams in the Piedmont region of North Carolina to quantify the ability of reach-scale stream restoration to restore physical and biological structure to urban streams and to examine the assumption that providing habitat is sufficient for biological recovery. To be successful at mitigating urban impacts, the habitat structure and biological communities found in restored streams should be more similar to forested reference sites than to their urban degraded counterparts. For every measured reach- and patch-scale attribute, we found that restored streams were indistinguishable from their degraded urban stream counterparts. Forested streams were shallower, had greater habitat complexity and median sediment size, and contained less-tolerant communities with higher sensitive taxa richness than streams in either urban category. Because heavy machinery is used to regrade and reconfigure restored channels, restored streams had less canopy cover than either forested or urban streams. Channel habitat complexity and watershed impervious surface cover (ISC) were the best predictors of sensitive taxa richness and biotic index at the reach and catchment scale, respectively. Macroinvertebrate communities in restored channels were compositionally similar to the communities in urban degraded channels, and both were dissimilar to communities in forested streams. The

  3. Environmental control of diatom community size structure varies across aquatic ecosystems.

    PubMed

    Finkel, Zoe V; Vaillancourt, Colin Jacob; Irwin, Andrew J; Reavie, Euan D; Smol, John P

    2009-05-07

    Changes in the size structure of photoautotrophs influence food web structure and the biogeochemical cycling of carbon. Decreases in the median size of diatoms within communities, in concert with climate warming and water column stratification, have been observed over the Cenozoic in the ocean and over the last 50 years in Lake Tahoe. Decreases in the proportion of larger plankton are frequently observed in response to reduced concentrations of limiting nutrients in marine systems and large stratified lakes. By contrast, we show a decrease in the median size of planktonic diatoms in response to higher nutrient concentrations in a set of intermediate-sized alkaline lakes. Climate-induced increases in the frequency, duration and strength of water column stratification may select smaller planktonic species in the ocean and larger lakes owing to a reduction in nutrient availability and sinking rates, while light limitation, stimulated by nutrient eutrophication and high chlorophyll concentrations, may select smaller species within a community owing to their high light absorption efficiencies and lower sinking rates. The relative importance of different physiological and ecological rates and processes on the size structure of communities varies in different aquatic systems owing to varying combinations of abiotic and biotic constraints.

  4. Environmental control of diatom community size structure varies across aquatic ecosystems

    PubMed Central

    Finkel, Zoe V.; Vaillancourt, Colin Jacob; Irwin, Andrew J.; Reavie, Euan D.; Smol, John P.

    2009-01-01

    Changes in the size structure of photoautotrophs influence food web structure and the biogeochemical cycling of carbon. Decreases in the median size of diatoms within communities, in concert with climate warming and water column stratification, have been observed over the Cenozoic in the ocean and over the last 50 years in Lake Tahoe. Decreases in the proportion of larger plankton are frequently observed in response to reduced concentrations of limiting nutrients in marine systems and large stratified lakes. By contrast, we show a decrease in the median size of planktonic diatoms in response to higher nutrient concentrations in a set of intermediate-sized alkaline lakes. Climate-induced increases in the frequency, duration and strength of water column stratification may select smaller planktonic species in the ocean and larger lakes owing to a reduction in nutrient availability and sinking rates, while light limitation, stimulated by nutrient eutrophication and high chlorophyll concentrations, may select smaller species within a community owing to their high light absorption efficiencies and lower sinking rates. The relative importance of different physiological and ecological rates and processes on the size structure of communities varies in different aquatic systems owing to varying combinations of abiotic and biotic constraints. PMID:19203916

  5. Urbanization effects on the composition and structure of macrophytes communities in a lotic ecosystem of Pernambuco State, Brazil.

    PubMed

    Xavier, L R C C; Scherner, F; Burgos, D C; Barreto, R C; Pereira, S M B

    2016-01-01

    Population growth in urban areas changes freshwater ecosystems, and this can have consequences for macrophyte communities as can be seen in the municipalities that border the Capibaribe River, Pernambuco, Brazil. This study reports the effects of urbanization on the composition and structure of macrophyte communities in areas along that river. The following urbanized and non-urbanized sampling sites were chosen: Sites 1 and 2 (municipality of Santa Cruz do Capibaribe), Sites 3 and 4 (municipality of Toritama), and Sites 5 and 6 (metropolitan region of Recife). These sites were visited every two months from January to July 2013 to observe seasonal variation (wet and dry seasons). Thirty-one species were identified. Generally, the non-urbanized sites had a higher number of species. Multivariate analyses indicated significant overall differences between urbanized and non-urbanized areas (R = 0.044; p < 0.001) and between seasons (R = 0.018; p < 0.019). Owing to the large variation in physical, chemical, and biological characteristics between urbanized and non-urbanized areas, we found that urbanization significantly influenced the floristic composition and structure of macrophyte communities.

  6. The importance of landscape and spatial structure for hymenopteran-based food webs in an agro-ecosystem.

    PubMed

    Fabian, Yvonne; Sandau, Nadine; Bruggisser, Odile T; Aebi, Alex; Kehrli, Patrik; Rohr, Rudolf P; Naisbit, Russell E; Bersier, Louis-Félix

    2013-11-01

    1. Understanding the environmental factors that structure biodiversity and food webs among communities is central to assess and mitigate the impact of landscape changes. 2. Wildflower strips are ecological compensation areas established in farmland to increase pollination services and biological control of crop pests and to conserve insect diversity. They are arranged in networks in order to favour high species richness and abundance of the fauna. 3. We describe results from experimental wildflower strips in a fragmented agricultural landscape, comparing the importance of landscape, of spatial arrangement and of vegetation on the diversity and abundance of trap-nesting bees, wasps and their enemies, and the structure of their food webs. 4. The proportion of forest cover close to the wildflower strips and the landscape heterogeneity stood out as the most influential landscape elements, resulting in a more complex trap-nest community with higher abundance and richness of hosts, and with more links between species in the food webs and a higher diversity of interactions. We disentangled the underlying mechanisms for variation in these quantitative food web metrics. 5. We conclude that in order to increase the diversity and abundance of pollinators and biological control agents and to favour a potentially stable community of cavity-nesting hymenoptera in wildflower strips, more investment is needed in the conservation and establishment of forest habitats within agro-ecosystems, as a reservoir of beneficial insect populations.

  7. Limited population structure, genetic drift and bottlenecks characterise an endangered bird species in a dynamic, fire-prone ecosystem.

    PubMed

    Brown, Sarah M; Harrisson, Katherine A; Clarke, Rohan H; Bennett, Andrew F; Sunnucks, Paul

    2013-01-01

    Fire is a major disturbance process in many ecosystems world-wide, resulting in spatially and temporally dynamic landscapes. For populations occupying such environments, fire-induced landscape change is likely to influence population processes, and genetic patterns and structure among populations. The Mallee Emu-wren Stipiturus mallee is an endangered passerine whose global distribution is confined to fire-prone, semi-arid mallee shrublands in south-eastern Australia. This species, with poor capacity for dispersal, has undergone a precipitous reduction in distribution and numbers in recent decades. We used genetic analyses of 11 length-variable, nuclear loci to examine population structure and processes within this species, across its global range. Populations of the Mallee Emu-wren exhibited a low to moderate level of genetic diversity, and evidence of bottlenecks and genetic drift. Bayesian clustering methods revealed weak genetic population structure across the species' range. The direct effects of large fires, together with associated changes in the spatial and temporal patterns of suitable habitat, have the potential to cause population bottlenecks, serial local extinctions and subsequent recolonisation, all of which may interact to erode and homogenise genetic diversity in this species. Movement among temporally and spatially shifting habitat, appears to maintain long-term genetic connectivity. A plausible explanation for the observed genetic patterns is that, following extensive fires, recolonisation exceeds in-situ survival as the primary driver of population recovery in this species. These findings suggest that dynamic, fire-dominated landscapes can drive genetic homogenisation of populations of species with low-mobility and specialised habitat that otherwise would be expected to show strongly structured populations. Such effects must be considered when formulating management actions to conserve species in fire-prone systems.

  8. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems

    USGS Publications Warehouse

    Brown, B.L.; Swan, C.M.; Auerbach, D.A.; Campbell, Grant E.H.; Hitt, N.P.; Maloney, K.O.; Patrick, C.

    2011-01-01

    Explaining the mechanisms underlying patterns of species diversity and composition in riverine networks is challenging. Historically, community ecologists have conceived of communities as largely isolated entities and have focused on local environmental factors and interspecific interactions as the major forces determining species composition. However, stream ecologists have long embraced a multiscale approach to studying riverine ecosystems and have studied both local factors and larger-scale regional factors, such as dispersal and disturbance. River networks exhibit a dendritic spatial structure that can constrain aquatic organisms when their dispersal is influenced by or confined to the river network. We contend that the principles of metacommunity theory would help stream ecologists to understand how the complex spatial structure of river networks mediates the relative influences of local and regional control on species composition. From a basic ecological perspective, the concept is attractive because new evidence suggests that the importance of regional processes (dispersal) depends on spatial structure of habitat and on connection to the regional species pool. The role of local factors relative to regional factors will vary with spatial position in a river network. From an applied perspective, the long-standing view in ecology that local community composition is an indicator of habitat quality may not be uniformly applicable across a river network, but the strength of such bioassessment approaches probably will depend on spatial position in the network. The principles of metacommunity theory are broadly applicable across taxa and systems but seem of particular consequence to stream ecology given the unique spatial structure of riverine systems. By explicitly embracing processes at multiple spatial scales, metacommunity theory provides a foundation on which to build a richer understanding of stream communities.

