Climatic factors affecting quantity and quality grade of in vivo derived embryos of cattle.
Chinchilla-Vargas, Josué; Jahnke, Marianna M; Dohlman, Tyler M; Rothschild, Max F; Gunn, Patrick J
2018-05-01
The present study investigated the effects of climatic variables on the quality grade and quantity of in vivo derived cattle embryos in the Midwestern United States. Climatic information included greatest and least daily temperature, average daily wind speed and average temperature-humidity index for each of the 765 records. The response variables included the number of ovarian structures, viable embryos, quality grade 1 embryos, quality grade 2 embryos, quality grade 3 embryos, freezable embryos (sum of quality grade 1 and quality grade 2 embryos), transferable embryos (sum of quality grade 1-3 embryos), degenerate embryos and unfertilized ova. Measures for variables among the breeds of donors and sires grouped by geographical origin were compared. A negative effect of greater temperatures during the early embryonic development stage tended (P < 0.10) to be associated with a decrease in the quality of embryos recovered. Interestingly, the greater the Temperature-Humidity Index (THI) during the early ovarian antral follicular development stage 40-45 days prior to ovulation was associated with a tendency for greater numbers of total number of freezable and transferable embryos recovered per uterine flushing (P < 0.10). Increased wind speed at the early antral follicular phase 40-45 days prior to ovulation was associated with an increase in the percentage of quality grade 1 embryos recovered (P < 0.05). Wind speed during the estrous synchronization period was also associated with a lesser number of embryos recovered (P < 0.05). This retrospective study confirms that climatic variables have significant effects on the in vivo production of cattle embryos and that wind speed should be considered in future analyses of factors affecting embryo quality. Copyright © 2018 Elsevier B.V. All rights reserved.
Embryo density may affect embryo quality during in vitro culture in a microwell group culture dish.
Lehner, Adam; Kaszas, Zita; Murber, Akos; Rigo, Janos; Urbancsek, Janos; Fancsovits, Peter
2017-08-01
Culturing embryos in groups is a common practice in mammalian embryology. Since the introduction of different microwell dishes, it is possible to identify oocytes or embryos individually. As embryo density (embryo-to-volume ratio) may affect the development and viability of the embryos, the purpose of this study was to assess the effect of different embryo densities on embryo quality. Data of 1337 embryos from 228 in vitro fertilization treatment cycles were retrospectively analyzed. Embryos were cultured in a 25 μl microdrop in a microwell group culture dish containing 9 microwells. Three density groups were defined: Group 1 with 2-4 (6.3-12.5 μl/embryo), Group 2 with 5-6 (4.2-5.0 μl/embryo), and Group 3 with 7-9 (2.8-3.6 μl/embryo) embryos. Proportion of good quality embryos was higher in Group 2 on both days (D2: 18.9 vs. 31.5 vs. 24.7%; p < 0.001; D3: 19.7 vs. 27.1 vs. 21.2%; p = 0.029; Group 1. vs. Group 2. vs. Group 3). Cell number on Day 3 differed between Groups 1 and 2 (6.8 ± 2.2; 7.3 ± 2.1; p = 0.004) and Groups 2 and 3 (7.3 ± 2.1 vs. 7.0 ± 2.0; p = 0.014). Culturing 5-6 embryos together in a culture volume of 25 μl may benefit embryo quality. As low egg number, position, and distance of the embryos may influence embryo quality, results should be interpreted with caution.
Braga, D P A F; Setti, A S; Figueira, R C S; Iaconelli, A; Borges, E
2015-07-01
The present case-control study aimed to identify the effect of sperm cryopreservation on the quality of the embryo and on the probability of blastocyst formation when oocytes free of dimorphisms are injected and when at least one dymorphism is present. The study included 22 186 zygotes, obtained from 2802 patients undergoing intracytoplasmic sperm injection cycles, in a private assisted reproduction center, using either fresh or cryopreserved sperm. The effect of sperm cryopreservation on the embryo quality on cleavage stage and blastocyst formation chance were evaluated when oocytes free of dimorphisms are injected and when at least one dymorphism is present. The quality of the embryo on cleavage stage as well as the chance for blastocyst formation was not influenced by the origin of the spermatozoa when the quality of the oocyte was not considered. When at least one oocyte defect was present, a negative influence of sperm cryopreservation on cleavage stage embryo quality and the chance for blastocyst formation was noted. In oocytes with extra-cytoplasmic dimorphisms, the injection of cryopreserved sperm did not affect the quality of the embryo during the cleavage stage, but did affect the chance for blastocyst formation. Conversely, in oocytes with intracytoplasmic defects, the quality of the embryos on cleavage stage and the chance of blastocyst formation were negatively influenced by the injection of cryopreserved sperm. The results suggest an oocyte quality-dependent negative effect of sperm cryopreservation on embryo quality and on the probability of blastocyst formation. © 2015 American Society of Andrology and European Academy of Andrology.
Zhang, L; Wei, Z; Liu, P
1998-12-01
To analyze the various factors in an in vitro fertilization and embryo transfer (IVF-ET) program which may affect the clinical pregnacy rate. A retrospective study was done on 559 IVF-ET cycles from 1992-Nov. 1995. The indication for treatment was bilateral tubal blockage. The chi 2 analysis of single factor variants with SPSS-PC + V3.0 was used for statistics. The overall clinical pregnancy rate in 559 cycles was 21.6%. The cause of tubal blockage due to tuberculoses consisted of 28.4%, and 34.9% of secondary sterility had the history of artificial abortion. The changes of environment, the different causes of tubal blockage, the history of previous intrauterine pregnancy did not affect the clinical pregnancy rate. When the number of embryos transferred increased to 5, the clinical pregnancy rate was highest 32.5%. The cumulative embryo score or embryo quality was related significantly with clinical pregnancy rate. The number and quality of embryos transferred are important factors affecting the clinical pregnancy rate. However, measures to prevent high-order multiple pregnancy and studies on the survival potential of embryos besides their morphology should be emphasized.
Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality.
Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe
2016-01-01
In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.
Merhi, Zaher O; Keltz, Julia; Zapantis, Athena; Younger, Joshua; Berger, Dara; Lieman, Harry J; Jindal, Sangita K; Polotsky, Alex J
2013-08-01
Male adiposity is detrimental for achieving clinical pregnancy rate (CPR) following assisted reproductive technologies (ART). The hypothesis that the association of male adiposity with decreased success following ART is mediated by worse embryo quality was tested. Retrospective study including 344 infertile couples undergoing in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycles was performed. Cycle determinants included number of oocytes retrieved, zygote PN-score, total number of embryos available on day 3, number of embryos transferred, composite day 3 grade for transferred embryos, composite day 3 grade per cycle, and CPR. Couples with male body mass index (BMI) over 25 kg m(-2) (overweight and obese) exhibited significantly lower CPR compared to their normal weight counterparts (46.7% vs. 32.0% respectively, P = 0.02). No significant difference was observed for any embryo quality metrics when analyzed by male BMI: mean zygote PN-scores, mean composite day 3 grades for transferred embryos or composite day 3 grades per cycle. In a multivariable logistic regression analysis adjusting for female age, female BMI, number of embryos transferred and sperm concentration, male BMI over 25 kg m(-2) was associated with a lower chance for CPR after IVF (OR = 0.17 [95% CI: 0.04-0.65]; P = 0.01) but not after ICSI cycles (OR = 0.88 [95% CI: 0.41-1.88]; P = 0.75). In this cohort, male adiposity was associated with decreased CPR following IVF but embryo quality was not affected. Embryo grading based on conventional morphologic criteria does not explain the poorer clinical pregnancy outcomes seen in couples with overweight or obese male partner. Copyright © 2013 The Obesity Society.
Effect of body condition and season on yield and quality of in vitro produced bovine embryos.
Chrenek, Peter; Kubovičová, Elena; Olexíková, Lucia; Makarevich, Alexander V; Toporcerová, Silvia; Ostró, Alexander
2015-12-01
The aim of our study was to examine the effects of cow's body condition score (BCS; scale 1-5) and season on the quality of bovine in vitro produced embryos. The proportion of good quality oocytes (Q1 and Q2) was higher (P < 0.05) in the BCS 2 (57.60%) and BCS 3 (60.90%) groups compared with the BCS 1 (43.60%) group. There were no statistical differences in embryo cleavage and blastocyst rate among the BCS groups. The highest total cell number (TCN, DAPI stain) of blastocysts (P < 0.05), recorded in BCS 1 (122.27 ± 6.90) in comparison with BCS 2 (101.8 ± 3.60) or BCS 3 (105.44 ± 3.70) groups, was related to higher dead cell (DCI, TUNEL) index in this group (7.07%) when compared with BCS 2 (6.54%) or BCS 3 (6.06%), respectively. The yield of good quality oocytes during spring was lower (P < 0.05) compared with the summer season. There were significant differences (P < 0.05) in maturation and cleavage rates between autumn and summer (73.42%, 76.2% vs. 85.0%, 41.8%, respectively). The highest (P < 0.01) blastocyst rate was noted during spring and summer months. Significant difference (P < 0.05) in the TCN among spring (99.38 ± 3.90), autumn (110.1 ± 4.58) or summer (108.96 ± 3.52) was observed. The highest proportion of embryos with the best (grade I) actin cytoskeleton (phalloidin-TRITC) quality was noted during the summer months. Our results indicate that body condition affects the initial quality of oocytes, but does not affect embryo cleavage, blastocyst rate and actin quality. This finding may suggest that development in vitro can mask the influence of BCS. The season affects yield and quality of blastocysts in the way that the autumn period is more favorable for embryo development.
Undernutrition affects embryo quality of superovulated ewes.
Abecia, J A; Forcada, F; Palacín, I; Sánchez-Prieto, L; Sosa, C; Fernández-Foren, A; Meikle, A
2015-02-01
To determine the effect of undernutrition on embryo production and quality in superovulated sheep, 45 ewes were allocated into two groups to be fed diets that provided 1.5 (control, C; n = 20) or 0.5 (low nutrition, L; n = 25) times daily requirements for maintenance, from oestrous synchronization with intravaginal sponges to embryo collection. Embryos were collected 7 days after the onset of oestrus (day 0). Low nutrition resulted in lower live weight and body condition at embryo collection (P < 0.05). Diet (P < 0.01) and day of sampling (P < 0.001) significantly affected plasma non-esterified fatty acid (NEFA) and insulin concentrations. Plasma leptin concentrations decreased on day 7 only in L ewes. A significant effect of dietary treatment (P < 0.05) and day (P < 0.0001) was observed on plasma insulin-like growth factor (IGF)-I concentrations. The number of recovered oocytes and embryos did not differ between the groups (L: 15.4 ± 0.4; C: 12.4 ± 0.4). Recovery rate was lower (P < 0.05) in the L (60%) than in the C group (73%). The total number of embryos and number of viable-transferable embryos (5.0 ± 0.3 and 3.4 ± 0.3 embryos, respectively) of the L group were lower (P < 0.1) when compared with controls (8.4 ± 0.4 and 6.2 ± 0.4 embryos, respectively). Undernutrition during the period of superovulation and early embryonic development reduced total and viable number of embryos. These effects might be mediated by disruption of endocrine homeostasis, oviduct environment and/or oocyte quality.
Scott, L F; Sundaram, S G; Smith, S
1993-09-01
To define both the limits of a mouse embryo bioassay for quality control in an assisted reproductive technology (ART) program and the areas where it can be effectively used. Embryos at the pronuclear and two-cell stage from three different strains of mice were used to assess the effectiveness of this assay for media quality control using five different media routinely used in ART. Pronuclear and two-cell embryos from CD-1 mice were used to test the ability of a mouse embryo bioassay to control for water quality, contaminants in the culture system, and fluctuations in the environmental conditions using a medium, culture system, and scoring technique that were optimized for this strain. The mouse embryo bioassay is not effective in differentiating media appropriate for supporting human embryo development since the development of mouse embryos in vitro is strain, stage, and media related. However, CD-1 embryos were shown to be sensitive to variations in water quality, pH, temperature, incubator conditions, and contaminants in the system when grown in a protein-free medium optimized for their development. Both total blastocyst number and the cell count in the blastocysts were affected. Pronuclear embryos were more sensitive to perturbations in the culture system than two-cell embryos. A mouse embryo bioassay can be effectively used as a means of quality control of water, chemicals, and contact materials and for technique standardization and training in an assisted reproduction program. All the conditions of the test should be defined, pronuclear embryos should be used, and the end point should be fully expanded blastocysts and/or cell numbers in these blastocysts where appropriate.
Pérez, L; Arias, M E; Sánchez, R; Felmer, R
2015-12-01
Excess of reactive oxygen species (ROS) on in vitro embryo production systems negatively affects the quality and developmental potential of embryos, as result of a decreased sperm quality and increased DNA fragmentation. This issue is of major importance in assisted fertilisation procedures such as intracytoplasmic sperm injection (ICSI), because this technique does not allow the natural selection of competent spermatozoa, and therefore, DNA-damaged spermatozoa might be used to fertilise an egg. The aim of this study was to investigate a new strategy to prevent the potential deleterious effect of ROS on cryopreserved bovine spermatozoa. We evaluated the effect of a sperm pre-treatment with different concentrations of N-acetyl-L-cysteine (NAC) on ROS production, viability and DNA fragmentation and assessed the effect of this treatment on the in vitro developmental potential and quality of embryos generated by ICSI. The results show a strong scavenging effect of 1 and 10 mm NAC after exposure of spermatozoa to a ROS inducer, without compromising the viability and DNA integrity. Importantly, in vitro developmental potential and quality of embryos generated by ICSI with spermatozoa treated with NAC were not affected, confirming the feasibility of using this treatment before an ICSI cycle. © 2015 Blackwell Verlag GmbH.
Makarevich, A V; Stádník, L; Kubovičová, E; Hegedüšová, Z; Holásek, R; Louda, F; Beran, J; Nejdlová, M
2016-06-01
This study examined the impact of cow body condition on the quality of bovine preimplantation embryos. The embryos (n = 107) were flushed from dairy cows and classified according to a five-point scale body condition score (BCS2 n = 17; BCS3 n = 31; BCS4 n = 11) on the 7th day after insemination and then analyzed for development, dead cell index (DCI), cell number and actin cytoskeleton quality. The highest embryo recovery rate (P < 0.05) was recorded in the BCS3 group and the lowest in the BCS4 group. More transferable (morula, blastocyst) embryos were obtained from the BCS4 cows (79%), compared with the BCS2 (64%) or BCS3 (63%) animals. However, cell numbers were higher in the BCS2 and BCS3 groups (P < 0.05) compared with the BCS4 embryos. Conversely, the DCI was lowest in the BCS2 (3.88%; P < 0.05) and highest in the BCS4 (6.56%) embryos. The proportion of embryos with the best actin quality (grade I) was higher in the BCS2 and BCS3 cows compared with the BCS4 group. Almost 25% of all embryos showed fragmented morphology and a higher DCI (5.65%) than normal morulas (1.76%). More fragmented embryos were revealed in the BCS2 (28.6%) and BCS4 (31.25%) groups, and less (19.15%) in the BCS3 group. The cell numbers in such embryos were lower in the BCS4 (22.57) than in the BCS2 (46.25) or BCS3 (42.4) groups. In conclusion, the body condition of dairy cows affects the quality of preimplantation embryos. A BCS over 3.0 resulted in a higher incidence of poor (fragmented) embryos.
Xie, Duo; Qiu, Zhuolin; Luo, Chen; Chu, Qingjun; Quan, Song
2014-06-01
To evaluate the impact of spermatozoa from different sources on normal fertilization of oocytes, embryo quality and embryo developmental potential in intracytoplasmic sperm injection (ICSI) cycles. A retrospective analysis was conducted among 197 patients undergoing ICSI cycles in our center. The patients were classified into 3 groups according to the sources of semen, namely ejaculated spermatozoa group (n=102), percutaneous epididymal sperm aspiration (PESA) group (n=68), and testicular sperm aspiration (TESA) group (n=27). The ejaculated spermatozoa group was further classified into oligoasthenoteratozoospermia (n=67) and cryptozoospermia (n=35) subgroups. The normal fertilization, high-quality embryo, implantation and clinical pregnancy rates were compared among the groups; the rate of high-quality blastocyst formation in in-vitro culture of non-top quality embryos was also observed. The patients with PESA showed significantly higher normal fertilization rate (75.6%) than those in oligoasthenoteratozoospermia (64.8%), cryptozoospermia (62.1%), and TESA (61.6%) groups (P<0.05). No significant differences were found in the high-quality embryo, implantation, and clinical pregnancy rates among the groups (P>0.05). The rate of high-quality blastocyst formation in the in-vitro culture of non-top quality embryos was also comparable among the groups (P>0.05). Although spermatozoa obtained with by PESA is associated with a higher normal fertilization rate, the sources of spermatozoa do not significantly affect the embryonic quality and developmental potential in ICSI cycles.
Niinimäki, Maarit; Veleva, Zdravka; Martikainen, Hannu
2015-11-01
The study was aimed to evaluate which factors affect the cumulative live birth rate after elective single embryo transfer in women younger than 36 years. Additionally, number of children in women with more than one delivery per ovum pick-up after fresh elective single embryo transfer and subsequent frozen embryo transfers was assessed. Retrospective cohort study analysing data of a university hospital's infertility clinic in 2001-2010. A total of 739 IVF/ICSI cycles with elective single embryo transfer were included. Analyses were made per ovum pick-up including fresh and subsequent frozen embryo transfers. Factors affecting cumulative live birth rates were examined in uni- and multivariate analyses. A secondary endpoint was the number of children born after all treatments. In the fresh cycles, the live birth rate was 29.2% and the cumulative live birth rate was 51.3%, with a twin rate of 3.4%. In the multivariate analysis, having two (odds ratio (OR) 1.73; 95% confidence interval (CI) 1.12-2.67) or ≥3 top embryos (OR 2.66; 95% CI 1.79-3.95) was associated with higher odds for live birth after fresh and frozen embryo cycles. Age, body mass index, duration of infertility, diagnosis or total gonadotropin dose were not associated with the cumulative live birth rate. In cycles with one top embryo, the cumulative live birth rate was 40.2%, whereas it was 64.1% in those with at least three top embryos. Of women who had a live birth in the fresh cycle, 20.4% had more than one child after all frozen embryo transfers. Among women with three or more top embryos after ovum pick-up, 16.1% gave birth to more than one child. The cumulative live birth rate in this age group varies from 40% to 64% and is dependent on the quality of embryos. Women with three or more top embryos have good chance of having more than one child per ovum pick-up without elevated risk of multiple pregnancies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Influence of culture medium composition on relative mRNA abundances in domestic cat embryos.
Hribal, R; Jewgenow, K; Braun, B C; Comizzoli, P
2013-04-01
Different culture conditions have been used to produce domestic cat embryos. As part of the in vitro procedures, the medium composition significantly affects the quality of the embryo development also. Quality assessments based on cleavage kinetics and blastomere symmetry are useful, but embryos also can differ in their relative gene expression patterns despite similar morphological characteristics. The aim of this study was to compare cat embryos produced with two different in vitro culture systems routinely used in two different laboratories [Smithsonian Conservation Biology Institute, Washington D.C., USA (SCBI) and Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany (IZW)]. Specifically, relative mRNA expression patterns of critical genes for pre-implantation embryo development were assessed in both conditions. Embryos were produced in parallel in both culture systems by IVF using frozen-thawed ejaculated semen in the United States and fresh epididymal sperm in Germany. Success of embryo development in vitro was recorded as well as relative mRNA abundances [DNA methyltransferases 1 and 3A (DNMT1, DNMT3A), gap junction protein alpha 1 (GJA1), octamer-binding transcription factor 4 [OCT4], insulin-like growth factors 1 and 2 receptors (IGF1R, IGF2R), beta-actin (ACTB)] in pools of days 4-5 morulae by semi-quantitative RT-PCR assay. Percentages of cleaved embryos were similar (p > 0.05) between both culture systems, regardless of the location. OCT4 mRNA abundance was higher (p < 0.05) in embryos derived in the SCBI culture system compared with those from the IZW system when epididymal sperm was used for IVF. No clear correlation between the expression pattern and the culture system could be found for all other genes. It is suggested that OCT4 expression might be affected by the media composition in some conditions and can be the indicator of a better embryo quality. © 2012 Blackwell Verlag GmbH.
Morphological evaluation of Day 8 embryos developed during induced aluteal cycles in the mare.
Leisinger, C A; Medina, V; Markle, M L; Paccamonti, D L; Pinto, C R F
2018-01-01
A novel in vivo model utilizing serial administrations of PGF 2α to induce aluteal cycles in the mare was used to evaluate the effects of progesterone-deprivation on the morphology of in vivo preimplantation embryos. We hypothesized that equine embryos produced during induced aluteal cycles (AL) would be developmentally affected, characterized by earlier embryo stage at collection, smaller embryo diameter, and lower quality grade, compared with those collected on the same day post-ovulation from control cycles during diestrus (high progesterone; > 4 ng/mL). Seven cyclic mares with a median age of 6.5 years (range 3-16) were utilized in a crossover design. Mares in estrus were artificially inseminated to a fertile stallion and randomly assigned to control or AL groups. Mares received either saline solution (control mares) or PGF 2α (AL mares), twice daily on days 0, 1, and 2 and once daily on days 3 and 4. Serial blood samples were collected daily during estrus and until the day of embryo collection 8 days after ovulation. Mares were monitored until they returned to estrus, and artificially inseminated. Mares were switched to the opposite treatment group only after a successful embryo collection occurred during the previous cycle. Only cycles that produced embryos were used for analyses. No significant rise in progesterone was observed in the AL group with mean concentrations of plasma progesterone remaining <1.0 ng/mL from ovulation until embryo collection on Day 8. This is in sharp contrast to the control (luteal) cycle where a post-ovulatory rise in plasma progesterone was observed. The mean daily concentrations of plasma progesterone were significantly higher in control vs. AL group beginning at Day 3 and remained so until Day 8. The mean (±SEM) embryo diameter of AL embryos was 171 ± 5 μm compared to 756 ± 99 μm for control embryos. The majority of the Day 8 AL embryos were classified as morulas (3/9) or early blastocysts (5/9) with only 2 embryos of quality grade 1 compared to the Day 8 control embryos that were mostly expanded blastocysts (6/7) with 5 of 6 being of quality grade 1. This study shows that serial administrations of PGF 2α were able to prevent significant rises in plasma progesterone, thus inducing aluteal cycles characterized by a progesterone-deprived environment for developing embryos. Embryos collected from induced aluteal cycles were adversely affected as demonstrated by a lower quality grade, smaller diameter and earlier embryo stage at collection when compared to control embryos. Copyright © 2017 Elsevier Inc. All rights reserved.
George, F; Vrancken, M; Verhaeghe, B; Verhoeye, F; Schneider, Y-J; Massip, A; Donnay, I
2006-09-15
Successful cryopreservation is essential for a large-scale dispersal of bovine in vitro produced (IVP) embryos that have been shown to be more sensitive to cryopreservation than their in vivo counterparts. On the other hand, the use of animal proteins in freezing media increases sanitary risks. We first replaced animal proteins, such as bovine serum albumin (BSA) in the freezing medium by plant-derived peptides (vegetal peptones). A batch of wheat peptones was selected after a preliminary experiment showing the absence of toxicity of concentrations<18 mg/mL on in vitro bovine blastocysts. Increasing concentrations of peptones were then added in the freezing medium. The surviving and hatching rates were not affected by comparison with those observed with BSA. No significant difference was observed between groups either for the total number of cells or for the ratio ICM/Total cell, nor for the rate of apoptosis in surviving embryos. When embryos were cryopreserved in 1.8 mg/mL peptone, the hatching rate and embryo quality as assessed at 48 h post-thawing were not significantly different from those of unfrozen embryos. In a second experiment two additives were added in this animal protein-free freezing medium containing 1.8 mg/mL peptones. No beneficial effect of adding 1 mg/mL sodium hyaluronate or 100 microM beta-mercaptoethanol was observed on embryo survival or quality. In conclusion, we have demonstrated that vegetal peptones can replace BSA in freezing media without affecting blastocyst survival and quality.
Arias, María E; Ross, Pablo J; Felmer, Ricardo N
2013-01-01
Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT) embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively). No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (P<0.01) in the rate of blastocyst development, with the K-K/ FBS culture system yielding a higher rate of blastocysts (28%) compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively). Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA). Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.
Misra, A K; Rao, M M; Kasiraj, R; Reddy, N S; Pant, H C
1999-07-01
The objectives of this study were to determine the pregnancy rate and factors affecting it following nonsurgical embryo transfer in buffalo. Donor buffalo were superovulated with FSH, and embryos collected nonsurgically were evaluated for stage of development and quality. They were transferred nonsurgically to 91 recipients on Days 5 to 7 of the natural (n = 52) or induced (n = 39) estrus (estrus = Day 0). The overall pregnancy rate of 24/91(26.4%) was higher than in earlier reports for buffalo but was much lower than in cattle. Pregnancy rates were not affected by season (autumn vs winter), side of transfer (right vs left uterine horn), or type of estrus (spontaneous vs induced). The pregnancy rate was high 11/27(40.7%) when donors and recipients were closely synchronized, while it was compromised when recipients were in estrus at +12 h (1/7, 14.3%) and at -12 h (5/27, 18.5%). Asynchrony beyond 12 h on either side resulted into conception failure. The pregnancy rate tended to increase with the increase in CL size of recipients, while stage of embryonic development had no effect. The transfer of an 8-cell embryo with a 16-cell embryo led to the birth of heterosexual twins, indicating that the uterine milieu of Day 5 to 6 recipients may be tolerated by the out-of-phase 8-cell embryo, at least in the presence of a more mature embryo. Embryo quality had the greatest effect on pregnancy rate as it was higher (P < 0.005) after the transfer of Grade I than Grade III embryos (6/10, 60.0% vs 3/36, 13.9%). Assessment of returns to estrus indicated that among nonpregnant recipients, 17/67 (25.4%) embryos never matured sufficiently to prevent luteolysis through maternal recognition of pregnancy (MRP), while 14/67 (20.8%) embryos probably died following MRP. These results indicate that efforts to increase pregnancy rate following embryo transfer in buffalo should include prevention of luteolysis during the first week of transfer and a reduction in the incidence of embryonic mortality.
NASA Astrophysics Data System (ADS)
Osychenko, Alina A.; Zalessky, Alexandr D.; Kostrov, Andrey N.; Ryabova, Anastasia V.; Krivokharchenko, Alexander S.; Nadtochenko, Viktor A.
2017-12-01
The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion.
Zheng, Jufeng; Lu, Yongning; Qu, Xianqin; Wang, Peng; Zhao, Luiwen; Gao, Minzhi; Shi, Huijuan; Jin, Xingliang
Spermatozoa motility is the critical parameter to affect the treatment outcomes during assisted reproductive technologies (ART), but its reproductive capability remains a little informed in condition of severe male factor infertility. This retrospective cohort study aimed to evaluate the effects of reduced sperm motility on the embryological and clinical outcomes in intra-cytoplasmic sperm injection (ICSI) treatment of severe oligozoospermia. 966 cycles (812 couples) of severe oligozoospermia diagnosed by spermatozoa count ≤ 5 × 106/mL and motile spermatozoa ≤ 2 × 106/mL were divided into four groups in according to the number of motile spermatozoa in one ejaculate on the day of oocyte retrieval (Group B-E). The control (Group A) was 188 cycles of moderate oligozoospermia with spermatozoa count > 5 × 106/mL and motile spermatozoa > 2 × 106/mL. All female partners were younger than 35 years of age. Logistic regression analyzed embryological outcomes (the rates of fertilization, cleavage and good-quality embryo) and clinical outcomes (the rates of pregnancy, implantation, early miscarriage and live birth). Quality of embryo transfer (ET) was divided into three classes as continuous factor to test the effects of embryo quality on clinical outcomes. The reduction in the number of motile sperm in four groups of severe oligozoospermia gave rise to comparable inability of the fertilization (p < 0.001) and a decreased rate of good-quality embryo at Day 3 (p < 0.001) by compared to the control. The cleavage rate of the derived zygotes was similar to the control. ET classes significantly affected the clinical outcomes (p < 0.001). Class I ET gave rise to similar rates of clinical outcomes between five groups, but Class II and Class III ET retarded the rates of pregnancy, implantation and live birth and this particularly occurred in Group C, D and E. The rate of early miscarriage was not comparably different between groups. Overall rates in all groups were 41.26% clinical pregnancy, 25.74% implantation and 36.32% live birth, which gave live birth to 252 girls and 252 boys. The reduction of motile spermatozoa in severe oligozoospermia decreased the rates of fertilization and good-quality embryo. Obtaining and transfer of good-quality embryos was the good prognostic to achieve prospective clinical outcomes regardless of the severity of oligozoospermia.
Uppangala, Shubhashree; D'Souza, Fiona; Pudakalakatti, Shivanand; Atreya, Hanudatta S; Raval, Keyur; Kalthur, Guruprasad; Adiga, Satish Kumar
2016-12-01
Laser assisted zona hatching (LAH) is a routinely used therapeutic intervention in assisted reproductive technology for patients with poor prognosis. However, results are not conclusive in demonstrating the benefits of zona hatching in improving the pregnancy rate. Recent observations on LAH induced genetic instability in animal embryos prompted us to look into the effects of laser assisted zona hatching on the human preimplantation embryo quality and metabolic uptake using high resolution nuclear magnetic resonance (NMR) technology. This experimental prospective study included fifty embryos from twenty-five patients undergoing intra cytoplasmic sperm injection. Embryo quality assessment followed by profiling of spent media for the non-invasive evaluation of metabolites was performed using NMR spectroscopy 24 hours after laser treatment and compared with that of non-treated sibling embryos. Both cell number and embryo quality on day 3 of development did not vary significantly between the two groups at 24 hours post laser treatment interval. Time lapse monitoring of the embryos for 24 hours did not reveal blastomere fragmentation adjacent to the point of laser treatment. Similarly, principal component analysis of metabolites did not demonstrate any variation across the groups. These results suggest that laser assisted zona hatching does not affect human preimplantation embryo morphology and metabolism at least until 24 hours post laser assisted zona hatching. However, studies are required to elucidate laser induced metabolic and developmental changes at extended time periods. AH: assisted hatching; ART: assisted reproductive technology; DNA: deoxy-ribo nucleic acid; LAH: laser assisted hatching; MHz: megahertz; NMR: nuclear magnetic resonance; PCA: principal component analysis; PGD: preimplantation genetic diagnosis; TLM: time lapse monitoring.
Near-infrared laser irradiation improves the development of mouse pre-implantation embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoo, Masaki; Mori, Miho
The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing ofmore » blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P < 0.05). When 195 irradiated blastocysts were transferred to 18 pseudopregnant mice, all became pregnant and 92 (47.2%) normal-looking pups were born alive. When 182 control blastocysts were transferred to 17 pseudopregnant mice, 14 (82.4%) became pregnant and 54 (29.7%) normal-looking pups were born alive. The growth trajectories (up to 5 weeks) of offspring from irradiated blastocysts were similar to those from control blastocysts. Second generation offspring from transplanted animals were all fertile. These results indicate that near-infrared laser irradiation improves the quality of mouse embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. - Highlights: • Irradiation of blastocysts with a near-infrared laser improves embryo development. • Irradiation of blastocysts increases the live birth rate after embryo transfer. • Irradiation of blastocysts did not affect the normality of the pups. • Near-infrared laser irradiation may be useful to enhance the quality of embryos. • This study may contribute to improvements in reproductive technologies in mammals.« less
Osychenko, Alina A; Zalessky, Alexandr D; Kostrov, Andrey N; Ryabova, Anastasia V; Krivokharchenko, Alexander S; Nadtochenko, Viktor A
2017-12-01
The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Timing embryo biopsy for PGD - before or after cryopreservation?
Shinar, S; Kornecki, N; Schwartz, T; Mey-Raz, N; Amir, H; Almog, B; Shavit, T; Hasson, J
2016-09-01
Pre-implantation genetic diagnosis (PGD) is required in order to screen and diagnose embryos of patients at risk of having a genetically affected offspring. A biopsy to diagnose the genetic profile of the embryo may be performed either before or after cryopreservation. The aim of this study was to determine which biopsy timing yields higher embryo survival rates. Retrospective cohort study of all PGD patients in a public IVF unit between 2010 and 2013. Inclusion criteria were patients with good-quality embryos available for cryopreservation by the slow freezing method. Embryos were divided into two groups: biopsy before and biopsy after cryopreservation. The primary outcome was embryo survival rates post thawing. Sixty-five patients met inclusion criteria. 145 embryos were biopsied before cryopreservation and 228 embryos were cryopreserved and biopsied after thawing. Embryo survival was significantly greater in the latter group (77% vs. 68%, p < 0.0001). Cryopreservation preceding biopsy results in better embryo survival compared to biopsy before cryopreservation.
Tanada, Michelli S; Yoshida, Ivan H; Santos, Monise; Berton, Caroline Z; Souto, Elen; Carvalho, Waldemar P de; Cordts, Emerson B; Barbosa, Caio P
2018-06-01
Progesterone is a steroid hormone that acts on the endometrium. It is known for producing physical and mood-related side effects. Few studies have looked into how progesterone levels affect embryo development and quality. This study aimed to find a cutoff level for serum progesterone on the day of HCG administration from which embryo quality is impaired. The study included 145 cycles, from which 885 oocytes and 613 embryos were obtained. All patients had their serum progesterone levels measured on the day of HCG administration. Data sets were collected from patient medical records. The chi-square test was used to assess qualitative variables and the Mann-Whitney test to evaluate quantitative variables. Statistical analysis revealed that serum progesterone levels and reproductive variables were not significantly associated. In regards to oocyte maturity, however, when progesterone levels were greater than 1.3 ng/mL the probability of oocytes being immature increased by 12.7%. The fragmentation rate of embryos categorized as "top quality" in D3 increased proportionately to increases in progesterone levels (12.23%). High progesterone levels appeared to be correlated with increased embryo fragmentation rates, but high serum levels of the hormone on the day of HCG administration had no impact on reproductive variables and were not associated with impaired embryo development.
Hoelker, M; Rings, F; Lund, Q; Phatsara, C; Schellander, K; Tesfaye, D
2010-10-01
To overcome developmental problems as a consequence of single embryo culture, the Well of the Well (WOW) culture system has been developed. In this study, we aimed to examine the effect of embryo densities with respect to both microenvironment and macroenvironment on developmental rates and embryo quality to get a deeper insight into developmentally important mechanisms. WOW diameter and depth significantly affected developmental rates (p < 0.05). WOWs with diameter of 500 μm reached significantly higher blastocyst rates (32.5 vs 21.1% vs 20.3%) compared to embryos cultured in WOWs of 300 μm diameter or plain cultured controls. Embryos cultured in WOWs with 700 μm depth reached significant higher developmental rates compared with embryos cultured in WOWs of 300 μm depth and control embryos (30.6 vs 22.6% vs 20.3%). Correlation of the embryo per WOW volume with developmental rates was higher (r(2) = 0.92, p = 0.0004) than correlation of WOW diameter or WOW depth with developmental rates. However, the embryo per WOW volume did not affect differential cell counts. An embryo per culture dish volume of 1 : 30 μl was identified to be optimal when the embryo per WOW volume was 1 : 0.27 μl increasing developmental rates up to the level of mass embryo production. Giving the opportunity to track each embryo over the complete culture period while keeping high developmental rates with normal mitotic dynamics, the results of this work will provide benefit for the single culture of embryos in human assisted reproduction, mammalian embryos with high economic interest as well as for scientific purpose. © 2009 Blackwell Verlag GmbH.
Karami, Azade; Bakhtiari, Mitra; Azadbakht, Mehri; Ghorbani, Rostam; Khazaei, Mozafar; Rezaei, Mansour
2017-06-01
Oocyte incubation time before freezing is one of the factors affecting oocyte vitrification. In the assisted reproductive technology (ART) clinics, it is sometimes decided to perform oocyte vitrification after a long period of incubation time due to various conditions, such as inability to collect semen samples, unsuccessful urological interventions (PESA, TESE, etc.), or unexpected conditions. A time factor of up to 6 h has been studied in the available reports. Therefore, this study was designed to evaluate oocyte incubation time before freezing at 0, 6, 12, 18, and 24 h after retrieval. Metaphase II (MII) oocytes were obtained from NMRI female mice after being randomly divided into the five groups of 0, 6, 12, 18, and 24 h of freezing via hormonal stimulation following retrieval and entered into the vitrification-warming process. The thawed oocytes were evaluated according to the survival criteria and then inseminated with the sperms of male mice for in vitro fertilization. The next day, the embryo formation rate and embryo quality were assessed. Our results demonstrated that even after 24 h of incubation, the survival rate of oocytes was 51.35% with the embryo formation rate of 73.21%. However, the survival and embryo formation rates significantly decreased within 12, 18, and 24 h after retrieval compared to the groups vitrified at 0 h. The embryo quality was significantly reduced by vitrification at 0 to 24 h after retrieval. According to our data, although a prolonged incubation time before freezing reduced the survival rate, there was still a chance for oocytes to stay alive with acceptable embryo formation and quality rates after vitrification warming of oocytes.
Ferré, Luis B; Bogliotti, Yanina; Chitwood, James L; Fresno, Cristóbal; Ortega, Hugo H; Kjelland, Michael E; Ross, Pablo J
2015-05-13
High demand exists among commercial cattle producers for in vitro-derived bovine embryos fertilised with female sex-sorted spermatozoa from high-value breeding stock. The aim of this study was to evaluate three fertilisation media, namely M199, synthetic oviductal fluid (SOF) and Tyrode's albumin-lactate-pyruvate (TALP), on IVF performance using female sex-sorted spermatozoa. In all, 1143, 1220 and 1041 cumulus-oocyte complexes were fertilised in M199, SOF and TALP, respectively. There were significant differences among fertilisation media (P < 0.05) in cleavage rate (M199 = 57%, SOF = 71% and TALP = 72%), blastocyst formation (M199 = 9%, SOF = 20% and TALP = 19%), proportion of Grade 1 blastocysts (M199 = 15%, SOF = 52% and TALP = 51%), proportion of Grade 3 blastocysts (M199 = 58%, SOF = 21% and TALP = 20%) and hatching rates (M199 = 29%, SOF = 60% and TALP = 65%). The inner cell mass (ICM) and trophectoderm (TE) cells of Day 7 blastocysts were also affected by the fertilisation medium. Embryos derived from SOF and TALP fertilisation media had higher numbers of ICM, TE and total cells than those fertilised in M199. In conclusion, fertilisation media affected cleavage rate, as well as subsequent embryo development, quality and hatching ability. SOF and TALP fertilisation media produced significantly more embryos of higher quality than M199.
Merton, J S; Knijn, H M; Flapper, H; Dotinga, F; Roelen, B A J; Vos, P L A M; Mullaart, E
2013-09-01
Optimization of ovum pick up (OPU) followed by in vitro embryo production (IVP) is strongly driven by the needs of both beef and dairy cattle breeders to enhance genetic improvement. The rapidly growing use of genomic selection in cattle has increased the interest in using OPU-IVP technology to increase the number of embryos and offspring per donor, thus allowing enhanced selection intensity for the next generation. The aim of this study was to optimize embryo production through supplementation of cysteamine during in vitro maturation (IVM) and in vitro culture (IVC) of both slaughterhouse- and OPU-derived oocytes. The effects on embryo production and on embryo cryotolerance, post-transfer embryo survival, and calf characteristics, including gestation length, birth weight, perinatal mortality, and sex ratio were studied. In study 1, immature slaughterhouse-derived cumulus-oocyte complexes (COCs) were matured in IVM medium supplemented with or without 0.1 mM cysteamine, fertilized and cultured for 7 days in 0.5 ml SOFaaBSA. In study 2, cysteamine was present during both IVM (0.1 mM) and IVC (0.01, 0.05, 0.1 mM) from Days 1 to 4. In study 3, OPU-derived COCs were matured in medium supplemented with or without 0.1 mM cysteamine in a 2 × 2 factorial design (OPU week and cysteamine treatment). Embryos were evaluated for stage and grade on Day 7 and, depending on the number of transferable embryos and recipients available, the embryos were transferred either fresh or frozen-thawed at a later date. The presence of cysteamine during IVM significantly increased the embryo production rate with slaughterhouse-derived COCs (24.0% vs. 19.4%). The higher number of embryos at Day 7 was due to an increased number of blastocysts, whereas the distribution of embryos among different quality grades and cryotolerance was not affected. Embryo production rate was negatively affected when cysteamine was present during both the processes of IVM and IVC during Days 1 to 4 of culture (13.2%-19.3% vs. 26.4%). The presence of cysteamine during IVM of OPU-derived COCs also significantly increased the embryo production rate (34.4% vs. 23.4%). The higher number of embryos was again totally due to an increased number of blastocysts, whereas cryotolerance was not affected. The relative increase in embryo production rate was higher with OPU-derived oocytes compared with slaughterhouse-derived COCs (47% vs. 24%). This improvement resulted in a mean of 1.73 transferable embryos per OPU session compared with 1.06 in the absence of cysteamine. The presence of cysteamine did not affect pregnancy rate, gestation length, birth weight, perinatal mortality, and sex of calves born from either fresh or frozen-thawed embryos. This study reported that cysteamine supplementation during IVM greatly improved the efficiency and affectivity of an OPU-IVP program. Copyright © 2013 Elsevier Inc. All rights reserved.
Mucci, N; Aller, J; Kaiser, G G; Hozbor, F; Cabodevila, J; Alberio, R H
2006-05-01
The present study investigated the effect of estrous cow serum (ECS) during culture of bovine embryos on blastocyst development and survival after cryopreservation by slow freezing or vitrification. Embryos were derived from in vitro maturation (IVM) and in vitro fertilization (IVF) of abbatoir-derived oocytes. At Day 3, embryos were cultured in three different media: Charles Ronsenkrans medium + amino acids (CR1aa; without bovine serum albumin (BSA)) + 5% estrous cow serum (CR1-ECS), CR1aa + 3 mg/mL BSA (CR1-BSA) or CR1aa + 5% ECS + 3 mg/mL BSA (CR1-ECS-BSA). At 7.5 d post-insemination (PI), blastocyst yield and quality were evaluated; blastocysts and expanded blastocysts from each media were cryopreserved by Open Pulled Straw (OPS) vitrification method or slow freezing (1.5 M ethylene glycol, EM). Total blastocyst yield did not differ among CR1-ECS, CR1-BSA and CR1-ECS-BSA (30.9, 33.1 and 32.9%, respectively, P < 0.05). Embryo survival (hatching rate) was higher in vitrified versus slow-frozen embryos (43% versus 12%, respectively, P < 0.01), and in embryos cultured in CR1-BSA (40.3%) compared with those cultured in serum-containing media (CR1-ECS, 21.5% and CR1-ECS-BSA, 19.8%; P < 0.01). (a) it was possible to produce in vitro bovine embryos in serum-free culture medium without affecting blastocyst yield and quality; (b) serum-free medium produced the best quality embryos (in terms of post-cryopreservation survival); and (c) vitrification yielded the highest post-cryopreservation survival rates, regardless of the presence of serum in the culture medium.
Braga, Daniela Paes Almeida Ferreira; Halpern, Gabriela; Setti, Amanda S; Figueira, Rita Cássia S; Iaconelli, Assumpto; Borges, Edson
2015-07-01
The aim of this study was to evaluate the influence of patients' lifestyle factors and eating habits on embryo development. A total of 2659 embryos recovered from 269 patients undergoing intracytoplasmic sperm injection cycles were included. The frequency of intake of food items and social habits were registered and its influences on embryo development evaluated. The consumption of cereals, vegetables and fruits positively influenced the embryo quality at the cleavage stage. The quality of the embryo at the cleavage stage was also negatively correlated with the consumption of alcoholic drinks and smoking habits. The consumption of fruits influenced the likelihood of blastocyst formation, which was also positively affected by the consumption of fish. Being on a weight-loss diet and consumption of red meat had a negative influence on the likelihood of blastocyst formation. The likelihood of blastocyst formation was also negatively influenced by the consumption of alcoholic drinks and by smoking habits. The consumption of red meat and body mass index had a negative effect on the implantation rate and the likelihood of pregnancy. In addition, being on a weight-loss diet had a negative influence on implantation rate. Our evidence suggests a possible relationship between environmental factors and ovary biology. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Yanaihara, Atsushi; Iwasaki, Shinji; Negishi, Momoko; Okai, Takashi
2006-02-01
Intracytoplasmic sperm injection (ICSI) has risen to the forefront of reproductive technology. In the present study, the location of the sperm injection was noted, and a prospective study was conducted to evaluate the effect of the sperm retention site on cleavage rates and embryo quality after ICSI. This study involved 336 ICSI patients (age 27-44; average 37.4) where 1545 oocytes were observed. An oocyte was divided into nine sites and the sperm retention site was observed microscopically after injection. The polar body was placed at either the twelve or six o'clock position. The injection pipette was introduced at the three o'clock position and oolemma rupture was ascertained by mild suction. The main outcome measures were the relationship of sperm remaining in position in the oocyte to fertilization rate and embryo quality. When the injection pipette was introduced at the three o'clock position, about 80% of the sperm remained in the center or left of center. The fertilization rate was significantly lower (p < 0.05) when the sperm remained near the site of introduction. Embryo quality was not significantly affected by the sperm retention site. About 12-14% of the spermatozoa remained near the introducing position, and in these cases the fertilization rate was low. However, once fertilization occurred, the sperm retention site had minimal impact on embryo quality. Injecting sperm near the spindle site may improve embryo quality.
Refrigeration of rainbow trout gametes and embryos.
Babiak, Igor; Dabrowski, Konrad
2003-12-01
Prolonged access to early embryos composed of undifferentiated, totipotent blastomeres is desirable in situations when multiple collections of gametes are not possible. The objective of the present study is to examine whether the refrigeration of rainbow trout Oncorhynchus mykiss gametes and early embryos would be a suitable, reliable, and efficient tool for prolonging the availability of early developmental stages up to the advanced blastula stage. The study was conducted continuously during fall, winter, and spring spawning seasons. In all, more than 500 experimental variants were performed involving individual samples from 26 females and 33 males derived from three strains. These strains represented three possible circumstances. In optimal one, gametes from good quality donors were obtained soon after ovulation. In the two non-optimal sources, either donors were of poor genetic quality or gametes were collected from a distant location and transported as unfertilized gametes. A highly significant effect of variability of individual sample quality on efficiency of gamete and embryo refrigeration was revealed. The source of gametes significantly affected viability of refrigerated oocytes and embryos, but not spermatozoa. On average, oocytes from optimal source retained full fertilization viability for seven days of chilled storage, significantly longer than from non-optimal sources. Spermatozoa, regardless of storage method, retained full fertilization ability for the first week of storage. Refrigeration of embryos at 1.4+/-0.4 degrees C significantly slowed the development. Two- week-old embryos were still in blastula stage. Average survival rate of embryos refrigerated for 10 days and then transferred to regular incubation temperatures of 9-14 degrees C was 92% in optimal and 51 and 71% in non-optimal source variants. No effect of gamete and embryo refrigeration on the occurrence of developmental abnormalities was observed. Cumulative refrigeration of oocytes and embryos resulted in an average embryo survival rate of 71% in optimal source variants after 17 days of refrigeration (7 days oocytes+10 days embryos). The study shows that both gamete and embryo refrigeration can be successfully used as an efficient tool for prolonging availability of rainbow trout embryos in early developmental stages. Copyright 2003 Wiley-Liss, Inc.
2013-01-01
Background Some data suggest that the results of human in vitro fertilization (IVF) may be affected by the site of the uterine cavity where embryos are released. It is not yet clear if there is an optimal range of embryo-fundus distance (EFD) within which embryos should be transferred to optimize IVF outcome. Methods The present study included 1184 patients undergoing a blind, clinical-touch ET of 1–2 fresh embryos loaded in a soft catheter with a low amount of culture medium. We measured the EFD using transvaginal US performed immediately after ET, with the aim to assess (a) if EFD affects pregnancy and implantation rates, and (b) if an optimal EFD range can be identified. Results Despite comparable patients’ clinical characteristics, embryo morphological quality, and endometrial thickness, an EFD between 5 and 15 mm allowed to obtain significantly higher pregnancy and implantation rates than an EFD above 15 mm. The abortion rate was much higher (although not significantly) when EFD was below 5 mm than when it was between 5 and 15 mm. Combined together, these results produced an overall higher ongoing pregnancy rate in the group of patients whose embryos were released between 5 and 15 mm from the fundal endometrial surface. Conclusions The site at which embryos are released affects IVF outcome and an optimal EFD range exists; this observations suggest that US-guided ET could be advantageous vs. clinical-touch ET, as it allows to be more accurate in releasing embryos within the optimal EFD range. PMID:24341917
Wallace, Bryan P; Sotherland, Paul R; Spotila, James R; Reina, Richard D; Franks, Bryan F; Paladino, Frank V
2004-01-01
Clutches of leatherback turtles, Dermochelys coriacea, have lower hatching success than those of other sea turtles, but causes of high embryonic mortality are unknown. We measured characteristics of clutches along with spatial and temporal changes in PO(2) and temperature during incubation to determine the extent to which they affected the developmental environment of leatherback embryos. Minimum PO(2) in nests decreased as both the total number and mass of metabolizing embryos increased. Increases in both the number and mass of metabolizing embryos caused an increase in maximum nest temperature. However, neither PO(2) nor temperature was correlated with hatching success. Our measurements of relatively high nest PO(2) (lowest 17.1 kPa or 16.9% O(2)) indicate that hypoxia apparently does not cause the low hatching success of leatherback clutches. Oxygen partial pressure increased and temperature decreased from the center toward the periphery of leatherback nests. We inferred from these measurements that positions of eggs within nests vary in quality and potentially affect overall developmental success of entire clutches. The large metabolic mass of leatherback clutches and limits to gas flux imposed by the sand create a situation in which leatherback embryos collectively affect their own environment.
Embryo loss in cattle between Days 7 and 16 of pregnancy.
Berg, D K; van Leeuwen, J; Beaumont, S; Berg, M; Pfeffer, P L
2010-01-15
Embryo loss between embryonic Days 7 and 16 (Day 0=day of IVF) in nonlactating cattle, Bos taurus, was analyzed using transfer of 2449 (in groups of 3 to 30) in vitro-produced (IVP) blastocysts. In 152 transfers, pregnancy losses attributable solely to recipient failings amounted to between 6% (beef heifers) and 16% (parous dairy cows), of which 3% were caused by uterine infections. Neither season, year, nor the age of the embryos on retrieval affected pregnancy rates. The latter observation indicated that the reason that a recipient failed to retain embryos was already present at the time of transfer. Notably, the proportion of embryos recovered decreased (P=0.03) as more embryos were transferred, particularly at later stages (Day 14, P<0.01). The average length of embryos decreased by approximately 5% for every additional embryo transferred (P<0.0001). These effects may be linked to embryonic migration. Embryo mortality inherent to the embryo during the second week of pregnancy was 24%. Additionally, 9% of Day 14 embryos were of inferior quality, as they did not contain an epiblast. Combining embryo and recipient causes but excluding infection effects, embryonic loss of IVP embryos during the second week of pregnancy amounted to 26% (heifers) or 34% (parous dairy cows). The length of embryos doubled every day between Days 9 and 16, with a 4.4-fold range in sizes representing two thirds of the variation in length. Embryos retrieved from heifers were twice the size of those incubated in parous cows (P<0.0001), indicating faster embryonic development/trophoblast proliferation in heifers. Whereas season did not affect embryo recoveries, length was lower (50%) in winter (winter-autumn, P<0.05; winter-spring, P<0.001). Lastly, transuterine migration in cattle, when transferring multiple embryos, commenced at Day 14 (4%) and had occurred in all recipients by Day 16 (38% of embryos found contralaterally).
Leroy, Fanny; Meziane, Tarik; Riera, Pascal; Comtet, Thierry
2013-01-01
Recruitment success of marine invertebrate populations not only depends on the number of recruits but also on their quality which affects their survival. In species characterized by a mixed development (encapsulated embryonic development and release of planktotrophic larvae), the offspring quality depends on both maternal provisioning and larval feeding. Here, we investigated potential changes of maternal provisioning over the whole reproductive period in a gastropod with a mixed development: Crepidula fornicata . In its introduction area, C . fornicata reproduces from February to October, which implies that both adults and larvae are exposed to different food availabilities. Maternal provisioning was assessed by measuring the fatty acid (FA) composition of females, encapsulated embryos and larvae, in February, May, July and September 2009. FA are essential resources for the development of embryos and larvae, and are key biomarkers of offspring quality. Our results showed differences in FA composition between muscles, visceral masses, and encapsulated embryos. In particular, FA composition of embryos was similar to that of the visceral mass. Seasonal variations in FA composition were observed: in the middle of the reproductive season (May and July), female tissues and embryos showed a higher proportion of polyunsaturated fatty acids and especially ω3, as compared to the beginning and end of the reproductive season (February and September). This showed that through maternal provisioning the quality of C . fornicata offspring was higher in the middle of the reproductive season. Whether this would result in an increase of recruitment success and juvenile performance would require further investigations. PMID:24086505
Leroy, Fanny; Meziane, Tarik; Riera, Pascal; Comtet, Thierry
2013-01-01
Recruitment success of marine invertebrate populations not only depends on the number of recruits but also on their quality which affects their survival. In species characterized by a mixed development (encapsulated embryonic development and release of planktotrophic larvae), the offspring quality depends on both maternal provisioning and larval feeding. Here, we investigated potential changes of maternal provisioning over the whole reproductive period in a gastropod with a mixed development: Crepidula fornicata. In its introduction area, C. fornicata reproduces from February to October, which implies that both adults and larvae are exposed to different food availabilities. Maternal provisioning was assessed by measuring the fatty acid (FA) composition of females, encapsulated embryos and larvae, in February, May, July and September 2009. FA are essential resources for the development of embryos and larvae, and are key biomarkers of offspring quality. Our results showed differences in FA composition between muscles, visceral masses, and encapsulated embryos. In particular, FA composition of embryos was similar to that of the visceral mass. Seasonal variations in FA composition were observed: in the middle of the reproductive season (May and July), female tissues and embryos showed a higher proportion of polyunsaturated fatty acids and especially ω3, as compared to the beginning and end of the reproductive season (February and September). This showed that through maternal provisioning the quality of C. fornicata offspring was higher in the middle of the reproductive season. Whether this would result in an increase of recruitment success and juvenile performance would require further investigations.
Teklenburg, Gijs; Salker, Madhuri; Molokhia, Mariam; Lavery, Stuart; Trew, Geoffrey; Aojanepong, Tepchongchit; Mardon, Helen J.; Lokugamage, Amali U.; Rai, Raj; Landles, Christian; Roelen, Bernard A. J.; Quenby, Siobhan; Kuijk, Ewart W.; Kavelaars, Annemieke; Heijnen, Cobi J.; Regan, Lesley; Brosens, Jan J.; Macklon, Nick S.
2010-01-01
Background Pregnancy is widely viewed as dependent upon an intimate dialogue, mediated by locally secreted factors between a developmentally competent embryo and a receptive endometrium. Reproductive success in humans is however limited, largely because of the high prevalence of chromosomally abnormal preimplantation embryos. Moreover, the transient period of endometrial receptivity in humans uniquely coincides with differentiation of endometrial stromal cells (ESCs) into highly specialized decidual cells, which in the absence of pregnancy invariably triggers menstruation. The role of cyclic decidualization of the endometrium in the implantation process and the nature of the decidual cytokines and growth factors that mediate the crosstalk with the embryo are unknown. Methodology/Principal Findings We employed a human co-culture model, consisting of decidualizing ESCs and single hatched blastocysts, to identify the soluble factors involved in implantation. Over the 3-day co-culture period, approximately 75% of embryos arrested whereas the remainder showed normal development. The levels of 14 implantation factors secreted by the stromal cells were determined by multiplex immunoassay. Surprisingly, the presence of a developing embryo had no significant effect on decidual secretions, apart from a modest reduction in IL-5 levels. In contrast, arresting embryos triggered a strong response, characterized by selective inhibition of IL-1β, -6, -10, -17, -18, eotaxin, and HB-EGF secretion. Co-cultures were repeated with undifferentiated ESCs but none of the secreted cytokines were affected by the presence of a developing or arresting embryo. Conclusions Human ESCs become biosensors of embryo quality upon differentiation into decidual cells. In view of the high incidence of gross chromosomal errors in human preimplantation embryos, cyclic decidualization followed by menstrual shedding may represent a mechanism of natural embryo selection that limits maternal investment in developmentally impaired pregnancies. PMID:20422011
Planar embryos have poor prognosis in terms of blastocyst formation and implantation.
Ebner, T; Maurer, M; Shebl, O; Moser, M; Mayer, R B; Duba, H C; Tews, G
2012-09-01
Normally, day-2 embryos show a crosswise arrangement of four cells with three blastomeres lying side by side. Cleavage anomalies include embryos that are characterized by a particular planar constellation of four blastomeres with presumed incomplete cleavage. Since little is known on the developmental fate of such conceptuses, within a 10-month period all consecutive patients were screened for day-2 planar embryos. A total of 64/2070 embryos with suboptimal blastomere configuration were detected (3.1%). In conventional IVF, planar embryos were significantly less frequent (0.7%) as compared with intracytoplasmic sperm injection (2.8%; P<0.05) and cases of testicular sperm extraction (5.4%; P<0.01). Interestingly, embryos with a cleavage anomaly showed better morphology both on day 2 (P<0.005) and day 3 (P<0.001). In contrast, blastocyst formation (P<0.001) and blastocyst quality (P=NS) was higher in tetrahedral embryos. There was a significant increase in implantation rate if tetrahedral embryos could be transferred compared with when planar embryos had to be transferred (P<0.01). It may be postulated that, in planar embryos, the mitotic spindle might have been affected, e.g. sperm centrosome composition or function, which in turn might have led to the observed cleavage anomaly. Normally, day-2 embryos show a crosswise arrangement of four cells with three blastomeres lying side by side. Cleavage anomalies include more planar embryos that are characterized by a particular flat constellation of four blastomeres with presumed premature cleavage (like a tetrafoliate clover). Since little is known on the developmental fate of such embryos within a 10-month study period, all consecutive patients were screened for the presence of day-2 planar embryos (study group). A total of 64 (out of 2070) embryos with abnormal blastomere configuration were detected (3.1%). Interestingly, in conventional IVF (0.7%), the presence of planar embryos was significantly less frequent as compared with intracytoplasmic sperm injection (2.8%; P<0.05) and cases of testicular biopsy (5.4%; P<0.01). Embryos from the study group showed better morphology both on day 2 (P<0.005) and day 3 (P<0.001). In contrast, blastocyst formation (survival to day 5 of preimplantation development) was higher in the normally cleaved control group (P<0.001) and so was blastocyst quality; however, the latter parameter did not reach level of significance. This was also reflected in a significantly higher implantation rate in the control group (P<0.01). Based on present data, it may be postulated that, in planar embryos, the mitotic spindle (which involves the sperm centrosome) might have been affected, which in turn might have led to an incomplete cleavage. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Sirini, Matias A; Anchordoquy, Juan Mateo; Anchordoquy, Juan Patricio; Pascua, Ana M; Nikoloff, Noelia; Carranza, Ana; Relling, Alejandro E; Furnus, Cecilia C
2017-10-01
The aim of this study was to investigate the effects of acylated ghrelin supplementation during in vitro maturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus-oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. The in vitro effects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.
Role of religion, spirituality, and faith in assisted reproduction.
Braga, Daniela Paes de Almeida Ferreira; Melamed, Rose Marie Massaro; Setti, Amanda Souza; Zanetti, Bianca Ferrarini; Figueira, Rita de Cássia Sávio; Iaconelli, Assumpto; Borges, Edson
2018-06-06
The purpose of this study is to evaluate the impact of the patient's faith, religion, and spirituality on the outcomes of intracytoplasmic sperm injection (ICSI) cycles. Eight hundred and seventy-seven patients received a questionnaire containing information on faith, religiosity, and spirituality and the results of the questionnaires were correlated with ICSI outcomes. Patients stated to be Catholic (n = 476), spiritists (n = 93), Evangelical (n = 118), and other religion (n = 32), and 78 did not identify with any religious group. A significant increase in fertilization, high-quality embryos, and pregnancy rate was found among Spiritists and Evangelicals. Patients who included the infertility diagnosis and treatment in their prayers showed an increased pregnancy rate, and those who reported their faith to be affected by the infertility diagnosis presented a decreased high-quality embryos rate. The high-quality embryos rate was increased among patients who answered that their faith contributed to their decision to undergo infertility treatment. The cycle's cancelation was negatively correlated with the frequency of religious meetings, and the frequency of prayers was positively correlated with the response to ovarian stimulation. Finally, belief in treatment success positively influenced the embryo quality. The findings suggest that spirituality plays a role in adjusting the psychological aspects of an infertile patient.
de los Santos, Maria José; Arroyo, Gemma; Busquet, Ana; Calderón, Gloria; Cuadros, Jorge; Hurtado de Mendoza, Maria Victoria; Moragas, Marta; Herrer, Raquel; Ortiz, Agueda; Pons, Carme; Ten, Jorge; Vilches, Miguel Angel; Figueroa, Maria José
2014-04-01
To investigate the impact of early cleavage (EC) on embryo quality, implantation, and live-birth rates. Prospective cross-sectional study. Multicenter study. Seven hundred embryo transfers and 1,028 early-stage human embryos. None. Implantation according to the presence of EC and embryo quality. The presence of EC is associated with embryo quality, especially in cycles with autologous oocytes. However, the use of EC as an additional criterion for selecting an embryo for transfer does not appear to significantly improve likelihood of implantation. Furthermore, embryos that presented EC had live-birth rates per implanted embryo similar to those that did not show any sign of cleavage. At least for conventional embryo culture and morphologic evaluations, the additional evaluation of EC in embryos may not be valuable to improve embryo implantation. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Kleijkers, Sander H M; Eijssen, Lars M T; Coonen, Edith; Derhaag, Josien G; Mantikou, Eleni; Jonker, Martijs J; Mastenbroek, Sebastiaan; Repping, Sjoerd; Evers, Johannes L H; Dumoulin, John C M; van Montfoort, Aafke P A
2015-10-01
Is gene expression in human preimplantation embryos affected by the medium used for embryo culture in vitro during an IVF treatment? Six days of in vitro culture of human preimplantation embryos resulted in medium-dependent differences in expression level of genes involved in apoptosis, protein degradation, metabolism and cell-cycle regulation. Several human studies have shown an effect of culture medium on embryo development, pregnancy outcome and birthweight. However, the underlying mechanisms in human embryos are still unknown. In animal models of human development, it has been demonstrated that culture of preimplantation embryos in vitro affects gene expression. In humans, it has been found that culture medium affects gene expression of cryopreserved embryos that, after thawing, were cultured in two different media for 2 more days. In a multicenter trial, women were randomly assigned to two culture medium groups [G5 and human tubal fluid (HTF)]. Data on embryonic development were collected for all embryos. In one center, embryos originating from two pronuclei (2PN) zygotes that were not selected for transfer or cryopreservation on Day 2 or 3 because of lower morphological quality, were cultured until Day 6 and used in this study, if couples consented. Ten blastocysts each from the G5 and HTF study groups, matched for fertilization method, maternal age and blastocyst quality, were selected and their mRNA was isolated and amplified. Embryos were examined individually for genome-wide gene expression using Agilent microarrays and PathVisio was used to identify the pathways that showed a culture medium-dependent activity. Expression of 951 genes differed significantly (P < 0.01) between the G5 and HTF groups. Eighteen pathways, involved in apoptosis, metabolism, protein processing and cell-cycle regulation, showed a significant overrepresentation of differentially expressed genes. The DNA replication, G1 to S cell-cycle control and oxidative phosphorylation pathways were up-regulated in the G5 group compared with the HTF group. This is in agreement with the morphological assessment of the 1527 embryos (originating from 2PN zygotes), which showed that embryos consisted of more cells on Day 2 (3.73 ± 1.30 versus 3.40 ± 1.35, P < 0.001) and Day 3 (7.00 ± 2.41 versus 5.84 ± 2.36, P < 0.001) in the G5 group when compared with the HTF group. Furthermore, the implantation rate was significantly higher in the G5 group compared with the HTF group (26.7% versus 14.7%, P = 0.002) after transfer on the second or the third day after fertilization. Despite careful matching of the embryos, it cannot be excluded that the differences observed between the study groups are caused by factors that we did not investigate. Extrapolation of these results to embryos used for transfer demands caution as in the present study embryos that were not selected for either embryo transfer or cryopreservation have been used for the culture experiment until Day 6. This study shows that gene expression in human preimplantation embryos is altered by the culture medium used during IVF treatment and provides insight into the biological pathways that are affected. Whether these changes in gene expression have any long-term effects on children born after IVF remains unknown. However, it is possible that early adaptations of the preimplantation embryo to its environment persist during fetal and post-natal development. No funding and no competing interests declared. Not applicable. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stern, Judy E; Lieberman, Ellice S; Macaluso, Maurizio; Racowsky, Catherine
2012-04-01
To investigate whether cryopreservation of supernumerary embryos is a good surrogate for embryo quality. Retrospective study of 6,859 assisted reproductive technology (ART) cycles from women aged <35 years with two fresh day 3 embryos transferred. National Society for Assisted Reproductive Technology Clinic Outcome Reporting System data from 2006-2008. Women undergoing ART. None. Embryo quality (good, fair, or poor), cell number, and live births were compared for cycles with and without cryopreservation, using χ(2) to evaluate statistical significance. The association of freezing with embryo quality was examined using multiple logistic regression after adjusting for confounders (patient age, oocyte yield, intracytoplasmic sperm injection [ICSI], assisted hatching, male factor infertility). Cycles with cryopreservation were more likely to have two embryos of good quality transferred (81.3% vs. 48.5%) and had more 8-cell embryos transferred (76.0% vs. 50.1%). Relative to cycles with two good embryos (good-good), the adjusted odds ratios (OR) for cryopreservation were: good-fair (OR = 0.301, 95% confidence interval [CI] = 0.257-0.354), fair-fair (OR = 0.308, 95% CI = 0.258-0.367), and any poor (OR = 0.058, 95% CI = 0.040-0.083). The live birth rate was 52.4% for cycles with freezing and 40.6% for cycles without. Embryo quality and cell number were both associated with embryo cryopreservation. However, although cryopreservation was a strong marker for good quality, not having cryopreservation did not reliably indicate poor quality, as almost half of those cycles had two good quality embryos. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Opiela, J; Samiec, M; Romanek, J
2017-07-15
Artificial epigenomic modulation of in vitro cultured mesenchymal stem cells (MSCs) by applying a non-selective HDAC inhibitor, termed TSA, can facilitate more epigenetic reprogramming of transcriptional activity of the somatic cell-descended nuclear genome in NT pig embryos. The results of the present investigation showed that TSA-dependent epigenomic modulation of nuclear donor MSCs highly affects both the in vitro developmental capability and the cytological quality of inter-species (porcine→bovine) cloned embryos. The developmental competences to reach the blastocyst stage among hybrid (porcine→bovine) nuclear-transferred embryos that had been reconstructed with bovine ooplasts and epigenetically modulated porcine MSCs were maintained at a relatively high level. These competences were higher than those noted in studies by other authors, but they were still decreased compared to those of intra-species (porcine) cloned embryos that had been reconstituted with porcine ooplasts and either the cell nuclei of epigenetically transformed MSCs or the cell nuclei of epigenetically non-transformed MSCs. In conclusion, MSCs undergoing TSA-dependent epigenetic transformation were used for the first time as a source of nuclear donor cells not only for inter-species somatic cell cloning in pigs but also for inter-species somatic cell cloning in other livestock species. Moreover, as a result of the current research, efficient sequential physicochemical activation of inter-species nuclear-transferred clonal cybrids derived from bovine ooplasm and porcine MSC nuclei was developed. Copyright © 2017 Elsevier Inc. All rights reserved.
Bender, R. W.; Hackbart, K. S.; Dresch, A. R.; Carvalho, P. D.; Vieira, L. M.; Crump, P. M.; Guenther, J. N.; Fricke, P. M.; Shaver, R. D.; Combs, D. K.; Wiltbank, M. C.
2018-01-01
Multiple metabolic and hormonal factors can affect the success of protocols for ovarian superstimulation. In this study, the effect of acute feed restriction and increased LH content in the superstimulatory FSH preparation on numbers of ovulations, fertilization, and embryo quality in lactating dairy cows was evaluated. Two experiments were performed using a Latin square design with treatments arranged as a 2 × 2 factorial: feed restriction (FR; 25% reduction in dry matter intake) compared with ad libitum (AL) feeding, combined with high (H) versus low (L) LH in the last 4 injections of the superstimulatory protocol. As expected, FR decreased circulating insulin concentrations (26.7 vs. 46.0 μU/mL). Two analyses were performed: one that evaluated the complete Latin square in experiment 2 and a second that evaluated only the first periods of experiments 1 and 2. For both analyses, follicle numbers, ovulation rates, and corpora lutea on d 7 were not different. In the first period analysis of experiments 1 and 2, we observed an interaction between feed allowance and amount of LH on fertilization rates, percentage of embryos or oocytes that were quality 1 and 2 embryos, and number of embryos or oocytes that were degenerate. Fertilization rates were greater for the AL-L (89.4%) and FR-H (80.1%) treatments compared with the AL-H (47.9%) and FR-L (59.9%) treatments. Similarly, the proportion of total embryos or oocytes designated as quality 1 and 2 embryos was greater for AL-L (76.7%) and FR-H (73.4%) treatments compared with AL-H (35.6%) and FR-L (47.3%) treatments. In addition, the number of degenerate embryos was decreased for AL-L (1.3) and FR-H (0.4) treatments compared with the AL-H (2.6) and FR-L (2.3) treatments. Thus, cows with either too low (FR-L) or too high (AL-H) insulin and LH stimulation had lesser embryo production after superstimulation because of reduced fertilization rate and increased percentage of degenerate embryos. Therefore, interaction of the gonadotropin content of the superstimulatory preparation with the nutritional program of the donor cow needs to be considered to optimize success of ovarian superstimulatory protocols. PMID:24359829
Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern; Li, Rong; Hermann, Doris; Hassel, Petra; Ziegler, Maren; Larsen, Knud; Niemann, Heiner; Callesen, Henrik
2017-06-01
The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.
Noorhasan, Dorette J.; McGovern, Peter G.; Cho, Michael; Seungdamrong, Aimee; Ahmad, Khaliq; McCulloh, David H.
2015-01-01
Objective. To test if serum hCG levels the morning after the ovulatory hCG injection correlate with (1) retrieval efficiency, (2) oocyte maturity, (3) embryo quality, (4) pregnancy, and/or (5) time to implantation in patients undergoing in vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI). Design. Retrospective cohort analysis. Setting. University-based IVF clinic. Patient(s). All IVF/ICSI cycles from April 2005 to February 2008 whose hCG administration was confirmed (n = 472 patients). Intervention(s). Serum hCG was measured the morning following the ovulatory injection, on the 16th day following retrieval, and repeated on day 18 for those with positive results. Main Outcome Measure(s). Number of follicles on the day of hCG injection, number of oocytes retrieved, maturity of oocytes, embryo quality, pregnancy outcome, and time to implantation. Result(s). hCG levels did not correlate with retrieval efficiency, oocyte maturity, embryo quality, or pregnancy. Postinjection hCG levels were inversely associated with patient weight and time to implantation. Conclusion(s). No correlation was found between hCG level and any parameter of embryo quality. Patient weight affected hCG levels following hCG injection and during the early period of pregnancy following implantation. No association between postinjection hCG level and time of implantation (adjusted for patient weight) was apparent. PMID:26587025
Equine cloning: in vitro and in vivo development of aggregated embryos.
Gambini, Andrés; Jarazo, Javier; Olivera, Ramiro; Salamone, Daniel F
2012-07-01
The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2- or 3-embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.
Pang, Yun-Wei; An, Lei; Wang, Peng; Yu, Yong; Yin, Qiu-Dan; Wang, Xiao-Hong; Xin-Zhang; Qian-Zhang; Yang, Mei-Ling; Min-Guo; Wu, Zhong-Hong; Tian, Jian-Hui
2013-05-01
This study was conducted to investigate the effect of melatonin during the culture of donor cells and cloned embryos on the in vitro developmental competence and quality of cloned porcine embryos. At concentrations of 10(-6 )M or 10(-8) M, melatonin significantly enhanced the proliferation of porcine fetal fibroblasts (PFFs), and the blastocyst rate was significantly increased in the 10(-10) M melatonin-treated donor cell group. Cloned embryo development was also improved in embryo culture medium that was supplemented with 10(-9) M or 10(-12) M melatonin. When both donor cells and cloned embryos were treated with melatonin, the cleavage rate and total cell number of blastocysts were not significantly affected; however, the blastocyst rate was increased significantly (20.0% versus 11.7%). TUNEL assays showed that combined melatonin treatment reduced the rate of apoptotic nuclei (3.6% versus 6.1%). Gene expression analysis of the apoptosis-related genes BAX, BCL2L1, and p53 showed that the expression of BCL2L1 was significantly elevated 2.7-fold relative to the control group, while the expression of BAX and p53 was significantly decreased by 3.7-fold and 23.2-fold, respectively. In addition, we detected the expression of two melatonin receptors (MT1 and MT2) in PFFs but not in porcine cloned embryos. We conclude that exogenous melatonin enhances the development of porcine cloned embryos and improves embryo quality by inhibiting p53-mediated apoptotic pathway. The proliferation of PFFs may be mediated by receptor binding, but the beneficial effects of melatonin on embryonic development may be receptor-independent, possibly through melatonin's ability to directly scavenge free radicals. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Smith, Kathryn E; Thatje, Sven
2013-10-01
Developmental resource partitioning and the consequent offspring size variations are of fundamental importance for marine invertebrates, in both an ecological and evolutionary context. Typically, differences are attributed to maternal investment and the environmental factors determining this; additional variables, such as environmental factors affecting development, are rarely discussed. During intracapsular development, for example, sibling conflict has the potential to affect resource partitioning. Here, we investigate encapsulated development in the marine gastropod Buccinum undatum. We examine the effects of maternal investment and temperature on intracapsular resource partitioning in this species. Reproductive output was positively influenced by maternal investment, but additionally, temperature and sibling conflict significantly affected offspring size, number, and quality during development. Increased temperature led to reduced offspring number, and a combination of high sibling competition and asynchronous early development resulted in a common occurrence of "empty" embryos, which received no nutrition at all. The proportion of empty embryos increased with both temperature and capsule size. Additionally, a novel example ofa risk in sibling conflict was observed; embryos cannibalized by others during early development ingested nurse eggs from inside the consumer, killing it in a "Trojan horse" scenario. Our results highlight the complexity surrounding offspring fitness. Encapsulation should be considered as significant in determining maternal output. Considering predicted increases in ocean temperatures, this may impact offspring quality and consequently species distribution and abundance.
Transfer of bovine demi-embryos with and without the zona pellucida.
Warfield, S J; Seidel, G E; Elsden, R P
1987-09-01
Bisected bovine embryos with or without the zona pellucida were transferred to recipients nonsurgically in five field trials. Embryos were collected from superovulated donors 6.5 to 7.5 d after estrus; only embryos of good and excellent quality were bisected. Demi-embryos were transferred either within a zona pellucida, without a zona pellucida, without a zona pellucida, or in the third and fourth trials, without a zona but embedded in 7% gelatin. Pregnancies were diagnosed at 44 to 68 d of gestation. In a preliminary trial, 9/29 zona pellucida-intact demi-embryos developed into fetuses compared with 1/10 zona pellucida-free demi-embryos (P greater than .1). The proportion of zona-free demi-embryos developing to fetuses was not significantly different from the zona-intact group in the second trial either, 24/49 and 5/19, respectively. In trial 3, the proportion of zona pellucida-free demi-embryos developing was 8/25; of zona-enclosed embryos, 29/88; and of zona-free demi-embryos embedded in gelatin, 8/22 (P greater than .1). Similarly, in the fourth trial the rate of development of zona-free demi-embryos to fetuses was 5/12, that of zona-enclosed embryos was 32/81, and that of zona-free demi-embryos embedded in gelatin was 3/12 (P greater than .1). In trial 5, survival of zona-enclosed demi-embryos to fetuses was 40/105, and of zona-free demi-embryos, 46/109 (P greater than .1). Except for trial 2, half of the demi-embryos were twinned, one to each uterine horn; twinning did not significantly affect the proportion developing to fetuses for any of the demi-embryo groups. It is concluded that placing post-compaction demi-embryos into the zona pellucida for transfer does not improve pregnancy rates significantly.
Chapman, Robert W; Reading, Benjamin J; Sullivan, Craig V
2014-01-01
Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing <2% of the queried ovary transcriptome explained >90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold), with most individual transcripts making a small contribution (<1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic "fingerprint". Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness.
2014-01-01
Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing <2% of the queried ovary transcriptome explained >90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold), with most individual transcripts making a small contribution (<1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic “fingerprint”. Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness. PMID:24820964
Chang, Eun M; Han, Ji E; Seok, Hyun H; Lee, Dong R; Yoon, Tae K; Lee, Woo S
2013-07-01
Although extensive evidence indicates the hyperinsulinemia directly contributes to reproductive dysfunction in polycystic ovarian syndrome (PCOS), influence of insulin resistance (IR) on assisted reproductive technology outcomes is poorly understood. In this study we aimed to evaluate the effects of IR on in vitro maturation-in vitro fertilization-embryo transfer (IVM-IVF-ET) in patients with PCOS. Prospective observational study. Women with PCOS (n = 115) commencing IVM. IR (n = 51) and non-IR (n = 64) women with PCOS ready to commence an IVM cycle were recruited. IR was diagnosed using the glucose tolerance test (GTT) and homeostasis model assessment (HOMA) index. Patients with an abnormal GTT and/or HOMA index >2·4 were considered IR. Patients underwent 115 cycles of unstimulated hCG-primed IVM. Maturation, fertilization, cleavage rates, the number of good-quality embryo, and blastocyst formation rates were not significantly different between groups. However, implantation (11·6% vs 28·7%, P = 0·001, respectively), clinical pregnancy (23·5% vs 53·1%, P = 0·002, respectively), and ongoing pregnancy rates (21·6% vs 46·9%. P = 0·006, respectively) were significantly decreased in the IR group. The negative effect of IR on pregnancy outcomes remained after controlling for age, body mass index (BMI) and lipid profiles (OR 4·928, 95% CI 1·735-13·991, P = 0·003). Pregnancy rate after IVM is impaired in IR patients with PCOS. Oocyte development and embryo quality are not affected, suggesting that the effects of hyperinsulinemia on endometrial function and implantation process underlie the decreased pregnancy rate. © 2012 John Wiley & Sons Ltd.
Exposure to high ambient temperatures alters embryology in rabbits
NASA Astrophysics Data System (ADS)
García, M. L.; Argente, M. J.
2017-09-01
High ambient temperatures are a determining factor in the deterioration of embryo quality and survival in mammals. The aim of this study was to evaluate the effect of heat stress on embryo development, embryonic size and size of the embryonic coats in rabbits. A total of 310 embryos from 33 females in thermal comfort zone and 264 embryos of 28 females in heat stress conditions were used in the experiment. The traits studied were ovulation rate, percentage of total embryos, percentage of normal embryos, embryo area, zona pellucida thickness and mucin coat thickness. Traits were measured at 24 and 48 h post-coitum (hpc); mucin coat thickness was only measured at 48 hpc. The embryos were classified as zygotes or two-cell embryos at 24 hpc, and 16-cells or early morulae at 48 hpc. The ovulation rate was one oocyte lower in heat stress conditions than in thermal comfort. Percentage of normal embryos was lower in heat stress conditions at 24 hpc (17.2%) and 48 hpc (13.2%). No differences in percentage of zygotes or two-cell embryos were found at 24 hpc. The embryo development and area was affected by heat stress at 48 hpc (10% higher percentage of 16-cells and 883 μm2 smaller, respectively). Zona pellucida was thicker under thermal stress at 24 hpc (1.2 μm) and 48 hpc (1.5 μm). No differences in mucin coat thickness were found. In conclusion, heat stress appears to alter embryology in rabbits.
Effects of laser polar-body biopsy on embryo quality.
Levin, Ishai; Almog, Benny; Shwartz, Tamar; Gold, Veronica; Ben-Yosef, Dalit; Shaubi, Michal; Amit, Ami; Malcov, Mira
2012-05-01
To evaluate the effect of laser polar-body biopsy (PBB) for preimplantation genetic diagnosis on embryo quality. Retrospective case-control analysis. The quality of 145 embryos after PBB was compared to 276 embryos of the same group of women without biopsy. University-based tertiary-care medical center. Women with inherited genetics disease. Laser PBB of IVF embryos for genetic diagnosis. The study and control embryos were compared for fertilization rate, pronuclear grading, and cleavage-stage parameters on days 1, 2, and 3 after oocyte retrieval. The study embryos demonstrated higher rates of cleavage arrest (3.6% vs. 0.7%), higher rate of significant fragmentation on day 2 (9.5% vs. 3.0%), and lower rate of good cleavage embryos on day 2 (69.1% vs. 78.4%) compared with control embryos. On day 3, the study embryos had lower cleavage rates (six or more blastomeres; 56.5% vs. 74.5%), higher fragmentation (11.7% vs. 3.9%), higher rate of embryos presenting inferior cleavage pattern (57.2% vs. 38.5%), and lower mean blastomere number (5.8 ± 2.1 vs. 6.6 ± 1.9) compared with control embryos. Polar-body biopsy may have a negative effect on embryo quality. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Fluorescence-based visualization of autophagic activity predicts mouse embryo viability
NASA Astrophysics Data System (ADS)
Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Kito, Seiji; Minami, Naojiro; Kubota, Toshiro; Sato, Ken; Kokubo, Toshiaki
2014-03-01
Embryo quality is a critical parameter in assisted reproductive technologies. Although embryo quality can be evaluated morphologically, embryo morphology does not correlate perfectly with embryo viability. To improve this, it is important to understand which molecular mechanisms are involved in embryo quality control. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic materials sequestered by autophagosomes are degraded in lysosomes. We previously demonstrated that autophagy is highly activated after fertilization and is essential for further embryonic development. Here, we developed a simple fluorescence-based method for visualizing autophagic activity in live mouse embryos. Our method is based on imaging of the fluorescence intensity of GFP-LC3, a versatile marker for autophagy, which is microinjected into the embryos. Using this method, we show that embryonic autophagic activity declines with advancing maternal age, probably due to a decline in the activity of lysosomal hydrolases. We also demonstrate that embryonic autophagic activity is associated with the developmental viability of the embryo. Our results suggest that embryonic autophagic activity can be utilized as a novel indicator of embryo quality.
Jusof, Wan-Hafizah Wan; Khan, Nor-Ashikin Mohamed Noor; Rajikin, Mohd Hamim; Satar, Nuraliza Abdul; Mustafa, Mohd-Fazirul; Jusoh, Norhazlin; Dasiman, Razif
2015-01-01
Background Timing of the first zygotic cleavage is an accurate predictor of embryo quality. Embryos that cleaved early (EC) have been shown to exhibit higher develop- mental viability compared to those that cleaved at a later period (LC). However, the vi- ability of EC embryos in comparison to LC embryos after vitrification is unknown. The present study aims to investigate the post-vitrification developmental viability of murine EC versus LC embryos. Materials and Methods In this experimental study, female ICR mice (6-8 weeks old) were superovulated and cohabited with fertile males for 24 hours. Afterwards, their ovi- ducts were excised and embryos harvested. Embryos at the 2-cell stage were catego- rized as EC embryos, while zygotes with two pronuclei were categorized as LC embryos. Embryos were cultured in M16 medium supplemented with 3% bovine serum albumin (BSA) in a humidified 5% CO2atmosphere. Control embryos were cultured until the blastocyst stage without vitrification. Experimental embryos at the 2-cell stage were vitri- fied for one hour using 40% v/v ethylene glycol, 18% w/v Ficoll-70 and 0.5 M sucrose as the cryoprotectant. We recorded the numbers of surviving embryos from the control and experimental groups and their development until the blastocyst stage. Results were analyzed using the chi-square test. Results A significantly higher proportion of EC embryos (96.7%) from the control group developed to the blastocyst stage compared with LC embryos (57.5%, P<0.0001). Similarly, in the experimental group, a significantly higher percentage of vitrified EC embryos (69.4%) reached the blastocyst stage compared to vitrified LC embryos (27.1%, P<0.0001). Conclusion Vitrified EC embryos are more vitrification tolerant than LC embryos. Prese- lection of EC embryos may be used as a tool for selection of embryos that exhibit higher developmental competence after vitrification. PMID:26246881
Tiago, Guimarães; Júlio, Carvalheira; António, Rocha
2012-03-29
Pseudomonas aeruginosa may cause venereal disease and infertility in horses. A Pseudomonas aeruginosa - carrier stallion, often unresponsive to artificial vagina collection, was used to naturally breed mares. Semen collected from the same stallion was also used to perform artificial inseminations. Pregnancy rates, embryo quality and incidence of uterine infection were compared between inseminated or naturally-bred mares. P. aeruginosa was isolated from swabbing of the penis, prepuce and distal urethra of the stallion. Before being bred or inseminated, clitoral/vestibular samples were collected from all mares, and cultured for isolation of P. aeruginosa. At the first observed estrus, endometrial swabs were also collected. All mares subjected to natural mating (NS) were re-evaluated for P.aeruginosa by culture of clitoral and endometrial swabs. Artificial inseminations (AI) were performed either with fresh-extended semen (11 AI/7 mares) or frozen semen (10 AI/7 mares). The stallion was also used to breed 3 mares (4 services). For embryo collection, 2 mares were inseminated with fresh-extended semen (1 AI/mare), and 2 additional mares were inseminated with frozen semen (2 AI/mare). Two mares were naturally-bred with a total of 9 services, for embryo collection. All mares were examined after AI or natural service (NS), for uterine pathologies. Embryo recoveries were attempted passing a catheter with inflatable cuff connected to a sterile flexible 2-way flushing catheter, through the cervix. Flushed media was recovered into an Em-Con filter, and embryos searched using a stereoscope. Embryos were graded from 1 (excellent) to 4 (degenerated/dead). Pregnancy rates obtained after NS was 50% per cycle. However, more than half of the NS resulted in uterine disease, while uterine pathology was seen only in 22% of the time following AI. Half of the mares bred by NS got positive to P. aeruginosa. Percentage of embryo recovery rates was identical after AI or NS (66.7%). The 4 embryos recovered after AI were classified as Grade 1, while after NS only 2 out of the 6 recovered embryos were Grade 1. a) there was no evidence of reduced fertilization after AI or NS, b) a numerically higher incidence of uterine disease was noticed after NS, c) venereal transmission of P. aeruginosa after NS was confirmed, d) a lower percentage of G1 embryos may be obtained after NS. Overall, the data supports the indication for P. aeruginosa-carrier stallions to be bred by AI rather than by NS, and raises the possibility that P. aeruginosa may affect embryo quality.