  9. Spatiotemporal diversity, structure and trophic guilds of insect assemblages in a semi-arid Sabkha ecosystem

    PubMed Central

    Menasria, Taha; Neffar, Souad; Chafaa, Smail; Bradai, Lyès; Chaibi, Rachid; Mekahlia, Mohamed Nacer; Bendjoudi, Djamel; Si Bachir, Abdelkrim

    2015-01-01

    The current study highlights some knowledge on the diversity and structure of insect communities and trophic groups living in Sabkha Djendli (semi-arid area of Northeastern Algeria). The entomofauna was monthly sampled from March to November 2006 using pitfall traps at eight sites located at the vicinity of the Sabkha. Structural and diversity parameters (species richness, Shannon index, evenness) were measured for both insect orders and trophic guilds. The canonical correspondence analysis (CCA) was applied to determine how vegetation parameters (species richness and cover) influence spatial and seasonal fluctuations of insect assemblages. The catches totalled 434 insect individuals classified into 75 species, 62 genera, 31 families and 7 orders, of which Coleoptera and Hymenoptera were the most abundant and constant over seasons and study stations. Spring and autumn presented the highest values of diversity parameters. Individual-based Chao-1 species richness estimator indicated 126 species for the total individuals captured in the Sabkha. Based on catch abundances, the structure of functional trophic groups was predators (37.3%), saprophages (26.7%), phytophages (20.5%), polyphages (10.8%), coprophages (4.6%); whereas in terms of numbers of species, they can be classified as phytophages (40%), predators (25.3%), polyphages (13.3%), saprophages (12%), coprophages (9.3%). The CCA demonstrated that phytophages and saprophages as well as Coleoptera and Orthoptera were positively correlated with the two parameters of vegetation, especially in spring and summer. While the abundance of coprophages was positively correlated with species richness of plants, polyphage density was positively associated with vegetation cover. The insect community showed high taxonomic and functional diversity that is closely related to diversity and vegetation cover in different stations of the wetland and seasons. PMID:25825682

  10. 'One physical system': Tansley's ecosystem as Earth's critical zone.

    PubMed

    Richter, Daniel deB; Billings, Sharon A

    2015-05-01

    Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering.

  11. Stable nitrogen isotopic composition of amino acids reveals food web structure in stream ecosystems.

    PubMed

    Ishikawa, Naoto F; Kato, Yoshikazu; Togashi, Hiroyuki; Yoshimura, Mayumi; Yoshimizu, Chikage; Okuda, Noboru; Tayasu, Ichiro

    2014-07-01

    The stable N isotopic composition of individual amino acids (SIAA) has recently been used to estimate trophic positions (TPs) of animals in several simple food chain systems. However, it is unknown whether the SIAA is applicable to more complex food web analysis. In this study we measured the SIAA of stream macroinvertebrates, fishes, and their potential food sources (periphyton and leaf litter of terrestrial C3 plants) collected from upper and lower sites in two streams having contrasting riparian landscapes. The stable N isotope ratios of glutamic acid and phenylalanine confirmed that for primary producers (periphyton and C3 litter) the TP was 1, and for primary consumers (e.g., mayfly and caddisfly larvae) it was 2. We built a two-source mixing model to estimate the relative contributions of aquatic and terrestrial sources to secondary and higher consumers (e.g., stonefly larva and fishes) prior to the TP calculation. The estimated TPs (2.3-3.5) roughly corresponded to their omnivorous and carnivorous feeding habits, respectively. We found that the SIAA method offers substantial advantages over traditional bulk method for food web analysis because it defines the food web structure based on the metabolic pathway of amino groups, and can be used to estimate food web structure under conditions where the bulk method cannot be used. Our result provides evidence that the SIAA method is applicable to the analysis of complex food webs, where heterogeneous resources are mixed.

  12. Structural Interrelationship in the Ecosystem Network Using Method of Complex Networks

    NASA Astrophysics Data System (ADS)

    Petrova, I.; Loew, A.

    2012-04-01

    Complex Networks have been recently successfully applied to problems in climate science. They have been used as an alternative method to reveal persistent structural features in the climate system based on observed and model simulated fields of temperature, precipitation and other meteorological fields. CCN provide information on the topology, dynamics and stability characteristic features in the climate system and help to e.g. identify regions with large importance for teleconnections. The present paper uses climate networks to analyze results from the Earth System Model of the Max-Planck-Institute for Meteorology, conducted in the frame of the Coupled Model Intercomparison Project Phase 5 (CMIP5). By analyzing local and global measures such as centralities and link distance the climate and especially terrestrial teleconnection patterns are revealed and investigated. To construct the network the 30- year time-series (1979-2009) of evaporation flux, gross and net primary production were retrieved from the two experimental setups of the MPI-ESM using either a full coupled climate model (ocean, atmosphere, land) or prescribed sea surface temperature fields (atmosphere, land only). The major teleconnection patterns discovered were associated with climate related energy information flow and material cycling functionality within the Earth system. Non-local spatial linkages to the main teleconnection patterns, like NAO and ENSO were analyzed, as well as spatial-temporal structures obtained by the community detection method were established. An outlook of using complex networks as an alternative tool for the evaluation of coupled Earth System models will be given.

  13. Future directions of ecosystem science

    USGS Publications Warehouse

    Baron, Jill; Galvin, Kathleen A.

    1990-01-01

    Scientific knowledge about ecosystem structure and function has expanded greatly during the past few decades. Terrestrial and aquatic nutrient cycling, ecosystem energetics, population dynamics, belowground processes, and food webs have been studied at the plot, stand, watershed, and landscape levels at many locations around the globe. Ideas about terrestrial-atmospheric interactions and human interference in these processes have changed dramatically. There is new appreciation of the need to incorporate into ecosystem studies the interactions between human populations and the ecosystem, not only because humans affect ecosystem processes, but because these systems support human populations (Glantz 1988, Holden 1988, Parry et al. 1988, WCED 1987). Recent advances in ecosystem science are due, in part, to technological improvements in computing power, new laboratory and field physical and chemical analytical techniques, and satellite imagery for remote sensing of Earth's structure and dynamics. Modeling and geographic information systems have provided the capability for integrating multiple data sets with process simulations to generate hypotheses about regional ecosystem function. Concurrent with these scientific developments has been a growing concern about the links between the health of the environment and world-wide industrial, land, and resource-management practices. Environmental damage at the local level was widely recognized in the 1960s, prompting the environmental movement of that decade. Regional environmental problems with multiple effects and politically difficult solutions have been perceived more recently; the issue of acidic deposition provides an example of such a second-generation concern (Clark and Holling 1985). Today there is a growing awareness of global-scale environmental degradation brought about by the combined actions of all peoples on Earth (Clark 1989, Woodmansee et al. 1988). The three levels of environmental concern--local, regional

  14. Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils.

    PubMed

    Mueller, Peter; Granse, Dirk; Nolte, Stefanie; Do, Hai Thi; Weingartner, Magdalena; Hoth, Stefan; Jensen, Kai

    2017-03-20

    Tidal wetlands have been increasingly recognized as long-term carbon sinks in recent years. Work on carbon sequestration and decomposition processes in tidal wetlands focused so far mainly on effects of global-change factors such as sea-level rise and increasing temperatures. However, little is known about effects of land use, such as livestock grazing, on organic matter decomposition and ultimately carbon sequestration. The present work aims at understanding the mechanisms by which large herbivores can affect organic matter decomposition in tidal wetlands. This was achieved by studying both direct animal-microbe interactions and indirect animal-plant-microbe interactions in grazed and ungrazed areas of two long-term experimental field sites at the German North Sea coast. We assessed bacterial and fungal gene abundance using quantitative PCR, as well as the activity of microbial exo-enzymes by conducting fluorometric assays. We demonstrate that grazing can have a profound impact on the microbial community structure of tidal wetland soils, by consistently increasing the fungi-to-bacteria ratio by 38-42%, and therefore potentially exerts important control over carbon turnover and sequestration. The observed shift in the microbial community was primarily driven by organic matter source, with higher contributions of recalcitrant autochthonous (terrestrial) vs. easily degradable allochthonous (marine) sources in grazed areas favoring relative fungal abundance. We propose a novel and indirect form of animal-plant-microbe interaction: top-down control of aboveground vegetation structure determines the capacity of allochthonous organic matter trapping during flooding and thus the structure of the microbial community. Furthermore, our data provide the first evidence that grazing slows down microbial exo-enzyme activity and thus decomposition through changes in soil redox chemistry. Activities of enzymes involved in C cycling were reduced by 28-40%, while activities of

  15. Bioaccumulation processes in ecosystems.

    PubMed

    Streit, B

    1992-10-15

    The fate of environmental pollutants--the various isotopes of elements, and inorganic or organic compounds--is a fundamental aspect of ecology and ecotoxicology, and bioaccumulation is a phenomenon often discussed in this context. Human activities have drastically altered natural concentrations of many substances in the environment and added numerous new chemicals. An understanding of the processes of bioaccumulation is important for several reasons. 1) Bioaccumulation in organisms may enhance the persistence of industrial chemicals in the ecosystem as a whole, since they can be fixed in the tissues of organisms. 2) Stored chemicals are not exposed to direct physical, chemical, or biochemical degradation. 3) Stored chemicals can directly affect an individual's health. 4) Predators of those organisms that have bioaccumulated harmful substances may be endangered by food chain effects. While former theories on the processes of bioaccumulation focused on single aspects that affect the extent of accumulation (such as the trophic level within the food chain or the lipophilicity of the chemical), modern theories are based on compartmental kinetics and the integration of various environmental interactions. Concepts include results from quantitative structure-activity relationships (QSAR), pharmacokinetics, ecophysiology and general biology, molecular genetic aspects and selection, and finally the structure of communities and man-made alterations in them.

  16. The importance of building construction materials relative to other factors affecting structure survival during wildfire

    USGS Publications Warehouse

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2017-01-01

    Structure loss to wildfire is a serious problem in wildland-urban interface areas across the world. Laboratory experiments suggest that fire-resistant building construction and design could be important for reducing structure destruction, but these need to be evaluated under real wildfire conditions, especially relative to other factors. Using empirical data from destroyed and surviving structures from large wildfires in southern California, we evaluated the relative importance of building construction and structure age compared to other local and landscape-scale variables associated with structure survival. The local-scale analysis showed that window preparation was especially important but, in general, creating defensible space adjacent to the home was as important as building construction. At the landscape scale, structure density and structure age were the two most important factors affecting structure survival, but there was a significant interaction between them. That is, young structure age was most important in higher-density areas where structure survival overall was more likely. On the other hand, newer-construction structures were less likely to survive wildfires at lower density. Here, appropriate defensible space near the structure and accessibility to major roads were important factors. In conclusion, community safety is a multivariate problem that will require a comprehensive solution involving land use planning, fire-safe construction, and property maintenance.

  17. Glacier Ecosystems of Himalaya

    NASA Astrophysics Data System (ADS)

    Kohshima, S.; Yoshimura, Y.; Takeuchi, N.; Segawa, T.; Uetake, J.

    2012-12-01

    Biological activity on glaciers has been believed to be extremely limited. However, we found various biotic communities specialized to the glacier environment in various part of the world, such as Himalaya, Patagonia and Alaska. Some of these glacier hosted biotic communities including various cold-tolerant insects, annelids and copepods that were living in the glacier by feeding on algae and bacteria growing in the snow and ice. Thus, the glaciers are simple and relatively closed ecosystems sustained by the primary production in the snow and ice. In this presentation, we will briefly introduce glacier ecosystems in Himalaya; ecology and behavior of glacier animals, altitudinal zonation of snow algal communities, and the structure of their habitats in the glacier. Since the microorganisms growing on the glacier surface are stored in the glacial strata every year, ice-core samples contain many layers with these microorganisms. We showed that the snow algae in the ice-core are useful for ice core dating and could be new environmental signals for the studies on past environment using ice cores. These microorganisms in the ice core will be important especially in the studies of ice core from the glaciers of warmer regions, in which chemical and isotopic contents are often heavily disturbed by melt water percolation. Blooms of algae and bacteria on the glacier can reduce the surface albedo and significantly affect the glacier melting. For example, the surface albedo of some Himalayan glaciers was significantly reduced by a large amount of dark-colored biogenic material (cryoconite) derived from snow algae and bacteria. It increased the melting rates of the surfaces by as much as three-fold. Thus, it was suggested that the microbial activity on the glacier could affect the mass balance and fluctuation of the glaciers.

  18. Cluster analysis of structural stage classes to map wildland fuels in a Madrean ecosystem.

    PubMed

    Miller, Jay D; Danzer, Shelley R; Watts, Joseph M; Stone, Sheridan; Yool, Stephen R

    2003-07-01

    Geospatial information technology is changing the nature of fire mapping science and management. Geographic information systems (GIS) and global positioning system technology coupled with remotely sensed data provide powerful tools for mapping, assessing, and understanding the complex spatial phenomena of wildland fuels and fire hazard. The effectiveness of these technologies for fire management still depends on good baseline fuels data since techniques have yet to be developed to directly interrogate understory fuels with remotely sensed data. We couple field data collections with GIS, remote sensing, and hierarchical clustering to characterize and map the variability of wildland fuels within and across vegetation types. One hundred fifty six fuel plots were sampled in eight vegetation types ranging in elevation from 1150 to 2600 m surrounding a Madrean 'sky island' mountain range in the southwestern US. Fuel plots within individual vegetation types were divided into classes representing various stages of structural development with unique fuel load characteristics using a hierarchical clustering method. Two Landsat satellite images were then classified into vegetation/fuel classes using a hybrid unsupervised/supervised approach. A back-classification accuracy assessment, which uses the same pixels to test as used to train the classifier, produced an overall Kappa of 50% for the vegetation/fuels map. The map with fuel classes within vegetation type collapsed into single classes was verified with an independent dataset, yielding an overall Kappa of 80%.

  19. Factors Affecting Higher Order Thinking Skills of Students: A Meta-Analytic Structural Equation Modeling Study

    ERIC Educational Resources Information Center

    Budsankom, Prayoonsri; Sawangboon, Tatsirin; Damrongpanit, Suntorapot; Chuensirimongkol, Jariya

    2015-01-01

    The purpose of the research is to develop and identify the validity of factors affecting higher order thinking skills (HOTS) of students. The thinking skills can be divided into three types: analytical, critical, and creative thinking. This analysis is done by applying the meta-analytic structural equation modeling (MASEM) based on a database of…

  20. Grandchild, Grandparent, and Parent Coresidence from 1970 to 1990: Structural Factors Affecting State Patterns

    ERIC Educational Resources Information Center

    Hill, Twyla J.

    2006-01-01

    This study analyzes structural forces affecting state patterns of parental presence within grandparent-grandchild coresidence by testing demographic, social change, policy environment, and social problems models. The project combines published state-level data with the 1970, 1980, and 1990 Census Public Use Microdata Samples. While factors…

  1. Is Long-Term Structural Priming Affected by Patterns of Experience with Individual Verbs?

    ERIC Educational Resources Information Center

    Kaschak, Michael P.; Borreggine, Kristin L.

    2008-01-01

    Several recent papers have reported long-term structural priming effects in experiments where previous patterns of experience with the double object and prepositional object constructions are shown to affect later patterns of language production for those constructions. The experiments reported in this paper address the extent to which these…

  2. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.

    PubMed

    Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida

    2017-02-23

    Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected

  3. Changing Arctic ecosystems--research to understand and project changes in marine and terrestrial ecosystems of the Arctic

    USGS Publications Warehouse

    Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary

    2012-01-01

    Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.

  4. Reconciling In Situ Foliar Nitrogen and Vegetation Structure Measurements with Airborne Imagery Across Ecosystems

    NASA Astrophysics Data System (ADS)

    Flagg, C.

    2015-12-01

    Over the next 30 years the National Ecological Observatory Network (NEON) will monitor environmental and ecological change throughout North America. NEON will provide a suite of standardized data from several ecological topics of interest, including net primary productivity and nutrient cycling, from 60+ sites across 20 eco-climatic domains when fully operational in 2017. The breadth of sampling includes ground-based measurements of foliar nitrogen and vegetation structure, ground-based spectroscopy, airborne LIDAR, and airborne hyperspectral surveys occurring within narrow overlapping time intervals once every five years. While many advancements have been made in linking and scaling in situ data with airborne imagery, establishing these relationships across dozens of highly variable sites poses significant challenges to understanding continental-wide processes. Here we study the relationship between foliar nitrogen content and airborne hyperspectral imagery at different study sites. NEON collected foliar samples from three sites in 2014 as part of a prototype study: Ordway Swisher Biological Station (pine-oak savannah, with active fire management), Jones Ecological Research Center (pine-oak savannah), and San Joaquin Experimental Range (grass-pine oak woodland). Leaf samples and canopy heights of dominant and co-dominant species were collected from trees located within 40 x 40 meter sampling plots within two weeks of aerial LIDAR and hyperspectral surveys. Foliar canopy samples were analyzed for leaf mass per area (LMA), stable isotopes of C and N, C/N content. We also examine agreement and uncertainty between ground based canopy height and airborne LIDAR derived digital surface models (DSM) for each site. Site-scale maps of canopy nitrogen and canopy height will also be presented.

  5. Trophic flow structure of the Danajon ecosystem (Central Philippines) and impacts of illegal and destructive fishing practices

    NASA Astrophysics Data System (ADS)

    Bacalso, Regina Therese M.; Wolff, Matthias

    2014-11-01

    A trophic model of the shallow Danajon Bank, in the Central Visayas, Philippines was developed using a mass-balance approach (Ecopath) to describe the system characteristics and fisheries interactions. The Ecopath model is composed of 37 functional groups and 17 fishing fleet types reflecting the high diversity of catches and fishing operations in the Danajon Bank. Collectively, the catch is dominated by lower trophic level fish and invertebrates as reflected in the mean trophic level of the fishery (2.95). The low biomass and high exploitation levels for many upper trophic level groups and the little evidence for strong natural physical disturbances suggest that top-down fishery is the main driver of system dynamics. The mixed trophic impacts (MTI) analysis reveals the role of the illegal and destructive fishing operations in influencing the ecosystem structure and dynamics. Furthermore, the illegal fisheries' estimated collective annual harvest is equivalent to nearly a quarter of the entire municipal fisheries catch in the area. Improved fisheries law enforcement by the local government units to curb these illegal and destructive fishing operations could substantially increase the potential gains of the legal fisheries.

  6. Food-Web Structure in Relation to Environmental Gradients and Predator-Prey Ratios in Tank-Bromeliad Ecosystems

    PubMed Central

    Dézerald, Olivier; Leroy, Céline; Corbara, Bruno; Carrias, Jean-François; Pélozuelo, Laurent; Dejean, Alain; Céréghino, Régis

    2013-01-01

    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests. PMID:23977128

  7. Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems.

    PubMed

    Dézerald, Olivier; Leroy, Céline; Corbara, Bruno; Carrias, Jean-François; Pélozuelo, Laurent; Dejean, Alain; Céréghino, Régis

    2013-01-01

    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests.

  8. Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects

    NASA Technical Reports Server (NTRS)

    Alt, Shannon

    2016-01-01

    Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.

  9. Effects of fire on major forest ecosystem processes: an overview.

    PubMed

    Chen, Zhong

    2006-09-01

    Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem

  10. Beyond Potential Vegetation: Combining Lidar Remote Sensing and a Height- Structured Terrestrial Ecosystem Model for Improved Estimates of Carbon Stocks and Fluxes at a Set of Sites in North and Central America

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Dubayah, R.; Fearon, M.; Drake, J.; Schwarz, P.; Pacala, S.; Moorcroft, P.