Methods for assessing the quality of mammalian embryos: How far we are from the gold standard?
Rocha, José C; Passalia, Felipe; Matos, Felipe D; Maserati, Marc P; Alves, Mayra F; Almeida, Tamie G de; Cardoso, Bruna L; Basso, Andrea C; Nogueira, Marcelo F G
2016-08-01
Morphological embryo classification is of great importance for many laboratory techniques, from basic research to the ones applied to assisted reproductive technology. However, the standard classification method for both human and cattle embryos, is based on quality parameters that reflect the overall morphological quality of the embryo in cattle, or the quality of the individual embryonic structures, more relevant in human embryo classification. This assessment method is biased by the subjectivity of the evaluator and even though several guidelines exist to standardize the classification, it is not a method capable of giving reliable and trustworthy results. Latest approaches for the improvement of quality assessment include the use of data from cellular metabolism, a new morphological grading system, development kinetics and cleavage symmetry, embryo cell biopsy followed by pre-implantation genetic diagnosis, zona pellucida birefringence, ion release by the embryo cells and so forth. Nowadays there exists a great need for evaluation methods that are practical and non-invasive while being accurate and objective. A method along these lines would be of great importance to embryo evaluation by embryologists, clinicians and other professionals who work with assisted reproductive technology. Several techniques shows promising results in this sense, one being the use of digital images of the embryo as basis for features extraction and classification by means of artificial intelligence techniques (as genetic algorithms and artificial neural networks). This process has the potential to become an accurate and objective standard for embryo quality assessment.
Methods for assessing the quality of mammalian embryos: How far we are from the gold standard?
Rocha, José C.; Passalia, Felipe; Matos, Felipe D.; Maserati Jr, Marc P.; Alves, Mayra F.; de Almeida, Tamie G.; Cardoso, Bruna L.; Basso, Andrea C.; Nogueira, Marcelo F. G.
2016-01-01
Morphological embryo classification is of great importance for many laboratory techniques, from basic research to the ones applied to assisted reproductive technology. However, the standard classification method for both human and cattle embryos, is based on quality parameters that reflect the overall morphological quality of the embryo in cattle, or the quality of the individual embryonic structures, more relevant in human embryo classification. This assessment method is biased by the subjectivity of the evaluator and even though several guidelines exist to standardize the classification, it is not a method capable of giving reliable and trustworthy results. Latest approaches for the improvement of quality assessment include the use of data from cellular metabolism, a new morphological grading system, development kinetics and cleavage symmetry, embryo cell biopsy followed by pre-implantation genetic diagnosis, zona pellucida birefringence, ion release by the embryo cells and so forth. Nowadays there exists a great need for evaluation methods that are practical and non-invasive while being accurate and objective. A method along these lines would be of great importance to embryo evaluation by embryologists, clinicians and other professionals who work with assisted reproductive technology. Several techniques shows promising results in this sense, one being the use of digital images of the embryo as basis for features extraction and classification by means of artificial intelligence techniques (as genetic algorithms and artificial neural networks). This process has the potential to become an accurate and objective standard for embryo quality assessment. PMID:27584609
Near-infrared laser irradiation improves the development of mouse pre-implantation embryos.
Yokoo, Masaki; Mori, Miho
2017-05-27
The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing of blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P < 0.05). When 195 irradiated blastocysts were transferred to 18 pseudopregnant mice, all became pregnant and 92 (47.2%) normal-looking pups were born alive. When 182 control blastocysts were transferred to 17 pseudopregnant mice, 14 (82.4%) became pregnant and 54 (29.7%) normal-looking pups were born alive. The growth trajectories (up to 5 weeks) of offspring from irradiated blastocysts were similar to those from control blastocysts. Second generation offspring from transplanted animals were all fertile. These results indicate that near-infrared laser irradiation improves the quality of mouse embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Variable egg quality is one of the most important constrains to the development of aquaculture. The quality of eggs that are manually stripped from channel catfish are affected by variation in parental genetics, maturity, type and dose of hormone, age and pre-spawning stress of female fish. Furthe...
The effect of peri-conception nutrition on embryo quality in the superovulated ewe.
Kakar, M A; Maddocks, S; Lorimer, M F; Kleemann, D O; Rudiger, S R; Hartwich, K M; Walker, S K
2005-09-15
Evidence indicates that oocyte/embryo quality in the sheep is affected by nutrient status during the cycle of conception. This study aimed to determine, in the superovulated ewe, if there are stages during the peri-conception period (-18 days to +6 days relative to the day of ovulation [Day 0]) when quality is more likely to be influenced by nutrition. In Experiment 1, ewes were provided with either a 0.5 x maintenance (L), 1.0 x maintenance (M) or 1.5 x maintenance (H) diet (in terms of daily energy requirements) during the peri-conception period. Diet did not affect the mean ovulation rate (range: 15.4+/-1.47 to 16.1+/-1.55) nor the mean number of embryos collected per ewe (range: 10.9+/-2.05 to 12.4+/-1.82) but there was an increase (P<0.05) in the mean number of cells per blastocyst in the L diet (74.7+/-1.45) compared with either the M (66.4+/-1.29) or H (62.0+/-0.84) diets. This increase was due to an increase in the number of trophectoderm (Tr) cells, resulting in a shift (P<0.05) in the Tr:inner cell mass (ICM) cell ratio (range 0.69+/-0.03 to 0.73+/-0.04). In Experiment 2, six diets (HHH, MHH, MHL, MLH, MLL and LLL) were imposed during three 6-day periods commencing 12 days before and continuing until 6 days after ovulation. Although diet had minimal effect on the superovulatory response, both the mean number of cells per blastocyst and the Tr:ICM ratio were increased (P<0.05) when the L diet was provided after Day 0 (diets MHL, MLL and LLL). It is concluded that the ewe is able to respond to acute changes in nutrition imposed immediately after ovulation, resulting in changes in embryo development including cell lineage differentiation. The significance of these findings, in terms of fetal development, embryo-maternal signalling and the nutritional management of the ewe is discussed.
Hennings, Justin M.; Zimmer, Randall L.; Nabli, Henda; Davis, J. Wade; Sutovsky, Peter; Sutovsky, Miriam; Sharpe-Timms, Kathy L.
2015-01-01
Objective: Validate single versus sequential culture media for murine embryo development. Design: Prospective laboratory experiment. Setting: Assisted Reproduction Laboratory. Animals: Murine embryos. Interventions: Thawed murine zygotes cultured for 3 or 5 days (d3 or d5) in single or sequential embryo culture media developed for human in vitro fertilization. Main Outcome Measures: On d3, zygotes developing to the 8 cell (8C) stage or greater were quantified using 4’,6-diamidino-2-phenylindole (DAPI), and quality was assessed by morphological analysis. On d5, the number of embryos reaching the blastocyst stage was counted. DAPI was used to quantify total nuclei and inner cell mass nuclei. Localization of ubiquitin C-terminal hydrolase L1 (UCHL1) and ubiquitin C-terminal hydrolase L3 (UCHL3) was reference points for evaluating cell quality. Results: Comparing outcomes in single versus to sequential media, the odds of embryos developing to the 8C stage on d3 were 2.34 time greater (P = .06). On d5, more embryos reached the blastocyst stage (P = <.0001), hatched, and had significantly more trophoblast cells (P = .005) contributing to the increased total cell number. Also at d5, localization of distinct cytoplasmic UCHL1 and nuclear UCHL3 was found in high-quality hatching blastocysts. Localization of UCHL1 and UCHL3 was diffuse and inappropriately dispersed throughout the cytoplasm in low-quality nonhatching blastocysts. Conclusions: Single medium yields greater cell numbers, an increased growth rate, and more hatching of murine embryos. Cytoplasmic UCHL1 and nuclear UHCL3 localization patterns were indicative of embryo quality. Our conclusions are limited to murine embryos but one might speculate that single medium may also be more beneficial for human embryo culture. Human embryo studies are needed. PMID:26668049
Hennings, Justin M; Zimmer, Randall L; Nabli, Henda; Davis, J Wade; Sutovsky, Peter; Sutovsky, Miriam; Sharpe-Timms, Kathy L
2016-03-01
Validate single versus sequential culture media for murine embryo development. Prospective laboratory experiment. Assisted Reproduction Laboratory. Murine embryos. Thawed murine zygotes cultured for 3 or 5 days (d3 or d5) in single or sequential embryo culture media developed for human in vitro fertilization. On d3, zygotes developing to the 8 cell (8C) stage or greater were quantified using 4',6-diamidino-2-phenylindole (DAPI), and quality was assessed by morphological analysis. On d5, the number of embryos reaching the blastocyst stage was counted. DAPI was used to quantify total nuclei and inner cell mass nuclei. Localization of ubiquitin C-terminal hydrolase L1 (UCHL1) and ubiquitin C-terminal hydrolase L3 (UCHL3) was reference points for evaluating cell quality. Comparing outcomes in single versus to sequential media, the odds of embryos developing to the 8C stage on d3 were 2.34 time greater (P = .06). On d5, more embryos reached the blastocyst stage (P = <.0001), hatched, and had significantly more trophoblast cells (P = .005) contributing to the increased total cell number. Also at d5, localization of distinct cytoplasmic UCHL1 and nuclear UCHL3 was found in high-quality hatching blastocysts. Localization of UCHL1 and UCHL3 was diffuse and inappropriately dispersed throughout the cytoplasm in low-quality nonhatching blastocysts. Single medium yields greater cell numbers, an increased growth rate, and more hatching of murine embryos. Cytoplasmic UCHL1 and nuclear UHCL3 localization patterns were indicative of embryo quality. Our conclusions are limited to murine embryos but one might speculate that single medium may also be more beneficial for human embryo culture. Human embryo studies are needed. © The Author(s) 2015.
Li, Qian; Wang, Yong-Sheng; Wang, Li-Jun; Zhang, Hui; Li, Rui-Zhe; Cui, Chen-Chen; Li, Wen-Zhe; Zhang, Yong; Jin, Ya-Ping
2014-08-01
Vitamin C, an antioxidant that reduces reactive oxygen species (ROS) in cells, is capable of significantly improving the developmental competence of porcine and mouse somatic cell nuclear transfer (SCNT) embryos, both in vitro and in vivo. In the present study, the effects of vitamin C on the developmental competence of bovine SCNT embryos were investigated. The results indicated that vitamin C (40 μg/mL) positively affected the scavenging of intracellular ROS, cleavage rate at 24 h (76.67 vs. 68.26%, p<0.05), compact morulae formation (60.83 vs. 51.30%, p<0.05), and the blastomere apoptosis index (3.70 ± 1.41 vs. 4.43% ± 1.65, p<0.05) of bovine SCNT embryos. However, vitamin C supplementation did not significantly affect the blastocyst formation rate and proportion of inner cell mass over total cells per blastocyst on day 7. Moreover, vitamin C supplementation obviously impaired the total cell numbers per blastocyst (97.20 ± 11.35 vs. 88.57 ± 10.43, p<0.05) on day 7 and the hatching blastocysts formation rate on day 9 (26.51 vs. 50.65%, p<0.05) compared with that of the untreated group. Vitamin C supplementation preferentially improved the viability of bovine SCNT embryos prior to the blastocyst stage, but did not enhance the formation and quality of blastocysts in vitro. In conclusion, the effect of vitamin C on the development of bovine SCNT embryos is complex, and vitamin C is not a suitable antioxidant chemical for the in vitro culture of bovine SCNT embryos.
Boiso, Irene; Veiga, Anna; Edwards, Robert G
2002-01-01
Knowledge of the nature of embryo growth, and the handling and scoring of quality in human embryos are significant aspects for embryologists in IVF clinics. This review describes the formation, growth and maturation of human oocytes, many aspects of fertilization in vitro, embryonic transcription during preimplantation stages, and the formation of polarities, timing controls, role of mitochondria and functions of endocrine and paracrine systems. Modern concepts are fully discussed, together with their significance in the practice of IVF. This knowledge is essential for the correct clinical care of human embryos growing in vitro, especially in view of their uncharacteristic tendency to vary widely in implantation potential. Underlying causes of such variation have not been identified. Stringent tests must be enforced to ensure human embryos develop under optimal conditions, and are scored for quality using the most advanced techniques. Optimal methods of culture are described, including methods such as co-culture introduced to improve embryo quality but less important today. Detailed attention is given to quality as assessed from embryonic characteristics determined by timers, polarities, disturbed embryo growth and anomalous cell cycles. Methods for classification are described. Approaches to single embryo transfers are described, including the use of sequential media to produce high-quality blastocysts. These approaches, and others involved in surgical methods to remove fragments, transfer ooplasm or utilize newer approaches such as preimplantation diagnosis of chromosomal complements in embryos are covered. New outlooks in this field are summarized.
Avendaño, Conrado; Franchi, Anahí; Duran, Hakan; Oehninger, Sergio
2010-07-01
To evaluate DNA fragmentation in morphologically normal sperm recovered from the same sample used for intracytoplasmic sperm injection (ICSI) and to correlate DNA damage with embryo quality and pregnancy outcome. Prospective study. Academic center. 36 infertile men participating in the ICSI program. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-fluorescein nick end labeling (TUNEL) assay and morphologic assessment by phase contrast. Simultaneous assessment of sperm morphology and DNA fragmentation by TUNEL assay was performed in the same cell, then the percentage of normal sperm with fragmented DNA (normal SFD) was correlated with embryo quality and pregnancy outcomes. A highly statistically significant negative correlation was found between the percentage of normal SFD and embryo quality. This association was confirmed for the transferred embryos and for the total embryo cohort. The receiver operating characteristics curve analysis demonstrated that the percentage of normal SFD and embryo quality were statistically significant predictors of pregnancy. When the percentage of normal SFD was
Delayed blastocyst formation or an extra day culture increases apoptosis in pig blastocysts.
Lin, Tao; Lee, Jae Eun; Oqani, Reza K; Kim, So Yeon; Cho, Eun Seok; Jeong, Yong Dae; Baek, Jun Jong; Jin, Dong Il
2017-10-01
In the present study, the timing was examined of blastocyst collection/formation or of how the duration of post-blastulation culture affected the quality and developmental competence of in vitro-produced pig parthenogenetic embryos. The earliest apoptotic signals were observed at the morula stage while the earliest cytoplasmic fragmentation was observed before the 4- to 8-cell stage of embryo development. Nuclear condensation was detected in morulae and blastocysts, but not all condensed nuclei were positive for the apoptotic signal (TUNEL staining). The mean blastocyst diameter increased with delayed blastocyst collection or extended post-blastulation culture, but decreased with delayed blastocyst formation. Delayed blastocyst collection/formation or an additional day of post-blastulation culture increased the frequencies of apoptosis, condensed nuclei, and low quality blastocysts (those showing a nuclear destruction that negated counting of the nuclei); increased the expression of the pro-apoptotic BAX gene; and reduced the ratio of ICM (inner cell mass) cells to TE (trophectoderm) cells. In addition, delayed blastocyst formation decreased POU5F1 gene expression. These results suggest that a delay in blastocyst collection/formation or an additional day of culture could increase the incidence of apoptosis, decrease the ICM:TE cell ratio, and influence the gene expression and diameter of blastocysts derived from in vitro-produced pig embryos. These findings provide a useful reference for improving the quality of in vitro-produced embryos. Copyright © 2017 Elsevier B.V. All rights reserved.
Negishi, Momoko; Yanaihara, Atsushi; Iwasaki, Shinji; Suzuki, Norio; Hasegawa, Junichi; Yorimitsu, Takeshi; Okai, Takashi
2007-09-01
Aim: It has been suggested that the position of the sperm after intracytoplasmic sperm injection (ICSI) has an effect on the development and quality of the embryo. In this study, we retrospectively examined whether pronucleus stage evaluation used through clinical studies in recent years has relevance with regard to sperm location. Methods: From 2003 to 2005, 1285 oocytes from 459 patients (average age: 36 years) were retrospectively analyzed. The 459 patients underwent ICSI because of fertilization disorders and oligozoospermia. Follicle stimulation was via either Clomid or the long protocol. Human chorionic gonadotropin was administered to induce ovulation and oocyte retrieval was conducted 35 h later. After confirming the presence of a polar body, we immobilized the ovum at the 6 o'clock position, introduced the injection pipette at the 3 o'clock position and carried out ICSI. Results: When a sperm was located at a position that was opposite to the polar body, both classifications of Scott and Tesarik regarding embryo quality were distinctly low. Furthermore, a good embryo classification ensued when the sperm was located adjacent to the polar body. Conclusion: The zone in which the sperm was located did not always correlate with embryo quality; however, our study suggested that sperm location affects the synchronization of the nucleolus. When carrying out ICSI, it is important to take into consideration the insertion point of the sperm. (Reprod Med Biol 2007; 6 : 171-174).
Sandra, Olivier; Mansouri-Attia, Nadéra; Lea, Richard G
2011-01-01
Successful pregnancy depends on complex biological processes that are regulated temporally and spatially throughout gestation. The molecular basis of these processes have been examined in relation to gamete quality, early blastocyst development and placental function, and data have been generated showing perturbations of these developmental stages by environmental insults or embryo biotechnologies. The developmental period falling between the entry of the blastocyst into the uterine cavity to implantation has also been examined in terms of the biological function of the endometrium. Indeed several mechanisms underlying uterine receptivity, controlled by maternal factors, and the maternal recognition of pregnancy, requiring conceptus-produced signals, have been clarified. Nevertheless, recent data based on experimental perturbations have unveiled unexpected biological properties of the endometrium (sensor/driver) that make this tissue a dynamic and reactive entity. Persistent or transient modifications in organisation and functionality of the endometrium can dramatically affect pre-implantation embryo trajectory through epigenetic alterations with lasting consequences on later stages of pregnancy, including placentation, fetal development, pregnancy outcome and post-natal health. Developing diagnostic and prognostic tools based on endometrial factors may enable the assessment of maternal reproductive capacity and/or the developmental potential of the embryo, particularly when assisted reproductive technologies are applied.
The influence of early embryo traits on human embryonic stem cell derivation efficiency.
O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra
2011-05-01
Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.
2012-01-01
Background Pseudomonas aeruginosa may cause venereal disease and infertility in horses. A Pseudomonas aeruginosa - carrier stallion, often unresponsive to artificial vagina collection, was used to naturally breed mares. Semen collected from the same stallion was also used to perform artificial inseminations. Pregnancy rates, embryo quality and incidence of uterine infection were compared between inseminated or naturally-bred mares. Methods P. aeruginosa was isolated from swabbing of the penis, prepuce and distal urethra of the stallion. Before being bred or inseminated, clitoral/vestibular samples were collected from all mares, and cultured for isolation of P. aeruginosa. At the first observed estrus, endometrial swabs were also collected. All mares subjected to natural mating (NS) were re-evaluated for P.aeruginosa by culture of clitoral and endometrial swabs. Artificial inseminations (AI) were performed either with fresh-extended semen (11 AI/7 mares) or frozen semen (10 AI/7 mares). The stallion was also used to breed 3 mares (4 services). For embryo collection, 2 mares were inseminated with fresh-extended semen (1 AI/mare), and 2 additional mares were inseminated with frozen semen (2 AI/mare). Two mares were naturally-bred with a total of 9 services, for embryo collection. All mares were examined after AI or natural service (NS), for uterine pathologies. Embryo recoveries were attempted passing a catheter with inflatable cuff connected to a sterile flexible 2-way flushing catheter, through the cervix. Flushed media was recovered into an Em-Con filter, and embryos searched using a stereoscope. Embryos were graded from 1 (excellent) to 4 (degenerated/dead). Results Pregnancy rates obtained after NS was 50% per cycle. However, more than half of the NS resulted in uterine disease, while uterine pathology was seen only in 22% of the time following AI. Half of the mares bred by NS got positive to P. aeruginosa. Percentage of embryo recovery rates was identical after AI or NS (66.7%). The 4 embryos recovered after AI were classified as Grade 1, while after NS only 2 out of the 6 recovered embryos were Grade 1. Conclusion a) there was no evidence of reduced fertilization after AI or NS, b) a numerically higher incidence of uterine disease was noticed after NS, c) venereal transmission of P. aeruginosa after NS was confirmed, d) a lower percentage of G1 embryos may be obtained after NS. Overall, the data supports the indication for P. aeruginosa-carrier stallions to be bred by AI rather than by NS, and raises the possibility that P. aeruginosa may affect embryo quality. PMID:22458304
Xu, Hongyi; Deng, Kai; Luo, Qingbing; Chen, Juan; Zhang, Xin; Wang, Xiaoyan; Diao, Honglu; Zhang, Changjun
2016-01-01
To investigate whether brown zona pellucida (ZP) of oocytes affects the outcome of fertilization, embryo quality and pregnancy rate in in vitro fertilization-embryo transfer (IVF-ET). Based on the ZP color of their oocytes, a total number of 703 patients dated from 2012 to 2014 were divided into a normal egg group (group A) and a brown oocyte group (group B), with 629 and 74 cases, respectively. Clinical characteristics, gonadotropin (Gn) days, Gn dosage, serum hormone levels on the day of human chorionic gonadotropin (HCG) injection, ZP thickness (ZPT) of the eggs, fertilization rate, rescue intracytoplasmic sperm injection (rICSI) rate, good-quality embryo rate and pregnancy rate were compared between the two groups. No significant differences were found in the duration and the causes of infertility, and their basal level of endocrine hormone before IVF-ET between normal egg group and brown egg group. The level of serum hormone including estradiol, progesterone and luteinizing hormone on the day of HCG injection were again similar. Moreover, there were no differences in number of mature oocytes, oocyte fertilization rates and rICSI rates after IVF between the two groups. However, we observed that the ZPT of brown oocytes (group B) was higher than that of normal oocytes (group A). Moreover, the Gn dosage and FSH levels on the day of HCG injection were significantly higher in group B than in group A and the good-quality embryo rate and pregnancy rate in group B were lower than those in group A. Compared with normal eggs, oocytes with a brown ZP were found to have a higher ZPT, lower embryo quality and lower pregnancy rate, which might be due to a high Gn dosage injection and high serum FSH levels during IVT-ET cycles. © 2016 The Author(s) Published by S. Karger AG, Basel.
Kurobe, Tomofumi; Lehman, Peggy W; Haque, M E; Sedda, Tiziana; Lesmeister, Sarah; Teh, Swee
2018-01-01
In the San Francisco Estuary, California, the largest estuary on the Pacific Coast of North America, the frequency and intensity of drought and associated cyanobacteria blooms are predicted to increase with climate change. To assess the impact of water quality conditions on estuarine fish health during successive severe drought years with Microcystis blooms, we performed fish embryo toxicity testing with Delta Smelt and Medaka. Fish embryos were exposed to filtered ambient water collected from the San Francisco Estuary during the Microcystis bloom season in 2014 and 2015, the third and fourth most severe recorded drought years in California. Medaka embryos incubated in filtered ambient waters exhibited high mortality rates (>77%), which was mainly due to bacterial growth. Medaka mortality data was negatively correlated with chloride, and positively correlated with water temperature, total and dissolved organic carbon, and ambient and net chlorophyll a concentration. Delta Smelt embryo mortality rates were lower (<42%) and no prominent seasonal or geographic trend was observed. There was no significant correlation between the Delta Smelt mortality data and water quality parameters. Aeromonas was the dominant bacteria that adversely affected Medaka. The growth of Aeromonas was suppressed when salinity was greater than or equal to 1psu and resulted in a significant reduction in mortality rate. Bacterial growth test demonstrated that the lysate of Microcystis cells enhanced the growth of Aeromonas. Toxin production by Microcystis is a major environmental concern, however, we conclude that dissolved substances released from Microcystis blooms could result in water quality deterioration by promoting growth of bacteria. Furthermore, a distinctive developmental deformity was observed in Medaka during the toxicity tests; somite formation was inhibited at the same time that cardiogenesis occurred and the functional heart was observed to be beating. The exact cause of the embryonic developmental deformity is still unknown. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of follicular fluid GDF9 and BMP15 on embryo quality.
Gode, Funda; Gulekli, Bulent; Dogan, Erbil; Korhan, Peyda; Dogan, Seda; Bige, Ozgur; Cimrin, Dilek; Atabey, Nese
2011-06-01
To evaluate the association between follicular fluid levels of propeptide and mature forms of growth differentiation factor (GDF) 9 and bone morphogenetic protein (BMP) 15 with subsequent oocyte and embryo quality. Prospective clinical study. University hospital. Eighty-one infertile patients who underwent in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI). The expression levels of the propeptide and mature forms of follicular fluid GDF9 and BMP15 were determined by western blot analysis. The levels of follicular fluid hormones (FSH, E2, and P) were measured with automated chemiluminescent enzyme immunoassays. The relationships between the levels of GDF9 and BMP15, hormones, oocyte maturation, and embryo quality. Mature GDF9 levels were significantly correlated with the nuclear maturation of oocytes. The mean mature GDF9 level was 4.87±0.60 in the high-embryo-quality group and 1.45±0.81 in the low-embryo-quality group. There were no statistically significant differences in embryo quality among the patients regarding propeptide GDF9 and BMP15 expression status. There was a negative correlation between follicular fluid levels of P and the mature form of GDF9. Higher mature GDF9 levels in the follicular fluid were significantly correlated with oocyte nuclear maturation and embryo quality. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shen, A. G.; Peng, J.; Zhao, Q. H.; Su, L.; Wang, X. H.; Hu, J. M.; Yang, J.
2012-04-01
In combination with morphological evaluation tests, we employ Raman spectroscopy to select higher potential reproductive embryos during in vitro fertilization (IVF) based on chemical composition of embryos culture medium. In this study, 57 Raman spectra are acquired from both higher and lower quality embryos culture medium (ECM) from 10 patients which have been preliminarily confirmed by clinical assay. Data are fit by using a linear combination model of least squares method in which 12 basis spectra represent the chemical features of ECM. The final fitting coefficients provide insight into the chemical compositions of culture medium samples and are subsequently used as criterion to evaluate the quality of embryos. The relative fitting coefficients ratios of sodium pyruvate/albumin and phenylalanine/albumin seem act as key roles in the embryo screening, attaining 85.7% accuracy in comparison with clinical pregnancy. The good results demonstrate that Raman spectroscopy therefore is an important candidate for an accurate and noninvasive screening of higher quality embryos, which potentially decrease the time-consuming clinical trials during IVF.
Mao, Gen-Hong; Feng, Zonggang; He, Yan; Huang, Yu-Rong
2014-02-24
The aim was to compare the efficacy of long-acting and short-acting gonadotropin-releasing hormone (GnRH) agonists by long protocol on embryo quality, endometrial thickness and pregnancy rate in in vitro fertilization. In this retrospective study, long-term pituitary downregulation, achieved with long- and short-acting GnRH agonists (GnRHa), was performed for patients undergoing in vitro fertilization (n = 175). There were no significant differences between the long and short-acting GnRH group (63.16% vs. 66.26%, p > 0.05), and the secondary and primary infertility group (63.47% vs. 66.86%, p > 0.05) in embryo quality. Logistic regression analysis showed that type of infertility and endometrial thickness were significantly associated with pregnancy outcome. Patients in the long-acting GnRHa group had a thicker endometrium on the day of human chorionic gonadotrophin (hCG) administration (10.79 ±2.62 mm vs. 9.64 ±1.97 mm, p < 0.01), lower serum luteinizing hormone (LH) concentration (1.21 ±1.13 vs. 2.53 ±3.39) and a higher pregnancy rate (59.60% vs. 43.42%, p < 0.05) than those of patients in the short-acting GnRHa group. This work suggests that types of agonist protocol and infertility may not affect embryo quality. Type of infertility and endometrial thickness may be positive predictors for clinical pregnancy, but the key finding is that the long-acting GnRHa protocol may be an effective method of improving endometrial thickness, endometrial receptivity and pregnancy rate in in vitro fertilization.
Paschoal, Daniela Martins; Sudano, Mateus José; Guastali, Midyan Daroz; Dias Maziero, Rosiára Rosária; Crocomo, Letícia Ferrari; Oña Magalhães, Luis Carlos; da Silva Rascado, Tatiana; Martins, Alicio; da Cruz Landim-Alvarenga, Fernanda
2014-05-01
The objective of this study was to assess the viability and cryotolerance of zebu embryos produced in vitro with or without the addition of fetal calf serum (FCS) and forskolin (F). Embryos produced in vivo were used as a control. Presumptive zygotes were cultured in modified synthetic oviductal fluid supplemented with amino acids (SOFaa), bovine serum albumin (BSA) and with (2.5%) or without (0%) FCS. On day 6 of growth, the embryos from each group were divided into treatments with or without 10 μM F to induce embryonic lipolysis, comprising a total of four experimental groups: 2.5% FCS, 0% FCS, 2.5% + F and 0% + F. For vitrification, embryos were exposed to vitrification solution 1 (5 M EG (ethylene glycol)) for 3 min and then transferred to vitrification solution 2 (7 M EG, 0.5 M galactose solution and 18% (w/v) Ficoll 70) before being introduced to liquid nitrogen. The presence of FCS in the culture medium resulted in the production of embryos with a similar rate of damaged cells compared with in vivo-produced embryos. After vitrification, the 2.5% FCS group had a significantly higher rate of damaged cells when compared with the other groups (P < 0.05). The results of this experiment indicated that the omission of FCS and the addition of forskolin do not have deleterious effect on embryo production rates. In addition, embryos produced in the presence of FCS had greater sensitivity to cryopreservation, but this effect was reversed when forskolin was added to the medium, which improved embryo survival without affecting embryo development and quality after vitrification.
Marconi, Guillermo; Vilela, Martín; Quintana, Ramiro; Sueldo, Carlos
2002-10-01
To evaluate the ovarian response cycles of IVF-ET in patients who previously underwent laparoscopic cystectomy for endometriomas. Retrospective study with prospective selection of participants and controls. Instituto de Ginecología y Fertilidad Buenos Aires, Argentina. Thirty-nine patients underwent an operation for ovarian endometriomas by atraumatic removal of the pseudocapsule with minimal bipolar cauterization of small bleeders and an IVF-ET cycle (group A) and 39 control patients of similar age underwent an IVF-ET cycle for tubal factor infertility (group B). Laparoscopic endometrioma cystectomy, IVF-ET cycle. E(2) levels, number of gonadotropin ampoules, follicles, oocytes retrieved, number and quality of embryos transferred, and clinical pregnancy rate. There were no differences in all the parameters studied (E(2) levels, number of follicles, oocytes retrieved, number and quality of embryos transferred, and clinical pregnancy rate) except for the number of gonadotropin ampoules needed for ovarian hyperstimulation, which was significantly higher in group A than in group B. Our results indicate that laparoscopic cystectomy for endometriomas is an appropriate treatment since it did not negatively affect the ovarian response for IVF-ET.
Sildenafil citrate (Viagra) impairs fertilization and early embryo development in mice.
Glenn, David R J; McClure, Neil; Cosby, S Louise; Stevenson, Michael; Lewis, Sheena E M
2009-03-01
To determine the effects of sildenafil citrate, a cyclic monophosphate-specific type 5 phosphodiesterase inhibitor known to affect sperm function, on fertilization and early embryo cleavage. This acute mammal study included male and female mice assigned randomly, the females sacrificed after mating and their oocytes/embryos evaluated at four time periods after treatment. Academic research environment. Male and female CBAB(6) mice. Female mice were injected intraperitoneally with 5 IU gonadotropin (hCG) to stimulate follicular growth and induce ovulation. They were each caged with a male that had been gavaged with sildenafil citrate (0.06 mg/0.05 mL) and allowed to mate. After 12, 36, 60, and 84 h, females were killed, their oviducts were dissected out, and retrieved embryos were assessed for blastomere number and quality. Fertilization rates and numbers of embryos were evaluated after treatment. Fertilization rates (day 1) were markedly reduced (-33%) in matings where the male had taken sildenafil citrate. Over days 2-4, the numbers of embryos developing in the treated group were significantly fewer than in the control group. There was also a trend for impaired cleavage rates within those embryos, although this did not reach significance. The impairments to fertility caused by sildenafil citrate have important implications for infertility centers and for couples who are using this drug precoitally while attempting to conceive.
Influence of "Solcoseryl" during culture on the sex-dependent repair of bovine demi-embryos.
Tominaga, K; Yoneda, K; Utsumi, K
1996-03-01
The purpose of this experiment was to determine the effect of culture conditions on the development of split embryos after bisection and on the sex ratio of resultant bovine demi-embryos. Embryos that had developed into blastocysts on days 6 1/2 to 7 or on days 7 1/2 to 8 from oocytes matured and fertilized in vitro were bisected in BMOC-3 medium supplemented with 33% calf serum. The medium also contained 0%, 0.1% or 1.0% Solcoseryl, a deproteinized hemodialysate product from calf blood. The demi-embryos were first cultured for 4 hours in the same medium in which they had been bisected and then co-cultured with cumulus cells in TCM199 supplemented with 1% calf serum for an additional 20 hr. The rate of production of good to excellent quality demi-embryos obtained from days 6 1/2 to 7 blastocysts was higher than from those on days 7 1/2 to 8. The rate was also significantly improved when blastocysts were bisected in medium containing 0.1% or 1.0% Solcoseryl, compared to the medium without Solcoseryl. Male embryos seemed to recover more rapidly than female embryos, as assessed by morphological quality at 4 hr, although the quality of female embryos had improved by 24 hr. The percentage of males after culture was higher in the medium without Solcoseryl than in its presence. Thus, addition of Solcoseryl at either 0.1% or 1.0% to BMOC-3 medium seemed to improve the production efficiency of good quality demi-embryos, but did not influence the sex ratio. It appears as if female demi-embryos required more time than male embryos to be repaired after bisection.
Ramachandran, Amar; Kumar, Pratap
2015-01-01
Introduction The parent oocyte from which the embryo is derived, determines its quality and the perifollicular vascularity (PFV) determines the micro-environment of the developing ovum. The PFV correlates well with the follicular oxygenation, oocyte maturation and embryo viability. PFV is imaged with Power Doppler Ultrasound. Aim To study and compare the association of the PFV of follicles with the quality of the oocytes and embryos in agonist and antagonist protocol, employed in Assisted Reproductive techniques (ART). Study Design A prospective observational study was conducted on 75 patients, who were recruited for ART cycles, out of which 25 were given the Agonist protocol and the remaining 50 received the Antagonist protocol. Materials and Methods The patients underwent the stimulation protocol. The PFV of preovulatory follicles were studied with Transvaginal Power Doppler and graded. Each oocyte retrieved carried the same label of its parent follicle. Embryos were cultured. The embryologist was blinded. The oocyte and embryo quality were assessed and compared with the PFV of parent follicle. Results Follicles with grade 1 and 2 PFV were predominantly observed. The yield of oocytes was independent of PFV. The mean yield of good quality embryos in conjunction with the PFV of the parent follicle was found to be highly significant in both the groups. The antagonist group had statistically significant yield of mature oocytes and embryos, compared to the agonist group. Conclusion Antagonist protocol had favourable outcomes compared with the agonist protocol. The retrieval of oocytes, even the mature ones and the yield of high grade embryos were found higher. As the PFV increased, the yield and overall pregnancy rates were higher. PFV as assessed by Power Doppler is a useful non-invasive biomarker of embryo quality and can be employed in conjunction with other biomarkers in ART to predict successful outcome. PMID:26674932
Galvão, K N; Santos, J E P; Coscioni, A C; Juchem, S O; Chebel, R C; Sischo, W M; Villaseñor, M
2006-06-01
Objectives were to determine the effects of gossypol exposure during early embryo development on embryonic survival after transfer of frozen and thawed embryos to lactating dairy cows treated with human chorionic gonadotropin (hCG). Holstein cows (n = 269) were either treated or not treated with 3,300 IU of hCG on d 5 of the estrous cycle and received an embryo collected from heifers fed or not fed gossypol. Embryo donor heifers consumed either 0 or 12 g/d of free gossypol for 76 d prior to embryo collection, resulting in mean plasma gossypol concentrations of 0 and 7.38 microg/mL, respectively. Embryos were transferred on d 7 of the estrous cycle and pregnancy diagnosed 21 and 35 d later. Progesterone was analyzed in plasma collected on d 5 and 12 of the estrous cycle. Treatment with hCG increased the total luteal area on d 12 (818.0 vs. 461.1 mm2) because of increased number of corpora lutea (2.0 vs. 1.0) and increased area of the original corpora lutea (522.7 vs. 443.5 mm2). Plasma progesterone concentrations were similar between treatments on d 5, but increased by d 12 in hCG-treated cows (6.46 vs. 4.78 ng/ mL). Pregnancy rates on d 28 and 42 were not affected by hCG. However, after transfer into lactating cows, embryos collected from heifers not fed gossypol resulted in higher pregnancy rates at 28 d (33.3 vs. 23.1%) and 42 d (29.6 vs. 20.2%) of gestation compared with embryos collected from heifers fed gossypol. Our data suggest that the negative effects of gossypol on fertility are mediated by changes in embryo viability in spite of similar grade quality at transfer.
Wells, Michael W; Turko, Andy J; Wright, Patricia A
2015-10-01
Few teleost fishes incubate embryos out of water, but the oxygen-rich terrestrial environment could provide advantages for early growth and development. We tested the hypothesis that embryonic oxygen uptake is limited in aquatic environments relative to air using the self-fertilizing amphibious mangrove rivulus, Kryptolebias marmoratus, which typically inhabits hypoxic, water-filled crab burrows. We found that adult mangrove rivulus released twice as many embryos in terrestrial versus aquatic environments and that air-reared embryos had accelerated developmental rates. Surprisingly, air-reared embryos consumed 44% less oxygen and possessed larger yolk reserves, but attained the same mass, length and chorion thickness. Water-reared embryos moved their opercula ∼2.5 more times per minute compared with air-reared embryos at 7 days post-release, which probably contributed to the higher rates of oxygen uptake and yolk utilization we observed. Genetically identical air- and water-reared embryos from the same parent were raised to maturity, but the embryonic environment did not affect growth, reproduction or emersion ability in adults. Therefore, although aspects of early development were plastic, these early differences were not sustained into adulthood. Kryptolebias marmoratus embryos hatched out of water when exposed to aerial hypoxia. We conclude that exposure to a terrestrial environment reduces the energetic costs of development partly by reducing the necessity of embryonic movements to dispel stagnant boundary layers. Terrestrial incubation of young would be especially beneficial to amphibious fishes that occupy aquatic habitats of poor water quality, assuming low terrestrial predation and desiccation risks. © 2015. Published by The Company of Biologists Ltd.
Oocyte quality in mice is affected by a mycotoxin-contaminated diet.
Hou, Yan-Jun; Xiong, Bo; Zheng, Wei-Jiang; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Qiang; Xu, Yin-Xue; Sun, Shao-Chen
2014-05-01
Mycotoxins, such as deoxynivalenol (DON), zearalenone (ZEN), and aflatoxin (AF), are commonly found in many food commodities and may impair the growth and reproductive efficiency of animals and humans. We investigated the effects of a mycotoxin-contaminated diet on mouse oocyte quality. Maize contaminated with DON (3.875 mg/kg), ZEN (1,897 μg/kg), and AF (806 μg/kg) was incorporated into a mouse diet at three different levels (0, 15, and 30% w/w). After 4 weeks, ovarian and germinal vesicle oocyte indices decreased in mycotoxin-fed mice. Oocytes from these mice exhibited low developmental competence with reduced germinal vesicle breakdown and polar body extrusion rates. Embryo developmental competence also showed a similar pattern, and the majority of embryos could not develop to the morula stage. Actin expression was also reduced in both the oocyte cortex and cytoplasm, which was accompanied by decreased expression of the actin nucleation factors profilin-1 and mDia1. Moreover, a large percentage of oocytes derived from mice that were fed a mycotoxin-contaminated diet exhibited aberrant spindle morphology, a loss of the cortical granule-free domain, and abnormal mitochondrial distributions, which further supported the decreased oocyte quality. Thus, our results demonstrate that mycotoxins are toxic to the mouse reproductive system by affecting oocyte quality. Copyright © 2013 Wiley Periodicals, Inc.
Wheat (Triticum aestivum L.) transformation using mature embryos.
Medvecká, Eva; Harwood, Wendy A
2015-01-01
In most protocols for the Agrobacterium-mediated transformation of wheat, the preferred target tissues are immature embryos. However, transformation methods relying on immature embryos require the growth of plants under controlled conditions to provide a continuous supply of good-quality target tissue. The use of mature embryos as a target tissue has the advantage of only requiring good-quality seed as the starting material. Here we describe a transformation method based on the Agrobacterium-mediated transformation of callus cultures derived from mature wheat embryos of the genotype Bobwhite S56.
Novo, Sergi; Nogués, Carme; Penon, Oriol; Barrios, Leonardo; Santaló, Josep; Gómez-Martínez, Rodrigo; Esteve, Jaume; Errachid, Abdelhamid; Plaza, José Antonio; Pérez-García, Lluïsa; Ibáñez, Elena
2014-01-01
Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of human oocytes and embryos during assisted reproduction technologies (ARTs)? The direct tagging system based on lectin-biofunctionalized polysilicon barcodes of micrometric dimensions is simple, safe and highly efficient, allowing the identification of human oocytes and embryos during the various procedures typically conducted during an assisted reproduction cycle. Measures to prevent mismatching errors (mix-ups) of the reproductive samples are currently in place in fertility clinics, but none of them are totally effective and several mix-up cases have been reported worldwide. Using a mouse model, our group has previously developed an effective direct embryo tagging system which does not interfere with the in vitro and in vivo development of the tagged embryos. This system has now been tested in human oocytes and embryos. Fresh immature and mature fertilization-failed oocytes (n = 21) and cryopreserved day 1 embryos produced by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) (n = 205) were donated by patients (n = 76) undergoing ARTs. In vitro development rates, embryo quality and post-vitrification survival were compared between tagged (n = 106) and non-tagged (control) embryos (n = 99). Barcode retention and identification rates were also calculated, both for embryos and for oocytes subjected to a simulated ICSI and parthenogenetic activation. Experiments were conducted from January 2012 to January 2013. Barcodes were fabricated in polysilicon and biofunctionalizated with wheat germ agglutinin lectin. Embryos were tagged with 10 barcodes and cultured in vitro until the blastocyst stage, when they were either differentially stained with propidium iodide and Hoechst or vitrified using the Cryotop method. Embryo quality was also analyzed by embryo grading and time-lapse monitoring. Injected oocytes were parthenogenetically activated using ionomycin and 6-dimethylaminopurine. Blastocyst development rates of tagged (27/58) and non-tagged embryos (24/51) were equivalent, and no significant differences in the timing of key morphokinetic parameters and the number of inner cell mass cells were detected between the two groups (tagged: 24.7 ± 2.5; non-tagged: 22.3 ± 1.9), indicating that preimplantation embryo potential and quality are not affected by the barcodes. Similarly, re-expansion rates of vitrified-warmed tagged (19/21) and non-tagged (16/19) blastocysts were similar. Global identification rates of 96.9 and 89.5% were obtained in fresh (mean barcode retention: 9.22 ± 0.13) and vitrified-warmed (mean barcode retention: 7.79 ± 0.35) tagged embryos, respectively, when simulating an automatic barcode reading process, though these rates were increased to 100% just by rotating the embryos during barcode reading. Only one of the oocytes lost one barcode during intracytoplasmic injection (100% identification rate) and all oocytes retained all the barcodes after parthenogenetic activation. Although the direct embryo tagging system developed is effective, it only allows the identification and traceability of oocytes destined for ICSI and embryos. Thus, the traceability of all reproductive samples (oocytes destined for IVF and sperm) is not yet ensured. The direct embryo tagging system developed here provides fertility clinics with a novel tool to reduce the risk of mix-ups in human ARTs. The system can also be useful in research studies that require the individual identification of oocytes or embryos and their individual tracking. This study was supported by the Sociedad Española de Fertilidad, the Spanish Ministry of Education and Science (TEC2011-29140-C03) and the Generalitat de Catalunya (2009SGR-00282 and 2009SGR-00158). The authors do not have any competing interests.
Maternal organism and embryo biosensoring: insights from ruminants.
Sandra, Olivier; Constant, Fabienne; Vitorino Carvalho, Anais; Eozénou, Caroline; Valour, Damien; Mauffré, Vincent; Hue, Isabelle; Charpigny, Gilles
2015-04-01
In terms of contribution to pregnancy, the mother not only produces gametes, but also hosts gestation, whose progression in the uterus is conditioned by early events during implantation. In ruminants, this period is associated with elongation of the extra-embryonic tissues, gastrulation of the embryonic disk and cross-talk with the endometrium. Recent data have prompted the need for accurate staging of the bovine conceptus and shown that asynchrony between elongation and gastrulation processes may account for pregnancy failure. Data mining of endometrial gene signatures has allowed the identification of molecular pathways and new factors regulated by the conceptus (e.g. FOXL2, SOCS6). Interferon-tau has been recognised to be the major signal of pregnancy recognition, but prostaglandins and lysophospholipids have also been demonstrated to be critical players at the conceptus-endometrium interface. Interestingly, up-regulation of interferon-regulated gene expression has been identified in circulating immune cells during implantation, making these factors a potential source of non-invasive biomarkers for early pregnancy. Distinct endometrial responses have been shown to be elicited by embryos produced by artificial insemination, in vitro fertilisation or somatic cell nuclear transfer. These findings have led to the concept that endometrium is an early biosensor of embryo quality. This biological property first demonstrated in cattle has been recently extended and associated with embryo selection in humans. Hence, compromised or suboptimal endometrial quality can subtly or deeply affect embryo development, with visible and sometimes severe consequences for placentation, foetal development, pregnancy outcome and the long-term health of the offspring. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kim, Seong-Min; Kim, Suk-Jeong; Kim, Jae-Yong; Kim, Jae-Ryong; Cho, Kyung-Hyun
To determine the quality of breast milk (BM), we compared the functions of BM from ex-smokers and nonsmokers. We analyzed the contents of lipids, glucose, and protein in BM from ex-smokers (10 cigarettes/day for 13 ± 3 years) as well as infant formula. Nonsmokers' BM showed 2.4- and 1.4-fold higher cholesterol and protein contents, respectively, than BM from smokers. Infant formula contained almost no cholesterol, but did show remarkably higher glucose and triglyceride levels than BM. Microinjection of BM (50 nL) from nonsmokers and smokers into zebrafish embryos resulted in 59% and 44% survival, respectively, whereas formula injection resulted in 31% survival. The higher cholesterol and protein contents of BM were directly correlated with higher embryo survivability, suggesting that cholesterol content is directly and critically associated with growth of neonate infants. Smokers' BM contained smaller-sized apolipoproteinA-I (apoA-I) (24.4 ± 0.2 kDa) than BM from nonsmokers (26.7 ± 0.4 kDa), suggesting that putative modification and cleavage occurred in apoA-I. BM containing higher molecular weight apoA-I resulted in higher embryo survivability. Smoking before pregnancy can affect the composition and quality of BM, resulting in almost complete loss of cholesterol and protein, especially lactoferrin, lactalbumin, and apoA-I, accompanied by proteolytic degradation. These impairment effects of BM are associated with elevation of oxidative stress and lower embryo survivability.
Wu, Yan-Guang; Lazzaroni-Tealdi, Emanuela; Wang, Qi; Zhang, Lin; Barad, David H; Kushnir, Vitaly A; Darmon, Sarah K; Albertini, David F; Gleicher, Norbert
2016-08-24
Previously manual human embryology in many in vitro fertilization (IVF) centers is rapidly being replaced by closed embryo incubation systems with time-lapse imaging. Whether such systems perform comparably to manual embryology in different IVF patient populations has, however, never before been investigated. We, therefore, prospectively compared embryo quality following closed system culture with time-lapse photography (EmbryoScope™) and standard embryology. We performed a two-part prospectively randomized study in IVF (clinical trial # NCT92256309). Part A involved 31 infertile poor prognosis patients prospectively randomized to EmbryoScope™ and standard embryology. Part B involved embryos from 17 egg donor-recipient cycles resulting in large egg/embryo numbers, thus permitting prospectively alternative embryo assignments to EmbryoScope™ and standard embryology. We then compared pregnancy rates and embryo quality on day-3 after fertilization and embryologist time utilized per processed embryo. Part A revealed in poor prognosis patients no differences in day-3 embryo scores, implantation and clinical pregnancy rates between EmbryoScope™ and standard embryology. The EmbryoScope™, however, more than doubled embryology staff time (P < 0.0001). In Part B, embryos grown in the EmbyoScope™ demonstrated significantly poorer day-3 quality (depending on embryo parameter between P = 0.005 and P = 0.01). Suspicion that conical culture dishes of the EmbryoScope™ (EmbryoSlide™) may be the cause was disproven when standard culture dishes demonstrated no outcome difference in standard incubation. Though due to small patient numbers preliminary, this study raises concerns about the mostly uncontrolled introduction of closed incubation systems with time lapse imaging into routine clinical embryology. Appropriately designed and powered prospectively randomized studies appear urgently needed in well-defined patient populations before the uncontrolled utilization of these instruments further expands. NCT02246309 Registered September 18, 2014.
Rho, G J; Johnson, W H; Betteridge, K J
1998-10-15
The cellular composition and viability of intact, IVP embryos were compared with those of demi- and quarter-embryos produced by bisection of IVP morulae and blastocysts. Embryos were produced by established techniques from oocytes harvested from slaughterhouse ovaries. In Experiment 1, morulae at Day 6 or blastocysts at Day 7 were bisected on an inverted microscope using a microsurgical steel blade. Demi-embryos were then cultured without a zona pellucida until Day 8, when they were morphologically assessed for quality (viability). A higher proportion of demi-embryos made from blastocysts than from morulae were classified as viable (381/420, 91% vs 164/267, 61%; P < 0.001). In Experiment 2, only Day 7 blastocysts were bisected, and some of the resulting demi-embryos were bisected a second time 24 h later to produce quarter-embryos. The remaining demi-embryos, the quarter-embryos, and control intact embryos were cultured until Day 9, at which time they were assessed for quality and subjected to immunosurgery and differential staining to count inner cell mass (ICM) and trophectoderm cells. A higher proportion of demi-embryos than quarter-embryos was classified as viable (408/459, 89% vs 223/319, 70%, respectively; P < 0.001). Total cell numbers decreased with successive bisections, but the proportion of surviving cells found in the ICM was significantly (P < 0.05) higher in the best quality demi- and quarter-embryos (35 and 32%, respectively) than in the controls (22%). Transfer of all 12 quarter-embryos derived from 3 blastocysts, in pairs, into 6 recipient heifers resulted in 2 pregnancies, each with a single viable fetus at 90 d of gestation. The fetuses originated from 2 different blastocysts. The results suggest that bisection of intact IVP embryos into demi-embryos and bisection of those into quarter-embryos can increase the number of transferable embryos by as much as 178 and 235%, respectively.
Colaci, Daniela S; Afeiche, Myriam; Gaskins, Audrey J; Wright, Diane L; Toth, Thomas L; Tanrikut, Cigdem; Hauser, Russ; Chavarro, Jorge E
2012-11-01
To evaluate the association between men's body mass index (BMI), early embryo quality, and clinical outcomes in couples undergoing in vitro fertilization (IVF). Prospective cohort study. Fertility clinic in an academic medical center. 114 couples who underwent 172 assisted reproduction cycles. None. Fertilization rate, embryo quality, implantation rate, clinical pregnancy rate, and live birth rate. The fertilization rate was higher among obese men than among normal weight men in conventional IVF cycles. No statistically significant associations were found between men's BMI and the proportion of poor-quality embryos on day 3, slow embryo cleavage rate, or accelerated embryo cleavage rate. Men's BMI was unrelated to positive β-human chorionic gonadotropin rate, clinical pregnancy rate, or live-birth rate per embryo transfer. Among couples undergoing intracytoplasmic sperm injection, the odds of live birth in couples with obese male partners was 84% lower than the odds in couples with men with normal BMI. Our data suggest a possible deleterious effect of male obesity on the odds of having a live birth among couples undergoing intracytoplasmic sperm injection. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Xu, Xiaojuan; Zhang, Rui; Wang, Wei; Liu, Hongfang; Liu, Lin; Mao, Bin; Zeng, Xiangwu; Zhang, Xuehong
2016-11-01
Chromosomal polymorphisms (CPs) have been reported to be associated with infertility; however, their effects on the outcomes of in vitro fertilization/intracytoplasmic sperm injection-embryo transfer (IVF/ICSI-ET) are still controversial. In this retrospective study, we aimed to evaluate the effect of CPs on IVF/ICSI-ET outcomes. To investigate whether CPs affected the outcomes of fresh IVF/ICSI-ET cycles in a Chinese population, we evaluated infertile couples with male carriers of CPs (n = 348), infertile couples with female carriers (n = 99), and unaffected couples (n = 400) who had received their first treatment cycles in our hospital between January 2013 and March 2015. CPs in either male or female carriers seemed to have adverse effects on IVF/ICSI-ET outcomes. CPs in male carriers affected outcomes mainly by decreasing the rates of fertilization, embryo cleavage, good quality embryos, clinical pregnancies, ongoing pregnancies, and deliveries as well as increasing the biochemical pregnancy rate (P < 0.05); CPs in female carriers affected outcomes only by lowering the embryo cleavage rate (P < 0.05). The mean fertilization rate of couples with male CP carriers undergoing IVF was significantly lower than that in those undergoing ICSI (61.1 versus 66.5 %, respectively; P = 0.0004). Our data provide evidence for the involvement of CPs in the poor outcomes of fresh IVF/ICSI-ET cycles in a Chinese population. The use of ICSI might improve outcomes by increasing the fertilization rate for men with CPs.
Fish based preimplantation genetic diagnosis to prevent DiGeorge syndrome.
Shefi, Shai; Raviv, Gil; Rienstein, Shlomit; Barkai, Gad; Aviram-Goldring, Ayala; Levron, Jacob
2009-07-01
To report the performance of fluorescence in-situ hybridization in the setting of preimplantation genetic diagnosis in order to diagnose embryos affected by DiGeorge syndrome. Case report. Academic referral center. A 32 year-old female affected by DiGeorge syndrome. History and physical examination, karyotyping, amniocentesis, preimplantation genetic diagnosis, fluorescence in-situ hybridization. Avoidance of pregnancy with embryo affected by DiGeorge syndrome. Termination of pregnancy with an affected embryo followed by fluorescence in-situ hybridization based preimplantation genetic diagnosis and delivery of healthy offspring. The combination of preimplantation genetic diagnosis with fluorescence in-situ hybridization is recommended to prevent pregnancies with DiGeorge syndrome affected embryos in properly selected patients.
Reactive oxygen species level in follicular fluid--embryo quality marker in IVF?
Das, S; Chattopadhyay, R; Ghosh, S; Ghosh, S; Goswami, S K; Chakravarty, B N; Chaudhury, K
2006-09-01
The impact of oxidative stress in female reproduction is not clear. Contradictory reports on the effect of various oxidative stress markers on follicular fluid, oocytes and embryo quality and fertilization potential exist. The objectives of this study were to examine reactive oxygen species (ROS) levels in follicular fluid of women undergoing IVF and to relate these levels to embryo formation and quality. A total of 208 follicular fluid samples were obtained from 78 women undergoing controlled ovarian stimulation and analysed for ROS and lipid peroxidation (LPO). These samples were divided into groups I and II which represented follicular fluid containing grade III and grade II oocytes, respectively. These groups were further subdivided into groups IA, IB, IIA and IIB according to embryo quality. Subgroups IA and IIA consisted of follicular fluid samples corresponding to grade I/II embryo formation. Subgroups IB and IIB represented fertilization failure/pro-nucleolus (PN) arrest/grade III embryos. No significant correlation was observed in ROS levels on comparing groups I and II (P > 0.05). However, ROS levels were observed to be significantly different on comparing groups IA and IB (P < or = 0.01) and groups IIA and IIB (P < or = 0.05). LPO levels further supported our results. ROS levels in follicular fluid appear to play a significant role in embryo formation and quality.
The Effect of Reactive Oxygen Species on Embryo Quality in IVF.
Siristatidis, Charalampos; Vogiatzi, Paraskevi; Varounis, Christos; Askoxylaki, Marily; Chrelias, Charalampos; Papantoniou, Nikolaos
2016-01-01
BACKROUND/AIM: Reactive oxygen species (ROS) are involved in critical biological processes in human reproduction. The aim of this study was to evaluate the association of embryo quality following in vitro fertilization (IVF), with ROS levels in the serum and follicular fluid (FF). Eighty-five participants underwent ovarian stimulation and IVF; ROS levels were measured in blood samples on the day of oocyte retrieval and in the FF from follicular aspirates using enzyme-linked immunosorbent assay. These values were associated with the quality of embryos generated. Univariable zero-inflated Poisson model revealed that ROS levels at both oocyte retrieval and in FF were not associated with the number of grade I, II, III and IV embryos (p>0.05). Age, body mass index, stimulation protocol and smoking status were not associated with the number of embryos of any grade (p>0.05). Neither ROS levels in serum nor in FF are associated with the quality of embryos produced following IVF. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Canovas, Sebastian; Ivanova, Elena; Romar, Raquel; García-Martínez, Soledad; Soriano-Úbeda, Cristina; García-Vázquez, Francisco A; Saadeh, Heba; Andrews, Simon; Kelsey, Gavin; Coy, Pilar
2017-01-01
The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT. DOI: http://dx.doi.org/10.7554/eLife.23670.001 PMID:28134613
DuRant, S E; Hopkins, W A; Hepp, G R
2011-01-01
Recent research in birds has demonstrated that incubation temperature influences a suite of traits important for hatchling development and survival. We explored a possible mechanism for the effects on hatchling quality by determining whether incubation temperature influences embryonic energy expenditure of wood ducks (Aix sponsa). Because avian embryos are ectothermic, we hypothesized that eggs incubated at higher temperatures would have greater energy expenditure at any given day of incubation. However, because eggs incubated at lower temperatures take longer to hatch than embryos incubated at higher temperatures, we hypothesized that the former would expend more energy during incubation. We incubated eggs at three temperatures (35.0°, 35.9°, and 37.0°C) that fall within the range of temperatures of naturally incubated wood duck nests. We then measured the respiration of embryos every 3 d during incubation, immediately after ducks externally pipped, and immediately after hatching. As predicted, embryos incubated at the highest temperature had the highest metabolic rates on most days of incubation, and they exhibited faster rates of development. Yet, because of greater energy expended during the hatching process, embryos incubated at the lowest temperature expended 20%-37% more energy during incubation than did embryos incubated at the higher temperatures. Slower developmental rates and greater embryonic energy expenditure of embryos incubated at the lowest temperature could contribute to their poor physiological performance as ducklings compared with ducklings that hatch from eggs incubated at higher temperatures.
Biopsy of embryos produced by in vitro fertilization affects development in C57BL/6 mouse strain
Sugawara, Atsushi; Ward, Monika A.
2012-01-01
Preimplantation genetic diagnosis (PGD) is considered highly successful in respect to its accuracy in detecting genetic anomalies but the effects of embryo biopsy on embryonic/fetal growth and development are less known, particularly in conjunction with in vitro fertilization (IVF). Here, we compared biopsied (B) and non-biopsied (NB) mouse embryos for their developmental competence. Embryos C57BL/6 (B6) and B6D2F2 (F2) generated by IVF were subjected to single blastomere biopsy at the 4-cell stage, and were either cultured for 120 h and subjected to differential inner cell mass (ICM) and trophoblast (T) staining, or were transferred into the uterine tubes of surrogate mothers after 72 h of culture, to examine their pre- and post-implantation development, respectively. Non-biopsied embryos from the same IVF cohorts served as controls. Embryo biopsy negatively affected preimplantation development to blastocyst in C57BL/6 (69 vs 79%, P<0.01) but not in B6D2F1 mice (89 vs 91%, P=NS). Although B6 embryos had lower total cell number than F2 (B6: 47 and 61 vs. F1: 53 and 70; B and NB, respectively, P<0.05) there were no differences between B and NB blastocysts in %ICM (B6: 19.8 vs 19.8; F2: 20.9 vs 20.4, P=NS) and ICM:T ratio (B6: 4.7 vs 4.7; F2: 4.4 vs. 4.7) in both mouse strains. Post-implantation development to live fetuses of B embryos as compared to NB counterparts was impaired in C57BL/6 (6 vs 18%, P<0.001) but not in B6D2F1 mice (26 vs 35%, P=NS). We conclude that blastomere biopsy impairs embryonic/fetal development in mice known to be sensitive to in vitro culture and manipulations. Such mice model infertile couples with poor quality gametes seeking help in assisted reproduction technologies (ART) clinics. PMID:23174776
Velasquez, Alejandra E; Castro, Fidel O; Veraguas, Daniel; Cox, Jose F; Lara, Evelyn; Briones, Mario; Rodriguez-Alvarez, Lleretny
2016-02-01
Embryo splitting might be used to increase offspring yield and for molecular analysis of embryo competence. How splitting affects developmental potential of embryos is unknown. This research aimed to study the effect of bovine blastocyst splitting on morphological and gene expression homogeneity of demi-embryos and on embryo competence during elongation. Grade I bovine blastocyst produced in vitro were split into halves and distributed in nine groups (3 × 3 setting according to age and stage before splitting; age: days 7-9; stage: early, expanded and hatched blastocysts). Homogeneity and survival rate in vitro after splitting (12 h, days 10 and 13) and the effect of splitting on embryo development at elongation after embryo transfer (day 17) were assessed morphologically and by RT-qPCR. The genes analysed were OCT4, SOX2, NANOG, CDX2, TP1, TKDP1, EOMES, and BAX. Approximately 90% of split embryos had a well conserved defined inner cell mass (ICM), 70% of the halves had similar size with no differences in gene expression 12 h after splitting. Split embryos cultured further conserved normal and comparable morphology at day 10 of development; this situation changes at day 13 when embryo morphology and gene expression differed markedly among demi-embryos. Split and non-split blastocysts were transferred to recipient cows and were recovered at day 17. Fifty per cent of non-split embryos were larger than 100 mm (33% for split embryos). OCT4, SOX2, TP1 and EOMES levels were down-regulated in elongated embryos derived from split blastocysts. In conclusion, splitting day-8 blastocysts yields homogenous demi-embryos in terms of developmental capability and gene expression, but the initiation of the filamentous stage seems to be affected by the splitting.
Shi, Wenhao; Zhang, Silin; Zhao, Wanqiu; Xia, Xue; Wang, Min; Wang, Hui; Bai, Haiyan; Shi, Juanzi
2013-07-01
What factors does multivariate logistic regression show to be significantly associated with the likelihood of clinical pregnancy in vitrified-warmed embryo transfer (VET) cycles? Assisted hatching (AH) and if the reason to freeze embryos was to avoid the risk of ovarian hyperstimulation syndrome (OHSS) were significantly positively associated with a greater likelihood of clinical pregnancy. Single factor analysis has shown AH, number of embryos transferred and the reason of freezing for OHSS to be positively and damaged blastomere to be negatively significantly associated with the chance of clinical pregnancy after VET. It remains unclear what factors would be significant after multivariate analysis. The study was a retrospective analysis of 2313 VET cycles from 1481 patients performed between January 2008 and April 2012. A multivariate logistic regression analysis was performed to identify the factors to affect clinical pregnancy outcome of VET. There were 22 candidate variables selected based on clinical experiences and the literature. With the thresholds of α entry = α removal= 0.05 for both variable entry and variable removal, eight variables were chosen to contribute the multivariable model by the bootstrap stepwise variable selection algorithm (n = 1000). Eight variables were age at controlled ovarian hyperstimulation (COH), reason for freezing, AH, endometrial thickness, damaged blastomere, number of embryos transferred, number of good-quality embryos, and blood presence on transfer catheter. A descriptive comparison of the relative importance was accomplished by the proportion of explained variation (PEV). Among the reasons for freezing, the OHSS group showed a higher OR than the surplus embryo group when compared with other reasons for VET groups (OHSS versus Other, OR: 2.145; CI: 1.4-3.286; Surplus embryos versus Other, OR: 1.152; CI: 0.761-1.743) and high PEV (marginal 2.77%, P = 0.2911; partial 1.68%; CI of area under receptor operator characteristic curve (ROC): 0.5576-0.6000). AH also showed a high OR (OR: 2.105, CI: 1.554-2.85) and high PEV (marginal 1.97%; partial 1.02%; CI of area under ROC: 0.5344-0.5647). The number of good-quality embryos showed the highest marginal PEV and partial PEV (marginal 3.91%, partial 2.28%; CI of area under ROC: 0.5886-0.6343). This was a retrospective multivariate analysis of the data obtained in 5 years from a single IVF center. Repeated cycles in the same woman were treated as independent observations, which could introduce bias. Results are based on clinical pregnancy and not live births. Prospective analysis of a larger data set from a multicenter study based on live births is necessary to confirm the findings. Paying attention to the quality of embryos, the number of good embryos, AH and the reasons for freezing that are associated with clinical pregnancy after VET will assist the improvement of success rates.
Comparison of different cryopreservation methods for horse and donkey embryos.
Pérez-Marín, C C; Vizuete, G; Vazquez-Martinez, R; Galisteo, J J
2018-05-01
Few studies have been published about cryopreservation and embryo assessment in horses and donkeys. To evaluate the viability of embryos collected from mares and jennies that were cryopreserved by slow freezing or by vitrification. Randomised controlled experiment. Horse (n=19) and donkey (n=16) embryos (≤300 μm) were recovered on days 6.5-7.5 post-ovulation and assigned to control or cryopreservation protocols of slow freezing or vitrification. For slow freezing, 1.5 mol/L ethylene glycol (EG) was used. For vitrification, horse embryos were exposed to 1.4 mol/L glycerol, 1.4 mol/L glycerol + 3.6 mol/L EG and 3.4 mol/L glycerol + 4.6 mol/L EG, using Fibreplug or a 0.25 mL straw; donkey embryos were vitrified using Fibreplug with similar EG-glycerol solutions to above or 7.0 mol/L EG. Dead cells, apoptotic and fragmented nuclei, and cytoskeleton quality were assessed on thawed/warmed embryos. A significant decrease in embryo quality was observed after cryopreservation (P<0.05). Although the percentage of dead cells was lower (P<0.05) in control than in cryopreserved embryos, no differences were observed between freezing protocols used for horse or donkey embryos. While no differences were detected in the number of apoptotic cells in warmed horse embryos, in donkey embryos a higher incidence of apoptosis was measured after vitrification with EG-glycerol in Fibreplug (P<0.05). Vitrified horse embryos had a significantly (P<0.05) higher percentage of nonviable cells than donkey embryo. Actin cytoskeleton quality did not differ between treatments. Difficulties in obtaining a large number of embryos meant that the number of embryos per group was low. Vitrified horse and donkey embryos did not show higher susceptibility to cell damage than those preserved by slow freezing, whether using straws or Fibreplug. However, Fibreplug with EG 7 mol/L resulted in fewer nonviable and apoptotic cells in donkey embryos. Donkey embryos showed lower susceptibility to vitrification than horse embryos. THE SUMMARY IS AVAILABLE IN SPANISH - SEE SUPPORTING INFORMATION. © 2017 EVJ Ltd.
The location of “8”-shaped hatching influences inner cell mass formation in mouse blastocysts
Takahashi, Kazumasa; Goto, Mayumi; Anzai, Mibuki; Ono, Natsuki; Shirasawa, Hiromitsu; Sato, Wataru; Miura, Hiroshi; Sato, Naoki; Sato, Akira; Kumazawa, Yukiyo; Terada, Yukihiro
2017-01-01
The hatching of a blastocyst where the blastocyst portions on the inside and the outside of the zona pellucida feature a figure-of-eight shape is termed “8”-shaped hatching; this type of hatching has been reported to affect the proper presentation of the inner cell mass (ICM) in both human and mouse embryos. Here, our aim was to investigate the factors that affect ICM presentation during “8”-shaped hatching. We performed IVF by using B6D2F1 female mice and ICR male mice, and used the 104 captured blastocysts. Embryos were maintained in KSOM at 37°C in a 5% CO2, 5% O2, and 90% N2 environment, and their growth behavior was monitored individually and continuously using time-lapse cinematography. At 120 h after insemination, embryos were immunostained and examined under a confocal microscope. We used the hatching form to identify “8”-shaped hatching, and we classified the “8”-shaped-hatching blastocysts into two groups, one in which the hatching site was near the ICM center, and the other in which the hatching site was far from the ICM center. We measured each group for ICM size and the number of Oct3/4-positive cells. Of the 95 hatching or hatched embryos, 74 were “8”-shaped-hatching blastocysts, and in these embryos, the ICM was significantly wider when the hatching site was near the ICM than when the hatching site was far from the ICM (P = 0.0091). Moreover, in the “8”-shaped-hatching blastocysts in which the ICM was included in the blastocyst portion outside the zona pellucida―the portion defined as the “outside blastocyst”―after the collapse of this outside blastocyst, the ICM adhered to the trophectoderm of the outside blastocyst, opposite the hatching site. Our results indicate that in “8”-shaped-hatching blastocysts, the hatching site and the collapse of outside blastocyst affect ICM formation. Thus, the assessment of “8”-shaped hatching behaviors could yield indices for accurately evaluating embryo quality. PMID:28384351
USDA-ARS?s Scientific Manuscript database
Previous research indicates cows ovulating a small dominant follicle (<_ 12 mm) had lower pregnancy rates than cows ovulating a large follicle (> 12 mm). We hypothesized cows ovulating a small follicle would have delayed embryo development and decreased embryo quality. Objectives of this study wer...
Zhou, Xu-Ping; Hu, Xiao-Ling; Zhu, Yi-Min; Qu, Fan; Sun, Sai-Jun; Qian, Yu-Li
2011-01-01
In this study, we aimed to determine the effects of hepatitis B virus (HBV) infection on sperm quality and the outcome of assisted reproductive technology (ART). A total of 916 men (457 HBV-positive and 459 HBV-negative) seeking fertility assistance from January 2008 to December 2009 at the Women's Hospital in the School of Medicine at Zhejiang University were analysed for semen parameters. Couples in which the men were hepatitis B surface antigen (HBsAg)-seropositive were categorized as HBV-positive and included 587 in vitro fertilisation (IVF) and 325 intracytoplasmic sperm injection (ICSI) cycles from January 2004 to December 2009; negative controls were matched for female age, date of ova retrieval, ART approach used (IVF or ICSI) and randomized in a ratio of 1:1 according to the ART treatment cycles (587 for IVF and 325 for ICSI). HBV-infected men exhibited lower semen volume, lower total sperm count as well as poor sperm motility and morphology (P<0.05) when compared to control individuals. Rates of two-pronuclear (2PN) fertilisation, high-grade embryo acquisition, implantation and clinical pregnancy were also lower among HBV-positive patients compared to those of HBV-negative patients after ICSI and embryo transfer (P<0.05); IVF outcomes were similar between the two groups (P>0.05). Logistic regression analysis showed that HBV infection independently contributed to increased rates of asthenozoospermia and oligozoospermia/azoospermia (P<0.05) as well as decreased rates of implantation and clinical pregnancy in ICSI cycles (P<0.05). Our results suggest that HBV infection in men is associated with poor sperm quality and worse ICSI and embryo transfer outcomes but does not affect the outcome of IVF and embryo transfer. PMID:21399651
Assessment of sperm DNA in patients submitted the assisted reproduction technology procedures.
Tsuribe, Patrícia Miyuki; Lima Neto, João Ferreira; Golim, Marjorie de Assis; Dell'Aqua, Camila de Paula Freitas; Issa, João Paulo; Gobbo, Carlos Alberto Monte
2016-03-01
This study aimed to produce data on sperm quality while maintaining the integrity of sperm DNA samples taken from patients submitted to in vitro fertilization (IVF) procedures at our center, and determine whether increased levels of histones were associated with sperm DNA damage and decreased fertilization, cleavage, and pregnancy rates. Such findings might shed light on the physiology and outcomes of pregnancy. Semen samples from 27 patients divided into two groups were analyzed. The case group included individuals offered IVF; the control group had subjects with normal spermograms. Sperm DNA structure was assessed through phosphorylated histone H2AX analysis by flow cytometry. The patients with altered sperm parameters had more histones in sperm chromatin than the individuals with normal sperm parameters. Results indicated that increased levels of histone in sperm chromatin do not affect embryo production, but affect the cleavage rate, embryo quality, and might thus reduce pregnancy rates. The integrity of the paternal genome is of paramount importance in the initiation and maintenance of a viable pregnancy in patients treated with assisted reproduction technology procedures. Further studies on sperm diagnostic tests at a nuclear level might improve the treatment offered to infertile couples.
Time lapse imaging: is it time to incorporate this technology into routine clinical practice?
Bhide, Priya; Maheshwari, Abha; Cutting, Rachel; Seenan, Susan; Patel, Anita; Khan, Khalid; Homburg, Roy
2017-06-01
Time-lapse imaging (TLI) systems for embryo incubation, assessment and selection are a novel technology available to in vitro fertilization (IVF) clinics. However, there is uncertainty about their clinical and cost-effectiveness and insufficient good quality evidence to warrant their routine use. Despite this, enthusiastic commercial marketing and slipping clinical equipoise have led to the widespread hasty introduction of this technology into practice, often at a considerable expense to the patient. We have reviewed the published literature and aim to summarize the strengths, weaknesses, opportunities and threats of these systems. These specialized incubators provide undisturbed embryo culture conditions and, by almost continuous monitoring of embryo development, generate morphokinetic parameters to aid embryo selection. They are thus hypothesized to improve outcomes following IVF. Although literature reports improved reproductive outcomes, these outcomes are largely surrogate and there is a paucity of studies reporting live births. The use of time lapse systems may reduce early pregnancy loss, increase elective single embryo transfers and limit multiple pregnancies through better embryo selection. However, the quality of the studies and hence the evidence so far, is low to moderate quality. We recommend further research producing robust high-quality evidence for and against the use of these systems.
Ubilla, A; Valdebenito, I; Árias, M E; Risopatrón, J
2016-05-01
In vitro storage of salmonid eggs leads to aging of the cells causing a decline in quality and reducing their capacity to develop and produce embryos. The quality of salmonid embryos is assessed by morphologic analyses; however, data on the application of biomarkers to determine the cell viability and DNA integrity of embryos in these species are limited. The aim of this study was to evaluate the effect on embryo development, viability and DNA fragmentation in the embryonic cells of in vitro storage time at 4 °C of rainbow trout (Oncorhynchus mykiss) eggs. The embryos were obtained by IVF from eggs stored for 0 (control), 48, and 96 hours at 4 °C. At 72 hours after fertilization, dechorionated embryos were examined to determine percentages of developed embryos (embryos with normal cell division morphology), viability (LIVE/DEAD sperm viability kit), and DNA integrity (terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay). The percentage of developing embryos decreased (P < 0.05) with storage time of the eggs (95.10 ± 2.55; 88.14 ± 4.50; 79.99 ± 6.60 for 0, 48, and 96 hours, respectively). Similarly, cell viability decreased (P < 0.05; 96.07 ± 7.15; 80.42 ± 8.55; 77.47 ± 7.88 for 0, 48, and 96 hours, respectively), and an increase (P < 0.05) in DNA fragmentation in the embryos was observed at 96-hour storage. A positive correlation was found between cell DNA fragmentation and storage time (r = 0.8173; P < 0.0001). The results revealed that terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay technique is reliable mean to assess the state of the DNA in salmonid embryos and that in vitro eggs storage for 96h reduces embryo development and cell DNA integrity. DNA integrity evaluation constitutes a biomarker of the quality of the ova and resulting embryos so as to predict their capacity to produce good-quality embryos in salmonids, particularly under culture conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P
2013-10-01
Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The approach we are proposing may provide a novel, non-invasive, objective tool for embryo quality grading. The correlation between a high mtDNA concentration and the fragmentation rate of embryos is suggestive that fragments are mainly anuclear cytoplasmatic debris arising during cleavage. Therefore, blastomere shaping as an early event during in vitro development may play a homeostatic role and be related to embryo competence. This project was funded by Merck Serono (Grant for Fertility Innovation 2011). The sponsor had no role in study design, data collection, data analysis, data interpretation and writing of the paper. Authors declare no conflicts of interest. ClinicalTrials.gov Identifier: NCT01397136.
Sartori, R; Sartor-Bergfelt, R; Mertens, S A; Guenther, J N; Parrish, J J; Wiltbank, M C
2002-11-01
Two experiments in two seasons evaluated fertilization rate and embryonic development in dairy cattle. Experiment 1 (summer) compared lactating Holstein cows (n = 27; 97.3 +/- 4.1 d postpartum [dppl; 40.0 +/- 1.5 kg milk/d) to nulliparous heifers (n = 28; 11 to 17 mo old). Experiment 2 (winter) compared lactating cows (n = 27; 46.4 +/- 1.6 dpp; 45.9 +/- 1.4 kg milk/d) to dry cows (n = 26). Inseminations based on estrus included combined semen from four high-fertility bulls. Embryos and oocytes recovered 5 d after ovulation were evaluated for fertilization, embryo quality (1 = excellent to 5 = degenerate), nuclei/embryo, and accessory sperm. In experiment 1, 21 embryos and 17 unfertilized oocytes (UFO) were recovered from lactating cows versus 32 embryos and no UFO from heifers (55% vs. 100% fertilization). Embryos from lactating cows had inferior quality scores (3.8 +/- 0.4 vs. 2.2 +/- 0.3), fewer nuclei/embryo (19.3 +/- 3.7 vs. 36.8 +/- 3.0) but more accessory sperm (37.3 +/- 5.8 vs. 22.4 +/- 5.5/embryo) than embryos from heifers. Sperm were attached to 80% of UFO (17.8 +/- 12.1 sperm/UFO). In experiment 2, lactating cows yielded 36 embryos and 5 UFO versus 34 embryos and 4 UFO from dry cows (87.8 vs. 89.5% fertilization). Embryo quality from lactating cows was inferior to dry cows (3.1 +/- 0.3 vs. 2.2 +/- 0.3), but embryos had similar numbers of nuclei (27.2 +/- 2.7 vs. 30.6 +/- 2.1) and accessory sperm (42.0 +/- 9.4 vs. 36.5 +/- 6.3). From 53% of the flushings from lactating cows and 28% from dry cows, only nonviable embryos were collected. Thus, embryos of lactating dairy cows were detectably inferior to embryos from nonlactating females as early as 5 d after ovulation, with a surprisingly high percentage of nonviable embryos. In addition, fertilization rate was reduced only in summer, apparently due to an effect of heat stress on the oocyte.
Costa-Borges, Nuno; Bellés, Marta; Meseguer, Marcos; Galliano, Daniela; Ballesteros, Agustin; Calderón, Gloria
2016-03-01
To evaluate the efficiency of using a continuous (one-step) protocol with a single medium for the culture of human embryos in a time-lapse incubator (TLI). Prospective cohort study on sibling donor oocytes. University-affiliated in vitro fertilization (IVF) center. Embryos from 59 patients. Culture in a TLI in a single medium with or without renewal of the medium on day-3. Embryo morphology and morphokinetic parameters, clinical pregnancy, take-home baby rate, and perinatal outcomes. The blastocyst rates (68.3 vs. 66.8%) and the proportion of good-quality blastocysts (transferred plus frozen) obtained with the two-step (80.0%) protocol were statistically significantly similar to those obtained in the one-step protocol (72.2%). Similarly, morphokinetic events from early cleavage until late blastocyst stages were statistically significantly equivalent between both groups. No differences were found either in clinical pregnancy rates when comparing pure transfers performed with embryos selected from the two-step (75.0%), one-step (70.0%, respectively), and mixed (57.1%) groups. A total of 55 out of 91 embryos transferred implanted successfully (60.4%), resulting in a total of 37 newborns with a comparable birth weight mean among groups. Our findings support the idea that in a TLI with a controlled air purification system, human embryos can be successfully cultured continuously from day 0 onward in single medium with no need to renew it on day-3. This strategy does not affect embryo morphokinetics or development to term and offers more stable culture conditions for embryos as well as practical advantages and reduced costs for the IVF laboratory. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Reliability and agreement on embryo assessment: 5 years of an external quality control programme.
Martínez-Granados, Luis; Serrano, María; González-Utor, Antonio; Ortiz, Nereyda; Badajoz, Vicente; López-Regalado, María Luisa; Boada, Montserrat; Castilla, Jose A
2018-03-01
An external quality-control programme for morphology-based embryo quality assessment, incorporating a standardized embryo grading scheme, was evaluated over a period of 5 years to determine levels of inter-observer reliability and agreement between practising clinical embryologists at IVF centres and the opinions of a panel of experts. Following Guidelines for Reporting Reliability and Agreement Studies, the Gwet index and proportion of positive (Ppos) and negative agreement were calculated. For embryo morphology assessment, a substantial degree of reliability was measured between the centres and the panel of experts (Gwet index: 0.76; 95% CI 0.70 to 0.84). The agreement was higher for good- versus poor-quality embryos. When multinucleation or vacuoles were observed, low levels of reliability were obtained (Ppos: 0.56 and 0.43, respectively). In blastocysts, the characteristic that presented the largest discrepancy was that related to the inner cell mass. In decisions about the final disposition of the embryo, reliability between centre and the panel of experts was moderate (Gwet index: 0.51; 95% CI 0.41 to 0.60). In conclusion, the ability of clinical embryologists to evaluate the presence of multinucleation and vacuoles in the early cleavage embryo, and to determine the category of the inner cell mass in blastocysts, needs to be improved. Copyright © 2017 Reproductive Healthcare Ltd. All rights reserved.
Water relations in culture media influence maturation of avocado somatic embryos.
Márquez-Martín, Belén; Sesmero, Rafael; Quesada, Miguel A; Pliego-Alfaro, Fernando; Sánchez-Romero, Carolina
2011-11-15
Application of transformation and other biotechnological tools in avocado (Persea americana Mill.) is hampered by difficulties in obtaining mature somatic embryos capable of germination at an acceptable rate. In this work, we evaluated the effect of different compounds affecting medium water relations on maturation of avocado somatic embryos. Culture media were characterized with respect to gel strength, water potential and osmotic potential. Improved production of mature somatic embryos was achieved with gelling agent concentrations higher than those considered standard. The osmotic agents such as sorbitol and PEG did not have positive effects on embryo maturation. The number of w-o mature somatic embryos per culture was positively correlated with medium gel strength. Gel strength was significantly affected by gelling agent type as well as by gelling agent and PEG concentration. Medium water potential was influenced by sorbitol concentration; incorporation of PEG to a culture medium did not affect medium water potential. The highest maturation results were achieved on a medium gelled with 10 gl(-1) agar. Moreover, these somatic embryos had improved germination rates. These results corroborate the role of water restriction as a key factor controlling maturation of somatic embryos. Copyright © 2011 Elsevier GmbH. All rights reserved.
Fugel, Hans-Joerg; Connolly, Mark; Nuijten, Mark
2014-10-09
New techniques in assessing oocytes and embryo quality are currently explored to improve pregnancy and delivery rates per embryo transfer. While a better understanding of embryo quality could help optimize the existing "in vitro fertilization" (IVF) therapy schemes, it is essential to address the economic viability of such technologies in the healthcare setting. An Embryo-Dx economic model was constructed to assess the cost-effectiveness of 3 different IVF strategies from a payer's perspective; it compares Embryo-Dx with single embryo transfer (SET) to elective single embryo transfer (eSET) and to double embryo transfer (DET) treatment practices. The introduction of a new non-invasive embryo technology (Embryo-Dx) associated with a cost up to €460 is cost-effective compared to eSET and DET based on the cost per live birth. The model assumed that Embryo-Dx will improve ongoing pregnancy rate/realize an absolute improvement in live births of 9% in this case. This study shows that improved embryo diagnosis combined with SET may have the potential to reduce the cost per live birth per couple treated in IVF treatment practices. The results of this study are likely more sensitive to changes in the ongoing pregnancy rate and consequently the live birth rate than the diagnosis costs. The introduction of a validated Embryo-Dx technology will further support a move towards increased eSET procedures in IVF clinical practice and vice versa.
Zhao, H; Teng, X M; Li, Y F
2017-11-25
Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all P< 0.05]. The copy number of mtDNA and the mitochondrial membrane potential in classⅠ frozen embryo group were significantly higher than those in classⅡ frozen embryo group (both P< 0.05). Conclusion: The mtDNA copy number and the mitochondrial membrane potential of embryos of the better quality embryo are higher.
Jee, Byung Chul; Youm, Hye Won; Lee, Jae Ho; Kim, Jee Hyun; Suh, Chang Suk; Kim, Seok Hyun
2013-05-01
We performed this study to investigate the effect of ketorolac (a non-steroidal anti-inflammatory drug) administration around ovarian stimulation on in vivo and in vitro fertilization process. Sixty-four female mice (ICR) were injected with ketorolac (0, 7.5, 15 and 30 µg/d) for 3 d starting from the day of eCG treatment. In experiment 1, 41 mice were triggered by hCG and then mated; two-cell embryos were obtained and in vitro development up to blastocyst was observed. In experiment 2, 23 mice were triggered by hCG and mature oocytes were collected; in vitro fertilization rate and subsequent embryo development up to blastocyst was recorded. In experiment 1, the blastocyst-forming rates per in vivo fertilized two-cell embryo showed an inverse relationship with a dosage of ketorolac (97.6%, 64.2%, 35.4% and 25.9%). In experiment 2, degenerated oocytes were frequently observed in a dose-dependent manner (4.3%, 22.9%, 22.4% and 75.0%). Lower fertilization rates were noted in all the three ketorolac-treating groups; blastocyst-forming rate was significantly lower in 30-µg-treating group when compared with the control group. Administration of ketorolac around ovarian stimulation significantly affects the development of in vivo fertilized embryo in a dose-dependent manner. High-dose ketorolac could result in a poor oocyte quality and decreased embryo developmental competence.
Scott, Rosamund; Williams, Clare; Ehrich, Kathryn; Farsides, Bobbie
2012-01-01
This paper analyses elements of the legal process of consent to the donation of ‘spare’ embryos to research, including stem-cell research, and makes a recommendation intended to enhance the quality of that process, including on occasion by guarding against the invalidity of such consent. This is important in its own right and also so as to maximise the reproductive treatment options of couples engaged in in vitro fertilisation (IVF) treatment and to avoid possible harms to them. In Part 1, with reference to qualitative data from three UK IVF clinics, we explore the often delicate and contingent nature of what comes to be, for legal purposes, a ‘spare’ embryo. The way in which an embryo becomes ‘spare’, with its implications for the process of consent to donation to research, is not addressed in the relevant reports relating to or codes of practice governing the donation of embryos to research, which assume an unproblematic notion of the ‘spare’ embryo. Significantly, our analysis demonstrates that there is an important and previously unrecognised first stage in the donation of a ‘spare’ embryo to research, namely: consent to an embryo being ‘spare’ and so, at the same time, to its disuse in treatment. This is not explicitly covered by the Human Fertilisation and Embryology (HFE) Act 1990, as amended by the HFE Act 2008. Having identified this important initial stage in the process of consent to the donation of a ‘spare’ embryo to research in conclusion to Part 1, in Part 2 we analyse the idea of consent to an embryo's disuse in treatment on the basis that it is ‘spare’ with reference to the legal elements of consent, namely information as to nature and purpose, capacity, and voluntariness. We argue that there are in fact three related consent processes in play, of which the principal one concerns consent to an embryo's disuse in treatment. If the quality of this first consent is compromised, in turn this will impact on the quality of the consent to the donation of that ‘spare’ embryo to research, followed by the quality of consent to future cycles of assisted reproduction treatment in the event that these are needed as a result of a donation decision. The analysis overall is of central relevance to the debate as to whether, and if so when, it should be permissible to request the donation of fresh embryos for research, as opposed to those that have been frozen and, for instance, have reached the end of their statutory storage term. This has a particular bearing on the donation of embryos to stem-cell research since there is a debate as to whether fresh embryos are most useful for this. PMID:22647978
Prapas, Yannis; Petousis, Stamatios; Panagiotidis, Yannis; Gullo, Giuseppe; Kasapi, Lia; Papadeothodorou, Achilleas; Prapas, Nikos
2012-06-01
To evaluate whether intrauterine injection of embryo culture supernatant before embryo transfer has any impact on pregnancy and implantation rates. A total of 400 cycles, of which 200 IVF/ICSI and 200 oocyte donor (OD), were randomly assigned to have their uterine cavity injected (group I) or not (group II). Primary endpoints to be studied were pregnancy and implantation rates. Clinical pregnancy rate per transfer (47.87%, 90/188 versus 48.45%, 94/194) based on transvaginal scan findings at 7 weeks of gestation and implantation rate (25.6% versus 26.5%) were similar in the two groups. The day of embryo transfer, day 3 or day 5, did not affect the final outcome. Injection of embryo culture supernatant into the uterine cavity, 30 min before the embryo transfer on either day 3 or 5, neither improves nor adversely affects the pregnancy rate in IVF/ICSI or oocyte donation cycles. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Derivation of a water quality guideline for aluminium in marine waters.
Golding, Lisa A; Angel, Brad M; Batley, Graeme E; Apte, Simon C; Krassoi, Rick; Doyle, Chris J
2015-01-01
Metal risk assessment of industrialized harbors and coastal marine waters requires the application of robust water quality guidelines to determine the likelihood of biological impacts. Currently there is no such guideline available for aluminium in marine waters. A water quality guideline of 24 µg total Al/L has been developed for aluminium in marine waters based on chronic 10% inhibition or effect concentrations (IC10 or EC10) and no-observed-effect concentrations (NOECs) from 11 species (2 literature values and 9 species tested including temperate and tropical species) representing 6 taxonomic groups. The 3 most sensitive species tested were a diatom Ceratoneis closterium (formerly Nitzschia closterium; IC10 = 18 µg Al/L, 72-h growth rate inhibition) < mussel Mytilus edulis plannulatus (EC10 = 250 µg Al/L, 72-h embryo development) < oyster Saccostrea echinata (EC10 = 410 µg Al/L, 48-h embryo development). Toxicity to these species was the result of the dissolved aluminium forms of aluminate (Al(OH4 (-) ) and aluminium hydroxide (Al(OH)3 (0) ) although both dissolved, and particulate aluminium contributed to toxicity in the diatom Minutocellus polymorphus and green alga Dunaliella tertiolecta. In contrast, aluminium toxicity to the green flagellate alga Tetraselmis sp. was the result of particulate aluminium only. Four species, a brown macroalga (Hormosira banksii), sea urchin embryo (Heliocidaris tuberculata), and 2 juvenile fish species (Lates calcarifer and Acanthochromis polyacanthus), were not adversely affected at the highest test concentration used. © 2014 SETAC.
Oxidative stress and its implications in female infertility - a clinician's perspective.
Agarwal, Ashok; Gupta, Sajal; Sharma, Rakesh
2005-11-01
Reactive oxygen species (ROS) have a role in the modulation of gamete quality and gamete interaction. Generation of ROS is inherent in spermatozoa and contaminating leukocytes. ROS influence spermatozoa, oocytes, embryos and their environment. Oxidative stress (OS) mediates peroxidative damage to the sperm membrane and induces nuclear DNA damage. ROS can modulate the fertilizing capabilities of the spermatozoa. There is extensive literature on OS and its role in male infertility and sperm DNA damage and its effects on assisted reproductive techniques. Evidence is accumulating on the role of ROS in female reproduction. Many animal and human studies have elucidated a role for ROS in oocyte development, maturation, follicular atresia, corpus luteum function and luteolysis. OS-mediated precipitation of pathologies in the female reproductive tract is similar to those involved in male infertility. OS influences the oocyte and embryo quality and thus the fertilization rates. ROS appears to play a significant role in the modulation of gamete interaction and also for successful fertilization to take place. ROS in culture media may impact post-fertilization development, i.e. cleavage rate, blastocyst yield and quality (indicators of assisted reproduction outcomes). OS is reported to affect both natural and assisted fertility. Antioxidant strategies should be able to intercept both extracellular and intracellular ROS. This review discusses the sources of ROS in media used in IVF-embryo transfer and strategies to overcome OS in oocyte in-vitro maturation, in-vitro culture and sperm preparation techniques.
Ström, Susanne; Rodriguez-Wallberg, Kenny; Holm, Frida; Bergström, Rosita; Eklund, Linda; Strömberg, Anne-Marie; Hovatta, Outi
2010-01-01
Background The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. Methods We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. Results Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. Conclusion Even very poor quality embryos with few cells in the ICM can give origin to hESC lines. PMID:21217828
Time-lapse systems for embryo incubation and assessment in assisted reproduction.
Armstrong, Sarah; Bhide, Priya; Jordan, Vanessa; Pacey, Allan; Farquhar, Cindy
2018-05-25
Embryo incubation and assessment is a vital step in assisted reproductive technology (ART). Traditionally, embryo assessment has been achieved by removing embryos from a conventional incubator daily for quality assessment by an embryologist, under a light microscope. Over recent years time-lapse systems have been developed which can take digital images of embryos at frequent time intervals. This allows embryologists, with or without the assistance of embryo selection software, to assess the quality of the embryos without physically removing them from the incubator.The potential advantages of a time-lapse system (TLS) include the ability to maintain a stable culture environment, therefore limiting the exposure of embryos to changes in gas composition, temperature and movement. A TLS has the potential advantage of improving embryo selection for ART treatment by utilising additional information gained through continuously monitoring embryo development. Use of a TLS often adds significant extra cost onto an in vitro fertilisation (IVF) cycle. To determine the effect of a TLS compared to conventional embryo incubation and assessment on clinical outcomes in couples undergoing ART. We used standard methodology recommended by Cochrane. We searched the Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase, CINAHL and two trials registers on 2 August 2017. We included randomised controlled trials (RCTs) in the following comparisons: comparing a TLS, with or without embryo selection software, versus conventional incubation with morphological assessment; and TLS with embryo selection software versus TLS without embryo selection software among couples undergoing ART. We used standard methodological procedures recommended by Cochrane. The primary review outcomes were live birth, miscarriage and stillbirth. Secondary outcomes were clinical pregnancy and cumulative clinical pregnancy. We reported quality of the evidence for important outcomes using GRADE methodology. We made the following comparisons.TLS with conventional morphological assessment of still TLS images versus conventional incubation and assessmentTLS utilising embryo selection software versus TLS with conventional morphological assessment of still TLS images TLS utilising embryo selection software versus conventional incubation and assessment MAIN RESULTS: We included eight RCTs (N = 2303 women). The quality of the evidence ranged from very low to moderate. The main limitations were imprecision and risk of bias associated with lack of blinding of participants and researchers, and indirectness secondary to significant heterogeneity between interventions in some studies. There were no data on cumulative clinical pregnancy.TLS with conventional morphological assessment of still TLS images versus conventional incubation and assessmentThere is no evidence of a difference between the interventions in terms of live birth rates (odds ratio (OR) 0.73, 95% CI 0.47 to 1.13, 2 RCTs, N = 440, I 2 = 11% , moderate-quality evidence) and may also be no evidence of difference in miscarriage rates (OR 2.25, 95% CI 0.84 to 6.02, 2 RCTs, N = 440, I 2 = 44%, low-quality evidence). The evidence suggests that if the live birth rate associated with conventional incubation and assessment is 33%, the rate with use of TLS with conventional morphological assessment of still TLS images is between 19% and 36%; and that if the miscarriage rate with conventional incubation is 3%, the rate associated with conventional morphological assessment of still TLS images would be between 3% and 18%. There is no evidence of a difference between the interventions in the stillbirth rate (OR 1.00, 95% CI 0.13 to 7.49, 1 RCT, N = 76, low-quality evidence). There is no evidence of a difference between the interventions in clinical pregnancy rates (OR 0.88, 95% CI 0.58 to 1.33, 3 RCTs, N = 489, I 2 = 0%, moderate-quality evidence).TLS utilising embryo selection software versus TLS with conventional morphological assessment of still TLS imagesNo data were available on live birth or stillbirth. We are uncertain whether TLS utilising embryo selection software influences miscarriage rates (OR 1.39, 95% CI 0.64 to 3.01, 2 RCTs, N = 463, I 2 = 0%, very low-quality evidence) and there may be no difference in clinical pregnancy rates (OR 0.97, 95% CI 0.67 to 1.42, 2 RCTs, N = 463, I 2 = 0%, low-quality evidence). The evidence suggests that if the miscarriage rate associated with assessment of still TLS images is 5%, the rate with embryo selection software would be between 3% and 14%.TLS utilising embryo selection software versus conventional incubation and assessmentThere is no evidence of a difference between TLS utilising embryo selection software and conventional incubation improving live birth rates (OR 1.21, 95% CI 0.96 to 1.54, 2 RCTs, N = 1017, I 2 = 0%, very low-quality evidence). We are uncertain whether TLS influences miscarriage rates (OR 0.73, 95% CI 0.49 to 1.08, 3 RCTs, N = 1351, I 2 = 0%, very low-quality evidence). The evidence suggests that if the live birth rate associated with no TLS is 38%, the rate with use of conventional incubation would be between 36% and 58%, and that if miscarriage rate with conventional incubation is 9%, the rate associated with TLS would be between 4% and 10%. No data on stillbirths were available. It was uncertain whether the intervention influenced clinical pregnancy rates (OR 1.17, 95% CI 0.94 to 1.45, 3 RCTs, N = 1351, I 2 = 42%, very low-quality evidence). There is insufficient evidence of differences in live birth, miscarriage, stillbirth or clinical pregnancy to choose between TLS, with or without embryo selection software, and conventional incubation. The studies were at high risk of bias for randomisation and allocation concealment, the result should be interpreted with extreme caution.
Addition of sphingosine-1-phosphate to human oocyte culture medium decreases embryo fragmentation.
Hannoun, Antoine; Ghaziri, Ghina; Abu Musa, Antoine; Zreik, Tony G; Hajameh, Fatiha; Awwad, Johnny
2010-03-01
Apoptosis is implicated in the fragmentation of preimplantation mammalian embryos, yet the extent of this association remains controversial. The aim of this study was to assess the ability of sphingosine-1-phosphate (S1P), a known anti-apoptotic substance, to reduce the fragmentation rate of human preimplantation embryos when added to their culture microenvironment. Mature human oocytes were inseminated using intracytoplasmic sperm injection, incubated for 3 days and evaluated for embryo quality and fragmentation by the same embryologist. Oocytes in the study group were manipulated and cultured in culture medium supplemented with S1P to a 20 micromol/l concentration. A total of 46 patients donated 177 mature oocytes for the study group and 546 oocytes for the control group. The fertilization rate was significantly lower in the S1P-supplemented group (52.4% versus 67.3%; P=0.002) and the proportion of grade I embryos with less than 15% fragmentation was significantly higher in the same group (79.5% versus 53.9%; P<0.0001). Sphingosine-1-phosphate added to the culture medium of human preimplantation embryos is associated with a significantly lower fragmentation rate and hence better quality embryos. The clinical significance of these findings on reproductive outcome remains highly speculative awaiting further studies to translate this improvement in embryo quality into better pregnancy rates. Copyright 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
[Single embryo transfer: is Scandinavian model valuable in France?].
Belaisch-Allart, J; Mayenga, J-M; Grefenstette, I; Chouraqui, A; Serkine, A-M; Abirached, F; Kulski, O
2008-11-01
The aim of infertility treatment is clearly to obtain one healthy baby. If the transfer of a top quality single embryo could provide a baby to all the patients, there would be no more discussion. The problem is that, nowadays, French pregnancy rates after fresh embryo or frozen embryo transfer are not the same as in Nordic countries. All studies show that in unselected patients, single embryo transfer decreases twin pregnancy rate but decreases pregnancy rate too. Pregnancy rate is dependent on embryo quality, women's age, rank of IVF attempt (clear data) but also on body mass index, ovarian reserve, smoking habits. All these data cannot be taken into account in a law. That is the reason why a flexible policy of transfer adapted to each couple is preferable. Each couple and each IVF team are unique and must keep the freedom to choose how many embryos must be transferred to obtain healthy babies, and to avoid twin pregnancies but without demonizing them.
Huang, Bo; Li, Zhou; Ren, Xinling; Ai, Jihui; Zhu, Lixia; Jin, Lei
2017-06-01
The activity of free radicals in follicular fluid was related to ovarian responsiveness, in vitro fertilization (IVF), and embryo transfer success rate. However, studies analyzing the relationship between the free radical scavenging capacity and embryo quality of infertile women with polycystic ovarian syndrome (PCOS) were lacking. The aim of this study was to evaluate the relationship between the free radical scavenging window of women with PCOS and their embryo quality. The free radical scavenging capacity of follicular fluid from women with PCOS was determined by a,a-diphenyl-b-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) assay, superoxide radical, and reactive oxygen species (ROS) assay. In the DPPH and ROS assays, the follicular fluid from grades I and II embryos was significantly higher than the follicular fluid from grades III and IVembryos. The lower control limit of DPPH radical scavenging capacity and upper control limit of ROS level were 13.2% and 109.0 cps, respectively. The calculated lower control limit and upper control limit were further confirmed in the follicular fluid of embryos of all grades. These cut-off values of free radical scavenging activity of follicular fluid could assist embryologists in choosing the development of embryos in PCOS patients undergoing IVF.
External quality control for embryology laboratories.
Castilla, Jose Antonio; Ruiz de Assín, Rafael; Gonzalvo, Maria Carmen; Clavero, Ana; Ramírez, Juan Pablo; Vergara, Francisco; Martínez, Luis
2010-01-01
Participation in external quality control (EQC) programmes is recommended by various scientific societies. Results from an EQC programme for embryology laboratories are presented. This 5-year programme consisted of the annual delivery of (i) materials to test toxicity and (ii) a DVD/CD-ROM with images of zygotes and embryos on days 2 and 3, on the basis of which the participants were asked to judge the embryo quality and to take a clinical decision. A high degree of agreement was considered achieved when over 75% of the laboratories produced similar classifications. With respect to the materials analysed, the specificity was 68% and the sensitivity was 83%. Concerning embryo classification, the proportion of embryos on which a high degree of agreement was achieved increased during this period from 35% to 55%. No improvement was observed in the degree of agreement on the clinical decision to be taken. Day-3 embryos produced a higher degree of agreement (58%) than did day-2 embryos (32%) (P<0.05). Participation in EQC increased the degree of inter-laboratory agreement on embryo classification, but not the corresponding agreement on clinical decision taking. It is necessary to introduce measures aimed at standardizing decision taking procedures in embryology laboratories. Copyright (c) 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe
2016-09-01
The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes from domestic animals tested in our study, the feline ooplasm might be the most appropriate recipient to partially allow preimplantation embryo development of iSCNT equine embryos. Copyright © 2016 Elsevier Inc. All rights reserved.
The Effects of ISM1 Medium on Embryo Quality and Outcomes of IVF/ICSI Cycles.
Hassani, Fatemeh; Eftekhari-Yazdi, Poopak; Karimian, Leila; Rezazadeh Valojerdi, Mojtaba; Movaghar, Bahar; Fazel, Mohammad; Fouladi, Hamid Reza; Shabani, Fatemeh; Johansson, Lars
2013-07-01
The aim of this study is to investigate the effect of ISM1 culture medium on embryo development, quality and outcomes of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles. This study compares culture medium commonly used in the laboratory setting for oocyte recovery and embryo development with a medium from MediCult. We have assessed the effects of these media on embryo development and newborn characteristics. In this prospective randomized study, fertilized oocytes from patients were randomly assigned to culture in ISM1 (MediCult, cycles: n=293) or routine lab culture medium (G-1TM v5; Vitrolife, cycles: n=290) according to the daily media schedule for oocyte retrieval. IVF or ICSI and embryo transfer were performed with either MediCult media or routine lab media. Embryo quality on days 2/3, cleavage, pregnancy and implantation rates, baby take home rate (BTHR), in addition to the weight and length of newborns were compared between groups. There were similar cleavage rates for ISM1 (86%) vs. G-1TM v5 (88%). We observed a significantly higher percentage of excellent embryos in ISM1 (42.7%) compared to G-1TM v5 (39%, p<0.05). Babies born after culture in ISM1 had both higher birth weight (3.03 kg) and length (48.8 cm) compared to G-1TM v5 babies that had a birth weight of 2.66 kg and a length of 46.0 cm (p<0.001 for both). This study suggests that ISM1 is a more effective culture medium in generating higher quality embryos, which may be reflected in the characteristics of babies at birth.
The Effects of ISM1 Medium on Embryo Quality and Outcomes of IVF/ICSI Cycles
Hassani, Fatemeh; Eftekhari-Yazdi, Poopak; Karimian, Leila; Rezazadeh Valojerdi, Mojtaba; Movaghar, Bahar; Fazel, Mohammad; Fouladi, Hamid Reza; Shabani, Fatemeh; Johansson, Lars
2013-01-01
Background: The aim of this study is to investigate the effect of ISM1 culture medium on embryo development, quality and outcomes of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles. This study compares culture medium commonly used in the laboratory setting for oocyte recovery and embryo development with a medium from MediCult. We have assessed the effects of these media on embryo development and newborn characteristics. Materials and Methods: In this prospective randomized study, fertilized oocytes from patients were randomly assigned to culture in ISM1 (MediCult, cycles: n=293) or routine lab culture medium (G-1TM v5; Vitrolife, cycles: n=290) according to the daily media schedule for oocyte retrieval. IVF or ICSI and embryo transfer were performed with either MediCult media or routine lab media. Embryo quality on days 2/3, cleavage, pregnancy and implantation rates, baby take home rate (BTHR), in addition to the weight and length of newborns were compared between groups. Results: There were similar cleavage rates for ISM1 (86%) vs. G-1TM v5 (88%). We observed a significantly higher percentage of excellent embryos in ISM1 (42.7%) compared to G-1TM v5 (39%, p<0.05). Babies born after culture in ISM1 had both higher birth weight (3.03 kg) and length (48.8 cm) compared to G-1TM v5 babies that had a birth weight of 2.66 kg and a length of 46.0 cm (p<0.001 for both). Conclusion: This study suggests that ISM1 is a more effective culture medium in generating higher quality embryos, which may be reflected in the characteristics of babies at birth. PMID:24520472
Niu, Zhi-Hong; Shi, Hui-Juan; Zhang, Hui-Qin; Zhang, Ai-Jun; Sun, Yi-Juan; Feng, Yun
2011-11-01
The aim of this study was to investigate whether the sperm chromatin structure assay (SCSA) results after swim-up are related to fertilization rates, embryo quality and pregnancy rates following in vitro fertilization (IVF). A total of 223 couples undergoing IVF in our hospital from October 2008 to September 2009 were included in this study. Data on the IVF process and sperm chromatin structure assay results were collected. Fertilization rate, embryo quality and IVF success rates of different DNA fragmentation index (DFI) subgroups and high DNA stainability (HDS) subgroups were compared. There were no significant differences in fertilization rate, clinical pregnancy or delivery rates between the DFI and HDS subgroups. However, the group with abnormal DFI had a lower good embryo rate. So, we concluded that the SCSA variables, either DFI or HDS after swim-up preparation, were not valuable in predicting fertilization failure or pregnancy rate, but an abnormal DFI meant a lower good embryo rate following IVF.
Mikkola, M; Taponen, J
2017-01-01
This study investigated the effect of sex-sorted semen compared with conventional semen on the outcome of embryo recovery, placing special emphasis on the quality, and developmental stage of embryos. Data were analyzed for 443 embryo collections with sex-sorted semen (SEX group) and 1528 with conventional semen (CONV group) in superovulated dairy heifers and cows. The insemination protocol for conventional semen included two inseminations, comprising a total dose of 30 million sperm passing into the uterine body. For sex-sorted semen, two (30%) to three (70%) deep uterine inseminations were performed, the total dose ranging from eight to 12 million sperm. The data were analyzed separately for heifers and cows. The total number of recovered structures was similar among the groups. The number of viable embryos decreased in the SEX groups compared with the CONV (with 1.4 and 3.2 fewer embryos in heifers and cows, correspondingly, P < 0.001), and correspondingly the proportions of unfertilized ova and degenerated embryos increased in the SEX groups (P < 0.001). The proportion of unsuccessful collections, yielding no transferable embryos, increased in the SEX groups for both heifers (from 7.2% to 11.2%, P = 0.025) and cows (from 9.0% to 20.7%, P < 0.001). Regarding the quality of viable embryos, the quality grades were superior in the CONV group compared with the SEX group for heifers (P < 0.001) and cows (P < 0.001). The proportion of grade 1 embryos decreased by 6.5 percentage points in heifers and 11.9 percentage points in cows when sex-sorted semen was used. Correspondingly, the proportions of grade 2 and 3 embryos increased in heifers and cows when sexed semen was used. The mean developmental stages of embryo collections were numerically slightly lower in the SEX group. In heifers, the delay in developmental stage was statistically significant (P = 0.001), but in cows, there was only a tendency toward that (P = 0.067). In conclusion, sex-sorted sperm decreased the transferable embryo yield and increased the risk of a recovery yielding no transferable embryos. Furthermore, use of sex-sorted semen decreased the proportion of grade 1 embryos. In addition, it also seemed to delay embryonic development, although the delay in embryonic development was minimal and its biological relevance remains undefined. Despite the compromised embryo production, taken into account the optimization of recipient resources, the use of sex-sorted semen is advantageous, especially in superovulated heifers, which are of most importance in the modern breeding strategies using genomic selection. Copyright © 2016 Elsevier Inc. All rights reserved.
How do laboratory embryo transfer techniques affect IVF outcomes? A review of current literature.
Sigalos, George; Triantafyllidou, Olga; Vlahos, Nikos
2017-04-01
Over the last few years, many studies have focused on embryo selection methods, whereas little attention has been given to the standardization of the procedure of embryo transfer. In this review, several parameters of the embryo transfer procedure are examined, such as the: (i) culture medium volume and loading technique; (ii) syringe and catheters used for embryo transfer; (iii) viscosity and composition of the embryo transfer medium; (iv) environment of embryo culture; (v) timing of embryo transfer; (vi) and standardization of the embryo transfer techniques. The aim of this manuscript is to review these factors and compare the existing embryo transfer techniques and highlight the need for better embryo transfer standardization.
Baruselli, P S; Sá Filho, M F; Ferreira, R M; Sales, J N S; Gimenes, L U; Vieira, L M; Mendanha, M F; Bó, G A
2012-08-01
Over the last several decades, a number of therapies have been developed that manipulate ovarian follicle growth to improve oocyte quality and conception rates in cattle. Various strategies have been proposed to improve the responses to reproductive biotechnologies following timed artificial insemination (TAI), superovulation (SOV) or ovum pickup (OPU) programmes. During TAI protocols, final follicular growth and size of the ovulatory follicle are key factors that may significantly influence oocyte quality, ovulation, the uterine environment and consequently pregnancy outcomes. Progesterone concentrations during SOV protocols influence follicular growth, oocyte quality and embryo quality; therefore, several adjustments to SOV protocols have been proposed depending on the animal category and breed. In addition, the success of in vitro embryo production is directly related to the number and quality of cumulus oocyte complexes harvested by OPU. Control of follicle development has a significant impact on the OPU outcome. This article discusses a number of key points related to the manipulation of ovarian follicular growth to maximize oocyte quality and improve conception rates following TAI and embryo transfer of in vivo- and in vitro-derived embryos in cattle. © 2012 Blackwell Verlag GmbH.
Falagario, Maddalena; Trerotoli, Paolo; Chincoli, Annarosa; Cobuzzi, Isabella; Vacca, Margherita P; Falagario, Doriana; Nardelli, Claudia; Depalo, Raffaella
2017-02-01
To evaluate, in patients stimulated with recombinant FSH and GnRH antagonists, whether triggering the final maturation of oocytes affects IVF outcomes. Five hundred and six IVF procedures were divided into three groups according to the timing of hCG administration: when at least 2 follicles reached the diameter of 17 mm, at least 2 follicles reached 18 mm and at least 2 follicles reached 20 mm. The main outcome was the number of mature oocyte that was the dependent variable of a multivariate model whose independents were, age, AFC, hCG timing, E2 levels at hCG day, number of follicles in different categories of dimension. Secondary endpoints were to compare fertilization, implantation and pregnancy rates in a multilevel multivariate model whose covariates were age, BMI, AFC, embryo quality and cause of infertility. Timing did not result a statistically significant factor influencing the number of oocytes collected, which was influenced by age, AFC, number of follicles between 12.1 and 15.9 mm and E2 levels. Implantation rate and pregnancy rate appear to be affected only by embryo quality. The number of oocytes collected and the probability of pregnancy are not associated with the time of hCG administration.
Lymberopoulos, A G; Amiridis, G S; Kühholzer, B; Besenfelder, U; Christodoulou, V; Vainas, E; Brem, G
2001-06-01
Forty superovulated dairy ewes of the Greek Chios breed were used in an experiment to evaluate the efficiency of laparoscopic intrauterine insemination on fertilization and embryo recovery rates as well as embryo quality. Estrus was synchronized by intravaginal progestagen impregnated sponges and superovulation was induced by administration of 8.8 mg o-FSH i.m. following a standard 8 dose protocol. A small volume (0.3 mL) of diluted fresh ram semen was deposited in each uterine horn 24 to 28 h after onset of the estrus by a laparoscopic technique. The animals were allocated randomly into two groups (Group A and B) of 20 animals each. In Group A, embryos were recovered 18 to 24 h after the intrauterine insemination and in Group B on Day 6. The average number of corpora lutea was 12.8 +/- 1.2 and 11.5 +/- 1.1 (+/- SEM); the overall embryo recovery was 66.4% and 57% and the percentage of recovered fertilized ova was 81% and 82.8% in Groups A and B, respectively. More fertilized ova were collected per ewe from Group A (P < or = 0.1). Results indicated that in Chios breed, superovulation using homologous FSH combined with laparoscopic AI leads to good ovarian response with satisfactory results in fertilization, embryo recovery and quality of embryos. This could lead to improved and more efficient methods for obtaining large numbers of high quality oocytes and embryos for embryo transfer programs which could contribute to genetic improvement and increase of the population size.
Analysis of compaction initiation in human embryos by using time-lapse cinematography.
Iwata, Kyoko; Yumoto, Keitaro; Sugishima, Minako; Mizoguchi, Chizuru; Kai, Yoshiteru; Iba, Yumiko; Mio, Yasuyuki
2014-04-01
To analyze the initiation of compaction in human embryos in vitro by using time-lapse cinematography (TLC), with the goal of determining the precise timing of compaction and clarifying the morphological changes underlying the compaction process. One hundred and fifteen embryos donated by couples with no further need for embryo-transfer were used in this study. Donated embryos were thawed and processed, and then their morphological behavior during the initiation of compaction was dynamically observed via time-lapse cinematography (TLC) for 5 days. Although the initiation of compaction occurred throughout the period from the 4-cell to 16-cell stage, 99 (86.1 %) embryos initiated compaction at the 8-cell stage or later, with initiation at the 8-cell stage being most frequent (22.6 %). Of these 99 embryos, 49.5 % developed into good-quality blastocysts. In contrast, of the 16 (13.9 %) embryos that initiated compaction prior to the 8-cell stage, only 18.8 % developed into good-quality blastocysts. Embryos that initiated compaction before the 8-cell stage showed significantly higher numbers of multinucleated blastomeres, due to asynchronism in nuclear division at the third mitotic division resulting from cytokinetic failure. The initiation of compaction primarily occurs at the third mitotic division or later in human embryos. Embryos that initiate compaction before the 8-cell stage are usually associated with aberrant embryonic development (i.e., cytokinetic failure accompanied by karyokinesis).
López-Pelayo, Iratxe; Gutiérrez-Romero, Javier María; Armada, Ana Isabel Mangano; Calero-Ruiz, María Mercedes; Acevedo-Yagüe, Pablo Javier Moreno de
2018-04-26
To compare embryo quality, fertilization, implantation, miscarriage and clinical pregnancy rates for embryos cultured in two different commercial culture media until D-2 or D-3. In this retrospective study, we analyzed 189 cycles performed in 2016. Metaphase II oocytes were microinjected and allocated into single medium (SAGE 1-STEP, Origio) until transferred, frozen or discarded; or, if sequential media were used, the oocytes were cultured in G1-PLUSTM (Vitrolife) up to D-2 or D-3 and in G2-PLUSTM (Vitrolife) to transfer. On the following day, the oocytes were checked for normal fertilization and on D-2 and D-3 for morphological classification. Statistical analysis was performed using the chi-square and Mann-Whitney tests in PASW Statistics 18.0. The fertilization rates were 70.07% for single and 69.11% for sequential media (p=0.736). The mean number of embryos with high morphological quality (class A/B) was higher in the single medium than in the sequential media: D-2 [class A (190 vs. 107, p<0.001), B (133 vs. 118, p=0.018)]; D-3 [class A (40 vs. 19, p=0.048) but without differences in class B (40 vs. 49)]. Consequently, a higher number of embryos cultured in single medium were frozen: 197 (21.00%) vs. sequential: 102 (11.00%), p<0.001. No differences were found in implantation rates (30.16% vs. 25.57%, p=0.520), clinical pregnancy rates (55.88% vs. 41.05%, p=0.213), or miscarriage rates (14.29% vs. 9.52%, p=0.472). Embryo culture in single medium yields greater efficiency per cycle than in sequential media. Higher embryo quality and quantity were achieved, resulting in more frozen embryos. There were no differences in clinical pregnancy rates.
Reduced blastocyst formation in reduced culture volume.
De Munck, N; Santos-Ribeiro, S; Mateizel, I; Verheyen, G
2015-09-01
The aim of this prospective sibling oocyte study was to evaluate whether reduced culture volume improves blastocyst formation. Twenty-three patients with extended embryo culture until day 5 were selected for the study. After injection, 345 sibling oocytes were individually cultured in either 25 or 7 μl droplets of Origio cleavage medium under oil. On day 3 of development, embryos were transferred to droplets with the corresponding volume of Origio blastocyst culture medium. Fertilization and embryo quality on day 3 and day 5/6 were evaluated. No statistically significant difference (p = 0.326) in fertilization rate was observed (81.3 versus 83.0 %). There was no significant difference in terms of the number of excellent and good-quality embryos obtained on day 3 between both groups (p = 0.655). Embryo culture in 25 μl droplets led to more embryos with a higher cell number when compared to 7 μl culture (p = 0.024). On day 3, 132 and 131 embryos were considered for further culture until day 5/6. Blastulation rates were significantly higher in the 25 μl group (75.0 versus 61.6 %; p = 0.017) and significantly more day 5 embryos with excellent and good quality were found in this group (54.5 versus 40.5 %; p = 0.026). Finally, the utilization rates expressed per mature oocyte (41.4 versus 29.8 %; p = 0.043), per fertilized oocyte (50.7 versus 36.6 %; p = 0.023), and per day 3 embryo undergoing extended culture to day 5/6 (54.5 versus 39.7 %; p = 0.019) were all significantly higher in the 25 μl group. Reduced culture volume (7 μl) negatively impacts early development by reducing the cell number on day 3 and both blastocyst formation and quality.
Romek, Marek; Gajda, Barbara; Krzysztofowicz, Ewa; Kucia, Marcin; Uzarowska, Agnieszka; Smorag, Zdzislaw
2017-10-15
Although considerable progress has been made in pig embryo culture systems, the developmental competence and quality of the produced embryos are still lower than their in vivo-derived counterparts. Because hyaluronan (HA) regulates various cellular processes and possesses antioxidant properties, this glycosaminoglycan seems to be a promising supplement in culture media. However, until now, its beneficial influence on in vitro pig embryo development has been debatable. Hence, we aimed to investigate the effect of 0.25 mg/mL, 0.5 mg/mL and 1 mg/mL concentrations of HA on the developmental potential and quality of cultured porcine embryos. We found that 1 mg/mL HA supplementation significantly increased the obtained percentages of cleaved embryos to ∼95%, morulae to ∼87% and blastocysts to ∼77%. At 0.5 mg/mL and 1 mg/mL HA concentrations, we observed a significantly improved blastocyst quality, expressed as the total number of cells per blastocyst, number of cells in the inner cell mass, number of TUNEL-positive nuclei per blastocyst, the TUNEL index and the blastocyst diameter. Because the inner mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) level are important for proper embryo development, for the first time, we measured these two parameters in cultured embryos at various HA concentrations and during their development up to the expanded blastocyst stage. For blastocysts cultured with 1 mg/mL HA, the ΔΨm and ROS level were ∼1.6 and 2.7 times lower, respectively, than those of the control blastocysts. Both ΔΨm and the ROS level were increased in parallel during in vitro embryo development with and without HA, but this increase was less pronounced in the presence of HA. Hence, our quantitative data unequivocally show that supplementation of NCSU-23 culture medium with 1 mg/mL HA improves the developmental potential and quality of pig embryos. This effect results from a significant decrease in the ROS level induced by the HA-dependent ΔΨm reduction. Copyright © 2017 Elsevier Inc. All rights reserved.
Dos Santos-Neto, P C; Cuadro, F; Barrera, N; Crispo, M; Menchaca, A
2017-10-01
The objective was to evaluate pregnancy outcomes and birth rate of in vivo derived vs. in vitro produced ovine embryos submitted to different cryopreservation methods. A total of 197 in vivo and 240 in vitro produced embryos were cryopreserved either by conventional freezing, or by vitrification with Cryotop or Spatula MVD methods on Day 6 after insemination/fertilization. After thawing/warming and transfer, embryo survival rate on Day 30 of gestation was affected by the source of the embryos (in vivo 53.3%, in vitro 20.8%; P < 0.05) and by the method of cryopreservation (conventional freezing 26.5%, Cryotop 52.0%, Spatula MVD 22.2%; P < 0.05). For in vivo derived embryos, survival rate after embryo transfer was 45.6% for conventional freezing, 67.1% for Cryotop, and 40.4% for Spatula MVD. For in vitro produced embryos, survival rate was 7.3% for conventional freezing, 38.7% for Cryotop, and 11.4% for Spatula MVD. Fetal loss from Day 30 to birth showed a tendency to be greater for in vitro (15.0%) rather than for in vivo produced embryos (5.7%), and was not affected by the cryopreservation method. Gestation length, weight at birth and lamb survival rate after birth were not affected by the source of the embryo, the cryopreservation method or stage of development (average: 150.5 ± 1.8 days; 4232.8 ± 102.8 g; 85.4%; respectively). This study demonstrates that embryo survival and birth rate of both in vivo and in vitro produced ovine embryos are improved by vitrification with the minimum volume Cryotop method. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of sericin on preimplantation development of bovine embryos cultured individually.
Isobe, T; Ikebata, Y; Onitsuka, T; Wittayarat, M; Sato, Y; Taniguchi, M; Otoi, T
2012-09-01
The silk protein sericin has been identified as a potent antioxidant in mammalian cells. This study was conducted to examine the effects of sericin on preimplantation development and quality of bovine embryos cultured individually. When two-cell-stage embryos were cultured individually for 7 days in CR1aa medium supplemented with 0, 0.1, 0.5, or 1% sericin, rates of total blastocyst formation and development to expanded blastocysts from embryos cultured with 0.5% sericin were higher (P < 0.05) than those from embryos cultured with 0 or 1% sericin. When embryos were cultured individually for 7 days in the CR1aa medium supplemented with 0 or 0.5% sericin under two oxidative stress conditions (50 or 100 μm H(2)O(2)), the addition of sericin significantly improved the blastocyst formation rate of embryos exposed to 100 μm H(2)O(2). However, the protective effect of sericin was not observed in development of embryos exposed to 50 μm H(2)O(2). When embryos were exposed to 100 μm H(2)O(2) during culture, the DNA fragmentation index of total blastocysts from embryos cultured with 0.5% sericin was lower than blastocysts derived from embryos cultured without sericin (4.4 vs. 6.8%; P < 0.01). In conclusion, the addition of 0.5% sericin to in vitro culture medium improved preimplantation development and quality of bovine embryos cultured individually by preventing oxidative stress. Copyright © 2012 Elsevier Inc. All rights reserved.
Rondeau, M; Guay, P; Goff, A K; Cooke, G M
1996-01-01
The aim of this study was to compare the development and metabolic activity of cultured murine and bovine embryos in 2 standard media (HAM F-10 and RPMI) in the presence or absence of bovine uterine flushings. Murine morulae (n = 653) and day 7 bovine embryos (n = 273) were cultured for 18 h or 36 h in either HAM F-10 or RPMI in the presence or absence of bovine uterine flushings. After culture, the development, quality, and metabolic activity (glucose utilization or methionine uptake and incorporation) of embryos was assessed. It was found that HAM F-10 (without uterine flushings) was a more suitable medium than RPMI for optimal development and metabolism of murine and bovine embryos. Poor quality and development, as well as decreased metabolism, were evident after culture of murine embryos in RPMI; in contrast, this medium had no adverse effects on bovine embryos in culture. Supplementation of HAM F-10 with bovine uterine flushings improved the growth of murine embryos and the protein synthesis (as measured by an increased methionine incorporation) for both murine and bovine embryos. However, supplementation with bovine uterine flushings could not overcome deficiencies of an inappropriate medium (RPMI) for murine embryos. Supplementation of a well-defined culture medium with uterine flushings increased metabolism of embryos in culture, and thus might help to increase pregnancy rates after transfer of such embryos to recipient cows. PMID:8825988
Lian, Fang; Jiang, Xiao-Yuan
2014-08-01
To observe the effect of Kuntai Capsule (KC) on the number of retrieved oocytes, the quality of high-quality oocytes and embryos in in vitro fertilization of poor ovarian response (POR) patients. Totally 70 POR patients preparing for in vitro fertilization-embryo transfer (IVF-ET) were randomly assigned to the observation group and the control group, 35 cases in each group. KC was administered to patients in the observation group in the preparation cycle (i.e., three menstrual cycles before IVF-ET) and during the superovulation process. Those in the control group took placebo during this period. Before and after medication the improvement of Shen yin deficiency syndrome (SYDS) was observed in the two groups. The basal follicle-stimulating hormone (bFSH), luteinizing hormone (LH), estradiol (E2), anti-Mullerian hormone (AMH), the ratio of FSH to LH, and antral follicle count (AFC) were observed. Besides, the E2 level of a single ovum on the day of HCG injection, the number of retrieved oocytes, the high-quality oocyte rate, and the high-quality embryos were observed. Compared with the control group, the SYDS, decreased bFSH and LH levels, increased ACF numbers, the E2 level of a single ovum on the day of HCG injection, the number of retrieved oocytes, high-quality oocytes, and high-quality embryos were superior in the observation group (P < 0.05). There was no statistical difference in the decreased FSH/LH level (P > 0.05). E2 and AMH increased after medication of KC in the observation group, while they decreased after administration of placebos in the control group. There was statistical difference in the post-pre treatment difference of E2 and AMH between the two groups (P < 0.05). KC could increase the number of retrieved oocytes, and elevate the quality of occytes and embryos in the IVF-ET.
To QC or not to QC: the key to a consistent laboratory?
Lane, Michelle; Mitchell, Megan; Cashman, Kara S; Feil, Deanne; Wakefield, Sarah; Zander-Fox, Deirdre L
2008-01-01
A limiting factor in every embryology laboratory is its capacity to grow 'normal' embryos. In human in vitro fertilisation (IVF), there is considerable awareness that the environment of the laboratory itself can alter the quality of the embryos produced and the industry as a whole has moved towards the implementation of auditable quality management systems. Furthermore, in some countries, such as Australia, an established quality management system is mandatory for clinical IVF practice, but such systems are less frequently found in other embryology laboratories. Although the same challenges of supporting consistent and repeatable embryo development are paramount to success in all embryology laboratories, it could be argued that they are more important in a research setting where often the measured outcomes are at an intracellular or molecular level. In the present review, we have outlined the role and importance of quality control and quality assurance systems in any embryo laboratory and have highlighted examples of how simple monitoring can provide consistency and avoid the induction of artefacts, irrespective of the laboratory's purpose, function or species involved.
Factors affecting the development of somatic cell nuclear transfer embryos in Cattle.
Akagi, Satoshi; Matsukawa, Kazutsugu; Takahashi, Seiya
2014-01-01
Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has remained low, and applications have been limited. In this review, we discuss some of the factors that affect the developmental ability of somatic cell nuclear transfer embryos in cattle.
Pauli, Samuel A; Session, Donna R; Shang, Weirong; Easley, Kirk; Wieser, Friedrich; Taylor, Robert N; Pierzchalski, Keely; Napoli, Joseph L; Kane, Maureen A; Sidell, Neil
2013-09-01
Retinol (ROL) and its biologically active metabolite, all-trans retinoic acid (ATRA), are essential for a number of reproductive processes. However, there is a paucity of information regarding their roles in ovarian folliculogenesis, oocyte maturation, and early embryogenesis. The objectives of this study were to quantify and compare peripheral plasma (PP) and follicular fluid (FF) retinoid levels, including ATRA in women undergoing in vitro fertilization (IVF) and to investigate the relationship between retinoid levels and embryo quality. Retinoid levels were evaluated in PP and FF from 79 women undergoing IVF at the time of oocyte retrieval and corresponding embryo quality assessed on a daily basis after retrieval for 3 days until uterine transfer. Analysis compared the retinoid levels with day 3 embryo grades and between endometriosis versus control patients. Results demonstrated distinctive levels of retinoid metabolites and isomers in FF versus PP. There was a significantly larger percentage of high-quality grade I embryos derived from the largest versus smallest follicles. An increase in follicle size also correlated with a >50% increase in FF ROL and ATRA concentrations. Independent of follicle size, FF yielding grade I versus nongrade I embryos showed higher mean levels of ATRA but not ROL. In a nested case-control analysis, control participants had 50% higher mean levels of ATRA in their FF and PP than women with endometriosis. These findings strongly support the proposition that ATRA plays a fundamental role in oocyte development and quality, and that reduced ATRA synthesis may contribute to decreased fecundity of participants with endometriosis.
Gilbert, Rebecca S; Nunez, Brandy; Sakurai, Kumi; Fielder, Thomas; Ni, Hsiao-Tzu
2016-03-24
Growing concerns about safety of ART on human gametes, embryos, clinical outcomes and long-term health of offspring require improved methods of risk assessment to provide functionally relevant assays for quality control testing and pre-clinical studies prior to clinical implementation. The one-cell mouse embryo assay (MEA) is the most widely used for development and quality testing of human ART products; however, concerns exist due to the insensitivity/variability of this bioassay which lacks standardization and involves subjective analysis by morphology alone rather than functional analysis of the developing embryos. We hypothesized that improvements to MEA by the use of functional molecular biomarkers could enhance sensitivity and improve detection of suboptimal materials/conditions. Fresh one-cell transgenic mouse embryos with green fluorescent protein (GFP) expression driven by Pou6f1 or Cdx2 control elements were harvested and cultured to blastocysts in varied test and control conditions to compare assessment by standard morphology alone versus the added dynamic expression of GFP for screening and selection of critical raw materials and detection of suboptimal culture conditions. Transgenic mouse embryos expressing functionally relevant biomarkers of normal early embryo development can be used to monitor the developmental impact of culture conditions. This novel approach provides a superior MEA that is more meaningful and sensitive for detection of embryotoxicity than morphological assessment alone.
In vitro production of small ruminant embryos: late improvements and further research.
de Souza-Fabjan, Joanna Maria Gonçalves; Panneau, Barbara; Duffard, Nicolas; Locatelli, Yann; de Figueiredo, José Ricardo; Freitas, Vicente José de Figueirêdo; Mermillod, Pascal
2014-06-01
Beyond the potential use of in vitro production of embryos (IVP) in breeding schemes, embryos are also required for the establishment of new biotechnologies such as cloning and transgenesis. Additionally, the knowledge of oocyte and embryo physiology acquired through IVP techniques may stimulate the further development of other techniques such as marker assisted and genomic selection of preimplantation embryos, and also benefit assisted procreation in human beings. Efficient in vitro embryo production is currently a major objective for livestock industries, including small ruminants. The heterogeneity of oocytes collected from growing follicles by laparoscopic ovum pick up or in ovaries of slaughtered females, remains an enormous challenge for IVM success, and still limits the rate of embryo development. In addition, the lower quality of the IVP embryos, compared with their in vivo-derived counterparts, translates into poor cryosurvival, which restricts the wider use of this promising technology. Therefore, many studies have been reported in an attempt to determine the most suitable conditions for IVM, IVF, and in vitro development to maximize embryo production rate and quality. This review aims to present the current panorama of IVP production in small ruminants, describing important steps for its success, reporting the recent advances and also the main obstacles identified for its improvement and dissemination. Copyright © 2014 Elsevier Inc. All rights reserved.
Su, Huang; Liu, Bian-jiang; Yang, Xiao-yu; Song, Ning-hong; Yin, Chang-jun; Zhang, Wei; Liu, Jia-yin
2015-01-01
To summarize the features and treatment of male infertility induced by autosomal dominant polycystic kidney disease (ADPKD), and compare the outcomes of intracytoplasmic sperm injection (ICSI) for infertile men with ADPKD and those with congenital bilateral absence of vas deferens (CBAVD). We retrospectively analyzed 21 cases of ADPKD-induced infertility, 15 treated by ICSI (group A), and another 164 cases of strictly matched CBAVD-induced infertility (group B). We compared the two groups in the couples' age, the number of ICSI oocytes, and the rates of fertilization, transferrable embryos, good embryos, embryos implanted, clinical pregnancy, biochemical pregnancy, early abortion, singleton and twins in the first cycle. After 28 cycles of ICSI, 10 of the 15 ADPKD-induced infertility patients achieved clinical pregnancy, including 7 cases of live birth, 1 case of spontaneous abortion, and 2 cases of pregnancy maintenance. No significant differences were observed between groups A and B in the couples' age, the wives' BMI, or the numbers of ICSI oocytes and embryos transplanted (P >0.05), nor in the rates of ICSI fertilization (72.64% vs 76.17%), transferrable embryos (51.28% vs 63.24%), quality embryos (38.46% vs 49.83%), embryo implantation (17.64% vs 38.50%), abortion (0 vs 9.23%), singleton (50% vs 81.54%) and twins (50% vs 18.46%). However, the rates of clinical pregnancy (13.33% vs 42.68%, P = 0.023 <0.05) and biochemical pregnancy (13.33% vs 39.63%, P = 0.032 <0.05) were significantly lower in group A than in B. ICSI is effective in the treatment of male infertility induced by either ADPKD or CBAVD, but the ADPKD cases have a lower success rate than the CBAVD cases in an individual cycle. The affected couples should be informed of the necessity of prenatal genetic diagnosis before embryo implantation and the inevitable vertical transmission of genetic problems to the offspring.
Ipek, A; Sozcu, A
2017-10-01
This study was carried out to determine the hatching egg characteristics, embryo development and yolk absorption during incubation, hatch window, and hatchability of Pekin duck eggs of different weights. A total of 960 hatching eggs was obtained from a breeder flock 35 to 36 wk of age. The eggs were classed into 3 weight categories: "light" (L; <75 g), "medium" (M; 76 to 82 g), and "heavy" (H; >83 g). The albumen weight was the highest in the heavy eggs, whereas the yolk weight was higher in the medium and heavy eggs. Egg breaking strength was the highest with a value of 2.5 kg/cm2 in light eggs, whereas the thinnest eggshell (0.3862 mm) was observed in heavy eggs. pH of albumen and yolk was similar and ranged from 8.8 to 8.9 and 5.9 to 6.0, respectively. On d 14 of incubation, yolk sac weight was found higher in the medium and heavy eggs. Additionally, the dry matter of the embryo and yolk sac differed among the egg weight groups during the incubation period. Interestingly, on d 25 of incubation, the embryo weight was higher in the light and heavy eggs (35.2 and 36.3 g, respectively) than in the medium eggs (29.8 g). These findings showed that embryo growth was affected by yolk absorption and dry matter accumulation. The hatchability of total and fertile eggs was lower for the heavy eggs than the light and medium eggs. The chick weight was 42.8, 48.4, and 54.9 g in light, medium, and heavy eggs, respectively. A percentage of 34.2, 36, and 31.6% of chicks from light, medium, and heavy eggs, hatched between 637 and 648 h, 39.6, 36.2, and 32.9% between 649 and 660 h, 26.2, 27.8, and 35.5% between 661 and 672 h of incubation, respectively. In conclusion, hatching egg quality, embryo development and yolk absorption during incubation, hatch window, and hatchability were affected by egg weight in Pekin ducks. © 2017 Poultry Science Association Inc.
Kieslinger, Dorit C; Hao, Zhenxia; Vergouw, Carlijn G; Kostelijk, Elisabeth H; Lambalk, Cornelis B; Le Gac, Séverine
2015-03-01
To compare the development of human embryos in microfluidic devices with culture in standard microdrop dishes, both under static conditions. Prospective randomized controlled trial. In vitro fertilization laboratory. One hundred eighteen donated frozen-thawed human day-4 embryos. Random allocation of embryos that fulfilled the inclusion criteria to single-embryo culture in a microfluidics device (n = 58) or standard microdrop dish (n = 60). Blastocyst formation rate and quality after 24, 28, 48, and 72 hours of culture. The percentage of frozen-thawed day-4 embryos that developed to the blastocyst stage did not differ significantly in the standard microdrop dishes and microfluidic devices after 28 hours of culture (53.3% vs. 58.6%) or at any of the other time points. The proportion of embryos that would have been suitable for embryo transfer was comparable after 28 hours of culture in the control dishes and microfluidic devices (90.0% vs. 93.1%). Furthermore, blastocyst quality was similar in the two study groups. This study shows that a microfluidic device can successfully support human blastocyst development in vitro under static culture conditions. Future studies need to clarify whether earlier stage embryos will benefit from the culture in microfluidic devices more than the tested day-4 embryos because many important steps in the development of human embryos already take place before day 4. Further improvements of the microfluidic device will include parallel culture of single embryos, application of medium refreshment, and built-in sensors. NTR3867. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Celik, Cem; Sofuoğlu, Kenan; Selçuk, Selçuk; Asoğlu, Mehmet Reşit; Abalı, Remzi; Cetingöz, Elçin; Baykal, Bahar; Uludoğan, Mehmet
2011-01-01
Gonadotropins used in controlled ovarian stimulation have been increasing in number. Beside the recombinant preparations such as rec-FSH, rec-LH and h-hMG human-derived preparations have entered the market. We decided to compare the effects of rec-FSH and HP-hMG with GnRHa on embryo quality and pregnancy outcome in women undergoing an IVF cycle. In this study, data of 87 patients who had applied to our center from 2007 to 2008 and who had met all inclusion criteria, were analyzed. The patients underwent controlled ovarian hyperstimulation with HP-hMG, rec-FSH following down-regulation with a GnRHa in a long protocol, selected according to determined criteria and acquired embryo via IVF transfer. Of the 87 patients, 44 were stimulated with rec-FSH and 43 with HP-hMG. Distribution of infertility causes was similar between the groups. Duration of gonadotropin administration (p=0.677, Student's t-test) and the total dose of gonadotropin received (p=0.392, Student's t-test) were similar between the two groups. The fertilization rate of the rec-FSH group was significantly higher than the HP-hMG group (p=0.001, Mann-Whitney U test). No significant differences were observed between the study groups in biochemical, clinical and ongoing pregnancy parameters. The higher oocyte yield with rec-FSH does not result in higher quality embryos. LH activity in combination with FSH activity positively affected the oocyte and embryo maturation. Therefore, when we consider the clinical and ongoing pregnancy rates there is no inferiority of HP-hMG in controlled ovarian stimulation.
Çelik, Cem; Sofuoğlu, Kenan; Selçuk, Selçuk; Asoğlu, Mehmet Reşit; Abalı, Remzi; Çetingöz, Elçin; Baykal, Bahar; Uludoğan, Mehmet
2011-01-01
Objective Gonadotropins used in controlled ovarian stimulation have been increasing in number. Beside the recombinant preparations such as rec-FSH, rec-LH and h-hMG human-derived preparations have entered the market. We decided to compare the effects of rec-FSH and HP-hMG with GnRHa on embryo quality and pregnancy outcome in women undergoing an IVF cycle. Material and Methods In this study, data of 87 patients who had applied to our center from 2007 to 2008 and who had met all inclusion criteria, were analyzed. The patients underwent controlled ovarian hyperstimulation with HP-hMG, rec-FSH following down-regulation with a GnRHa in a long protocol, selected according to determined criteria and acquired embryo via IVF transfer. Results Of the 87 patients, 44 were stimulated with rec-FSH and 43 with HP-hMG. Distribution of infertility causes was similar between the groups. Duration of gonadotropin administration (p=0.677, Student’s t-test) and the total dose of gonadotropin received (p=0.392, Student’s t-test) were similar between the two groups. The fertilization rate of the rec-FSH group was significantly higher than the HP-hMG group (p=0.001, Mann-Whitney U test). No significant differences were observed between the study groups in biochemical, clinical and ongoing pregnancy parameters. Conclusion The higher oocyte yield with rec-FSH does not result in higher quality embryos. LH activity in combination with FSH activity positively affected the oocyte and embryo maturation. Therefore, when we consider the clinical and ongoing pregnancy rates there is no inferiority of HP-hMG in controlled ovarian stimulation. PMID:24591951
Rago, R; Marcucci, I; Leto, G; Caponecchia, L; Salacone, P; Bonanni, P; Fiori, C; Sorrenti, G; Sebastianelli, A
2015-01-01
The aim of the present study was to evaluate the effectiveness of the combined administration of myo-inositol and α-lipoic acid in polycystic ovary syndrome (PCOS) patients with normal body mass index (BMI), who had previously undergone intracytoplasmic sperm injection (ICSI) and received myo-inositol alone. Thirty-six of 65 normal-weight patients affected by PCOS who did not achieve pregnancy and one patient who had a spontaneous abortion were re-enrolled and given a cycle of treatment with myo-inositol and α-lipoic acid. For all female partners of the treated couples, the endocrine-metabolic and ultrasound parameters, ovarian volume, oocyte and embryo quality, and pregnancy rates were assessed before and after three months of treatment and compared with those of previous in vitro fertilization (IVF) cycle(s). After supplementation of myo-inositol with α-lipoic acid, insulin levels, BMI and ovarian volume were significantly reduced compared with myo-inositol alone. No differences were found in the fertilization and cleavage rate or in the mean number of transferred embryos between the two different treatments, whereas the number of grade 1 embryos was significantly increased, with a significant reduction in the number of grade 2 embryos treated with myo-inositol plus α-lipoic acid. Clinical pregnancy was not significantly different with a trend for a higher percentage for of myo-inositol and α-lipoic acid compared to the myo-inositol alone group. Our preliminary data suggest that the supplementation of myo-inositol and α-lipoic acid in PCOS patients undergoing an IVF cycle can help to improve their reproductive outcome and also their metabolic profiles, opening potential for their use in long-term prevention of PCOS.
Testing the embryo, testing the fetus.
Ehrich, K; Farsides, B; Williams, C; Scott, Rosamund
2007-12-01
This paper stems from an ethnographic, multidisciplinary study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the area of PGD for serious genetic disorders. We focus here on staff perceptions and experiences of working with embryos and helping women/couples to make choices that will result in selecting embryos for transfer and disposal of 'affected' embryos, compared to the termination of affected pregnancies following PND. Analysis and discussion of our data led us to consider the possible advantages of PGD and whether a gradualist account of the embryo's and fetus's moral status can account for all of these, particularly since a gradualist account concentrates on the significance of time (developmental stage) and makes no comment as to the significance of place (in-vitro, in-utero).
Factors Affecting the Development of Somatic Cell Nuclear Transfer Embryos in Cattle
AKAGI, Satoshi; MATSUKAWA, Kazutsugu; TAKAHASHI, Seiya
2014-01-01
Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has remained low, and applications have been limited. In this review, we discuss some of the factors that affect the developmental ability of somatic cell nuclear transfer embryos in cattle. PMID:25341701
Liu, Yanhe; Chapple, Vincent; Feenan, Katie; Roberts, Peter; Matson, Phillip
2015-06-01
To investigate the clinical significance of intercellular contact point (ICCP) in four-cell stage human embryos and the effectiveness of morphology and abnormal cleavage patterns in identifying embryos with low implantation potential. Retrospective cohort study. Private IVF center. A total of 223 consecutive IVF and intracytoplasmic sperm injection treatment cycles, with all resulting embryos cultured in the Embryoscope, and a subset of 207 cycles analyzed for ICCP number where good-quality four-cell embryos were available on day 2 (n = 373 IVF and n = 392 intracytoplasmic sperm injection embryos). None. Morphologic score on day 3, embryo morphokinetic parameters, incidence of abnormal biological events, and known implantation results. Of 765 good-quality four-cell embryos, 89 (11.6%) failed to achieve six ICCPs; 166 of 765 (21.7%) initially had fewer than six ICCPs but were able to establish six ICCPs before subsequent division. Embryos with fewer than six ICCPs at the end of four-cell stage had a lower implantation rate (5.0% vs. 38.5%), with lower embryology performance in both conventional and morphokinetic assessments, compared with embryos achieving six ICCPs by the end of four-cell stage. Deselecting embryos with poor morphology, direct cleavage, reverse cleavage, and fewer than six ICCPs at the four-cell stage led to a significantly improved implantation rate (33.6% vs. 22.4%). Embryos with fewer than six ICCPs at the end of the four-cell stage show compromised subsequent development and reduced implantation potential. Deselection of embryos with poor morphology and abnormal cleavage revealed via time-lapse imaging could provide the basis of a qualitative algorithm for embryo selection. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Provoost, Veerle; Pennings, Guido; De Sutter, Petra; Dhont, Marc
2012-06-01
This paper describes a recently identified conception of the cryopreserved embryo as a symbol of one's relationship (SOR). A questionnaire was sent together with the embryo disposition decision (EDD) form to patients for whom embryos were cryopreserved at the department in Ghent, Belgium. We collected data on patient characteristics, their EDD attitudes and the reasons for their willingness or unwillingness to consider each of the disposition options (donation to others for reproduction, donation for science and discarding). The SOR view was found more often in patients who were less educated and whose last treatment was less than 3 years ago. Viewing the embryo as a SOR was not linked to more difficult decision making, but to more emotionally loaded decision making. In particular, patients with this view more often reported feelings of grief. This view was also linked to the outcome of the decision making process. The conception of the embryo as a SOR is part of an affective attitude towards embryos that has an impact on patients' disposition decisions. Alongside patients' values and principles, it is important that counselors acknowledge and clarify patients' affective conceptualizations.
Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard; Callesen, Henrik
2015-06-01
Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time. In conclusion, exposure to ambient light can be harmful to embryo development, both when medium is exposed for a long period of time and, to a greater extent, when the embryo itself is exposed for >1 h. In practice, it is therefore recommended to protect both culture medium and porcine embryos against ambient light during in vitro handling in the laboratory.
Jasensky, Joshua; Swain, Jason E
2013-10-01
Embryo imaging has long been a critical tool for in vitro fertilization laboratories, aiding in morphological assessment of embryos, which remains the primary tool for embryo selection. With the recent emergence of clinically applicable real-time imaging systems to assess embryo morphokinetics, a renewed interest has emerged regarding noninvasive methods to assess gamete and embryo development as a means of inferring quality. Several studies exist that utilize novel imaging techniques to visualize or quantify intracellular components of gametes and embryos with the intent of correlating localization of organelles or molecular constitution with quality or outcome. However, the safety of these approaches varies due to the potential detrimental impact of light exposure or other variables. Along with complexity of equipment and cost, these drawbacks currently limit clinical application of these novel microscopes and imaging techniques. However, as evidenced by clinical incorporation of some real-time imaging devices as well as use of polarized microscopy, some of these imaging approaches may prove to be useful. This review summarizes the existing literature on novel imaging approaches utilized to examine gametes and embryos. Refinement of some of these imaging systems may permit clinical application and serve as a means to offer new, noninvasive selection tools to improve outcomes for various assisted reproductive technology procedures.
Arias, María Elena; Sánchez-Villalba, Esther; Delgado, Andrea; Felmer, Ricardo
2017-02-01
Sperm-mediated gene transfer (SMGT) is based on the capacity of sperm to bind exogenous DNA and transfer it into the oocyte during fertilization. In bovines, the progress of this technology has been slow due to the poor reproducibility and efficiency of the production of transgenic embryos. The aim of the present study was to evaluate the effects of different sperm transfection systems on the quality and functional parameters of sperm. Additionally, the ability of sperm to bind and incorporate exogenous DNA was assessed. These analyses were carried out by flow cytometry and confocal fluorescence microscopy, and motility parameters were also evaluated by computer-assisted sperm analysis (CASA). Transfection was carried out using complexes of plasmid DNA with Lipofectamine, SuperFect and TurboFect for 0.5, 1, 2 or 4 h. The results showed that all of the transfection treatments promoted sperm binding and incorporation of exogenous DNA, similar to sperm incorporation of DNA alone, without affecting the viability. Nevertheless, the treatments and incubation times significantly affected the motility parameters, although no effect on the integrity of DNA or the levels of reactive oxygen species (ROS) was observed. Additionally, we observed that transfection using SuperFect and TurboFect negatively affected the acrosome integrity, and TurboFect affected the mitochondrial membrane potential of sperm. In conclusion, we demonstrated binding and incorporation of exogenous DNA by sperm after transfection and confirmed the capacity of sperm to spontaneously incorporate exogenous DNA. These findings will allow the establishment of the most appropriate method [intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF)] of generating transgenic embryos via SMGT based on the fertilization capacity of transfected sperm.
Heitmann, Ryan J; Hill, Micah J; James, Aidita N; Schimmel, Tim; Segars, James H; Csokmay, John M; Cohen, Jacques; Payson, Mark D
2015-09-01
Infertility is a common disease, which causes many couples to seek treatment with assisted reproduction techniques. Many factors contribute to successful assisted reproduction technique outcomes. One important factor is laboratory environment and air quality. Our facility had the unique opportunity to compare consecutively used, but separate assisted reproduction technique laboratories, as a result of a required move. Environmental conditions were improved by strategic engineering designs. All other aspects of the IVF laboratory, including equipment, physicians, embryologists, nursing staff and protocols, were kept constant between facilities. Air quality testing showed improved air quality at the new IVF site. Embryo implantation (32.4% versus 24.3%; P < 0.01) and live birth (39.3% versus 31.8%, P < 0.05) were significantly increased in the new facility compared with the old facility. More patients met clinical criteria and underwent mandatory single embryo transfer on day 5 leading to both a reduction in multiple gestation pregnancies and increased numbers of vitrified embryos per patient with supernumerary embryos available. Improvements in IVF laboratory conditions and air quality had profound positive effects on laboratory measures and patient outcomes. This study further strengthens the importance of the laboratory environment and air quality in the success of an IVF programme. Published by Elsevier Ltd.
Developmental competence of bovine embryos from heat-stressed ova.
Edwards, J L; Bogart, A N; Rispoli, L A; Saxton, A M; Schrick, F N
2009-02-01
Because multiple ovulation embryo transfer procedures are occasionally performed in cows experiencing heat stress, the goal of this study was to assess the developmental competence of otherwise morphologically normal embryos from heat-stressed ova. To this end, the ability of compact morulae from heat-stressed and non-heat-stressed bovine ova to undergo blastocyst development after culture at 38.5 or 41.0 degrees C was examined. It was hypothesized that heat-induced perturbations in the ooplasm carry over to increase the susceptibility of the preattachment embryo to heat stress. Initially, ova were matured at 38.5 or 41.0 degrees C. The consequences of heat stress did not include altered cleavage, but did reduce the proportion of 8- to 16-cell-stage embryos (55.3 vs. 50.6%; SEM +/- 1.9). Although proportionately fewer, compact morulae from heat-stressed ova were equivalent in quality to those from non-heat-stressed ova (2.1 and 2.1; SEM = 0.04). Culture of compact morulae from non-heat-stressed ova at 41.0 degrees C did not affect blastocyst development (71.9 and 71.5%; SEM = 3.0). Furthermore, the development of compact morulae from heat-stressed ova was similar to that of non-heat-stressed ova after culture at 38.5 degrees C (68.2 vs. 71.9 and 71.5%; SEM = 3.0). However, blastocyst development was reduced when compact morulae from heat-stressed ova were cultured at 41.0 degrees C (62.3 vs. 71.9, 71.5 and 68.2; SEM = 3.1). In summary, reduced compaction rates of heat-stressed ova explained in part why fewer develop to the blastocyst stage after fertilization. The thermolability of the few embryos that develop from otherwise developmentally challenged ova emphasizes the importance of minimizing exposure to stressor(s) during oocyte maturation.
Pollination and embryo development in Brassica rapa L. in microgravity
NASA Technical Reports Server (NTRS)
Kuang, A.; Popova, A.; Xiao, Y.; Musgrave, M. E.
2000-01-01
Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.
A simple, less invasive stripper micropipetter-based technique for day 3 embryo biopsy.
Cedillo, Luciano; Ocampo-Bárcenas, Azucena; Maldonado, Israel; Valdez-Morales, Francisco J; Camargo, Felipe; López-Bayghen, Esther
2016-01-01
Preimplantation genetic screening (PGS) is an important procedure for in vitro fertilization (IVF). A key step of PGS, blastomere removal, is abundant with many technical issues. The aim of this study was to compare a more simple procedure based on the Stipper Micropipetter, named S-biopsy, to the conventional aspiration method. On Day 3, 368 high-quality embryos (>7 cells on Day3 with <10% fragmentation) were collected from 38 women. For each patient, their embryos were equally separated between the conventional method ( n = 188) and S-biopsy method ( n = 180). The conventional method was performed using a standardized protocol. For the S-biopsy method, a laser was used to remove a significantly smaller portion of the zona pellucida. Afterwards, the complete embryo was aspirated with a Stripper Micropipetter, forcing the removal of the blastomere. Selected blastomeres went to PGS using CGH microarrays. Embryo integrity and blastocyst formation were assessed on Day 5. Differences between groups were assessed by either the Mann-Whitney test or Fisher Exact test. Both methods resulted in the removal of only one blastomere. The S-biopsy and the conventional method did not differ in terms of affecting embryo integrity (95.0% vs. 95.7%) or blastocyst formation (72.7% vs. 70.7%). PGS analysis indicated that aneuploidy rate were similar between the two methods (63.1% vs. 65.2%). However, the time required to perform the S-biopsy method (179.2 ± 17.5 s) was significantly shorter (5-fold) than the conventional method. The S-biopsy method is comparable to the conventional method that is used to remove a blastomere for PGS, but requires less time. Furthermore, due to the simplicity of the S-biopsy technique, this method is more ideal for IVF laboratories.
Xella, Susanna; Marsella, Tiziana; Tagliasacchi, Daniela; Giulini, Simone; La Marca, Antonio; Tirelli, Alessandra; Volpe, Annibale
2010-04-01
To compare the outcome of two different culture media marketed by the MediCult AS Company (Jyllinge, Denmark)-Universal IVF Medium and ISM1 Medium culture-which, in addition to glucose, pyruvate, and energy-providing components, also contain amino acids, nucleotides, vitamins, and cholesterol. Laboratory and retrospective clinical study. University teaching hospital. A total of 726 patients, undergoing IVF-intracytoplasmic sperm injection procedure, comparable in mean age range, oocyte retrieval, and infertility indication, were included in the study. Laboratory quality and standard procedures were maintained unaffected. Oocyte retrieval, different embryo culture media. Embryo quality, ongoing pregnancy, and implantation rate. The frequency of good-quality embryos (79% vs. 74%) and the percentages of ongoing pregnancy (27.5% vs. 18%) and implantation rate (15% vs. 10%) were significantly higher in the group treated with ISM1 Medium rather than Universal IVF Medium. ISM1 Medium culture seems to improve the performance of embryonic growth and development, as well as increasing the percentage of pregnancy. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Yahav, S; Brake, J
2014-01-01
Bird embryogenesis takes place in a relatively protected environment that can be manipulated especially well in domestic fowl (chickens) where incubation has long been a commercial process. The embryonic developmental process has been shown to begin in the oviduct such that the embryo has attained either the blastodermal and/or gastrulation stage of development at oviposition. Bird embryos can be affected by "maternal effects," and by environmental conditions during the pre-incubation and incubation periods. "Maternal effects" has been described as an evolutionary mechanism that has provided the mother, by hormonal deposition into the yolk, with the potential to proactively influence the development of her progeny by exposing them to her particular hormonal pattern in such a manner as to influence their ability to cope with the expected wide range of environmental conditions that may occur post-hatching. Another important aspect of "maternal effects" is the effect of the maternal nutrient intake on progeny traits. From a commercial broiler chicken production perspective, it has been established that greater cumulative nutrient intake by the hen during her pullet rearing phase prior to photostimulation resulted in faster growing broiler progeny. Generally, maternal effects on progeny, which have both a genetic and an environmental component represented by yolk hormones deposition and embryo nutrient utilization, have an important effect on the development of a wide range of progeny traits. Furthermore, commercial embryo development during pre-incubation storage and incubation, as well as during incubation per se has been shown to largely depend upon temperature, while other environmental factors that include egg position during storage, and the amount of H2O and CO2 lost by the egg and the subsequent effect on albumen pH and height during storage have become important environmental factors to be considered for successful embryogenesis under commercial conditions. Manipulating environmental temperature during the period of egg storage, during the intermediate pre-incubation period, and incubation period per se has been found to significantly affect embryo development, hatching progress, chick quality at hatching, and chick development post-hatching. These temperature manipulations have also been shown to affect the acquisition of thermotolerance to subsequent post-hatching thermal challenge. This chapter will focus on: a. "maternal effects" on embryo and post-hatching development; b. environmental effects during the post-ovipositional period of egg storage, the intermediate pre-incubation period, and incubation period per se on chick embryogenesis and subsequent post-hatching growth and development; and c. effects of temperature manipulations during the pre-incubation and incubation periods on acquisition of thermotolerance and development of secondary sexual characteristics in broiler chickens.
Wale, Petra L; Gardner, David K
2012-07-01
Oxygen is a powerful regulator of preimplantation embryo development, affecting gene expression, the proteome, and energy metabolism. Even a transient exposure to atmospheric oxygen can have a negative impact on embryo development, which is greatest prior to compaction, and subsequent postcompaction culture at low oxygen cannot alleviate this damage. In spite of this evidence, the majority of human in vitro fertilization is still performed at atmospheric oxygen. One of the physiological parameters shown to be affected by the relative oxygen concentration, carbohydrate metabolism, is linked to the ability of the mammalian embryo to develop in culture and remain viable after transfer. The aim of this study was, therefore, to determine the effect of oxygen concentration on the ability of mouse embryos to utilize both amino acids and carbohydrates both before and after compaction. Metabolomic and fluorometric analysis of embryo culture media revealed that when embryos were exposed to atmospheric oxygen during the cleavage stages, they exhibited significantly greater amino acid utilization and pyruvate uptake than when cultured under 5% oxygen. In contrast, postcompaction embryos cultured in atmospheric oxygen showed significantly lower mean amino acid utilization and glucose uptake. These metabolic changes correlated with developmental compromise because embryos grown in atmospheric oxygen at all stages showed significantly lower blastocyst formation and proliferation. These findings confirm the need to consider both embryo development and metabolism in establishing optimal human embryo growth conditions and prognostic markers of viability, and further highlight the impact of oxygen on such vital parameters.
2005-02-01
concern that accination of predominantly reproductive-aged service- embers may result in deleterious effects on fertility or etal health (6). There are...requests: William H. Catherino, M.D., Ph.D., Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Building A...ORGANIZATION NAME(S) AND ADDRESS(ES) Uniformed Services University of the Health Sciences,Department of Obstetrics and Gynecology,4301 Jones Bridge Road
Peng, Huixia; Shi, Wenhao; Zhang, Wei; Xue, Xia; Li, Na; Li, Wei; Shi, Juanzi
2016-03-01
To evaluate the effect of atmospheric oxygen (O2) concentration on embryonic development, a controlled and randomized study using the sibling oocytes was carried out. A total of 147 patients were studied. Embryos were cultured in O2 concentration 20% versus 5% during the gamete, zygote, and first 3 days. The mean cell numbers of embryo (7.69 ± 1.91 vs 7.20 ± 1.82, P = .011) and rate of clinically useable embryos (81.62% vs 77.22%, P = .017) were significantly higher in 5% O2 than in 20% O2. There was no difference in the zygote developmental stage, day 2, day 4, and blastocyst stage. The quality of blastocyst (both inner cell mass and trophectoderm) showed no difference. Also, there was no increase in embryos fragmentation and uneven cells in 20% O2 culture condition. In conclusion, 20% O2 reduced the mean cell numbers of embryo and the number of clinically useable embryos on day 3. However, there was no subsequent negative impact on development of day 4 and blastocyst stage. © The Author(s) 2015.
Effects of deep-horn AI on fertilization and embryo production in superovulated cows and heifers
Carvalho, P.D.; Souza, A.H.; Sartori, R.; Hackbart, K.S.; Dresch, A.R.; Vieira, L.M.; Baruselli, P.S.; Guenther, J.N.; Fricke, P.M.; Shaver, R.D.; Wiltbank, M.C.
2018-01-01
The primary objective of this study was to determine the effect of site of semen deposition on fertilization rate and embryo quality in superovulated cows. The hypothesis was that deposition of semen into the uterine horns would increase the fertilization rate compared with deposition of semen into the uterine body. The secondary objective was to evaluate the effect of uterine environment on fertilization rate and embryo quality. It was hypothesized that subclinical endometritis at the onset of superstimulation would decrease the fertilization rates and embryo quality. In experiment 1, 17 superovulated heifers were randomly assigned to receive artificial insemination (AI) into the uterine body or uterine horns. The total number of fertilized structures and fertilization rate from superovulated heifers was increased (P = 0.04 and P = 0.02, respectively) when semen was deposited into the uterine horns compared with the uterine body. Other embryo characteristics did not differ based on the site of semen deposition. In experiment 2, 14 lactating dairy cows were superovulated twice and were randomly assigned to receive AI into the uterine body or deep into the uterine horns using a crossover design. Neither fertilization rate nor any other embryo characteristics were improved when semen was placed deep into the uterine horns compared with the uterine body. In experiment 3, 72 superovulated lactating dairy cows were randomly assigned to receive AI into the uterine body or uterine horns. Before initiation of superstimulatory treatments, an endometrial cytology sample was collected from each cow. Ova/embryos were collected by a nonsurgical technique at 70 ± 3 days in milk. Similar to experiment 2, neither fertilization rate nor any other embryo characteristics differed based on the site of semen deposition in experiment 3. The percentage of cows with subclinical endometritis did not differ between treatments. Interestingly, there was a tendency (P = 0.09) for a reduction in embryo recovery rate and a reduction (P = 0.01) in the fertilization rate for cows with subclinical endometritis. In conclusion, deposition of semen into the uterine horns rather than into the uterine body did not improve the fertilization rate or embryo quality in superovulated cows. Subclinical endometritis decreased the fertilization rate in superovulated cows. PMID:24084230
Antioxidant metabolism in Xenopus laevis embryos is affected by stratospheric balloon flight.
Rizzo, Angela M; Rossi, Federica; Zava, Stefania; Montorfano, Gigliola; Adorni, Laura; Cotronei, Vittorio; Zanini, Alba; Berra, Bruno
2007-07-01
To test the effects of low levels of radiation from space on living organisms, we flew Xenopus laevis embryos at different stages of development on a stratospheric balloon (BI.R.BA mission). After recovery, different parameters were analyzed to assess the effects of flight, with particular regard to oxidative stress damage. Because of failed temperature control during flight, the flight shielded embryos (FC) could not be used for biochemical or morphological comparisons. In contrast, the incubation conditions (i.e. temperature, containers, volumes) for the flight embryos (F) were parallel to those for the ground controls. Mortality data show that younger embryos (16 h) flown on the balloon (F) are more sensitive to radiation exposure than older ones (40 h and 6 days). Exposure during flight lowered the antioxidant potential in all embryos, particularly older ones. These preliminary data demonstrate that flight on a stratospheric balloon might affect antioxidant metabolism, though it is not yet possible to correlate these results with low radiation exposure during flight.
[Performance of in vitro fertilization in Germany].
van der Ven, Hans; Montag, Markus; van der Ven, Katrin
2002-07-01
In Germany the application of assisted reproductive techniques (ART) is regulated by federal legislation. Compared with the international situation the "German Embryo Protection Law" is very "restrictive" and various methods of ART are prohibited, e.g. oocyte/embryo donation, embryo cryopreservation and Preimplantation Genetic Diagnosis (PGD). Furthermore, in Germany only 1 to 3 fertilized oocytes may be cultured to embryo. All these embryos then have to be transferred into the uterus of a particular patient. Additional fertilized oocytes can only be cryopreserved in a pronuclear state. The success rate of ART has increased significantly over the past few years owing to the introduction of blastocyst cultures and the selection of 1 to 2 good quality blastocysts for embryo transfer. Furthermore, the transfer of only 1 to 2 blastocysts effectively reduces the risk of high rank multiple pregnancies. In Germany, however, the selection of only a few good quality blastocysts for transfer is prohibited by law. New laboratory techniques, e.g. pronuclear scoring and polar body biopsy screening for aneuploidy are in accordance with German law. The application of these methods provides a selection of "good quality oocytes" and seems to increase the overall success rate. Further studies are required, however. The success rate, quality and cost effectiveness of ART in Germany appears compromised when compared with many other countries. What is more, in contrast to the international situation research and development in ART in Germany has been decreasing constantly over the past few years, due to the inappropriate regulations of the German health care system and the insufficient support given to university-based centers.
Dovolou, Eleni; Periquesta, Eva; Messinis, Ioannis E; Tsiligianni, Theodora; Dafopoulos, Konstantinos; Gutierrez-Adan, Alfonso; Amiridis, Georgios S
2014-03-01
Ghrelin is a gastric peptide having regulatory role in the reproductive system functionality, acting mainly at central level. Because the expression of ghrelin system (ghrelin and its receptor) has been detected in the bovine ovary, the objectives of the present study were to investigate whether ghrelin can affect the developmental potential of in vitro-produced embryos, and to test their quality in terms of relative abundance of various genes related to metabolism, apoptosis and oxidation. In the first experiment, in vitro-produced zygotes were cultured in the absence (control [C]) and in the presence of three concentrations of acylated ghrelin (200 pg/mL [Ghr200], 800 pg/mL [Ghr800]; and 2000 pg/mL [Ghr2000]); blastocyst formation rates were examined on Days 7, 8, and 9. In the second experiment, only the 800 pg/mL dose of ghrelin was used. Zygotes were produced as in experiment 1 and 24 hours post insemination they were divided into 4 groups; in two groups (C; without ghrelin; Ghr800 with ghrelin), embryos were cultured without medium replacement; in the remaining two groups (Control N and GhrN), the culture medium was daily renewed. A pool of Day-7 blastocysts were snap frozen for relative mRNA abundance of various genes related to metabolism, oxidation, implantation, and apoptosis. In experiment 3, embryos were produced as in experiment 2, but in the absence of serum (semi-defined culture medium). In experiment 1, no differences were detected between C, Ghr200, and Ghr2000, although fewer blastocysts were produced in group Ghr800 compared with C. In experiment 2, the lowest blastocysts yield was found in Ghr800, whereas daily renewal of ghrelin (Ghr800N) resulted to increased blastocysts formation rate, which on Day 7 was the highest among groups (P < 0.05). In experiment 3, ghrelin significantly suppressed blastocysts yield. Significant differences were detected in various relative mRNA abundance, giving an overall final notion that embryos produced in the presence of ghrelin were of better quality than controls. Our results imply a specific role of ghrelin in early embryonic development; however, the specific mode of its action needs further investigation. Copyright © 2014 Elsevier Inc. All rights reserved.
Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu
2007-09-01
To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.
Nguyen, L T H; Janssen, C R
2002-02-01
Embryo-larval toxicity tests with the African catfish (Clarias gariepinus) were performed to assess the comparative sensitivity of different endpoints. Measured test responses included embryo and larval survival, hatching, morphological development, and larval growth. Chromium, cadmium, copper, sodium pentachlorphenol (NaPCP), and malathion were used as model toxicants. Hatching was not affected by any of the chemicals tested, and embryo survival was only affected by chromium at > or = 36 mg/L. The growth of larvae was significantly reduced at > or = 11 mg/L Cr, > or = 0.63 mg/L Cu, > or = 0.03 mg/L NaPCP, and > or = 1.25 mg/L malathion. Morphological development of C. gariepinus was affected by all of the toxicants tested. Different types of morphological aberrations were observed, i.e., reduction of pigmentation in fish exposed to cadmium and copper, yolk sac edema in fish exposed to NaPCP and malathion, and deformation of the notochord in fish exposed to chromium and malathion. The sensitivity of the endpoints measured can be summarized as follows: growth > abnormality > larval survival > embryo survival > hatching.
The use of cryopreserved sea urchin embryos (Paracentrotus lividus) in marine quality assessment.
Paredes, E; Bellas, J
2015-06-01
We have established for first time an ecotoxicological bioassay using cryopreserved sea urchin embryos (Paracentotus lividus) and provided a comparison to the already standardized sea urchin embryo-larval bioassay, using selected (organic and inorganic) pollutants and sediment elutriates from 4 different locations from Ria de Vigo harbour (Galicia, NW Iberian Peninsula). A cryopreservation protocol was designed in order to enable the successful cryopreservation and cryobanking of gametes and embryos to be used for marine quality assessment and ensure the accessibility to high quality reproductive material all year round, as an option to conditioning adults for out of season reproduction. The calculated EC50 using the cryopreserved blastula was 53.7 μg L(-1) for copper, 81.0 μg L(-1) for lead, 300.6 μg L(-1) for BP-3 and 300.6 μg L(-1) for 4-MBC. The sensitivity of the classic sea urchin embryo-larval bioassay was compared with the bioassay conducted with cryopreserved blastula. The results showed that the use of cryopreserved blastula bioassay allows detecting lower concentrations of pollutants in comparison with the classic bioassay. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mellerick, Dervla M; Liu, Heather
2004-09-05
Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity.