    2004-12-01

    Because of natural disturbance events, human land use, and land-use history, terrestrial ecosystems globally are generally not in a "potential" state. However, the information required to adequately describe the current state of terrestrial ecosystems is lacking and currently limiting our understanding of the carbon cycle. To address this challenge, we combined airborne lidar remote sensing of vegetation structure and the height-structured terrestrial ecosystem model ED to produce lidar-initialized model estimates of ecosystem structure, carbon stocks, and carbon fluxes at a set of 10 study sites in North and Central America. Field data were used to test model results and form the basis for improved model parameterizations. Resulting lidar-initialized ED estimates of ecosystem structure and above-ground biomass compared favorably to field-based estimates at key study sites, and corresponding model estimates of net carbon fluxes differed substantially from estimates based on bracketing alternatives. The results of this multi-site study build on earlier published results from La Selva, Costa Rica and provide additional evidence of the power of combining remote sensing data on vegetation structure with a height-structured ecosystem model to go beyond potential vegetation and address the heterogeneity in terrestrial ecosystems caused by disturbance. Extending these analyses to larger scales will require the development of regional and global lidar data sets, and the continued development and application of height-structured ecosystem models.

  11. Anthropogenic impacts on marine ecosystems in Antarctica.

    PubMed

    Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A

    2011-03-01

    Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere.

  12. Evaluation of the trophic structure of the West Florida Shelf in the 2000s using the ecosystem model OSMOSE

    NASA Astrophysics Data System (ADS)

    Grüss, Arnaud; Schirripa, Michael J.; Chagaris, David; Drexler, Michael; Simons, James; Verley, Philippe; Shin, Yunne-Jai; Karnauskas, Mandy; Oliveros-Ramos, Ricardo; Ainsworth, Cameron H.

    2015-04-01

    We applied the individual-based, multi-species OSMOSE modeling approach to the West Florida Shelf, with the intent to inform ecosystem-based management (EBM) in this region. Our model, referred to as 'OSMOSE-WFS', explicitly considers both pelagic-demersal and benthic high trophic level (HTL) groups of fish and invertebrate species, and is forced by the biomass of low trophic level groups of species (plankton and benthos). We present a steady-state version of the OSMOSE-WFS model describing trophic interactions in the West Florida Shelf in the 2000s. OSMOSE-WFS was calibrated using a recently developed evolutionary algorithm that allowed simulated biomasses of HTL groups to match observed biomasses over the period 2005-2009. The validity of OSMOSE-WFS was then evaluated by comparing simulated diets to observed ones, and the simulated trophic levels to those in an Ecopath model of the West Florida Shelf (WFS Reef fish Ecopath). Finally, OSMOSE-WFS was used to explore the trophic structure of the West Florida Shelf in the 2000s and estimate size-specific natural mortality rates for a socio-economically important species, gag grouper (Mycteroperca microlepis). OSMOSE-WFS outputs were in full agreement with observations as to the body size and ecological niche of prey of the different HTL groups, and to a lesser extent in agreement with the observed species composition of the diet of HTL groups. OSMOSE-WFS and WFS Reef fish Ecopath concurred on the magnitude of the instantaneous natural mortality of the different life stages of gag grouper over the period 2005-2009, but not always on the main causes of natural mortality. The model evaluations conducted here provides a strong basis for ongoing work exploring fishing and environmental scenarios so as to inform EBM. From simple size-based predation rules, we were indeed able to capture the complexity of trophic interactions in the West Florida Shelf, and to identify the predators, prey and competitors of socio

  13. Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient

    USGS Publications Warehouse

    Wu, Zhuoting; Koch, George W.; Dijkstra, Paul; Bowker, Matthew A.; Hungate, Bruce A.

    2011-01-01

    Global temperature increases and precipitation changes are both expected to alter ecosystem carbon (C) cycling. We tested responses of ecosystem C cycling to simulated climate change using field manipulations of temperature and precipitation across a range of grass-dominated ecosystems along an elevation gradient in northern Arizona. In 2002, we transplanted intact plant–soil mesocosms to simulate warming and used passive interceptors and collectors to manipulate precipitation. We measured daytime ecosystem respiration (ER) and net ecosystem C exchange throughout the growing season in 2008 and 2009. Warming generally stimulated ER and photosynthesis, but had variable effects on daytime net C exchange. Increased precipitation stimulated ecosystem C cycling only in the driest ecosystem at the lowest elevation, whereas decreased precipitation showed no effects on ecosystem C cycling across all ecosystems. No significant interaction between temperature and precipitation treatments was observed. Structural equation modeling revealed that in the wetter-than-average year of 2008, changes in ecosystem C cycling were more strongly affected by warming-induced reduction in soil moisture than by altered precipitation. In contrast, during the drier year of 2009, warming induced increase in soil temperature rather than changes in soil moisture determined ecosystem C cycling. Our findings suggest that warming exerted the strongest influence on ecosystem C cycling in both years, by modulating soil moisture in the wet year and soil temperature in the dry year.

  14. Roles of Benthic Algae in the Structure, Function, and Assessment of Stream Ecosystems Affected by Acid Mine Drainage

    EPA Science Inventory

    Tens of thousands of stream kilometers around the world are degraded by a legacy of environmental impacts and acid mine drainage (AMD) caused by abandoned underground and surface mines, piles of discarded coal wastes, and tailings. Increased acidity, high concentrations of metals...

  15. Trace metal mobility and microbial community structure in tropical soils: examples from adjacent forest and grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Wilson, A. D.; Roberts, J. A.; MacPherson, G. L.; Mauck, B. S.; Stallard, R. F.

    2004-12-01

    Many factors determine the quality and sustainability of a soil environment and changes in land use can impact significantly soil geochemistry and the associated soil microbial communities. Native tropical forests and human-constructed grasslands on Barro Colorado Island provide an excellent setting for comparing changes in soil ecosystems in undisturbed and altered landscapes. The goals of this study were to examine biological, chemical, and mineralogical changes in soil properties as a function of land use changes during the wet and dry seasons. Soil pits were excavated at two study sites, a tropical forest and an adjacent plot that has been converted to grassland, during March 2002 and August 2003. The 1 meter deep pits were sampled at 5 cm intervals and characterized for soil organic matter content, soil moisture, community structure and total lipid biomass of the soil microbial community, mineralogy, and trace metal distribution using a sequential extraction method. Results demonstrate that forested soils exhibit higher organic matter content than grassland soils regardless of soil moisture content. Total lipid biomass of the active soil microbial population decreases with depth in both soils, but is elevated in the forested soil, likely correlating with the organic matter content in this system. Diversity of the soil microbial community, determined by PLFA analysis, decreases sharply at the base of the root zone and general trends in community structure are similar in both soils. XRD analysis of the soils reveal that the weathering profile in the forest has extended to a greater depth, but these differences in the mineralogy profile do not exert significant control on trace element mobility. Vanadium, copper, zinc, and aluminum show strong affinities for the organically bound fraction in both soils.

  16. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  17. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis.

    PubMed

    McCary, Matthew A; Mores, Robin; Farfan, Monica A; Wise, David H

    2016-03-01

    Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta-analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure.

  18. Linking Landscapes to Ecosystem Services: Landscape Structure as an Indicator and Predictor of Water Clarity in New England Lakes

    EPA Science Inventory

    Lakes provide ecosystem services such as recreation, clean water, aesthetics, wildlife habitat, and nutrient attenuation. While numerous methods exist to monitor these services (e.g. visitor counts, opinion surveys, water quality monitoring, etc.) they are labor intensive to col...

  19. Tripartite structure of positive and negative affect, depression, and anxiety in child and adolescent psychiatric inpatients.

    PubMed

    Joiner, T E; Catanzaro, S J; Laurent, J

    1996-08-01

    The tripartite model of depression and anxiety suggests that depression and anxiety have shared (generalized negative affect) and specific (anhedonia and physiological hyperarousal) components. In one of the 1st studies to examine the structure of mood-related symptoms in youngsters, this model was tested among 116 child and adolescent psychiatric inpatients, ages 8-16 (M = 12.46; SD = 2.33). Consistent with the tripartite model, a 3-factor (Depression, Anxiety, and Negative Affect) model represented the observed data well. Follow-up analyses suggested that a nonhierarchical arrangement of the 3 factors may be preferable to a hierarchical one.

  20. The use of noncrystallographic symmetry averaging to solve structures from data affected by perfect hemihedral twinning

    SciTech Connect

    Sabin, Charles; Plevka, Pavel

    2016-02-16

    Molecular replacement and noncrystallographic symmetry averaging were used to detwin a data set affected by perfect hemihedral twinning. The noncrystallographic symmetry averaging of the electron-density map corrected errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. Hemihedral twinning is a crystal-growth anomaly in which a specimen is composed of two crystal domains that coincide with each other in three dimensions. However, the orientations of the crystal lattices in the two domains differ in a specific way. In diffraction data collected from hemihedrally twinned crystals, each observed intensity contains contributions from both of the domains. With perfect hemihedral twinning, the two domains have the same volumes and the observed intensities do not contain sufficient information to detwin the data. Here, the use of molecular replacement and of noncrystallographic symmetry (NCS) averaging to detwin a 2.1 Å resolution data set for Aichi virus 1 affected by perfect hemihedral twinning is described. The NCS averaging enabled the correction of errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. The procedure permitted the structure to be determined from a molecular-replacement model that had 16% sequence identity and a 1.6 Å r.m.s.d. for C{sup α} atoms in comparison to the crystallized structure. The same approach could be used to solve other data sets affected by perfect hemihedral twinning from crystals with NCS.