Kurosawa, Hiroki; Utsunomiya, Hiroki; Shiga, Naomi; Takahashi, Aiko; Ihara, Motomasa; Ishibashi, Masumi; Nishimoto, Mitsuo; Watanabe, Zen; Abe, Hiroyuki; Kumagai, Jin; Terada, Yukihiro; Igarashi, Hideki; Takahashi, Toshifumi; Fukui, Atsushi; Suganuma, Ryota; Tachibana, Masahito; Yaegashi, Nobuo
2016-10-01
Does a new system-the chip-sensing embryo respiration monitoring system (CERMs)-enable evaluation of embryo viability for potential application in a clinical IVF setting? The system enabled the oxygen consumption rate of spheroids, bovine embryos and frozen-thawed human embryos to be measured, and this rate corresponded to the developmental potential of embryos. To date, no reliable and clinically suitable objective evaluation methods for embryos are available, which circumvent the differences in inter-observer subjective view. Existing systems such as the scanning electrochemical microscopy (SECM) technique, which enables the measurement of oxygen consumption rate in embryos, need improvement in usability before they can be applied to a clinical setting. This is a prospective original research study. The feasibility of measuring the oxygen consumption rate was assessed using CERMs for 9 spheroids, 9 bovine embryos and 30 redundant frozen-thawed human embryos. The endpoints for the study were whether CERMs could detect a dissolved oxygen gradient with high sensitivity, had comparable accuracy to the SECM measuring system with improved usability, and could predict the development of an embryo to a blastocyst by measuring the oxygen consumption rate. The relationship between the oxygen consumption rate and standard morphological evaluation was also examined. We developed a new CERMs, which enables the oxygen consumption rate to be measured automatically using an electrochemical method. The device was initially used for measuring a dissolved oxygen concentration gradient in order to calculate oxygen consumption rate using nine spheroids. Next, we evaluated data correlation between the CERMs and the SECM measuring systems using nine bovine embryos. Finally, the oxygen consumption rates of 30 human embryos, which were frozen-thawed on 2nd day after fertilization, were measured by CERMs at 6, 24, 48, 72 and 96 h after thawing with standard morphological evaluation. Furthermore, the developed blastocysts were scored using the blastocyst quality score (BQS), and the correlation with oxygen consumption rate was also assessed. The device enabled the oxygen consumption rate of an embryo to be measured automatically within a minute. The oxygen concentration gradient profile showed excellent linearity in a distance-dependent change. A close correlation in the oxygen consumption rates of bovine embryos was observed between the SECM measuring system and CERMs, with a determination coefficient of 0.8203 (P = 0.0008). Oxygen consumption rates of human embryos that have reached the blastocyst stage were significantly higher than those of arrested embryos at 48, 72 and 96 h after thawing (P = 0.039, 0.004 and 0.049, respectively). Thus, in vitro development of frozen-thawed human embryos to the blastocyst stage would be predicted at 48 h after thawing (day 4) by measuring the oxygen consumption using CERMs. Although a positive linear relationship between BQS and the oxygen consumption rate was observed [the determination coefficient was R(2) = 0.6537 (P = 0.008)], two blastocysts exhibited low oxygen consumption rates considering their relatively high BQS. This suggests that morphology and metabolism in human embryos might not correlate consistently. Transfer of the embryo and pregnancy evaluation was not performed. Thus, a correlation between oxygen consumption and the in vivo viability of embryos remains unknown. Clinical trials, including embryo transfer, would be desirable to determine a threshold value to elect clinically relevant, quality embryos for transfer. We utilized frozen-thawed human embryos in this study. The effect of these manipulations on the respiratory activity of the embryo is also unknown. Selection of quality embryos, especially in a single embryo transfer cycle, by CERMs may have an impact on obtaining better clinical outcomes, albeit with clinical trials being required. Furthermore, the early determination of quality embryos by CERMs may enable the omission of long-term in vitro embryo culture to the blastocyst stage. CERMs is scalable technology that can be integrated into incubators and/or other embryo evaluation systems, such as the time-lapse systems, due to its chip-based architecture. Thus, CERMS would enable automatic measurement of oxygen consumption, under 5% CO2, in the near future, in order to reduce oxidative stress from exposure to atmospheric air. This study was supported by grants from the Health and Labor Sciences Research Grant (H24-Hisaichiiki-Shitei-016). The authors have no conflicts of interest. Not applicable. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Derivation and characterization of human embryonic stem cell lines from poor quality embryos.
Liu, Weiqiang; Yin, Yifei; Long, Xiaolin; Luo, Yumei; Jiang, Yonghua; Zhang, Wenhong; Du, Hongzi; Li, Shaoying; Zheng, Yuhong; Li, Qing; Chen, Xinjie; Liao, Baoping; Xiao, Guohong; Wang, Weihua; Sun, Xiaofang
2009-04-01
Poor quality embryos discarded from in vitro fertilization (IVF) laboratories are good sources for deriving human embryonic stem cell (hESC) lines. In this study, 166 poor quality embryos donated from IVF centers on day 3 were cultured in a blastocyst medium for 2 days, and 32 early blastocysts were further cultured in a blastocyst optimum culture medium for additional 2 days so that the inner cell masses (ICMs) could be identified and isolated easily. The ICMs of 17 blastocysts were isolated by a mechanical method, while those of the other 15 blastocysts were isolated by immunosurgery. All isolated ICMs were inoculated onto a feeder layer for subcultivation. The rates of ICM attachment, primary ICM colony formation and the efficiency of hESC derivation were similar between the ICMs isolated by the two methods (P>0.05). As a result, four new hESC lines were established. Three cell lines had normal karyotypes and one had an unbalanced Robertsonian translocation. All cell lines showed normal hESC characteristics and had the differentiation ability. In conclusion, we established a stable and effective method for hESC isolation and culture, and it was confirmed that the mechanical isolation was an effective method to isolate ICMs from poor embryos. These results further indicate that hESC lines can be derived from poor quality embryos discarded by IVF laboratories.
Jacobson, Saskia M.; Birkholz, Denise A.; McNamara, Marcy L.; Bharate, Sandip B.; George, Kathleen M.
2010-01-01
Organophosphate pesticides (OPs) are environmental toxicants known to inhibit the catalytic activity of acetylcholinesterase (AChE) resulting in hypercholinergic toxicity symptoms. In developing embryos, OPs have been hypothesized to affect both cholinergic and non-cholinergic pathways. In order to understand the neurological pathways affected by OP exposure during embryogenesis, we developed a subacute model of OP developmental exposure in zebrafish by exposing embryos to a dose of the OP metabolite chlorpyrifos oxon (CPO) that is non-lethal and significantly inhibited AChE enzymatic activity compared to control embryos (43% at 1 day post-fertilization (dpf) and 11% at 2 dpf). Phenotypic analysis of CPO-exposed embryos demonstrated that embryonic growth, as analyzed by gross morphology, was normal in 85% of treated embryos. Muscle fiber formation was similar to control embryos as analyzed by birefringence, and nicotinic acetylcholine receptor (nAChR) cluster formation was quantitatively similar to control embryos as analyzed by α-bungarotoxin staining. These results indicate that partial AChE activity during the early days of zebrafish development is sufficient for general development, muscle fiber, and nAChR development. Rohon-Beard (RB) sensory neurons exhibited aberrant peripheral axon extension and gene expression profiling suggests that several genes responsible for RB neurogenesis are down-regulated. Stability of CPO in egg water at 28.5 °C was determined by HPLC-UV-MS analysis which revealed that the CPO concentration used in our studies hydrolyzes in egg water with a half-life of one day. The result that developmental CPO exposure affected RB neurogenesis without affecting muscle fiber or nAChR cluster formation demonstrates that zebrafish are a strong model system for characterizing subtle neurological pathologies resulting from environmental toxicants. PMID:20701988
Abe, Yu; Kruszka, Paul; Martinez, Ariel F; Roessler, Erich; Shiota, Kohei; Yamada, Shigehito; Muenke, Maximilian
2018-06-01
Holoprosencephaly (HPE) is a genetically and phenotypically heterogeneous disorder involving developmental defects. HPE is a rare condition (1/10,000-20,000 newborns) but can be found as frequently as 1/250 among conceptions, suggesting that most HPE embryos are incompatible with postnatal life and result in spontaneous abortions during the first trimester of gestation. Beginning in 1961, the Kyoto University in Japan collected over 44,000 human conceptuses in collaboration with several hundred domestic obstetricians. Over 200 cases of HPE have been identified in the Kyoto collection, which represents the largest single cohort of HPE early stage embryo specimens. In this study, we present a comprehensive clinical and demographic evaluation of this HPE cohort prior to genomic analysis. The total percentage of the threatened abortion among HPE embryos in the Kyoto collection was 67%. Almost 20% of the women with embryos affected by HPE had experienced spontaneous miscarriage. In addition, there was a significant tendency that the mothers with HPE cases had fewer live births than the control. Moreover, in 70% of cases, the mother reported bleeding during pregnancy, a higher percentage than expected, indicating that most of the conceptions with HPE embryos tend to be terminated spontaneously. There were no differences in smoking between mothers with HPE affected and unaffected pregnancies; however, alcohol use was higher in women with pregnancies affected by HPE. In this study, we precisely characterize the phenotype and environmental influences of embryos affected by HPE allowing the future leveraging of genomic technologies to further understand the genetics of forebrain development. Anat Rec, 301:973-986, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro
2017-03-01
Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.
Morel, Alexandre; Trontin, Jean-François; Corbineau, Françoise; Lomenech, Anne-Marie; Beaufour, Martine; Reymond, Isabelle; Le Metté, Claire; Ader, Kevin; Harvengt, Luc; Cadene, Martine; Label, Philippe; Teyssier, Caroline; Lelu-Walter, Marie-Anne
2014-11-01
Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined.
Ice nucleating agents allow embryo freezing without manual seeding.
Teixeira, Magda; Buff, Samuel; Desnos, Hugo; Loiseau, Céline; Bruyère, Pierre; Joly, Thierry; Commin, Loris
2017-12-01
Embryo slow freezing protocols include a nucleation induction step called manual seeding. This step is time consuming, manipulator dependent and hard to standardize. It requires access to samples, which is not always possible within the configuration of systems, such as differential scanning calorimeters or cryomicroscopes. Ice nucleation can be induced by other methods, e.g., by the use of ice nucleating agents. Snomax is a commercial preparation of inactivated proteins extracted from Pseudomonas syringae. The aim of our study was to investigate if Snomax can be an alternative to manual seeding in the slow freezing of mouse embryos. The influence of Snomax on the pH and osmolality of the freezing medium was evaluated. In vitro development (blastocyst formation and hatching rates) of fresh embryos exposed to Snomax and embryo cryopreserved with and without Snomax was assessed. The mitochondrial activity of frozen-thawed blastocysts was assessed by JC-1 fluorescent staining. Snomax didn't alter the physicochemical properties of the freezing medium, and did not affect embryo development of fresh embryos. After cryopreservation, the substitution of manual seeding by the ice nucleating agent (INA) Snomax did not affect embryo development or embryo mitochondrial activity. In conclusion, Snomax seems to be an effective ice nucleating agent for the slow freezing of mouse embryos. Snomax can also be a valuable alternative to manual seeding in research protocols in which manual seeding cannot be performed (i.e., differential scanning calorimetry and cryomicroscopy). Copyright © 2017 Elsevier Inc. All rights reserved.
Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik
2012-01-01
Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.
Campos, Vinicius Farias; de Leon, Priscila Marques Moura; Komninou, Eliza Rossi; Dellagostin, Odir Antônio; Deschamps, João Carlos; Seixas, Fabiana Kömmling; Collares, Tiago
2011-11-01
The objectives were to investigate whether: 1) nanotransfectants are more effective than other common transfection methods for SMGT; 2) NanoSMGT is able to transmit exogenous DNA molecules to bovine embryos; and 3) halloysite clay nanotubes (HCNs) can be used as a transfection reagent to improve transgene transmission. Four transfection systems were used: naked DNA (without transfectant), lipofection, nanopolymer, and halloysite clay nanotubes. Plasmid uptake by sperm and its transfer to embryos were quantified by conventional and real-time PCR, as well as EGFP expression by fluorescence microscopy. Furthermore, sperm motility and viability, and embryo development were investigated. Mean number of plasmids taken up was affected (P < 0.05) by transfection procedure, with the nanopolymer being the most effective transfectant (∼ 153 plasmids per spermatozoon). None of the treatments affected sperm motility or viability. The mean number of plasmids transmitted to four-cell stage embryos was higher (P < 0.05) in nanopolymer and HCNs than liposomes and naked DNA groups. The number of embryos carrying the transgene increased from 8-10% using naked DNA or liposomes to 40-45% using nanopolymer or HCN as transfectants (P < 0.05). There were no significant differences among transfection procedures regarding blastocyst formation rate of resulting embryos. However, no EGFP-expressing embryo was identified in any treatment. Therefore, nanotransfectants improved transgene transmission in bovine embryos without deleterious effects on embryo development. To our knowledge, this was the first time that bovine embryos carrying a transgene were produced by NanoSMGT. Copyright © 2011 Elsevier Inc. All rights reserved.
Piotrowska-Nitsche, Karolina; Chan, Anthony W S
2013-01-01
To investigate whether in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), influence the embryo's development and its quality using the mouse as a model. Assisted fertilization was performed using ICSI and IVF. Fluorescent beads were adhered to the fertilization cone or place of previous sperm injection in the natural mated (NM), IVF and ICSI embryos, respectively. Embryo examination was carried out at the two-cell and blastocyst stage to determine the position of fluorescent bead. Protein expression was detected by fluorescence immunocytochemical staining and confocal microscopic imaging of blastocysts. IVF and ICSI embryos developed at rates comparable to NM group. Embryos show similar expression patterns of two transcription factors, Oct4 and Cdx2. The most preferred place for spermatozoa attachment was the equatorial site of the egg, whether fertilization occurred in vitro or under natural conditions. We also link the sperm entry position (SEP) to embryo morphology and the number of cells at the blastocyst stage, with no influence of the method of fertilization. IVF and ICSI, do not compromise in vitro pre-implantation development. Additional data, related to sperm entry, could offer further criteria to predict embryos that will implant successfully. Based on embryo morphology, developmental rate and protein expression level of key transcription factors, our results support the view that ART techniques, such as IVF and ICSI, do not perturb embryonic development or quality.
Live-cell imaging of nuclear-chromosomal dynamics in bovine in vitro fertilised embryos.
Yao, Tatsuma; Suzuki, Rie; Furuta, Natsuki; Suzuki, Yuka; Kabe, Kyoko; Tokoro, Mikiko; Sugawara, Atsushi; Yajima, Akira; Nagasawa, Tomohiro; Matoba, Satoko; Yamagata, Kazuo; Sugimura, Satoshi
2018-05-10
Nuclear/chromosomal integrity is an important prerequisite for the assessment of embryo quality in artificial reproductive technology. However, lipid-rich dark cytoplasm in bovine embryos prevents its observation by visible light microscopy. We performed live-cell imaging using confocal laser microscopy that allowed long-term imaging of nuclear/chromosomal dynamics in bovine in vitro fertilised (IVF) embryos. We analysed the relationship between nuclear/chromosomal aberrations and in vitro embryonic development and morphological blastocyst quality. Three-dimensional live-cell imaging of 369 embryos injected with mRNA encoding histone H2B-mCherry and enhanced green fluorescent protein (EGFP)-α-tubulin was performed from single-cell to blastocyst stage for eight days; 17.9% reached the blastocyst stage. Abnormalities in the number of pronuclei (PN), chromosomal segregation, cytokinesis, and blastomere number at first cleavage were observed at frequencies of 48.0%, 30.6%, 8.1%, and 22.2%, respectively, and 13.0%, 6.2%, 3.3%, and 13.4%, respectively, for abnormal embryos developed into blastocysts. A multivariate analysis showed that abnormal chromosome segregation (ACS) and multiple PN correlated with delayed timing and abnormal blastomere number at first cleavage, respectively. In morphologically transferrable blastocysts, 30-40% of embryos underwent ACS and had abnormal PN. Live-cell imaging may be useful for analysing the association between nuclear/chromosomal dynamics and embryonic development in bovine embryos.
Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success.
Pérez-Cerezales, S; Martínez-Páramo, S; Beirão, J; Herráez, M P
2010-06-01
Mammalian spermatozoa undergo a strong selection process along the female tract to guarantee fertilization by good quality cells, but risks of fertilization with DNA-damaged spermatozoa have been reported. In contrast, most external fertilizers such as fish seem to have weaker selection procedures. This fact, together with their high prolificacy and external embryo development, indicates that fish could be useful for the study of the effects of sperm DNA damage on embryo development. We cryopreserved sperm from rainbow trout using egg yolk and low-density lipoprotein as additives to promote different rates of DNA damage. DNA fragmentation and oxidization were analyzed using comet assay with and without digestion with restriction enzymes, and fertilization trials were performed. Some embryo batches were treated with 3-aminobenzamide (3AB) to inhibit DNA repair by the poly (ADP-ribose) polymerase, which is an enzyme of the base excision repair pathway. Results showed that all the spermatozoa cryopreserved with egg yolk carried more than 10% fragmented DNA, maintaining fertilization rates of 61.1+/-2.3 but a high rate of abortions, especially during gastrulation, and only 14.5+/-4.4 hatching success. Furthermore, after 3AB treatment, hatching dropped to 3.2+/-2.2, showing that at least 10% DNA fragmentation was repaired. We conclude that trout sperm maintains its ability to fertilize in spite of having DNA damage, but that embryo survival is affected. Damage is partially repaired by the oocyte during the first cleavage. Important advantages of using rainbow trout for the study of processes related to DNA damage and repair during development have been reported.
[Osteopontin and male reproduction].
Liu, Qian; Xie, Qing-Zhen
2012-05-01
Osteopontin (OPN) is an extracellular matrix protein with multifunctions, expressed in various tissues and body fluids, involved in various physiological and pathological processes. It is also detected in the reproductive tract of both males and females, and participates in the implantation, development and differentiation of embryos. Recent studies have indicated that OPN is closely related with male fertility and may affect sperm quality and fertilization. An insight into the functions of OPN may help to explain the mechanisms of male infertility and improve the success rate of assisted reproductive technology.
Effect of Paternal Age on Reproductive Outcomes of Intracytoplasmic Sperm Injection
Zheng, Haiyan; Liu, Haiying; Huang, Qing; Liu, Jianqiao
2016-01-01
The impact of paternal age on reproduction, especially using assisted reproductive technologies, has not been well studied to date. To investigate the effect of paternal age on reproductive outcomes, here we performed a retrospective analysis of 2,627 intracytoplasmic sperm injection (ICSI) cycles performed at the Reproductive Medicine Center of the Third Affiliated Hospital of Guangzhou Medical University (China) between January 2007 and May 2015. Effect of paternal age on embryo quality [number of fertilized oocytes, 2 pronucleus zygotes (2PNs), viable embryos, and high-quality embryos] was analyzed by multiple linear regression. Relationships between paternal age and pregnancy outcomes were analyzed by binary logistic regression. After adjusting for female age, no association between paternal age and the following parameters of embryo quality was observed: number of fertilized oocytes (B = -0.032; 95% CI -0.069–0.005; P = 0.088), number of 2PNs (B = -0.005; 95% CI -0.044–0.034; P = 0.806), and number of viable embryos (B = -0.025; 95% CI -0.052–0.001; P = 0.062). However, paternal age negatively influenced the number of high-quality embryos (B = -0.020; 95% CI -0.040–0.000; P = 0.045). Moreover, paternal age had no effect on pregnancy outcomes (OR for a 5-year interval), including the rates of clinical pregnancy (OR 0.919; 95% CI 0.839–1.006; P = 0.067), ongoing pregnancy (OR 0.914; 95% CI 0.833–1.003; P = 0.058), early pregnancy loss (OR 1.019; 95% CI 0.823–1.263; P = 0.861), live births (OR 0.916; 95% CI 0.833–1.007; P = 0.070), and preterm births (OR 1.061; 95% CI 0.898–1.254; P = 0.485). Therefore, increased paternal age negatively influences the number of high-quality embryos, but has no effect on pregnancy outcomes in couples undergoing ICSI cycles. However, more studies including men aged over 60 years with a longer-term follow-up are needed. PMID:26901529
Dos Santos Neto, P C; Vilariño, M; Barrera, N; Cuadro, F; Crispo, M; Menchaca, A
2015-02-01
This study was conducted to evaluate the cryotolerance of in vitro produced ovine embryos submitted to vitrification at different developmental stages using two methods of minimum volume and rapid cooling rate. Embryos were vitrified at early stage (2 to 8-cells) on Day 2 or at advanced stage (morulae and blastocysts) on Day 6 after in vitro fertilization. Vitrification procedure consisted of the Cryotop (Day 2, n=165; Day 6, n=174) or the Spatula method (Day 2, n=165; Day 6, n=175). Non vitrified embryos were maintained in in vitro culture as a control group (n=408). Embryo survival was determined at 3h and 24h after warming, development and hatching rates were evaluated on Day 6 and Day 8 after fertilization, and total cell number was determined on expanded blastocysts. Embryo survival at 24h after warming increased as the developmental stage progressed (P<0.05) and was not affected by the vitrification method. The ability for hatching of survived embryos was not affected by the stage of the embryos at vitrification or by the vitrification method. Thus, the proportion of hatching from vitrified embryos was determined by the survival rate and was lower for Day 2 than Day 6 vitrified embryos. The percentage of blastocysts on Day 8 was lower for the embryos vitrified on Day 2 than Day 6 (P<0.05), and was lower for both days of vitrification than for non-vitrified embryos (P<0.05). No interaction of embryo stage by vitrification method was found (P=NS) and no significant difference was found in the blastocyst cell number among vitrified and non-vitrified embryos. In conclusion, both methods using minimum volume and ultra-rapid cooling rate allow acceptable survival and development rates in Day 2 and Day 6 in vitro produced embryos in sheep. Even though early stage embryos showed lower cryotolerance, those embryos that survive the vitrification-warming process show high development and hatching rates, similar to vitrification of morulae or blastocysts. Copyright © 2014 Elsevier Inc. All rights reserved.
Humanes, Adriana; Ricardo, Gerard F; Willis, Bette L; Fabricius, Katharina E; Negri, Andrew P
2017-03-10
Coral reproduction is vulnerable to both declining water quality and warming temperatures, with simultaneous exposures likely compounding the negative impact of each stressor. We investigated how early life processes of the coral Acropora tenuis respond to increasing levels of suspended sediments in combination with temperature or organic nutrients. Fertilization success and embryo development were more sensitive to suspended sediments than to high temperatures or nutrient enrichment, while larval development (after acquisition of cilia) and settlement success were predominantly affected by thermal stress. Fertilization success was reduced 80% by suspended sediments, and up to 24% by temperature, while the addition of nutrients to suspended sediments had no further impact. Larval survivorship was unaffected by any of these treatments. However, settlement success of larvae developing from treatment-exposed embryos was negatively affected by all three stressors (e.g. up to 55% by suspended sediments), while exposure only during later larval stages predominantly responded to temperature stress. Environmentally relevant levels of suspended sediments and temperature had the greatest impacts, affecting more processes than the combined impacts of sediments and nutrients. These results suggest that management strategies to maintain suspended sediments at low concentrations during coral spawning events will benefit coral recruitment, especially with warming climate.
NASA Astrophysics Data System (ADS)
Humanes, Adriana; Ricardo, Gerard F.; Willis, Bette L.; Fabricius, Katharina E.; Negri, Andrew P.
2017-03-01
Coral reproduction is vulnerable to both declining water quality and warming temperatures, with simultaneous exposures likely compounding the negative impact of each stressor. We investigated how early life processes of the coral Acropora tenuis respond to increasing levels of suspended sediments in combination with temperature or organic nutrients. Fertilization success and embryo development were more sensitive to suspended sediments than to high temperatures or nutrient enrichment, while larval development (after acquisition of cilia) and settlement success were predominantly affected by thermal stress. Fertilization success was reduced 80% by suspended sediments, and up to 24% by temperature, while the addition of nutrients to suspended sediments had no further impact. Larval survivorship was unaffected by any of these treatments. However, settlement success of larvae developing from treatment-exposed embryos was negatively affected by all three stressors (e.g. up to 55% by suspended sediments), while exposure only during later larval stages predominantly responded to temperature stress. Environmentally relevant levels of suspended sediments and temperature had the greatest impacts, affecting more processes than the combined impacts of sediments and nutrients. These results suggest that management strategies to maintain suspended sediments at low concentrations during coral spawning events will benefit coral recruitment, especially with warming climate.
Automatic segmentation of time-lapse microscopy images depicting a live Dharma embryo.
Zacharia, Eleni; Bondesson, Maria; Riu, Anne; Ducharme, Nicole A; Gustafsson, Jan-Åke; Kakadiaris, Ioannis A
2011-01-01
Biological inferences about the toxicity of chemicals reached during experiments on the zebrafish Dharma embryo can be greatly affected by the analysis of the time-lapse microscopy images depicting the embryo. Among the stages of image analysis, automatic and accurate segmentation of the Dharma embryo is the most crucial and challenging. In this paper, an accurate and automatic segmentation approach for the segmentation of the Dharma embryo data obtained by fluorescent time-lapse microscopy is proposed. Experiments performed in four stacks of 3D images over time have shown promising results.
Baltazar, A L; de Mattos, G M; Ropelli, B M; Firetti, Smg; Castilho, C; Pugliesi, G; Maldonado, Mbc; Binelli, M; Silva, Jof; Lupatini, G C; Lafuente, B S; Membrive, Cmb
2018-06-01
Supplementation with compounds rich in linoleic acid, including sunflower seed supplementation, promotes increase in conception rates in cows. We aimed to evaluate whether the sunflower seed (linoleic acid source) supplementation in beef donor females alters the plasma concentrations of cholesterol, triglycerides, HDL and LDL, increases the number and quality of oocytes, increases the cleavage rates and determines an improvement in number and quality of in vitro produced blastocysts. Thus, Nelore females were divided into two groups of 15 animals to receive supplementation with or without sunflower seed for 57 days. Females underwent follicular aspiration and the oocytes were subjected to in vitro embryo production. There was no difference (p > .1) between control group and group supplemented with sunflower seed on the number of displayed follicles; number of aspired oocytes; recovery rate; cleavage rate; number of embryos; number of blastocysts; embryos number of grades I and II; plasma concentrations of total cholesterol, triglycerides; HDL and LDL. Therefore, sunflower seed supplementation in oocyte donors did not increase the number and quality of oocytes, cleavage rates and the number and quality of blastocysts produced in vitro. © 2018 Blackwell Verlag GmbH.
MTHFR polymorphisms C677T and A1298C and associations with IVF outcomes in Brazilian women.
D'Elia, Priscila Queiroz; dos Santos, Aline Amaro; Bianco, Bianca; Barbosa, Caio Parente; Christofolini, Denise Maria; Aoki, Tsutomu
2014-06-01
The aim of this study was to investigate the association between MTHFR gene polymorphisms and IVF outcomes in Brazilian women undergoing assisted reproduction treatment. A prospective study was conducted in the Human Reproduction Department at the ABC University School of Medicine and the Ideia Fertility Institute between December 2010 and April 2012. The patient population was 82 women undergoing assisted reproduction cycles. The MTHFR polymorphisms C677T and A1298C were evaluated and compared with laboratory results and pregnancy rates. The C677T variant was associated with proportions of mature (P=0.006) and immature (P=0.003) oocytes whereas the A1298C variant was associated with number of oocytes retrieved (P=0.044). The polymorphisms, whether alone or in combination, were not associated with normal fertilization, good-quality embryo or clinical pregnancy rates. This study suggests that the number and maturity of oocytes retrieved may be related to the MTHFR polymorphisms C677T and A1298C. It is believed that folate has a crucial function in human reproduction and that folate deficiency can compromise the function of the metabolic pathways it is involved in, leading to an accumulation of homocysteine. The gene MTHFR encodes the 5-MTHFR enzyme, which is involved in folate metabolism, and C677T/A1298C polymorphisms of this gene are related to decreased enzyme activity and consequent changes in homocysteine concentration. Folate deficiency and hyperhomocysteinaemia can also compromise fertility and lead to pregnancy complications by affecting the development of oocytes, preparation of endometrial receptivity, implantation of the embryo and pregnancy. In folliculogenesis, hyperhomocysteinaemia can activate apoptosis, leading to follicular atresia and affecting the maturity of oocytes and the quality of embryos cultured in vitro. This study was performed to investigate the association between MTHFR polymorphisms and IVF outcomes in women undergoing assisted reproduction treatment. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Mahajan, Neha N; Turnbull, Deborah A; Davies, Michael J; Jindal, Umesh N; Briggs, Nancy E; Taplin, John E
2010-02-01
To identify pattern of change in average positive affect (PA), negative affect (NA), and state anxiety (St ANX) across three biological end points of an IVF/intracytoplasmic sperm injection (ICSI) procedure and to examine whether the pattern varied across sociodemographic and biomedical subgroups. Longitudinal follow-up study of PA, NA, and St ANX at three different time points: before start of study, before ovum pick-up (OPU), and before embryo transfer. Three infertility centers in northern India. Baseline data were obtained from a consecutive sample of 85 women. However, final analysis was done on data obtained from 74 women who reached the embryo transfer stage and completed the questionnaires at both OPU and embryo transfer. The PA, NA, and St ANX scores. Change in PA, NA, and St ANX scores at three stages of the treatment: baseline (T(0)), before OPU (T(1)), before embryo transfer (T(2)). The PA scores before OPU and embryo transfer were significantly lower than those at baseline. The mean NA and St ANX scores before OPU and embryo transfer were significantly higher than baseline scores. Furthermore, mean NA before embryo transfer was significantly higher than mean NA before OPU. The PA and St ANX scores showed statistically insignificance within cycle variations. Furthermore, the mean PA and St ANX for a subgroup of women who reported more than moderate level of burden were less variable. The OPU and embryo transfer stages are more stressful than the baseline stage for most women across various sociodemographic and biomedical subgroups. Women with more than a moderate level of financial burden were relatively more stable. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Wilkins, Laetitia G E; Fumagalli, Luca; Wedekind, Claus
2016-10-01
Recent studies found fish egg-specific bacterial communities that changed over the course of embryogenesis, suggesting an interaction between the developing host and its microbiota. Indeed, single-strain infections demonstrated that the virulence of opportunistic bacteria is influenced by environmental factors and host immune genes. However, the interplay between a fish embryo host and its microbiota has not been studied yet at the community level. To test whether host genetics affects the assemblage of egg-associated bacteria, adult brown trout (Salmo trutta) were sampled from a natural population. Their gametes were used for full-factorial in vitro fertilizations to separate sire from dam effects. In total, 2520 embryos were singly raised under experimental conditions that differently support microbial growth. High-throughput 16S rRNA amplicon sequencing was applied to characterize bacterial communities on milt and fertilized eggs across treatments. Dam and sire identity influenced embryo mortality, time until hatching and composition of egg-associated microbiotas, but no link between bacterial communities on milt and on fertilized eggs could be found. Elevated resources increased embryo mortality and modified bacterial communities with a shift in their putative functional potential. Resource availability did not significantly affect any parental effects on embryo performance. Sire identity affected bacterial diversity that turned out to be a significant predictor of hatching time: embryos associated with high bacterial diversity hatched later. We conclude that both host genetics and the availability of resources define diversity and composition of egg-associated bacterial communities that then affect the life history of their hosts. © 2016 John Wiley & Sons Ltd.
Embryo yield in dairy cattle after superovulation with Folltropin or Pluset.
Mikkola, M; Taponen, J
2017-01-15
Two commercial FSH products were compared in a retrospective study on 3990 commercial superovulations and embryo recoveries in dairy heifers and cows. In addition, the 56-day nonreturn rate of 19,400 embryos produced with these two preparations was analyzed. Embryo collections were performed during a 16-year period from donors of Holstein and Ayrshire breeds. Folltropin (Vetoquinol S.A., Lure cedex, France) group (Group F) consisted of 2592 superovulations, of which 80% were performed on heifers and 20% on cows, and Pluset (Laboratorios Calier, S.A., Barcelona, Spain) group (Group P) of 1398 treatments, of which 66% and 34% were on heifers and cows, respectively. Total number of recovered structures, number of transferable embryos, and the proportion of unfertilized ova (UFO) and degenerated embryos were analyzed. Distribution of embryos into quality grades (1-3) and developmental stages (4-9) according to the IETS classification guidelines and means for each collection were evaluated. The proportion of low-responders having fewer than five corpora lutea and yielding fewer than five embryos or ova was investigated for each treatment. Group P yielded 1.1 recovered structures more than Group F (P < 0.001). Consequently, however, the number of transferable embryos did not differ among the groups, being 7.0 and 7.1 in Groups F and P, respectively. Instead, there was an increase in the number of UFO from 2.0 in Group F to 3.0 in Group P (P < 0.001). The quality of embryos and the developmental stages were similar between the groups and there was no difference in the proportion of low-responding donors in Group F and Group P. Also, there was no difference in the nonreturn rate after transfer of embryos originating from donors superovulated with Folltropin or Pluset. It was concluded that equal numbers of transferable embryos and pregnancies can be achieved with Folltropin and Pluset. Copyright © 2016 Elsevier Inc. All rights reserved.
Mehaisen, Gamal Mohamed Kamel; Saeed, Ayman Moustafa
2015-02-01
This study aimed to investigate the effect of melatonin supplementation at different levels in culture medium on embryo development in rabbits. Embryos of 2-4 cells, 8-16 cells and morula stages were recovered from nulliparous Red Baladi rabbit does by laparotomy technique 24, 48 and 72 h post-insemination, respectively. Normal embryos from each stage were cultured to hatched blastocyst stages in either control culture medium (TCM-199 + 20% fetal bovine serum) or control supplemented with melatonin at 10(-3) M, 10(-6) M or 10(-9) M. No effect of melatonin was found on development of embryos recovered at 24 h post-insemination. The high level of melatonin at 10(-3) M adversely affected the in vitro development rates of embryos recovered at 48 h post-insemination (52 versus 86, 87 and 80% blastocyst rate; 28 versus 66, 78 and 59% hatchability rate for 10(-3) M versus 10(-9) M, 10(-6) M and control, respectively, P< 0.05). At the morula stage, melatonin at 10-3 M significantly increased the in vitro development of embryos (92% for 10(-3) M versus 76% for control, P < 0.05), while the hatchability rate of these embryos was not improved by melatonin (16-30% versus 52% for melatonin groups versus control, P < 0.05). Results show that a moderate level of melatonin (10(-6) M) may improve the development and hatchability rates of preimplantation rabbit embryos. The addition of melatonin at a 10-3 M concentration enhances the development of rabbit morulae but may negatively affect the development of earlier embryos. More studies are needed to optimize the use of melatonin in in vitro embryo culture in rabbits.
Lee, Abigail H; Eme, John; Mueller, Casey A; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y
2016-04-01
Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2°C, 5°C or 8°C water) and weekly, 1-h heat shocks (+3°C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148d at 2°C, 92d at 5°C, 50d at 8°C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3°C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8°C and 5°C embryos were significantly smaller and had larger yolks than 2°C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.
Manipulating the Mitochondrial Genome To Enhance Cattle Embryo Development
Srirattana, Kanokwan; St. John, Justin C.
2017-01-01
The mixing of mitochondrial DNA (mtDNA) from the donor cell and the recipient oocyte in embryos and offspring derived from somatic cell nuclear transfer (SCNT) compromises genetic integrity and affects embryo development. We set out to generate SCNT embryos that inherited their mtDNA from the recipient oocyte only, as is the case following natural conception. While SCNT blastocysts produced from Holstein (Bos taurus) fibroblasts were depleted of their mtDNA, and oocytes derived from Angus (Bos taurus) cattle possessed oocyte mtDNA only, the coexistence of donor cell and oocyte mtDNA resulted in blastocysts derived from nondepleted cells. Moreover, the use of the reprogramming agent, Trichostatin A (TSA), further improved the development of embryos derived from depleted cells. RNA-seq analysis highlighted 35 differentially expressed genes from the comparison between blastocysts generated from nondepleted cells and blastocysts from depleted cells, both in the presence of TSA. The only differences between these two sets of embryos were the presence of donor cell mtDNA, and a significantly higher mtDNA copy number for embryos derived from nondepleted cells. Furthermore, the use of TSA on embryos derived from depleted cells positively modulated the expression of CLDN8, TMEM38A, and FREM1, which affect embryonic development. In conclusion, SCNT embryos produced by mtDNA depleted donor cells have the same potential to develop to the blastocyst stage without the presumed damaging effect resulting from the mixture of donor and recipient mtDNA. PMID:28500053
Parental genetic material and oxygen concentration affect hatch dynamics of mouse embryo in vitro.
Zhan, Shaoquan; Cao, Shanbo; Du, Hongzi; Sun, Yuan; Li, Li; Ding, Chenhui; Zheng, Haiyan; Huang, Junjiu
2018-04-21
Hatching is crucial for mammalian embryo implantation, since difficulties during this process can lead to implantation failure, ectopic pregnancy and consequent infertility. Despite years of intensive researches, how internal and external factors affecting embryo hatch are still largely unclear. The effects of parental genetic material and oxygen concentration on hatch process were examined. Fertilized and parthenogenetic mouse preimplantation embryos were cultured in vitro under 5 and 20% oxygen for 120 h. Zona pellucida drilling by Peizo micromanipulation were performed to resemble the breach by sperm penetration. Firstly, parthenogenetic embryos had similarly high blastocyst developmental efficiency as fertilized embryos, but significantly higher hatch ratio than fertilized embryos in both O 2 concentrations. 5% O 2 reduced the hatch rate of fertilized embryos from 58.2 to 23.8%, but increased that of parthenogenetic embryos from 81.2 to 90.8% significantly. Analogously, 5% O 2 decreased the ratio of Oct4-positive cells in fertilized blastocysts, whereas increased that in parthenogenetic blastocysts. Additionally, 5% O 2 increased the total embryonic cell number in both fertilized and parthegenetic embryos, when compared to 20% O 2 , and the total cell number of fertilized embryos was also higher than that of parthegenetic embryos, despite O 2 concentration. Real-time PCR revealed that the expression of key genes involving in MAPK pathway and superoxide dismutase family might contribute to preimplantation development and consequent blastocyst hatch in vitro. Finally, we showed that fertilized and parthenogenetic embryos have diverse hatch dynamics in vitro, although the zona pellucida integrity is not the main reason for their mechanistic differences. Both parental genetic material and O 2 concentration, as the representative of intrinsic and extrinsic factors respectively, have significant impacts on mouse preimplantation development and subsequent hatch dynamics, probably by regulating the gene expression involving in MAPK pathway and superoxide dismutase family to control embryonic cell proliferation and allocation of ICM cells.
Tang, Wenqi; Zhao, Bo; Chen, Ye; DU, Weiguo
2018-01-01
The response of embryos to unpredictable hypoxia is critical for successful embryonic development, yet there remain significant gaps in our understanding of such responses in reptiles with different types of egg shell. We experimentally generated external regional hypoxia by sealing either the upper half or bottom half of the surface area of eggs in 2 species of reptiles (snake [Lycodon rufozonatum] with parchment egg shell and Chinese soft-shelled turtle [Pelodiscus sinensis] with rigid egg shell), then monitored the growth pattern of the opaque white patch in turtle eggs (a membrane that attaches the embryo to the egg shell and plays an important role in gas exchange), the embryonic heart rate, the developmental rate and the hatchling traits in turtle and snake eggs in response to external regional hypoxia. The snake embryos from the hypoxia treatments facultatively increased their heart rate during incubation, and turtle embryos from the upper-half hypoxia treatment enhanced their growth of the opaque white patch. Furthermore, the incubation period and hatching success of embryos were not affected by the hypoxia treatment in these 2 species. External regional hypoxia significantly affected embryonic yolk utilization and offspring size in the snake and turtle. Compared to sham controls, embryos from the upper-half hypoxia treatment used less energy from yolk and, therefore, developed into smaller hatchlings, but embryos from the bottom-half hypoxia treatment did not. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Dahiya, Mona; Rupani, Karishma; Yu, Su Ling; Fook-Chong, Stephanie M C; Siew Fui, Diana Chia; Rajesh, Hemashree
2017-05-01
The aim of this study is to compare the serum β-hCG values post transfer of a cleavage stage embryo versus a blastocyst stage embryo at equal time intervals post oocyte retrieval (OR) in clinically pregnant patients, and to ascertain a β-hCG value to predict pregnancy outcomes. This is a retrospective cohort study of 560 women with clinical pregnancy who underwent an embryo transfer performed at either the cleavage stage or the blastocyst stage of embryo development between January 2003 and June 2014 at the Center for Assisted Reproduction (CARE), Singapore General Hospital. The serum β-hCG level was measured on day 17 post OR. The β-hCG values were not significantly different in the cleavage stage versus the blastocyst stage embryos (mean±SD: 387±486IU/L D3 vs. 352±268IU/L D5, p=0.96, median value 297 in both groups). Our study suggests that the initial maternal serum β-hCG values were not affected by the day of transfer of the embryos since assessing the β-hCG at equivalent points after transfer should not lead to a significant difference assuming the progress and development of the embryos occurred as expected. Copyright © 2017 Elsevier B.V. All rights reserved.
Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik
2012-01-01
Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development. PMID:23227157
Yang, Feikun; Hao, Ru; Kessler, Barbara; Brem, Gottfried; Wolf, Eckhard; Zakhartchenko, Valeri
2007-01-01
The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres from in vivo fertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF, P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that in in vivo fertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo derived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and may be a useful epigenetic mark to predict efficiency of SCNT in rabbits.
Single layer centrifugation-selected boar spermatozoa are capable of fertilization in vitro
2013-01-01
Background Good quality spermatozoa are important to achieve fertilization, viable embryos and offspring. Single Layer Centrifugation (SLC) through a colloid (Androcoll-P) selects good quality spermatozoa. However, it has not been established previously whether porcine spermatozoa selected by this method maintain their fertility. Methods The semen was prepared either by SLC or by standard centrifugation (control) and used for in vitro fertilization (IVF) at oocyte:spermatozoa ratios of 1:50; 1:100 and 1:300 (or 4 x 103, 8 x 103 and 24 x 103 spermatozoa/ml) to evaluate their subsequent ability to generate blastocysts. In addition, sperm motility was assessed by computer assisted sperm motility analysis. Results Total and progressive motility were significantly higher in sperm samples prepared by SLC compared to uncentrifuged samples. Sperm binding ability, polyspermy, cleavage and blastocyst rates were affected by the oocyte:sperm ratio, but not by sperm treatment. Conclusion The use of SLC does not adversely affect the in vitro fertilizing and embryo-generating ability of the selected spermatozoa compared to their unselected counterparts, but further modifications in the IVF conditions would be needed to improve the monospermy in IVF systems. Since SLC did not appear to have a negative effect on sperm fertilizing ability, and may in fact select for spermatozoa with a greater potential for fertilization, an in vivo trial to determine the usefulness of this sperm preparation technique prior to artificial insemination is warranted. PMID:23497680
Clinical efficiency of Piezo-ICSI using micropipettes with a wall thickness of 0.625 μm.
Hiraoka, Kenichiro; Kitamura, Seiji
2015-12-01
The purposes of the present study are to assess the clinical efficiency of Piezo-intracytoplasmic sperm injection (ICSI) and to improve the Piezo-ICSI method for human oocytes. We examined three ICSI methods to determine their clinical efficiency by comparing the survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates. The three ICSI methods tested were conventional ICSI (CI) (using beveled spiked micropipettes with a wall thickness of 1 μm), conventional Piezo-ICSI (CPI) (using flat-tipped micropipettes with a wall thickness of 0.925 μm), and improved Piezo-ICSI (IPI) (using flat-tipped micropipettes with a wall thickness of 0.625 μm). We collectively investigated 2020 mature oocytes retrieved from 437 patients between October 2010 and January 2014. The survival rates after CI, CPI, and IPI were 90, 95, and 99 %, respectively. The fertilization rates after CI, CPI, and IPI were 68, 75, and 89 %, respectively. The good-quality day-3 embryo rates after CI, CPI, and IPI were 37, 43, and 55 %, respectively. The pregnancy rates after the transfer of good-quality day-3 embryo of CI, CPI, and IPI were 19, 21, and 31 %, respectively. The live birth rates of CI, CPI, and IPI were 15, 16, and 25 %, respectively. Significantly higher survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates were obtained using IPI. When comparing the IPI to the CI and CPI, the results revealed that the Piezo-ICSI using flat-tipped micropipettes with a wall thickness of 0.625 μm significantly improves survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates.
SURVIVAL OF STEELHEAD TROUT (SALMO GAIRDNERI) EGGS, EMBRYOS, AND FRY IN AIR-SUPERSATURATED WATER
Egg, embryo, fry, and swim-up stages of steelhead trout (Salmo gairdneri) were exposed to water at total gas saturation levels ranging from 130 to 115%. Eggs, embryos, and newly hatched fry were not affected at 126.7%, but at about day 16 posthatch when the fish began swimming up...
Zhang, Yan-Li; Zhang, Guo-Min; Jia, Ruo-Xin; Wan, Yong-Jie; Yang, Hua; Sun, Ling-Wei; Han, Le; Wang, Feng
2018-01-01
Pre-implantation embryo metabolism demonstrates distinctive characteristics associated with the development potential of embryos. We aim to determine if metabolic differences correlate with embryo morphology. In this study, gas chromatography - mass spectroscopy (GC-MS)-based metabolomics was used to assess the culture media of goat cloned embryos collected from high-quality (HQ) and low-quality (LQ) groups based on morphology. Expression levels of amino acid transport genes were further examined by quantitative real-time PCR. Results showed that the HQ group presented higher percentages of blastocysts compared with the LQ counterparts (P < 0.05). Metabolic differences were also present between HQ and LQ groups. The culture media of the HQ group showed lower levels of valin, lysine, glutamine, mannose and acetol, and higher levels of glucose, phytosphingosine and phosphate than those of the LQ group. Additionally, expression levels of amino acid transport genes SLC1A5 and SLC3A2 were significantly lower in the HQ group than the LQ group (P < 0.05, respectively). To our knowledge, this is the first report which uses GC-MS to detect metabolic differences in goat cloned embryo culture media. The biochemical profiles may help to select the most in vitro viable embryos. © 2017 Japanese Society of Animal Science.
Kerjean, A; Poirot, C; Epelboin, S; Jouannet, P
1999-06-01
Genital tract abnormalities and adverse pregnancy outcome are well known in women exposed in utero to diethylstilboestrol (DES). Data about adverse reproductive performance in women exposed to DES have been published, including controversial reports of menstrual dysfunction, poor responses after ovarian stimulation, oocyte maturation and fertilization abnormalities. We compared oocyte quality, in-vitro fertilization results and embryo quality for women exposed in utero to DES with a control group. Between 1989 and 1996, 56 DES-exposed women who had 125 in-vitro fertilization (IVF) attempts were retrospectively compared to a control group of 45 women with tubal disease, who underwent 73 IVF attempts. Couples suffering from male infertility were excluded. The parameters compared were oocyte quality (maturation abnormalities, immature oocyte, mature oocyte), fertilization and cleavage rate (per treated and metaphase II oocytes), and embryo quality (number and grade). We found no significant difference in oocyte maturational status, fertilization rates, cleavage rates, embryo quality and development between DES-exposed subjects and control subjects. These results suggest that in-utero exposure to DES has no significant influence on oocyte quality and fertilization ability as judged during IVF attempts.
Gallardo, Miguel; Hebles, María; Migueles, Beatriz; Dorado, Mónica; Aguilera, Laura; González, Mercedes; Piqueras, Paloma; Lucas, Alejandro; Montero, Lorena; Sánchez-Martín, Pascual; Sánchez-Martín, Fernando; Risco, Ramón
2017-03-01
Hydroxypropyl cellulose (HPC), a polysaccharide that forms a viscous gel under low temperatures, is a promising substitute of the blood-derived macromolecules traditionally used in cryopreservation solutions. The performance of a protein-free, fully synthetic set of vitrification and warming solutions was assessed in a matched pair analysis with donor oocytes. A prospective study including 219 donor MII oocytes was carried out, comparing the laboratory outcomes of oocytes vitrified with HPC-based solutions and their fresh counterparts. The primary performance endpoint was the fertilization rate. Secondary parameters assessed were embryo quality on days 2 and 3. 70/73 (95.9%) vitrified MII oocytes exhibited morphologic survival 2 h post-warming, with 49 (70.0%) presented normal fertilization, compared to 105 of 146 (71.9%) MII fresh oocytes. Similar embryo quality was observed in both groups. A total of 18 embryos implanted, out of 38 embryos transferred (47.3%), resulting in 13 newborns.
Culture without the petri-dish.
Thompson, Jeremy G
2007-01-01
Automation of oocyte maturation and embryo production techniques is a new and exciting development in the field of reproductive technologies. There are two areas where increased automation is having an impact: in the area of embryo diagnostics and in the process of embryo production itself. Benefits include decreased staffing and skill requirements for production and assessment of embryos, as well as increasing quality management systems by removing the "human" factor. However, the uptake of new technologies is likely to be slow, as costs and the conservative nature of the Assisted Reproduction Technology industry to adopt new techniques.
Babić, Sanja; Barišić, Josip; Višić, Hrvoje; Sauerborn Klobučar, Roberta; Topić Popović, Natalija; Strunjak-Perović, Ivančica; Čož-Rakovac, Rozelindra; Klobučar, Göran
2017-05-15
Wastewater treatment plant (WWTP) effluents are often complex mixtures of various organic and inorganic substances. Quality control of wastewaters and sludges has been regulated with measuring several physico-chemical parameters and sometimes using biological methods with non-specific responses, while synergistic action mechanisms of contaminants in such complex mixtures is still unknown. Toxic effects of wastewaters within and downstream of the WWTP in City of Virovitica, Croatia, were tested on zebrafish Danio rerio using a set of biomarkers that enabled an insight in wastewaters toxic potential on embryos at the cellular, tissue and the whole organism level during an early ontogenesis (24 and 48 hpf). Exposure of embryos to the wastewater samples from WWTP Virovitica increased mortality and abnormality rate. Heart rate, spontaneous movements and pigmentation formation were also markedly affected. Biochemical markers confirmed the presence of MXR inhibitors in all tested wastewater samples, indicating the increase of pollutant accumulation in the cell/organism. Also, a tendency of DNA damage decrease measured with Comet assay was evident in wastewater samples downstream from WWTP although control levels were not reached in any environmental sample. Histopathological analysis showed that exposure to tested samples resulted in impaired muscle organization, notochord malformation and retardation in eye and brain development at embryos 48 hpf. Furthermore, semi-quantitative histopathology assessment indicated increased percentage of embryo defects in river water sampled several kilometers downstream from the WWTP, confirming toxic potential of WWTP effluents. Extension of the zebrafish embryotoxicity test (ZET) with biochemical and histopathological biomarkers could serve as a guiding principle in biomonitoring of wastewater contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Factors affecting survivability of transferred whole and demi-embryos in a commercial dairy herd.
Arave, C W; Bunch, T D; Mickelsen, C H; Warnick, K
1987-09-01
Sixty Holstein donor cows were superovulated and embryos were collected during a 6-d (27 cows) and a 4-d (33 cows) period approximately 60 d apart. Forty-three donor cows yielded embryos. Ninety-one embryos graded 1 or 2 were split and transferred to 181 recipient Holsteins. Demi-embryos were graded 2, 2-, 3 and 3- prior to transfer. Pregnancy and calving percentages were similar for all demi-embryo grades, averaging 59 and 53% from the two donor groups, respectively. Twin demi-embryo pregnancies averaged 36 and 19% for embryos split at the compacted morula and blastocyst stages, respectively. Twin demi-embryo calvings averaged 30 and 15% for these same groups. Progesterone levels of recipients (of either whole or demi-embryos) of second period donors were measured. Pregnancy rate increased generally with level of progesterone; however, calving percentage was slightly greater for recipients with intermediate levels of progesterone (2-6 ng/ml). Multiparous cow (20) recipients of demi-embryos had 45% pregnancy and 40% calving, while nulliparous heifer (161) recipients averaged 59 and 53% pregnancy and calving, respectively.
Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve.
Tong, Jing; Sheng, Shile; Sun, Yun; Li, Huihui; Li, Wei-Ping; Zhang, Cong; Chen, Zi-Jiang
2017-04-01
Good-quality oocytes are critical for the success of in vitro fertilization (IVF), but, to date, there is no marker of ovarian reserve available that can accurately predict oocyte quality. Melatonin exerts its antioxidant actions as a strong radical scavenger that might affect oocyte quality directly as it is the most potent antioxidant in follicular fluid. To investigate the precise role of endogenous melatonin in IVF outcomes, we recruited 61 women undergoing treatment cycles of IVF or intracytoplasmic sperm injection (ICSI) procedures and classified them into three groups according to their response to ovarian stimulation. Follicular fluid was collected to assess melatonin levels using a direct RIA method. We found good correlations between melatonin levels in follicular fluid with age, anti-Müllerian hormone (AMH) and baseline follicle-stimulating hormone (bFSH), all of which have been used to predict ovarian reserve. Furthermore, as melatonin levels correlated to IVF outcomes, higher numbers of oocytes were collected from patients with higher melatonin levels and consequently the number of oocytes fertilized, zygotes cleaved, top quality embryos on D3, blastocysts obtained and embryos suitable for transplantation was higher. The blastocyst rate increased in concert with the melatonin levels across the gradient between the poor response group and the high response group. These results demonstrated that the melatonin levels in follicular fluid is associated with both the quantity and quality of oocytes and can predict IVF outcomes as well making them highly relevant biochemical markers of ovarian reserve. © 2017 Society for Reproduction and Fertility.
A potential non-invasive approach to evaluating blastocyst quality using biodynamic imaging
NASA Astrophysics Data System (ADS)
Li, Zhe; Ehmke, Natalie; Machaty, Zoltan; Nolte, David
2018-02-01
Biodynamic imaging (BDI) is capable of capturing the intracellular dynamics of blastocysts within a relatively short time. Spectroscopic signatures of embryos in the 0.01 Hz - 1 Hz range display responses to external factors before morphology changes take place. Viability evaluation is consistent with results from other non-invasive methods. Biodynamic imaging is a potential tool for selecting high quality embryos in clinical IVF practices.
Costs and Benefits to Pregnant Male Pipefish Caring for Broods of Different Sizes
Sagebakken, Gry; Ahnesjö, Ingrid; Kvarnemo, Charlotta
2016-01-01
Trade-offs between brood size and offspring size, offspring survival, parental condition or parental survival are classic assumptions in life history biology. A reduction in brood size may lessen these costs of care, but offspring mortality can also result in an energetic gain, if parents are able to utilize the nutrients from the demised young. Males of the broad-nosed pipefish (Syngnathus typhle) care for the offspring by brooding embryos in a brood pouch. Brooding males can absorb nutrients that emanate from embryos, and there is often a reduction in offspring number over the brooding period. In this study, using two experimentally determined brood sizes (partially and fully filled brood pouches), we found that full broods resulted in larger number of developing offspring, despite significantly higher absolute and relative embryo mortality, compared to partial broods. Male survival was also affected by brood size, with males caring for full broods having poorer survival, an effect that together with the reduced embryo survival was found to negate the benefit of large broods. We found that embryo mortality was lower when the brooding males were in good initial condition, that embryos in broods with low embryo mortality weighed more, and surprisingly, that males in higher initial condition had embryos of lower weight. Brood size, however, did not affect embryo weight. Male final condition, but not initial condition, correlated with higher male survival. Taken together, our results show costs and benefits of caring for large brood sizes, where the numerical benefits come with costs in terms of both embryo survival and survival of the brooding father, effects that are often mediated via male condition. PMID:27243937
Burruel, Victoria; Klooster, Katie L.; Chitwood, James; Ross, Pablo J.; Meyers, Stuart A.
2013-01-01
ABSTRACT Our objective was to determine whether oxidative damage of rhesus macaque sperm induced by reactive oxygen species (ROS) in vitro would affect embryo development following intracytoplasmic sperm injection (ICSI) of metaphase II (MII) oocytes. Fresh rhesus macaque spermatozoa were treated with ROS as follows: 1 mM xanthine and 0.1 U/ml xanthine oxidase (XXO) at 37°C and 5% CO2 in air for 2.25 h. Sperm were then assessed for motility, viability, and lipid peroxidation. Motile ROS-treated and control sperm were used for ICSI of MII oocytes. Embryo culture was evaluated for 3 days for development to the eight-cell stage. Embryos were fixed and stained for signs of cytoplasmic and nuclear abnormalities. Gene expression was analyzed by RNA-Seq in two-cell embryos from control and treated groups. Exposure of sperm to XXO resulted in increased lipid peroxidation and decreased sperm motility. ICSI of MII oocytes with motile sperm induced similar rates of fertilization and cleavage between treatments. Development to four- and eight-cell stage was significantly lower for embryos generated with ROS-treated sperm than for controls. All embryos produced from ROS-treated sperm demonstrated permanent embryonic arrest and varying degrees of degeneration and nuclear fragmentation, changes that are suggestive of prolonged senescence or apoptotic cell death. RNA-Seq analysis of two-cell embryos showed changes in transcript abundance resulting from sperm treatment with ROS. Differentially expressed genes were enriched for processes associated with cytoskeletal organization, cell adhesion, and protein phosphorylation. ROS-induced damage to sperm adversely affects embryo development by contributing to mitotic arrest after ICSI of MII rhesus oocytes. Changes in transcript abundance in embryos destined for mitotic arrest is evident at the two-cell stage of development. PMID:23904511
Flewelling, Sarena; Parker, Scott L
2015-08-01
Development of reptile embryos is dependent upon adequate oxygen availability to meet embryonic metabolic demand. Metabolic rate of embryos is temperature dependent, with oxygen consumption increasing exponentially as a function of temperature. Because metabolic rate is more temperature sensitive than diffusion, developmental processes are predicted to be oxygen-limited at high temperatures. We tested the hypothesis that the amount of development lizard embryos achieve in the oviduct is dependent upon both temperature and oxygen availability. We evaluated the effect of temperature (23, 33°C) and oxygen concentration (9%, 15%, 21% O2 ) on survival and development of embryos of the oviparous skink Scincella lateralis. We predicted that incubation at 33°C under hypoxic conditions would result in higher embryo mortality due to mismatch between embryo oxygen demand and oxygen supply compared to eggs incubated at 23°C under hypoxic conditions. Embryo mortality was highest at 33°C/9% O2 (86%) compared to 23°C/9% O2 (14%), however, mortality did not differ among any other oxygen-temperature treatment combination. Both temperature and oxygen affected differentiation, but the interaction between temperature and oxygen was not significant. Embryo growth in mass and hatchling mass were affected by oxygen concentration independent of temperature treatment. Differing responses of growth and differentiation to temperature and oxygen treatments suggests that somatic growth may be more sensitive to oxygen availability than differentiation. Results indicate that embryo mortality can occur both via the direct effect of high temperature on cellular function as well as indirectly through thermally induced oxygen diffusion limitation. © 2015 Wiley Periodicals, Inc.
Angel, M A; Gil, M A; Cuello, C; Sanchez-Osorio, J; Gomis, J; Parrilla, I; Vila, J; Colina, I; Diaz, M; Reixach, J; Vazquez, J L; Vazquez, J M; Roca, J; Martinez, E A
2014-04-01
This study aimed to evaluate the effectiveness of superovulation protocols in improving the efficiency of embryo donors for porcine nonsurgical deep-uterine (NsDU) embryo transfer (ET) programs. After weaning (24 hours), purebred Duroc sows (2-6 parity) were treated with 1000 IU (n = 27) or 1500 IU (n = 27) of eCG. Only sows with clear signs of estrus 4 to 72 hours after eCG administration were treated with 750 IU hCG at the onset of estrus. Nonhormonally treated postweaning estrus sows (n = 36) were used as a control. Sows were inseminated and subjected to laparotomy on Days 5 to 6 (Day 0 = onset of estrus). Three sows (11.1%) treated with the highest dosage of eCG presented with polycystic ovaries without signs of ovulation. The remaining sows from nonsuperovulated and superovulated groups were all pregnant, with no differences in fertilization rates among groups. The number of CLs and viable embryos was higher (P < 0.05) in the superovulated groups compared with the controls and increased (P < 0.05) with increasing doses of eCG. There were no differences among groups in the number of oocytes and/or degenerated embryos. The number of transferable embryos (morulae and unhatched blastocysts) obtained in pregnant sows was higher (P < 0.05) in the superovulated groups than in the control group. In all groups, there was a significant correlation between the number of CLs and the number of viable and transferable embryos, but the number of CLs and the number of oocytes and/or degenerated embryos were not correlated. A total of 46 NsDU ETs were performed in nonhormonally treated recipient sows, with embryos (30 embryos per transfer) recovered from the 1000-IU eCG, 1500-IU eCG, and control groups. In total, pregnancy and farrowing rates were 75.1% and 73.2%, respectively, with a litter size of 9.4 ± 0.6 piglets born, of which 8.8 ± 0.5 were born alive. There were no differences for any of the reproductive parameters evaluated among groups. In conclusion, our results demonstrated the efficiency of eCG superovulation treatments in decreasing the donor-to-recipient ratio. Compared with nonsuperovulated sows, the number of transferable embryos was increased in superovulated sows without affecting their quality and in vivo capacity to develop to term after transfer. The results from this study also demonstrate the effectiveness of the NsDU ET procedure used, making possible the commercial use of ET technology by the pig industry. Copyright © 2014 Elsevier Inc. All rights reserved.
Fisher, M C; Zeisel, S H; Mar, M H; Sadler, T W
2001-08-01
Choline is an essential nutrient in methylation, acetylcholine and phospholipid biosynthesis, and in cell signaling. The demand by an embryo or fetus for choline may place a pregnant woman and, subsequently, the developing conceptus at risk for choline deficiency. To determine whether a disruption in choline uptake and metabolism results in developmental abnormalities, early somite staged mouse embryos were exposed in vitro to either an inhibitor of choline uptake and metabolism, 2-dimethylaminoethanol (DMAE), or an inhibitor of phosphatidylcholine synthesis, 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH(3)). Cell death following inhibitor exposure was investigated with LysoTracker Red and histology. Embryos exposed to 250-750 microM DMAE for 26 hr developed craniofacial hypoplasia and open neural tube defects in the forebrain, midbrain, and hindbrain regions. Embryos exposed to 125-275 microM ET-18-OCH(3) exhibited similar defects or expansion of the brain vesicles. ET-18-OCH(3)-affected embryos also had a distended neural tube at the posterior neuropore. Embryonic growth was reduced in embryos treated with either DMAE (375, 500, and 750 microM) or ET-18-OCH(3) (200 and 275 microM). Whole mount staining with LysoTracker Red and histological sections showed increased areas of cell death in embryos treated with 275 microM ET-18-OCH(3) for 6 hr, but there was no evidence of cell death in DMAE-exposed embryos. Inhibition of choline uptake and metabolism during neurulation results in growth retardation and developmental defects that affect the neural tube and face. Copyright 2001 Wiley-Liss, Inc.
Tate, Kevin B.; Rhen, Turk; Eme, John; Kohl, Zachary F.; Crossley, Janna; Elsey, Ruth M.
2016-01-01
During embryonic development, environmental perturbations can affect organisms' developing phenotype, a process known as developmental plasticity. Resulting phenotypic changes can occur during discrete, critical windows of development. Critical windows are periods when developing embryos are most susceptible to these perturbations. We have previously documented that hypoxia reduces embryo size and increases relative heart mass in American alligator, and this study identified critical windows when hypoxia altered morphological, cardiovascular function and cardiac gene expression of alligator embryos. We hypothesized that incubation in hypoxia (10% O2) would increase relative cardiac size due to cardiac enlargement rather than suppression of somatic growth. We exposed alligator embryos to hypoxia during discrete incubation periods to target windows where the embryonic phenotype is altered. Hypoxia affected heart growth between 20 and 40% of embryonic incubation, whereas somatic growth was affected between 70 and 90% of incubation. Arterial pressure was depressed by hypoxic exposure during 50–70% of incubation, whereas heart rate was depressed in embryos exposed to hypoxia during a period spanning 70–90% of incubation. Expression of Vegf and PdgfB was increased in certain hypoxia-exposed embryo treatment groups, and hypoxia toward the end of incubation altered β-adrenergic tone for arterial pressure and heart rate. It is well known that hypoxia exposure can alter embryonic development, and in the present study, we have identified brief, discrete windows that alter the morphology, cardiovascular physiology, and gene expression in embryonic American alligator. PMID:27101296
Analysis of Follicular Fluid Retinoids in Women Undergoing In Vitro Fertilization
Pauli, Samuel A.; Session, Donna R.; Shang, Weirong; Easley, Kirk; Wieser, Friedrich; Taylor, Robert N.; Pierzchalski, Keely; Napoli, Joseph L.; Kane, Maureen A.
2013-01-01
Retinol (ROL) and its biologically active metabolite, all-trans retinoic acid (ATRA), are essential for a number of reproductive processes. However, there is a paucity of information regarding their roles in ovarian folliculogenesis, oocyte maturation, and early embryogenesis. The objectives of this study were to quantify and compare peripheral plasma (PP) and follicular fluid (FF) retinoid levels, including ATRA in women undergoing in vitro fertilization (IVF) and to investigate the relationship between retinoid levels and embryo quality. Retinoid levels were evaluated in PP and FF from 79 women undergoing IVF at the time of oocyte retrieval and corresponding embryo quality assessed on a daily basis after retrieval for 3 days until uterine transfer. Analysis compared the retinoid levels with day 3 embryo grades and between endometriosis versus control patients. Results demonstrated distinctive levels of retinoid metabolites and isomers in FF versus PP. There was a significantly larger percentage of high-quality grade I embryos derived from the largest versus smallest follicles. An increase in follicle size also correlated with a >50% increase in FF ROL and ATRA concentrations. Independent of follicle size, FF yielding grade I versus nongrade I embryos showed higher mean levels of ATRA but not ROL. In a nested case–control analysis, control participants had 50% higher mean levels of ATRA in their FF and PP than women with endometriosis. These findings strongly support the proposition that ATRA plays a fundamental role in oocyte development and quality, and that reduced ATRA synthesis may contribute to decreased fecundity of participants with endometriosis. PMID:23427183
We wanted to choose us: how embryo donors choose recipients for their surplus embryos.
Goedeke, S; Daniels, K
2018-04-01
This study aimed to explore factors affecting donors' choice of recipients for their surplus embryos in the New Zealand context of conditional, known donations. Internationally, embryo donation has a low uptake in spite of large numbers of cryopreserved embryos. Possible reasons include a lack of knowledge about and concern for the future welfare of the resultant offspring. In New Zealand, donors and recipients meet prior to donation and legislation supports disclosure and access to genetic knowledge. Twenty-two embryo donors (10 couples, two individuals) were interviewed between March 2012 and February 2013 about their experiences of donation and factors affecting their donation. Interview data were analysed thematically. In the interests of the welfare of the child resulting from donation, donors were invested in choosing recipients who would make suitable parents. They attempted to choose recipients similar to themselves, as well as those that they trusted to disclose the manner of conception and facilitate agreed-upon information exchange and contact. The interest of donors in ensuring offspring well-being may lend support to conditional forms of open donation, allowing for assessment of recipients' suitability to parent, and for negotiation around information exchange and contact.
Xu, Yangying; Nisenblat, Victoria; Lu, Cuiling; Li, Rong; Qiao, Jie; Zhen, Xiumei; Wang, Shuyu
2018-03-27
Management of women with reduced ovarian reserve or poor ovarian response (POR) to stimulation is one of the major challenges in reproductive medicine. The primary causes of POR remain elusive and oxidative stress was proposed as one of the important contributors. It has been suggested that focus on the specific subpopulations within heterogeneous group of poor responders could assist in evaluating optimal management strategies for these patients. This study investigated the effect of anti-oxidant treatment with coenzyme Q10 (CoQ10) on ovarian response and embryo quality in young low-prognosis patients with POR. This prospective, randomized controlled study included 186 consecutive patients with POR stratified according to the POSEIDON classification group 3 (age < 35, poor ovarian reserve parameters). The participants were randomized to the CoQ10 pre-treatment for 60 days preceding IVF-ICSI cycle or no pre-treatment. The number of high quality embryos was a primary outcome measure. A total of 169 participants were evaluated (76 treated with CoQ10 and 93 controls); 17 women were excluded due to low compliance with CoQ10 administration. The baseline demographic and clinical characteristics were comparable between the groups. CoQ10 pretreatment resulted in significantly lower gonadotrophin requirements and higher peak E2 levels. Women in CoQ10 group had increased number of retrieved oocytes (4, IQR 2-5), higher fertilization rate (67.49%) and more high-quality embryos (1, IQR 0-2); p < 0.05. Significantly less women treated with CoQ10 had cancelled embryo transfer because of poor embryo development than controls (8.33% vs. 22.89%, p = 0.04) and more women from treatment group had available cryopreserved embryos (18.42% vs. 4.3%, p = 0.012). The clinical pregnancy and live birth rates per embryo transfer and per one complete stimulation cycle tended to be higher in CoQ10 group but did not achieve statistical significance. Pretreatment with CoQ10 improves ovarian response to stimulation and embryological parameters in young women with poor ovarian reserve in IVF-ICSI cycles. Further work is required to determine whether there is an effect on clinical treatment endpoints.
Xuan, X J; Xu, C; Zhao, Y R; Wu, K L; Chen, T; Zhang, H B; Li, X; Su, S Z; Ma, G; Tang, R; Sheng, Y; Ma, J L
2016-04-26
To investigate the clinical application of spontaneous acrosome reaction (AR) rate of sperm in predicting the outcome of in-vitro fertilization and embryo transfer (IVF-ET). The spontaneous AR rate of the sperm of patients who underwent IVF-ET treatment in our center during the period from November to December 2014 were studied. The cut-off value from 6% to 12% were set and analyzed its association between the IVF-ET outcomes (including fertility rates, normal fertilization rates and high-quality embryo rates). For those who underwent fresh embryo transplantation, the rates of chemical pregnancy and clinical pregnancy were calculated, and compared the spontaneous AR rates and quantity of acrosomal enzyme according to the pregnancy outcome. There were 202 patients in this study and the mean spontaneous AR rate was 5.99%±5.18%. For patients with the spontaneous AR rate ≥9% versus <9%, the fertility rate, normal fertilization rate and high-quality embryo rate were 81.33% vs 83.85%, 60.53% vs 60.99%, and 51.10% vs 59.67%, respectively, with statistically significant difference in the high-quality embryo rate (P=0.02). For patients who underwent fresh embryo transplantation, when comparison was made between those with spontaneous AR rate ≥8% and those <8%, the rate of chemical pregnancy and clinical pregnancy were 48.57% (17/35) vs 69.64% (78/112) and 37.14% (13/35) vs 63.39% (71/112), respectively, both with statistically significant difference (P=0.02 and P<0.01). The patients with clinical pregnancy had lower spontaneous AR rate than those without clinical pregnancy (5.41%±3.87% vs 7.40%±6.79%, P=0.04), while the quantity of acrosomal enzyme showed no significant difference [(131.79±68.50) vs (153.62±59.59) μU/10(6,) P=0.06]. Logistic regression analysis demonstrated association between spontaneous AR rates and clinical pregnancy (OR=0.93, 95%CI: 0.87-0.99, P=0.03). The spontaneous AR rate of sperm may have clinical significance in predicting the outcome of IVF-ET, as it is reversely correlated with IVF high-quality embryo rate and pregnancy rate. The quantity of acrosomal enzyme may not have significant predictive value for the outcome of IVF.
Should extended blastocyst culture include Day 7?
Hammond, Elizabeth R; Cree, Lynsey M; Morbeck, Dean E
2018-06-01
Extended culture to the blastocyst stage is widely practised, improving embryo selection and promoting single embryo transfer. Selection of useable blastocysts typically occurs on Days 5 and 6 of embryo culture. Embryos not suitable for transfer, biopsy or cryopreservation after Day 6 are routinely discarded. Some embryos develop at a slower rate, however, forming blastocysts on Day 7 of culture. Day 7 blastocysts can be viable, they can be of top morphological grade, euploid and result in a healthy live birth. Since ending culture on Day 6 is current practice in most clinics, viable Day 7 blastocysts may be prematurely discarded. Although Day 7 blastocysts make up only 5% of useable blastocysts, those which are suitable for cryopreservation or biopsy are clinically significant. Overall, culturing embryos an additional day increases the number of useable embryos per IVF cycle and provides further opportunity for pregnancy for patients, especially those who have only a few or low-quality blastocysts.
Gardner, David K
2008-01-01
Improvements in culture media formulations have led to an increase in the ability to maintain the mammalian embryo in culture throughout the preimplantation and pre-attachment period. Amino acids and specific macromolecules have been identified as being key medium components, whereas temporal dynamics have been recognised as important media characteristics. Furthermore, other laboratory factors that directly impact embryo development and viability have been identified. Such factors include the use of a reduced oxygen tension, an appropriate incubation system and an adequate prescreening of all contact supplies. With rigourous quality systems in place, it is possible to obtain in vivo rates of embryo development in vitro using new media formulations while maintaining high levels of embryo viability. The future of embryo culture will likely be based on novel culture chips capable of providing temporal dynamics while facilitating real-time analysis of embryo physiology.
Roberts, Stephen A; Hann, Mark; Brison, Daniel R
2016-02-01
Many studies have identified prognostic factors for IVF treatment outcome; however, little information is available on the mechanism of their action. Embryo-uterus models have the potential to distinguish between factors acting on the embryo directly and those acting through the uterine environment. Here we apply embryo-uterus models to comprehensive UK registry data from two periods, 2000-2005 and 2007-2011, containing 139,444 and 226,542 embryo transfer cycles, respectively. Given this large dataset, the embryo-uterus model is capable of distinguishing between uterine and embryo effects. Maternal age is the predominant predictor of live birth and acts on both the embryo and uterine components, but with larger effects on the embryo. Prolonged embryo culture is associated with greater embryo viability, reflecting the greater degree of selection, but is also associated with greater uterine receptivity. Cryopreserved embryos are less viable and were associated with poorer uterine receptivity. This work suggests that, in addition to the direct effects of in-vitro culture on the embryonic environment during the first few days of the embryo's life, the delay in transfer after extended culture or cryopreservation can lead to an altered uterine environment for the embryo after transfer. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Gamarra, G; Ponsart, C; Lacaze, S; Le Guienne, B; Humblot, P; Deloche, M-C; Monniaux, D; Ponter, A A
2015-11-01
Rapid genetic improvement in cattle requires the production of high numbers of embryos of excellent quality. Increasing circulating insulin and/or glucose concentrations improves ovarian follicular growth, which may improve the response to superovulation. The measurement of anti-Müllerian hormone (AMH) can help predict an animal's response to superovulation treatment. The aim of the present study was to investigate whether increasing circulating insulin concentrations, through propylene glycol (PG) drenches, could improve in vitro embryo production in oestrus-synchronised superovulated heifers with different AMH profiles. Holstein heifers were grouped according to pre-experimental AMH concentrations as low (L) or high (H). The PG drench increased circulating insulin and glucose concentrations and reduced β-hydroxybutyrate and urea concentrations compared with the control group. AMH was a good predictor of follicle and oocyte numbers at ovum pick-up (OPU), and of oocyte and embryo quality (AMH H>AMH L). PG in the AMH H group increased the number of follicles and blastocyst quality above that in the control group, but did not improve these parameters in the AMH L group. These results indicate that short-term oral PG supplementation modifies an animal's metabolic milieu and is effective in improving in vitro embryo production, after superovulation-OPU, more markedly in heifers with high rather than low AMH concentrations.
The evolutionary puzzle of egg size, oxygenation and parental care in aquatic environments.
Braga Goncalves, Ines; Ahnesjö, Ingrid; Kvarnemo, Charlotta
2015-08-22
Offspring fitness generally improves with increasing egg size. Yet, eggs of most aquatic organisms are small. A common but largely untested assumption is that larger embryos require more oxygen than they can acquire through diffusion via the egg surface, constraining egg size evolution. However, we found no detrimental effects of large egg size on embryo growth and survival under hypoxic conditions. We tested this in the broad-nosed pipefish, Syngnathus typhle, whose males provide extensive care (nourishment, osmoregulation and oxygenation) to their young in a brood pouch on their bodies. We took advantage of this species' pronounced variation in egg size, correlating positively with female size, and tested the effect of hypoxia (40% dissolved oxygen) versus fully oxygenated (100%) water on embryo size and survival of large versus small eggs after 18 days of paternal brooding. Egg size did not affect embryo survival, regardless of O2 treatment. While hypoxia affected embryo size negatively, both large and small eggs showed similar reductions in growth. Males in hypoxia ventilated more and males with large eggs swam more, but neither treatment affected their position in the water column. Overall, our results call into question the most common explanation for constrained egg size evolution in aquatic environments. © 2015 The Author(s).
The evolutionary puzzle of egg size, oxygenation and parental care in aquatic environments
Braga Goncalves, Ines; Ahnesjö, Ingrid; Kvarnemo, Charlotta
2015-01-01
Offspring fitness generally improves with increasing egg size. Yet, eggs of most aquatic organisms are small. A common but largely untested assumption is that larger embryos require more oxygen than they can acquire through diffusion via the egg surface, constraining egg size evolution. However, we found no detrimental effects of large egg size on embryo growth and survival under hypoxic conditions. We tested this in the broad-nosed pipefish, Syngnathus typhle, whose males provide extensive care (nourishment, osmoregulation and oxygenation) to their young in a brood pouch on their bodies. We took advantage of this species' pronounced variation in egg size, correlating positively with female size, and tested the effect of hypoxia (40% dissolved oxygen) versus fully oxygenated (100%) water on embryo size and survival of large versus small eggs after 18 days of paternal brooding. Egg size did not affect embryo survival, regardless of O2 treatment. While hypoxia affected embryo size negatively, both large and small eggs showed similar reductions in growth. Males in hypoxia ventilated more and males with large eggs swam more, but neither treatment affected their position in the water column. Overall, our results call into question the most common explanation for constrained egg size evolution in aquatic environments. PMID:26290070
Elements of functional genital asymmetry in the cow.
Trigal, B; Díez, C; Muñoz, M; Caamaño, J N; Goyache, F; Correia-Alvarez, E; Corrales, F J; Mora, M I; Carrocera, S; Martin, D; Gómez, E
2014-01-01
Asymmetry in the cow affects ovarian function and pregnancy. In this work we studied ovarian and uterine asymmetry. Synchronised animals, in which in vitro-produced embryos (n=30-60) had been transferred on Day 5 to the uterine horn ipsilateral to the corpus luteum (CL), were flushed on Day 8. Ovulatory follicle diameter, oestrus response and total protein flushed did not differ between sides. However, a corpus luteum in the right ovary led to plasma progesterone concentrations that were higher than when it was present in the left ovary. Fewer embryos were recovered from the left than the right horn. Among 60 uterine proteins identified by difference gel electrophoresis, relative abundance of nine (acyl-CoA dehydrogenase, very long chain; twinfilin, actin-binding protein, homologue 1; enolase 1; pyruvate kinase isozymes M1/M2 (rabbit); complement factor B Bb fragment ; albumin; fibrinogen gamma-B chain; and ezrin differed (P<0.05) between horns. Glucose concentration was higher, and fructose concentration lower, in the left horn. In a subsequent field trial, pregnancy rates after embryo transfer did not differ between horns (51.0±3.6, right vs 53.2±4.7, left). However, Day 7 blood progesterone concentrations differed (P=0.018) between pregnant and open animals in the left (15.9±1.7 vs 8.3±1.2) but not in the right horn (12.4±1.3 vs 12.4±1.2). Progesterone effects were independent of CL quality (P=0.55). Bilateral genital tract asymmetry in the cow affects progesterone, proteins and hexoses without altering pregnancy rates.
Ubaldi, Filippo Maria; Capalbo, Antonio; Colamaria, Silvia; Ferrero, Susanna; Maggiulli, Roberta; Vajta, Gábor; Sapienza, Fabio; Cimadomo, Danilo; Giuliani, Maddalena; Gravotta, Enrica; Vaiarelli, Alberto; Rienzi, Laura
2015-09-01
Is an elective single-embryo transfer (eSET) policy an efficient approach for women aged >35 years when embryo selection is enhanced via blastocyst culture and preimplantation genetic screening (PGS)? Elective SET coupled with enhanced embryo selection using PGS in women older than 35 years reduced the multiple pregnancy rates while maintaining the cumulative success rate of the IVF programme. Multiple pregnancies mean an increased risk of premature birth and perinatal death and occur mainly in older patients when multiple embryos are transferred to increase the chance of pregnancy. A SET policy is usually recommended in cases of good prognosis patients, but no general consensus has been reached for SET application in the advanced maternal age (AMA) population, defined as women older than 35 years. Our objective was to evaluate the results in terms of efficacy, efficiency and safety of an eSET policy coupled with increased application of blastocyst culture and PGS for this population of patients in our IVF programme. In January 2013, a multidisciplinary intervention involving optimization of embryo selection procedure and introduction of an eSET policy in an AMA population of women was implemented. This is a retrospective 4-year (January 2010-December 2013) pre- and post-intervention analysis, including 1161 and 499 patients in the pre- and post-intervention period, respectively. The primary outcome measures were the cumulative delivery rate (DR) per oocyte retrieval cycle and multiple DR. Surplus oocytes and/or embryos were vitrified during the entire study period. In the post-intervention period, all couples with good quality embryos and less than two previous implantation failures were offered eSET. Embryo selection was enhanced by blastocyst culture and PGS (blastocyst stage biopsy and 24-chromosomal screening). Elective SET was also applied in cryopreservation cycles. Patient and cycle characteristics were similar in the pre- and post-intervention groups [mean (SD) female age: 39.6 ± 2.1 and 39.4 ± 2.2 years; range 36-44] as assessed by logistic regression. A total of 1609 versus 574 oocyte retrievals, 937 versus 350 embryo warming and 138 versus 27 oocyte warming cycles were performed in the pre- and post-intervention periods, respectively, resulting in 1854 and 508 embryo transfers, respectively. In the post-intervention period, 289 cycles were blastocyst stage with (n = 182) or without PGS (n = 107). A mean (SD) number of 2.9 ± 1.1 (range 1-4) and 1.4 ± 0.8 (range 1-3) embryos were transferred pre- and post-intervention, respectively (P < 0.01) and similar cumulative clinical pregnancy rates per transfer and per cycle were obtained: 26.8, 30.9% and 29.7, 26.3%, respectively. The total DR per oocyte retrieval cycle (21.0 and 20.4% pre- and post-intervention, respectively) defined as efficacy was not affected by the intervention [odds ratio (OR) = 0.8, 95% confidence interval (CI) = 0.7-1.1; P = 0.23]. However, a significantly increased live birth rate per transferred embryo (defined as efficiency) was observed in the post-intervention group 17.0 versus 10.6% (P < 0.01). Multiple DRs decreased from 21.0 in the preintervention to 6.8% in the post-intervention group (OR = 0.3. 95% CI = 0.1-0.7; P < 0.01). In this study, the suitability of SET was assessed in individual women on the basis of both clinical and embryological prognostic factors and was not standardized. For the described eSET strategy coupled with an enhanced embryo selection policy, an optimized culture system, cryopreservation and aneuploidy screening programme is necessary. Owing to the increased maternal morbidity and perinatal complications related to multiple pregnancies, it is recommended to extend the eSET policy to the AMA population. As shown in this study, enhanced embryo selection procedures might allow a reduction in the number of embryos transferred and the number of transfers to be performed without affecting the total efficacy of the treatment but increasing efficiency and safety. None. None. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Land, Jolande A; Evers, Johannes L H
2004-05-01
In the course of the present Debate series, several new outcome measures for assisted reproduction have been proposed to encourage the transfer of fewer embryos, in order to diminish the number of multiple pregnancies. The implementation of these recommendations, however, is hampered by the perception that safety and efficacy are communicating vessels: it is presumed that by decreasing the number of embryos transferred, pregnancy rates will decrease as well. Data from national and international registries, however, do not confirm the assumption of the communicating vessels: pregnancy rates tend to be low in countries in which many embryos are transferred, and the highest pregnancy rates occur where the number of embryos per transfer is low. Only top-level clinics (where treatment efficacy is guaranteed) are able to decrease the number of embryos transferred without compromising their pregnancy rate, and to vouch for safety in this way. Elective single embryo transfer (eSET) can never be mandatory in all patients, but the percentage of eSETs performed by a particular assisted reproduction treatment centre does reflect its quality: the ultimate outcome measure of efficacy ánd safety. Therefore, the eSET rate is the most relevant qualifier of performance in assisted reproduction.
Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, Francesco; Bishop, Jack; Lowe, Xiu
2008-10-14
Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cellmore » embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.« less
Valle, Marcello; Guimarães, Fernando; Cavagnoli, Melissa; Sampaio, Marcos; Geber, Selmo
2012-12-01
The role of cryopreservation in assisted reproductive technology programs has increased within the last years allowing the transfer of a limited number of embryos and the storage of the remaining for future use. The reduction in the number of transferred embryos decreases the frequency of multiple pregnancy rates and of ovarian hyperstimulation syndrome while the cumulative pregnancy rate can be maximized. Moreover, as not all embryos will survive the warming process more cleavage stage embryos are warmed to improve selection for transfer. Therefore, surplus good quality cleavage stage embryos and/or blastocysts must be re-vitrified for further transfer to achieve pregnancy. To our knowledge, there have been no reports demonstrating that human embryos can be successfully vitrified/warmed twice at the cleavage stage. Thus we report two successful pregnancies and deliveries of healthy babies after transfer of embryos that were twice vitrified/warmed at 2-4 cells stage. Copyright © 2012 Elsevier Inc. All rights reserved.
Maignien, Chloé; Gayet, Vanessa; Pocate-Cheriet, Khaled; Marcellin, Louis; Chapron, Charles
2018-01-01
Background Controlled ovarian stimulation in assisted reproduction technology (ART) may alters endometrial receptivity by an advancement of endometrial development. Recently, technical improvements in vitrification make deferred frozen-thawed embryo transfer (Def-ET) a feasible alternative to fresh embryo transfer (ET). In endometriosis-related infertility the eutopic endometrium is abnormal and its functional alterations are seen as likely to alter the quality of endometrial receptivity. One question in the endometriosis ART-management is to know whether Def-ET could restore optimal receptivity in endometriosis-affected women leading to increase in pregnancy rates. Objective To compare cumulative ART-outcomes between fresh versus Def-ET in endometriosis-infertile women. Materials and methods This matched cohort study compared def-ET strategy to fresh ET strategy between 01/10/2012 and 31/12/2014. One hundred and thirty-five endometriosis-affected women with a scheduled def-ET cycle and 424 endometriosis-affected women with a scheduled fresh ET cycle were eligible for matching. Matching criteria were: age, number of prior ART cycles, and endometriosis phenotype. Statistical analyses were conducted using univariable and multivariable logistic regression models. Results 135 in the fresh ET group and 135 in the def-ET group were included in the analysis. The cumulative clinical pregnancy rate was significantly increased in the def-ET group compared to the fresh ET group [58 (43%) vs. 40 (29.6%), p = 0.047]. The cumulative ongoing pregnancy rate was 34.8% (n = 47) and 17.8% (n = 24) respectively in the Def-ET and the fresh-ET groups (p = 0.005). After multivariable conditional logistic regression analysis, Def-ET was associated with a significant increase in the cumulative ongoing pregnancy rate as compared to fresh ET (OR = 1.76, CI95% 1.06–2.92, p = 0.028). Conclusion Def-ET in endometriosis-affected women was associated with significantly higher cumulative ongoing pregnancy rates. Our preliminary results suggest that Def-ET for endometriosis-affected women is an attractive option that could increase their ART success rates. Future studies, with a randomized design, should be conducted to further confirm those results. PMID:29630610
Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).
Correia, Sandra M; Canhoto, Jorge M
2010-06-01
The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.
Haimes, E.; Taylor, K.
2009-01-01
BACKGROUND This article reports on an investigation of the views of IVF couples asked to donate fresh embryos for research and contributes to the debates on: the acceptability of human embryonic stem cell (hESC) research, the moral status of the human embryo and embryo donation for research. METHODS A hypothesis-generating design was followed. All IVF couples in one UK clinic who were asked to donate embryos in 1 year were contacted 6 weeks after their pregnancy result. Forty four in-depth interviews were conducted. RESULTS Interviewees were preoccupied with IVF treatment and the request to donate was a secondary consideration. They used a complex and dynamic system of embryo classification. Initially, all embryos were important but then their focus shifted to those that had most potential to produce a baby. At that point, ‘other’ embryos were less important though they later realise that they did not know what happened to them. Guessing that these embryos went to research, interviewees preferred not to contemplate what that might entail. The embryos that caused interviewees most concern were good quality embryos that might have produced a baby but went to research instead. ‘The’ embryo, the morally laden, but abstract, entity, did not play a central role in their decision-making. CONCLUSIONS This study, despite missing those who refuse to donate embryos, suggests that debates on embryo donation for hESC research should include the views of embryo donors and should consider the social, as well as the moral, status of the human embryo. PMID:19502616
Isobe, Tomohiro; Ikebata, Yoshihisa; Do, Lanh Thi Kim; Tanihara, Fuminori; Taniguchi, Masayasu; Otoi, Takeshige
2015-07-01
The optimization of single-embryo culture conditions is very important, particularly in the in vitro production of bovine embryos using the ovum pick-up (OPU) procedure. The purpose of this study was to examine the development of embryos derived from oocytes obtained by OPU that were cultured either individually or in groups in medium supplemented with or without sericin and to investigate the viability of the frozen-thawed embryos after a direct transfer. When two-cell-stage embryos were cultured either individually or in groups for 7 days in CR1aa medium supplemented with or without 0.5% sericin, the rates of development to blastocysts and freezable blastocysts were significantly lower for the embryos cultured individually without sericin than for the embryos cultured in groups with or without sericin. Moreover, the rate of development to freezable blastocysts of the embryos cultured individually with sericin was significantly higher than that of the embryos cultured without sericin. When the frozen-thawed embryos were transferred directly to recipients, the rates of pregnancy, abortion, stillbirth and normal calving in the recipients were similar among the groups, irrespective of the culture conditions and sericin supplementation. Our findings indicate that supplementation with sericin during embryo culture improves the quality of the embryos cultured individually but not the viability of the frozen-thawed embryos after transfer to recipients. © 2014 Japanese Society of Animal Science.
Effect of Short-Term Hypergravity Treatment on Mouse 2-Cell Embryo Development
NASA Astrophysics Data System (ADS)
Ning, Li-Na; Lei, Xiao-Hua; Cao, Yu-Jing; Zhang, Yun-Fang; Cao, Zhong-Hong; Chen, Qi; Duan, En-Kui
2015-11-01
Though there are numerous biological experiments, which have been performed in a space environment, to study the physiological effect of space travel on living organisms, while the potential effect of weightlessness or short-term hypergravity on the reproductive system in most species, particularly in mammalian is still controversial and unclear. In our previous study, we investigated the effect of space microgravity on the development of mouse 4-cell embryos by using Chinese SJ-8. .Unexpectedly, we did not get any developed embryo during the space-flight. Considering that the process of space experiment is quite different from most experiments done on earth in several aspects such as, the vibration and short-term hypergravity during the rock launching and landing. Thus we want to know whether the short-term hypergravity produced by the launch process affect the early embryo development in mice, and howthe early embryos respond to the hypergravity. In present study, we are mimicking the short-term hypergravity during launch by using a centrifuge to investigate its influence on the development of early embryo (2-cell) in mice. We also examined the actin filament distribution in 2-cell embryos by immunostaining to test their potential capacity of development under short-term hypergravity exposure. Our results showed that most 2-cell embryos in the hypergravity exposure groups developed into blastocysts with normal morphology after 72h cultured in vitro, and there is no obvious difference in the development rate of blastocyst formation compared to the control. Moreover, there were no statistically significant differences in birth rates after oviduct transfer of 2-cell mouse embryos exposed on short-term hypergravity compared with 1 g condition. In addition, the well-organized actin distribution appeared in 2-cell embryos after exposed on hypergravity and also in the subsequent developmental blastocysts. Taken together, our data shows that short-term exposure in hypergravity conditions does not affect the normal development and actin filament structures of mouse embryos.
Effects of Pollutants on Eggs, Embryos and Larvae of Amphibian Species
1976-04-01
of octyl-phenyl-,- naphthylamine may retard the growth rate of tadpoles . However, histological study indicated that these animals were not malformed ...all embryos become malformed if treatment 6 begins prior to completion of neurulation. Embryos exposed to trypan blue after closure of the neural...folds are not affected. The syndrome of malformations exhibited includes microcephaly, tailessness, and re- duction of mesonephros (fig. 1). Lithium
BACKGROUND: Methanol causes axial skeleton and craniofacial defects in both CD-1 and C57BL/6J mice during gastrulation, but C57BL/6J embryos are more severely affected. We evaluated methanol-induced pathogenesis in CD-1 and C57BL/6J embryos exposed during gastrulation in whole em...
Nagy, R A; van Montfoort, A P A; Dikkers, A; van Echten-Arends, J; Homminga, I; Land, J A; Hoek, A; Tietge, U J F
2015-05-01
Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? BA concentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid (UDCA) derivatives were associated with development of top quality embryos on Day 3 after fertilization. Granulosa cells are capable of synthesizing BA, but a potential correlation with oocyte and embryo quality as well as information on the presence and role of BA subspecies in follicular fluid have yet to be investigated. Between January 2001 and June 2004, follicular fluid and serum samples were collected from 303 patients treated in a single academic centre that was involved in a multicentre cohort study on the effectiveness of MNC-IVF. Material from patients who underwent a first cycle of MNC-IVF was used. Serum was not stored from all patients, and the available material comprised 156 follicular fluid and 116 matching serum samples. Total BA and BA subspecies were measured in follicular fluid and in matching serum by enzymatic fluorimetric assay and liquid chromatography-mass spectrometry, respectively. The association of BA in follicular fluid with oocyte and embryo quality parameters, such as fertilization rate and cell number, presence of multinucleated blastomeres and percentage of fragmentation on Day 3, was analysed. Embryos with eight cells on Day 3 after oocyte retrieval were more likely to originate from follicles with a higher level of UDCA derivatives than those with fewer than eight cells (P < 0.05). Furthermore, follicular fluid levels of chenodeoxycholic derivatives were higher and deoxycholic derivatives were lower in the group of embryos with fragmentation compared with those without (each P < 0.05). Levels of total BA were 2-fold higher in follicular fluid compared with serum (P < 0.001), but had no predictive value for oocyte and embryo quality. Only samples originating from first cycle MNC-IVF were used, which resulted in 14 samples only from women with an ongoing pregnancy, therefore further prospective studies are required to confirm the association of UDCA with IVF pregnancy outcomes. The inter-cycle variability of BA levels in follicular fluid within individuals has yet to be investigated. We checked for macroscopic signs of contamination of follicular fluid by blood but the possibility that small traces of blood were present within the follicular fluid remains. Finally, although BA are considered stable when stored at -20°C, there was a time lag of 10 years between the collection and analysis of follicular fluid and serum samples. The favourable relation between UDCA derivatives in follicular fluid and good embryo development and quality deserves further prospective research, with live birth rates as the end-point. This work was supported by a grant from the Netherlands Organisation for Scientific Research (VIDI Grant 917-56-358 to U.J.F.T.). No competing interests are reported. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Isom, S Clay; Li, Rong Feng; Whitworth, Kristin M; Prather, Randall S
2012-03-01
Evidence in many species has suggested that those embryos that cleave earliest after fertilization are more developmentally competent than those that cleave relatively later after fertilization. Herein we document this phenomenon in porcine in vitro-fertilized (IVF), somatic cell nuclear transfer (SCNT), and parthenogenetic (PA) embryos. In vitro-matured pig oocytes were used to generate IVF, SCNT, and PA embryos. At 24 hr post-activation (or insemination; hpa/hpi), embryos were visually assessed, and cleaved embryos were moved into a new culture well. This process was repeated at 30 and 48 hpa/hpi. All embryos were allowed to develop 7 days in culture. For IVF embryos, 39.9%, 24.6%, and 10.5% of fast-, intermediate-, or slow-cleaving embryos, respectively, developed into blastocysts by day 7. For SCNT embryos, 31.8% of fast-, 5.7% of intermediate-, and 2.9% of late-cleaving embryos achieved the blastocyst stage of development. For PA embryos, the percentages of those cleaved embryos that developed to blastocyst were 59.3%, 36.7%, and 7.5% for early-, intermediate-, and late-cleaving embryos, respectively. Using RNA collected from early-, intermediate-, and late-cleaving embryos, real-time PCR was performed to assess the transcript levels of 14 different genes of widely varied function. The qPCR results suggest that maternal mRNA degradation may not proceed in an appropriate pattern in slow-cleaving embryos. These findings (1) confirm that, as observed in other species, earlier-cleaving porcine embryos are more successful at developing in culture than are slower-cleaving embryos, and (2) implicate mechanisms of maternal transcript destruction as potential determinants of oocyte/embryo quality. Copyright © 2011 Wiley Periodicals, Inc.
Oxygen tension affects histone remodeling of in vitro-produced embryos in a bovine model.
Gaspar, Roberta C; Arnold, Daniel R; Corrêa, Carolina A P; da Rocha, Carlos V; Penteado, João C T; Del Collado, Maite; Vantini, Roberta; Garcia, Joaquim M; Lopes, Flavia L
2015-06-01
In vitro production of bovine embryos is a biotechnology of great economic impact. Epigenetic processes, such as histone remodeling, control gene expression and are essential for proper embryo development. Given the importance of IVP as a reproductive biotechnology, the role of epigenetic processes during embryo development, and the important correlation between culture conditions and epigenetic patterns, the present study was designed as a 2 × 2 factorial to investigate the influence of varying oxygen tensions (O2; 5% and 20%) and concentrations of fetal bovine serum (0% and 2.5%), during IVC, in the epigenetic remodeling of H3K9me2 (repressive) and H3K4me2 (permissive) in bovine embryos. Bovine oocytes were used for IVP of embryos, cleavage and blastocyst rates were evaluated, and expanded blastocysts were used for evaluation of the histone marks H3K9me2 and H3K4me2. Morulae and expanded blastocysts were also used to evaluate the expression of remodeling enzymes, specific to the aforementioned marks, by real-time polymerase chain reaction. Embryos produced in the presence of fetal bovine serum (2.5%) had a 10% higher rate of blastocyst formation. Global staining for the residues H3K9me2 and H3K4me2 was not affected significantly by the presence of serum. Notwithstanding, the main effect of oxygen tension was significant for both histone marks, with both repressive and permissive marks being higher in embryos cultured at the higher oxygen tension; however, expression of the remodeling enzymes did not differ in morulae or blastocysts in response to the varying oxygen tension. These results suggest that the use of serum during IVC of embryos increases blastocyst rate without affecting the evaluated histone marks and that oxygen tension has an important effect on the histone marks H3K9me2 and H3K4me2 in bovine blastocysts. Copyright © 2015 Elsevier Inc. All rights reserved.
Novel embryo selection techniques to increase embryo implantation in IVF attempts.
Sigalos, George Α; Triantafyllidou, Olga; Vlahos, Nikos F
2016-11-01
The final success of an IVF attempt depends on several steps and decisions taken during the ovarian stimulation, the oocyte retrieval, the embryo culture and the embryo transfer. The final selection of the embryos most likely to implant is the final step in this process and the responsibility of the lab. Apart from strict morphologic criteria that historically have been used in embryo selection, additional information on genetic, metabolomic and morphokinetic characteristics of the embryo is recently combined to morphology to select the embryo most likely to produce a pregnancy. In this manuscript, we review the most recent information on the current methods used for embryo selection presenting the predictive capability of each one. A literature search was performed on Pubmed, Medline and Cochrane Database of Systematic Reviews for published studies using appropriate key words and phrases with no limits placed on time. It seems that the combination of morphologic criteria in conjunction to embryo kinetics as documented by time-lapse technology provides the most reliable information on embryo quality. Blastocyst biopsy with subsequent comprehensive chromosome analysis allows the selection of the euploid embryos with the higher implantation potential. Embryo time-lapse imaging and blastocyst biopsy combined to comprehensive chromosome analysis are the most promising technologies to increase pregnancy rates and reduce the possibility of multiple pregnancies. However, further studies will demonstrate the capability of routinely using these technologies to significantly improve IVF outcomes.
Sundvall, Linda; Kirkegaard, Kirstine; Ingerslev, Hans Jakob; Knudsen, Ulla Breth
2015-07-01
Polycystic ovarian syndrome (PCOS) is a common cause of female infertility. Factors other than anovulation, such as low embryo quality have been suggested to contribute to the infertility in these women. This 2-year retrospective study used timelapse technology to investigate the PCOS-influence on timing of development in the pre-implantation embryo (primary endpoint). The secondary outcome measure was live birth rates after elective single-embryo transfer. In total, 313 embryos from 43 PCOS women, and 1075 embryos from 174 non-PCOS women undergoing assisted reproduction were included. All embryos were monitored until day 6. Differences in embryo kinetics were tested in a covariance regression model to account for potential confounding variables: female age, BMI, fertilization method and male infertility. Time to initiate compaction and reach the morula stage as well as the duration of the 4th cleavage division was significantly shorter in PCOS embryos compared with non-PCOS embryos. No other kinetic differences were found at any time-points annotated. The proportion of multi-nucleated cells at the 2-cell stage was significantly higher in PCOS embryos compared with non-PCOS embryos. The live birth rates were comparable between the two groups. The findings suggest that the causative factor for subfertility in PCOS is not related to timing of development in the pre-implantation embryo.
Pudakalakatti, Shivanand M; Uppangala, Shubhashree; D'Souza, Fiona; Kalthur, Guruprasad; Kumar, Pratap; Adiga, Satish Kumar; Atreya, Hanudatta S
2013-01-01
There has been growing interest in understanding energy metabolism in human embryos generated using assisted reproductive techniques (ART) for improving the overall success rate of the method. Using NMR spectroscopy as a noninvasive tool, we studied human embryo metabolism to identify specific biomarkers to assess the quality of embryos for their implantation potential. The study was based on estimation of pyruvate, lactate and alanine levels in the growth medium, ISM1, used in the culture of embryos. An NMR study involving 127 embryos from 48 couples revealed that embryos transferred on Day 3 (after 72 h in vitro culture) with successful implantation (pregnancy) exhibited significantly (p < 10(-5) ) lower pyruvate/alanine ratios compared to those that failed to implant. Lactate levels in media were similar for all embryos. This implies that in addition to lactate production, successfully implanted embryos use pyruvate to produce alanine and other cellular functions. While pyruvate and alanine individually have been used as biomarkers, the present study highlights the potential of combining them to provide a single parameter that correlates strongly with implantation potential. Copyright © 2012 John Wiley & Sons, Ltd.
Campo, R; Binda, M M; Van Kerkhoven, G; Frederickx, V; Serneels, A; Roziers, P; Lopes, A S; Gordts, S; Puttemans, P; Gordts, S
2010-01-01
Pilot study to analyse the efficacy and embryo morphology using a new human embryo culture medium (GM501) versus the conventional used medium (ISM1). Over a four-month period, all patients at the Leuven Institute of Fertility and Embryology (LIFE) were -randomly allocated to have their embryos cultured in either the standard sequential culture medium ISM1 (control) or in a new universal medium (GM501) (study group). Primary outcome parameters were clinical pregnancy and live birth rate. The secondary outcome parameter was the correlation of embryo fragmentation rate with pregnancy outcome. We did not observe any differences between the ISM1 control group and GM501 study group with regard to fertilization, pregnancy, implantation rates, ongoing pregnancy, and babies born. The number of embryos with a minimal fragmentation rate (less than 30%) was significantly higher in the GM501 study group. Although a significant higher embryo fragmentation rate was seen in In vitro culture of embryos in GM501, pregnancy outcome results were comparable to those of embryos cultured in ISM1. According to our results the value of embryo morphological criteria as a parameter for pregnancy outcome should be examined and discussed again.
Van Meter, Robin J; Spotila, James R; Avery, Harold W
2006-08-01
Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds found in the John Heinz National Wildlife Refuge in Philadelphia, Pennsylvania. We assessed the impact of PAHs and crude oil on snapping turtle development and behavior by exposing snapping turtle eggs from the Refuge and from three clean reference sites to individual PAHs or a crude oil mixture at stage 9 of embryonic development. Exposure to PAHs had a significant effect on survival rates in embryos from one clean reference site, but not in embryos from the other sites. There was a positive linear relationship between level of exposure to PAHs and severity of deformities in embryos collected from two of the clean reference sites. Neither righting response nor upper temperature tolerance (critical thermal maximum, CTM) of snapping turtle hatchlings with no or minor deformities was significantly affected by exposure to PAHs.
Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo.
Anello, Letizia; Cavalieri, Vincenzo; Di Bernardo, Maria
2018-01-01
The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis profoundly perturbs specification, detachment from the epithelium, and migration of the primary mesenchyme cells, thus affecting the whole embryonic epithelial mesenchymal transition process. Our results reaffirm the sea urchin embryo as an excellent and sensitive in vivo system, which provides straightforward and rapid response to external stimuli. Copyright © 2017 Elsevier Inc. All rights reserved.
Micro-Raman spectroscopy study of ALVAC virus infected chicken embryo cells
NASA Astrophysics Data System (ADS)
Misra, Anupam K.; Kamemoto, Lori E.; Hu, Ningjie; Dykes, Ava C.; Yu, Qigui; Zinin, Pavel V.; Sharma, Shiv K.
2011-05-01
Micro- Raman spectroscopic investigation of ALVAC virus and of normal chicken embryo fibroblast cells and the cells infected with ALVAC virus labeled with green fluorescence protein (GFP) were performed with a 785 nm laser. Good quality Micro-Raman spectra of the Alvac II virus were obtained. These spectra show that the ALVAC II virus contains buried tyrosine residues and the coat protein of the virus has α-helical structure. A comparison of Raman spectra of normal and virus infected chicken embryo fibroblast cells revealed that the virus infected cells show additional bands at 535, 928, and 1091 cm-1, respectively, corresponding to δ(C-O-C) glycosidic ring, protein α-helix, and DNA (O-P-O) modes. In addition, the tyrosine resonance double (833 and 855 cm-1) shows reversal in the intensity of the higher-frequency band as compared to the normal cells that can be used to identify the infected cells. In the C-H stretching region, the infected cells show bands with higher intensity as compared to that of the corresponding bands in the normal cells. We also found that the presence of GFP does not affect the Raman spectra of samples when using a 785 nm micro-Raman system because the green fluorescence wavelength of GFP is well below the Stokes-Raman shifted spectral region.
Bisignano, A; Wells, D; Harton, G; Munné, S
2011-12-01
Diagnosis of embryos for chromosome abnormalities, i.e. aneuploidy screening, has been invigorated by the introduction of microarray-based testing methods allowing analysis of 24 chromosomes in one test. Recent data have been suggestive of increased implantation and pregnancy rates following microarray testing. Preimplantation genetic diagnosis for infertility aims to test for gross chromosome changes with the hope that identification and transfer of normal embryos will improve IVF outcomes. Testing by some methods, specifically single-nucleotide polymorphism (SNP) microarrays, allow for more information and potential insight into parental origin of aneuploidy and uniparental disomy. The usefulness and validity of reporting this information is flawed. Numerous papers have shown that the majority of meiotic errors occur in the egg, while mitotic errors in the embryo affect parental chromosomes at random. Potential mistakes made in assigning an error as meiotic or mitotic may lead to erroneous reporting of results with medical consequences. This study's data suggest that the bioinformatic cleaning used to 'fix' the miscalls that plague single-cell whole-genome amplification provides little improvement in the quality of useful data. Based on the information available, SNP-based aneuploidy screening suffers from a number of serious issues that must be resolved. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
The effect of paternal age on assisted reproduction outcome.
Dain, Lena; Auslander, Ron; Dirnfeld, Martha
2011-01-01
To summarize the current knowledge about the association between paternal age and assisted reproductive technology (ART) outcomes. In contrast to the extensive investigation of the relationship between maternal age and the success of ART, there are few studies examining the effect of paternal age on ART outcomes. Systematic review of the literature. By means of a PubMed literature search using the phrases "paternal age", "male age", and "assisted reproductive technology", we identified articles that investigated the role of male age in in vitro reproduction techniques. The 10 studies included in this review did not show a clear correlation between advanced paternal age and rates of fertilization, implantation, pregnancy, miscarriage, and live birth. Paternal age was not found to affect embryo quality at the cleavage stage (days 2-3). However, a significant decrease in blastocyst embryo formation was associated with increased paternal age, probably reflecting male genomic activation within the embryo. Except for volume, characteristics of semen such as motility, concentration, and morphology did not decrease with age. There is insufficient evidence to demonstrate an unfavorable effect of paternal age on ART outcomes. Further study with well-defined entry criteria and uniform reporting of outcomes is needed to investigate the subject. Copyright © 2011. Published by Elsevier Inc.
Flores-Santin, Josele; Rojas Antich, Maria; Tazawa, Hiroshi; Burggren, Warren W
2018-04-01
Hematology and its regulation in developing birds have been primarily investigated in response to relatively short-term environmental challenges in the embryo. Yet, whether any changes induced in the embryo persist into adulthood as a hematological form of "fetal programming" is unknown. We hypothesized that: 1) chronic as opposed to acute hypoxic incubation will alter hematological respiratory variables in embryos of bobwhite quail (Colinus virginianus), and 2) alterations first appearing in the embryo will persist into hatchlings through into adulthood. To test these hypotheses, we first developed an embryo-to-adult profile of normal hematological development by measuring hematocrit (Hct), red blood cell concentration ([RBC]), hemoglobin concentration ([Hb]), mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration, as well plasma osmolality. Hct, [RBC] and [Hb] in normoxic-incubated birds (controls) steadily increased from ~22%, ~1.6 × 10 6 μL -1 and ~7 g% in day 12 embryos to almost double the values at maturity in adult birds. Both cohort and sex affected hematology of normoxic-incubated birds. A second population, incubated from day 0 (d0) in 15% O 2 , surprisingly revealed little or no significant difference from controls in hematology in embryos. In hatchlings and adults, hypoxic incubation caused no significant modification to any variables. Compared to major hematological effects caused by hypoxic incubation in chickens, the hematology of the bobwhite quail embryo appears to be minimally affected by hypoxic incubation, with very few effects induced during hypoxic incubation actually persisting into adulthood. Copyright © 2018 Elsevier Inc. All rights reserved.
Collins, K E; Jordan, B J; McLendon, B L; Navara, K J; Beckstead, R B; Wilson, J L
2013-12-01
Skewing the sex ratio at hatch in commercial poultry would be economically beneficial to the poultry industry. The existence of temperature-dependent sex determination is uncertain in birds. This experiment investigated if incubation temperatures skew sex ratios of commercial broilers. Three incubators were each set at a hot (38.3°C), standard (37.5°C), or cool (36.7°C) single-stage incubation temperature one time over 3 trials to eliminate incubator effect as a Latin square design. Sex ratios of hatched chicks and dead embryos were monitored. In one trial, embryo weights were evaluated. The percentages of male hatched chicks did not differ based on incubation temperature (P = 0.4486; 49.5% in the hot treatment, 51.4% at standard temperature, and 49.8% in the cool treatment). The percent hatch of eggs set was lower in the hot treatment (83.6%) than the standard (93.5%) and cool (91.6%) treatments (P < 0.0001) with greater late embryonic mortality in the hot treatment (P < 0.0001); however, the sex ratio of dead embryos did not differ among treatments (P = 0.9863). Pooled data of embryo mortality found no sex-biased embryo mortality with a female/male sex ratio of 1.22:1 (χ(2) = 1.27; P = 0.2596). Embryos from the hot treatment were heavier than those from the standard treatment by d 14 of incubation and were heavier than the embryos from the cool treatment by d 9 of incubation (P < 0.0001). These data indicate that incubation temperature affects embryonic mortality and embryonic growth rate, but it does not affect the sex ratio of broiler chickens. Additionally, no evidence was found for sex-biased embryo mortality in commercial broilers even at the incubation temperatures of this study.
D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M
2013-01-01
FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Ardón, F; Döhring, A; Le Thi, X; Weitze, K F; Waberski, D
2003-04-01
The goal of this study was to determine the ability of the Hanover gilt model to assess in vivo fertilizing capacity of preserved sperm and to consider whether any modifications to this model were needed. This model evaluates the fertilizing capacity of semen based on the fertilization rate, the rate of normal embryos and the accessory sperm count of 3-5-day embryos. Its distinguishing characteristics are the use of one-time insemination of sperm in reduced numbers, of spontaneously ovulating gilts and of ovulation detection through ultrasound examination of ovaries. Reduced sperm numbers allow for an accurate evaluation of the fertilizing potential of different semen treatments, thereby avoiding the compensatory effect of doses calibrated to maximize fertility. The model's usefulness was assessed in a trial run designed to compare the fertilizing capacity of liquid boar semen diluted into two different extenders. The diluent, the boar and the backflow, had no significant effect on any of the parameters studied. Gilts inseminated less than 24 h before ovulation had a significantly higher (p < 0.01) fertilization rate and accessory sperm cell count (p < 0.05) than those inseminated more than 24 h before ovulation. Very good/good embryos from homogeneous litters (only very good/good embryos were present) had a significantly higher (p < 0.01) accessory sperm count than those from heterogeneous litters (at least one embryo was of a different quality and/or oocytes were present). Both very good/good and degenerated/retarded embryos from heterogeneous litters had low accessory sperm numbers. This suggests that accessory sperm count is significantly related to the quality of the litter, but not to the quality of the embryo within gilts. It can be concluded that the Hanover gilt model is sensitive enough to show fertility differences (in this study, those associated with in vivo ageing of semen), while using relatively few gilts and little time.
NASA Astrophysics Data System (ADS)
Chai, Tingting; Cui, Feng; Yin, Zhiqiang; Yang, Yang; Qiu, Jing; Wang, Chengju
2016-09-01
In this study, we aimed to investigate the dysfunction of zebrafish embryos and larvae induced by rac-/(+)-/(-)- PCB91 and rac-/(-)-/(+)- PCB149. UPLC-MS/MS (Ultra-performance liquid chromatography coupled with mass spectrometry) was employed to perform targeted metabolomics analysis, including the quantification of 22 amino acids and the semi-quantitation of 22 other metabolites. Stereoselective changes in target metabolites were observed in embryos and larvae after exposure to chiral PCB91 and PCB149, respectively. In addition, statistical analyses, including PCA and PLS-DA, combined with targeted metabolomics were conducted to identify the characteristic metabolites and the affected pathways. Most of the unique metabolites in embryos and larvae after PCB91/149 exposure were amino acids, and the affected pathways for zebrafish in the developmental stage were metabolic pathways. The stereoselective effects of PCB91/149 on the metabolic pathways of zebrafish embryos and larvae suggest that chiral PCB91/149 exposure has stereoselective toxicity on the developmental stages of zebrafish.
Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián
2015-09-01
Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. Copyright © 2015. Published by Elsevier B.V.
Cánepa, Maria Jesús; Ortega, Nicolás Matías; Monteleone, Melisa Carolina; Mucci, Nicolas; Kaiser, German Gustavo; Brocco, Marcela; Mutto, Adrián
2014-01-01
Reproductive biotechnologies such as in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) enable improved reproductive efficiency of animals. However, the birth rate of in vitro-derived embryos still lags behind that of their in vivo counterparts. Thus, it is critical to develop an accurate evaluation and prediction system of embryo competence, both for commercial purposes and for scientific research. Previous works have demonstrated that in vitro culture systems induce alterations in the relative abundance (RA) of diverse transcripts and thus compromise embryo quality. The aim of this work was to analyze the RA of a set of genes involved in cellular stress (heat shock protein 70-kDa, HSP70), endoplasmic reticulum (ER) stress (immunoglobulin heavy chain binding protein, Bip; proteasome subunit β5, PSMB5) and apoptosis (BCL-2 associated X protein, Bax; cysteine aspartate protease-3, Caspase-3) in bovine blastocysts produced by IVF or SCNT and compare it with that of their in vivo counterparts. Poly (A) + mRNA was isolated from three pools of 10 blastocysts per treatment and analyzed by real-time RT-PCR. The RA of three of the stress indicators analyzed (Bax, PSMB5 and Bip) was significantly increased in SCNT embryos as compared with that of in vivo-derived blastocysts. No significant differences were found in the RA of HSP70 and Caspase-3 gene transcripts. This study could potentially complement morphological analyses in the development of an effective and accurate technique for the diagnosis of embryo quality, ultimately aiding to improve the efficiency of assisted reproductive techniques (ART).
GROLL, J.; MYCOCK, D. J.; GRAY, V. M.
2002-01-01
Culture of cassava somatic embryos on media with an altered macro‐ and micro‐nutrient salt concentration affected embryo development and germination capability. In the tests, quarter‐, half‐, full‐ or double‐strength Murashige and Skoog (MS) media were compared. The maximum number of somatic embryos differentiated from a proliferative nodular embryogenic callus (NEC) on either half‐ or full‐strength MS medium, and the greatest numbers of cotyledonary stage embryos were formed on full‐strength MS medium. Developed somatic embryos were then desiccated above a saturated K2SO4 solution for 10 d. After transfer to germination medium, embryos that had developed on half‐ and full‐strength MS medium yielded 8·3 and 8·6 germinants g–1 NEC tissue, respectively. For this important but often disregarded culture factor, either half‐ or full‐strength MS medium is recommended for both the differentiation and development of cassava somatic embryos that are capable of germination. PMID:12099540
Impact of PCOS on early embryo cleavage kinetics.
Wissing, M L; Bjerge, M R; Olesen, A I G; Hoest, T; Mikkelsen, A L
2014-04-01
This study investigated whether polycystic ovary syndrome (PCOS) affected early embryo development assessed by time-lapse analysis of embryo kinetics from fertilization to the blastocyst stage. This was a prospective cohort study of two pronuclei (2PN) embryos from 25 hyperandrogenic PCOS patients (110 2PN embryos), 26 normoandrogenic PCOS patients (140 2PN embryos) and 20 healthy, regularly cycling women (controls, 97 2PN embryos). Patients underwent the same baseline evaluation and the same ovarian stimulation from April 2010 to February 2013. Oocytes were fertilized by intracytoplasmic sperm injection and incubated in an EmbryoScope with pictures taken every 20 min in seven focal planes. Time to 2PN breakdown, first cleavage and cleavage to 3, 4, 5, 6, 7 and 8 cells, morula and blastocyst (t₂, t₃, t₄, t₅, t₆, t₇, t₈, t(M), t(B)) were annotated. Differences in embryo kinetics between groups were assessed by mixed modelling. Compared with controls, embryos from hyperandrogenic PCOS patients were significantly delayed at 2PN breakdown, t₂, t₃, t₄ and t₇ but not at t₅, t₆, t₈, t(M) or t(B). Embryos from hyperandrogenic PCOS women had developed slower from fertilization to the 8-cell stage compared with embryos from controls. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Mitwally, Mohamed FM; Casper, Robert F; Diamond, Michael P
2005-01-01
Clinical utilization of ovulation stimulation to facilitate the ability of a couple to conceive has not only provided a valuable therapeutic approach, but has also yielded extensive information on the physiology of ovarian follicular recruitment, endometrial receptivity and early embryo competency. One of the consequences of the use of fertility enhancing agents for ovarian stimulation has been the creation of a hyperestrogenic state, which may influence each of these parameters. Use of aromatase inhibitors reduces hyperestrogenism inevitably attained during ovarian stimulation. In addition, the adjunct use of aromatase inhibitors during ovarian stimulation reduces amount of gonadotropins required for optimum stimulation. The unique approach of reducing hyperestrogenism, as well as lowering amount of gonadotropins without affecting the number of mature ovarian follicles is an exciting strategy that could result in improvement in the treatment outcome by ameliorating the deleterious effects of the ovarian stimulation on follicular development, endometrial receptivity, as well as oocyte and embryo quality. PMID:16202169
Laskowski, Denise; Båge, Renée; Humblot, Patrice; Andersson, Göran; Sirard, Marc-André; Sjunnesson, Ylva
2017-10-01
Insulin is a key metabolic hormone that controls energy homeostasis in the body, including playing a specific role in regulating reproductive functions. Conditions associated with hyperinsulinemia can lower developmental rates in bovine in vitro embryo production and are linked to decreased fertility in humans, as in cases of obesity or type 2 diabetes. Embryo quality is important for fertility outcome and it can be assessed by choosing scoring standards for various characteristics, such as developmental stage, quality grade, cell number, mitochondrial pattern or actin cytoskeleton structure. Changes in the embryo's gene expression can reflect environmental impacts during maturation and may explain morphological differences. Together with morphological evaluation, this could enable better assessment and possibly prediction of the developmental potential of the embryo. The aim of this study was to use a bovine model to identify potential gene signatures of insulin-induced changes in the embryo by combining gene expression data and confocal microscopy evaluation. Bovine embryos were derived from oocytes matured in two different insulin concentrations (10 µg mL - 1 and 0.1 µg mL - 1 ), then stained to distinguish f-Actin, DNA and active mitochondria. The total cell number of the embryo, quality of the actin cytoskeleton and mitochondrial distribution were assessed and compared to an insulin-free control group. A microarray-based transcriptome analysis was used to investigate key genes involved in cell structure, mitochondrial function and cell division. Our results indicate that insulin supplementation during oocyte maturation leads to lower blastocyst rates and a different phenotype, characterised by an increased cell number and different actin and mitochondrial distribution patterns. These changes were reflected by an up-regulation of genes involved in cell division (MAP2K2; DHCR7), cell structure (LMNA; VIM; TUBB2B; TUBB3; TUBB4B) and mitochondrial activation (ATP5D; CYP11A1; NDUFB7; NDUFB10; NDUFS8). Taken together, we hypothesise that the increased proliferation in the insulin-treated groups might impair the developmental potential of the embryos by inducing metabolic stress on the molecular level, which could be detrimental for the survival of the embryo. Copyright © 2017 Elsevier Inc. All rights reserved.
Schrick, F N; Inskeep, E K; Butcher, R L
1993-09-01
Survival rate of embryos from first ovulations of postpartum cows with SHORT (6.9 +/- 0.3 days; n = 35) or NORMAL (17.1 +/- 0.3 days; n = 42) luteal phases and quality of the embryos on Day 6 were compared. At 19 to 23 days postpartum, cows were allotted to receive a norgestomet implant for 9 days (normal luteal phase) or to serve as untreated controls (short luteal phase). Calves were weaned 7 days after initiation of treatment to induce behavioral estrus in cows for mating. In 25 cows, growth of the ovulatory follicle was monitored by ultrasonography. On Day 6 after estrus, embryos were recovered nonsurgically, and live embryos were transferred into recipient cows exhibiting normal estrous cycles. The medium used to flush the embryos from the uterus of each donor cow was assayed for prostaglandin F2 alpha (PGF2 alpha). Days from calf removal to estrus and size of ovulatory follicles at ovulation (4.1 +/- 0.3 days and 16.7 +/- 0.7 mm, respectively) did not differ between NORMAL and SHORT cows. Interval from detection of the ovulatory follicle to ovulation was longer in NORMAL (10 +/- 0.7 days) than in SHORT cows (8 +/- 0.6 days; p < 0.05). Rates of recovery of an embryo or ovum (64%), rates of fertilization (65%), and quality or stage of development of Day 6 embryos did not differ between SHORT and NORMAL cows. Overall pregnancy rate from recovered oocytes was 13% for SHORT and 32% for NORMAL cows (p = 0.06); survival of fertilized oocytes was 23% for SHORT and 47% for NORMAL cows (p = 0.08).(ABSTRACT TRUNCATED AT 250 WORDS)
Embryonic genotype and inbreeding affect preimplantation development in cattle.
Lazzari, G; Colleoni, S; Duchi, R; Galli, A; Houghton, F D; Galli, C
2011-05-01
Infertility in cattle herds is a growing problem with multifactorial causes. Embryonic genotype and level of inbreeding are among the many factors that can play a role on reproductive efficiency. To investigate this issue, we produced purebred and crossbred bovine embryos by in vitro techniques from Holstein oocytes and Holstein or Brown Swiss semen and analyzed several cellular and molecular features. In the first experiment, purebred and crossbred embryos, obtained from abattoir oocytes, were analyzed for cleavage, development to morula/blastocyst stages, amino acid metabolism and gene expression of developmentally important genes. The results indicated significant differences in the percentage of compacted morulae, in the expression of three genes at the blastocyst stage (MNSOD, GP130 and FGF4) and in the utilization of serine, asparagine, methionine and tryptophan in day 6 embryos. In the second experiment, bovine oocytes were collected by ovum pick up from ten Holstein donors and fertilized with the semen of the respective Holstein sires or with Brown Swiss semen. The derived embryos were grown in vitro up to day 7, and were then transferred to synchronized recipients and recovered on day 12. We found that purebred/inbred embryos had lower blastocyst rate on days 7-8, were smaller on day 12 and had lower expression of the trophoblast gene PLAC8. Overall, these results indicate reduced and delayed development of purebred embryos compared with crossbred embryos. In conclusion, this study provides evidence that embryo genotype and high inbreeding can affect amino acid metabolism, gene expression, preimplantation development and therefore fertility in cattle.
Khosrovyan, A; Rodríguez-Romero, A; Salamanca, M J; Del Valls, T A; Riba, I; Serrano, F
2013-05-15
The potential toxicity of sediments from various ports was assessed by means of two different liquid-phase toxicity bioassays (acute and chronic) with embryos and eggs of sea urchin Paracentrotus lividus. Performances of embryos and eggs of P. lividus in these bioassays were compared for their interchangeable applicability in integrated sediment quality assessment. The obtained endpoints (percentages of normally developed plutei and fertilized eggs) were linked to physical and chemical properties of sediments and demonstrated dependence on sediment contamination. The endpoints in the two bioassays were strongly correlated and generally exhibited similar tendency throughout the samples. Therein, embryos demonstrated higher sensitivity to elutriate exposure, compared to eggs. It was concluded that these tests could be used interchangeably for testing toxicity of marine sediments. Preferential use of any of the bioassays can be determined by the discriminatory capacity of the test or vulnerability consideration of the test subject to the surrounding conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Overview of the molecular defense systems used by sea urchin embryos to cope with UV radiation.
Bonaventura, Rosa; Matranga, Valeria
2017-07-01
The sea urchin embryo is a well-recognized developmental biology model and its use in toxicological studies has been widely appreciated. Many studies have focused on the evaluation of the effects of chemical stressors and their mixture in marine ecosystems using sea urchin embryos. These are well equipped with defense genes used to cope with chemical stressors. Recently, ultraviolet radiation (UVR), particularly UVB (280-315 nm), received more attention as a physical stressor. Mainly in the Polar Regions, but also at temperate latitudes, the penetration of UVB into the oceans increases as a consequence of the reduction of the Earth's ozone layer. In general, UVR induces oxidative stress in marine organisms affecting molecular targets such as DNA, proteins, and lipids. Depending on the UVR dose, developing sea urchin embryos show morphological perturbations affecting mainly the skeleton formation and patterning. Nevertheless, embryos are able to protect themselves against excessive UVR, using mechanisms acting at different levels: transcriptional, translational and post-translational. In this review, we recommend the sea urchin embryo as a suitable model for testing physical stressors such as UVR and summarize the mechanisms adopted to deal with UVR. Moreover, we review UV-induced apoptotic events and the combined effects of UVR and other stressors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Camargo, L S A; Paludo, F; Pereira, M M; Wohlres-Viana, S; Gioso, M M; Carvalho, B C; Quintao, C C R; Viana, J H M
2016-02-01
Oocyte has been considered the major contributor for embryo thermo-tolerance. However, it was shown that sperm factors can be transferred to the oocyte during fertilization, raising the question of whether the absence of such factors could interfere on embryo thermo-tolerance. In this study, we used parthenogenesis to generate bovine embryos without spermatozoa in order to test whether the absence of sperm factors could influence their thermo-sensitiveness at early stages. In vitro fertilized (IVF) and parthenogenetic (PA) embryos at 44 h post-insemination/chemical activation were exposed to 38.5°C (control) or 41°C (heat shock) for 12 h and then developed for 48 h and up to blastocyst stage. Apoptosis index and expression of PRDX1, GLUT1, GLUT5 and IGF1r genes in blastocysts derived from heat-shocked embryos were also evaluated. The heat shock decreased the blastocyst rate at day seven (p < 0.05) for IVF embryos and at day eight (p < 0.01) for both IVF and PA embryos. Total cell number was not affected by heat shock in IVF and PA blastocysts, but there was an increased proportion (p < 0.05) of apoptotic cells in heat-shocked embryos when compared to controls. There was no interaction (p > 0.05) between method of activation (IVF and PA) and temperature (38.5°C or 41.5°C) for all developmental parameters evaluated. Expression of GLUT1 gene was downregulated (p < 0.05) by heat shock in both IVF and PA blastocyst whereas expression of GLUT5 and IGF1r genes was downregulated (p < 0.05) by heat shock in PA blastocysts. Those data show that the heat shock affects negatively the embryo development towards blastocysts stage, increases the apoptotic index and disturbed the expression of some genes in both IVF and PA embryos, indicating that the presence or absence of sperm factors does not influence the sensitivity of the bovine embryo to heat shock. © 2015 Blackwell Verlag GmbH.
Soler, Salvador; Borràs, Dionís; Vilanova, Santiago; Sifres, Alicia; Andújar, Isabel; Figàs, Maria R; Llosa, Ernesto R; Prohens, Jaime
2016-03-01
Legal limits on the psychoactive tetrahydrocannabinol (THC) content in Cannabis sativa plants have complicated genetic and forensic studies in this species. However, Cannabis seeds present very low THC levels. We developed a method for embryo extraction from seeds and an improved protocol for DNA extraction and tested this method in four hemp and six marijuana varieties. This embryo extraction method enabled the recovery of diploid embryos from individual seeds. An improved DNA extraction protocol (CTAB3) was used to obtain DNA from individual embryos at a concentration and quality similar to DNA extracted from leaves. DNA extracted from embryos was used for SSR molecular characterization in individuals from the 10 varieties. A unique molecular profile for each individual was obtained, and a clear differentiation between hemp and marijuana varieties was observed. The combined embryo extraction-DNA extraction methodology and the new highly polymorphic SSR markers facilitate genetic and forensic studies in Cannabis. © 2015 American Academy of Forensic Sciences.
Mirroshandel, Seyed Abolghasem; Ghasemian, Fatemeh; Monji-Azad, Sara
2016-12-01
Aspiration of a good-quality sperm during intracytoplasmic sperm injection (ICSI) is one of the main concerns. Understanding the influence of individual sperm morphology on fertilization, embryo quality, and pregnancy probability is one of the most important subjects in male factor infertility. Embryologists need to decide the best sperm for injection in real time during ICSI cycle. Our objective is to predict the quality of zygote, embryo, and implantation outcome before injection of each sperm in an ICSI cycle for male factor infertility with the aim of providing a decision support system on the sperm selection. The information was collected from 219 patients with male factor infertility at the infertility therapy center of Alzahra hospital in Rasht from 2012 through 2014. The prepared dataset included the quality of zygote, embryo, and implantation outcome of 1544 injected sperms into the related oocytes. In our study, embryo transfer was performed at day 3. Each sperm was represented with thirteen clinical features. Data preprocessing was the first step in the proposed data mining algorithm. After applying more than 30 classifiers, 9 successful classifiers were selected and evaluated by 10-fold cross validation technique using precision, recall, F1, and AUC measures. Another important experiment was measuring the effect of each feature in prediction process. In zygote and embryo quality prediction, IBK and RandomCommittee models provided 79.2% and 83.8% F1, respectively. In implantation outcome prediction, KStar model achieved 95.9% F1, which is even better than prediction of human experts. All these predictions can be done in real time. A machine learning-based decision support system would be helpful in sperm selection phase of ICSI cycle to improve the success rate of ICSI treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Raziel, A; Friedler, S; Gidoni, Y; Ben Ami, I; Strassburger, D; Ron-El, R
2012-01-01
The genital malformations in Mayer-Rokitansky-Küster-Hauser syndrome (MRKH) are frequently accompanied by associated malformations whose forms were recently classified as typical (isolated uterovaginal aplasia/hypoplasia) and atypical (the addition of malformations in the ovary or renal system). The aim of this study was to compare the surrogate IVF performance of women with typical and atypical forms including their chances of achieving pregnancy. The follow-up data on a total of 102 cycles of surrogate IVF in 27 MRKH patients treated in our department between 2000 and 2010 were analysed. Twenty patients with the typical form who underwent 72 IVF cycles were compared with seven patients with the atypical form who underwent 30 IVF cycles. The various examined parameters of these intended mothers were age, hormonal profile during controlled ovarian hyperstimulation and laboratory outcome. The mean number of gonadotrophin ampoules needed for stimulation and treatment duration was significantly higher in the atypical form (3600 ± 1297IU for 13 ± 2.3 days versus 2975 ± 967 IU for 11.6 ± 1.6 days, P≤ 0.01). Serum estradiol and progesterone levels measured on the hCG administration day were similar. A significantly higher mean number of follicles 12.6 ± 6 versus 8.9 ± 5.4, P≤ 0.03, metaphase II (MII) oocytes 8.7 ± 5.1 versus 6.7 ± 4.8, P≤ 0.05, fertilizations 6 ± 3.6 versus 4.4 ± 3.3, P≤ 0.03 and cleaving embryos 5.7 ± 3.8 versus 4.1 ± 3.3, P≤ 0.01 were available in patients with the typical form compared with those with the atypical form, respectively. There was no significant difference in fertilization rate, cleavage rate or the mean number of transferred embryos. Embryo quality of the transferred ones and pregnancy rate per cycle were also similar between the two groups. Women with the typical form of MRKH needed fewer gonadotrophins and for a shorter duration for ovarian hyperstimulation. The mean number of follicles, oocytes, MII oocytes, fertilizations and cleaving embryos was higher among women with the typical form. Pregnancy rates were similar since the available number and quality of transferred embryos to the surrogate mother were not affected.
Effect of air quality on assisted human reproduction.
Legro, Richard S; Sauer, Mark V; Mottla, Gilbert L; Richter, Kevin S; Li, Xian; Dodson, William C; Liao, Duanping
2010-05-01
Air pollution has been associated with reproductive complications. We hypothesized that declining air quality during in vitro fertilization (IVF) would adversely affect live birth rates. Data from US Environmental Protection Agency air quality monitors and an established national-scale, log-normal kriging method were used to spatially estimate daily mean concentrations of criteria pollutants at addresses of 7403 females undergoing their first IVF cycle and at the their IVF labs from 2000 to 2007 in the Northeastern USA. These data were related to pregnancy outcomes. Increases in nitrogen dioxide (NO(2)) concentration both at the patient's address and at the IVF lab were significantly associated with a lower chance of pregnancy and live birth during all phases of an IVF cycle from medication start to pregnancy test [most significantly after embryo transfer, odds ratio (OR) 0.76, 95% confidence interval (CI) 0.66-0.86, per 0.01 ppm increase]. Increasing ozone (O(3)) concentration at the patient's address was significantly associated with an increased chance of live birth during ovulation induction (OR 1.26, 95% CI 1.10-1.44, per 0.02 ppm increase), but with decreased odds of live birth when exposed from embryo transfer to live birth (OR 0.62, 95% CI 0.48-0.81, per 0.02 ppm increase). After modeling for interactions of NO(2) and O(3) at the IVF lab, NO(2) remained negatively and significantly associated with live birth (OR 0.86, 95% CI 0.78-0.96), whereas O(3) was non-significant. Fine particulate matter (PM(2.5)) at the IVF lab during embryo culture was associated with decreased conception rates (OR 0.90, 95% CI 0.82-0.99, per 8 microg/m(3) increase), but not with live birth rates. No associations were noted with sulfur dioxide or larger particulate matter (PM(10)). The effects of declining air quality on reproductive outcomes after IVF are variable, cycle-dependent and complex, though increased NO(2) is consistently associated with lower live birth rates. Our findings are limited by the lack of direct measure of pollutants at homes and lab sites.
Physicochemical properties of giant embryo rice Seonong 17 and Keunnunjami.
Chung, Soo Im; Lee, Sang Chul; Kang, Mi Young
2017-05-01
This study was carried out to determine the physicochemical properties of giant embryo rice "Seonong 17" and "Keunnunjami" in comparison with the normal embryo rice. Scanning electron microscopy revealed that Seonong 17 and Keunnunjami have larger embryo and that starch granules from Keunnunjami were more tightly packed with smaller air spaces between granules. Seonong 17 exhibited the lowest amylose content. Keunnunjami showed the highest protein content, pasting temperature, peak and breakdown viscosities, and gelatinization temperature and enthalpy. Both giant embryo rice samples contained significantly higher amounts of essential amino acids and unsaturated fatty acids than the normal rice. Proteomic analysis using two-dimensional gel electrophoresis revealed differences in the protein profile of Seonong 17 and Keunnunjami. The results could serve as baseline information in evaluating the quality of these two giant embryo rice cultivars and provide a better understanding of their potential uses and food industry applications.
Harvey, Alexandra J.; Mao, Shihong; Lalancette, Claudia; Krawetz, Stephen A.; Brenner, Carol A.
2012-01-01
Numerous studies have focused on the transcriptional signatures that underlie the maintenance of embryonic stem cell (ESC) pluripotency. However, it remains unclear whether ESC retain transcriptional aberrations seen in in vitro cultured embryos. Here we report the first global transcriptional profile comparison between ESC generated from either in vitro cultured or in vivo derived primate embryos by microarray analysis. Genes involved in pluripotency, oxygen regulation and the cell cycle were downregulated in rhesus ESC generated from in vitro cultured embryos (in vitro ESC). Significantly, several gene differences are similarly downregulated in preimplantation embryos cultured in vitro, which have been associated with long term developmental consequences and disease predisposition. This data indicates that prior to derivation, embryo quality may influence the molecular signature of ESC lines, and may differentially impact the physiology of cells prior to or following differentiation. PMID:23028448
Laboratory techniques for human embryos.
Geber, Selmo; Sales, Liana; Sampaio, Marcos A C
2002-01-01
This review is concerned with laboratory techniques needed for assisted conception, particularly the handling of gametes and embryos. Such methods are being increasingly refined. Successive stages of fertilization and embryogenesis require especial care, and often involve the use of micromanipulative methods for intracytoplasmic sperm injection (ICSI) or preimplantation genetic diagnosis. Embryologists must take responsibility for gamete collection and preparation, and for deciding on the means of insemination or ICSI. Embryos must be assessed in culture, during the 1-cell, cleaving and morula/blastocyst stages, and classified according to quality. Co-culture methods may be necessary. The best embryos for transfer must be selected and loaded into the transfer catheter. Embryos not transferred must be cryopreserved, which demands the correct application of current methods of media preparation, seeding and the correct speed for cooling and warming. Before too long, methods of detecting abnormal embryos and avoiding their transfer may become widespread.
Relationship between Dietary Fat Intake, Its Major Food Sources and Assisted Reproduction Parameters
Kazemi, Ashraf; Ramezanzadeh, Fatemeh; Nasr-Esfahani, Mohammad Hosein
2014-01-01
Background High dietary fat consumption may alter oocyte development and embryonic development. This prospective study was conducted to determine the relation between dietary fat consumption level, its food sources and the assisted reproduction parameters. Methods A prospective study was conducted on 240 infertile women. In assisted reproduction treatment cycle, fat consumption and major food sources over the previous three months were identified. The number of retrieved oocytes, metaphase ΙΙ stage oocytes numbers, fertilization rate, embryo quality and clinical pregnancy rate were also determined. The data were analyzed using multiple regression, binary logistic regression, chi-square and t-test. The p-value of less than 0.05 was considered significant. Results Total fat intake adjusted for age, body mass index, physical activity and etiology of infertility was positively associated with the number of retrieved oocytes and inversely associated with the high embryo quality rate. An inverse association was observed between sausage and turkey ham intake and the number of retrieved oocytes. Also, oil intake level had an inverse association with good cleavage rate. Conclusion The results revealed that higher levels of fat consumption tend to increase the number of retrieved oocytes and were adversely related to embryonic development. Among food sources of fat, vegetable oil, sausage and turkey ham intake may adversely affect assisted reproduction parameters. PMID:25473630
Herrick, Jason R; Lyons, Sarah M; Greene-Ermisch, Alison F; Broeckling, Corey D; Schoolcraft, William B; Krisher, Rebecca L
2018-05-18
Carnivores are an interesting model for studies of embryonic amino acid metabolism and ammonium (NH4+) toxicity given the high protein content of their diets. Our objectives were to examine concentration- and stage-specific effects of essential amino acids (EAA; 0x, 0.125x, 0.25x, 0.5x, or 1.0x the concentrations in Minimum Essential Medium) and NH4+ (0, 300, or 600 μM) on the development and metabolism of feline embryos. The presence of EAA, regardless of concentration, during days 3 to 7 of culture increased (P < 0.01) the proportion of embryos that initiated hatching (>14.3%) and the total number of cells per blastocyst (>148.3 cells) compared to embryos cultured without EAA (0.0% and 113.2 ± 3.7 cells, respectively). The presence of EAA during days 1 to 3 (0.25x) and 3 to 7 (1.0x) of culture increased (P < 0.01) the proportions of embryos that formed blastocysts (82.9 ± 4.2%) and initiated hatching (32.9 ± 5.2%), and the number of cells per blastocyst (247.9 ± 12.1 cells), compared to control embryos (60.0 ± 5.3%, 0.0%, 123.2 ± 8.1 cells, respectively). The presence of NH4+ in the medium did not affect (P > 0.05) development of feline embryos. The addition of EAA or NH4+ during culture did not affect (P > 0.05) the production of Gln by feline embryos, but decreased (P < 0.05) production of Ala and increased (P < 0.05) production of urea. Additional work is needed to determine if our observations are unique to feline embryos or reflect an adaptation to a high protein diet that is conserved in other carnivores.
Dzyuba, Borys; Van Look, Katrien J W; Cliffe, Alex; Koldewey, Heather J; Holt, William V
2006-08-01
Seahorses, together with the pipefishes (Family Syngnathidae), are the only vertebrates in which embryonic development takes place within a specialised body compartment, the brood pouch, of the male instead of the female. Embryos develop in close association with the brood pouch epithelium in a manner that bears some resemblance to embryo-placental relationships in mammals. We have explored the hypothesis that parental body size and age should affect offspring postnatal growth and survival if brood pouch quality impacts upon prenatal embryonic nutrition or respiration. Using an aquarium population of the yellow seahorse, Hippocampus kuda, we show here that large parents produce offspring whose initial postnatal growth rates (weeks one to three) were significantly higher than those of the offspring of younger and smaller parents. Whereas 90% of offspring from the larger parents survived for the duration of the study (7 weeks), less that 50% of offspring from smaller parents survived for the same period. For the offspring of large parents, growth rates from individual males were negatively correlated with the number of offspring in the cohort (r=-0.82; P<0.05); this was not the case for offspring from small parents (r=0.048; P>0.9). Observations of embryos within the pouch suggested that when relatively few embryos are present they may attach to functionally advantageous sites and thus gain physiological support during gestation. These results suggest that male body size, and pouch size and function, may influence the future fitness and survival of their offspring.
SUGIMURA, Satoshi; AKAI, Tomonori; HASHIYADA, Yutaka; AIKAWA, Yoshio; OHTAKE, Masaki; MATSUDA, Hideo; KOBAYASHI, Shuji; KOBAYASHI, Eiji; KONISHI, Kazuyuki; IMAI, Kei
2012-01-01
Abstract To identify embryos individually during in vitro development, we previously developed the well-of-the-well (WOW) dish, which contains 25 microwells. Here we investigated the effect of embryo density (the number of embryos per volume of medium) on in vitro development and gene expression of bovine in vitro-fertilized embryos cultured in WOW dishes. Using both conventional droplet and WOW culture formats, 5, 15, and 25 bovine embryos were cultured in 125 µl medium for 168 h. The blastocysts at Day 7 were analyzed for number of cells and expression of ten genes (CDX2, IFN-tau, PLAC8, NANOG, OCT4, SOX2, AKR1B1, ATP5A1, GLUT1 and IGF2R). In droplet culture, the rates of formation of >4-cell cleavage embryos and blastocysts were significantly lower in embryos cultured at 5 embryos per droplet than in those cultured at 15 or 25 embryos per droplet, but not in WOW culture. In both droplet and WOW culture, developmental kinetics and blastocyst cell numbers did not differ among any groups. IFN-tau expression in embryos cultured at 25 embryos per droplet was significantly higher than in those cultured at 15 embryos per droplet and in artificial insemination (AI)-derived blastocysts. Moreover, IGF2R expression was significantly lower in the 25-embryo group than in the 5-embryo group and in AI-derived blastocysts. In WOW culture, these expressions were not affected by embryo density and were similar to those in AI-derived blastocysts. These results suggest that, as compared with conventional droplet culture, in vitro development and expression of IFN-tau and IGF2R in the microwell system may be insensitive to embryo density. PMID:23154384
Yoo, Jae-Gyu; Kim, Byeong-Woo; Park, Mi-Rung; Kwon, Deug-Nam; Choi, Yun-Jung; Shin, Teak-Soon; Cho, Byung-Wook; Seo, Jakyeom; Kim, Jin-Hoi; Cho, Seong-Keun
2017-01-01
Objective The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. Methods Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. Results The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture (143.8±10.5 to 159.2±14.8) was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT) groups (31.4±8.3 to 33.4±11.1). After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05) between sexes. Conclusion The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell. PMID:27764913
Tereso, Susana; Zoglauer, Kurt; Milhinhos, Ana; Miguel, Célia; Oliveira, M Margarida
2007-05-01
We compared morphogenesis and accumulation of storage proteins and starch in Pinus pinaster Ait. zygotic embryos with those in somatic embryos grown with different carbohydrate sources. The maturation medium for somatic embryos included 80 microM abscisic acid (ABA), 9 g l(-1) gellam gum and either glucose, sucrose or maltose at 44, 88, 175 or 263 mM in the presence or absence of 6% (w/v) polyethylene glycol (PEG) 4000 MW. Maturation medium containing 44 or 88 mM of a carbohydrate source produced only one or no cotyledonary somatic embryos per 0.6 g fresh mass of culture. The addition of PEG to the basal maturation medium resulted in a low yield of cotyledonary somatic embryos that generally showed incomplete development and anatomical abnormalities such as large intercellular spaces and large vacuoles. High concentrations of maltose also induced large intercellular spaces in the somatic embryonic cells, and 263 mM sucrose produced fewer and less developed cotyledonary somatic embryos compared with 175 mM sucrose, indicating that the effect of carbohydrate source is partially osmotic. Zygotic embryos had a lower dry mass than somatic embryos at the same stage of development. Starch granules followed a similar accumulation pattern in zygotic and somatic embryos. A low starch content was found in cotyledonary zygotic embryos and in somatic embryos developed in the presence of 175 mM maltose or 263 mM glucose. In zygotic embryos and in PEG-treated somatic embryos, protein bodies appeared later and were smaller and fewer than in well-developed somatic embryos grown without PEG. We propose that storage protein concentration might be a marker of embryo quality.
González-Ortega, C; Cancino-Villarreal, P; Alonzo-Torres, V E; Martínez-Robles, I; Pérez-Peña, E; Gutiérrez-Gutiérrez, A M
2016-04-01
Identification of the best embryos to transfer is a key element for success in assisted reproduction. In the last decade, several morphological criteria of oocytes and embryos were evaluated with regard to their potential for predicting embryo viability. The introduction of polarization light microscopy systems has allowed the visualization of the meiotic spindle and the different layers of the zona pellucida in human oocytes on the basis of birefringence in a non-destructive way. Conflicting results have been reported regarding the predictive value in ICSI cycles. To assess the predictive ability of meiotic spindle and zona pellucida of human oocytes to implant by polarized microscopy in ICSI cycles. Prospective and observational clinical study. 903 oocytes from 94 ICSI cycles were analyzed with polarized microscopy. Meiotic spindle visualization and zona pellucida birefringence values by polarized microscopy were correlated with ICSI cycles results. Meiotic spindle visualization and birefringence values of zona pellucida decreased in a direct basis with increasing age. In patients aged over the 35 years, the percentage of a visible spindle and mean zona pellucida birefringence was lower than in younger patients. Fertilization rate were higher in oocytes with visible meiotic spindle (81.3% vs. 64%; p < 0.0001), as well as embryo quality (47.4% vs. 39%; p=0.01). Fertilization rate was higher in oocytes with positive values of birefringence (77.5 % vs. 68.5% p=0.005) with similar embryo quality. Conception cycles showed oocytes with higher mean value of zona birefringence and visible spindle vs. no-conception cycles (p<0.05). Polarized light microscopy improves oocyte selection, which significantly impacts in the development of embryos with greater implantation potential. The use of polarized light microscopy with sperm selection methods, blastocyst culture and deferred embryo transfers will contribute to transfer fewer embryos without diminishing rates of live birth and single embryo transfer will be more feasible.
Campo, R.; Binda, M.M.; Van Kerkhoven, G.; Frederickx, V.; Serneels, A.; Roziers, P.; Lopes, A.S.; Gordts, S.; Puttemans, P.; Gordts, S.
2010-01-01
Aim of the study: Pilot study to analyse the efficacy and embryo morphology using a new human embryo culture medium (GM501) versus the conventional used medium (ISM1). Methods: Over a four-month period, all patients at the Leuven Institute of Fertility and Embryology (LIFE) were randomly allocated to have their embryos cultured in either the standard sequential culture medium ISM1 (control) or in a new universal medium (GM501) (study group). Primary outcome parameters were clinical pregnancy and live birth rate. The secondary outcome parameter was the correlation of embryo fragmentation rate with pregnancy outcome. Results: We did not observe any differences between the ISM1 control group and GM501 study group with regard to fertilization, pregnancy, implantation rates, ongoing pregnancy, and babies born. The number of embryos with a minimal fragmentation rate (less than 30%) was significantly higher in the GM501 study group. Conclusion: Although a significant higher embryo fragmentation rate was seen in In vitro culture of embryos in GM501, pregnancy outcome results were comparable to those of embryos cultured in ISM1. According to our results the value of embryo morphological criteria as a parameter for pregnancy outcome should be examined and discussed again. PMID:25009716
Yuan, Zhongyue; Li, Ying; Hu, Yulan; You, Jian; Higashisaka, Kazuma; Nagano, Kazuya; Tsutsumi, Yasuo; Gao, Jianqing
2016-12-30
Chitosan nanoparticles (CS-NPs) and their Tween 80 modified counterparts (TmCS-NPs) are among the most commonly used brain-targeted vehicles. However, their potential developmental toxicity is poorly understood. In this study, zebrafish embryos are introduced as an in vivo platform. Both NPs showed a dose-dependent increase in developmental toxicity (decreased hatching rate, increased mortality and incidences of malformation). Neurobehavioral changes included decreased spontaneous movement in TmCS-NP treated embryos and hyperactive effect in CS-NP treated larvae. Both NPs remarkably inhibited axonal development of primary and secondary motor neurons, and affected the muscle structure. Overall, this study demonstrated that CS-NPs and TmCS-NPs could affect embryonic development, disrupt neurobehavior of zebrafish larvae and affect muscle and neuron development, suggesting more attention on biodegradable chitosan nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.
Herrera, C; Morikawa, M I; Bello, M B; von Meyeren, M; Centeno, J Eusebio; Dufourq, P; Martinez, M M; Llorente, J
2014-03-15
Preimplantation genetic diagnosis (PGD) allows identifying genetic traits in early embryos. Because in some equine breeds, like Polo Argentino, females are preferred to males for competition, PGD can be used to determine the gender of the embryo before transfer and thus allow the production of only female pregnancies. This procedure could have a great impact on commercial embryo production programs. The present study was conducted to adapt gender selection by PGD to a large-scale equine embryo transfer program. To achieve this, we studied (i) the effect on pregnancy rates of holding biopsied embryos for 7 to 10 hours in holding medium at 32 °C before transfer, (ii) the effect on pregnancy rates of using embryos of different sizes for biopsy, and (iii) the efficiency of amplification by heating biopsies before polymerase chain reaction. Equine embryos were classified by size (≤300, 300-1000, and >1000 μm), biopsied, and transferred 1 to 2 or 7 to 10 hours after flushing. Some of the biopsy samples obtained were incubated for 10 minutes at 95 °C and the rest remained untreated. Pregnancy rates were recorded at 25 days of gestation; fetal gender was determined using ultrasonography and compared with PGD results. Holding biopsied embryos for 7 to 10 hours before transfer produced pregnancy rates similar to those for biopsied embryos transferred within 2 hours (63% and 57%, respectively). These results did not differ from pregnancy rates of nonbiopsied embryos undergoing the same holding times (50% for 7-10 hours and 63% for 1-2 hours). Pregnancy rates for biopsied and nonbiopsied embryos did not differ between size groups or between biopsied and nonbiopsied embryos within the same size group (P > 0.05). Incubating biopsy samples for 10 minutes at 95 °C before polymerase chain reaction significantly increased the diagnosis rate (78.5% vs. 45.5% for treated and nontreated biopsy samples respectively). Gender determination using incubated biopsy samples matched the results obtained using ultrasonography in all pregnancies assessed (11/11, 100%); untreated biopsy samples were correctly diagnosed in 36 of 41 assessed pregnancies (87.8%), although the difference between treated and untreated biopsy samples was not significant. Our results demonstrated that biopsied embryos can remain in holding medium before being transferred, until gender diagnosis by PGD is complete (7-10 hours), without affecting pregnancy rates. This simplifies the management of an embryo transfer program willing to incorporate PGD for gender selection, by transferring only embryos of the desired sex. Embryo biopsy can be performed in a clinical setting on embryos of different sizes, without affecting their viability. Additionally, we showed that pretreating biopsy samples with a short incubation at 95 °C improved the overall efficiency of embryo sex determination. Copyright © 2014 Elsevier Inc. All rights reserved.
Locatelli, Y; Hendriks, A; Vallet, J-C; Baril, G; Duffard, N; Bon, N; Ortiz, K; Scala, C; Maurel, M-C; Mermillod, P; Legendre, X
2012-12-01
In mammals, recovery of oocytes by laparoscopic ovum pick-up (LOPU) coupled with in vitro production (IVP) of embryos represents a promising strategy for both amplification and genetic management of sparse animals from captive endangered wild species. As integrated technique developed mainly for domestic livestock, LOPU-IVP requires several studies to set up protocols for follicular stimulation or optimization of IVP before envisaging successful transposition to wild species. In deer, many endangered subspecies would be potentially concerned by applying such an approach using common subspecies for protocols optimization. The aim of the present study was to assess efficiency of follicle stimulation using ovine FSH (oFSH) for recovery of oocytes by LOPU in common sika deer (Cervus nippon nippon) before transposition of an optimized methodology for IVP of embryos from endangered Vietnamese sika deer hinds (Cervus nippon pseudaxis). In common sika deer, two doses of oFSH (0.25 and 0.5 U) and two frequencies of administration (12 and 24 h) were compared by monitoring of subsequent ovarian response, quality of oocytes recovered by LOPU, and in vitro developmental competence. In a first experiment, the dose of oFSH administered did not significantly affect the total number of follicles aspirated per hind per session (8.6 ± 1.0 vs. 8.2 ± 1.6 with 0.5 vs. 0.25 U oFSH, respectively; not significant). In a second experiment, frequency of 0.25 U oFSH administration did not affect ovarian response. Efficiency of IVP determined on blastocysts rates after in vitro maturation, fertilization, and development in oviduct epithelial cells coculture was increased when FSH was administered at 12-h intervals. Immune response after several follicular stimulations was detected against exogenous oFSH in plasma from the majority of sika deer hinds but was not associated with decreased ovarian response. When 0.25 U oFSH was administered at 12-h intervals to Vietnamese sika deer (N = 4), good quality cumulus oocyte complexes with complete and compact cumulus investments were recovered allowing a high cleavage rate after in vitro maturation and fertilization. Development to the blastocyst stage occurred in a high proportion (30% of oocytes) after coculture with ovine epithelial cells allowing cryobanking of transferable embryos from Vietnamese sika deer. These results confirm that LOPU-IVF after ovarian stimulation with oFSH may be a successful tool for cryobanking transferable embryos from endangered sika deer subspecies. Copyright © 2012 Elsevier Inc. All rights reserved.
Santos, F C; Caixeta, F; Clemente, A C S; Pinho, E V; Rosa, S D V F
2014-12-19
Seeds collected at different maturation stages vary in physiological quality and patterns of protective antioxidant systems against deterioration. In this study we investigated the expression of genes that codify catalase (CAT), dismutase superoxide (SOD), and polyphenol oxidase (PPO) during the pre- and post-physiological maturation phases in whole seeds and in endosperms and embryos extracted from the seeds. Coffea arabica L. berries were collected at the green, yellowish-green, cherry, over-ripe, and dry stages, and the seeds were examined physiologically. The transcription levels of the genes were quantified by quantitative real-time polymerase chain reaction using coffee-specific primers. The highest level of SOD expression was observed in the endosperm at the cherry and over-ripe stages; in addition, these seeds presented the greatest physiological quality (assessed via germination test). The highest CAT3 transcript expression was observed at the green stage in whole seeds, and at the green and over-ripe stages in the embryos and endosperms. High expression of the PPO transcript was observed at the green and yellowish-green stages in whole seeds. In embryos and endosperms, peak expression of the PPO transcript was observed at the green stage; subsequently, peaks at the cherry and over-ripe stages were observed. We concluded that the expression patterns of the SOD and CAT3 transcripts were similar at the more advanced maturation stages, which corresponded to enhanced physiological seed quality. High expression of the PPO transcript at the over-ripe stage, also observed in the embryos and endosperms at the cherry stage, coincided with the highest physiological seed quality.
Cyanobacteria blooms induce embryonic heart failure in an endangered fish species.
Zi, Jinmei; Pan, Xiaofu; MacIsaac, Hugh J; Yang, Junxing; Xu, Runbing; Chen, Shanyuan; Chang, Xuexiu
2018-01-01
Cyanobacterial blooms drive water-quality and aquatic-ecosystem deterioration in eutrophic lakes worldwide, mainly owing to their harmful, secondary metabolites. The response of fish exposed to these cyanobacterial chemicals, however, remains largely unknown. In this paper, we employed an endangered fish species (Sinocyclocheilus grahami) in Dianchi Lake, China to evaluate the risks of cell-free exudates (MaE) produced by a dominant cyanobacterium (Microcystis aeruginosa) on embryo development, as well as the molecular mechanisms responsible. MaE (3d cultured) caused a reduction of fertilization (35.4%) and hatching (15.5%) rates, and increased mortality rates (≤90.0%) and malformation rate (27.6%), typically accompanied by heart failure. Proteomics analysis revealed that two greatest changed proteins - protein S100A1 (over-expressed 26 times compared with control) and myosin light chain (under-expressed 25 fold) - are closely associated with heart function. Further study revealed that heart failure was due to calcium ion imbalance and malformed cardiac structure. We conclude that harmful secondary metabolites from cyanobacteria may adversely affect embryo development in this endangered fish, and possibly contribute to its disappearance and unsuccessful recovery in Dianchi Lake. Hazardous consequences of substances released by cyanobacteria should raise concerns for managers addressing recovery of this and other imperiled species in affected lakes. Copyright © 2017 Elsevier B.V. All rights reserved.
Hosseini, Sayyed Morteza; Dufort, Isabelle; Nieminen, Julie; Moulavi, Fariba; Ghanaei, Hamid Reza; Hajian, Mahdi; Jafarpour, Farnoosh; Forouzanfar, Mohsen; Gourbai, Hamid; Shahverdi, Abdol Hossein; Nasr-Esfahani, Mohammad Hossein; Sirard, Marc-André
2016-01-04
The limited duration and compromised efficiency of oocyte-mediated reprogramming, which occurs during the early hours following somatic cell nuclear transfer (SCNT), may significantly interfere with epigenetic reprogramming, contributing to the high incidence of ill/fatal transcriptional phenotypes and physiological anomalies occurring later during pre- and post-implantation events. A potent histone deacetylase inhibitor, trichostatin A (TSA), was used to understand the effects of assisted epigenetic modifications on transcriptional profiles of SCNT blastocysts and to identify specific or categories of genes affected. TSA improved the yield and quality of in vitro embryo development compared to control (CTR-NT). Significance analysis of microarray results revealed that of 37,238 targeted gene transcripts represented on the microarray slide, a relatively small number of genes were differentially expressed in CTR-NT (1592 = 4.3 %) and TSA-NT (1907 = 5.1 %) compared to IVF embryos. For both SCNT groups, the majority of downregulated and more than half of upregulated genes were common and as much as 15 % of all deregulated transcripts were located on chromosome X. Correspondence analysis clustered CTR-NT and IVF transcriptomes close together regardless of the embryo production method, whereas TSA changed SCNT transcriptome to a very clearly separated cluster. Ontological classification of deregulated genes using IPA uncovered a variety of functional categories similarly affected in both SCNT groups with a preponderance of genes required for biological processes. Examination of genes involved in different canonical pathways revealed that the WNT and FGF pathways were similarly affected in both SCNT groups. Although TSA markedly changed epigenetic reprogramming of donor cells (DNA-methylation, H3K9 acetylation), reconstituted oocytes (5mC, 5hmC), and blastocysts (DNA-methylation, H3K9 acetylation), these changes did not recapitulate parallel marked changes in chromatin remodeling, and nascent mRNA and OCT4-EGFP expression of TSA-NT vs. CRT-NT embryos. The results obtained suggest that despite the extensive reprogramming of donor cells that occurred by the blastocyst stage, SCNT-specific errors are of a non-random nature in bovine and are not responsive to epigenetic modifications by TSA.
The fight for reproductive rights in Central and Eastern Europe. Poland: Catholic backlash.
Nowicka, W
1995-01-01
In Poland, some of the changes brought about after the collapse of communism in 1989 have damaged women's rights and reproductive health. The liberal abortion law passed in 1956 was overturned in 1993. The post-communists elected to Parliament in 1992 will not challenge right-wing groups and their social agendas. The influence of Roman Catholicism on education began in state schools in 1990. The nature of the influence is illustrated in the example of a school board ruling preventing embryos and other anatomical specimens from being used as educational models in schools. Sex education textbooks use non-scientific language and the descriptions reflect a philosophical notion of sexuality rather than a biological one. A girl is called "a closed garden, a secret source." Human female organs are referred to as the source of life located in "the lower part of her body, inside the body..." The male source of life is described as lying partly outside the body. The Catholic influence affects the practice of medicine. Doctors instruct patients on the Roman Catholic doctrine on contraception and try to convince women that contraception is the same as abortion. Some women's health texts refer to only natural family planning methods. The legal changes affect the programs of in vitro fertilization. The Commission of Medical Ethics decreed that freezing embryos is a violation of the new Law on Family Planning, Protection of Human Embryos, and Condition of Admittance of Abortion. Women must now make a choice between seeking an illegal abortion or bearing an unwanted child. One gynecologist committed suicide after a failed abortion attempt rather than face criminal charges. In Poland political priorities are sacrificing high-quality family planning information and services and balanced sex education.
Molina, Inmaculada; Lázaro-Ibáñez, Elisa; Pertusa, Jose; Debón, Ana; Martínez-Sanchís, Juan Vicente; Pellicer, Antonio
2014-10-01
The risk of multiple pregnancy to maternal-fetal health can be minimized by reducing the number of embryos transferred. New tools for selecting embryos with the highest implantation potential should be developed. The aim of this study was to evaluate the ability of morphological and morphometric variables to predict implantation by analysing images of embryos. This was a retrospective study of 135 embryo photographs from 112 IVF-ICSI cycles carried out between January and March 2011. The embryos were photographed immediately before transfer using Cronus 3 software. Their images were analysed using the public program ImageJ. Significant effects (P < 0.05), and higher discriminant power to predict implantation were observed for the morphometric embryo variables compared with morphological ones. The features for successfully implanted embryos were as follows: four cells on day 2 of development; all blastomeres with circular shape (roundness factor greater than 0.9), an average zona pellucida thickness of 13 µm and an average of 17695.1 µm² for the embryo area. Embryo size, which is described by its area and the average roundness factor for each cell, provides two objective variables to consider when predicting implantation. This approach should be further investigated for its potential ability to improve embryo scoring. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Type of culture media does not affect embryo kinetics: a time-lapse analysis of sibling oocytes.
Basile, Natalia; Morbeck, Dean; García-Velasco, Juan; Bronet, Fernando; Meseguer, Marcos
2013-03-01
Are the morphokinetics of growing embryos affected by the type of culture media utilized? Morphokinetic parameters used for embryo selection are not affected between the two different concept culture media analyzed. Studies on the effect of culture media on human embryos have focused on evaluating different in-house and commercially available media as well as comparing outcomes among different commercial media. Nonetheless, the evaluation of embryo development in these studies was based on static observations and very little is known from a dynamic point of view. Prospective cohort study, October 2010 and April 2011. University-affiliated infertility center. Patients undergoing egg donation (n = 75) in which embryos were cultured with two different types of media in a time-lapse system. Embryo development was analyzed with time-lapse imaging for single step media (Global®) and sequential media (Sage® Cleavage). Variables studied included the timing to two cells (t2), three cells (t3), four cells (t4) and five cells (t5) as well as the length of the second cell cycle (cc2 = t3 - t2) and the synchrony in the division from two to four cells (s2 = t4 - t3). Implantation and clinical pregnancy rates were also analyzed. No statistically significant differences were observed between the two media for all the variables analyzed. When analyzing the percentage of embryos falling within the optimal ranges proposed for s2, cc2 and t5, we did not find significant differences between the two media. Pregnancy and implantation rates were similar for the three types of transfers: 48.0% (CI 95% 28.4-67.6) and 42.0% (CI 95% 22.5-61.4) with Global media; 58.8% (CI 95% 35.4-82.2) and 38.2% (CI 95% 15.0-61.4) with Cleavage media; and 58.1% (CI 95% 40.7-75.4) and 37.1% (CI 95% 22.1-52.1) with mixed transferred, respectively. Multiple implantations (twins) were also similar among the three groups, with 24.0% (CI 95% 9.3-45.1) for transfers with embryos cultured in Global media, 17.6% (CI 95% 3.7-43.3) for transfers with embryos cultured in Cleavage media and 22.5% (CI 95% 9.5-41.0) with mixed transfers. The study was not powered to test differences in pregnancy rates between the two culture media, as this was not the hypothesis tested. Results are based on observations with embryos from oocyte donors and need to be repeated with embryos from infertile patients of different ages. The absence of differences in morphokinetics between two different media concepts validates the algorithm for embryo selection in diverse culture conditions. No specific funding was obtained for this study; it was solely funded by IVI. None of the authors have any economic affiliation with Unisense Fertilitech A/S but IVI is a minor shareholder in Unisense Fertilitech A/S.
Physiological ICSI (PICSI) vs. Conventional ICSI in Couples with Male Factor: A Systematic Review.
Avalos-Durán, Georgina; Ángel, Ana María Emilia Cañedo-Del; Rivero-Murillo, Juana; Zambrano-Guerrero, Jaime Enoc; Carballo-Mondragón, Esperanza; Checa-Vizcaíno, Miguel Ángel
2018-04-19
To determine the efficacy of the physiological ICSI technique (PICSI) vs. conventional ICSI in the prognosis of couples, with respect to the following outcome measures: live births, clinical pregnancy, implantation, embryo quality, fertilization and miscarriage rates. A systematic review of the literature, extracting raw data and performing data analysis. Patient(s): Couples with the male factor, who were subjected to in-vitro fertilization. Main Outcome Measures: rates of live births, clinical pregnancy, implantation, embryo quality, fertilization and miscarriage. In the systematic search, we found 2,918 studies and an additional study from other sources; only two studies fulfilled the inclusion criteria for this systematic review. The rates of live births, clinical pregnancy, implantation, embryo quality, fertilization and miscarriage were similar for both groups. There is no statistically significant difference between PICSI vs. ICSI, for any of the outcomes analyzed in this study. Enough information is still not available to prove the efficacy of the PICSI technique over ICSI in couples with male factor.
Breeding animals for quality products: not only genetics.
Chavatte-Palmer, Pascale; Tarrade, Anne; Kiefer, Hélène; Duranthon, Véronique; Jammes, Hélène
2016-01-01
The effect of the Developmental Origins of Health and Disease on the spread of non-communicable diseases is recognised by world agencies such as the United Nations and the World Health Organization. Early environmental effects on offspring phenotype also apply to domestic animals and their production traits. Herein, we show that maternal nutrition not only throughout pregnancy, but also in the periconception period can affect offspring phenotype through modifications of gametes, embryos and placental function. Because epigenetic mechanisms are key processes in mediating these effects, we propose that the study of epigenetic marks in gametes may provide additional information for domestic animal selection.
Eggshell structure in Caiman latirostris eggs improves embryo survival during nest inundation.
Cedillo-Leal, César; Simoncini, Melina S; Leiva, Pamela M L; Larriera, Alejandro; Lang, Jeffrey W; Piña, Carlos I
2017-05-17
Egg inundation often results in poor hatching success in crocodylians. However, how tolerant eggs are to submergence, and/or how eggshell ultrastructure may affect embryo survival when inundated, are not well understood. In this study, our objective was to determine if embryo survival in Caiman latirostris is affected by eggshell surface roughness, when eggs are submerged under water. Tolerance to inundation was tested early (day 30) versus late (day 60) in development, using eight clutches (four per time treatments), subdivided into four groups: ( N = 9 per clutch per treatment; 9 × 4 = 36 eggs per group). 'Rough' eggshell represented the natural, unmodified eggshell surface structure. 'Smooth' eggshell surface structure was created by mechanically sanding the natural rough surface to remove surface columnar elements and secondary layer features, e.g. irregularities that result in 'roughness'. When inundated by submerging eggs under water for 10 h at day 30, 'smooth' eggshell structure resulted in more than twice as many dead embryos (16 versus 6, smooth versus rough; N = 36), and fewer than half as many healthy embryos (6 versus 13, smooth versus rough, respectively; N = 36). By contrast, at day 60, inundation resulted in very low hatching success, regardless of eggshell surface structure. Only two hatchlings survived the inundation, notably in the untreated group with intact, rough eggshells. Inundation produced a high rate of malformations (58% at day 30), but did not affect hatchling size. Our results indicate that eggshell roughness enhances embryo survival when eggs are inundated early in development, but not late in development. Apparently, the natural surface 'roughness' entraps air bubbles at the eggshell surface during inundation, thereby facilitating gas exchange through the eggshell even when the egg is submerged under water. © 2017 The Author(s).