  1. Landscape structure affects specialists but not generalists in naturally fragmented grasslands

    USGS Publications Warehouse

    Miller, Jesse E.D.; Damschen, Ellen Ingman; Harrison, Susan P.; Grace, James B.

    2015-01-01

    Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural landscapes become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. In this study, we asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure-defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index)-had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities, and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.

  2. Landscape structure affects specialists but not generalists in naturally fragmented grasslands.

    PubMed

    Miller, Jesse E D; Damschen, Ellen I; Harrison, Susan P; Grace, James B

    2015-12-01

    Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural habitats become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. We asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, USA, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure, defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index), had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.

  3. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey

    USGS Publications Warehouse

    Dodd, L.E.; Lacki, M.J.; Britzke, E.R.; Buehler, D.A.; Keyser, P.D.; Larkin, J.L.; Rodewald, A.D.; Wigley, T.B.; Wood, P.B.; Rieske, L.K.

    2012-01-01

    Vertebrate insectivores such as bats are a pervasive top-down force on prey populations in forest ecosystems. Conservation focusing on forest-dwelling bats requires understanding of community-level interactions between these predators and their insect prey. Our study assessed bat activity and insect occurrence (abundance and diversity) across a gradient of forest disturbance and structure (silvicultural treatments) in the Central Appalachian region of North America. We conducted acoustic surveys of bat echolocation concurrent with insect surveys using blacklight and malaise traps over 2 years. Predator activity, prey occurrence and prey biomass varied seasonally and across the region. The number of bat echolocation pulses was positively related with forest disturbance, whereas prey demonstrated varied trends. Lepidopteran abundance was negatively related with disturbance, while dipteran abundance and diversity was positively related with disturbance. Coleoptera were unaffected. Neither bat nor insect response variables differed between plot interiors and edges. Correlations between bat activity and vegetative structure reflected differences in foraging behavior among ensembles. Activity of myotine bats was correlated with variables describing sub-canopy vegetation, whereas activity of lasiurine bats was more closely correlated with canopy-level vegetation. Lepidopteran abundance was correlated with variables describing canopy and sub-canopy vegetation, whereas coleopteran and dipteran occurrence were more closely correlated with canopy-level vegetative structure. Our study demonstrates regional variation in bat activity and prey occurrence across a forested disturbance gradient. Land management and conservation efforts should consider the importance of vegetation structure and plant species richness to sustain forest-dwelling bats and their insect prey.

  4. Historical habitat connectivity affects current genetic structure in a grassland species.

    PubMed

    Münzbergová, Z; Cousins, S A O; Herben, T; Plačková, I; Mildén, M; Ehrlén, J

    2013-01-01

    Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co-dominant markers to estimate genetic diversity and deviation from Hardy-Weinberg equilibrium in 31 populations distributed within a 5 km(2) agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale.

  5. Effects of whaling on the structure of the Southern Ocean food web: insights on the "krill surplus" from ecosystem modelling.

    PubMed

    Surma, Szymon; Pakhomov, Evgeny A; Pitcher, Tony J

    2014-01-01

    The aim of this study was to examine the ecological plausibility of the "krill surplus" hypothesis and the effects of whaling on the Southern Ocean food web using mass-balance ecosystem modelling. The depletion trajectory and unexploited biomass of each rorqual population in the Antarctic was reconstructed using yearly catch records and a set of species-specific surplus production models. The resulting estimates of the unexploited biomass of Antarctic rorquals were used to construct an Ecopath model of the Southern Ocean food web existing in 1900. The rorqual depletion trajectory was then used in an Ecosim scenario to drive rorqual biomasses and examine the "krill surplus" phenomenon and whaling effects on the food web in the years 1900-2008. An additional suite of Ecosim scenarios reflecting several hypothetical trends in Southern Ocean primary productivity were employed to examine the effect of bottom-up forcing on the documented krill biomass trend. The output of the Ecosim scenarios indicated that while the "krill surplus" hypothesis is a plausible explanation of the biomass trends observed in some penguin and pinniped species in the mid-20th century, the excess krill biomass was most likely eliminated by a rapid decline in primary productivity in the years 1975-1995. Our findings suggest that changes in physical conditions in the Southern Ocean during this time period could have eliminated the ecological effects of rorqual depletion, although the mechanism responsible is currently unknown. Furthermore, a decline in iron bioavailability due to rorqual depletion may have contributed to the rapid decline in overall Southern Ocean productivity during the last quarter of the 20th century. The results of this study underscore the need for further research on historical changes in the roles of top-down and bottom-up forcing in structuring the Southern Ocean food web.

  6. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    USGS Publications Warehouse

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    Agricultural production accounts for approximately 90% of herbicide use in the U.S. (Kiely et al., 2004). Gianessi and Reigner (2007) indicated that herbicides are routinely used on more than 90% of the area designated for large commercial crops including corn, soybeans, cotton, sugar beets, peanuts, and rice. Increased farm mechanization, technological advancements in production of inexpensive sources of inorganic nitrogen fertilizer (e.g., anhydrous ammonia), and conversion of forest, grassland, and wetland habitats to cropland has led to a tremendous increase in global food production over the past half-century. Herbicides have augmented advances in large-scale agricultural systems and have largely replaced mechanical and hand-weeding control mechanisms (Gianessi and Reigner, 2007). The wide-spread use of herbicides in agriculture has resulted in frequent chemical detections in surface and groundwaters (Gilliom, 2007). The majority of herbicides used are highly water soluble and are therefore prone to runoff from terrestrial environments. In additon, spray drift and atmospheric deposition can contribute to herbicide contamination of aquatic environments. Lastly, selected herbicides are deliberately applied to aquatic environments for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants

  7. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    SciTech Connect

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  8. Impact of the Mountain Pine Beetle on the net Ecosystem Productivity of Lodgepole Pine Stands and the Role of Secondary Structure

    NASA Astrophysics Data System (ADS)

    Brown, M.; Black, T.; Nesic, Z.; Spilttlehouse, D.; Trofymow, T.; Fredeen, A.; Egginton, V.; Burton, P.; Grant, N.

    2009-05-01

    British Columbia, Canada is experiencing a severe mountain pine beetle (MPB) epidemic extending over an area of 135,000 km2. The widespread mortality of lodgepole pine caused by the beetle is having severe implications for Canada's carbon (C) budget. This study used the eddy-covariance technique to examine how the beetle is affecting the net ecosystem productivity (NEP) of two attacked lodgepole pine stands in the central interior of BC over 2 years. MPB-KS is an 83-year-old stand that was first attacked in 2006. By the start of 2007, roughly 60% of the canopy had been beetle attacked and by August 2008 only 21% of the canopy remained healthy. MPB-CR, a 110-year-old stand, first attacked by the beetle in 2003, had >95% pine mortality in 2007, and also differed from MPB-KS in that it had a developed secondary structure (seedlings, saplings, sub- canopy and canopy trees that survive a beetle attack) (SS) and deciduous ground layer. In 2007, MPB-KS had an annual and growing season (GS) NEP of -55 and 36 g C m-2, and in 2008, an annual and GS NEP of -42 and 34 g C m-2, respectively. MPB-CR had an annual and GS NEP of -22 and 23 g C m-2 in 2007 and 2 and 75 g C m-2 in 2008. In both years, MPB-KS was a GS C sink due to the productivity of the healthy portion of the canopy, the many seedlings and the mossy surface layer. Between 2007 and 2008, MPB-CR experienced a reduction in LAI (from 0.91 to 0.78), due to needle-fall, which led to an opening up of the canopy and resulted in a high SS C uptake in 2008. These results were confirmed by foliar CO2 exchange measurements which showed a high productivity for the SS and deciduous vegetation.

  9. Impact of Hydrologic Variability on Ecosystem Dynamics and the Sustainable Use of Soil and Water Resources

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.

    2013-05-01

    We discuss the key processes by which hydrologic variability affects the probabilistic structure of soil moisture dynamics in water-controlled ecosystems. These in turn impact biogeochemical cycling and ecosystem structure through plant productivity and biodiversity as well as nitrogen availability and soil conditions. Once the long-term probabilistic structure of these processes is quantified, the results become useful to understand the impact of climatic changes and human activities on ecosystem services, and can be used to find optimal strategies of water and soil resources management under unpredictable hydro-climatic fluctuations. Particular applications regard soil salinization, phytoremediation and optimal stochastic irrigation.

  10. Familiarity affects social network structure and discovery of prey patch locations in foraging stickleback shoals

    PubMed Central

    Atton, N.; Galef, B. J.; Hoppitt, W.; Webster, M. M.; Laland, K. N.

    2014-01-01

    Numerous factors affect the fine-scale social structure of animal groups, but it is unclear how important such factors are in determining how individuals encounter resources. Familiarity affects shoal choice and structure in many social fishes. Here, we show that familiarity between shoal members of sticklebacks (Gasterosteus aculeatus) affects both fine-scale social organization and the discovery of resources. Social network analysis revealed that sticklebacks remained closer to familiar than to unfamiliar individuals within the same shoal. Network-based diffusion analysis revealed that there was a strong untransmitted social effect on patch discovery, with individuals tending to discover a task sooner if a familiar individual from their group had previously done so than if an unfamiliar fish had done so. However, in contrast to the effect of familiarity, the frequency with which individuals had previously associated with one another had no effect upon the likelihood of prey patch discovery. This may have been due to the influence of fish on one another's movements; the effect of familiarity on discovery of an empty ‘control’ patch was as strong as for discovery of an actual prey patch. Our results demonstrate that factors affecting fine-scale social interactions can also influence how individuals encounter and exploit resources. PMID:25009061

  11. Summary of typical parameters that affect sound transmission through general aviation aircraft structures

    NASA Technical Reports Server (NTRS)

    Grosveld, F.; Navaneethan, R.; Roskam, J.

    1981-01-01

    This paper presents results of a systematic experimental investigation of parameters which affect sound transmission through general aviation structures. Parameters studied include angle of sound incidence, panel curvature, panel stresses, and edge conditions for bare panels; pane thickness, spacing, inclination of window panes, and depressurization for dual pane windows; densities of hard foam and sound absorption materials, air gaps, and trim panel thickness for multilayered panels. Based on the study, some promising methods for reducing interior noise in general aviation airplanes are discussed.

  12. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    USGS Publications Warehouse

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  13. The effects of extracellular sugar extraction on the 3D-structure of biological soil crusts from different ecosystems

    NASA Astrophysics Data System (ADS)

    Felde, Vincent; Rossi, Federico; Colesie, Claudia; Uteau-Puschmann, Daniel; Felix-Henningsen, Peter; Peth, Stephan; De Philippis, Roberto

    2015-04-01

    Biological soil crusts (BSCs) play important roles in the hydrological cycles of many different ecosystems around the world. In arid and semi-arid regions, they alter the availability and redistribution of water. Especially in early successional stage BSCs, this feature can be attributed to the presence and characteristics of extracellular polymeric substances (EPS) that are excreted by the crusts' organisms. In a previous study, the extraction of EPS from BSCs of the SW United States lead to a significant change in their hydrological behavior, namely the sorptivity of water (Rossi et al. 2012). This was concluded to be the effect of a change in the pore structure of these crusts, which is why in this work we investigated the effect of the EPS-extraction on soil structure using 3D-computed micro-tomography (µCT). We studied different types of BSCs from Svalbard, Germany, Israel and South Africa with varying grain sizes and species compositions (from green algae to light and dark cyanobacterial crusts with and without lichens and/or mosses). Unlike other EPS-extraction methods, the one utilized here is aimed at removing the extracellular matrix from crust samples whilst acting non-destructively (Rossi et al. 2012). For every crust sample, we physically cut out a small piece (1cm) from a larger sample contained in Petri dish, and scanned it in a CT at a high resolution (voxel edge length: 7µm). After putting it back in the dish, approximately in the same former position, it was treated for EPS-extraction and then removed and scanned again in order to check for a possible effect of the EPS-extraction. Our results show that the utilized EPS-extraction method had varying extraction efficiencies: while in some cases the amount removed was barely significant, in other cases up to 50% of the total content was recovered. Notwithstanding, no difference in soil micro-structure could be detected, neither in total porosity, nor in the distribution of pore sizes, the

  14. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; Lu, Daniel

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  15. Do Species-specific Hydraulic Traits Predict Ecosystem Response and Community Structure? Evidence From Co-occurring Bryophytes of a Sloping Wetland

    NASA Astrophysics Data System (ADS)

    Lintz, H. E.; Russell, M. C.; Hardman, A. C.

    2007-12-01

    Ecosystems comprise a complex assortment species, and each species has a unique set of physiological and anatomical characteristics or traits. Landscape-level forecasts of ecosystem response to climate change can benefit by accounting for species-specific traits. Here, we demonstrate how a hydraulic trait can be quantified and aggregrated to community and ecosystem levels using a model life form and system, bryophytes in a sloping wetland. Growth and reproduction of bryophytes depend on the quantity of external water held, which varies by species. Wetlands provide a soil substrate that supplies either an unlimited amount of water, or at minimum, a shallow water table for part of the year. We hypothesized and confirmed that external water holding capacity of bryophyte species (measured in the laboratory) corresponded to bryophyte community structure along a hydrology gradient in the wetland. In addition, we demonstrated that water holding capacity by species can be aggregated to the level of the wetland ecosystem to reveal an emergent community property, water holding capacity of the bryophyte mat. Our results support ecological theory presented by Paul Keddy (1999) that co-occurring organisms show similarity in resource acquisition along gradients of resource limitation. We promote a conceptual framework that incorporates species-specific traits as modeling currency that can bridge scales.

  16. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?

    PubMed

    Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan

    2016-12-01

    Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and

  17. Green roof soil system affected by soil structural changes: A project initiation

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  18. A trait-based approach to species' roles in stream ecosystems: climate change, community structure, and material cycling.

    PubMed

    Spooner, Daniel E; Vaughn, Caryn C

    2008-11-01

    The sustained decline in habitat quality and community integrity highlights the importance of understanding how communities and environmental variation interactively contribute to ecosystem services. We performed a laboratory experiment manipulating effects of acclimation temperature (5, 15, 25, and 35 degrees C) on resource acquisition, assimilation and subsequent ecosystem services provided by eight freshwater mussel species. Our results suggest that although freshwater mussels are broadly categorized as filter feeders, there are distinct nested functional guilds (thermally tolerant and sensitive) associated with their thermal performance. At 35 degrees C, thermally tolerant species have increased resource assimilation and higher rates of contributed ecosystem services (nutrient excretion, benthic-pelagic coupling). Conversely, thermally sensitive species have decreased assimilation rates and display an array of functional responses including increased/decreased benthic-pelagic coupling and nutrient excretion. Although thermally sensitive species may be in poorer physiological condition at warmer temperatures, their physiological responses can have positive effects on ecosystem services. We extrapolated these results to real mussel beds varying in species composition to address how shifts in community composition coupled with climate change may shift their contributed ecological services. Comparative field data indicate that two co-existing, abundant species with opposing thermal performance (Actinonaias ligamentina, Amblema plicata) differentially dominate community biomass. Additionally, communities varying in the relative proportion of these species differentially influence the magnitude (benthic-pelagic coupling) and quality (N:P excretion) of ecosystem services. As species are increasingly threatened by climate change, greater emphasis should be placed on understanding the contribution of physiological stress to the integrity and functioning of ecosystems.

  19. Population structure and fruit production of Pyrus bourgaeana D. are affected by land-use

    NASA Astrophysics Data System (ADS)

    Arenas-Castro, Salvador; Fernández-Haeger, Juan; Jordano-Barbudo, Diego

    2016-11-01

    The Iberian wild pear (Pyrus bourgaeana D.) is a rare, fleshy-fruited tree restricted to dehesas and evergreen sclerophyllous Mediterranean forests in the southwestern Iberian Peninsula. It produces palatable fruits and leaves attractive to different species groups, playing an important trophic role in the ecological networks of Mediterranean ecosystems. However, the intensification in the traditional land-use linked to these areas could threaten the stability of the wild pear populations in the short/medium-term. In order to determine the population dynamics of this relevant species in relation to the land-use history, we selected two populations (southern Spain) subjected to different land-use management, dehesa (D) and abandoned olive grove (AOG). An analysis of 122 adult trees reported an overall density of 0.6 trees ha-1. The tree age was estimated by tree-rings analysis in all adult trees. Dendrometric parameters, reproductive features, and germination rates were also measured. Regeneration was clearly biased, as evidenced by the truncated age structure. A low correlation (R2 = 34%) between age and DBH (diameter at breast height) (244 cores analysed) showed that diameter seems not to be a reliable predictor of tree age. Trees from AOG populations had significantly-higher values of DBH, height and crown diameter, but were less productive in terms of fruits and seeds. Nested analysis of variance showed significant variation in fruit production, fruit size, dry mass, water content and seed viability. There were also significant differences in masting. No evidence was found to demonstrate that fruit production, seed viability, or germination rate influence the low natural recruitment of this species. These findings indicate that the traditional agrosilvopastoral practices carried out in the study area for decades, and its subsequent intensification, have strongly influenced the ecological structure of the Iberian wild pear populations at the local scale, which

  20. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria.

    PubMed

    Okubo, Takashi; Liu, Dongyan; Tsurumaru, Hirohito; Ikeda, Seishi; Asakawa, Susumu; Tokida, Takeshi; Tago, Kanako; Hayatsu, Masahito; Aoki, Naohiro; Ishimaru, Ken; Ujiie, Kazuhiro; Usui, Yasuhiro; Nakamura, Hirofumi; Sakai, Hidemitsu; Hayashi, Kentaro; Hasegawa, Toshihiro; Minamisawa, Kiwamu

    2015-01-01

    A number of studies have shown that elevated atmospheric CO2 ([CO2]) affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE) experiment (ambient + 200 μmol.mol(-1)) using three rice cultivars (Akita 63, Takanari, and Koshihikari) and two experimental lines of Koshihikari [chromosome segment substitution and near-isogenic lines (NILs)] to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient) and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA) gene and increased methyl coenzyme M reductase (mcrA) in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields.

  1. Neonatal handling alters the structure of maternal behavior and affects mother-pup bonding.

    PubMed

    Reis, A R; de Azevedo, M S; de Souza, M A; Lutz, M L; Alves, M B; Izquierdo, I; Cammarota, M; Silveira, P P; Lucion, A B

    2014-05-15

    During early life, a mother and her pups establish a very close relationship, and the olfactory learning of the nest odor is very important for the bond formation. The olfactory bulb (OB) is a structure that plays a fundamental role in the olfactory learning (OL) mechanism that also involves maternal behavior (licking and contact). We hypothesized that handling the pups would alter the structure of the maternal behavior, affect OL, and alter mother-pup relationships. Moreover, changes in the cyclic AMP-response element binding protein phosphorylation (CREB) and neurotrophic factors could be a part of the mechanism of these changes. This study aimed to analyze the effects of neonatal handling, 1 min per day from postpartum day 1 to 10 (PPD 1 to PPD 10), on the maternal behavior and pups' preference for the nest odor in a Y maze (PPD 11). We also tested CREB's phosphorylation and BDNF signaling in the OB of the pups (PPD 7) by Western blot analysis. The results showed that handling alters mother-pups interaction by decreasing mother-pups contact and changing the temporal pattern of all components of the maternal behavior especially the daily licking and nest-building. We found sex-dependent changes in the nest odor preference, CREB and BDNF levels in pups OB. Male pups were more affected by alterations in the licking pattern, and female pups were more affected by changes in the mother-pup contact (the time spent outside the nest and nursing).