Akimova, Darya; Wlodarczyk, Bogdan J.; Lin, Ying; Ross, M. Elizabeth; Finnell, Richard H.; Chen, Qiuying; Gross, Steven S.
2016-01-01
Background Valproic Acid (VPA) is prescribed therapeutically for multiple conditions, including epilepsy. When taken during pregnancy, VPA is teratogenic, increasing the risk of several birth and developmental defects including neural tube defects (NTDs). The mechanism by which VPA causes NTDs remains controversial and how VPA interacts with folic acid, a vitamin commonly recommended for the prevention of NTDs, remains uncertain. We sought to address both questions by applying untargeted metabolite profiling analysis to neural tube closure stage mouse embryos. Methods Pregnant SWV dams on either a 2ppm or 10ppm folic acid (FA) supplemented diet were injected with a single dose of VPA on gestational day E8.5. On day E9.5, the mouse embryos were collected and evaluated for neural tube closure status. LC/MS metabolomics analysis was performed to compare metabolite profiles of NTD-affected VPA-exposed whole mouse embryos to profiles from embryos that underwent normal neural tube closure from control dams. Results NTDs were observed in all embryos from VPA-treated dams and penetrance was not diminished by dietary folic acid supplementation. The most profound metabolic perturbations were found in the 10ppm FA VPA-exposed mouse embryos, compared to the other three treatment groups. Affected metabolites included amino acids, nucleobases and related phosphorylated nucleotides, lipids, and carnitines. Conclusions Maternal VPA treatment markedly perturbed purine and pyrimidine metabolism in E9.5 embryos. In combination with a high folic acid diet, VPA treatment resulted in gross metabolic changes, likely caused by a multiplicity of mechanisms, including an apparent disruption of mitochondrial beta-oxidation. PMID:27860192
Developmental age strengthens barriers to ethanol accumulation in zebrafish.
Lovely, C Ben; Nobles, Regina D; Eberhart, Johann K
2014-09-01
Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of phenotypic defects affecting facial and neurological development associated with ethanol teratogenicity. It affects approximately 1 in 100 children born in the United States each year. Genetic predisposition along with timing and dosage of ethanol exposure are critical in understanding the prevalence and variability of FASD. The zebrafish attributes of external fertilization, genetic tractability, and high fecundity make it a powerful tool for FASD studies. However, a lack of consensus of ethanol treatment paradigms has limited the interpretation of these various studies. Here we address this concern by examining ethanol tissue concentrations across timing and genetic background. We utilize headspace gas chromatography to determine ethanol concentration in the AB, fli1:EGFP, and Tu backgrounds. In addition, we treated these embryos with ethanol over two different developmental time windows, 6-24 h post fertilization (hpf) and 24-48 hpf. Our analysis demonstrates that embryos rapidly equilibrate to a sub-media level of ethanol. Embryos then maintain this level of ethanol for the duration of exposure. The ethanol tissue concentration level is independent of genetic background, but is timing-dependent. Embryos exposed from 6 to 24 hpf were 2.7-4.2-fold lower than media levels, while embryos were 5.7-6.2-fold lower at 48 hpf. This suggests that embryos strengthen one or more barriers to ethanol as they develop. In addition, both the embryo and, to a lesser extent, the chorion, surrounding the embryo are barriers to ethanol. Overall, this work will help tighten ethanol treatment regimens and strengthen zebrafish as a model of FASD. Copyright © 2014 Elsevier Inc. All rights reserved.
Moreno-Moya, Juan Manuel; Ramírez, Leslie; Vilella, Felipe; Martínez, Sebastián; Quiñonero, Alicia; Noguera, Inmaculada; Pellicer, Antonio; Simón, Carlos
2014-03-01
To illustrate an efficient, complete, step-by-step protocol for studying implantation in mice. Video presentation of an animal model for research in reproductive biology. Mouse (Mus musculus). A nonsurgical embryo transfer system very similar to that used for human embryo transfer. The protocols with recipient and donor mice are performed in parallel in the same week. For the donor mice: the first step is ovarian stimulation, followed by ovulation induction and mating; finally, the mice are sacrificed, and the embryos are collected and cultured. For recipient mice: first estrous synchrony is induced, followed by mating with a vasectomized male, visualization of the vaginal plug, and nonsurgical transfer of the embryos. Finally (optionally), the implantation sites can be visualized on day 7.5 of development. (All animal experiments were performed with the approval of the institutional review board.) Implantation is an essential step in human reproduction although, because of technical and ethics considerations, still relatively little is known about human implantation and early development. Conversely, mouse models are well established and can be used for preliminary experiments. However, there are various bottlenecks in the procedure for obtaining and transferring murine embryos, which makes experimentation with this model more difficult. These difficulties include pseudopregnancy, ovarian hyperstimulation, and embryo collection, culture, and transfer. We have proposed a complete, efficient method for obtaining, culturing, and transferring mouse blastocysts that can be easily applied in research. Potential applications include testing new media components that do not affect preimplantation but do affect implantation and early development. The embryo transfer method proposed here has been demonstrated to achieve embryo implantation easier and faster than, and in approximately similar rates as other traditional surgery methods. This workflow is the first set of complete step-by-step instructions available that incorporate advances such as nonsurgical mouse embryo transfer. This will facilitate research into different reproduction events such as embryo development, embryo implantation, or contraception. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Yamauchi, N; Kiessling, A A; Cooper, G M
1994-01-01
We have used microinjection of antisense oligonucleotides, monoclonal antibody, and the dominant negative Ras N-17 mutant to interfere with Ras expression and function in mouse oocytes and early embryos. Microinjection of either ras antisense oligonucleotides or anti-Ras monoclonal antibody Y13-259 did not affect normal progression of oocytes through meiosis and arrest at metaphase II. However, microinjection of fertilized eggs with constructs expressing Ras N-17 inhibited subsequent development through the two-cell stage. The inhibitory effect of Ras N-17 was overcome by simultaneous injection of a plasmid expressing an active raf oncogene, indicating that it resulted from interference with the Ras/Raf signaling pathway. In contrast to the inhibition of two-cell embryo development resulting from microinjection of pronuclear stage eggs, microinjection of late two-cell embryos with Ras N-17 expression constructs did not affect subsequent cleavages and development to morulae and blastocysts. It thus appears that the Ras/Raf signaling pathway, presumably activated by autocrine growth factor stimulation, is specifically required at the two-cell stage, which is the time of transition between maternal and embryonic gene expression in mouse embryos. Images PMID:7935384
Factors affecting viability of fresh and frozen-thawed sheep demi-embryos.
Shelton, J N
1992-03-01
The addition of 0.1 M sucrose to the medium in which sheep embryos were bisected had no effect (39.5 vs 36.4%) on the survival rate of demi-embryos transferred (one per ewe) to recipients. There was a trend to greater survival of demi-blastocysts (44.7%) compared to demi-morulae (30%), and all the surviving twins were derived from the demi-blastocysts. It is suggested that the survival of demi-morulae is enhanced by the transfer of two demi-morulae to one uterine horn. In three experiments demi-embryos were frozen after the addition of 1.5 M glycerol in three or six steps or after the addition of 1.5 M ethylene glycol in six steps. No treatment resulted in acceptable survival rates of the demi-embryos transferred to recipients after thawing and step-wise removal of the cryoprotectant. Overall, 8 of 142 (5.6%) cryopreserved demi-embryos survived as 50-day fetuses or term lambs compared with 14 of 31 (45.2%) whole embryos.
A Technique for Facile and Precise Transfer of Mouse Embryos
Sarvari, Ali; Naderi, Mohammad Mehdi; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mehdi
2013-01-01
Background Successful Embryo Transfer (ET) technique is a fateful step of all efforts to achieve live births from in vitro produced embryos in assisted reproductive techniques or in knockout, transgenic or cloned animal projects. Small reproductive tract of mice and limitation of current techniques may not well satisfy the requirements for mass production of genetically modified mice. Genetic abnormalities of embryos, receptivity and uterine contractions, expulsion of embryos, blood, mucus or bacterial contamination on the transfer pipette tip, technical problems and even animal strain may affect embryo transfer outcome. Methods In this study, two techniques of embryo transfer in mice were compared. In conventional technique the oviduct wall was punctured with a 30-gauge needle and the loaded Pasteur pipette with embryos and medium was inserted into the hole. In new technique, embryos that were loaded in modified micropipette with minimal medium were transferred directly to the oviduct by manual piston micro-pump easily. Embryo viability was evaluated considering the percentage of live healthy newborns. Results Results of the two techniques were compared by t-test within the NPAR1WAY procedure of SAS software (ver. 9.2). The average live birth rates in the novel methods was significantly higher (42.4%) than the conventional method (21.7%, p<0.05). Conclusion In conclusion, using new embryo transfer technique improved birth rate by preventing embryos expulsion from the oviduct, saving time and easy transfer of embryos with minimum volume of medium. PMID:23626878
Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L
2017-01-01
Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI: http://dx.doi.org/10.7554/eLife.23326.001 PMID:28425915
Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L
2017-04-20
Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo.
NASA Astrophysics Data System (ADS)
Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.
2015-09-01
Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.
Ubaldi, Filippo Maria; Capalbo, Antonio; Colamaria, Silvia; Ferrero, Susanna; Maggiulli, Roberta; Vajta, Gábor; Sapienza, Fabio; Cimadomo, Danilo; Giuliani, Maddalena; Gravotta, Enrica; Vaiarelli, Alberto; Rienzi, Laura
2015-01-01
STUDY QUESTION Is an elective single-embryo transfer (eSET) policy an efficient approach for women aged >35 years when embryo selection is enhanced via blastocyst culture and preimplantation genetic screening (PGS)? SUMMARY ANSWER Elective SET coupled with enhanced embryo selection using PGS in women older than 35 years reduced the multiple pregnancy rates while maintaining the cumulative success rate of the IVF programme. WHAT IS KNOWN ALREADY Multiple pregnancies mean an increased risk of premature birth and perinatal death and occur mainly in older patients when multiple embryos are transferred to increase the chance of pregnancy. A SET policy is usually recommended in cases of good prognosis patients, but no general consensus has been reached for SET application in the advanced maternal age (AMA) population, defined as women older than 35 years. Our objective was to evaluate the results in terms of efficacy, efficiency and safety of an eSET policy coupled with increased application of blastocyst culture and PGS for this population of patients in our IVF programme. STUDY DESIGN, SIZE, DURATION In January 2013, a multidisciplinary intervention involving optimization of embryo selection procedure and introduction of an eSET policy in an AMA population of women was implemented. This is a retrospective 4-year (January 2010–December 2013) pre- and post-intervention analysis, including 1161 and 499 patients in the pre- and post-intervention period, respectively. The primary outcome measures were the cumulative delivery rate (DR) per oocyte retrieval cycle and multiple DR. PARTICIPANTS/MATERIALS, SETTING, METHODS Surplus oocytes and/or embryos were vitrified during the entire study period. In the post-intervention period, all couples with good quality embryos and less than two previous implantation failures were offered eSET. Embryo selection was enhanced by blastocyst culture and PGS (blastocyst stage biopsy and 24-chromosomal screening). Elective SET was also applied in cryopreservation cycles. MAIN RESULTS AND THE ROLE OF CHANCE Patient and cycle characteristics were similar in the pre- and post-intervention groups [mean (SD) female age: 39.6 ± 2.1 and 39.4 ± 2.2 years; range 36–44] as assessed by logistic regression. A total of 1609 versus 574 oocyte retrievals, 937 versus 350 embryo warming and 138 versus 27 oocyte warming cycles were performed in the pre- and post-intervention periods, respectively, resulting in 1854 and 508 embryo transfers, respectively. In the post-intervention period, 289 cycles were blastocyst stage with (n = 182) or without PGS (n = 107). A mean (SD) number of 2.9 ± 1.1 (range 1–4) and 1.4 ± 0.8 (range 1–3) embryos were transferred pre- and post-intervention, respectively (P < 0.01) and similar cumulative clinical pregnancy rates per transfer and per cycle were obtained: 26.8, 30.9% and 29.7, 26.3%, respectively. The total DR per oocyte retrieval cycle (21.0 and 20.4% pre- and post-intervention, respectively) defined as efficacy was not affected by the intervention [odds ratio (OR) = 0.8, 95% confidence interval (CI) = 0.7–1.1; P = 0.23]. However, a significantly increased live birth rate per transferred embryo (defined as efficiency) was observed in the post-intervention group 17.0 versus 10.6% (P < 0.01). Multiple DRs decreased from 21.0 in the preintervention to 6.8% in the post-intervention group (OR = 0.3. 95% CI = 0.1–0.7; P < 0.01). LIMITATIONS, REASONS FOR CAUTION In this study, the suitability of SET was assessed in individual women on the basis of both clinical and embryological prognostic factors and was not standardized. For the described eSET strategy coupled with an enhanced embryo selection policy, an optimized culture system, cryopreservation and aneuploidy screening programme is necessary. WIDER IMPLICATIONS OF THE FINDINGS Owing to the increased maternal morbidity and perinatal complications related to multiple pregnancies, it is recommended to extend the eSET policy to the AMA population. As shown in this study, enhanced embryo selection procedures might allow a reduction in the number of embryos transferred and the number of transfers to be performed without affecting the total efficacy of the treatment but increasing efficiency and safety. STUDY FUNDING/COMPETING INTEREST(S) None. TRIAL REGISTRATION NUMBER None. PMID:26150408
Wu, Hsin-Ju; Fong, Tsorng-Harn; Chen, Shen-Liang; Wei, Jen-Cheng; Wang, I-Jong; Wen, Chi-Chung; Chang, Chao-Yuan; Chen, Xing-Guang; Chen, Wei-Yu; Chen, Hui-Min; Horng, Juin-Lin; Wang, Yun-Hsin; Chen, Yau-Hung
2015-03-01
The objective of the current study was to investigate the effects of Ca(2+) levels on myofibril alignment during zebrafish embryogenesis. To investigate how altered cytoplasmic Ca(2+) levels affect myofibril alignment, we exposed zebrafish embryos to 2-aminothoxyldiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor inhibitor that reduces cytosolic Ca(2+) levels) and caffeine (a ryanodine receptor activator that enhances cytosolic Ca(2+) levels). The results demonstrated that the most evident changes in zebrafish embryos treated with 2-APB were shorter body length, curved trunk and malformed somite boundary. In contrast, such malformed phenotypes were evident neither in untreated controls nor in caffeine-treated embryos. Subtle morphological changes, including changes in muscle fibers, F-actin and ultrastructures were easily observed by staining with specific monoclonal antibodies (F59 and α-laminin), fluorescent probes (phalloidin) and by transmission electron microscopy. Our data suggested that: (1) the exposure to 2-APB and/or caffeine led to myofibril misalignment; (2) 2-APB-treated embryos displayed split and short myofibril phenotypes, whereas muscle fibers from caffeine-treated embryos were twisted and wavy; and (3) zebrafish embryos co-exposed to 2-APB and caffeine resulted in normal myofibril alignment. In conclusion, we proposed that cytosolic Ca(2+) is important for myogenesis, particularly for myofibril alignment. Copyright © 2014 John Wiley & Sons, Ltd.
Fresh versus frozen embryo transfers in assisted reproduction.
Wong, Kai Mee; van Wely, Madelon; Mol, Femke; Repping, Sjoerd; Mastenbroek, Sebastiaan
2017-03-28
In general, in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) implies a single fresh and one or more frozen-thawed embryo transfers. Alternatively, the 'freeze-all' strategy implies transfer of frozen-thawed embryos only, with no fresh embryo transfers. In practice, both strategies can vary technically including differences in freezing techniques and timing of transfer of cryopreservation, that is vitrification versus slow freezing, freezing of two pro-nucleate (2pn) versus cleavage-stage embryos versus blastocysts, and transfer of cleavage-stage embryos versus blastocysts.In the freeze-all strategy, embryo transfers are disengaged from ovarian stimulation in the initial treatment cycle. This could avoid a negative effect of ovarian hyperstimulation on the endometrium and thereby improve embryo implantation. It could also reduce the risk of ovarian hyperstimulation syndrome (OHSS) in the ovarian stimulation cycle by avoiding a pregnancy.We compared the benefits and risks of the two treatment strategies. To evaluate the effectiveness and safety of the freeze-all strategy compared to the conventional IVF/ICSI strategy in women undergoing assisted reproductive technology. We searched the Cochrane Gynaecology and Fertility Group Trials Register, the Cochrane Central Register of Studies (CRSO), MEDLINE, Embase, PsycINFO, CINAHL, and two registers of ongoing trials in November 2016 together with reference checking and contact with study authors and experts in the field to identify additional studies. We included randomised clinical trials comparing a freeze-all strategy with a conventional IVF/ICSI strategy which includes fresh transfer of embryos in women undergoing IVF or ICSI treatment. We used standard methodological procedures recommended by Cochrane. The primary review outcomes were cumulative live birth and OHSS. Secondary outcomes included other adverse effects (miscarriage rate). We included four randomised clinical trials analysing a total of 1892 women comparing a freeze-all strategy with a conventional IVF/ICSI strategy. The evidence was of moderate to low quality due to serious risk of bias and (for some outcomes) serious imprecision. Risk of bias was associated with unclear blinding of investigators for preliminary outcomes of the study, unit of analysis error, and absence of adequate study termination rules.There was no clear evidence of a difference in cumulative live birth rate between the freeze-all strategy and the conventional IVF/ICSI strategy (odds ratio (OR) 1.09, 95% confidence interval (CI) 0.91 to 1.31; 4 trials; 1892 women; I 2 = 0%; moderate-quality evidence). This suggests that if the cumulative live birth rate is 58% following a conventional IVF/ICSI strategy, the rate following a freeze-all strategy would be between 56% and 65%.The prevalence of OHSS was lower after the freeze-all strategy compared to the conventional IVF/ICSI strategy (OR 0.24, 95% CI 0.15 to 0.38; 2 trials; 1633 women; I 2 = 0%; low-quality evidence). This suggests that if the OHSS rate is 7% following a conventional IVF/ICSI strategy, the rate following a freeze-all strategy would be between 1% and 3%.The freeze-all strategy was associated with fewer miscarriages (OR 0.67, 95% CI 0.52 to 0.86; 4 trials; 1892 women; I 2 = 0%; low-quality evidence) and a higher rate of pregnancy complications (OR 1.44, 95% CI 1.08 to 1.92; 2 trials; 1633 women; low-quality evidence). There was no difference in multiple pregnancies per woman after the first transfer (OR 1.11, 95% CI 0.85 to 1.44; 2 trials; 1630 women; low-quality evidence), and no data were reported for time to pregnancy. We found moderate-quality evidence showing that one strategy is not superior to the other in terms of cumulative live birth rates. Time to pregnancy was not reported, but it can be assumed to be shorter using a conventional IVF/ICSI strategy in the case of similar cumulative live birth rates, as embryo transfer is delayed in a freeze-all strategy. Low-quality evidence suggests that not performing a fresh transfer lowers the OHSS risk for women at risk of OHSS.
Oliveira, C S; de Souza, M M; Saraiva, N Z; Tetzner, T A D; Lima, M R; Lopes, F L; Garcia, J M
2012-06-01
Despite extensive efforts, establishment of bovine embryonic stem (ES) cell lines has not been successful. We hypothesized that culture conditions for in vitro-produced (IVP) embryos, the most used source of inner cell mass (ICM) to obtain ES cells, might affect their undifferentiated state. Therefore, the aim of this work was to improve pluripotency of IVP blastocysts to produce suitable ICM for further culturing. We tested KSR and foetal calf serum (FCS) supplements in SOF medium and ES cell conditioned medium (CM) on IVC (groups: KSR, KSR CM, FCS and FCS CM). Cleavage and blastocyst rates were similar between all groups. Also, embryonic quality, assessed by apoptosis rates (TUNEL assay), total cell number and ICM percentage did not differ between experimental groups. However, expression of pluripotency-related markers was affected. We detected down-regulation of OCT3/4, SOX2 and SSEA1 in ICM of FCS CM blastocysts (p < 0.05). SOX2 gene expression revealed lower levels (p < 0.05) on KSR CM blastocysts and a remarkable variation in SOX2 mRNA levels on FCS-supplemented blastocysts. In conclusion, pluripotency-related markers tend to decrease after supplementation with ES cell CM, suggesting different mechanisms regulating mouse and bovine pluripotency. KSR supplementation did not differ from FCS, but FCS replacement by KSR may produce blastocysts with stable SOX2 gene expression levels. © 2011 Blackwell Verlag GmbH.
Cobo, Ana Cristina; Milán, Miguel; Al-Asmar, Nasser; García-Herrero, Sandra; Mir, Pere; Simón, Carlos
2014-01-01
The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS) using array comparative genomic hybridization (aCGH). The study included 1420 CCS cycles for recurrent miscarriage (n = 203); repetitive implantation failure (n = 188); severe male factor (n = 116); previous trisomic pregnancy (n = 33); and advanced maternal age (n = 880). CCS was performed in cycles with fresh oocytes and embryos (n = 774); mixed cycles with fresh and vitrified oocytes (n = 320); mixed cycles with fresh and vitrified day-2 embryos (n = 235); and mixed cycles with fresh and vitrified day-3 embryos (n = 91). Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5–54.2%) and pregnancy rates per transfer (range: 46.0–62.9%) were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1%) due to the higher percentage of aneuploid embryos (85.3%) and lower number of cycles with at least one euploid embryo available per transfer (40.3%). We concluded that aneuploidy is one of the major factors which affect embryo implantation. PMID:24877108
Pribenszky, Csaba; Nilselid, Anna-Maria; Montag, Markus
2017-11-01
Embryo evaluation and selection is fundamental in clinical IVF. Time-lapse follow-up of embryo development comprises undisturbed culture and the application of the visual information to support embryo evaluation. A meta-analysis of randomized controlled trials was carried out to study whether time-lapse monitoring with the prospective use of a morphokinetic algorithm for selection of embryos improves overall clinical outcome (pregnancy, early pregnancy loss, stillbirth and live birth rate) compared with embryo selection based on single time-point morphology in IVF cycles. The meta-analysis of five randomized controlled trials (n = 1637) showed that the application of time-lapse monitoring was associated with a significantly higher ongoing clinical pregnancy rate (51.0% versus 39.9%), with a pooled odds ratio of 1.542 (P < 0.001), significantly lower early pregnancy loss (15.3% versus 21.3%; OR: 0.662; P = 0.019) and a significantly increased live birth rate (44.2% versus 31.3%; OR 1.668; P = 0.009). Difference in stillbirth was not significant between groups (4.7% versus 2.4%). Quality of the evidence was moderate to low owing to inconsistencies across the studies. Selective application and variability were also limitations. Although time-lapse is shown to significantly improve overall clinical outcome, further high-quality evidence is needed before universal conclusions can be drawn. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Kliebisch, T. K.; Bielfeld, A. P.; Krüssel, J. S.; Baston-Büst, D. M.
2016-01-01
Introduction: Patients receiving fertility treatment in Germany appear to be disadvantaged in comparison to those in other countries due to the restrictive Embryo Protection Act (“Embryonenschutzgesetz, ESchG”), which prohibits the selection of a “top” embryo. The so-called German Middleway (“Deutscher Mittelweg, DMW”) now provides for a liberal interpretation of the ESchG by allowing the culture of numerous pronuclear stages (2PN stage). Materials and Methods: Retrospective cohort study of 2 assisted reproduction treatment cycles in n = 400 patients between the ages of 21 and 45 years, either treated 2× conservatively or 1× conservatively and 1× liberally according to DMW. Results: Pregnancy was achieved in 35 % of patients in the DMW group and 31 % of controls. The birth rate among controls was 28.5 % and 30.5 % in the DMW group. Most pregnancies resulted from the culture of 4 × 2PN stages. Conclusion: Patients in the DMW group had significantly higher pregnancy and birth rates compared to their previous cycles despite significantly increased age and significantly fewer transferred embryos. Key factors were the number of 2PNs generated and the quality of embryos transferred. Thus it can be assumed that particularly older patients with adequate ovarian reserves will benefit from DMW, i.e. the transfer of fewer embryos of the best possible quality. PMID:27365539
Nelissen, Ewka C; Van Montfoort, Aafke P; Coonen, Edith; Derhaag, Josien G; Geraedts, Joep P; Smits, Luc J; Land, Jolande A; Evers, Johannes L; Dumoulin, John C
2012-07-01
We have previously shown that the medium used for culturing IVF embryos affects the birthweight of the resulting newborns. This observation with potentially far-reaching clinical consequences during later life, was made in singletons conceived during the first IVF treatment cycle after the transfer of fresh embryos. In the present study, we hypothesize that in vitro culture of embryos during the first few days of preimplantation development affects perinatal outcome, not only in singletons conceived in all rank order cycles but also in twins and in children born after transfer of frozen embryos. Furthermore, we investigated the effect of culture medium on gestational age (GA) at birth. Oocytes and embryos from consecutive treatment cycles were alternately assigned to culture in either medium from Vitrolife or from Cook. Data on a cohort of 294 live born singletons conceived after fresh transfer during any of a patient's IVF treatment cycles, as well as data of 67 singletons conceived after frozen embryo transfer (FET) and of 88 children of 44 twin pregnancies after fresh transfer were analysed by means of multiple linear regression. In vitro culture in medium from Cook resulted in singletons after fresh transfer with a lower mean birthweight (adjusted mean difference, 112 g, P= 0.03), and in more singletons with low birthweight (LBW) <2500 g (P= 0.006) and LBW for GA ≥ 37 weeks (P= 0.015), when compared with singletons born after culture in medium from Vitrolife AB. GA at birth was not related to the medium used (adjusted difference, 0.05 weeks, P = 0.83). Among twins in the Cook group, higher inter-twin mean birthweight disparity and birthweight discordance were found. Z-scores after FET were -0.04 (± 0.14) in the Cook group compared with 0.18 (± 0.21) in the Vitrolife group (P> 0.05). Our findings support our hypothesis that culture medium influences perinatal outcome of IVF singletons and twins. A similar trend is seen in case of singletons born after FET. GA was not affected by culture medium. These results indicate that in vitro culture might be an important factor explaining the poorer perinatal outcome after assisted reproduction technology (ART). Further research is needed to confirm this culture medium-induced effect in humans and to provide more insight into whether it is caused by epigenetic disturbance of imprinted genes in fetal or placental tissues. Moreover, embryo culture media and their effects need to be investigated thoroughly to select the best embryo culture medium in order to minimize or prevent short-term risks and maybe even long-term disease susceptibility.
Increasing efficiency in production of cloned piglets.
Callesen, Henrik; Liu, Ying; Pedersen, Hanne S; Li, Rong; Schmidt, Mette
2014-12-01
The low efficiency in obtaining piglets after production of cloned embryos was challenged in two steps-first by performing in vitro culture for 5-6 days after cloning to obtain later-stage embryos for more precise selection for transfer, and second by reducing the number of embryos transferred per recipient sow. The data set consisted of combined results from a 4-year period where cloning was performed to produce piglets that were transgenic for important human diseases. For this, different transgenes and cell types were used, and the cloning work was performed by several persons using oocytes from different pig breeds, but following a standardized and optimized protocol. Results showed that in vitro culture is possible with a relatively stable rate of transferable embryos around 41% and a pregnancy rate around 90%. Furthermore, a reduction from around 80 embryos to 40 embryos transferred per recipient was possible without changing the efficiency of around 14% (piglets born out of embryos transferred). It was concluded that this approach can increase the efficiency in obtaining piglets by means of in vitro culture and selection of high-quality embryos with subsequent transfer into more recipients. Such changes can also reduce the need for personnel, time, and material when working with this technology.
Developmental consequences of cryopreservation of mammalian oocytes and embryos.
Smith, Gary D; Silva E Silva, Cristine Ane
2004-08-01
During the last three decades, significant advances have been made in successful cryopreservation of mammalian preimplantation embryos, and more recently oocytes. The ability to cryopreserve, thaw, and establish pregnancies with supernumerary preimplantation embryos has become an important tool in fertility treatment. Human oocyte cryopreservation has practical application in preserving fertility for individuals at risk of compromised egg quality due to cancer treatments or advanced maternal age. While oocyte/embryo cryopreservation success has increased over time, there is still room for improvement. Oocytes and embryos are susceptible to cryo-damage, which collectively entails cellular damage caused by mechanical, chemical, or thermal forces during the freeze-thaw process. Basic studies focused on understanding cellular structures, their composition, and more importantly their functions, in normal cell developments will continue to be critical in assessing, understanding, and correcting oocyte/embryo cryo-damage. This review will delineate many of the oocyte/embryo intracellular and extracellular structures that are or may be compromised during cryopreservation. A global theme presented throughout this review is that many structural components of the oocyte/embryo also have essential functional roles in development. Compromising these cellular structures, and thus their cellular homeostatic functions, can deleteriously influence initial cryo-survival or compromise subsequent normal development through effects on the oocyte and/or early embryo.
NASA Astrophysics Data System (ADS)
Strode, Evita; Jansons, Mintauts; Purina, Ingrida; Balode, Maija; Berezina, Nadezhda A.
2017-08-01
The aim of this study was to assess the toxicity of bottom sediment and to estimate the potential effects of contaminated sediment on health of benthic organisms in the Gulf of Riga (eastern Baltic Sea). Two endpoints were used: survival rate (acute toxicity test) of five crustacean amphipod species and frequency of embryo malformation (samples were collected from the field) in the two species. Toxic resistance of living animals to sediment quality was measured as survival rate (%) at 25 study sites from 2010-2012. Significant differences in the toxic resistance between species were found: 80-100% for Monoporeia affinis, 70-95% for Corophium volutator, 38-88% for Pontogammarus robustoides, 38-100% for Bathyporeia pilosa and 60-100% for Hyalella azteca. Reproductive disorders, measured as percentage (%) of malformed embryos per female, varied in the ranges of 0.0-9.5% in deep water species M. affinis and 0.3-7.5% in littoral species P. robustoides. Both the acute toxicity test and embryo malformation test (only M. affinis was used) indicated moderate and poor sediment quality at 20% and 12% accordingly in the study sites, low toxicity of sediment was estimated in 64% of cases, and no toxicity was recorded in the rest of the cases (4%). Additionally, sediment toxicity test using aquatic organisms was combined with sediment chemical analysis (trace metals) and the Benthic Quality Index (macrozoobenthos) was based on data collected from 13 sites in the Gulf of Riga in 2010 and used for triad sediment quality assessment. According to this combined approach, 23% of the bottom sediments were classified as likely impacted and 23% as possibly impacted (central and southern part of the Gulf). However, the remaining 54% was identified as likely un-impacted. The sediment quality assessment with single survival test or chemical analyses showed better sediment quality in the Gulf than the triad method. The embryo malformation test appeared to be more sensitive to pollution than acute toxicity survival test, that allow us to recommend the inclusion of this novel biomarker in environmental monitoring, while combining it with other tests. In general, our results indicate good or moderate states of sediments and minimal effects of the toxic contamination in them on the Gulf of Riga ecosystem.
USDA-ARS?s Scientific Manuscript database
Twelve cacao (Theobroma cacao) clones propagated by grafting and orthotropic rooted cuttings of somatic embryo-derived plants were grown on an Ultisol soil at Corozal, Puerto Rico and evaluated for six years of production under intensive management. Year, variety, year x variety and propagation tre...
Dahlberg, Olle; Shilkova, Olga; Tang, Min; Holmqvist, Per-Henrik; Mannervik, Mattias
2015-01-01
Positive Transcription Elongation Factor b (P-TEFb) is a kinase consisting of Cdk9 and Cyclin T that releases RNA Polymerase II (Pol II) into active elongation. It can assemble into a larger Super Elongation Complex (SEC) consisting of additional elongation factors. Here, we use a miRNA-based approach to knock down the maternal contribution of P-TEFb and SEC components in early Drosophila embryos. P-TEFb or SEC depletion results in loss of cells from the embryo posterior and in cellularization defects. Interestingly, the expression of many patterning genes containing promoter-proximal paused Pol II is relatively normal in P-TEFb embryos. Instead, P-TEFb and SEC are required for expression of some non-paused, rapidly transcribed genes in pre-cellular embryos, including the cellularization gene Serendipity-α. We also demonstrate that another P-TEFb regulated gene, terminus, has an essential function in embryo development. Similar morphological and gene expression phenotypes were observed upon knock down of Mediator subunits, providing in vivo evidence that P-TEFb, the SEC and Mediator collaborate in transcription control. Surprisingly, P-TEFb depletion does not affect the ratio of Pol II at the promoter versus the 3’ end, despite affecting global Pol II Ser2 phosphorylation levels. Instead, Pol II occupancy is reduced at P-TEFb down-regulated genes. We conclude that a subset of non-paused, pre-cellular genes are among the most susceptible to reduced P-TEFb, SEC and Mediator levels in Drosophila embryos. PMID:25679530
Hudec, Lukáš; Konrádová, Hana; Hašková, Anna; Lipavská, Helena
2016-01-01
Two unrelated, geographically distinct, highly embryogenic lines of Norway spruce (Picea abies (L.) Karst.) were analysed to identify metabolic traits characteristic for lines with good yields of high-quality embryos. The results were compared with corresponding characteristics of a poorly productive line (low embryo yield, scarce high-quality embryos). The following carbohydrate profiles and spectra during maturation, desiccation and germination were identified as promising characteristics for line evaluation: a gradual decrease in total soluble carbohydrates with an increasing sucrose : hexose ratio during maturation; accumulation of raffinose family oligosaccharides resulting from desiccation and their rapid degradation at the start of germination; and a decrease in sucrose, increase in hexoses and the appearance of pinitol with proceeding germination. We propose that any deviation from this profile in an embryonic line is a symptom of inferior somatic embryo development. We further propose that a fatty acid spectrum dominated by linoleic acid (18 : 2) was a common feature of healthy spruce somatic embryos, although it was quite different from zygotic embryos mainly containing oleic acid (18 : 1). The responses of the lines to osmotic stress were evaluated based on comparison of control (without osmoticum) and polyethylene glycol (PEG)-exposed (PEG 4000) variants. Although genetically distinct, both highly embryogenic lines responded in a very similar manner, with the only difference being sensitivity to high concentrations of PEG. At an optimum PEG concentration (3.75 and 5%), which was line specific, negative effects of PEG on embryo germination were compensated for by a higher maturation efficiency so that the application of PEG at an appropriate concentration improved the yield of healthy germinants per gram of initial embryonal mass and accelerated the process. Polyethylene glycol application, however, resulted in no improvement of the poorly productive line. PMID:27052433
Bosch, Ernesto; Alamá, Pilar; Rubio, Carmen; Rodrigo, Lorena; Pellicer, Antonio
2012-01-01
Context: A high chromosomal abnormalities rate has been observed in human embryos derived from in vitro fertilization (IVF) treatments. The real incidence in natural cycles has been poorly studied, so whether this frequency may be induced by external factors, such as use of gonadotropins for ovarian stimulation, remains unknown. Design: We conducted a prospective cohort study in a University-affiliated private infertility clinic with a comparison between unstimulated and stimulated ovarian cycles in the same women. Preimplantation genetic screening by fluorescence in situ hybridization was performed in all viable d 3 embryos. Objective: The primary objective was to compare the incidence of embryo chromosomal abnormalities in an unstimulated cycle and in an ulterior moderate ovarian stimulated cycle. Secondary outcome measures were embryo quality, blastocyst rate of biopsied embryos, number of normal blastocysts per donor, type of chromosomal abnormalities, and clinical outcome. Results: One hundred eighty-five oocyte donors were initially recruited for the unstimulated cycle, and preimplantation genetic screening could be performed in 51 of them, showing 35.3% of embryo chromosomal abnormalities. Forty-six of them later completed a stimulated cycle. The sperm donor sample was the same for both cycles. The proportion of embryos displaying abnormalities in the unstimulated cycle was 34.8% (16 of 46), whereas it was 40.6% (123 of 303) in the stimulated cycle with risk difference = 5.8 [95% confidence interval (CI) = −20.6–9.0], and relative risk = 1.17 (95% CI = 0.77–1.77) (P = 0.45). When an intrasubject comparison was made, the abnormalities rate was 34.8% (95% CI = 20.5–49.1) in the unstimulated cycle and 38.2% (95% CI = 30.5–45.8) in the stimulated cycle [risk difference = 3.4 (95% CI = −17.9–11.2); P = 0.64]. No differences were observed for embryo quality and type of chromosomal abnormalities. Conclusions: Moderate ovarian stimulation in young normo-ovulatory women does not significantly increase the embryo aneuploidies rate in in vitro fertilization-derived human embryos as compared with an unstimulated cycle. Whether these results can be extrapolated to infertile patients is still unknown. PMID:22865900
Fernandes, C C L; Aguiar, L H; Calderón, C E M; Silva, A M; Alves, J P M; Rossetto, R; Bertolini, L R; Bertolini, M; Rondina, D
2018-01-01
Changes in the nutritional plan have been shown to affect oocyte quality, crucial to oocyte donors animals used in cloning. This study aimed to evaluate the impact of diets with increasing nutritional levels (maintenance diet=M; 1.3M; 1.6M; 1.9M) fed to goats for four weeks on follicular fluid composition, gene expression and oocyte competence used to cloning in goats. Donor females were superovulated for the retrieval of matured oocytes and physical measurements reported. After four weeks, groups receiving diets above maintenance increased thickness of subcutaneous adipose tissue and body weight, with higher values in 1.9M Group (P<0.05). Treatments did not affect follicular density, number of aspirated follicles, retrieved and matured oocytes. Animals from 1.3M group had lower (P<0.05) maturation rate (44.0%) and number of viable oocytes (65.3%) than M (68.8%) and 1.9M (76.0%). Follicular fluid glucose concentrations increased with nutritional levels (P=0.010), with a difference (P<0.05) between groups 1.9M (11.4±2.6mg/dL) and M (2.6±0.5mg/dL). The diet did not affect the expression of GDF9, BMP15, and BAX genes in oocytes, but BCL2 and apoptotic index were significantly higher (P<0.05) in the 1.3M and 1.6M groups than the other groups. Following the transfer of cloned embryos, one fetus was born live of a twin pregnancy in the 1.9M Group. The association between energy intake and oocyte quality suggests better nutritional use by oocytes when the maximum flow was used (1.9M), but the optimal feeding level in cloning still needs refinement. Copyright © 2017 Elsevier B.V. All rights reserved.
Do, L T K; Namula, Z; Luu, V V; Sato, Y; Taniguchi, M; Isobe, T; Kikuchi, K; Otoi, T
2014-04-01
This study aimed to examine the effects of sericin supplementation during in vitro oocyte maturation on the nuclear maturation, fertilization and development of porcine oocytes. Cumulus-oocyte complexes (COCs) were cultured in maturation medium supplemented with 0 (control), 0.1, 0.5, 1.0, 2.5 or 5.0% sericin and were then subjected to in vitro fertilization and embryo culture. More COCs matured with 1.0% sericin underwent germinal vesicle breakdown and reached metaphase II compared with the control COCs matured without sericin (p < 0.01). The proportions of oocytes with DNA-fragmented nuclei did not differ between the groups, regardless of the sericin level. The total fertilization rate of oocytes matured with 1.0% sericin was higher (p < 0.05) than that of oocytes matured with 0.1%, 2.5% and 5.0% sericin. Supplementation with more than 1.0% sericin decreased the DNA fragmentation index of the blastocysts compared with the control group (p < 0.05). However, the supplementation of the maturation medium with sericin had no beneficial effects on the cleavage, development to the blastocyst stage and the total cell number of the embryos. Our findings indicate that supplementation with 1.0% sericin during maturation culture may improve the nuclear maturation and the quality of the embryos but does not affect blastocyst formation. © 2014 Blackwell Verlag GmbH.
Butler, Stephen A; Luttoo, Jameel; Freire, Maísa O T; Abban, Thomas K; Borrelli, Paola T A; Iles, Ray K
2013-09-01
Human chorionic gonadotropin (hCG) is produced by trophoblast cells throughout pregnancy, and gene expression studies have indicated that hCG-beta subunit (hCGβ) expression is active at the 2 blastomere stage. Here, we investigated the qualitative hCG output of developing embryos in culture and hCG isoforms expressed in the secretome as a novel sensitive method for detecting hCG. Culture media was collected from the culture plates of 118 embryos in culture (including controls and embryos at different stages of culture) from 16 patients undergoing routine fertility treatment. The hCGβ was detectable in media from 2 pronuclear (2PN) stage embryos through to the blastocyst stage. The hCGβ was absent in 1PN and arrested embryos as well as all media controls. Prior to hatching, hyperglycosylated hCG (hCGh) was observed selectively in 3PN embryos, but after hatching, along with hCG, became the dominant hCG molecule observed. We have reported at the 2PN stage the earliest evidence of hCGβ expression in embryos. There is a suggestion this may be indicative of quality in early embryos, and hCGh seen at the pronuclear stage may suggest triploid abnormality. The dominance of hCG, and hCGh expression, seen after blastocyst hatching may be indicative of potential implantation success. Thus, hCG isoforms have potential roles as biomarkers of embryo viability for embryo/blastocyst transfer.
Stimulus-triggered enhancement of chilling tolerance in zebrafish embryos
Szabó, Katalin; Budai, Csilla; Losonczi, Eszter; Bernáth, Gergely; Csenki-Bakos, Zsolt; Urbányi, Béla; Pribenszky, Csaba; Horváth, Ákos; Cserepes, Judit
2017-01-01
Background Cryopreservation of zebrafish embryos is still an unsolved problem despite market demand and massive efforts to preserve genetic variation among numerous existing lines. Chilled storage of embryos might be a step towards developing successful cryopreservation, but no methods to date have worked. Methods In the present study, we applied a novel strategy to improve the chilling tolerance of zebrafish embryos by introducing a preconditioning hydrostatic pressure treatment to the embryos. In our experiments, 26-somites and Prim-5 stage zebrafish embryos were chilled at 0°C for 24 hours after preconditioning. Embryo survival rate, ability to reach maturation and fertilizing capacity were tested. Results Our results indicate that applied preconditioning technology made it possible for the chilled embryos to develop normally until maturity, and to produce healthy offspring as normal, thus passing on their genetic material successfully. Treated embryos had a significantly higher survival and better developmental rate, moreover the treated group had a higher ratio of normal morphology during continued development. While all controls from chilled embryos died by 30 day-post-fertilization, the treated group reached maturity (~90–120 days) and were able to reproduce, resulting in offspring in expected quantity and quality. Conclusions Based on our results, we conclude that the preconditioning technology represents a significant improvement in zebrafish embryo chilling tolerance, thus enabling a long-time survival. Furthermore, as embryonic development is arrested during chilled storage this technology also provides a solution to synchronize or delay the development. PMID:28166301
Stojkovic, M; Büttner, M; Zakhartchenko, V; Riedl, J; Reichenbach, H D; Wenigerkind, H; Brem, G; Wolf, E
1999-04-30
Interferon-tau (IFNtau) is the pregnancy recognition signal of bovine embryos, inhibiting luteolysis. We studied trophoblastic growth and IFNtau secretion of embryos with different developmental potential, i.e., in vivo derived and in vitro produced embryos, cloned embryos and demi-embryos, to evaluate if the ability of secreting IFNtau might be responsible for differences in pregnancy rates after transfer of these categories of embryos to recipients. Day 8 embryos of excellent quality were individually placed in microdrops of buffalo rat liver cell-conditioned medium and maintained for up to 23 days. Embryos were observed on Days 11, 15, 19 and 23, the mean diameter (2r) of attached and spherical embryos was measured, and their trophoblastic area was calculated as r2pi or 4r2pi, respectively. Simultaneously, medium was changed and the IFNtau levels of conditioned media were determined using a bioassay of antiviral activity. Trophoblastic area was smaller (P < 0.05) in demi-embryos than in all other groups, which exhibited similar trophoblastic growth until Day 19. However, on Day 23 trophoblastic area of in vivo derived embryos was more than twice (P < 0.05) as large as those of in vitro produced and nuclear transfer (NT) embryos. IFNtau levels increased only slowly with time in culture of demi-embryos. By contrast, the level of IFNtau doubled from Day 11 to Day 15 in conditioned media from all other groups of embryos. The linear increase in IFNtau production of vivo and in vitro derived embryos continued until the end of the culture period, whereas conditioned media from NT embryos contained significantly (P < 0.05) less IFNtau activity on Days 19 and 23 than those of the former two groups. Our results demonstrate different capabilities of secreting IFNtau for in vivo derived and in vitro produced embryos vs. NT and demi-embryos, which may--at least part--be responsible for the differences in pregnancy rates after transfer to recipients.
Kieslinger, Dorit C; De Gheselle, Stefanie; Lambalk, Cornelis B; De Sutter, Petra; Kostelijk, E Hanna; Twisk, Jos W R; van Rijswijk, Joukje; Van den Abbeel, Etienne; Vergouw, Carlijn G
2016-11-01
Does prospective embryo selection using the results from the Eava Test (Early Embryo Viability Assessment) in combination with standard morphology increase the pregnancy rate of IVF and ICSI patients compared to embryo selection based on morphology only? Embryo selection using the Eeva Test plus standard morphology on Day 3 results in comparable pregnancy rates as conventional morphological embryo selection. Time-lapse monitoring of embryo development may represent a superior way to culture and select embryos in vitro. The Eeva Test records the development of each embryo with a cell-tracking system and predicts the likelihood (High, Medium or Low) that an embryo will form a blastocyst based on an automated analysis of early cell division timings. This trial was designed as a prospective, observational, two-center pilot study with a propensity matched control group. The analysis involved 280 of 302 enrolled patients who were included in the Eeva Test group in 2013 and 560 control patients who were treated in the years 2011-2013. The majority of transfers (98%) were single embryo transfers. Two academic hospitals (VUmc Amsterdam and UZ Gent) enrolled patients <41 years old, with <3 previous attempts and ≥5 normally fertilized eggs. Propensity matching was used to identify a propensity matched control group from a cohort of 1777 patients based on age, cycle number, oocyte number and number of fertilized oocytes. There was no difference in patient baseline characteristics between the two groups. The ongoing pregnancy rate (OPR) of patients enrolled in the Eeva Test group (34.3%; 96/280) did not differ significantly from the OPR in the propensity matched control group (34.6%, 194/560; P = 0.92). However, significantly less top quality embryos (eight-cell embryos with ≤25% fragmentation) were transferred in the Eeva Test group compared to the propensity matched control group (70.4% vs. 82.3%; P < 0.001). The transfer of Eeva High and Medium embryos resulted in a significantly higher OPR of 36.8% (89/242) compared to 18.4% (7/38) for Eeva Low embryos (P = 0.02). This pilot study is limited by its nonrandomized design with a concurrent and historical control. Our pilot data did not reveal significant differences between time-lapse based and conventional embryo selection. Interestingly, the pregnancy rates were comparable in both groups even though the morphological quality of the transferred embryos was significantly lower in the Eeva Test group compared to the propensity matched control group. A sufficiently powered three-armed randomized controlled trial (RCT) with a solid design should be performed to generate decisive evidence in the future. Progyny Inc., formerly Auxogyn provided the Eeva scopes, software and technical support for this study. The funding sources did neither influence data collection, management, analysis and interpretation of the data, nor the preparation of the manuscript. ClinicalTrials.gov: NCT01671644. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chen, Minghao; Wei, Shiyou; Hu, Junyan; Yuan, Jing; Liu, Fenghua
2017-01-01
The present study aimed to undertake a review of available evidence assessing whether time-lapse imaging (TLI) has favorable outcomes for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization (IVF). Using PubMed, EMBASE, Cochrane library and ClinicalTrial.gov up to February 2017 to search for randomized controlled trials (RCTs) comparing TLI versus conventional methods. Both studies randomized women and oocytes were included. For studies randomized women, the primary outcomes were live birth and ongoing pregnancy, the secondary outcomes were clinical pregnancy and miscarriage; for studies randomized oocytes, the primary outcome was blastocyst rate, the secondary outcome was good quality embryo on Day 2/3. Subgroup analysis was conducted based on different incubation and embryo selection between groups. Ten RCTs were included, four randomized oocytes and six randomized women. For oocyte-based review, the pool-analysis observed no significant difference between TLI group and control group for blastocyst rate [relative risk (RR) 1.08, 95% CI 0.94-1.25, I2 = 0%, two studies, including 1154 embryos]. The quality of evidence was moderate for all outcomes in oocyte-based review. For woman-based review, only one study provided live birth rate (RR 1,23, 95% CI 1.06-1.44,I2 N/A, one study, including 842 women), the pooled result showed no significant difference in ongoing pregnancy rate (RR 1.04, 95% CI 0.80-1.36, I2 = 59%, four studies, including 1403 women) between two groups. The quality of the evidence was low or very low for all outcomes in woman-based review. Currently there is insufficient evidence to support that TLI is superior to conventional methods for human embryo incubation and selection. In consideration of the limitations and flaws of included studies, more well designed RCTs are still in need to comprehensively evaluate the effectiveness of clinical TLI use.
Evaluation of RNA quality in fixed and unembedded mouse embryos by different methods.
Mu, Yuan; Zhou, Hong; Li, Wenyan; Hu, Lichao; Zhang, Yiting
2013-10-01
Many miRNAs are highly expressed in spatiotemporal and precise tissue-specific patterns in development. Thus it is necessary to examine their expression pattern in mouse embryos. However, embryos from one pregnant mouse are more than enough for expression analysis such as RT-qPCR, which results in reluctant disposal of remaining embryos. Due to the limitation of short sampling time, it is vitally important to quickly preserve samples to ensure the RNA quality. Thus, it is necessary to develop appropriate methods to fix samples in advance. In this study, two fixatives [methanol/DMSO (4:1) and paraformaldehyde] were applied for embryo (12.5 dpc) fixation and two preservatives (methanol and 30% sucrose) were used for fixed embryo preservation. After storage for one month, the skin, skeletal muscle and brain tissues were dissected from the fixed and unembedded embryos. Total RNAs were extracted by TRIzol® reagent and measured by a spectrophotometer, then were subjected to amplify Actb, Hprt, Gapdh, Rnu6, Snord68 and miR-206-3p by RT-qPCR. Embryos fixed in methanol/DMSO and preserved in 100% methanol at -20°C were able to yield at least 349 bp amplifiable RNA. Although paraformaldehyde fixation and 30% sucrose preservation method only yielded amplicons less than 156 bp, it showed a remarkable ability in preserving small RNAs. Snord68 was expressed stably across skin, skeletal muscle and brain tissues like Rnu6, making its possibility as an internal control for qPCR data normalization. Using Snord68 and/or Rnu6 as internal control, we found that the miR-206-3p expression level in skin was about one quarter of its highest level in the skeletal muscle. Therefore, the techniques in this study would be useful for us to reasonably utilize and preserve precious samples. © 2013.
Rajhans, Rajib; Kumar, G Sai; Dubey, Pawan K; Sharma, G Taru
2010-03-29
The present study was designed to compare the expression profile of two developmentally important genes (HSP-70.1 and GLUT-1) and TCN (total cell number) count in fast (group A) and slow (group B) cleaved buffalo embryos to access their in vitro developmental competence. Buffalo COCs (cumulus oocyte complexes) were collected from local abattoir ovaries and subjected to in vitro maturation in: TCM-199 supplemented with 10% FBS (fetal bovine serum), BSA (3 mg/ml), sodium pyruvate (0.25 mM) and 20 ng/ml EGF (epidermal growth factor) at 38.5 degrees C under 5% CO2. In vitro derived embryos were collected at 4-8, 8-16 cell, morula and blastocyst stages at specific time points for gene expression analysis and total cell count. A semiquantitative RT-PCR (reverse transcriptase-PCR) assay was used to determine the HSP-70.1 and GLUT-1 transcripts. Results showed that developmental competence and TCN count in fast (group A)-cleaving embryos was significantly (P<0.05) higher than in the slow group (group B). The gene transcript of HSP-70.1 and GLUT-1 was expressed in oocytes (immature and mature) and throughout the embryonic developmental stages in the fast group (group A), while in the slow (group B) cleaving embryos, the expression of HSP-70.1 was absent in all the embryonic developmental stages, and expression of GLUT-1 was absent after 8-16 cell stage. In conclusion, TCN count and expression profile of HSP-70.1 and GLUT-1 genes in buffalo embryos are different taking into account the cleavage rate. Quality of such embryos for research purposes, TCN and expression profiling of developmentally important genes should be employed to optimize the in vitro culture system to produce superior quality of embryos.
Liu, Jiaen; Yang, Zhihong; Salem, Shala A; Rahil, Tayyab; Collins, Gary S; Liu, Xiaohong; Salem, Rifaat D
2012-01-01
Objective During IVF, non-transferred embryos are usually selected for cryopreservation on the basis of morphological criteria. This investigation evaluated an application for array comparative genomic hybridization (aCGH) in assessment of surplus embryos prior to cryopreservation. Methods First-time IVF patients undergoing elective single embryo transfer and having at least one extra non-transferred embryo suitable for cryopreservation were offered enrollment in the study. Patients were randomized into two groups: Patients in group A (n=55) had embryos assessed first by morphology and then by aCGH, performed on cells obtained from trophectoderm biopsy on post-fertilization day 5. Only euploid embryos were designated for cryopreservation. Patients in group B (n=48) had embryos assessed by morphology alone, with only good morphology embryos considered suitable for cryopreservation. Results Among biopsied embryos in group A (n=425), euploidy was confirmed in 226 (53.1%). After fresh single embryo transfer, 64 (28.3%) surplus euploid embryos were cryopreserved for 51 patients (92.7%). In group B, 389 good morphology blastocysts were identified and a single top quality blastocyst was selected for fresh transfer. All group B patients (48/48) had at least one blastocyst remaining for cryopreservation. A total of 157 (40.4%) blastocysts were frozen in this group, a significantly larger proportion than was cryopreserved in group A (p=0.017, by chi-squared analysis). Conclusion While aCGH and subsequent frozen embryo transfer are currently used to screen embryos, this is the first investigation to quantify the impact of aCGH specifically on embryo cryopreservation. Incorporation of aCGH screening significantly reduced the total number of cryopreserved blastocysts compared to when suitability for freezing was determined by morphology only. IVF patients should be counseled that the benefits of aCGH screening will likely come at the cost of sharply limiting the number of surplus embryos available for cryopreservation. PMID:22816070
Torres, A; Chagas e Silva, J; Deloche, M C; Humblot, P; Horta, A E M; Lopes-da-Costa, L
2013-08-01
Using a novel in vivo model considering a low developmental competence embryo (demi-embryo) and a subnormal fertility recipient (lactating high-yielding dairy cow), this experiment evaluated the effect of human chorionic gonadotrophin (hCG) treatment at embryo transfer (ET) on embryonic size at implantation, embryonic survival and recipient plasma progesterone (P4 ) and bovine pregnancy-specific protein B (PSPB) concentrations until day 63 of pregnancy. Embryos were bisected and each pair of demi-embryos was bilaterally transferred to recipients (n = 61) on day 7 of the oestrous cycle. At ET recipients were randomly assigned to treatment with 1500 IU hCG or to untreated controls. Higher (p < 0.01) pregnancy rates on days 25, 42 and 63, and embryo survival rate on day 63 were observed in hCG-treated cows with secondary CL than in hCG-treated cows without secondary CL and in untreated cows. Pregnancy rates and embryo survival rate were similar in hCG-treated cows without secondary CL and untreated cows. Embryonic size on day 42 was not affected by treatment with hCG, presence of secondary CL and type of pregnancy (single vs twin). Presence of secondary CL increased (p < 0.05) plasma P4 concentrations of pregnant cows on days 14, 19 and 25 but not thereafter and of non-pregnant cows on days 14-21. Treatment with hCG and presence of secondary CL had no effect on plasma PSPB concentrations, which were higher (p < 0.05) in twin than in single pregnancies. In conclusion, secondary CL induced by hCG treatment at ET significantly increased plasma P4 concentrations, the survival rate of demi-embryos and the pregnancy rate of high-yielding lactating dairy cows. Embryos were rescued beyond maternal recognition of pregnancy, but later embryonic survival, growth until implantation and placental PSPB secretion until day 63 of pregnancy were not affected by treatment or presence of secondary CL. © 2013 Blackwell Verlag GmbH.
High-quality RNA extraction from the sea urchin Paracentrotus lividus embryos
Ruocco, Nadia; Costantini, Susan; Zupo, Valerio; Romano, Giovanna; Ianora, Adrianna; Fontana, Angelo; Costantini, Maria
2017-01-01
The sea urchin Paracentrotus lividus (Lamarck, 1816) is a keystone herbivore in the Mediterranean Sea due to its ability to transform macroalgal-dominated communities into barren areas characterized by increased cover of bare substrates and encrusting coralline algae, reduced biodiversity and altered ecosystem functions. P. lividus is also an excellent animal model for toxicology, physiology and biology investigations having been used for more than a century as a model for embryological studies with synchronously developing embryos which are easy to manipulate and analyze for morphological aberrations. Despite its importance for the scientific community, the complete genome is still not fully annotated. To date, only a few molecular tools are available and a few Next Generation Sequencing (NGS) studies have been performed. Here we aimed at setting-up an RNA extraction method to obtain high quality and sufficient quantity of RNA for NGS from P. lividus embryos at the pluteus stage. We compared five different RNA extraction protocols from four different pools of plutei (500, 1000, 2500 and 5000 embryos): TRIzol®, and four widely-used Silica Membrane kits, GenElute™ Mammalian Total RNA Miniprep Kit, RNAqueous® Micro Kit, RNeasy® Micro Kit and Aurum™ Total RNA Mini Kit. The quantity of RNA isolated was evaluated using NanoDrop. The quality, considering the purity, was measured as A260/A280 and A260/230 ratios. The integrity was measured by RNA Integrity Number (RIN). Our results demonstrated that the most efficient procedures were GenElute, RNeasy and Aurum, producing a sufficient quantity of RNA for NGS. The Bioanalyzer profiles and RIN values revealed that the most efficient methods guaranteeing for RNA integrity were RNeasy and Aurum combined with an initial preservation in RNAlater. This research represents the first attempt to standardize a method for high-quality RNA extraction from sea urchin embryos at the pluteus stage, providing a new resource for this established model marine organism. PMID:28199408
Mommens, Maren; Storset, Arne; Babiak, Igor
2015-07-01
Modern out-of-season egg production in Atlantic salmon (Salmo salar) increases the risk of postovulatory aging (POA) of oocytes. Postovulatory aging is known to influence oocyte quality in salmonids, but reliable tests for POA are lacking in Atlantic salmon egg production. To address this problem, we have collected oocytes from the same 20 Atlantic salmon females sequentially in approximately 1-week intervals, from the start of ovulation until 28 days postovulation (dpo), to determine the effect of natural retention of matured oocytes in body coelomic cavity on further performance of embryos and juveniles produced from those oocytes. Also, we investigated oocyte water hardening and several coelomic fluid parameters as potential quantitative indicators of POA. Oocyte quality decreased significantly from 22 dpo onward, as inferred from decrease in fertilization success and survival of embryos, alevins, and juveniles and increase in alevin and juvenile deformity rates. The occurrence of head deformities was significantly related to postovulatory age of oocytes. Coelomic fluid pH decreased significantly at 28 dpo and correlated positively with fertilization rates (r = 0.45), normal eyed embryo rates (r = 0.67), and alevin relative survival rates (r = 0.63) and negatively correlated with total alevin deformity rates (r = -0.59). Oocyte weight gain at 60 minutes decreased significantly at 28 dpo and correlated negatively with total alevin deformities and the occurrence of cranial nodules (r = -0.99). Generally, quality of ovulated oocytes remained stable for the first 2 weeks after ovulation. Later on, POA negatively influenced Atlantic salmon embryo, alevin, and juvenile performance. For the first time, we show a long-term effect of POA on salmonid juvenile performance. Standardized pH measurements of coelomic fluid could potentially improve embryo and juvenile production by identifying low-quality oocytes at an early stage during the production. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Joung Joo; Park, Kang Bae; Choi, Eun Ji; Hyun, Sang Hwan; Kim, Nam-Hyung; Jeong, Yeon Woo; Hwang, Woo Suk
2017-10-01
Canine oocytes ovulated at prophase complete meiosis and continue to develop in presence of a high progesterone concentration in the oviduct. Considering that meiotic competence of canine oocyte is accomplished in the oviductal environment, we postulate that hormonal milieu resulting from the circulating progesterone concentration may affect oocyte maturation and early development of embryos. From 237 oocyte donors, 2620 oocytes were collected and their meiotic status and morphology were determined. To determine optimal characteristics of the mature oocytes subjected to nuclear transfer, a proportion of the meiotic status of the oocytes were classified in reference to time post-ovulation as well as progesterone (P4) level. A high proportion of matured oocytes were collected from >126h (55.5%) post-ovulation or 40-50ngmL -1 (46.4%) group compared to the other groups. Of the oocyte donors that provided mature oocytes in vivo, there was no correlation between serum progesterone of donors and time post ovulation, however, time post-ovulation were significantly shorter for <30ng/mL group (P<0.05). Using mature oocytes, 1161 cloned embryos were reconstructed and transferred into 77 surrogates. In order to determine the relationship between pregnancy performance and serum progesterone level, embryos were transferred into surrogates showing various P4 serum levels. The highest pregnancy (31.8%) and live birth cloning efficacy (2.2%) rates were observed when the embryos were transferred into surrogates with circulating P4 levels were from 40 to 50ngmL -1 . In conclusion, measurement of circulating progesterone of female dog could be a suitable an indicator of the optimal time to collect quality oocyte and to select surrogates for cloning. Copyright © 2017 Elsevier B.V. All rights reserved.
Immunostaining of dissected zebrafish embryonic heart.
Yang, Jingchun; Xu, Xiaolei
2012-01-10
Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects. The expression of any gene can be manipulated via morpholino technology or RNA injection. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals. Copyright © 2012 Journal of Visualized Experiments
Woo, Irene; Hindoyan, Rita; Landay, Melanie; Ho, Jacqueline; Ingles, Sue Ann; McGinnis, Lynda K; Paulson, Richard J; Chung, Karine
2017-12-01
To study the perinatal outcomes between singleton live births achieved with the use of commissioned versus spontaneously conceived embryos carried by the same gestational surrogate. Retrospective cohort study. Academic in vitro fertilization center. Gestational surrogate. None. Pregnancy outcome, gestational age at birth, birth weight, perinatal complications. We identified 124 gestational surrogates who achieved a total of 494 pregnancies. Pregnancy outcomes for surrogate and spontaneous pregnancies were significantly different (P<.001), with surrogate pregnancies more likely to result in twin pregnancies: 33% vs. 1%. Miscarriage and ectopic rates were similar. Of these pregnancies, there were 352 singleton live births: 103 achieved from commissioned embryos and 249 conceived spontaneously. Surrogate births had lower mean gestational age at delivery (38.8 ± 2.1 vs. 39.7 ± 1.4), higher rates of preterm birth (10.7% vs. 3.1%), and higher rates of low birth weight (7.8% vs. 2.4%). Neonates from surrogacy had birth weights that were, on average, 105 g lower. Surrogate births had significantly higher obstetrical complications, including gestational diabetes, hypertension, use of amniocentesis, placenta previa, antibiotic requirement during labor, and cesarean section. Neonates born from commissioned embryos and carried by gestational surrogates have increased adverse perinatal outcomes, including preterm birth, low birth weight, hypertension, maternal gestational diabetes, and placenta previa, compared with singletons conceived spontaneously and carried by the same woman. Our data suggest that assisted reproductive procedures may potentially affect embryo quality and that its negative impact can not be overcome even with a proven healthy uterine environment. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Coelho, Roberta R; de Souza Júnior, José Dijair Antonino; Firmino, Alexandre A P; de Macedo, Leonardo L P; Fonseca, Fernando C A; Terra, Walter R; Engler, Gilbert; de Almeida Engler, Janice; da Silva, Maria Cristina M; Grossi-de-Sa, Maria Fatima
2016-09-01
Vitellogenin (Vg), a yolk protein precursor, is the primary egg nutrient source involved in insect reproduction and embryo development. The Cotton Boll weevil (CBW) Anthonomus grandis Boheman, the most important cotton pest in Americas, accumulates large amounts of Vg during reproduction. However, the precise role of this protein during embryo development in this insect remains unknown. Herein, we investigated the effects of vitellogenin (AgraVg) knockdown on the egg-laying and egg viability in A. grandis females, and also characterized morphologically the unviable eggs. AgraVg transcripts were found during all developmental stages of A. grandis, with highest abundance in females. Silencing of AgraVg culminated in a significant reduction in transcript amount, around 90%. Despite this transcriptional reduction, egg-laying was not affected in dsRNA-treated females but almost 100% of the eggs lost their viability. Eggs from dsRNA-treated females showed aberrant embryos phenotype suggesting interference at different stages of embryonic development. Unlike for other insects, the AgraVg knockdown did not affect the egg-laying ability of A. grandis, but hampered A. grandis reproduction by perturbing embryo development. We concluded that the Vg protein is essential for A. grandis reproduction and a good candidate to bio-engineer the resistance against this devastating cotton pest.
Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.
Tanaka, W; Mantese, A I; Maddonni, G A
2009-08-01
Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.
Glassfrog embryos hatch early after parental desertion.
Delia, Jesse R J; Ramírez-Bautista, Aurelio; Summers, Kyle
2014-06-22
Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations.
Glassfrog embryos hatch early after parental desertion
Delia, Jesse R. J.; Ramírez-Bautista, Aurelio; Summers, Kyle
2014-01-01
Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations. PMID:24789892
Soriano, Mercedes; Li, Hui; Jacquard, Cédric; Angenent, Gerco C.; Krochko, Joan; Offringa, Remko; Boutilier, Kim
2014-01-01
In Arabidopsis thaliana, zygotic embryo divisions are highly regular, but it is not clear how embryo patterning is established in species or culture systems with irregular cell divisions. We investigated this using the Brassica napus microspore embryogenesis system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in the absence of exogenous growth regulators. Microspore embryos are formed via two pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by embryo proper formation from the distal cell of the suspensor, and a pathway characterized by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers, we show that the zygotic-like pathway requires polar auxin transport for embryo proper specification from the suspensor, while the suspensorless pathway is polar auxin transport independent and marked by an initial auxin maximum, suggesting early embryo proper establishment in the absence of a basal suspensor. Polarity establishment in this suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular division patterns did not affect cell fate establishment in either pathway. These results confirm the importance of the suspensor and suspensor-driven auxin transport in patterning, but also uncover a mechanism where cell patterning is less regular and independent of auxin transport. PMID:24951481
USDA-ARS?s Scientific Manuscript database
Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS) which deteriorates yield and quality of the crop. Metabolic homeostasis of embryo and endosperm plays a role in seed dormancy, and determines the status of the maturing grains either as dormant (PHS-tolerant) ...
Time-lapse systems for embryo incubation and assessment in assisted reproduction.
Armstrong, Sarah; Arroll, Nicola; Cree, Lynsey M; Jordan, Vanessa; Farquhar, Cindy
2015-02-27
Embryo incubation and assessment is a vital step in assisted reproductive technology (ART). Traditionally, embryo assessment has been achieved by removing embryos from a conventional incubator daily for assessment of quality by an embryologist, under a light microscope. Over recent years time-lapse systems (TLSs) have been developed which can take digital images of embryos at frequent time intervals. This allows embryologists, with or without the assistance of computer algorithms, to assess the quality of the embryos without physically removing them from the incubator.The potential advantages of a TLS include the ability to maintain a stable culture environment, therefore limiting the exposure of embryos to changes in gas composition, temperature and movement. Additionally a TLS has the potential advantage of improving embryo selection for ART treatment by utilising additional information gained through monitoring embryo development. To determine the effect of a TLS compared to conventional embryo incubation and assessment on clinical outcomes in couples undergoing ART. A comprehensive search of all the major electronic databases, including grey literature, was undertaken in co-ordination with the Trials Search Co-ordinator of the Cochrane Menstrual Disorders and Subfertility Group in July 2014 and repeated in November 2014 to confirm that the review is up to date. Two authors (SA and NA) independently scanned the titles and abstracts of the articles retrieved by the search. Full texts of potentially eligible randomised controlled trials (RCTs) were obtained and examined independently by the authors for their suitability according to the review inclusion criteria. In the case of doubt between the two authors, a third author (LC) was consulted to gain consensus. The selection process is documented with a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart. Data were obtained and extracted by two authors. Disagreement was resolved by consensus. Trial authors were contacted by e-mail to obtain further study information and data. All extracted data were dichotomous outcomes and odds ratios (OR) were calculated on an intention-to-treat basis. Where enough data were available, meta-analysis was undertaken. Three studies involving 994 women were found for inclusion. Data from all three studies were used to address comparison one, TLS with or without cell-tracking algorithms versus conventional incubation. No studies were found to address comparison two, TLS utilising cell-tracking algorithms versus TLS not utilising cell-tracking algorithms.There was only one study which reported live birth (n = 76). The results demonstrated no conclusive evidence of a difference in live birth rate per couple randomly assigned to the TLS and conventional incubation arms of the study (OR 1.1, 95% CI 0.45 to 2.73, 1 RCT, n = 76, moderate quality evidence).All three studies reported miscarriage (n = 994). There was no conclusive evidence of a difference in miscarriage rates per couple randomly assigned to the TLS and conventional incubation arms (OR 0.70, 95% CI 0.47 to 1.04, 3 RCTs, n = 994, I(2) = 0%, low quality evidence).Only one study reported stillbirth rates (n = 76). There were equal numbers of stillbirths in both the TLS and conventional incubation arms of the study. Therefore, there was no evidence of a difference in the stillbirth rate per couple randomly assigned to TLS and conventional incubation (OR 1.0, 95% CI 0.13 to 7.49, 1 RCT, moderate quality evidence).All three studies reported clinical pregnancy rates (n = 994). There was no conclusive evidence of a difference in clinical pregnancy rate per couple randomly assigned to the TLS and conventional incubation arms (OR 1.23, 95% CI 0.96 to 1.59, 3 RCTs, n = 994, I(2) = 0%, low quality evidence). None of the included studies reported cumulative clinical pregnancy rates. There is insufficient evidence of differences in live birth, miscarriage, stillbirth or clinical pregnancy to choose between TLS and conventional incubation. Further data explicitly comparing the incubation environment, the algorithm for embryo selection, or both, are required before recommendations for a change of routine practice can be justified.
Srirattana, Kanokwan; St John, Justin C
2018-05-08
We generated cattle embryos using mitochondrial supplementation and somatic cell nuclear transfer (SCNT), named miNT, to determine how additional mitochondrial DNA (mtDNA) modulates the nuclear genome. To eliminate any confounding effects from somatic cell mtDNA in intraspecies SCNT, donor cell mtDNA was depleted prior to embryo production. Additional oocyte mtDNA did not affect embryo development rates but increased mtDNA copy number in blastocyst stage embryos. Moreover, miNT-derived blastocysts had different gene expression profiles when compared with SCNT-derived blastocysts. Additional mtDNA increased expression levels of genes involved in oxidative phosphorylation, cell cycle and DNA repair. Supplementing the embryo culture media with a histone deacetylase inhibitor, Trichostatin A (TSA), had no beneficial effects on the development of miNT-derived embryos, unlike SCNT-derived embryos. When compared with SCNT-derived blastocysts cultured in the presence of TSA, additional mtDNA alone had beneficial effects as the activity of glycolysis may increase and embryonic cell death may decrease. However, these beneficial effects were not found with additional mtDNA and TSA together, suggesting that additional mtDNA alone enhances reprogramming. In conclusion, additional mtDNA increased mtDNA copy number and expression levels of genes involved in energy production and embryo development in blastocyst stage embryos emphasising the importance of nuclear-mitochondrial interactions.
Methods for conducting bioassays using embryos and larvae of Pacific herring, Clupea pallasi.
Dinnel, Paul A; Middaugh, Douglas P; Schwarck, Nathan T; Farren, Heather M; Haley, Richard K; Hoover, Richard A; Elphick, James; Tobiason, Karen; Marshall, Randall R
2011-02-01
The rapid decrease of several stocks of Pacific herring, Clupea pallasi, in Puget Sound, Washington, has led to concerns about the effects of industrial and nonpoint source contamination on the embryo and larval stages of this and related forage fish species. To address these concerns, the state of Washington and several industries have funded efforts to develop embryo and larval bioassay protocols that can be used by commercial laboratories for routine effluent testing. This article presents the results of research to develop herring embryo and larval bioassay protocols. Factors evaluated during protocol development included temperature, salinity, dissolved oxygen (DO), light intensity, photoperiod, larval feeding regimes, use of brine and artificial sea salts, gonad sources, collection methods, and egg quality.
[Extending preimplantation genetic diagnosis to HLA typing: the French exception].
Steffann, Julie; Frydman, Nelly; Burlet, Philippe; Gigarel, Nadine; Hesters, Laetitia; Kerbrat, Violaine; Lamazou, Frédéric; Munnich, Arnold; Frydman, René
2011-01-01
Umut-Talha, a "sibling savior", was born on 26 January 2011 at Beclère Hospital after embryo selection at the Paris preimplantation genetic diagnosis (PGD) center. His birth revived the controversy over "double PGD". This procedure, authorized in France since 2006, allows couples who already have a child with a serious, incurable genetic disease, to opt for PGD in order to select a healthy embryo that is HLA-matched to the affected sibling and who may thus serve as an ombilical cord blood donor. The procedure is particularly complex and the baby take-home rate is still very low. Double PGD is strictly regulated in France, and candidate couples must first receive individual authorization from the Biomedicine Agency. In our experience, these couples have a strong desire to have children, as reflected by the large number of prior spontaneous pregnancies (25% of couples). Likewise, most of these couples request embryo transfer even when there is no HLA-matched embryo, which accounts for more than half of embryo transfers. The controversy surrounding this practice has flared up again in recent weeks, over the concepts of "designer babies" and "double savior siblings" (the baby is selected to be free of the hereditary disease, and may also serve as a stem cell donor for the affected sibling).
Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat
2015-01-01
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF. PMID:26053554
Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat
2015-01-01
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.
Hardarson, Thorir; Bungum, Mona; Conaghan, Joe; Meintjes, Marius; Chantilis, Samuel J; Molnar, Laszlo; Gunnarsson, Kristina; Wikland, Matts
2015-12-01
To study whether a culture medium that allows undisturbed culture supports human embryo development to the blastocyst stage equivalently to a well-established sequential media. Randomized, double-blinded sibling trial. Independent in vitro fertilization (IVF) clinics. One hundred twenty-eight patients, with 1,356 zygotes randomized into two study arms. Embryos randomly allocated into two study arms to compare embryo development on a time-lapse system using a single-step medium or sequential media. Percentage of good-quality blastocysts on day 5. Percentage of day 5 good-quality blastocysts was 21.1% (standard deviation [SD] ± 21.6%) and 22.2% (SD ± 22.1%) in the single-step time-lapse medium (G-TL) and the sequential media (G-1/G-2) groups, respectively. The mean difference (-1.2; 95% CI, -6.0; 3.6) between the two media systems for the primary end point was less than the noninferiority margin of -8%. There was a statistically significantly lower number of good-quality embryos on day 3 in the G-TL group [50.7% (SD ± 30.6%) vs. 60.8% (SD ± 30.7%)]. Four out of the 11 measured morphokinetic parameters were statistically significantly different for the two media used. The mean levels of ammonium concentration in the media at the end of the culture period was statistically significantly lower in the G-TL group as compared with the G-2 group. We have shown that a single-step culture medium supports blastocyst development equivalently to established sequential media. The ammonium concentrations were lower in the single-step media, and the measured morphokinetic parameters were modified somewhat. NCT01939626. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kazemi, Ashraf; Ramezanzadeh, Fatemeh; Nasr-Esfahani, Mohammad Hosein; Saboor Yaraghi, Ali Akbar; Ahmadi, Mehdi
2013-12-01
Fat-rich diet may alter oocyte development and maturation and embryonic development by inducing oxidative stress (OS) in follicular environment. To investigate the relationship between fat intake and oxidative stress with oocyte competence and embryo quality. In observational study follicular fluid was collected from 236 women undergoing assisted reproduction program. Malon-di-aldehyde (MDA) levels and total antioxidant capacity (TAC) levels of follicular fluid were assessed as oxidative stress biomarkers. In assisted reproduction treatment cycle fat consumption and its component were assessed. A percentage of metaphase ΙΙ stage oocytes, fertilization rate were considered as markers of oocyte competence and non-fragmented embryo rate, mean of blastomer and good cleavage (embryos with more than 5 cells on 3 days post insemination) rate were considered as markers of embryo quality. The MDA level in follicular fluid was positively related to polyunsaturated fatty acids intake level (p=0.02) and negatively associated with good cleavage rate (p=0.045). Also good cleavage rate (p=0.005) and mean of blastomer (p=0.006) was negatively associated with polyunsaturated fatty acids intake levels. The percentage of metaphase ΙΙ stage oocyte was positively related to the TAC levels in follicular fluid (p=0.046). The relationship between the OS biomarkers in FF and the fertilization rate was not significant. These findings revealed that fat rich diet may induce the OS in oocyte environment and negatively influence embryonic development. This effect can partially be accounted by polyunsaturated fatty acids uptake while oocyte maturation is related to TAC and oocytes with low total antioxidant capacity have lower chance for fertilization and further development.
Huggins, L G; Lennarz, W J
2001-08-01
In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.
Excess Imidacloprid Exposure Causes the Heart Tube Malformation of Chick Embryos.
Gao, Lin-Rui; Li, Shuai; Zhang, Jing; Liang, Chang; Chen, En-Ni; Zhang, Shi-Yao; Chuai, Manli; Bao, Yong-Ping; Wang, Guang; Yang, Xuesong
2016-11-30
As a neonicotinoid pesticide, imidacloprid is widely used to control sucking insects on agricultural planting and fleas on domestic animals. However, the extent to which imidacloprid exposure has an influence on cardiogensis in early embryogenesis is still poorly understood. In vertebrates, the heart is the first organ to be formed. In this study, to address whether imidacloprid exposure affects early heart development, the early chick embryo has been used as an experimental model because of its accessibility at its early developmental stage. The results demonstrate that exposure of the early chick embryo to imidacloprid caused malformation of heart tube. Furthermore, the data reveal that down-regulation of GATA4, NKX2.5, and BMP4 and up-regulation of Wnt3a led to aberrant cardiomyocyte differentiation. In addition, imidacloprid exposure interfered with basement membrane breakdown, E-cadherin/laminin expression, and mesoderm formation during the epithelial-mesenchymal transition (EMT) in gastrula chick embryos. Finally, the DiI-labeled cell migration trajectory indicated that imidacloprid restricted the cell migration of cardiac progenitors to primary heart field in gastrula chick embryos. A similar observation was also obtained from the cell migration assay of scratch wounds in vitro. Additionally, imidacloprid exposure negatively affected the cytoskeleton structure and expression of corresponding adhesion molecules. Taken together, these results reveal that the improper EMT, cardiac progenitor migration, and differentiation are responsible for imidacloprid exposure-induced malformation of heart tube during chick embryo development.
Park, Chan Jin; Song, Sang Ha; Kim, Dae Han; Gye, Myung Chan
2017-01-01
The developmental toxicity of nickel was examined in the embryos of Bombina orientalis, a common amphibian in Korea. Based on a standard frog embryo teratogenesis assay, the LC 50 and EC 50 for malformation of nickel after 168h of treatment were 33.8μM and 5.4μM, respectively. At a lethal concentration (100μM), nickel treatment decreased the space between gill filaments and caused epithelial swelling and abnormal fusion of gill filaments. These findings suggest that nickel affects the functional development of gills, leading to embryonic death. At sublethal concentrations (1-10μM), nickel produced multiple embryonic abnormalities, including bent tail and tail dysplasia. At 10μM, nickel significantly decreased tail length and tail muscle fiber density in tadpoles, indicating inhibition of myogenic differentiation. Before hatching, the pre-muscular response to muscular response stages (stages 26-31) were the most sensitive period to nickel with respect to tail muscle development. During these stages, MyoD mRNA was upregulated, whereas myogenic regulatory factor 4 mRNA was downregulated by 0.1μM nickel. Calcium-dependent kinase activities in muscular response stage embryos were significantly decreased by nickel, whereas these activities were restored by exogenous calcium. In tadpoles, 10μM nickel significantly decreased the expression of the myosin heavy chain and the 12/101 muscle marker protein in the tail. Expression was restored by exogenous calcium. Our results indicate that nickel affects muscle development by disrupting calcium-dependent myogenesis in developing B. orientalis embryos. Copyright © 2016 Elsevier B.V. All rights reserved.
Picton, Helen M.; Elder, Kay; Houghton, Franchesca D.; Hawkhead, Judith A.; Rutherford, Anthony J.; Hogg, Jan E.; Leese, Henry J.; Harris, Sarah E.
2010-01-01
This study investigated the relationship between human preimplantation embryo metabolism and aneuploidy rates during development in vitro. One hundred and eighty-eight fresh and cryopreserved embryos from 59 patients (33.9 ± 0.6 years) were cultured for 2–5 days. The turnover of 18 amino acids was measured in spent media by high-performance liquid chromatography. Embryos were either fixed for interphase fluorescent in situ hybridization analysis of chromosomes 13, 18, 19, 21, X or Y, or were assayed for mitochondrial activity. Amino acid turnover was different (P < 0.05) between stage-matched fresh and cryopreserved embryos due to blastomere loss following warming. The proportion of embryos with aneuploid cells increased as cell division progressed from pronucleate- (23%) to late cleavage stages (50–70%). Asparagine, glycine and valine turnover was significantly different between uniformly genetically normal and uniformly abnormal embryos on Days 2–3 of culture. By Days 3–4, the profiles of serine, leucine and lysine differed between uniformly euploid versus aneuploid embryos. Gender significantly (P < 0.05) affected the metabolism of tryptophan, leucine and asparagine by cleavage-stage embryos. Pronucleate zygotes had a significantly higher proportion of active:inactive mitochondria compared with cleavage-stage embryos. Furthermore, mitochondrial activity was correlated (P < 0.05) with altered aspartate and glutamine turnover. These results demonstrate the association between the metabolism, cytogenetic composition and health of human embryos in vitro. PMID:20571076
Goodale, Lindsay F; Hayrabedran, Soren; Todorova, Krassimira; Roussev, Roumen; Ramu, Sivakumar; Stamatkin, Christopher; Coulam, Carolyn B; Barnea, Eytan R; Gilbert, Robert O
2017-05-16
Recurrent pregnancy loss (RPL) affects 2-3% of couples. Despite a detailed work-up, the etiology is frequently undefined, leading to non-targeted therapy. Viable embryos and placentae express PreImplantation Factor (PIF). Maternal circulating PIF regulates systemic immunity and reduces circulating natural killer cells cytotoxicity in RPL patients. PIF promotes singly cultured embryos' development while anti-PIF antibody abrogates it. RPL serum induced embryo toxicity is negated by PIF. We report that PIF rescues delayed embryo development caused by <3 kDa RPL serum fraction likely by reducing reactive oxygen species (ROS). We reveal that protein disulfide isomerase/thioredoxin (PDI/TRX) is a prime PIF target in the embryo, rendering it an important ROS scavenger. The 16F16-PDI/TRX inhibitor drastically reduced blastocyst development while exogenous PIF increased >2 fold the number of embryos reaching the blastocyst stage. Mechanistically, PDI-inhibitor preferentially binds covalently to oxidized PDI over its reduced form where PIF avidly binds. PIF by targeting PDI/TRX at a distinct site limits the inhibitor's pro-oxidative effects. The >3kDa RPL serum increased embryo demise by three-fold, an effect negated by PIF. However, embryo toxicity was not associated with the presence of putative anti-PIF antibodies. Collectively, PIF protects cultured embryos both against ROS, and higher molecular weight toxins. Using PIF for optimizing in vitro fertilization embryos development and reducing RPL is warranted.
2011-01-01
Background PreImplantation Factor (PIF), a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo. Methods Determine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb) added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy. Results PIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01). In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control) (P = 0.01) and at day 7 were higher than day 3 (P = 0.03). In non-cleaving embryos culture medium was similar to medium alone (control). Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01) as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control). Conclusions PIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the utility of PIF- ELISA to detect viable embryos in a non-invasive manner. PMID:21569635
Embryo apoptosis identification: Oocyte grade or cleavage stage?
Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul
2015-01-01
Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565
Perspectives on improvement of reproduction in cattle during heat stress in a future Japan.
Kadokawa, Hiroya; Sakatani, Miki; Hansen, Peter J
2012-06-01
Heat stress (HS) causes hyperthermia, and at its most severe form, can lead to death. More commonly, HS reduces feed intake, milk yield, growth rate and reproductive function in many mammals and birds, including the important cattle breeds in Japan. Rectal temperatures greater than 39.0°C and respiration rates greater than 60/min indicate cows are undergoing HS sufficient to affect milk yield and fertility. HS compromises oocyte quality and embryonic development, reduces expression of estrus and changes secretion of several reproductive hormones. One of the most effective ways to reduce the magnitude of HS is embryo transfer, which bypasses the inhibitory effects of HS on the oocyte and early embryo. It may also be possible to select for genetic resistance to HS. Cooling can also improve reproductive performance in cows and heifers, and probably, the most effective cooling systems currently in use are those that couple evaporative cooling with tunnel ventilation or cross ventilation. Its effect on improving reproductive performance in Japan remains to be evaluated. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.
Reproductive science as an essential component of conservation biology.