  2. Longitudinal Evaluation of the Structural Integrity of Teeth Affected by Molar Incisor Hypomineralisation.

    PubMed

    Bullio Fragelli, Camila Maria; Jeremias, Fabiano; Feltrin de Souza, Juliana; Paschoal, Marco Aurélio; de Cássia Loiola Cordeiro, Rita; Santos-Pinto, Lourdes

    2015-01-01

    The aim of this prospective cohort study was to evaluate the risk of posteruptive breakdown and the development of caries lesions in teeth with molar incisor hypomineralisation (MIH). A total of 367 permanent incisors and first molars, affected and not affected by MIH lesions, of 45 children with MIH from Araraquara, São Paulo, Brazil, were evaluated at intervals from 6 to 12 months by assessing the severity of MIH, the presence of tooth caries lesions and the treatment needed. During the study period, all patients received preventive care. The data were analysed using Fisher's exact test and actuarial method survival analysis. Significant associations were also found in teeth between the presence of MIH and a DMFT index >0 in all periods and also between the need for treatment and the presence of MIH. The teeth affected by MIH opacities were healthy in 99% of incisors and 93% of molars at the end of the 12-month period. Due to the high likelihood of maintaining the tooth structure in opacities, the complete or premature removal of the affected area is not justified.

  3. Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5

    USGS Publications Warehouse

    Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty

    2013-01-01

    Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.

  4. Analysis of the ecosystem structure of Laguna Alvarado, western Gulf of Mexico, by means of a mass balance model

    NASA Astrophysics Data System (ADS)

    Cruz-Escalona, V. H.; Arreguín-Sánchez, F.; Zetina-Rejón, M.

    2007-03-01

    Alvarado is one of the most productive estuary-lagoon systems in the Mexican Gulf of Mexico. It has great economic and ecological importance due to high fisheries productivity and because it serves as a nursery, feeding, and reproduction area for numerous populations of fishes and crustaceans. Because of this, extensive studies have focused on biology, ecology, fisheries (e.g. shrimp, oysters) and other biological components of the system during the last few decades. This study presents a mass-balanced trophic model for Laguna Alvarado to determine it's structure and functional form, and to compare it with similar coastal systems of the Gulf of Mexico and Mexican Pacific coast. The model, based on the software Ecopath with Ecosim, consists of eighteen fish groups, seven invertebrate groups, and one group each of sharks and rays, marine mammals, phytoplankton, sea grasses and detritus. The acceptability of the model is indicated by the pedigree index (0.5) which range from 0 to 1 based on the quality of input data. The highest trophic level was 3.6 for marine mammals and snappers. Total system throughput reached 2680 t km -2 year -1, of which total consumption made up 47%, respiratory flows made up 37% and flows to detritus made up 16%. The total system production was higher than consumption, and net primary production higher than respiration. The mean transfer efficiency was 13.8%. The mean trophic level of the catch was 2.3 and the primary production required to sustain the catch was estimated in 31 t km -2 yr -1. Ecosystem overhead was 2.4 times the ascendancy. Results suggest a balance between primary production and consumption. In contrast with other Mexican coastal lagoons, Laguna Alvarado differs strongly in relation to the primary source of energy; here the primary producers (seagrasses) are more important than detritus pathways. This fact can be interpreted a response to mangrove deforest, overfishing, etc. Future work might include the compilation of

  5. Altered cohesin gene dosage affects Mammalian meiotic chromosome structure and behavior.

    PubMed

    Murdoch, Brenda; Owen, Nichole; Stevense, Michelle; Smith, Helen; Nagaoka, So; Hassold, Terry; McKay, Michael; Xu, Huiling; Fu, Jun; Revenkova, Ekaterina; Jessberger, Rolf; Hunt, Patricia

    2013-01-01

    Based on studies in mice and humans, cohesin loss from chromosomes during the period of protracted meiotic arrest appears to play a major role in chromosome segregation errors during female meiosis. In mice, mutations in meiosis-specific cohesin genes cause meiotic disturbances and infertility. However, the more clinically relevant situation, heterozygosity for mutations in these genes, has not been evaluated. We report here evidence from the mouse that partial loss of gene function for either Smc1b or Rec8 causes perturbations in the formation of the synaptonemal complex (SC) and affects both synapsis and recombination between homologs during meiotic prophase. Importantly, these defects increase the frequency of chromosomally abnormal eggs in the adult female. These findings have important implications for humans: they suggest that women who carry mutations or variants that affect cohesin function have an elevated risk of aneuploid pregnancies and may even be at increased risk of transmitting structural chromosome abnormalities.

  6. Relationships between middle school students' science concept structure interrelatedness competence and selected cognitive and affective tendencies

    NASA Astrophysics Data System (ADS)

    Harty, Harold; Hamrick, Linda; Samuel, K. V.

    An investigation was conducted to determine the relationships between Concept Structure Interrelatedness Competence (ConSIC) and 10 predictor variables of which 6 comprised a cognitive cluster and 4 made up an affective set. Data were collected from 105 middle school students and treated by way of stepwise multiple regression, linear multiple regression, and product-moment correlation techniques. The findings revealed that previous experience with concept structure interrelatedness and verbal scholastic aptitude accounted for the greatest amount of variance in predicting ConSIC. Significant positive correlations were also found between ConSIC and science achievement-course grades, scholastic aptitude-verbal, scholastic aptitude-quantitative, previous experience with concept structure interrelatedness, and self-concept of science ability. Positive significant correlations also surfaced among all of the affective variables (attitudes toward science, interest in science, science curiosity, and self-concept of science ability). Implications have been discussed in terms of classroom science teaching, science content analysis, curriculum design, and content selection.

  7. Ecosystem Services Connect Environmental Change to Human Health Outcomes

    SciTech Connect

    Bayles, Brett R.; Brauman, Kate A.; Adkins, Joshua N.; Allan, Brian F.; Ellis, Alicia M.; Goldberg, Tony L.; Golden, Christopher D.; Grigsby-Toussaint, Diana S.; Myers, Samuel S.; Osofsky, Steven A.; Ricketts, Taylor H.; Ristaino, Jean B.

    2016-06-29

    Global environmental change, driven in large part by human activities, profoundly impacts the structure and functioning of Earth’s ecosystems (Millennium Ecosystem Assessment 2005). We are beginning to push beyond planetary boundaries (Steffan et al. 2015), and the consequences for human health remain largely unknown (Myers et al. 2013). Growing evidence suggests that ecological transformations can dramatically affect human health in ways that are both obvious and obscure (Myers and Patz 2009; Myers et al. 2013). The framework of ecosystem services, designed to evaluate the benefits that people derive from ecosystem products and processes, provides a compelling framework for integrating the many factors that influence the human health response to global change, as well as for integrating health impacts into broader analyses of the impacts of this change

  8. Aquatic Plants and Animals as Ecosystem Engineers

    NASA Astrophysics Data System (ADS)

    Wotton, R. S.

    2005-05-01

    Studies on aquatic plants and animals focus on population dynamics, the structure of communities and the part played by organisms in food webs and other ecosystem processes. As Lawton and Jones point out in "Linking Species and Ecosystems", less attention is given to the role of organisms as ecosystem engineers, modifying the environment in which they live. Yet plants can have a profound effect on their surroundings, altering flow patterns and trapping large amounts of organic and inorganic material. Animals also affect aquatic ecosystems in many ways, both in building structures such as tubes and shelters, and in their feeding. For example, detritus feeders often produce large numbers of faecal pellets (and pseudofaeces in bivalves) and these are very different in size to the materials ingested. Pellets are deposited in masses over the bed of streams, lakes and the sea and therefore effect a translocation of nutrients. The action of plants and animals in altering their environment is likely to be a significant process in all water bodies, from both small to large scale.

  9. Yeast Community Structures and Dynamics in Healthy and Botrytis-Affected Grape Must Fermentations▿

    PubMed Central

    Nisiotou, Aspasia A.; Spiropoulos, Apostolos E.; Nychas, George-John E.

    2007-01-01

    Indigenous yeast population dynamics during the fermentation of healthy and Botrytis-affected grape juice samples from two regions in Greece, Attica and Arcadia, were surveyed. Species diversity was evaluated by using restriction fragment length polymorphism and sequence analyses of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions of cultivable yeasts. Community-level profiles were also obtained by direct analysis of fermenting samples through denaturing gradient gel electrophoresis of 26S rDNA amplicons. Both approaches revealed structural divergences in yeast communities between samples of different sanitary states or geographical origins. In all cases, Botrytis infection severely perturbed the bioprocess of fermentation by dramatically altering species heterogeneity and succession during the time course. At the beginning and middle of fermentations, Botrytis-affected samples possessed higher levels of biodiversity than their healthy counterparts, being enriched with fermentative and/or spoilage species, such as Zygosaccharomyces bailii and Issatchenkia spp. or Kluyveromyces dobzhanskii and Kazachstania sp. populations that have not been reported before for wine fermentations. Importantly, Botrytis-affected samples exposed discrete final species dominance. Selection was not species specific, and two different populations, i.e., Saccharomyces cerevisiae in samples from Arcadia and Z. bailii in samples from Attica, could be recovered at the end of Botrytis-affected fermentations. The governing of wine fermentations by Z. bailii is reported for the first time and could elucidate the origins and role of this particular spoilage microbe for the wine industry. This is the first survey to compare healthy and Botrytis-affected spontaneous fermentations by using both culture-based and -independent molecular methods in an attempt to further illuminate the complex yeast ecology of grape must fermentations. PMID:17766453

  10. Yeast community structures and dynamics in healthy and Botrytis-affected grape must fermentations.

    PubMed

    Nisiotou, Aspasia A; Spiropoulos, Apostolos E; Nychas, George-John E

    2007-11-01

    Indigenous yeast population dynamics during the fermentation of healthy and Botrytis-affected grape juice samples from two regions in Greece, Attica and Arcadia, were surveyed. Species diversity was evaluated by using restriction fragment length polymorphism and sequence analyses of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions of cultivable yeasts. Community-level profiles were also obtained by direct analysis of fermenting samples through denaturing gradient gel electrophoresis of 26S rDNA amplicons. Both approaches revealed structural divergences in yeast communities between samples of different sanitary states or geographical origins. In all cases, Botrytis infection severely perturbed the bioprocess of fermentation by dramatically altering species heterogeneity and succession during the time course. At the beginning and middle of fermentations, Botrytis-affected samples possessed higher levels of biodiversity than their healthy counterparts, being enriched with fermentative and/or spoilage species, such as Zygosaccharomyces bailii and Issatchenkia spp. or Kluyveromyces dobzhanskii and Kazachstania sp. populations that have not been reported before for wine fermentations. Importantly, Botrytis-affected samples exposed discrete final species dominance. Selection was not species specific, and two different populations, i.e., Saccharomyces cerevisiae in samples from Arcadia and Z. bailii in samples from Attica, could be recovered at the end of Botrytis-affected fermentations. The governing of wine fermentations by Z. bailii is reported for the first time and could elucidate the origins and role of this particular spoilage microbe for the wine industry. This is the first survey to compare healthy and Botrytis-affected spontaneous fermentations by using both culture-based and -independent molecular methods in an attempt to further illuminate the complex yeast ecology of grape must fermentations.

  11. Analysis of factors affecting satisfaction level on problem based learning approach using structural equation modeling

    NASA Astrophysics Data System (ADS)

    Hussain, Nur Farahin Mee; Zahid, Zalina

    2014-12-01

    Nowadays, in the job market demand, graduates are expected not only to have higher performance in academic but they must also be excellent in soft skill. Problem-Based Learning (PBL) has a number of distinct advantages as a learning method as it can deliver graduates that will be highly prized by industry. This study attempts to determine the satisfaction level of engineering students on the PBL Approach and to evaluate their determinant factors. The Structural Equation Modeling (SEM) was used to investigate how the factors of Good Teaching Scale, Clear Goals, Student Assessment and Levels of Workload affected the student satisfaction towards PBL approach.

  12. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.

    PubMed

    Atkinson, Carla L; Capps, Krista A; Rugenski, Amanda T; Vanni, Michael J

    2016-12-23

    The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973-2002 to 7.3 per year during 2003-2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal-mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non-CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco-evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic

  13. Ecosystem services as a common language for coastal ecosystem-based management.

    PubMed

    Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric

    2010-02-01

    Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.

  14. Do I Know You? How Individual Recognition Affects Group Formation and Structure

    PubMed Central

    2017-01-01

    Groups in nature can be formed by interactions between individuals, or by external pressures like predation. It is reasonable to assume that groups formed by internal and external conditions have different dynamics and structures. We propose a computational model to investigate the effects of individual recognition on the formation and structure of animal groups. Our model is composed of agents that can recognize each other and remember previous interactions, without any external pressures, in order to isolate the effects of individual recognition. We show that individual recognition affects the number and size of groups, and the modularity of the social networks. This model can be used as a null model to investigate the effects of external factors on group formation and persistence. PMID:28125708

  15. Clonal structure affects the assembling behavior in the Japanese queenless ant Pristomyrmex punctatus

    NASA Astrophysics Data System (ADS)

    Nishide, Yudai; Satoh, Toshiyuki; Hiraoka, Tuyosi; Obara, Yoshiaki; Iwabuchi, Kikuo

    2007-10-01

    The queenless ant Pristomyrmex punctatus (Hymenoptera: Myrmicinae) has a unique society that differs from those of other typical ants. This species does not have a queen, and the workers lay eggs and produce their clones parthenogenetically. However, a colony of these ants does not always comprise members derived from a single clonal line. In this study, we examined whether P. punctatus changes its “assembling behavior” based on colony genetic structure. We prepared two subcolonies—a larger one comprising 200 individuals and a smaller one comprising 100 individuals; these subcolonies were established from a single stock colony. We investigated whether these subcolonies assemble into a single nest. The genetically monomorphic subcolonies (single clonal line) always fused into a single nest; however, the genetically polymorphic subcolonies (multiple clonal lines) did not tend to form a single colony. The present study is the first to demonstrate that the colony genetic structure significantly affects social viscosity in social insects.

  16. The microbial community structure of drinking water biofilms can be affected by phosphorus availability.

    PubMed

    Keinänen, Minna M; Korhonen, Leena K; Lehtola, Markku J; Miettinen, Ilkka T; Martikainen, Pertti J; Vartiainen, Terttu; Suutari, Merja H

    2002-01-01

    Microbial communities in biofilms grown for 4 and 11 weeks under the flow of drinking water supplemented with 0, 1, 2, and 5 microg of phosphorus liter(-1) and in drinking and warm waters were compared by using phospholipid fatty acids (PLFAs) and lipopolysaccharide 3-hydroxy fatty acids (LPS 3-OH-FAs). Phosphate increased the proportion of PLFAs 16:1 omega 7c and 18:1 omega 7c and affected LPS 3-OH-FAs after 11 weeks of growth, indicating an increase in gram-negative bacteria and changes in their community structure. Differences in community structures between biofilms and drinking and warm waters can be assumed from PLFAs and LPS 3-OH-FAs, concomitantly with adaptive changes in fatty acid chain length, cyclization, and unsaturation.

  17. Concrete modelling for expertise of structures affected by alkali aggregate reaction

    SciTech Connect

    Grimal, E.; Sellier, A.; Multon, S.; Le Pape, Y.; Bourdarot, E.

    2010-04-15

    Alkali aggregate reaction (AAR) affects numerous civil engineering structures and causes irreversible expansion and cracking. In order to control the safety level and the maintenance cost of its hydraulic dams, Electricite de France (EDF) must reach better comprehension and better prediction of the expansion phenomena. For this purpose, EDF has developed a numerical model based on the finite element method in order to assess the mechanical behaviour of damaged structures. The model takes the following phenomena into account: concrete creep, the stress induced by the formation of AAR gel and the mechanical damage. A rheological model was developed to assess the coupling between the different phenomena (creep, AAR and anisotropic damage). Experimental results were used to test the model. The results show the capability of the model to predict the experimental behaviour of beams subjected to AAR. In order to obtain such prediction, it is necessary to take all the phenomena occurring in the concrete into consideration.

  18. Regulation of electron transfer processes affects phototrophic mat structure and activity

    PubMed Central

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  19. Trophic cascades across ecosystems.

    PubMed

    Knight, Tiffany M; McCoy, Michael W; Chase, Jonathan M; McCoy, Krista A; Holt, Robert D

    2005-10-06

    Predation can be intense, creating strong direct and indirect effects throughout food webs. In addition, ecologists increasingly recognize that fluxes of organisms across ecosystem boundaries can have major consequences for community dynamics. Species with complex life histories often shift habitats during their life cycles and provide potent conduits coupling ecosystems. Thus, local interactions that affect predator abundance in one ecosystem (for example a larval habitat) may have reverberating effects in another (for example an adult habitat). Here we show that fish indirectly facilitate terrestrial plant reproduction through cascading trophic interactions across ecosystem boundaries. Fish reduce larval dragonfly abundances in ponds, leading to fewer adult dragonflies nearby. Adult dragonflies consume insect pollinators and alter their foraging behaviour. As a result, plants near ponds with fish receive more pollinator visits and are less pollen limited than plants near fish-free ponds. Our results confirm that strong species interactions can reverberate across ecosystems, and emphasize the importance of landscape-level processes in driving local species interactions.

  20. Ecosystem sensitivity to climate warming: A modeling approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warmer atmospheric temperatures will affect ecosystem functioning directly through changes in metabolic rate and tissue damage of organisms. Indirectly, increased temperatures can also affect ecosystem water balance with increased evapotranspiration (from bare-soil evaporation and transpiration) tha...

  1. Tampa Bay Ecosystem Services Demonstration Project Website: Phase II

    EPA Science Inventory

    The Tampa Bay Ecosystem Services Demonstration Project models the impact of human development and natural stressors on the economic, aesthetic and cultural value of local ecosystems. By linking ecological structures, functions, and condition to the ecosystem services valued by h...

  2. Towards an impact assessment of bauxite red mud waste on the knowledge of the structure and functions of bathyal ecosystems: The example of the Cassidaigne canyon (north-western Mediterranean Sea).

    PubMed

    Dauvin, Jean-Claude

    2010-02-01

    Since 1967, the alumina plants in the Marseilles area (Barasse and Gardanne) have been discharging the mineral residue (i.e., red mud) resulting from the alkaline processing of bauxite into the submarine Cassidaigne canyon (north-western Mediterranean Sea) through pipes situated at 320-330 m in depth. The Barasse pipe stopped being used in 1988. From 1987 to 1996, many decrees and regulations were promulgated by the French State to rule the conditions under which the Gardanne alumina refinery was authorized to dispose of the bauxite residue in the sea. The refinery was required: (i) to study the hydrodynamic circulation in the Cassidaigne canyon to evaluate the potential dispersion and transport of fine elements discharged into the water mass and their impact on the pelagic ecosystem; (ii) to survey the marine environment every five years to control the expansion and thickness of the red mud deposit and compare the evolution of the benthic macrofauna at representative sampling sites in the environment affected by the red mud discharge with that of reference sites outside of the red mud plume; (iii) to study the effect of the discharge on fishing activities; and (iv) to investigate the toxicity of the red mud, particularly its persistence, accumulation, interaction and effect on the marine ecosystem