Holt, William V; Brown, Janine L; Comizzoli, Pierre
2014-01-01
In this chapter we argue that reproductive science in its broadest sense has never been more important in terms of its value to conservation biology, which itself is a synthetic and multidisciplinary topic. Over recent years the place of reproductive science in wildlife conservation has developed massively across a wide and integrated range of cutting edge topics. We now have unprecedented insight into the way that environmental change affects basic reproductive functions such as ovulation, sperm production, pregnancy and embryo development through previously unsuspected influences such as epigenetic modulation of the genome. Environmental change in its broadest sense alters the quality of foodstuffs that all animals need for reproductive success, changes the synchrony between breeding seasons and reproductive events, perturbs gonadal and embryo development through the presence of pollutants in the environment and drives species to adapt their behaviour and phenotype. In this book we explore many aspects of reproductive science and present wide ranging and up to date accounts of the scientific and technological advances that are currently enabling reproductive science to support conservation biology.
Itoi, Fumiaki; Asano, Yukiko; Shimizu, Masashi; Honnma, Hiroyuki; Murata, Yasutaka
2016-01-01
There have been no studies analyzing the effect of large aggregates of tubular smooth endoplasmic reticulum (aSERT) after conventional in vitro fertilization (cIVF). The aim of this study was to investigate whether aSERT can be identified after cIVF and the association between the embryological outcomes of oocytes in cycles with aSERT. This is a retrospective study examining embryological data from cIVF cycles showing the presence of aSERT in oocytes 5-6 h after cIVF. To evaluate embryo quality, cIVF cycles with at least one aSERT-metaphase II (MII) oocyte observed (cycles with aSERT) were compared to cycles with normal-MII oocytes (control cycles). Among the 4098 MII oocytes observed in 579 cycles, aSERT was detected in 100 MII oocytes in 51 cycles (8.8%). The fertilization rate, the rate of embryo development on day 3 and day 5-6 did not significantly differ between cycles with aSERT and control group. However, aSERT-MII oocytes had lower rates for both blastocysts and good quality blastocysts (p < 0.05). aSERT can be detected in the cytoplasm by removing the cumulus cell 5 h after cIVF. However, aSERT-MII oocytes do not affect other normal-MII oocytes in cycles with aSERT.
Clinical benefit of metaphase I oocytes
Vanhoutte, Leen; De Sutter, Petra; Van der Elst, Josiane; Dhont, Marc
2005-01-01
Background We studied the benefit of using in vitro matured metaphase I (MI) oocytes for ICSI in patients with a maximum of 6 mature metaphase II (MII) oocytes at retrieval. Methods In 2004, 187 ICSI cycles were selected in which maximum 6 MII oocytes and at least one MI oocyte were retrieved. MI oocytes were put in culture to mature until the moment of ICSI, which was performed between 2 to 11 hours after oocyte retrieval (day 0). In exceptional cases, when the patient did not have any mature oocyte at the scheduled time of ICSI, MI oocytes were left to mature overnight and were injected between 19 to 26 hours after retrieval (day 1). Embryos from MI oocytes were chosen for transfer only when no other good quality embryos from MII oocytes were available. Outcome parameters were time period of in vitro maturation (IVM), IVM and fertilization rates, embryo development, clinical pregnancy rates, implantation rates and total MI oocyte utilization rate. Results The overall IVM rate was 43%. IVM oocytes had lower fertilization rates compared to in vivo matured sibling oocytes (52% versus 68%, P < 0.05). The proportion of poor quality embryos was significantly higher in IVM derived oocytes. One pregnancy and live birth was obtained out of 13 transfers of embryos exclusively derived from IVM oocytes. This baby originated from an oocyte that was injected after 22 hrs of IVM. Conclusion Fertilization of in vitro matured MI oocytes can result in normal embryos and pregnancy, making IVM worthwhile, particularly when few MII oocytes are obtained at retrieval. PMID:16356175
Accurate and Phenol Free DNA Sexing of Day 30 Porcine Embryos by PCR.
Blanes, Milena S; Tsoi, Stephen C M; Dyck, Michael K
2016-02-14
Research into prenatal programming in the pig has shown that the sex of the developing embryo or fetus can influence the developmental outcome. Therefore, the ability to determine an embryo's sex is necessary in many experiments particularly regarding early development. The present protocol demonstrates an inexpensive, rapid and non-toxic preparation of pig genomic DNA for use with PCR. Day 30 embryos must be humanely collected according to the guidelines established by Institutional Animal Policy and Welfare Committees for the present protocol. The preparation of the whole embryo for this PCR based sexing technique simply involves grinding the frozen embryo to a fine powder using a pre-chilled mortar and pestle. PCR-quality DNA is released from a small amount of embryo powder by applying a hot incubation in an alkaline lysis reagent. Next, the DNA solution is mixed with neutralization buffer and used directly for PCR. Two primer pairs are generated to detect specific sex determining region of the Y- chromosome (SRY) and ZFX region of the X- chromosome with high accuracy and specificity. The same protocol can be applied to other elongated embryos (Day 10 to Day 14) earlier than Day 30. Also, this protocol can be carried with 96-welled plates when screening a large number of embryos, making it feasible for automation and high-throughput sex typing.
Accurate and Phenol Free DNA Sexing of Day 30 Porcine Embryos by PCR
Dyck, Michael K.
2016-01-01
Research into prenatal programming in the pig has shown that the sex of the developing embryo or fetus can influence the developmental outcome. Therefore, the ability to determine an embryo's sex is necessary in many experiments particularly regarding early development. The present protocol demonstrates an inexpensive, rapid and non-toxic preparation of pig genomic DNA for use with PCR. Day 30 embryos must be humanely collected according to the guidelines established by Institutional Animal Policy and Welfare Committees for the present protocol. The preparation of the whole embryo for this PCR based sexing technique simply involves grinding the frozen embryo to a fine powder using a pre-chilled mortar and pestle. PCR-quality DNA is released from a small amount of embryo powder by applying a hot incubation in an alkaline lysis reagent. Next, the DNA solution is mixed with neutralization buffer and used directly for PCR. Two primer pairs are generated to detect specific sex determining region of the Y- chromosome (SRY) and ZFX region of the X- chromosome with high accuracy and specificity. The same protocol can be applied to other elongated embryos (Day 10 to Day 14) earlier than Day 30. Also, this protocol can be carried with 96-welled plates when screening a large number of embryos, making it feasible for automation and high-throughput sex typing. PMID:26966900
Rapid evaluation of soluble HLA-G levels in supernatants of in vitro fertilized embryos.
Rebmann, Vera; Switala, Magdalena; Eue, Ines; Schwahn, Eva; Merzenich, Markus; Grosse-Wilde, Hans
2007-04-01
Human leukocyte antigen G (HLA-G) molecules are crucial for the maternal tolerance against the fetus during pregnancy. Thus, the presence of soluble HLA-G (sHLA-G) in embryo cultures is thought to be correlated to a successful pregnancy after assisted reproductive techniques (ART). Here, we established a rapid detection assay based on Luminex technology, which can be integrated into ART proceedings, allowing sHLA-G quantification in sample volumes of only 10 microl within 1.5 hours. Using this method, sHLA-G levels of 526 single-embryo cultures, 47 two-embryo cultures, and 15 three-embryo cultures were analyzed corresponding to 313 ART cycles. In 117 embryo cultures, sHLA-G was detectable. In single-embryo cultures, the sHLA-G levels were positively correlated to embryo quality (p = 0.048, r = 0.20, n = 100). The presence of sHLA-G in embryo cultures was significantly (p < 0.0001) associated with clinical pregnancy after intracytoplasmatic sperm injections (ICSI), especially in couples with male factor infertility, but not after in vitro fertilization (IVF) or in couples with female infertility. Importantly, in sHLA-G negative embryos, the abortion rate was increased threefold (p = 0.04). In conclusion, the results obtained by our novel method support strongly the diagnostic relevance of sHLA-G for predicting pregnancy outcome after ART. The ultimate conditions for this prediction have to be further investigated in a multicenter study.
Sanchez-Lopez, Javier Arturo; Caballero, Ignacio; Montazeri, Mehrnaz; Maslehat, Nasim; Elliott, Sarah; Fernandez-Gonzalez, Raul; Calle, Alexandra; Gutierrez-Adan, Alfonso; Fazeli, Alireza
2014-04-01
Embryo implantation is a complex interaction between maternal endometrium and embryonic structures. Failure to implant is highly recurrent and impossible to diagnose. Inflammation and infections in the female reproductive tract are common causes of infertility, embryo loss, and preterm labor. The current work describes how the activation of endometrial Toll-like receptor (TLR) 2 and 2/6 reduces embryo implantation chances. We developed a morphometric index to evaluate the effects of the TLR 2/6 activation along the uterine horn (UH). TLR 2/6 ligation reduced the endometrial myometrial and glandular indexes and increased the luminal index. Furthermore, TLR 2/6 activation increased the proinflammatory cytokines such as interleukin (IL)-1beta and monocyte chemotactic protein (MCP)-1 in UH lavages in the preimplantation day and IL-1 receptor antagonist in the implantation day. The engagement of TLR 2/6 with its ligand in the UH during embryo transfer severely affected the rate of embryonic implantation (45.00% ± 6.49% vs. 16.69% ± 5.01%, P < 0.05, control vs. test, respectively). Furthermore, this interference with the embryo implantation process was verified using an in vitro model of human embryo implantation where trophoblast spheroids failed to adhere to a monolayer of TLR 2- and TLR 2/6-activated endometrial cells. The inhibition of TLR receptors 2 and 6 in the presence of their specific ligands restored the ability of the spheroids to bind to the endometrial cells. In conclusion, the activation of the innate immune system in the uterus at the time of implantation interfered with the endometrial receptivity and reduced the chances of implantation success.
Lyons, Danielle D; Morrison, Christie; Philibert, Danielle A; Gamal El-Din, Mohamed; Tierney, Keith B
2018-05-07
Due to the increasing volume of oil sands process-affect water (OSPW) and its toxicity to aquatic organisms, it is important to fully understand its effects and study remediation processes that will enable its release to the environment. Ozone treatment is currently being considered as a tool to expedite remediation, as it is known to degrade toxic organic compounds present in OSPW. In this study, we aimed to measure the effects of OSPW exposure on the growth, development and recovery of zebrafish (Danio rerio) embryos. We also used ozone-treated OSPW to determine whether ozonation negated any effects of raw OSPW exposure. As biomarkers of exposure, we assessed the expression of genes involved in neurodevelopment (ngn1, neuroD), estrogenicity (vtg), oxidative stress (sod1), and biotransformation (cyp1a, cyp1b). Our study found that exposure to both raw and ozonated OSPW did not impair growth of zebrafish embryos, however, otoliths of exposed embryos were smaller than those of control embryos. The expression levels of both cyp1a and cyp1b were induced by raw OSPW exposure. However, after the exposure period, expression levels of these genes returned to control levels within two days of residence in clean water. We found no changes in the expression levels of ngn1, neuroD and vtg genes with exposure to treated or untreated OSPW. Overall, our study found that raw OSPW exposure did not have many negative effects on zebrafish embryos and embryos appeared to recover relatively quickly after exposure ended. Furthermore, ozone treatment decreased the induction of cyp1a and cyp1b. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hasler, John F
2014-01-01
After the first successful transfer of mammalian embryos in 1890, it was approximately 60 years before significant progress was reported in the basic technology of embryo transfer (ET) in cattle. Starting in the early 1970s, technology had progressed sufficiently to support the founding of commercial ET programs in several countries. Today, well-established and reliable techniques involving superovulation, embryo recovery and transfer, cryopreservation, and IVF are utilized worldwide in hundreds, if not thousands, of commercial businesses located in many countries. The mean number of embryos produced via superovulation has changed little in 40 years, but there have been improvements in synchrony and hormonal protocols. Cryopreservation of in vivo-derived embryos is a reliable procedure, but improvements are needed for biopsied and in vitro-derived embryos. High pregnancy rates are achieved when good quality embryos are transferred into suitable recipients and low pregnancy rates are often owing to problems in recipient management and not technology per se. In the future, unanticipated disease outbreaks and the ever-changing economics of cattle and milk prices will continue to influence the ET industry. The issue of abnormal pregnancies involving in vitro embryos has not been satisfactorily resolved and the involvement of abnormal epigenetics associate with this technology merits continued research. Last, genomic testing of bovine embryos is likely to be available in the foreseeable future. This may markedly decrease the number of embryos that are actually transferred and stimulate the evolution of more sophisticated ET businesses. Copyright © 2014 Elsevier Inc. All rights reserved.
Mitchell, Megan; Schulz, Samantha L; Armstrong, David T; Lane, Michelle
2009-04-01
Dietary supply of nutrients, both periconception and during pregnancy, influence the growth and development of the fetus and offspring and their health into adult life. Despite the importance of research efforts surrounding the developmental origins of health and disease hypothesis, the biological mechanisms involved remain elusive. Mitochondria are of major importance in the oocyte and early embryo, particularly as a source of ATP generation, and perturbations in their function have been related to reduced embryo quality. The present study examined embryo development following periconception exposure of females to a high-protein diet (HPD) or a low-protein diet (LPD) relative to a medium-protein diet (MPD; control), and we hypothesized that perturbed mitochondrial metabolism in the mouse embryo may be responsible for the impaired embryo and fetal development reported by others. Although the rate of development to the blastocyst stage did not differ between diets, both the HPD and LPD reduced the number of inner cell mass cells in the blastocyst-stage embryo. Furthermore, mitochondrial membrane potential was reduced and mitochondrial calcium levels increased in the 2-cell embryo. Embryos from HPD females had elevated levels of reactive oxygen species and ADP concentrations, indicative of metabolic stress and, potentially, the uncoupling of oxidative phosphorylation, whereas embryos from LPD females had reduced mitochondrial clustering around the nucleus, suggestive of an overall quietening of metabolism. Thus, although periconception dietary supply of different levels of protein is permissive of development, mitochondrial metabolism is altered in the early embryo, and the nature of the perturbation differs between HPD and LPD exposure.
Rotomskis, Ričardas; Jurgelėnė, Živilė; Stankevičius, Mantas; Stankevičiūtė, Milda; Kazlauskienė, Nijolė; Jokšas, Kęstutis; Montvydienė, Danguolė; Kulvietis, Vytautas; Karabanovas, Vitalijus
2018-09-01
Due to colloidal instability even with protective coatings, nanoparticles tend to aggregate in complex environments and possibly interact with biota. In this study, visualization of quantum dots (QDs) interaction with rainbow trout (Oncorhynchus mykiss) embryos was performed. Studies on zebrafish (Danio rerio) and pearl gourami (Trichogaster leerii) embryos have shown that QDs interact with embryos in a general manner and their affects are independent on the type of the embryo. It was demonstrated that carboxylated CdSe/ZnS QDs (4 nM) were aggregating in accumulation media and formed agglomerates on the surface of fish embryos under 1-12 days incubation in deep-well water. Detailed analysis of QDs distribution on fish embryos surface and investigation of the penetration of QDs through embryo's membrane showed that the chorion protects embryos from the penetration through the chorion and the accumulation of nanoparticles inside the embryos. Confocal microscopy and spectroscopy studies on rainbow trout embryos demonstrated that QDs cause chorion damage, due to QDs aggregation on the surface of chorion, even the formation of the agglomerates at the outer part of the embryos and/or with the mucus were detected. Aggregation of QDs and formation of agglomerates on the outer part of the embryo's membrane caused the intervention of the aggregates to the chorion and even partially destroyed the embryo's chorion. The incorporation of QDs in chorion was confirmed by two methods: in living embryos from a 3D reconstruction view, and in slices of embryos from a histology view. The damage of chorion integrity might have adverse effects on embryonic development. Moreover, for the first time the toxic effect of QDs was separated from the heavy metal toxicity, which is most commonly discussed in the literature to the toxicity of the QDs. Copyright © 2018 Elsevier B.V. All rights reserved.
Sleigh, Merry J; Casey, Michael B
2014-07-01
Species-typical developmental outcomes result from organismic and environmental constraints and experiences shared by members of a species. We examined the effects of enhanced prenatal sensory experience on hatching behaviors by exposing domestic chicks (n = 95) and Japanese quail (n = 125) to one of four prenatal conditions: enhanced visual stimulation, enhanced auditory stimulation, enhanced auditory and visual stimulation, or no enhanced sensory experience (control condition). In general, across species, control embryos had slower hatching behaviors than all other embryos. Embryos in the auditory condition had faster hatching behaviors than embryos in the visual and control conditions. Auditory-visual condition embryos showed similarities to embryos exposed to either auditory or visual stimulation. These results suggest that prenatal sensory experience can influence hatching behavior of precocial birds, with the type of stimulation being a critical variable. These results also provide further evidence that species-typical outcomes are the result of species-typical prenatal experiences. © 2013 Wiley Periodicals, Inc.
Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos
Tu, Zhuchi; Yang, Weili; Yan, Sen; Yin, An; Gao, Jinquan; Liu, Xudong; Zheng, Yinghui; Zheng, Jiezhao; Li, Zhujun; Yang, Su; Li, Shihua; Guo, Xiangyu; Li, Xiao-Jiang
2017-01-01
CRISPR-Cas9 is a powerful new tool for genome editing, but this technique creates mosaic mutations that affect the efficiency and precision of its ability to edit the genome. Reducing mosaic mutations is particularly important for gene therapy and precision genome editing. Although the mechanisms underlying the CRSIPR/Cas9-mediated mosaic mutations remain elusive, the prolonged expression and activity of Cas9 in embryos could contribute to mosaicism in DNA mutations. Here we report that tagging Cas9 with ubiquitin-proteasomal degradation signals can facilitate the degradation of Cas9 in non-human primate embryos. Using embryo-splitting approach, we found that shortening the half-life of Cas9 in fertilized zygotes reduces mosaic mutations and increases its ability to modify genomes in non-human primate embryos. Also, injection of modified Cas9 in one-cell embryos leads to live monkeys with the targeted gene modifications. Our findings suggest that modifying Cas9 activity can be an effective strategy to enhance precision genome editing. PMID:28155910
Development of a security system for assisted reproductive technology (ART).
Hur, Yong Soo; Ryu, Eun Kyung; Park, Sung Jin; Yoon, Jeong; Yoon, San Hyun; Yang, Gi Deok; Hur, Chang Young; Lee, Won Don; Lim, Jin Ho
2015-01-01
In the field of assisted reproductive technology (ART), medical accidents can result in serious legal and social consequences. This study was conducted to develop a security system (called IVF-guardian; IG) that could prevent mismatching or mix-ups in ART. A software program was developed in collaboration with outside computer programmers. A quick response (QR) code was used to identify the patients, gametes and embryos in a format that was printed on a label. There was a possibility that embryo development could be affected by volatile organic components (VOC) in the printing material and adhesive material in the label paper. Further, LED light was used as the light source to recognize the QR code. Using mouse embryos, the effects of the label paper and LED light were examined. The stability of IG was assessed when applied in clinical practice after developing the system. A total of 104 cycles formed the study group, and 82 cycles (from patients who did not want to use IG because of safety concerns and lack of confidence in the security system) to which IG was not applied comprised the control group. Many of the label paper samples were toxic to mouse embryo development. We selected a particular label paper (P touch label) that did not affect mouse embryo development. The LED lights were non-toxic to the development of the mouse embryos under any experimental conditions. There were no differences in the clinical pregnancy rates between the IG-applied group and the control group (40/104 = 38.5 % and 30/82 = 36.6 %, respectively). The application of IG in clinical practice did not affect human embryo development or clinical outcomes. The use of IG reduces the misspelling of patient names. Using IG, there was a disadvantage in that each treatment step became more complicated, but the medical staff improved and became sufficiently confident in ART to offset this disadvantage. Patients who received treatment using the IG system also went through a somewhat tedious process, but there were no complaints. These patients gained further confidence in the practitioners over the course of treatment.
USDA-ARS?s Scientific Manuscript database
High milk production, heat, physiological status and management impair reproduction in Holstein cows. The use of in vivo-produced embryos has been reported as an alternative to enhance pregnancy outcome in the tropics; however there are several limitations for its production, especially from variati...
Novo, Sergi; Penon, Oriol; Barrios, Leonardo; Nogués, Carme; Santaló, Josep; Durán, Sara; Gómez-Matínez, Rodrigo; Samitier, Josep; Plaza, José Antonio; Pérez-García, Luisa; Ibáñez, Elena
2013-06-01
Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of cultured embryos? The results achieved provide a proof of concept for a direct embryo tagging system using biofunctionalized polysilicon barcodes, which could help to minimize the risk of mismatching errors (mix-ups) in human assisted reproduction technologies. Even though the occurrence of mix-ups is rare, several cases have been reported in fertility clinics around the world. Measures to prevent the risk of mix-ups in human assisted reproduction technologies are therefore required. Mouse embryos were tagged with 10 barcodes and the effectiveness of the tagging system was tested during fresh in vitro culture (n=140) and after embryo cryopreservation (n = 84). Finally, the full-term development of tagged embryos was evaluated (n =105). Mouse pronuclear embryos were individually rolled over wheat germ agglutinin-biofunctionalized polysilicon barcodes to distribute them uniformly around the ZONA PELLUCIDA surface. Embryo viability and retention of barcodes were determined during 96 h of culture. The identification of tagged embryos was performed every 24 h in an inverted microscope and without embryo manipulation to simulate an automatic reading procedure. Full-term development of the tagged embryos was assessed after their transfer to pseudo-pregnant females. To test the validity of the embryo tagging system after a cryopreservation process, tagged embryos were frozen at the 2-cell stage using a slow freezing protocol, and followed in culture for 72 h after thawing. Neither the in vitro or in vivo development of tagged embryos was adversely affected. The tagging system also proved effective during an embryo cryopreservation process. Global identification rates higher than 96 and 92% in fresh and frozen-thawed tagged embryos, respectively, were obtained when simulating an automatic barcode reading system, although these rates could be increased to 100% by simply rotating the embryos during the reading process. The direct embryo tagging developed here has exclusively been tested in mouse embryos. Its effectiveness in other species, such as the human, is currently being tested. The direct embryo tagging system developed here, once tested in human embryos, could provide fertility clinics with a novel tool to reduce the risk of mix-ups in human assisted reproduction technologies.
Effects of sediment cover on survival and development of white sturgeon embryos
Kock, T.J.; Congleton, J.L.; Anders, P.J.
2006-01-01
A simple, inexpensive apparatus (embryo incubation unit [EIU]) was developed and used to assess the relationship between sediment cover (Kootenai River sediments, 97% by weight in the 0.83-mm- to 1.0-mm-diameter range) and survival of white sturgeon Acipenser transmontanus embryos in the laboratory. An apparatus-testing trial assessed the effects of two sediment depths (5 and 20 mm), three EIU ventilation hole sizes (4.8, 6.8, and 9.5 mm) providing three levels of intrasediment flow, and EIU location (upstream or downstream in laboratory troughs) on embryo survival at two above-substrate flow velocities (0.05 and 0.15 m/s). A second trial assessed the effects of sediment cover duration (5-mm sediment cover for 4, 7, 9, 11, or 14 d, with a ventilation hole size of 9.5 mm and a flow velocity of 0.17 m/s) on mean embryo survival and larval length and weight. In the apparatus-testing trial, embryo survival was reduced (P < 0.0001) to 0-5% under sediment covers of either 5 or 20 mm in both the higher-flow and lower-flow troughs; survival in control EIUs without sediments exceeded 80%. Survival was not significantly affected by ventilation hole size but was weakly affected by EIU location. In the second trial, embryo survival was negatively correlated (P = 0.001) with increasing duration of sediment cover and was significantly higher for embryos covered for 4 d (50% survival) or 7 d (30% survival) than for those covered for 9, 11, or 14 d (15-20% survival). Sediment cover also delayed hatch timing (P < 0.0001) and decreased mean larval length (P < 0.0001). Our results suggest that sediment cover may be an important early life stage mortality factor in rivers where white sturgeon spawn over fine-sediment substrates. ?? Copyright by the American Fisheries Society 2006.
Gu, Fang; Deng, Mingfen; Gao, Jun; Wang, Zilian; Ding, Chenhui; Xu, Yanwen; Zhou, Canquan
2016-09-19
Embryo culture media used for IVF treatment might affect fetal growth and thus birthweight of the newborns. A retrospective study was conducted in South China using data from 2370 singleton neonates born after IVF/ICSI between 2009 and 2012. Two culture media, i.e., either Vitrolife or SAGE were used as embryo culture media during the study period. Neonates' birthweights were compared between the two embryo culture media groups. Among the 2370 singletons, 1755 cases came from fresh cleavage embryo transfer while 615 were from frozen-thawed cleavage embryo transfer. Within the fresh embryo transfer newborns, no statistical difference was observed in either birthweight (mean ± SD: 3196.0 ± 468.9 versus 3168.4 ± 462.0g, p > 0.05) or adjusted birthweight controlled for gestational age and gender (z-score mean ± SD: 0.11 ± 1.02 versus 0.11 ± 0.99 g, P > 0.05) between the Vitrolife (n = 419) and the SAGE group (n = 1336). Likewise within frozen embryo transfer neotates, no statistical difference of the birthweight (3300.6 ± 441.3 vs.3256.0 ± 466.7 g, P > 0.05) and adjusted birthweight (0.30 ± 0.99 g versus 0.29 ± 0.97 g, P > 0.05) was found between the Vitrolife (n = 202) and the SAGE group (n = 413). The sex ratio [OR1.17, 95 % CI (0.94-1.46)/OR1.1, 95 % CI (0.78-1.54)], rate of small for gestational age [OR1.14, 95 % CI (0.82-1.59)/OR1.06, 95 % CI (0.56-2.02)] and large for gestational age [OR1.07, 95 % CI (0.64-1.76)/OR0.98, 95 % CI (0.47-2.02)] in fresh and frozen-thawed subgourps are all comparable respectively between the two culture media. No group differences were found in the rate of low birthweight and macosomia. Multiple linear regression analysis demonstrated that maternal weight, gestational age, frozen-thawed embryo transfer and infant gender were significantly related to neonatal birthweight (P < 0.001). It appears that embryos cultured in SAGE or Vitrolife media after fresh or frozen-thawed cleavage embryo transfer did not affect neonate's birthweight.
[The mammalian oviduct revisited].
Halter, S; Reynaud, K; Tahir, Z; Thoumire, S; Chastant-Maillard, S; Saint-Dizier, M
2011-11-01
The oviducts, or uterine tubes, support the transport and final maturation of gametes, and harbour fertilization and early embryo development. The oviduct environment is finely regulated by ovarian steroids as well as by gametes and embryos that interact with it. Previously regarded as a simple transit zone, the oviduct is now regarded as a complex organ with multiple functions in these various processes. The tubal fluid, now better characterized, is to be regarded as the first interface between the mother and the embryo. It may play a major role in the quality of the conceptus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Comparative analysis of water quality and toxicity assessment methods for urban highway runoff.
Chen, Rui-Hong; Li, Fei-Peng; Zhang, Hai-Ping; Jiang, Yue; Mao, Ling-Chen; Wu, Ling-Ling; Chen, Ling
2016-05-15
In this study, comparative analyses of highway runoff samples obtained from seventeen storm events have been conducted between the traditional water quality assessment method and biotoxicity tests, using zebrafish (Danio rerio) embryos and luminous bacteria (Vibrio qinghaiensis. Q67) to provide useful information for ecotoxicity assessment of urban highway runoff. The study results showed that the Nemerow pollution index based on US EPA recommended Criteria Maximum Concentrations (CMC) (as traditional water quality assessment method) had no significant correlation with luminous bacteria acute toxicity test results, while significant correlation has been observed with two indicators of 72 hpf (hours post fertilization) hour hatching rate and 96 hpf abnormality rate from the toxicity test with zebrafish embryos. It is therefore concluded that the level of mixture toxicity of highway runoff could not be adequately measured by the Nemerow assessment method. Moreover, the key pollutants identified from the water quality assessment and from the biotoxicity evaluation were not consistent. For biotoxic effect evaluation of highway runoff, three indexes were found to be sensitive, i.e. 24 hpf lethality and 96 hpf abnormality of zebrafish embryos, as well as the inhibition rate for luminous bacteria Q67. It is therefore recommended that these indexes could be incorporated into the traditional Nemerow method to provide a more reasonable evaluation of the highway runoff quality and ecotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.
Artificial intelligence techniques for embryo and oocyte classification.
Manna, Claudio; Nanni, Loris; Lumini, Alessandra; Pappalardo, Sebastiana
2013-01-01
One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the 'local binary patterns'). The proposed system is tested on two data sets, of 269 oocytes and 269 corresponding embryos from 104 women, and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they showed an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Zhang, Zheng; Zhang, Xue-hong; He, Tian-you
2015-10-01
To study clinical efficacy of smoothing Gan reinforcing Shen (SGRS) method in treating poor response of diminished ovarian reserve (DOR) patients in in vitro fertilization and embryo, transfer (IVF-ET). Totally 84 DOR patients undergoing IVF-ET were assigned to the experimental group (SGRS Chinese herbs as adjuvant therapy) and the control group according to random digit table, 42 in each group. Patients in the control group received controlled ovarian hyperstimulation (COH) and IVF-ET. Those in the experimental group additionally received basic formula of SGRS method, one dose per day. The dose and use time of recombinant follicle-stimulating hormone (r-FSH) were recorded during ovarian stimulation process. On the injection day of human chorionic gonadotropin (HCG) and serum levels of estradiol (E2) on the oocyte retrieval day were determined using chemiluminescent method. E2 contents in the follicular fluid on the oocyte retrieval day were detected using ELISA. The total number of retrieved oocytes, the number of mature oocytes in metaphase II (M II), the number of normal fertilization [with two pronucleus (2PN)], the number of portable embryos, and the number of good quality embryos were recorded. The correlation between Chinese medical adjuvant therapy and the aforesaid indices were observed. The clinical pregnancy rate and the abortion rate were finally compared between the two groups. The total dose of r-FSH, the E2 level on HCG injection day, the serum E2 level on the oocyte retrieval day, the number of retrieved oocyte, the number of oocytes in M II the number of oocytes with 2PN, the number of portable embryos, and the number of good quality embryos were all positively correlated with Chinese medical adjuvant therapy (P < 0.05, P < 0.01). Compared with the control group, serum E2 levels on the HCG injection day and the oocyte retrieval day obviously increased, the number of retrieved oocytes, the number of oocytes in M II, and the number of portable embryos were increased more in the experimental group with statistical difference (P < 0.05, P < 0.01). There was no statistical significance in the clinical pregnancy rate or the abortion rate between the two groups (P > 0.05). SGRS Chinese herbs as adjuvant therapy could improve ovarian responsiveness of DOR patients undergoing IVF-ET, increase the number of retrieved oocytes, elevate the quality of oocytes and the number of embryos.
Wu, Haotian; Ashcraft, Lisa; Whitcomb, Brian W; Rahil, Tayyab; Tougias, Ellen; Sites, Cynthia K; Pilsner, J Richard
2017-01-01
Are preconception urinary concentrations of phthalates and phthalate alternatives associated with diminished early stage embryo quality in couples undergoing IVF? Male, but not female, urinary concentrations of select metabolites of phthalates and phthalate alternatives are associated with diminished blastocyst quality. Although phthalates are endocrine disrupting compounds associated with adverse reproductive health, they are in widespread use across the world. Male and female preconception exposures to select phthalates have been previously associated with adverse reproductive outcomes in both the general population and in those undergoing IVF. This prospective cohort included 50 subfertile couples undergoing IVF in western Massachusetts. This study includes the first 50 couples recruited from the Baystate Medical Center's Fertility Center in Springfield, MA, as part of the Sperm Environmental Epigenetics and Development Study (SEEDS). Relevant data from both partners, including embryo quality at the cleavage (Day 3) and blastocyst (Day 5) stages, were collected by clinic personnel during the normal course of an IVF cycle. A spot urine sample was collected from both male and female partners on the same day as semen sample procurement and oocyte retrieval. Concentrations of 17 urinary metabolite were quantified by liquid chromatography mass spectrometry and normalized via specific gravity. Generalized estimating equations were used to estimate odds ratios (OR) and 95% CI, with urinary phthalates and phthalate alternatives fitted as continuous variables and embryo quality as a binary variable. The 50 couples contributed 761 oocytes, of which 423 progressed to the cleavage stage, 261 were high-quality cleavage stage embryos, 137 were transferrable quality blastocysts and 47 were high-quality blastocysts. At the cleavage stage, male urinary monoethyl phthalate concentrations were positively associated with high-quality cleavage stage embryos (OR = 1.20, 95% CI 1.01-1.43, P = 0.04); no other significant associations were observed at this stage. At the blastocyst stage, male urinary concentrations of monobenzyl phthalate (OR = 0.55, 95% CI 0.36-0.84, P = 0.01), mono-3-hydroxybutyl phthalate (OR = 0.37, 95% CI 0.18-0.76, P = 0.01), mono-n-butyl phthalate (OR = 0.55, 95% CI 0.42-0.73, P < 0.01) and monomethyl phthalate (OR = 0.39, 95% CI 0.26-0.60, P < 0.01) were inversely associated with high-quality blastocysts. A borderline statistically significant relationship was observed for male concentrations of mono(2-ethylhexyl) phthalate (OR = 0.52, 95% CI 0.27-1.00, P = 0.05) and cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl ester (OR = 0.21, 95% CI 0.04-1.03, P = 0.05) at the blastocyst stage. Similar inverse associations were observed between male urinary phthalate metabolite concentrations and likelihood of transferrable quality blastocysts. For female partners, select metabolites were positively associated with odds of high or transferrable blastocyst quality, but the observed associations were not consistent across blastocyst quality measures or between sex-specific and couples-level models. All models were adjusted for age of both partners, urinary metabolite concentrations of female partners and male infertility status, while models of blastocysts were additionally adjusted for embryo quality at cleavage stage. Our modest sample included only 50 couples contributing one cycle each. In addition, non-differential misclassification of exposure remains a concern given the single-spot urine collection and the short half-life of phthalates. Our results suggest an inverse association between male preconception concentrations of select phthalate metabolites and blastocyst quality, likely occurring after genomic activation. If corroborated with other studies, such findings will have public health and clinical significance for both the general population and those undergoing IVF. This work was generously supported by grant K22-ES023085 from the National Institute of Environmental Health Sciences. The authors declare no competing interests. N/A. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Do, Ltk; Wittayarat, M; Terazono, T; Sato, Y; Taniguchi, M; Tanihara, F; Takemoto, T; Kazuki, Y; Kazuki, K; Oshimura, M; Otoi, T
2016-12-01
The current applications for cat cloning include production of models for the study of human and animal diseases. This study was conducted to investigate the optimal fusion protocol on in vitro development of transgenic cloned cat embryos by comparing duration of electric pulse. Cat fibroblast cells containing a human artificial chromosome (HAC) vector were used as genetically modified nuclear donor cells. Couplets were fused and activated simultaneously with a single DC pulse of 3.0 kV/cm for either 30 or 60 μs. Low rates of fusion and embryo development to the blastocyst stage were observed in the reconstructed HAC-transchromosomic embryos, when the duration of fusion was prolonged to 60 μs. In contrast, the prolongation of electric pulse duration improved the embryo development and quality in the reconstructed control embryos without HAC vector. Our results suggested that the optimal parameters of electric pulses for fusion in cat somatic cell nuclear transfer vary among the types used for donor cells. © 2016 Blackwell Verlag GmbH.
Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos
Soma, Miki; Fujihara, Yoshitaka; Okabe, Masaru; Ishino, Fumitoshi; Kobayashi, Shin
2014-01-01
X-chromosome inactivation (XCI) equalizes gene expression between the sexes by inactivating one of the two X chromosomes in female mammals. Xist has been considered as a major cis-acting factor that inactivates the paternally derived X chromosome (Xp) in preimplantation mouse embryos (imprinted XCI). Ftx has been proposed as a positive regulator of Xist. However, the physiological role of Ftx in female animals has never been studied. We recently reported that Ftx is located in the cis-acting regulatory region of the imprinted XCI and expressed from the inactive Xp, suggesting a role in the imprinted XCI mechanism. Here we examined the effects on imprinted XCI using targeted deletion of Ftx. Disruption of Ftx did not affect the survival of female embryos or expression of Xist and other X-linked genes in the preimplantation female embryos. Our results indicate that Ftx is dispensable for imprinted XCI in preimplantation embryos. PMID:24899465
Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos.
Soma, Miki; Fujihara, Yoshitaka; Okabe, Masaru; Ishino, Fumitoshi; Kobayashi, Shin
2014-06-05
X-chromosome inactivation (XCI) equalizes gene expression between the sexes by inactivating one of the two X chromosomes in female mammals. Xist has been considered as a major cis-acting factor that inactivates the paternally derived X chromosome (Xp) in preimplantation mouse embryos (imprinted XCI). Ftx has been proposed as a positive regulator of Xist. However, the physiological role of Ftx in female animals has never been studied. We recently reported that Ftx is located in the cis-acting regulatory region of the imprinted XCI and expressed from the inactive Xp, suggesting a role in the imprinted XCI mechanism. Here we examined the effects on imprinted XCI using targeted deletion of Ftx. Disruption of Ftx did not affect the survival of female embryos or expression of Xist and other X-linked genes in the preimplantation female embryos. Our results indicate that Ftx is dispensable for imprinted XCI in preimplantation embryos.
Huin-Schohn, Cécile; Guéguinou, Nathan; Schenten, Véronique; Bascove, Matthieu; Koch, Guillemette Gauquelin; Baatout, Sarah; Tschirhart, Eric; Frippiat, Jean-Pol
2013-01-01
Our previous research demonstrated that spaceflight conditions affect antibody production in response to an antigenic stimulation in adult amphibians. Here, we investigated whether antibody synthesis is affected when animal development occurs onboard a space station. To answer this question, embryos of the Iberian ribbed newt, Pleurodeles waltl, were sent to the International Space Station (ISS) before the initiation of immunoglobulin heavy-chain expression. Thus, antibody synthesis began in space. On landing, we determined the effects of spaceflight on P. waltl development and IgM heavy-chain transcription. Results were compared with those obtained using embryos that developed on Earth. We find that IgM heavy-chain transcription is doubled at landing and that spaceflight does not affect P. waltl development and does not induce inflammation. We also recreated the environmental modifications encountered by the embryos during their development onboard the ISS. This strategy allowed us to demonstrate that gravity change is the factor responsible for antibody heavy-chain transcription modifications that are associated with NF-κB mRNA level variations. Taken together, and given that the larvae were not immunized, these data suggest a modification of lymphopoiesis when gravity changes occur during ontogeny.
Tribulo, Paula; Leão, Beatriz Caetano da Silva; Lehloenya, Khoboso C; Mingoti, Gisele Zoccal; Hansen, Peter J
2017-06-01
The specific role of WNT signaling during preimplantation development remains unclear. Here, we evaluated consequences of activation and inhibition of β-catenin (CTNNB1)-dependent and -independent WNT signaling in the bovine preimplantation embryo. Activation of CTNNB1-mediated WNT signaling by the agonist 2-amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine (AMBMP) and a glycogen synthase kinase 3 inhibitor reduced development to the blastocyst stage. Moreover, the antagonist of WNT signaling, dickkopf-related protein 1 (DKK1), alleviated the negative effect of AMBMP on development via reduction of CTNNB1. Based on labeling for phospho c-Jun N-terminal kinase, there was no evidence that DKK1 activated the planar cell polarity (PCP) pathway. Inhibition of secretion of endogenous WNTs did not affect development but increased number of cells in the inner cell mass (ICM). In contrast, DKK1 did not affect number of ICM or trophectoderm (TE) cells, suggesting that embryo-derived WNTs regulate ICM proliferation through a mechanism independent of CTNNB1. In addition, DKK1 did not affect the number of cells positive for the transcription factor yes-associated protein 1 (YAP1) involved in TE formation. In fact, DKK1 decreased YAP1. In contrast, exposure of embryos to WNT family member 7A (WNT7A) improved blastocyst development, inhibited the PCP pathway, and did not affect amounts of CTNNB1. Results indicate that embryo-derived WNTs are dispensable for blastocyst formation but participate in regulation of ICM proliferation, likely through a mechanism independent of CTNNB1. The response to AMBMP and WNT7A leads to the hypothesis that maternally derived WNTs can play a positive or negative role in regulation of preimplantation development. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction.
Common medium versus advanced IVF medium for cryopreserved oocytes in heterologous cycles.
Poverini, R; Lisi, R; Lisi, F; Berlinghieri, V; Bielli, W; Carfagna, P; Costantino, A; Iacomino, D; Nicodemo, G
2018-12-01
Granulocyte-macrophage colony-stimulation factor plays different crucial roles during embryo implantation and subsequent development. Here we aimed to evaluate the effects of embryo cell culture medium, with the inclusion of granulocyte-macrophage colony-stimulation factor (GM-CSF), on embryo development and pregnancy rate. To this end, we took advantage of our retrospective observational study to correlate the outcomes from two different culture media. We included in this study 25 unselected patient from our IVF Center that underwent heterologous IVF cycle with crypreserved oocytes. We analyze the fertilization rate, pregnancy rate, and embryo quality at different day of transfer obtained from two different media composition. Our results show that the rate of fertilization and the pregnancy rate were increased using medium added with this particular type of cytokines (GM-CSF).
Brante, Antonio; Fernández, Miriam; Viard, Frédérique
2009-07-01
Encapsulation is a common strategy among marine invertebrate species. It has been shown that oxygen and food availability independently constrain embryo development during intracapsular development. However, it is unclear how embryos of species with different feeding strategies perceive these two constraints when operating jointly. In the present study, we examined the relative importance of dissolved albumen, as a food source, oxygen condition and their interaction on embryonic growth and the survival of two calyptraeid species, Crepidula coquimbensis and Crepidula fornicata, exhibiting different embryo feeding behaviours (i.e. presence vs absence of intracapsular cannibalism). Two oxygen condition treatments (normoxia and hypoxia) and three albumen concentrations (0, 1 and 2 mg l(-1)) were studied. In addition, albumen intake by embryos was observed using fluorescence microscopy. Our study shows that embryos of both species incorporated dissolved albumen but used a different set of embryonic organs. We observed that embryo growth rates in C. coquimbensis were negatively affected only by hypoxic conditions. Conversely, a combination of low albumen concentration and oxygen availability slowed embryo growth in C. fornicata. These findings suggest that oxygen availability is a limiting factor for the normal embryo development of encapsulated gastropod species, regardless of feeding behaviour or developmental mode. By contrast, the effect of dissolved albumen as an alternative food source on embryo performance may depend on the feeding strategy of the embryos.
Effect of women’s age on embryo morphology, cleavage rate and competence—A multicenter cohort study
Grøndahl, Marie Louise; Christiansen, Sofie Lindgren; Kesmodel, Ulrik Schiøler; Agerholm, Inge Errebo; Lemmen, Josephine Gabriela; Lundstrøm, Peter; Bogstad, Jeanette; Raaschou-Jensen, Morten; Ladelund, Steen
2017-01-01
This multicenter cohort study on embryo assessment and outcome data from 11,744 IVF/ICSI cycles with 104,830 oocytes and 42,074 embryos, presents the effect of women’s age on oocyte, zygote, embryo morphology and cleavage parameters, as well as cycle outcome measures corrected for confounding factors as center, partner’s age and referral diagnosis. Cycle outcome data confirmed the well-known effect of women’s age. Oocyte nuclear maturation and proportion of 2 pro-nuclear (2PN) zygotes were not affected by age, while a significant increase in 3PN zygotes was observed in both IVF and ICSI (p<0.0001) with increasing age. Maternal age had no effect on cleavage parameters or on the morphology of the embryo day 2 post insemination. Interestingly, initial hCG value after single embryo transfer followed by ongoing pregnancy was increased with age in both IVF (p = 0.007) and ICSI (p = 0.001) cycles. For the first time, we show that a woman’s age does impose a significant footprint on early embryo morphological development (3PN). In addition, the developmentally competent embryos were associated with increased initial hCG values as the age of the women increased. Further studies are needed to elucidate, if this increase in initial hCG value with advancing maternal age is connected to the embryo or the uterus. PMID:28422964
Repeated use of surrogate mothers for embryo transfer in the mouse.
Kolbe, Thomas; Palme, Rupert; Touma, Chadi; Rülicke, Thomas
2012-01-01
Embryo transfer in mice is a crucial technique for generation of transgenic animals, rederivation of contaminated lines, and revitalization of cryopreserved strains, and it is a key component of assisted reproduction techniques. It is common practice to use females only once as surrogate mothers. However, their reuse for a second embryo transfer could provide hygienic and economic advantages and conform to the concept of the 3Rs (replace, reduce, refine). This investigation evaluated the potential for a second embryo transfer in terms of feasibility, reproductive results, and experimental burden for the animal. Virgin female ICR mice (age 8-16 wk) were used as recipients for the first embryo transfer. Immediately after weaning of the first litter, a second surgical embryo transfer was performed into the same oviduct. Virgin females of comparable age to the reused mothers served as controls and underwent the same procedure. The first surgery did not affect the success of the second embryo transfer. Histological sections showed excellent wound healing without relevant impairment of involved tissues. We observed no differences in pregnancy rates or litter sizes between the transfer groups. Most importantly, we found no change in behavior indicating reduced well-being and no increase of corticosterone metabolites in the feces of surrogate mothers reused for a second embryo transfer. We conclude that a second embryo transfer in mice is feasible with regard to reproductive and animal welfare aspects.
Vidal Martínez, Jaime
2006-01-01
This study deals with issues of research with human embryos obtained through in vitro fertilization in the context of the Spanish Law. The paper focuses on Act 14/2006 on techniques of human assisted reproduction, which replaces the previous Act from 1988. The author claims that the main goals of Act 14/2006 are, on the one hand, to eliminate the restrictions affecting research with human embryos put in place by Act 45/2003 and, on the other, to pave the way for a future legislation on biomedical research. This paper argues for the need of an effective and adequate juridical protection of human embryos obtained in vitro according to responsibility and precautionary principles.
2017-05-01
Patient requests for transfer of embryos with genetic anomalies linked to serious health-affecting disorders detected in preimplantation testing are rare but do exist. This Opinion sets out the possible rationales for a provider's decision to assist or decline to assist in such transfers. The Committee concludes in most clinical cases it is ethically permissible to assist or decline to assist in transferring such embryos. In circumstances in which a child is highly likely to be born with a life-threatening condition that causes severe and early debility with no possibility of reasonable function, provider transfer of such embryos is ethically problematic and highly discouraged. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Mahmoud, K. Gh. M; Scholkamy, T. H; Darwish, S. F
2015-01-01
Cryopreservation and sexing of embryos are integrated into commercial embryo transfer technologies. To improve the effectiveness of vitrification of in vitro produced buffalo embryos, two experiments were conducted. The first evaluated the effect of exposure time (2 and 3 min) and developmental stage (morula and blastocysts) on the viability and development of vitrified buffalo embryos. Morphologically normal embryos and survival rates (re-expansion) significantly increased when vitrified morulae were exposed for 2 min compared to 3 min (P<0.001). On the other hand, morphologically normal and survival rates of blastocysts significantly increased when exposed for 3 min compared to 2 min (P<0.001). However, there were no significant differences between the two developmental stages (morulae and blastocystes) in the percentages of morphologically normal embryos and re-expansion rates after a 24 h culture. The second experiment aimed to evaluate the effect of viability on the sex ratio of buffalo embryos after vitrification and whether male and female embryos survived vitrification differently. A total number of 61 blastocysts were vitrified for 3 min with the same cryoprotectant as experiment 1. Higher percentages of males were recorded for live as compared to dead embryos; however, this difference was not significant. In conclusion, the post-thaw survival and development of in vitro produced morulae and blastocysts were found to be affected by exposure time rather than developmental stage. Survivability had no significant effect on the sex ratio of vitrified blastocysts; nevertheless, the number of surviving males was higher than dead male embryos. PMID:27175197
Golan, Guy; Oksenberg, Adi; Peleg, Zvi
2015-01-01
Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. PMID:26019253
Sakagami, N; Nishida, K; Akiyama, K; Abe, H; Hoshi, H; Suzuki, C; Yoshioka, K
2015-01-01
Oxygen consumption rate of in vivo-derived porcine embryos was measured, and its value as an objective method for the assessment of embryo quality was evaluated. Embryos were surgically collected 5 or 6 days after artificial insemination (AI), and oxygen consumption rate of embryos was measured using an embryo respirometer. The average oxygen consumption rate (F × 10(14)/mol s(-1)) of the embryos that developed to the compacted morula stage on Day 5 (Day 0 = the day of artificial insemination) was 0.58 ± 0.03 (mean ± standard error of the mean). The Day-6 embryos had consumption rates of 0.56 ± 0.13, 0.87 ± 0.06, and 1.13 ± 0.07 at the early blastocyst, blastocyst, and expanded blastocyst stages, respectively, showing a gradual increase as the embryos developed. Just after collection, the average oxygen consumption rates of embryos that hatched and of those that did not hatch after culture were 0.60 ± 0.04 and 0.50 ± 0.04 for Day 5 (P = 0.08) and 1.05 ± 0.09 and 0.77 ± 0.05 for Day 6 (P < 0.05), respectively. The value and probability of discrimination by measuring the oxygen consumption rates of embryos to predict their hatching ability after culture were 0.56 and 63.6% for Day-5 embryos and 0.91 and 68.4% for Day-6 blastocysts, respectively. When Day-5 embryos were classified based on the oxygen consumption rate and then transferred non-surgically to recipient sows, three of the seven sows, to which embryos having a high oxygen consumption rate (≥ 0.59) were transferred, became pregnant and farrowed a total of 20 piglets. However, none of the four sows, to which embryos having low oxygen consumption rate (< 0.59) were transferred, became pregnant. These results suggest that the viability of in vivo-derived porcine embryos and subsequent development can be estimated by measuring the oxygen consumption rate. Copyright © 2015 Elsevier Inc. All rights reserved.
Cisterna, B; Flach, F; Vecchio, L; Barabino, S M L; Battistelli, S; Martin, T E; Malatesta, M; Biggiogera, M
2008-01-01
In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs. Recent studies have demonstrated that a diet containing a genetically modified (GM) soybean can induce modifications of nuclear constituents involved in RNA processing in some tissues of young, adult and old mice. On this basis, we have investigated the ultrastructural and immunocytochemical features of pre-implantation embryos from mice fed either GM or non- GM soybean in order to verify whether the parental diet can affect the morpho-functional development of the embryonic ribonucleoprotein structural constituents involved in pre-mRNA pathways. Morphological observations revealed that the general aspect of embryo nuclear components is similar in the two experimental groups. However, immunocytochemical and in situ hybridization results suggest a temporary decrease of pre-mRNA transcription and splicing in 2-cell embryos and a resumption in 4-8-cell embryos from mice fed GM soybean; moreover, pre-mRNA maturation seems to be less efficient in both 2-cell and 4-8-cell embryos from GM-fed mice than in controls. Although our results are still preliminary and limited to the pre-implantation phases, the results of this study encourage deepening on the effects of food components and/or contaminants on embryo development.
Hwang, Young Sun; Seo, Minseok; Choi, Hee Jung; Kim, Sang Kyung; Kim, Heebal; Han, Jae Yong
2018-04-01
The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos. Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations. The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.
Khosla, S; Dean, W; Brown, D; Reik, W; Feil, R
2001-03-01
Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 + FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 + FCS fetuses. No alterations were detected for the imprinted gene MEST: Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development.
Amoushahi, Mahboobeh; Salehnia, Mojdeh; HosseinKhani, Saman
2013-01-01
Background: The mitochondria are an important source of adenosine triphosphate (ATP) production in pre-implantation embryo. Therefore, the objective of this study was to investigate the effect of vitrification and in vitro culture of mouse embryos on their mitochondrial distribution and ATP content. Methods: The embryos at 2-PN, 4-cell and blastocyst stages were collected from the oviduct of stimulated pregnant mice and uterine horns. Then, the embryos were vitrified with the cryotop method using ethylene glycol and dimethylsulphoxide. After evaluating the survival rates of vitrified embryos, their development to hatching stages were assessed. The ATP content of collected in vivo and in vitro embryos at different stages was measured by luciferin-luciferase bioluminescence assay. The distribution of mitochondria was studied using Mito-tracker green staining under a fluorescent microscope. Results: The survival rates of vitrified embryos at 2-PN, 4-cell and early blastocyst stages were 84.3, 87.87 and 89.89%, respectively. The hatching rates in previous developmental stages in vitrified group were 57.44, 66.73 and 70.89% and in non-vitrified group were 66.32, 73.25 and 75.89%, respectively (P>0.05). The ATP content of in vivo or in vitro collected embryos was not significantly different in both vitrified and non-vitrified groups (P>0.05). Mitochondrial distribution of vitrified and non-vitrified 2-PN embryos was similar, but some clampings or large aggregation of mitochondria within the vitrified 4-cell embryos was prominent. Conclusions: Vitrification method did not affect the mouse embryo ATP content. Also, the cellular stress was not induced by this procedure and the safety of vitrification was shown. PMID:23748889
Ferreira, A R; Machado, G M; Diesel, T O; Carvalho, J O; Rumpf, R; Melo, E O; Dode, M A N; Franco, M M
2010-07-01
During embryogenesis, one of the two X chromosomes is inactivated in embryos. The production of embryos in vitro may affect epigenetic mechanisms that could alter the expression of genes related to embryo development and X chromosome inactivation (XCI). The aim of this study was to understand XCI during in vitro, pre-implantation bovine embryo development by characterizing the allele-specific expression pattern of the X chromosome-linked gene, monoamine oxidase A (MAOA). Two pools of ten embryos, comprised of the 4-, 8- to 16-cell, morula, blastocyst, and expanded blastocyst stages, were collected. Total RNA from embryos was isolated, and the RT-PCR-RFLP technique was used to observe expression of the MAOA gene. The DNA amplicons were also sequenced using the dideoxy sequencing method. MAOA mRNA was detected, and allele-specific expression was identified in each pool of embryos. We showed the presence of both the maternal and paternal alleles in the 4-, 8- to 16-cell, blastocyst and expanded blastocyst embryos, but only the maternal allele was present in the morula stage. Therefore, we can affirm that the paternal X chromosome is totally inactivated at the morula stage and reactivated at the blastocyst stage. To our knowledge, this is the first report of allele-specific expression of an X-linked gene that is subject to XCI in in vitro bovine embryos from the 4-cell to expanded blastocyst stages. We have established a pattern of XCI in our in vitro embryo production system that can be useful as a marker to assist the development of new protocols for in vitro embryo production. (c) 2010 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.
2006-11-15
Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days ofmore » incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation and up to 24 days longer to reach emergence. In contrast, within each dissolved oxygen treatment, it took about 20 days longer to reach hatch at 13 C than at 16.5 C (no data for 17 C) and up to 41 days longer to reach emergence. Overall, this study indicates that exposure to water temperatures up to 16.5 C will not have deleterious impacts on survival or growth from egg to emergence if temperatures decline at a rate of greater than or equal to 0.2 C/day following spawning. Although fall Chinook salmon survived low initial dissolved oxygen levels, the delay in emergence could have significant long-term effects on their survival. Thus, an exemption to the state water quality standards for temperature but not oxygen may be warranted in the Snake River where fall Chinook salmon spawn.« less
USDA-ARS?s Scientific Manuscript database
Medaka (Oryzias latipes) embryos at different developmental stages were exposed to ethanol for 48 h, then allowed to hatch. Teratogenic effects were evaluated in hatchlings after examining chondrocranial cartilage deformities. Ethanol disrupted cartilage development in medaka in a dose and developme...
Human embryo culture media comparisons.
Pool, Thomas B; Schoolfield, John; Han, David
2012-01-01
Every program of assisted reproduction strives to maximize pregnancy outcomes from in vitro fertilization and selecting an embryo culture medium, or medium pair, consistent with high success rates is key to this process. The common approach is to replace an existing medium with a new one of interest in the overall culture system and then perform enough cycles of IVF to see if a difference is noted both in laboratory measures of embryo quality and in pregnancy. This approach may allow a laboratory to select one medium over another but the outcomes are only relevant to that program, given that there are well over 200 other variables that may influence the results in an IVF cycle. A study design that will allow for a more global application of IVF results, ones due to culture medium composition as the single variable, is suggested. To perform a study of this design, the center must have a patient caseload appropriate to meet study entrance criteria, success rates high enough to reveal a difference if one exists and a strong program of quality assurance and control in both the laboratory and clinic. Sibling oocytes are randomized to two study arms and embryos are evaluated on day 3 for quality grades. Inter and intra-observer variability are evaluated by kappa statistics and statistical power and study size estimates are performed to bring discriminatory capability to the study. Finally, the complications associated with extending such a study to include blastocyst production on day 5 or 6 are enumerated.
Esh-Broder, Efrat; Oron, Galia; Son, Weon-Young; Holzer, Hananel; Tulandi, Togas
2015-10-01
Maternal serum ß-human chorionic gonadotropin (ß-hCG) represents the trophoblastic cell mass and is an indirect measurement of embryo development at early implantation stage. Studies in animals and human embryos detected sex-related growth differences (SRGD) in favour of male embryos during the pre-implantation period. The purpose of our study was to correlate SRGD and maternal serum ß-hCG at 16 days after embryo transfer. We retrospectively analysed all (fresh and frozen) non-donor, single embryo transfers (SET), elective and not elective, that were performed between December 2008 and December 2013. We included ß-hCG values from day 16 after oocyte collection of pregnancies resulting in live birth. Neonatal gender was retrieved from patient files. Male and female embryos were further grouped to cleavage and blastocyst stage transfers. Regression analysis for confounding variables included maternal age, maternal body mass index (BMI), use of micromanipulation (ICSI), embryo quality (grade), assisted hatching, day of transfer and fresh or frozen embryo transfer. Seven hundred eighty-six non-donor SETs resulted in live birth. After including only day 16 serum ß-hCG results, 525 SETs were analysed. Neonatal gender was available for 522 cases. Mean maternal serum ß-hCG levels were similar, 347 ± 191 IU/L in the male newborn group and 371 ± 200 IU/L in the female group. The difference between ß-hCG levels remained insignificant after adjusting for confounding variables. Early maternal ß-hCG levels after embryo transfers did not represent SRGD in our study.
Jin, Jun-Xue; Li, Suo; Gao, Qing-Shan; Hong, Yu; Jin, Long; Zhu, Hai-Ying; Yan, Chang-Guo; Kang, Jin-Dan; Yin, Xi-Jun
2013-10-01
The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Damaziak, K; Paweska, M; Gozdowski, D; Niemiec, J
2018-05-14
An effect of modification of storage conditions of the eggs of broiler breeder flocks at the age of 49-, 52- and 70-, 73-wks of life on an early embryonic development, hatching time and synchronization, hatchability rates, chicks quality and broiler growth was investigated. The eggs were divided into 4 experimental groups: COI = eggs storage 5 d, at turning every 12 h; NSP = eggs storage 12 d, at turning every 12 h; SPIDES = were treated with 4 h pre-incubation at 30°C and 50-55% air humidity, delivered at 5 and 10 d over of 12 d of storage, and turning every 12 h; NCOI = eggs storage 12 d, no turning and no pre-incubation. Eggs from older hens were characterized by poorer hatchability and poorer chicks quality. The use of 2 × 4 h pre-incubation in 12 d of eggs storage could have an effect on the initial acceleration of embryonic development in eggs of young hens, contributing to the alignment of embryos development in eggs from young and older hens to 72 h of incubation. Pre-incubation had no effect on the length of incubation period, hatching window, but it increased the hatchability of the set and apparently fertilized eggs and decreased the number of eggs not hatched, and also improved chicks quality. Eggs turning by 90° every 12 h during the storage positively affected the embryonic development, shortening the incubation time and the quality of chicks, but had no effect on hatchability rates and body weight in 42 d of life. Based on the obtained results, it can be concluded that the applied modifications can be effective in counteracting the negative effects of storage of hatching eggs from both young and older birds.
Beyer, Daniel Alexander; Griesinger, Georg
2016-08-01
To test for differences in birth weight between singletons born after IVF with fresh embryo transfer vs. vitrified-warmed 2PN embryo transfer (vitrification protocol). Retrospective analysis of 464 singleton live births after IVF or ICSI during a 12 year period. University hospital. Fresh embryo transfer, vitrified-warmed 2PN embryo transfer (vitrification protocol). Birth weight standardized as a z-score, adjusting for gestational week at delivery and fetal sex. As a reference, birth weight means from regular deliveries from the same hospital were used. Multivariate regression analysis was used to investigate the relationship between the dependent variable z-score (fetal birth weight) and the independent predictor variables maternal age, weight, height, body mass index, RDS prophylaxis, transfer protocol, number of embryos transferred, indication for IVF treatment and sperm quality. The mean z-score was significantly lower after fresh transfer (-0.11±92) as compared to vitrification transfer (0.72±83) (p<0.001). Multivariate regression analysis indicated that only maternal height and maternal body mass index, but not type of cryopreservation protocol, was a significant predictor of birth weight. In this analysis focusing on 2PN oocytes, vitrified-warmed embryo transfer is associated with mean higher birth weight compared to fresh embryo transfer. Maternal height and body mass index are significant confounders of fetal birth weight and need to be taken into account when studying birth weight differences between ART protocols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Neural network classification of sweet potato embryos
NASA Astrophysics Data System (ADS)
Molto, Enrique; Harrell, Roy C.
1993-05-01
Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.
Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert
2008-01-01
Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padmanaban, Senthilkumar; Czerny, Daniel D.; Levin, Kara A.
Flowering plant genomes encode multiple cation/H + exchangers (CHXs) whose functions are largely unknown. AtCHX17, AtCHX18, and AtCHX19 are membrane transporters that modulate K+ and pH homeostasis and are localized in the dynamic endomembrane system. Loss of function reduced seed set, but the particular phase(s) of reproduction affected was not determined. Pollen tube growth and ovule targeting of chx17chx18chx19 mutant pollen appeared normal, but reciprocal cross experiments indicate a largely male defect. Although triple mutant pollen tubes reach ovules of a wild-type pistil and a synergid cell degenerated, half of those ovules were unfertilized or showed fertilization of the eggmore » or central cell, but not both female gametes. Fertility could be partially compromised by impaired pollen tube and/or sperm function as CHX19 and CHX18 are expressed in the pollen tube and sperm cell, respectively. When fertilization was successful in self-pollinated mutants, early embryo formation was retarded compared with embryos from wild-type ovules receiving mutant pollen. Thus CHX17 and CHX18 proteins may promote embryo development possibly through the endosperm where these genes are expressed. The reticulate pattern of the pollen wall was disorganized in triple mutants, indicating perturbation of wall formation during male gametophyte development. Lastly, as pH and cation homeostasis mediated by AtCHX17 affect membrane trafficking and cargo delivery, these results suggest that male fertility, sperm function, and embryo development are dependent on proper cargo sorting and secretion that remodel cell walls, plasma membranes, and extracellular factors.« less
NASA Astrophysics Data System (ADS)
Vicario-Parés, Unai; Castañaga, Luis; Lacave, Jose Maria; Oron, Miriam; Reip, Paul; Berhanu, Deborah; Valsami-Jones, Eugenia; Cajaraville, Miren P.; Orbea, Amaia
2014-08-01
Increasing use of nanomaterials is resulting in their release into the environment, making necessary to determine the toxicity of these materials. With this aim, the effects of CuO, ZnO and TiO2 nanoparticles (NPs) on zebrafish development were assessed in comparison with the effects caused by the ionic forms (for copper and zinc), bulk counterparts and the stabilizer used for rutile TiO2 NPs. None of the NPs caused significant embryo mortality. CuO NPs were the most toxic affecting hatching and increasing malformation prevalence (≥1 mg Cu/L), followed by ZnO NPs that affected hatching at ≥5 mg Zn/L and stabilized TiO2 NPs that caused mortality and decreased hatching at 100 mg Ti/L. Exposure to the stabilizer alone provoked the same effect. Thus, toxicity of the TiO2 NP suspension can be linked to the surfactant. For all the endpoints, the greatest effects were exerted by the ionic forms, followed by the NPs and finally by the bulk compounds. By autometallography, metal-bearing deposits were observed in embryos exposed to CuO and ZnO NPs, being more abundant in the case of embryos exposed to CuO NPs. The largest and most abundant metal-bearing deposits were detected in embryos exposed to ionic copper. In conclusion, metal oxide NPs affected zebrafish development altering hatching and increasing the prevalence of malformations. Thus, the use and release of metal oxide NPs to the environment may pose a risk to aquatic organisms as a result of the toxicity caused by NPs themselves or by the additives used in their production.
Minas, Aram; Najafi, Gholamreza; Jalali, Ali Shalizar; Razi, Mazdak
2018-05-15
Foeniculum vulgare (FVE; fennel) is an aromatic plant belonging to Umbelliferae family, which is widely used in traditional societies because of its different pharmaceutical properties. To uncover the fennel-derived essential oil (FVEO)-induced effects on male reproductive potential, 24 mature male albino mice were divided into, control, 0.37, 0.75, and 1.5 mg kg -1 FVEO-received groups. Following 35 days, the animals were euthanized and the testicular tissue and sperm samples were collected. The histological alterations, tubular differentiation (TDI), spermiogenesis (SPI) indices, apoptosis ratio, and RNA damage of germinal cells were analyzed. Moreover, the sperm count, motility, viability, chromatin condensation, and DNA fragmentation were assessed. Finally, the pre-implantation embryo development including; the percentage of zygote, 2-cell embryos and blastocysts were assessed. Observations showed that the FVEO, dose dependently, increased histological damages, resulted in germ cells dissociation, depletion, nuclear shrinkage and significantly (P < .05) decreased tubular differentiation and spermiogenesis ratios. Moreover, the FVEO-received animals (more significantly in 1.5 mg kg -1 -received group) exhibited decreased sperm count, viability, and motility and represented enhanced percentage of sperms with decondensed chromatin and DNA fragmentation. Finally, the animals in FVEO-received group showed diminished zygote formation and represented decreased pre-implantation embryo development compared to control animals. In conclusion, our data showed that, FVEO albeit at higher doses, is able to adversely affect cellular DNA and RNA contents, which in turn is able to negatively affect the sperm count and morphology. All these impairments are able to negatively affect the fertilization potential as well as pre-implantation embryo development. © 2018 Wiley Periodicals, Inc.
Padmanaban, Senthilkumar; Czerny, Daniel D.; Levin, Kara A.; ...
2017-02-23
Flowering plant genomes encode multiple cation/H + exchangers (CHXs) whose functions are largely unknown. AtCHX17, AtCHX18, and AtCHX19 are membrane transporters that modulate K+ and pH homeostasis and are localized in the dynamic endomembrane system. Loss of function reduced seed set, but the particular phase(s) of reproduction affected was not determined. Pollen tube growth and ovule targeting of chx17chx18chx19 mutant pollen appeared normal, but reciprocal cross experiments indicate a largely male defect. Although triple mutant pollen tubes reach ovules of a wild-type pistil and a synergid cell degenerated, half of those ovules were unfertilized or showed fertilization of the eggmore » or central cell, but not both female gametes. Fertility could be partially compromised by impaired pollen tube and/or sperm function as CHX19 and CHX18 are expressed in the pollen tube and sperm cell, respectively. When fertilization was successful in self-pollinated mutants, early embryo formation was retarded compared with embryos from wild-type ovules receiving mutant pollen. Thus CHX17 and CHX18 proteins may promote embryo development possibly through the endosperm where these genes are expressed. The reticulate pattern of the pollen wall was disorganized in triple mutants, indicating perturbation of wall formation during male gametophyte development. Lastly, as pH and cation homeostasis mediated by AtCHX17 affect membrane trafficking and cargo delivery, these results suggest that male fertility, sperm function, and embryo development are dependent on proper cargo sorting and secretion that remodel cell walls, plasma membranes, and extracellular factors.« less
Quantification of the heat exchange of chicken eggs.
Van Brecht, A; Hens, H; Lemaire, J L; Aerts, J M; Degraeve, P; Berckmans, D
2005-03-01
In the incubation process of domestic avian eggs, the development of the embryo is mainly influenced by the physical microenvironment around the egg. Only small spatiotemporal deviations in the optimal incubator air temperature are allowed to optimize hatchability and hatchling quality. The temperature of the embryo depends on 3 factors: (1) the air temperature, (2) the exchange of heat between the egg and its microenvironment and (3) the time-variable heat production of the embryo. Theoretical estimates on the heat exchange between an egg and its physical microenvironment are approximated using equations that assume an approximate spherical shape for eggs. The objective of this research was to determine the heat transfer between the eggshell and its microenvironment and then compare this value to various theoretical estimates. By using experimental data, the overall and the convective heat transfer coefficients were determined as a function of heat production, air humidity, air speed, and air temperature. Heat transfer was not affected by air humidity but solely by air temperature, embryonic heat generation, and air speed and flow around eggs. Also, heat transfer in forced-air incubators occurs mainly by convective heat loss, which is dependent on the speed of airflow. A vertical airflow is more efficient than a horizontal airflow in transferring heat from the egg. We showed that describing an egg as a sphere underestimated convective heat transfer by 33% and was, therefore, too simplistic to accurately assess actual heat transfer from real eggs.
Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events.
Conti, Marco; Franciosi, Federica
2018-05-01
Infertility affects ~7% of couples of reproductive age with little change in incidence in the last two decades. ART, as well as other interventions, have made major strides in correcting this condition. However, and in spite of advancements in the field, the age of the female partner remains a main factor for a successful outcome. A better understanding of the final stages of gamete maturation yielding an egg that can sustain embryo development and a pregnancy to term remains a major area for improvement in the field. This review will summarize the major cellular and molecular events unfolding at the oocyte-to-embryo transition. We will provide an update on the most important processes/pathways currently understood as the basis of developmental competence, including the molecular processes involved in mRNA storage, its recruitment to the translational machinery, and its degradation. We will discuss the hypothesis that the translational programme of maternal mRNAs plays a key role in establishing developmental competence. These regulations are essential to assemble the machinery that is used to establish a totipotent zygote. This hypothesis further supports the view that embryogenesis begins during oogenesis. A better understanding of the events required for developmental competence will guide the development of novel strategies to monitor and improve the success rate of IVF. Using this information, it will be possible to develop new biomarkers that may be used to better predict oocyte quality and in selection of the best egg for IVF.
Brand, Adrianne B; Snodgrass, Joel W; Gallagher, Matthew T; Casey, Ryan E; Van Meter, Robin
2010-02-01
Stormwater ponds are common features of modern stormwater management practices. Stormwater ponds often retain standing water for extended periods of time, develop vegetative characteristics similar to natural wetlands, and attract wildlife. However, because stormwater ponds are designed to capture pollutants, wildlife that utilize ponds might be exposed to pollutants and suffer toxicological effects. To investigate the toxicity of stormwater pond sediments to Hyla versicolor, an anuran commonly found using retention ponds for breeding, we exposed embryos and larvae to sediments in laboratory microcosms. Exposure to pond sediments reduced survival of embryos by approximately 50% but did not affect larval survival. Larvae exposed to stormwater pond sediment developed significantly faster (x = 39 days compared to 42 days; p = 0.005) and were significantly larger at metamorphosis (x = 0.49 g compared to 0.36 g; p < 0.001) than controls that were exposed to clean sand. Substantial amounts (712-2215 mg/l) of chloride leached from pond sediments into the water column of treatment microcosms; subsequently, survival of embryos was negatively correlated (r (2) = 0.50; p < 0.001) with water conductivity during development. Our results, along with the limited number of other toxicological studies of stormwater ponds, suggest that road salt contributes to the degradation of stormwater pond habitat quality for amphibian reproduction and that future research should focus on understanding interactions among road salts and other pollutants and stressors characteristic of urban environments.
The mitochondrial genome in embryo technologies.
Hiendleder, S; Wolf, E
2003-08-01
The mammalian mitochondrial genome encodes for 37 genes which are involved in a broad range of cellular functions. The mitochondrial DNA (mtDNA) molecule is commonly assumed to be inherited through oocyte cytoplasm in a clonal manner, and apparently species-specific mechanisms have evolved to eliminate the contribution of sperm mitochondria after natural fertilization. However, recent evidence for paternal mtDNA inheritance in embryos and offspring questions the general validity of this model, particularly in the context of assisted reproduction and embryo biotechnology. In addition to normal mt DNA haplotype variation, oocytes and spermatozoa show remarkable differences in mtDNA content and may be affected by inherited or acquired mtDNA aberrations. All these parameters have been correlated with gamete quality and reproductive success rates. Nuclear transfer (NT) technology provides experimental models for studying interactions between nuclear and mitochondrial genomes. Recent studies demonstrated (i) a significant effect of mtDNA haplotype or other maternal cytoplasmic factors on the efficiency of NT; (ii) phenotypic differences between transmitochondrial clones pointing to functionally relevant nuclear-cytoplasmic interactions; and (iii) neutral or non-neutral selection of mtDNA haplotypes in heteroplasmic conditions. Mitochondria form a dynamic reticulum, enabling complementation of mitochondrial components and possibly mixing of different mtDNA populations in heteroplasmic individuals. Future directions of research on mtDNA in the context of reproductive biotechnology range from the elimination of adverse effects of artificial heteroplasmy, e.g. created by ooplasm transfer, to engineering of optimized constellations of nuclear and cytoplasmic genes for the production of superior livestock.
Expression of microRNAs in bovine and human pre-implantation embryo culture media
Kropp, Jenna; Salih, Sana M.; Khatib, Hasan
2014-01-01
MicroRNAs (miRNA) are short non-coding RNAs which act to regulate expression of genes driving numerous cellular processes. These RNAs are secreted within exosomes from cells into the extracellular environment where they may act as signaling molecules. In addition, they are relatively stable and are specifically expressed in association to certain cancers making them strong candidates as biological markers. Moreover, miRNAs have been detected in body fluids including urine, milk, saliva, semen, and blood plasma. However, it is unknown whether they are secreted by embryonic cells into the culture media. Given that miRNAs are expressed throughout embryonic cellular divisions and embryonic genome activation, we hypothesized that they are secreted from the embryo into the extracellular environment and may play a role in the developmental competence of bovine embryos. To test this hypothesis, bovine embryos were cultured individually from day 5 to day 8 of development in an in vitro fertilization system and gene expression of 5 miRNAs was analyzed in both embryos and culture media. Differential miRNA gene expression was observed between embryos that developed to the blastocyst stage and those that failed to develop from the morula to blastocyst stage, deemed degenerate embryos. MiR-25, miR-302c, miR-196a2, and miR-181a expression was found to be higher in degenerate embryos compared to blastocyst embryos. Interestingly, these miRNAs were also found to be expressed in the culture media of both bovine and human pre-implantation embryos. Overall, our results show for the first time that miRNAs are secreted from pre-implantation embryos into culture media and that miRNA expression may correlate with developmental competence of the embryo. Expression of miRNAs in in vitro culture media could allow for the development of biological markers for selection of better quality embryos and for subsequent successful pregnancy. PMID:24795753
Factors affecting the efficiency of embryo transfer in the domestic ferret (Mustela putorius furo).
Li, Ziyi; Sun, Xingshen; Chen, Juan; Leno, Gregory H; Engelhardt, John F
2006-07-15
Embryo transfer (ET) to recipient females is a foundational strategy for a number of assisted reproductive technologies, including cloning by somatic cell nuclear transfer. In an attempt to develop efficient ET in domestic ferrets, factors affecting development of transferred embryo were investigated. Unilateral and bilateral transfer of zygotes or blastocysts in the oviduct or uterus was evaluated in recipient nulliparous or primiparous females. Developing fetuses were collected from recipient animals 21 days post-copulation and examined. The percentage of fetal formation was different (P<0.05) for unilateral and bilateral transfer of zygotes (71%) in nulliparous females with bilateral transfer (56%) in primiparous recipients. The percentage (90%) of fetal formation in nulliparous recipients following unilateral transfer of blastocysts was higher (P<0.05) than that observed in primiparous recipients with bilateral ET (73%). Notably, the percentage of fetal formation was higher (P<0.05) when blastocyts were transferred as compared to zygotes (90% versus 71%). Transuterine migration of embryos occurred following all unilateral transfers and also in approximately 50% of bilateral transfers with different number of embryos in each uterine horn. These data will help to facilitate the development of assisted reproductive strategies in the ferret and could lead to the use of this species for modeling human disease and for conservation of the endangered Mustelidae species such as black-footed ferret and European mink.
Factors affecting the efficiency of embryo transfer in the domestic ferret (Mustela putorius furo)
Li, Ziyi; Sun, Xingshen; Chen, Juan; Leno, Gregory H.; Engelhardt, John F.
2007-01-01
Embryo transfer (ET) to recipient females is a foundational strategy for a number of assisted reproductive technologies, including cloning by somatic cell nuclear transfer. In an attempt to develop efficient ET in domestic ferrets, factors affecting development of transferred embryo were investigated. Unilateral and bilateral transfer of zygotes or blastocysts in the oviduct or uterus was evaluated in recipient nulliparous or primiparous females. Developing fetuses were collected from recipient animals 21 days post-copulation and examined. The percentage of fetal formation was different (P < 0.05) for unilateral and bilateral transfer of zygotes (71%) in nulliparous females with bilateral transfer (56%) in primiparous recipients. The percentage (90%) of fetal formation in nulliparous recipients following unilateral transfer of blastocysts was higher (P < 0.05) than that observed in primiparous recipients with bilateral ET (73%). Notably, the percentage of fetal formation was higher (P < 0.05) when blastocyts were transferred as compared to zygotes (90% versus 71%). Transuterine migration of embryos occurred following all unilateral transfers and also in approximately 50% of bilateral transfers with different number of embryos in each uterine horn. These data will help to facilitate the development of assisted reproductive strategies in the ferret and could lead to the use of this species for modeling human disease and for conservation of the endangered Mustelidae species such as black-footed ferret and European mink. PMID:16330092
Effect of embryo source and recipient progesterone environment on embryo development in cattle.
Lonergan, P; Woods, A; Fair, T; Carter, F; Rizos, D; Ward, F; Quinn, K; Evans, A
2007-01-01
The aim of the present study was to examine the effect of embryo source (in vivo v. in vitro) and the progesterone environment into which it was transferred on Day 7 on embryo survival and size on Day 13. Day 7 blastocysts were produced either in vivo using superovulation, artificial insemination and non-surgical embryo recovery or in vitro using in vitro maturation, fertilisation and culture. In order to produce animals with divergent progesterone concentrations, following synchronisation recipients were either superovulated (High progesterone; n = 10) or not (Control progesterone; n = 10). Ten blastocysts, produced either in vivo or in vitro, were transferred to each recipient on Day 7. Both groups were killed on Day 13. The mean progesterone concentration from Day 7 to Day 13 (the period when the embryos were in the uterus) in the High and Control progesterone recipients was 36.32 +/- 1.28 and 10.30 +/- 0.51 ng mL(-1), respectively. Of the in vivo embryos transferred, the overall recovery rate at Day 13 was 64%, which was higher (P < 0.001) than that of 20% for the in vitro embryos transferred. The mean area of embryos recovered from High progesterone recipients was 3.86 +/- 0.45 mm(2) (n = 28) compared with 1.66 +/- 0.38 mm(2) (n = 24) for embryos recovered from Control progesterone recipients (P < 0.001). Similarly, the origin of the embryo used for transfer affected embryo size on Day 13. In summary, the recovery rate of blastocysts was higher for in vivo- than in vitro-derived embryos. Blastocyst size was approximately 2.3-fold greater in recipients with high compared with normal progesterone. The present study lends strong support to the hypothesis that an earlier rise in progesterone after conception stimulates blastocyst growth and the development of competent embryos.
Determinants of The Grade A Embryos in Infertile Women; Zero-Inflated Regression Model.
Almasi-Hashiani, Amir; Ghaheri, Azadeh; Omani Samani, Reza
2017-10-01
In assisted reproductive technology, it is important to choose high quality embryos for embryo transfer. The aim of the present study was to determine the grade A embryo count and factors related to it in infertile women. This historical cohort study included 996 infertile women. The main outcome was the number of grade A embryos. Zero-Inflated Poisson (ZIP) regression and Zero-Inflated Negative Binomial (ZINB) regression were used to model the count data as it contained excessive zeros. Stata software, version 13 (Stata Corp, College Station, TX, USA) was used for all statistical analyses. After adjusting for potential confounders, results from the ZINB model show that for each unit increase in the number 2 pronuclear (2PN) zygotes, we get an increase of 1.45 times as incidence rate ratio (95% confidence interval (CI): 1.23-1.69, P=0.001) in the expected grade A embryo count number, and for each increase in the cleavage day we get a decrease 0.35 times (95% CI: 0.20-0.61, P=0.001) in expected grade A embryo count. There is a significant association between both the number of 2PN zygotes and cleavage day with the number of grade A embryos in both ZINB and ZIP regression models. The estimated coefficients are more plausible than values found in earlier studies using less relevant models. Copyright© by Royan Institute. All rights reserved.
Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng
2015-01-01
We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.
Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng
2015-01-01
We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state. PMID:25680105
Romaguera, R; Moll, X; Morató, R; Roura, M; Palomo, M J; Catalá, M G; Jiménez-Macedo, A R; Hammami, S; Izquierdo, D; Mogas, T; Paramio, M T
2011-07-01
Developmental competence of oocytes from prepubertal females is lower than those from adult females. Oocyte development competence is positively related to follicular diameter. Most of the follicles of prepubertal goat ovaries are smaller than 3 mm. The aim of this study was to compare oocytes of two follicle sizes (< 3 mm and ≥ 3 mm) from prepubertal goats with oocytes from adult goats in relation to their in vitro production and quality of blastocysts. Oocytes from prepubertal goats were obtained from slaughterhouse ovaries and selected according to the follicle diameter whereas oocytes from adult goats were recovered in vivo by LOPU technique without prior selection of follicle size. COCs were IVM for 27 h, IVF at the conventional conditions with fresh semen and presumptive zygotes were cultured in SOF medium for 8 days. Blastocysts obtained were vitrified and after warming their blastocoele re-expansion and the ploidy by FISH technique were assessed. We found significant differences between blastocysts yield of oocytes recovered from follicles smaller than 3 mm of prepubertal goats compared to those from adult goats (5.45% vs 20. 83%, respectively) however, these differences disappear if oocytes were recovered form large follicles (18.07%). A total of 28 blastocysts were analysed and 96.43% showed mixoploidy. Age did not affect the number of embryos with abnormal ploidy or blastocyst re-expansion after warming. Furthermore, the percentage of diploid blastomeres per embryo was similar in the 3 groups studied, adult, prepubertal from follicles ≥ 3 mm and < 3 mm (68.6%, 80.8% and 73.6%, respectively). In conclusion, IVP of blastocysts coming from follicles larger than 3 mm of goats 45 days old were not different to the blastocysts produced from adult goats, both in terms of quantity and quality. Copyright © 2011 Elsevier Inc. All rights reserved.
Yuan, Jing; Liu, Fenghua
2017-01-01
Objective The present study aimed to undertake a review of available evidence assessing whether time-lapse imaging (TLI) has favorable outcomes for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization (IVF). Methods Using PubMed, EMBASE, Cochrane library and ClinicalTrial.gov up to February 2017 to search for randomized controlled trials (RCTs) comparing TLI versus conventional methods. Both studies randomized women and oocytes were included. For studies randomized women, the primary outcomes were live birth and ongoing pregnancy, the secondary outcomes were clinical pregnancy and miscarriage; for studies randomized oocytes, the primary outcome was blastocyst rate, the secondary outcome was good quality embryo on Day 2/3. Subgroup analysis was conducted based on different incubation and embryo selection between groups. Results Ten RCTs were included, four randomized oocytes and six randomized women. For oocyte-based review, the pool-analysis observed no significant difference between TLI group and control group for blastocyst rate [relative risk (RR) 1.08, 95% CI 0.94–1.25, I2 = 0%, two studies, including 1154 embryos]. The quality of evidence was moderate for all outcomes in oocyte-based review. For woman-based review, only one study provided live birth rate (RR 1,23, 95% CI 1.06–1.44,I2 N/A, one study, including 842 women), the pooled result showed no significant difference in ongoing pregnancy rate (RR 1.04, 95% CI 0.80–1.36, I2 = 59%, four studies, including 1403 women) between two groups. The quality of the evidence was low or very low for all outcomes in woman-based review. Conclusions Currently there is insufficient evidence to support that TLI is superior to conventional methods for human embryo incubation and selection. In consideration of the limitations and flaws of included studies, more well designed RCTs are still in need to comprehensively evaluate the effectiveness of clinical TLI use. PMID:28570713
Terashita, Y; Sugimura, S; Kudo, Y; Amano, R; Hiradate, Y; Sato, E
2011-04-01
Miniature pigs share many similar characteristics such as anatomy, physiology and body size with humans and are expected to become important animal models for therapeutic cloning using embryonic stem cells (ESCs) derived by somatic cell nuclear transfer (SCNT). In the present study, we observed that miniature pig SCNT blastocysts possessed a lower total number of nuclei and a lower percentage of POU5F1-positive cells than those possessed by in vitro fertilized (IVF) blastocysts. To overcome these problems, we evaluated the applicability of aggregating miniature pig SCNT embryos at the four-cell stage. We showed that (i) aggregation of two or three miniature pig SCNT embryos at the four-cell stage improves the total number of nuclei and the percentage of POU5F1-positive cells in blastocysts, and (ii) IVF blastocysts with low cell numbers induced by the removal of two blastomeres at the four-cell stage did not exhibit a decrease in the percentage of POU5F1-positive cells. These results suggest that the aggregation of miniature pig SCNT embryos at the four-cell stage can be a useful technique for improving the quality of miniature pig SCNT blastocysts and indicating that improvement in the percentage of POU5F1-positive cells in aggregated SCNT embryos is not simply the consequence of increased cell numbers. © 2010 Blackwell Verlag GmbH.
Ozaki, T; Hata, K; Xie, H; Takahashi, K; Miyazaki, K
2002-12-01
To investigate the relationship between color Doppler indices of dominant follicular blood flow and clinical factors in in vitro fertilization-embryo transfer cycles. This was a prospective study involving 26 patients completing a total of 33 in vitro fertilization cycles. Dominant follicular blood flow indices, peak systolic velocities, the resistance index and the pulsatility index were evaluated using transvaginal color Doppler. The indices were compared to the clinical outcomes of in vitro fertilization-embryo transfer. There was a significant correlation between dominant follicular peak systolic velocities and the number of oocytes retrieved, as well as the number of mature oocytes obtained. There was no significant correlation between dominant follicular resistance index or pulsatility index and the number of follicles > 10 mm in diameter, the number of oocytes retrieved or the number of mature oocytes. There were no significant differences between dominant follicular peak systolic velocities, resistance index or pulsatility index, and fertilization rate or the ratio of good quality embryos. However, significant differences were found between the number of oocytes retrieved, as well as the number of mature oocytes for those patients in which the peak systolic velocity was below 25 cm/s. Doppler assessment of dominant follicle blood flow alone is useful for predicting the number of retrievable oocytes. However, morphological quality of the embryo produced or the pregnancy rate cannot be predicted by this method.
Souza-Fabjan, Joanna Maria G; Locatelli, Yann; Duffard, Nicolas; Corbin, Emilie; Touzé, Jean-Luc; Perreau, Christine; Beckers, Jean François; Freitas, Vicente José F; Mermillod, Pascal
2014-05-01
A total of 3427 goat oocytes were used in this study to identify possible differences during in vitro embryo production from slaughterhouse or laparoscopic ovum pick up (LOPU) oocytes. In experiment 1, one complex, one semi-defined, and one simplified IVM media were compared using slaughterhouse oocytes. In experiment 2, we checked the effect of oocyte origin (slaughterhouse or LOPU) on the kinetics of maturation (18 vs. 22 vs. 26 hours) when submitted to semi-defined or simplified media. In experiment 3, we determined the differences in embryo development between slaughterhouse and LOPU oocytes when submitted to both media and then to IVF or parthenogenetic activation (PA). Embryos from all groups were vitrified, and their viability evaluated in vitro after thawing. In experiment 1, no difference (P > 0.05) was detected among treatments for maturation rate (metaphase II [MII]; 88% on average), cleavage (72%), blastocyst from the initial number of cumulus oocyte complexes (46%) or from the cleaved ones (63%), hatching rate (69%), and the total number of blastomeres (187). In experiment 2, there was no difference of MII rate between slaughterhouse oocytes cultured for 18 or 22 hours, whereas the MII rate increased significantly (P < 0.05) between 18 and 22 hours for LOPU oocytes in the simplified medium. Moreover, slaughterhouse oocytes cultured in simplified medium matured significantly faster than LOPU oocytes at 18 and 22 hours (P < 0.05). In experiment 3, cleavage rate was significantly greater (P < 0.001) in all four groups of embryos produced by PA than IVF. Interestingly, PA reached similar rates for slaughterhouse oocytes cultured in both media, but improved (P < 0.05) the cleavage rate of LOPU oocytes. Slaughterhouse oocytes had acceptable cleavage rate after IVF (∼67%), whereas LOPU oocytes displayed a lower one (∼38%), in contrast to cleavage after PA. The percentage of blastocysts in relation to cleaved embryos was not affected by the origin of the oocytes (P > 0.05). Therefore, slaughterhouse oocytes developed a greater proportion of blastocysts than LOPU ones, expressed as the percentage of total cumulus oocyte complexes entering to IVM. Vitrified-thawed blastocysts presented similar survival and hatching rates between the oocyte origin, media, or method of activation. In conclusion, slaughterhouse and LOPU derived oocytes may have different IVM kinetics and require different IVM and IVF conditions. Although the IVM and IVF systems still need improvements to enhance embryo yield, the in vitro development step is able to generate good quality embryos from LOPU-derived oocytes. Copyright © 2014 Elsevier Inc. All rights reserved.
Hendriks, W K; Roelen, B A J; Colenbrander, B; Stout, T A E
2015-11-01
Equine embryos are cryopreserved by slow-freezing or vitrification. While small embryos (<300 μm) survive cryopreservation reasonably well, larger embryos do not. It is not clear if slow-freezing or vitrification is less damaging to horse embryos. To compare the type and extent of cellular damage suffered by small and large embryos during cryopreservation by slow-freezing vs. vitrification. Sixty-three Day 6.5-7 embryos were subdivided by size and assigned to one of 5 treatments: control, exposure to slow-freezing or vitrification cryoprotectants (CPs), and cryopreservation by either technique. After thawing/CP removal, embryos were stained with fluorescent stains for various parameters of cellular integrity, and assessed by multiphoton microscopy. Exposing large embryos to vitrification CPs resulted in more dead cells (6.8 ± 1.3%: 95% confidence interval [CI], 3.1-10.4%) than exposure to slow-freezing media (0.3 ± 0.1%; 95% CI 0.0-0.6%: P = 0.001). Cryopreservation by either technique induced cell death and cytoskeleton disruption. Vitrification of small embryos resulted in a higher proportion of cells with fragmented or condensed (apoptotic) nuclei (P = 0.002) than slow-freezing (6.7 ± 1.5%, 95% CI 3.0-10.4% vs. 5.0 ± 2.1%, 95% CI 4.0-14.0%). Slow-freezing resulted in a higher incidence of disintegrated embryos (P = 0.01) than vitrification. Mitochondrial activity was low in control embryos, and was not differentially affected by cryopreservation technique, whereas vitrification changed mitochondrial distribution from a homogenous crystalline pattern in control embryos to a heterogeneous granulated distribution in vitrified embryos (P = 0.05). Cryopreservation caused more cellular damage to large embryos than smaller ones. While vitrification is more practical, it is not advisable for large embryos due to a higher incidence of dead cells. The choice is less obvious for small embryos, as vitrification led to occasionally very high percentages of dead or damaged cells, but a lower incidence of embryo disintegration. Modifications that reduce the level of cellular damage induced by vitrification are required before it can be considered the method of choice for cryopreserving equine embryos. © 2014 EVJ Ltd.
Sequeira, M; Pain, S J; de Brun, V; Meikle, A; Kenyon, P R; Blair, H T
2016-10-01
The objective of this study was to investigate the gene expression of progesterone and estrogen receptor α (PR, ERα), insulin-like growth factor (IGF) 1, IGF-2, their receptor (IGFR1), IGF-binding proteins (BP) 1 to 6, insulin receptor, adiponectin receptors (AdipoR1/2), cyclooxygenase 2 (PTGS2), mucin 1 and to localize PR, ERα, IGF-1, IGFR1, PTGS2, and proliferating cellular nuclear antigen (PCNA) in the endometrium of pregnant (Day 19) Suffolk and Cheviot ewes carrying Suffolk and Cheviot embryos transferred within and reciprocally between breeds. Gene expression was determined by real-time quantitative polymerase chain reaction (RT-qPCR), and antigen determination was measured by immunohistochemistry in the luminal epithelium (LE), superficial and deep glands (SG, DG, respectively) and superficial and deep stroma. Gene expression of PR, IGF-1, IGFBP2, and IGFBP5 was higher in Suffolk than that in Cheviot ewes (P < 0.05). Greater abundance of IGF-2 and IGBP3 expression was found in Cheviot ewes carrying Cheviot embryos than Cheviot ewes carrying Suffolk embryos (P < 0.05). No staining for PR and ERα was observed in the LE, very scarce staining in SG and DG, whereas positive staining was observed in both superficial and deep stroma. No differences were found for PR staining, but Cheviot ewes had higher ERα staining intensity than Suffolk ewes (P < 0.05). Positive staining for IGF-1 was observed in all cell types except DG, and staining of IGFR1 was observed in all cell types. No differences among groups in staining were found for IGF-1 or IGFR1 in any cell type. Positive staining of PTGS2 was observed in LE and SG in all groups. An interaction between ewe and embryo breed affected PTGS2 staining (P < 0.05), whereby Cheviot ewes carrying Suffolk embryos had a lower PTGS2 staining than Suffolk ewes carrying Suffolk embryos. Positive staining of PCNA was found in LE and SG. Suffolk ewes carrying Suffolk embryos showed lower PCNA immunostaining than Cheviot ewes carrying Suffolk embryos (P < 0.05), whereas no differences were observed in ewes carrying Cheviot embryos. This study showed that gestation-related protein expression in the endometrium of Suffolk and Cheviot ewes is affected by both ewe and embryo breed at Day 19 of pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.
Nair, Ramya; Mutalik, Srinivas; Dasappa, Jagadeesh Prasad; Kalthur, Guruprasad; Adiga, Satish Kumar
2017-04-22
In the present study, we assessed whether absence of paternal genome imparts any differential response in embryos to chemical stress such as ammonia. Parthenogenesis was induced in MII stage oocytes using 10 mM SrCl 2 in M16 medium. Parthenotes and normally fertilized embryos at 2 cell stage were exposed to different concentrations of ammonia and cultured till blastocyst. Exposure of ammonia to normally fertilized embryos resulted in significant decrease in the developmental potential (p < 0.0001) and blastocyst quality (p < 0.001). Whereas, in parthenotes, even though lower concentrations of ammonia did not have any effect, at 200 μM concentration the blastocyst rate was two times higher than control. The baseline apoptotic index was higher in parthenotes compared to normally fertilized embryos, which further increased after ammonium exposure (p < 0.001). Unlike in normally fertilized embryos ammonia exposure altered the mitochondrial distribution pattern and lead to increased expression of Oct4, Nanog and Na + /K + ion exchange channel, while the cytochrome C expression was downregulated. This indicates that haploidy and/or absence of paternal factors in the embryo results in differential tolerance to stress induced by ammonia. Copyright © 2017 Elsevier Inc. All rights reserved.
Low versus high volume of culture medium during embryo transfer: a randomized clinical trial.
Sigalos, George Α; Michalopoulos, Yannis; Kastoras, Athanasios G; Triantafyllidou, Olga; Vlahos, Nikos F
2018-04-01
The aim of this prospective randomized control trial was to evaluate if the use of two different volumes (20-25 vs 40-45 μl) of media used for embryo transfer affects the clinical outcomes in fresh in vitro fertilization (IVF) cycles. In total, 236 patients were randomized in two groups, i.e., "low volume" group (n = 118) transferring the embryos with 20-25 μl of medium and "high volume" group (n = 118) transferring the embryos with 40-45 μl of medium. The clinical pregnancy, implantation, and ongoing pregnancy rates were compared between the two groups. No statistically significant differences were observed in clinical pregnancy (46.8 vs 54.3%, p = 0.27), implantation (23.7 vs 27.8%, p = 0.30), and ongoing pregnancy (33.3 vs 40.0%, p = 0.31) rates between low and high volume group, respectively. Higher volume of culture medium to load the embryo into the catheter during embryo transfer does not influence the clinical outcome in fresh IVF cycles. NCT03350646.
[Cloning: applications in humans 2. Ethical considerations].
de Wert, G M; Geraedts, J P
2001-05-01
Reproductive cloning in adults/children evokes unfavourable reactions. Direct objections are that cloning is unnatural, that it affects human dignity and violates the individual's right to genetic uniqueness. Consequential objections concern unjustified health risks for the progeny, unjustified psychosocial risks for the clone child and the risk of cloning for eugenetic purposes. There is consensus that reproductive cloning of existing persons is unjustify as yet because of the health risks for the offspring. Reproductive cloning of embryos is possible by means of nucleus transplantation and of embryo splitting. The ethical analysis of reproductive cloning of embryos depends on the purposes and applications. At least some of the moral objections against cloning of adults/children are not or not completely applicable to reproductive cloning of embryos. Conditions to be put to reproductive cloning of embryos are efficacy, safety and, at least for the time being, avoidance of asynchrony in transferring identical embryos. The ethical aspects of its application in the context of genetical reproductive techniques must be evaluated separately. Therapeutic cloning may be acceptable if alternatives are lacking.
[Cloning: applications in humans. II. Ethical considerations].
de Wert, G M; Geraedts, J P
2000-05-13
Reproductive cloning in adults/children evokes unfavourable reactions. Direct objections are that cloning is unnatural, that it affects human dignity and violates the individual's right to genetic uniqueness. Consequential objections concern unjustified health risks for the progeny, unjustified psychosocial risks for the clone child and the risk of cloning for eugenetic purposes. There is consensus that reproductive cloning of existing persons is unjustifiable as yet because of the health risks for the offspring. Reproductive cloning of embryos is possible by means of nucleus transplantation and of embryo splitting. The ethical analysis of reproductive cloning of embryos depends on the purposes and applications. At least some of the moral objections against cloning of adults/children are not or not completely applicable to reproductive cloning of embryos. Conditions to be put to reproductive cloning of embryos are efficacy, safety and, at least for the time being, avoidance of asynchrony in transferring identical embryos. The ethical aspects of its application in the context of genetical reproductive techniques must be evaluated separately. Therapeutic cloning may be acceptable if alternatives are lacking.
Archer, G S; Jeffrey, D; Tucker, Z
2017-08-01
Previous research has shown that providing light during incubation can have positive effects on hatchability and chick quality; however, white light alone has been observed to improve these factors only in pigmented broiler eggs and non-pigmented white layer eggs. Monochromatic red light has been shown to improve hatchability in layer eggs. Therefore the objective of this study was to utilize one light fixture that emitted both white and monochromatic red light to determine if this one light source could improve hatchability in both types of chicken eggs and pigmented Pekin duck egg. To determine this, 3 experiments were conducted, the first using White Leghorn eggs (N = 6912), the second using commercial broiler eggs (N = 4608), and the third using commercial Pekin duck eggs (N = 3564) in which eggs were incubated with 12 h of light and 12 h of darkness (LED) or complete darkness (DARK); the light level was 250 lux. Hatchability, embryo mortality, and hatchling quality were measured. In Experiment 1, LED had fewer early dead embryos (P = 0.03), less overall embryo mortality (P = 0.05), fewer chicks with unhealed navels (P < 0.001), fewer chicks with defects (P < 0.001), and a higher percentage of fertile eggs that hatched (P = 0.05) than DARK. In Experiment 2, LED had fewer chicks with unhealed navels (P = 0.003), fewer chicks with defects (P = 0.001), and a higher percentage of fertile eggs that hatched (P = 0.04) than DARK. In Experiment 3, LED had fewer early dead embryos (P = 0.05), lower overall embryo mortality (P = 0.04), and a higher percentage of fertile eggs that hatched (P = 0.05), and had ducklings with lower bodyweights at hatch (P = 0.04) than DARK. These results indicate that providing both white and red light during incubation can improve chick quality across poultry varieties. This type of fixture could be used to improve commercial hatchery efficiency and chick quality. © 2017 Poultry Science Association Inc.
Genetic effects and genotype × environment interactions govern seed oil content in Brassica napus L.
Guo, Yanli; Si, Ping; Wang, Nan; Wen, Jing; Yi, Bin; Ma, Chaozhi; Tu, Jinxing; Zou, Jitao; Fu, Tingdong; Shen, Jinxiong
2017-01-05
As seed oil content (OC) is a key measure of rapeseed quality, better understanding the genetic basis of OC would greatly facilitate the breeding of high-oil cultivars. Here, we investigated the components of genetic effects and genotype × environment interactions (GE) that govern OC using a full diallel set of nine parents, which represented a wide range of the Chinese rapeseed cultivars and pure lines with various OCs. Our results from an embryo-cytoplasm-maternal (GoCGm) model for diploid seeds showed that OC was primarily determined by genetic effects (V G ) and GE (V GE ), which together accounted for 86.19% of the phenotypic variance (V P ). GE (V GE ) alone accounted for 51.68% of the total genetic variance, indicating the importance of GE interaction for OC. Furthermore, maternal variance explained 75.03% of the total genetic variance, embryo and cytoplasmic effects accounted for 21.02% and 3.95%, respectively. We also found that the OC of F 1 seeds was mainly determined by maternal effect and slightly affected by xenia. Thus, the OC of rapeseed was simultaneously affected by various genetic components, including maternal, embryo, cytoplasm, xenia and GE effects. In addition, general combining ability (GCA), specific combining ability (SCA), and maternal variance had significant influence on OC. The lines H2 and H1 were good general combiners, suggesting that they would be the best parental candidates for OC improvement. Crosses H3 × M2 and H1 × M3 exhibited significant SCA, suggesting their potentials in hybrid development. Our study thoroughly investigated and reliably quantified various genetic factors associated with OC of rapeseed by using a full diallel and backcross and reciprocal backcross. This findings lay a foundation for future genetic studies of OC and provide guidance for breeding of high-oil rapeseed cultivars.
Curcumin affects development of zebrafish embryo.
Wu, Jheng-Yu; Lin, Chin-Yi; Lin, Tien-Wei; Ken, Chuian-Fu; Wen, Yu-Der
2007-07-01
Embryotoxic and teratogenic effects of curcumin on the development of zebrafish embryo were investi-gated in this study. The LD(50) values of curcumin (24-h incubation) were estimated at 7.5 microM and 5 microM for embryos and larvae, respectively. The developmental defects caused by curcumin treatments include bent or hook-like tails, spinal column curving, edema in pericardial sac, retarded yolk sac resorption, and shorter body length. In curcumin-treated larvae, fluorescence signals of curcumin were found in edamae sac and some skin cells. Together, these results indicate that zebrafish are suitable model organisms to study the toxic effects of curcumin.
Effects of atrazine on embryos, larvae, and adults of anuran amphibians.
Allran, J W; Karasov, W H
2001-04-01
We examined the effects of atrazine (0-20 mg/L) on embryos, larvae, and adult anuran amphibian species in the laboratory. Atrazine treatments did not affect hatchability of embryos or 96-h posthatch mortality of larvae of Rana pipiens, Rana sylvatica, or Bufo americanus. Furthermore, atrazine had no effect on swimming speed (measured for R. pipiens only). However, there was a dose-dependent increase in deformed larvae of all three species with increasing atrazine concentration. In adult R. pipiens, atrazine increased buccal and thoracic ventilation, indicating respiratory distress. However, because atrazine had no affect on hemoglobin, this respiratory distress was probably not indicative of reduced oxygen-carrying capacity of the blood. Frogs exposed to the highest atrazine concentration stopped eating immediately after treatment began and did not eat during the 14-d experiment. However, no decreases in mass were measured even for frogs that were not eating, probably because of compensatory fluid gain from edema. Atrazine concentrations found to be deleterious to amphibian embryos and adults are considerably higher than concentrations currently found in surface waters in North America. Therefore, direct toxicity of atrazine is probably not a significant factor in recent amphibian declines.
Khosravi, Sharifeh; Salehi, Mansour; Ramezanzadeh, Mahboobeh; Mirzaei, Hamed; Salehi, Rasoul
2016-05-01
Thalassemia is curable by bone marrow transplantation; however, finding suitable donors with defined HLA combination remains a major challenge. Cord blood stem cells with preselected HLA system through preimplantation genetic diagnosis (PGD) proved very useful for resolving scarce HLA-matched bone marrow donors. A thalassemia trait couple with an affected child was included in this study. We used informative STR markers at the HLA and beta globin loci to develop a single cell multiplex fluorescent PCR protocol. The protocol was extensively optimized on single lymphocytes isolated from the couple's peripheral blood. The optimized protocol was applied on single blastomeres biopsied from day 3 cleavage stage IVF embryos of the couple. Four IVF embryos biopsied on day 3 and a single blastomere of each were provided for genetic diagnosis of combined β-thalassemia mutations and HLA typing. Of these, one embryo was diagnosed as homozygous normal for the thalassemia mutation and HLA matched with the existing affected sibling. The optimized protocol worked well in PGD clinical cycle for selection of thalassemia-unaffected embryos with the desired HLA system. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.
Human implantation: the last barrier in assisted reproduction technologies?
Edwards, Robert G
2006-12-01
Implantation processes are highly complex involving the actions of numerous hormones, immunoglobulins, cytokines and other factors in the endometrium. They are also essential matters for the success of assisted reproduction. The nature of early embryonic development is of equal significance. It involves ovarian follicle growth, ovulation, fertilization and preimplantation growth. These processes are affected by imbalanced chromosomal constitutions or slow developmental periods. Post-implantation death is also a significant factor in cases of placental insufficiency or recurrent abortion. Clearly, many of these matters can significantly affect birth rates. This review is concerned primarily with the oocyte, the early embryo and its chromosomal anomalies, and the nature of factors involved in implantation. These are clearly among the most important features in determining successful embryonic and fetal growth. Successive sections cover the endocrine stimulation of follicle growth in mice and humans, growth of human embryos in vitro, their apposition and attachment to the uterus, factors involved in embryo attachment to uterine epithelium and later stages of implantation, and understanding the gene control of polarities and other aspects of preimplantation embryo differentiation. New aspects of knowledge include the use of human oocyte maturation in vitro as an approach to simpler forms of IVF, and new concepts in developmental genetics.
Gomis, J; Cuello, C; Sanchez-Osorio, J; Gil, M A; Parrilla, I; Angel, M A; Vazquez, J M; Roca, J; Martinez, E A
2013-04-01
This study was aimed to determine the effect of forskolin on the viability of in vivo-derived porcine embryos vitrified by the superfine open pulled straw (SOPS) or solid surface vitrification (SSV) methods at the 2-cell, 4-cell, and blastocyst stages. Zygotes, 2- to 4-cell embryos, and morulae were obtained from superovulated sows. After collection, embryos were cultured for 24h with 0 or 10 μM forskolin and then vitrified using the SOPS and SSV method, or not vitrified (fresh controls). Fresh and vitrified-warmed 2-cells, 4-cells, and blastocysts were cultured for additional 96 h, 72 h and 24 h, respectively. At the end of the culture, embryos were evaluated for progression to the blastocyst stage and total cell number. The vitrification method did not affect any of the parameters evaluated for any embryo stage. Forskolin increased (P<0.01) the blastocyst formation and the final developmental stage of vitrified 2- and 4-cell embryos. However, these embryos exhibited lower (P<0.003) blastocyst formation rates than their fresh counterparts. The total cell number and hatching rate were similar in both groups (vitrified and fresh) of 2- and 4-cell embryos. Vitrified blastocysts exhibited viabilities, final developmental stages, hatching rates, and total cell numbers that were similar to those of their fresh counterparts, regardless of the addition of forskolin. In conclusion, the SOPS and SSV methods are suitable for the cryopreservation of in vivo-derived 2- to 4-cell porcine embryos. Pre-treatment with forskolin for 24h before vitrification improves the cryotolerance of 2- and 4-cell porcine embryos. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, Yi-Zi; Ding, Chen-Hui; Wang, Jing; Zeng, Yan-Hong; Zhou, Wen; Li, Rong; Zhou, Can-Quan; Deng, Ming-Fen; Xu, Yan-Wen
2017-01-01
The aim of this study is to investigate the minimum number of blastocysts for biopsy to increase the likelihood of obtaining at least one normal/balanced embryo in preimplantation genetic diagnosis (PGD) for translocation carriers. This blinded retrospective study included 55 PGD cycles for Robertsonian translocation (RT) and 181 cycles for reciprocal translocation (rcp) to indicate when only one of the couples carried a translocation. Single-nucleotide polymorphism microarray after trophectoderm biopsy was performed. Reliable results were obtained for 355/379 (93.7 %) biopsied blastocysts in RT group and 986/1053 (93.6 %) in rcp group. Mean numbers of biopsied embryos per patient, normal/balanced embryos per patient, and mean normal/balanced embryo rate per patient were 7.4, 3.1, and 40.7 % in RT group and 8.0, 2.1, and 27.3 %, respectively, in rcp group. In a regression model, three factors significantly affected the number of genetically transferrable embryos: number of biopsied embryos (P = 0.001), basal FSH level (P = 0.040), and maternal age (P = 0.027). ROC analysis with a cutoff of 1.5 was calculated for the number of biopsied embryos required to obtain at least one normal/balanced embryo for RT carriers. For rcp carriers, the cutoff was 3.5. The clinical pregnancy rate per embryo transfer was 44.2 and 42.6 % in RT and rcp groups (P = 0.836). The minimum numbers of blastocysts to obtain at least one normal/balanced embryo for RT and rcp were 2 and 4 under the conditions of female age < 37 years with a basal FSH level < 11.4 IU/L.
Golan, Guy; Oksenberg, Adi; Peleg, Zvi
2015-09-01
Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Chen, Dan; Ren, Yujun; Deng, Yingtian; Zhao, Jie
2010-01-01
Auxin is an important plant growth regulator, and plays a key role in apical–basal axis formation and embryo differentiation, but the mechanism remains unclear. The level of indole-3-acetic acid (IAA) during zygote and embryo development of Nicotiana tabacum L. is investigated here using the techniques of GC-SIM-MS analysis, immunolocalization, and the GUS activity assay of DR5::GUS transgenic plants. The distribution of ABP1 and PM H+-ATPase was also detected by immunolocalization, and this is the first time that integral information has been obtained about their distribution in the zygote and in embryo development. The results showed an increase in IAA content in ovules and the polar distribution of IAA, ABP1, and PM H+-ATPase in the zygote and embryo, specifically in the top and basal parts of the embryo proper (EP) during proembryo development. For information about the regulation mechanism of auxin, an auxin transport inhibitor TIBA (2,3,5-triiodobenzoic acid) and exogenous IAA were, respectively, added to the medium for the culture of ovules at the zygote and early proembryo stages. Treatment with a suitable IAA concentration promoted zygote division and embryo differentiation, while TIBA treatment obviously suppressed these processes and caused the formation of abnormal embryos. The distribution patterns of IAA, ABP1, and PM H+-ATPase were also disturbed in the abnormal embryos. These results indicate that the polar distribution and transport of IAA begins at the zygote stage, and affects zygote division and embryo differentiation in tobacco. Moreover, ABP1 and PM H+-ATPase may play roles in zygote and embryo development and may also be involved in IAA signalling transduction. PMID:20348352
Sensitivity of early mouse embryos to (/sup 3/H)thymidine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindle, A.; Wu, K.; Pedersen, R.A.
1982-12-01
Effects of intranuclear radiation on the developmental capacity of early mouse embryos were studied by exposing embryos to (/sup 3/H)thymidine and counting the number of embryos forming blastocysts, trophoblast outgrowths, inner cell masses (ICMs), and two-layer ICMs (differentiated into primary endoderm and ectoderm). When embryos were cultured from the 2-cell stage for 8 days in the continuous presence of (/sup 3/H)thymidine, concentrations as low as 0.2 nCi/ml reduced the number of embryos forming two-layer ICMs. At 1 nCi/ml, the number of both ICMs and two-layer ICMs were reduced, and at 10 nCi/ml the number of embryos developing to all threemore » post-blastocyst endpoints was reduced. Blastocyst formation was not affected even at the highst concentration (/sup 3/H)thymidine and then cultured further in unlabelled medium, the effects were similar to those of 8-day exposure. When embryos were exposed to (/sup 3/H)thymidine for 24 h at various developmental stages, effects were less severe than when they were exposed continuously for 3 or 8 days, and the sensitivity of embryos differed between stages. The 24-h exposure of immunosurgically isolated ICMS to (/sup 3/H)thymidine revealed that the high sensitivity of the ICM to (/sup 3/H)thymidine persists through the late blastocyst stage and declines progressively thereafter. Autoradiography indicated that the change in radiosensitivity of embryos or ICMs is generally related to their ability to incorporate (/sup 3/H)thymidine into the DNA.« less
Diao, Honglu; Xiao, Shuo; Howerth, Elizabeth W; Zhao, Fei; Li, Rong; Ard, Mary B; Ye, Xiaoqin
2013-08-01
Gap junctions have an important role in cell-to-cell communication, a process obviously required for embryo implantation. Uterine luminal epithelium (LE) is the first contact for an implanting embryo and is critical for the establishment of uterine receptivity. Microarray analysis of the LE from peri-implantation mouse uterus showed low-level expression of 19 gap junction proteins in preimplantation LE and upregulation of gap junction protein, beta 2 (GJB2, connexin 26, Cx26) in postimplantation LE. Time course study using in situ hybridization and immunofluorescence revealed upregulation of GJB2 in the LE surrounding the implantation site before decidualization. Similar dynamic expression of GJB2 was observed in the LE of artificially decidualized mice but not pseudopregnant mice. To determine the potential function of uterine gap junctions in embryo implantation, carbenoxolone (CBX), a broad gap junction blocker, was injected i.p. (100 mg/kg) or via local uterine fat pad (10 mg/kg) into pregnant mice on Gestation Day 3 at 1800 h, a few hours before embryo attachment to the LE. These CBX treatments disrupted embryo implantation, suggesting local effects of CBX in the uterus. However, i.p. injection of glycyrrhizic acid (100 mg/kg), which shares similar structure and multiple properties with CBX but is ineffective in blocking gap junctions, did not affect embryo implantation. Carbenoxolone also inhibited oil-induced artificial decidualization, concomitant with suppressed molecular changes and ultrastructural transformations associated with uterine preparation for embryo implantation, underscoring the adverse effect of CBX on uterine preparation for embryo implantation. These data demonstrate that uterine gap junctions are important for embryo implantation.
D’Angeli, Simone; Altamura, Maria Maddalena
2016-01-01
The olive tree is a plant of economic value for the oil of its drupe. It is a cultigen complex composed of genotypes with differences in cold-hardiness. About 90% of the oil is stored in oil bodies (OBs) in the drupe during the oleogenic phase. Phenols and lipids contribute to oil quality, but the unsaturated fatty acid (FA) fraction is emerging as the most important for quality, because of the very high content in oleic acid, the presence of ω6-linoleic acid and ω3-linolenic acid, and the very low saturated FA content. Another 10% of oil is produced by the seed. Differences in unsaturated FA-enriched lipids exist among seed coat, endosperm, and embryo. Olive oil quality is also affected by the environmental conditions during fruit growth and genotype peculiarities. Production of linoleic and α-linolenic acids, fruit growth, fruit and leaf responses to low temperatures, including cuticle formation, and cold-acclimation are related processes. The levels of unsaturated FAs are changed by FA-desaturase (FAD) activities, involving the functioning of chloroplasts and endoplasmic reticulum. Cold induces lipid changes during drupe and seed development, affecting FADs, but its effect is related to the genotype capability to acclimate to the cold. PMID:27845749
Esteves, Sandro C; Khastgir, Gautam; Shah, Jatin; Murdia, Kshitiz; Gupta, Shweta Mittal; Rao, Durga G; Dash, Soumyaroop; Ingale, Kundan; Patil, Milind; Moideen, Kunji; Thakor, Priti; Dewda, Pavitra
2018-01-01
Progesterone elevation (PE) during the late follicular phase of controlled ovarian stimulation in fresh embryo transfer in vitro fertilization (IVF)/intracytoplasmic sperm injection cycles has been claimed to be associated with decreased pregnancy rates. However, the evidence is not unequivocal, and clinicians still have questions about the clinical validity of measuring P levels during the follicular phase of stimulated cycles. We reviewed the existing literature aimed at answering four relevant clinical questions, namely (i) Is gonadotropin type associated with PE during the follicular phase of stimulated cycles? (ii) Is PE on the day of human chorionic gonadotropin (hCG) associated with negative fresh embryo transfer IVF/intracytoplasmic sperm injection (ICSI) cycles outcomes in all patient subgroups? (iii) Which P thresholds are best to identify patients at risk of implantation failure due to PE in a fresh embryo transfer? and (iv) Should a freeze all policy be adopted in all the cycles with PE on the day of hCG? The existing evidence indicates that late follicular phase progesterone rise in gonadotropin releasing analog cycles is mainly caused by the supraphysiological stimulation of granulosa cells with exogenous follicle-stimulating hormone. Yet, the type of gonadotropin used for stimulation seems to play no significant role on progesterone levels at the end of stimulation. Furthermore, PE is not a universal phenomenon with evidence indicating that its detrimental consequences on pregnancy outcomes do not affect all patient populations equally. Patients with high ovarian response to control ovarian stimulation are more prone to exhibit PE at the late follicular phase. However, in studies showing an overall detrimental effect of PE on pregnancy rates, the adverse effect of PE on endometrial receptivity seems to be offset, at least in part, by the availability of good quality embryo for transfer in women with a high ovarian response. Given the limitations of the currently available assays to measure progesterone at low ranges, caution should be applied to adopt specific cutoff values above which the effect of progesterone rise could be considered detrimental and to recommend "freeze-all" based solely on pre-defined cutoff points.
Raz, Tal; Hunter, Barbara; Carley, Sylvia; Card, Claire
2009-11-01
The objective was to compare the reproductive performances associated with the first (Cycle-1), second (Cycle-2), and mid-season (MS-Cycle) ovulations of the breeding season in donor mares that were treated with equine-FSH (eFSH) in the early vernal transition. Mares (n=15) kept under ambient light were examined ultrasonographically per-rectum starting January 30. When an ovarian follicle > or =25mm in diameter was detected, twice daily eFSH treatments were initiated. The eFSH treatments ceased when a follicle > or =35mm was detected, and 36h later hCG was administered. Thereafter, mares were artificially inseminated every 48h until ovulation (Day 0). Trans-cervical embryo recovery attempts were performed on Day 8, and subsequently PGF2alpha was administered. Equine FSH was not administered in the subsequent estrous cycles. In Cycle-2 and in the MS-Cycle, hCG was administered when a follicle > or =35mm was detected; breeding, embryo recovery, and PGF2alpha administration, were similar to Cycle-1. Mares had an untreated estrous cycle (no treatment or breeding) between Cycle-2 and the MS-Cycle. All mares developed follicle(s) > or =35mm after 4.9+/-0.6 days of eFSH treatment, and subsequently ovulations occurred; mean (95% CI) interval from treatment initiation to ovulation was 7.9 (6.5-9.3) days. The number of preovulatory follicles (> or =30mm) at the time of hCG administration (Cycle-1: 2.2+/-0.3 compared with Cycle-2: 1.0+/-0 compared with MS-Cycle: 1.1+/-0.1 follicles), and the number of ovulations (2.5+/-0.4 compared with 1.0+/-0 compared with 1.1+/-0.1 ovulations) were greater (p<0.05) in Cycle-1. Nevertheless, mean embryo numbers did not differ among cycles (0.8+/-0.2 compared with 0.5+/-0.1 compared with 0.5+/-0.1 embryo/mare). On average, embryo morphology grade was less (p<0.05) in Cycle-1 as compared to non-eFSH cycles (combined Cycle-2 and MS-Cycle). This impaired embryo quality could be due to a seasonal effect, or negative effect of the eFSH treatment, which was possibly related to alterations in the hormonal environment (estradiol-17beta and progesterone). A prolonged IOI (>21 days) was recorded in 7 of 15 mares following the Cycle-1 ovulation, but not subsequently. In conclusion, eFSH treatment of vernal transitional donor mares stimulated ovulation within only few days of treatment, and the following embryo recovery rate was at least as good as in the subsequent estrous cycles; however, on average, embryos were morphologically impaired. In subsequent estrous cycles in the breeding season, ovulations, embryo recovery rates, and embryo variables did not appear to be negatively affected; however, the first inter-ovulatory interval of the breeding season was prolonged in approximately half of the mares.
[Quality of oocytes and embryos from women with polycystic ovaries syndrome: State of the art].
Fournier, A; Torre, A; Delaroche, L; Gala, A; Mullet, T; Ferrières, A; Hamamah, S
The frequency of polycystic ovary syndrome (PCOS) and the consequent fertility disorders cause many difficulties in the management of the assisted reproductive technics. Some studies are focused on different additional treatments, stimulation protocols or techniques that could optimize the in vitro fertilization cycles. The quality of the oocytes and embryos of these patients is also an outstanding issue. They remain difficult to actually evaluate during management, and none of the few published studies on this subject demonstrated any inferiority, compared to control patients. However, many differences have been highlighted, studying intra- and extra-ovarian factors. The advent of new genetic techniques could allow a better understanding of the pathophysiological mechanisms of the syndrome, as well as refining the evaluation of oocytes and embryos, in order to better predict the results of in vitro fertilization attempts. Pregnancy and birth rates, however, appear to be comparable to those of the general population. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Integration of microfluidics in animal in vitro embryo production.
Wheeler, M B; Rubessa, M
2017-04-01
The in vitro production of livestock embryos is central to several areas of animal biotechnology. Further, the use of in vitro embryo manipulation is expanding as new applications emerge. ARTs find direct applications in increasing genetic quality of livestock, producing transgenic animals, cloning, artificial insemination, reducing disease transmission, preserving endangered germplasm, producing chimeric animals for disease research, and treating infertility. Whereas new techniques such as nuclear transfer and intracytoplasmic sperm injection are now commonly used, basic embryo culture procedures remain the limiting step to the development of these techniques. Research over the past 2 decades focusing on improving the culture medium has greatly improved in vitro development of embryos. However, cleavage rates and viability of these embryos is reduced compared with in vivo indicating that present in vitro systems are still not optimal. Furthermore, the methods of handling mammalian oocytes and embryos have changed little in recent decades. While pipetting techniques have served embryology well in the past, advanced handling and manipulation technologies will be required to efficiently implement and commercialize the basic biological advances made in recent years. Microfluidic systems can be used to handle gametes, mature oocytes, culture embryos, and perform other basic procedures in a microenvironment that more closely mimic in vivo conditions. The use of microfluidic technologies to fabricate microscale devices has being investigated to overcome this obstacle. In this review, we summarize the development and testing of microfabricated fluidic systems with feature sizes similar to the diameter of an embryo for in vitro production of pre-implantation mammalian embryos. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Couples' willingness to donate embryos for research: a longitudinal study.
Samorinha, Catarina; Severo, Milton; Machado, Helena; Figueiredo, Bárbara; de Freitas, Cláudia; Silva, Susana
2016-08-01
Decision-making on embryo disposition is a source of distress and is subject to change over time. This paper analyzes the willingness of couples undergoing in vitro fertilization to donate cryopreserved embryos for research from 15 days after embryo transfer to 12 months later, taking into account the influence of psychosocial, demographic, and reproductive factors. Prospective longitudinal study, with 74 heterosexual couples undergoing in vitro fertilization in a public fertility centre in Portugal, recruited between 2011 and 2012. Participants were evaluated twice: 15 days after embryo transfer and 12 months later. A significant decrease in patients' willingness to donate embryos for research over time was observed [86.5% to 73.6%; relative risk (RR) = 0.85; 95% CI 0.76-0.95]. A higher education level (>12 years) [adjusted RR (RRadj ) = 0.79; 95% CI 0.64-0.96], considering research on human embryos to be important (vs. very important) (RRadj = 0.59; 95% CI 0.39-0.85) and practicing a religion less than once a month (vs. at least once a month) (RRadj = 0.73; 95% CI 0.53-1.00) seemed associated with unwillingness to donate embryos for research over time. Change towards non-donation happened mainly among couples who first considered that it was better to donate than wasting the embryos. Change towards donation occurred mostly among those stating that their priority at time 1 was to have a baby and who became pregnant in the meantime. Quality of care guided by patients' characteristics, values, preferences, and needs calls for considering the factors and reasons underlying couples' willingness to donate embryos for research over time as a topic in psychosocial guidelines for infertility and medically assisted reproductive care. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.
Schwarz, Kátia R L; de Castro, Fernanda C; Schefer, Letícia; Botigelli, Ramon C; Paschoal, Daniela M; Fernandes, Hugo; Leal, Cláudia L V
2018-01-01
This study aimed to determine the influence of cyclic guanosine 3'5'-monophosphate (cGMP) and cGMP-dependent kinase (PKG) during in vitro maturation (IVM) on lipolysis-related parameters in bovine cumulus-oocyte complexes (COCs), and on embryo development and cryosurvival. COCs were matured with cGMP/PKG modulators and assessed for metaphase II rates (MII), cGMP levels, lipid content in oocytes (OO), transcript abundance for genes involved in lipolysis (ATGL) and lipid droplets (PLIN2) in cumulus cells (CC) and OO, and presence of phosphorylated (active) hormone sensitive lipase (HSLser563) in OO. Embryo development, lipid contents and survival to vitrification were also assessed. Phosphodiesterase 5 inhibition (PDE5; cGMP-hydrolyzing enzyme) with 10-5M sildenafil (SDF) during 24 h IVM increased cGMP in COCs (56.9 vs 9.5 fMol/COC in untreated controls, p<0.05) and did not affect on maturation rate (84.3±6.4% MII). Fetal calf serum (FCS) in IVM medium decreased cGMP in COCs compared to bovine serum albumin (BSA) + SDF (19.6 vs 66.5 fMol/COC, respectively, p<0.05). FCS increased lipid content in OO (40.1 FI, p<0.05) compared to BSA (34.6 FI), while SDF decreased (29.8 and 29.6 FI, with BSA or FCS, respectively p<0.05). PKG inhibitor (KT5823) reversed this effect (38.9 FI, p<0.05). ATGL and PLIN2 transcripts were detected in CC and OO, but were affected by cGMP and PKG only in CC. HSLser563 was detected in OO matured with or without modulators. Reduced lipid content in embryos were observed only when SDF was added during IVM and IVC (27.6 FI) compared to its use in either or none of the culture periods (34.2 FI, p<0.05). Survival to vitrification was unaffected by SDF. In conclusion, cGMP and PKG are involved in lipolysis in OO and possibly in CC and embryos; serum negatively affects this pathway, contributing to lipid accumulation, and cGMP modulation may reduce lipid contents in oocytes and embryos, but without improving embryo cryotolerance.
Du, Wei-Guo; Shine, Richard
2015-02-01
Temperature profoundly affects the rate and trajectory of embryonic development, and thermal extremes can be fatal. In viviparous species, maternal behaviour and physiology can buffer the embryo from thermal fluctuations; but in oviparous animals (like most reptiles and all birds), an embryo is likely to encounter unpredictable periods when incubation temperatures are unfavourable. Thus, we might expect natural selection to have favoured traits that enable embryos to maintain development despite those fluctuations. Our review of recent research identifies three main routes that embryos use in this way. Extreme temperatures (i) can be avoided (e.g. by accelerating hatching, by moving within the egg, by cooling the egg by enhanced rates of evaporation, or by hysteresis in rates of heating versus cooling); (ii) can be tolerated (e.g. by entering diapause, by producing heat-shock proteins, or by changing oxygen use); or (iii) the embryo can adjust its physiology and/or developmental trajectory in ways that reduce the fitness penalties of unfavourable thermal conditions (e.g. by acclimating, by exploiting brief windows of favourable conditions, or by producing the hatchling phenotype best suited to those incubation conditions). Embryos are not simply passive victims of ambient conditions. Like free-living stages of the life cycle, embryos exhibit behavioural and physiological plasticity that enables them to deal with unpredictable abiotic challenges. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Diffusion of small molecules into medaka embryos improved by electroporation
2013-01-01
Background Diffusion of small molecules into fish embryos is essential for many experimental procedures in developmental biology and toxicology. Since we observed a weak uptake of lithium into medaka eggs we started a detailed analysis of its diffusion properties using small fluorescent molecules. Results Contrary to our expectations, not the rigid outer chorion but instead membrane systems surrounding the embryo/yolk turned out to be the limiting factor for diffusion into medaka eggs. The consequence is a bi-phasic uptake of small molecules first reaching the pervitelline space with a diffusion half-time in the range of a few minutes. This is followed by a slow second phase (half-time in the range of several hours) during which accumulation in the embryo/yolk takes place. Treatment with detergents improved the uptake, but strongly affected the internal distribution of the molecules. Testing electroporation we could establish conditions to overcome the diffusion barrier. Applying this method to lithium chloride we observed anterior truncations in medaka embryos in agreement with its proposed activation of Wnt signalling. Conclusions The diffusion of small molecules into medaka embryos is slow, caused by membrane systems underneath the chorion. These results have important implications for pharmacologic/toxicologic techniques like the fish embryo test, which therefore require extended incubation times in order to reach sufficient concentrations in the embryos. PMID:23815821
Reptile Embryos Lack the Opportunity to Thermoregulate by Moving within the Egg.
Telemeco, Rory S; Gangloff, Eric J; Cordero, Gerardo A; Mitchell, Timothy S; Bodensteiner, Brooke L; Holden, Kaitlyn G; Mitchell, Sarah M; Polich, Rebecca L; Janzen, Fredric J
2016-07-01
Historically, egg-bound reptile embryos were thought to passively thermoconform to the nest environment. However, recent observations of thermal taxis by embryos of multiple reptile species have led to the widely discussed hypothesis that embryos behaviorally thermoregulate. Because temperature affects development, such thermoregulation could allow embryos to control their fate far more than historically assumed. We assessed the opportunity for embryos to behaviorally thermoregulate in nature by examining thermal gradients within natural nests and eggs of the common snapping turtle (Chelydra serpentina; which displays embryonic thermal taxis) and by simulating thermal gradients within nests across a range of nest depths, egg sizes, and soil types. We observed little spatial thermal variation within nests, and thermal gradients were poorly transferred to eggs. Furthermore, thermal gradients sufficiently large and constant for behavioral thermoregulation were not predicted to occur in our simulations. Gradients of biologically relevant magnitude have limited global occurrence and reverse direction twice daily when they do exist, which is substantially faster than embryos can shift position within the egg. Our results imply that reptile embryos will rarely, if ever, have the opportunity to behaviorally thermoregulate by moving within the egg. We suggest that embryonic thermal taxis instead represents a play behavior, which may be adaptive or selectively neutral, and results from the mechanisms for behavioral thermoregulation in free-living stages coming online prior to hatching.
Single-embryo transfer versus multiple-embryo transfer.
Gerris, Jan
2009-01-01
Despite the progress made in assisted reproductive technology, live birth rates remain disappointingly low. Multiple-embryo transfer has been an accepted practice with which to increase the success rate. This has led to a higher incidence of multiple-order births compared with natural conception, which not only increase the risk of mortality and morbidity to both mother and children but are also associated with social and economic consequences. Elective single-embryo transfer (eSET) was developed in an effort to increase singleton pregnancies in assisted reproduction. Studies comparing eSET with multiple-embryo transfer highlight the benefit of this approach and suggest that, with careful patient selection and the transfer of good-quality embryos, the risk of a multiple-order pregnancy can be reduced without significantly decreasing live birth rates. Although the use of eSET has gradually increased in clinical practice, its acceptance has been limited by factors such as availability of funding and awareness of the procedure. An open discussion of eSET is warranted in an effort to enable a broader understanding by physicians and patients of the merits of this approach. Ultimately, eSET may provide a more cost-effective, potentially safer approach to patients undergoing assisted reproduction technology.
Chandel, Neha Palo; Bhat, Vidya V; Bhat, B S; Chandel, Sidharth S
2016-10-01
Advanced fertilization techniques like frozen embryo transfer (FET) and assisted reproductive technology have become popular and commonly used methods to treat patients suffering from infertility. Incidences of infertility are on a rise due to increased representation of females in the work place, delay in marriages, stress, and ignorance. We performed this prospective therapeutic study to compare FET and fresh embryo transfer in the treatment of infertility in terms of conception rate, patient acceptance, complications, and patient's compliance. A prospective screening therapeutic study on 108 patients, from September 2013 to September 2014 in Karnataka, India, randomized the patients into 2 groups (n = 54), Group-I treated with day-3 FET while Group-II was treated with fresh embryo transfer, after performing ICSI. In 108 patients, 45 % patients were within 35 years of age, 35 % were in the age group 35-39. Significantly, 22 (40.75 %) patients treated with FET conceived (P = 0.022), whereas 16 (29.63 %) patients treated with fresh embryo transfer conceived (P = 0.59). There is limited published literature from the subcontinent, comparing techniques like FET and embryo transfers in the treatment of infertility. Awareness and economic reforms must be formulated in India to facilitate individuals facing infertility problems to conceive. FET has better and significant conception rates compared to fresh embryo transfers. FET shares an advantage of providing good quality embryos for future and subsequent implantations in cases of failure. Patient counseling and motivation play a pivotal role in the success of therapeutic procedure.
Is the Production of Embryos in Small-Scale Farming an Economically Feasible Enterprise?
Sánchez, Z; Lammoglia, M A; Alarcón, M A; Romero, J J; Galina, C S
2015-08-01
The present assay attempts to evaluate the feasibility of using embryo transfer in small community farmers by in vivo study and by modelling the results obtained. From the total of 59 donor cows, 62.7% responded to treatment, with a significant difference (p = 0.002) in the percentage of the response between breeds, being 90.5% (19/21) in Holstein and 47.4% (18/38) in Brahman. A total of 283 embryos were graded as transferable, while 141 as non-transferable, without difference in the percentage of transferable embryo by breed (p = 0.18). The mean of transferable embryos graded as class I and II was not different between Holstein and Brahman (p = 0.96 and p = 0.92, respectively); besides, no differences were observed in the other grades (non-transferable). The highest difference in costs, regardless of its quality by breed, was seen in the lower levels of probable fertility of the embryo transferred, even reaching several hundred dollars. When modelling the expected costs for embryo produced and transferred, values can reach nearly $2000.00 when the probable fertility is only 10%. However, when the probable fertility was 60%, embryo cost was close to $300.00. This technology seems to be viable on average or high-scale systems, having a superovulatory response between 60 and 80% with 4-6 transferrable embryos. Yet, in small-scale farming, due to the reduced number of donors and/or recipients, the costs surpass the economical feasibility of the technique. © 2015 Blackwell Verlag GmbH.
Alexopoulos, Natalie I; French, Andrew J
2009-08-01
The reliable collection of peri-implantation embryos in the bovine has important ramifications to post-transfer consequences, particularly in the elucidation of mechanisms associated with post-hatching embryo development and to perturbations in developmental growth following transfer. This study analyzed both in vitro produced (IVP) and somatic cell nuclear transfer (SCNT) embryo-like structures (ELS) recovered at Day (D) 14 and D21. The recovered ELS were subsequently processed for histological examination. At D14 and D21, many of the embryos recovered in the IVP group conformed to the appropriate stage of development. However, a significant number of anomalies were present in the SCNT groups when examined in more detail. Histological examination revealed that irrespective of whether these embryos had undergone trophoblast expansion to an ovoid, tubular or filamentous morphology, many had a degenerated hypoblast layer and a large proportion did not possess an epiblast and therefore could not differentiate into any of the three germ layers as would be expected at the neural groove or somite stage. The prevalence of this developmental pattern was random and did not correlate with treatment (IVP or SCNT) or with types of structures recovered. The rapid embryo elongation period also coincides with the time of greatest embryonic loss and these observations could have important implications for assessing the recovery of embryos post-transfer where incorrect morphological assessment could lead to false implantation and pregnancy determination rates. The implementation of additional methodology is required to adequately characterize the quality of IVP and SCNT-derived embryos collected post-transfer.
Racowsky, Catherine; Stern, Judy E; Gibbons, William E; Behr, Barry; Pomeroy, Kimball O; Biggers, John D
2011-05-01
To evaluate the validity of collecting day 3 embryo morphology variables into the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System (SART CORS). Retrospective. National database-SART CORS. Fresh autologous assisted reproductive technology (ART) cycles from 2006-2007 in which embryos were transferred singly (n=1,020) or in pairs (n=6,508) and embryo morphology was collected. None. Relationship between live birth, maternal age, and morphology of transferred day 3 embryos as defined by cell number, fragmentation, and blastomere symmetry. Logistic multiple regressions and receiver operating characteristic curve analyses were applied to determine specificity and sensitivity for correctly classifying embryos as either failures or successes. Live birth rate was positively associated with increasing cell number up to eight cells (<6 cells: 2.9%; 6 cells: 9.6%; 7 cells: 15.5%; 8 cells: 24.3%; and >8 cells: 16.2%), but was negatively associated with maternal age, increasing fragmentation, and asymmetry scores. An area under the receiver operating curve of 0.753 (95% confidence interval 0.740-0.766) was derived, with a sensitivity of 45.0%, a specificity of 83.2%, and 76.4% of embryos being correctly classified with a cutoff probability of 0.3. This analysis provides support for the validity of collecting morphology fields for day 3 embryos into SART CORS. Standardization of morphology collections will assist in controlling for embryo quality in future database analyses. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Salilew-Wondim, Dessie; Tesfaye, Dawit; Hoelker, Michael; Schellander, Karl
2014-09-01
After its formation, the mammalian zygote undergoes a series of morphological, physiological and biochemical alterations prior to undergoing cell differentiation. The zygote is then transformed into a complex multicellular organism in a defined time window which may differ between species. These orderly embryonic developmental events are tightly regulated by temporal and spatial activation and/or deactivation of genes and gene products. This phenomenon may in turn be dependent on the intrinsic characteristics of the embryo itself, the physiological and biochemical composition of the maternal environment or by in vitro culture condition. In fact, when embryos are subjected to suboptimal culture condition, some of the embryos may escape the environmental stress by activating certain transcripts and some others which are unable to activate anti-stress agents may die or exhibit abnormal development. This phenomenon may partly depend on transcripts and proteins stored during oogenesis. Indeed after embryonic genome activation, the embryo destiny is governed by its own transcripts and protein synthesized over time. Therefore, this review begins by highlighting the type and quality of transcripts accumulated or degraded during oogenesis and its impact on the embryo survival. Thereafter, emphasis is given to the transcriptome response of preimplantation embryos to suboptimal culture conditions. In addition, the long term effect of preimplantation culture environment on the transcriptome response embryos/fetus during peri and post implantation has been addressed. Finally, a brief summary of the epigenetic control of culture induced genetic variation of the embryos has been highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of triiodothyronine on developmental competence of bovine oocytes.
Costa, N N; Cordeiro, M S; Silva, T V G; Sastre, D; Santana, P P B; Sá, A L A; Sampaio, R V; Santos, S S D; Adona, P R; Miranda, M S; Ohashi, O M
2013-09-01
Developmental competence of in vitro-matured bovine oocytes is a limiting factor in production of embryos in vitro. Several studies have suggested a potential positive effect of thyroid hormones on cultured oocytes and/or their supporting cells. Therefore, the aim of the present study was to ascertain whether medium supplementation with triiodothyronine (T3) improved subsequent developmental competence of in vitro-matured bovine oocytes. For this purpose, we first documented (using reverse transcription PCR) that whereas bovine cumulus cells expressed both thyroid hormone receptor (TR)-α and TRβ, immature bovine oocytes expressed TRα only. Thereafter, to test the effects of TH on developmental competence, abattoir-derived oocytes were matured in vitro in a medium containing 0, 25, 50, or 100 nM T3 and subjected to in vitro fertilization. Embryo quality was evaluated by assessing cleavage and blastocyst rates, morphological quality, development kinetics, and total cell number on Day 8 of culture. Notably, addition of 50 or 100 nM T3 to the in vitro maturation medium increased (P < 0.05) the rate of hatched blastocysts on the eighth day of culture, as compared with other groups (62.4 ± 11.7, 53.1 ± 16.3, and 32.4 ± 5.3, respectively). Next, the relative expression levels of genes related to embryo quality POU-domain transcription factor (POU5F1) and glucose transporter-1 (GLUT 1) were compared between in vivo- and in vitro-produced blastocysts. On the basis of the previous experiments, IVP embryos originating from oocytes that were matured in vitro in the presence or absence of 50 nM T3 were evaluated. The treatment had no effect (P > 0.05) on gene expression. We concluded that supplementation of bovine oocyte in vitro maturation medium with T3 may have a beneficial effect on the kinetics of embryo development. Copyright © 2013 Elsevier Inc. All rights reserved.
Oba, M; Miyashita, S; Nishii, R; Koiwa, M; Koyama, H; Ambrose, D J; Dochi, O
2013-03-01
The objective of the study was to determine whether the serum obtained from animals differing in body condition score (BCS) affects in vitro embryo development. After in vitro fertilization, serum obtained from dairy cows of either low (L-BCS; 2.1 ± 0.14 on a scale of 1 to 5) or high BCS (H-BCS; 4.0 ± 0.0), or commercially available bovine serum (control) was added at 5% concentration to the in vitro culture medium. Use of serum obtained from H-BCS cows increased the cleavage rates compared with control serum at both 24 and 48 h after in vitro fertilization (78.3 vs. 71.9% and 79.9 vs. 75.1%, respectively), whereas use of serum obtained from L-BCS cows increased the blastocyst rate compared with control serum at 7d (23.8 vs. 19.1%), but this difference was not evident at 8 or 9 d after in vitro fertilization. As nonesterified fatty acid concentrations were highest in control serum, followed by serum from L-BCS and H-BCS cows (621, 559, and 272 μEq/L, respectively), a high concentration of nonesterified fatty acids might adversely affect the very early stages of embryo development, and its negative effects might be greater immediately after fertilization compared with developmental stages after morula formation. Our findings also indicate that factors promoting early stage embryo development do not necessarily promote blastocyst development. Serum obtained from animals under different physiological conditions may be used for in vitro embryo culture to study the effects of nutritional management of dairy cattle on embryo development. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Choi, Young-Ho; Ross, Pablo; Velez, Isabel C; Macías-García, B; Riera, Fernando L; Hinrichs, Katrin
2015-07-01
Equine embryos develop in vitro in the presence of high glucose concentrations, but little is known about their requirements for development. We evaluated the effect of glucose concentrations in medium on blastocyst development after ICSI. In experiment 1, there were no significant differences in rates of blastocyst formation among embryos cultured in our standard medium (DMEM/F-12), which contained >16 mM glucose, and those cultured in a minimal-glucose embryo culture medium (<1 mM; Global medium, GB), with either 0 added glucose for the first 5 days, then 20 mM (0-20) or 20 mM for the entire culture period (20-20). In experiment 2, there were no significant differences in the rates of blastocyst development (31-46%) for embryos cultured in four glucose treatments in GB (0-10, 0-20, 5-10, or 5-20). Blastocysts were evaluated by immunofluorescence for lineage-specific markers. All cells stained positively for POU5F1. An inner cluster of cells was identified that included presumptive primitive endoderm cells (GATA6-positive) and presumptive epiblast (EPI) cells. The 5-20 treatment resulted in a significantly lower number of presumptive EPI-lineage cells than the 0-20 treatment did. GATA6-positive cells appeared to be allocated to the primitive endoderm independent of the formation of an inner cell mass, as was previously hypothesized for equine embryos. These data demonstrate that equine blastocyst development is not dependent on high glucose concentrations during early culture; rather, environmental glucose may affect cell allocation. They also present the first analysis of cell lineage allocation in in vitro-fertilized equine blastocysts. These findings expand our understanding of the factors that affect embryo development in the horse. © 2015 Society for Reproduction and Fertility.
Preimplantation genetic diagnosis with HLA matching.
Rechitsky, Svetlana; Kuliev, Anver; Tur-Kaspa, Illan; Morris, Randy; Verlinsky, Yury
2004-08-01
Preimplantation genetic diagnosis (PGD) has recently been offered in combination with HLA typing, which allowed a successful haematopoietic reconstitution in affected siblings with Fanconi anaemia by transplantation of stem cells obtained from the HLA-matched offspring resulting from PGD. This study presents the results of the first PGD practical experience performed in a group of couples at risk for producing children with genetic disorders. These parents also requested preimplantation HLA typing for treating the affected children in the family, who required HLA-matched stem cell transplantation. Using a standard IVF procedure, oocytes or embryos were tested for causative gene mutations simultaneously with HLA alleles, selecting and transferring only those unaffected embryos, which were HLA matched to the affected siblings. The procedure was performed for patients with children affected by Fanconi anaemia (FANC) A and C, different thalassaemia mutations, Wiscott-Aldrich syndrome, X-linked adrenoleukodystrophy, X-linked hyperimmunoglobulin M syndrome and X-linked hypohidrotic ectodermal displasia with immune deficiency. Overall, 46 PGD cycles were performed for 26 couples, resulting in selection and transfer of 50 unaffected HLA-matched embryos in 33 cycles, yielding six HLA-matched clinical pregnancies and the birth of five unaffected HLA-matched children. Despite the controversy of PGD use for HLA typing, the data demonstrate the usefulness of this approach for at-risk couples, not only to avoid the birth of affected children with an inherited disease, but also for having unaffected children who may also be potential HLA-matched donors of stem cells for treatment of affected siblings.
Druyan, S; Levi, E
2012-01-01
Hypoxia during embryogenesis may induce changes in the development of some physiological regulatory systems, thereby causing permanent phenotypic changes in the embryo. Various levels of hypoxia at different time points during embryogenesis were found to affect both anatomical and physiological morphogenesis. These changes and adaptations depended on the timing, intensity, and duration of the hypoxic exposure and, moreover, were regulated by differential expression of developmentally important genes, mostly expressed in a stage- and time-dependent manner. Eggs incubated in a 17%-oxygen atmosphere for 12 h/d from E5 through E12 exhibited a clear and significant increase in the vascular area of the chorioallantoic membrane (CAM); an increase that was already significant within 12 h after the end of the 1st hypoxic exposures (E6). We used the combination of the genes, β-actin, RPLP0 and HPRT as a reference for gene expression profiling, in studying the expression levels of hypoxia-inducible factor 1-alpha (HIF1α), vascular endothelial growth factor alpha-2 (VEGF α 2), vascular endothelial growth factor receptor 2 (KDR), matrix metalloproteinase-2 (MMP2), and fibroblast growth factor 2 (FGF2), under normal and hypoxic conditions. In general, expression of all five investigated genes throughout the embryonic day of development had similar patterns of hypoxia-induced alterations. In E5.5 embryos, expression of HIF1α, MMP2, VEGFα2, and KDR was significantly higher in hypoxic embryos than in controls. In E6 embryos expression of HIF1α, VEGFα2, and FGF2 was significantly higher in hypoxic embryos than in controls. From E6.5 onward expression levels of the examined genes did not show any differences between hypoxic and control embryos. It can be concluded that in this experimental model, exposing broiler embryos to 17% O(2) from E5 to E7 induced significant angiogenesis, as expressed by the above genes. Further studies to examine whether this early exposure to hypoxic condition affects the chick's ability to withstand a post-hatch hypoxic environment is still required. Copyright © 2012 Elsevier B.V. All rights reserved.
Macroenvironment effects on oocytes and embryos in swine.
Foxcroft, G R; Vinsky, M D; Paradis, F; Tse, W-Y; Town, S C; Putman, C T; Dyck, M K; Dixon, W T
2007-09-01
As in other domestic mammals, the interaction between genotype and environment in swine has profound effects on the ultimate phenotype of the individual born. Interactions within the litter in utero add an additional level of complexity in a litter-bearing species like the pig. Nutritional manipulations during the preovulatory period affect the maturity of the follicle and enclosed oocyte, and the metabolic and endocrine mechanisms potentially mediating these effects have been described. Extensive research on lactational catabolism in the first parity sow has established an association between the development of immature follicles and oocytes, and the reduced fertility of these sows when bred at the first postweaning estrus. This negative impact of lactational catabolism appears to be exaggerated in contemporary dam-lines by a minimal delay between weaning and first estrus, further limiting the maturity of the follicle and oocyte at the time of ovulation. Metabolic programming may induce gender-specific loss of embryos by Day 30 and affects embryonic development directly, without significant effects on placental size. In contrast, inadvertent crowding of embryos in utero, particularly evident in a sub-population of mature sows with high ovulation rates and moderate to high embryonic survival to Day 30, significantly limits placental development of crowded litters. However, even at Day 30, moderate crowding in utero also appears to affect myogenesis in the embryo in a gender-specific manner. In the absence of compensatory placental growth after Day 30, classic measures of IUGR are evident in surviving fetuses at Day 90 and at term.
Gravina, Maria; Pagano, Giovanni; Oral, Rahime; Guida, Marco; Toscanesi, Maria; Siciliano, Antonietta; Di Nunzio, Aldo; Burić, Petra; Lyons, Daniel M; Thomas, Philippe J; Trifuoggi, Marco
2018-05-01
Heavy rare earth elements (HREEs) were tested for adverse effects to early life stages of the sea urchin Sphaerechinus granularis. Embryos were exposed to analytically measured HREE concentrations ranging from 10 -7 to 10 -5 M. No significant developmental defect (DD) increases were observed in embryos exposed to 10 -7 M HREEs, whereas 10 -5 M HREEs resulted in significant DD increase up to 96% for HoCl 3 versus 14% in controls. Embryos exposed to 10 -6 M HREEs showed the highest DD frequency in embryos exposed to 10 -6 M DyCl 3 and HoCl 3 . Cytogenetic analysis of HREE-exposed embryos revealed a significant decrease in mitotic activity, with increased mitotic aberrations. When S. granularis sperm were exposed to HREEs, the offspring of sperm exposed to 10 -5 M GdCl 3 and LuCl 3 showed significant DD increases. The results warrant investigations on HREEs in other test systems, and on REE-containing complex mixtures.
[Effects of Cangfu Congxian Decoction on Oxidative Stress in Polycystic Ovary Syndrome Patients].
Liang, Ying; Tian, Qian-hua; Mu, Yu-xia; Du, Hui-lan
2016-06-01
To observe the effect of Cangfu Congxian Decoction (CCD) on oxidative stress in granulosa cells of polycystic ovary syndrome (PCOS) patients. Forty PCOS patients underwent in vitro fertilization-embryo transfer (IVF-ET) were assigned to the treatment group and the control group 1 according to random digit table, 20 in each group. Patients in the treatment group took CCD (200 mL, once in the morning and once in the afternoon) 2 months before IVF-ET, while those in the control group 1 took no Chinese medical decoction. Recruited were another 20 patients undergoing IVF-ET for tubal factors (as the control group 2). The clinical effect of IVF-ET were observed, including oocyte retrieval number, 2 pronuclear (2PN) fertilization rate, good quality embryo rate, clinical pregnancy rate, and ovarian hyperstimulation syndrome (OHSS) induced transplantation cancel rate. The expression of relative oxygen species (ROS) in granulosa cells was detected using cell immunofluorescence combined with confocal microscopy and FCM. Compared with the control group 1, occyte retrieval number, 2PN fertilization rate, and good quality embryo rate increased in the control group 2 and the treatment group (P <0. 05). OHSS induced transplantation cancel rate decreased in the control group 2 (P < 0.05). Fluorescence intensity of ROS decreased in the treatment group and the control group 2, as compared with the control group 1 (P < 0.01). CCD increased good quality embryo rate by down-regulating the expression of ROS protein in ovarian granulosa cells, and correcting in vivo oxidative stress.
Berger, C; Boggavarapu, N R; Menezes, J; Lalitkumar, P G L; Gemzell-Danielsson, K
2015-04-01
Does ulipristal acetate (UPA) used for emergency contraception (EC) interfere with the human embryo implantation process? UPA, at the dosage used for EC, does not affect human embryo implantation process, in vitro. A single pre-ovulatory dose of UPA (30 mg) acts by delaying or inhibiting ovulation and is recommended as first choice among emergency contraceptive pills due to its efficacy. The compound has also been demonstrated to have a dose-dependent effect on the endometrium, which theoretically could impair endometrial receptivity but its direct action on human embryo implantation has not yet been studied. Effect of UPA on embryo implantation process was studied in an in vitro endometrial construct. Human embryos were randomly added to the cultures and cultured for 5 more days with UPA (n = 10) or with vehicle alone (n = 10) to record the attachment of embryos. Endometrial biopsies were obtained from healthy, fertile women on cycle day LH+4 and stromal and epithelial cells were isolated. A three-dimensional in vitro endometrial co-culture system was constructed by mixing stromal cells with collagen covered with a layer of epithelial cells and cultured in progesterone containing medium until confluence. The treatment group received 200 ng/ml of UPA. Healthy, viable human embryos were placed on both control and treatment cultures. Five days later the cultures were tested for the attachment of embryos and the 3D endometrial constructs were analysed for endometrial receptivity markers by real-time PCR. There was no significant difference in the embryo attachment rate between the UPA treated group and the control group as 5 out of 10 human embryos exposed to UPA and 7 out of 10 embryos in the control group attached to the endometrial cell surface (P = 0.650). Out of 17 known receptivity genes studied here, only 2 genes, HBEGF (P = 0.009) and IL6 (P = 0.025) had a significant up-regulation and 4 genes, namely HAND2 (P = 0.003), OPN (P = 0.003), CALCR (P = 0.016) and FGF2 (P = 0.023) were down-regulated with the exposure of UPA, compared with control group. This proof of concept study was conducted with a few human embryos, as their availability was limited. Although the 3D model used for this study is well established and the artificial endometrial luminal epithelium shown to express progesterone regulated markers of endometrial receptivity it is still an in vitro model, lacking all cell types that constitute the receptive endometrium in vivo. This study provides new insights on the mechanism of action of UPA on human embryo implantation, demonstrating that UPA in a dosage used for EC does not affect embryo viability and the implantation process of embryo. Progesterone receptor modulators (PRMs) hold the potential to be attractive estrogen- and gestagen-free contraceptives and thus may be made available to a larger proportion of women globally due to these findings. Swedish Research Council (K2010-54X-14212-09-3) and support provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska University Hospital. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stowe, Heather M; Curry, Erin; Calcatera, Samantha M; Krisher, Rebecca L; Paczkowski, Melissa; Pratt, Scott L
2012-06-15
MicroRNA (miRNA) is a class of small, single-stranded ribonucleic acids that regulate gene expression post-transcriptionally and are involved in somatic cell, germ cell, and embryonic development. As the enzyme responsible for producing mature miRNA, Dicer is crucial to miRNA production. Characterization of Dicer and its expression at the nucleotide level, as well as the identification of miRNA expression in reproductive tissues, have yet to be reported for the domestic pig (Sus scrofa), a species important for disease modeling, biomedical research, and food production. In this study we determined the primary cDNA sequence of porcine Dicer (pDicer), confirmed its expression in porcine oocytes and early stage embryos, and evaluated the expression of specific miRNA during early embryonic development and between in vivo (IVO) and in vitro (IVF) produced embryos. Total cellular RNA (tcRNA) was isolated and subjected to end point RT-PCR, subcloning, and sequencing. The pDicer coding sequence was found to be highly conserved, and phylogenetic analysis showed that pDicer is more highly conserved to human Dicer (hDicer) than the mouse homolog. Expression of pDicer mRNA was detected in oocytes and in IVO produced blastocyst embryos. Two RT-PCR procedures were conducted to identify and quantitate miRNA expressed in metaphase II oocytes (MII) and embryos. RT-PCR array was conducted using primers designed for human miRNA, and 86 putative porcine miRNA in MII and early embryos were detected. Fewer miRNAs were detected in 8-cell (8C) embryos compared to MII and blastocysts (B) (P=0.026 and P<0.0001, respectively). Twenty-one miRNA (of 88 examined) were differentially expressed between MII and 8C, 8C and B, or MII and B. Transcripts targeted by the differentially expressed miRNA were enriched in gene ontology (GO) categories associated with cellular development and differentiation. Further, we evaluated the effects of IVF culture on the expression of specific miRNA at the blastocyst stage. Quantitative RT-PCR was conducted on blastocyst tcRNA isolated from individual IVO and IVF produced embryos for miR-18a, -21, and -24. Only the expression level of miR-24 differed due to culture conditions, with lower levels detected in the IVO embryos. These data show that pDicer and miRNA are present in porcine oocytes and embryos. In addition, specific miRNA levels are altered due to stage of embryonic development and, in the case of miR-24, due to culture conditions, making this miRNA a candidate for screening of embryo quality. Additional studies characterizing Dicer and miRNA expression during early embryonic development from IVO and IVF sources are required to further examine and evaluate the use of miRNA as a marker for embryo quality. Copyright © 2012 Elsevier B.V. All rights reserved.
Duess, Johannes W; Puri, Prem; Thompson, Jennifer
2016-01-01
Rho-associated kinase (ROCK) signaling regulates numerous fundamental developmental processes during embryogenesis, primarily by controlling actin-cytoskeleton assembly and cell contractility. ROCK knockout mice exhibit a ventral body wall defect (VBWD) phenotype due to disorganization of actin filaments at the umbilical ring. However, the exact molecular mechanisms leading to VBWD still remain unclear. Improper somitogenesis has been hypothesized to contribute to failure of VBW closure. We designed this study to investigate the hypothesis that administration of ROCK inhibitor (Y-27632) disrupts cytoskeletal arrangements in morphology during early chick embryogenesis, which may contribute to the development of VBWD. At 60 h incubation, chick embryos were explanted into shell-less culture and treated with 50 µL of vehicle for controls (n = 33) or 50 µL of 500 µM of Y-27632 for the experimental group (Y-27, n = 56). At 8 h post-treatment, RT-PCR was performed to evaluate mRNA levels of N-cadherin, E-cadherin and connexin43. Immunofluorescence confocal microscopy was performed to analyze the expression and distribution of actin, vinculin and microtubules in the neural tube and somites. A further cohort of embryos was treated in ovo by dropping 50 µL of vehicle or 50 µL of different concentrations of Y-27632 onto the embryo and allowing development to 12 and 14 days for further assessment. Gene expression levels of N-cadherin, E-cadherin and connexin43 were significantly decreased in treated embryos compared with controls (p < 0.05). Thickened actin filament bundles were recorded in the neural tube of Y-27 embryos. In somites, cells were dissociated with reduced actin distribution in affected embryos. Clumping of vinculin expression was found in the neural tube and somites, whereas reduced expression of microtubules was observed in Y-27 embryos compared with controls. At 12 and 14 days of development, affected embryos presented with an enlarged umbilical ring and herniation of abdominal contents through the defect. ROCK inhibition alters cytoskeletal arrangement during early chick embryogenesis, which may contribute to failure of anterior body wall closure causing VBWD at later stages of development.
Groenewoud, Eva R; Macklon, Nick S; Cohlen, Ben J
2017-05-01
Recent studies suggest that elevated late follicular phase progesterone concentrations after ovarian stimulation for IVF may result in embryo-endometrial asynchrony, reducing the chance of successful implantation after fresh embryo transfer. It remains unclear to what extent elevated late follicular phase progesterone levels may occur in unstimulated cycles before frozen-thawed embryo transfer, or what affect they may have on outcomes. In this cohort study, 271 patients randomized to the modified natural cycle arm of a randomized controlled trial comparing two endometrial preparation regimens underwent late follicular phase progesterone and LH testing. A receiver operating characteristic curve was constructed to identify a progesterone cut-off level with the best predictive value for live birth (progesterone level ≥4.6 nmol/l). A total of 24.4% of patients revealed an isolated elevated serum progesterone of 4.6 nmol/l or greater, and 44.3% showed an elevated progesterone level in association with a rise in LH. Neither endocrine disruption affected outcomes, with live birth rates of 12.9% versus 10.6% (OR 0.6, 95% CI 0.19 to 1.9) and 11.9% versus 17.5% (OR 1.6, 95% CI 0.79 to 3.1), respectively. Whether monitoring of progesterone and LH in natural cycle frozen-thawed embryo transfer has added clinical value should studied further. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Wen, Duan-Cheng; Bi, Chun-Ming; Xu, Ying; Yang, Cai-Xia; Zhu, Zi-Yu; Sun, Qing-Yuan; Chen, Da-Yuan
2005-08-01
The developmental potential of hybrid embryos produced by transferring panda or cat fibroblasts into nucleated rabbit oocytes was assessed. Both the panda-rabbit and the cat-rabbit hybrid embryos were able to form blastocysts in vitro. However, the rates of attaining the two-cell, four-cell, eight-cell, morula, or blastocyst stages for panda-rabbit hybrids were significantly greater than those of cat-rabbit hybrids (P<0.05). Transferring the rabbit fibroblasts into nucleated rabbit oocytes, 31.0% of the blastocyst rate was obtained, which was significantly higher than that of both the panda-rabbit and the cat-rabbit hybrid embryos (P<0.05). Whether or not the second polar body (PB2) was extruded from the one-cell hybrid embryos (both panda-rabbit and cat-rabbit hybrids) significantly affected their developmental capacity. Embryos without an extruded PB2 showed a higher capacity to develop into blastocysts (panda-rabbit: 19.2%; cat-rabbit: 4.3%), while embryos with extruded PB2 could only develop to the morula stage. The hybrid embryos formed pronucleus-like structures (PN) in 2-4 hr after activation, and the number of PN in one-cell embryos varied from one to five. Tracking of the nucleus in the egg after fusion revealed that the somatic nucleus could approach and aggregate with the oocyte nucleus spontaneously. Chromosome analysis of the panda-rabbit blastocysts showed that the karyotype of the hybrid embryos (2n=86) consisted of chromosomes from both the panda (2n=42) and the rabbit (2n=44). The results demonstrate that (1) it is possible to produce genetic hybrid embryos by interspecies nuclear transfer; (2) the developmental potential of the hybrid embryos is highly correlated to the donor nucleus species; and (3) the hybrid genome is able to support the complete preimplantation embryonic development of the hybrids. Copyright (c) 2005 Wiley-Liss, Inc.
Paria, B C; Dey, S K
1990-01-01
We have established a model that shows cooperative interaction among preimplantation embryos and the role of growth factors on their development and growth. Two-cell mouse embryos cultured singly in 25-microliters microdrops had inferior development to blastocysts and lower cell numbers per blastocyst compared with those cultured in groups of 5 or 10. The inferior development of singly cultured embryos was markedly improved by addition of epidermal growth factor (EGF) or transforming growth factor alpha or beta 1 (TGF-alpha or TGF-beta 1) to the culture medium. The stage of embryonic development, primarily affected by these treatments, was between eight-cell/morula and blastocyst. Furthermore, blastocysts developed from eight-cell embryos cultured in groups or singly in the presence of EGF showed a higher incidence of zona hatching compared with those cultured singly in the absence of EGF. Detection of EGF receptors on the embryonic cell surface at eight-cell/morula and blastocyst stages suggests beneficial effects of EGF or TGF-alpha on preimplantation embryo development and blastocyst functions. Insulin-like growth factor I (IGF-I) had no influence on embryo development. To further document the cooperative interactions among embryos, the volume of the culture medium was doubled to 50 microliters. This increase in culture volume was even more detrimental to the development of singly cultured embryos. However, this detrimental effect was significantly reversed by EGF and reversed even more markedly by a combination of EGF and TGF-beta 1 but not by TGF-beta 1 alone. Although TGF-beta 1 plus IGF-I caused a modest improvement of embryo development, the response was not as great as shown by EGF alone. Furthermore, IGF-I had no additive effect on EGF-induced embryonic development. The study presents clear evidence that specific growth factors of embryonic and/or reproductive tract origin participate in preimplantation embryo development and blastocyst functions in an autocrine/paracrine manner. Images PMID:2352946
Comparison of in Situ and in Vitro Regulation of Soybean Seed Growth and Development
Dyer, Daniel J.; Cotterman, C. Daniel; Cotterman, Josephine C.
1987-01-01
The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (<2 milligrams dry weight) failed to attain the maximal growth rates attained by embryos which were more mature when placed in culture. When nutrient levels were maintained in the culture medium, embryos continued to grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply. PMID:16665434
Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos.
Yin, Hsin-Bai; Chen, Chi-Hung; Darre, Michael J; Donoghue, Ann M; Donoghue, Dan J; Venkitanarayanan, Kumar
2017-10-01
Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasiticus, which frequently contaminate poultry feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased bird performance and reduced egg production. Moreover, AF residues in fertilized eggs result in huge economic losses by decreasing embryo viability and hatchability. This study investigated the efficacy of 2 generally recognized as safe phytochemicals, namely carvacrol (CR) and trans-cinnamaldehyde (TC), in protecting chicken embryos from AF-induced toxicity. Day-old embryonated eggs were injected with 50 ng or 75 ng AF with or without 0.1% CR or TC, followed by incubation in an incubator for 18 d. Relative embryo weight, yolk sac weight, tibia weight, tibia length, and mortality were recorded on d 18 of incubation. The effect of phytochemicals and methanol (diluent) on embryo viability was also determined. Each experiment had ten treatments with 15 eggs/treatment (n = 150 eggs/experiment) and each experiment was replicated 3 times. Both phytochemicals significantly decreased AF-induced toxicity in chicken embryos. At 75 ng of AF/egg, CR and TC increased the survival of chicken embryo by ∼55%. Moreover, CR and TC increased relative embryo weight by ∼3.3% and 17% when compared to eggs injected with 50 ng or 75 ng AF, respectively. The growth of embryos (tibia length and weight) was improved in phytochemical-treated embryos compared to those injected with AF alone (P < 0.05). Phytochemical and methanol treatments did not adversely affect embryo survival, and other measured parameters as compared to the negative control (P > 0.05). Results from this study demonstrate that CR and TC could reduce AF-induced toxicity in chicken embryos; however, additional studies are warranted to delineate the mechanistic basis behind this effect. © 2017 Poultry Science Association Inc.
Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology
Sandell, Lisa L.; Kurosaka, Hiroshi; Trainor, Paul A.
2012-01-01
Here we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional widefield fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images of similar specimens produced by Scanning Electron Microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. PMID:22930523
Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.
Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A
2012-11-01
Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.
Could aspiration of the Graafian follicle cause luteal phase deficiency?
Feichtinger, W; Kemeter, P; Szalay, S; Beck, A; Janisch, H
1982-02-01
Luteal phase quality was evaluated in 32 patients wih nonstimulated cycles after laparoscopic oocyte recovery for in vitro fertilization. A luteal phase deficiency occurred in two cases (6.2%), the mean duration of the luteal phase was 13.5 +/- 1.3 days in 30 patients, and two patients developed amenorrhea of 23 and 43 days respectively after laparoscopy in spite of normal progesterone values 7 and 9 days after oocyte recovery. Six embryo transfers were performed after fertilization and regular cleavage of the obtained oocytes. No pregnancy resulted from the embryo transfers, although the patients had apparently normal luteal phases. In one patient there was a transient beta-subunit human chorionic gonadotropin (beta-hCG) elevation in serum. Luteal phase deficiency should not be main cause of a nonsuccessful embryo transfer. However, a prophylactic luteal phase support after oocyte recovery and embryo transfer in nonstimulated cycles is proposed.
Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Petsas, George K; Tarlatzis, Basil C; Lainas, Trifon G
2017-09-01
The aim of the present study was to compare blastocyst formation rates after embryo culture in a single medium (Global) as compared to sequential media (ISM1/BlastAssist). In this prospective trial with sibling oocytes, 542 metaphase II (ΜΙΙ) oocytes from 31 women were randomly and equally divided to be fertilized and cultured to the blastocyst stage in either sequential media (ISM1/BlastAssist; n = 271 MII oocytes) or a single medium (Global; n = 271 MII oocytes). In both groups, embryos were cultured in an interrupted fashion with media changes on day 3. Embryo transfer was performed on day 5. Blastocyst formation rates on day 5 (61.7% ± 19.9% vs 37.0% ± 25.5%, P < .001) were significantly higher following culture in Global as compared to ISM1/BlastAssist, respectively. Fertilization rates, cleavage rates, and percentage of good quality embryos on day 3 were similar between Global and ISM1/BlastAssist, respectively. The percentages of good quality blastocysts (63.0% ± 24.8% vs 32.1% ± 37.2%, P < .001), blastocysts selected for transfer (27.8% ± 19.2% vs 11.1% ± 14.4%, P = .005), and utilization rates (62.5% ± 24.8% vs 39.0% ± 25.2%, P < .001) were significantly higher in Global as compared to ISM1/BlastAssist, respectively. In conclusion, culture in Global was associated with higher blastocyst formation rates compared to ISM1/BlastAssist, suggesting that the single medium may provide better support to the developing embryo.
Age of G-1 PLUS v5 embryo culture medium is inversely associated with birthweight of the newborn.
Kleijkers, Sander H M; van Montfoort, Aafke P A; Smits, Luc J M; Coonen, Edith; Derhaag, Josien G; Evers, Johannes L H; Dumoulin, John C M
2015-06-01
Does age of G-1 PLUS v5 embryo culture medium affect IVF outcome? Birthweight of singletons born after IVF showed an inverse association with age of the embryo culture medium, while no association was found between age of culture medium and fertilization rate, embryonic development or ongoing pregnancy. It has been reported that IVF culture media can deteriorate during storage, which suggests that the capacity of culture media to support optimal embryo development decreases over time. Some animal studies showed an effect of storage time on embryo development, in contrast to other studies, while the effect of aging culture medium on IVF outcome in humans is unknown. We used data on outcome of 1832 IVF/ICSI cycles with fresh embryo transfer, performed in the period 2008-2012 to evaluate the association of fertilization rate, embryonic development, ongoing pregnancy and birthweight of singletons with age of the culture medium (Vitrolife AB G-1 PLUS v5). Age of the culture medium was calculated by subtracting the production date from the date of ovum retrieval. Data analysis included linear regression and logistic regression on continuous and categorical outcomes, respectively. Age of the culture medium was not associated with fertilization rate (P = 0.543), early cleavage rate (P = 0.155), percentage of embryos containing four or more cells on Day 2 (P = 0.401), percentage of embryos containing eight or more cells on Day 3 (P = 0.175), percentage of embryos with multinucleated blastomeres (P = 0.527), or ongoing pregnancy (P = 0.729). However, birthweight of the newborn was inversely associated with age of the medium (β = -3.6 g, SE: 1.5 g, P = 0.021), after controlling for possible confounders (day of embryo transfer, number of transferred embryos, child's gender, gestational age at birth, parity, pregnancy complications, maternal smoking, height and weight, and paternal height and weight) and the association was not biased by year of treatment, time since first opening of the bottle or batch variations. This indicates a difference of 234 g in birthweight of newborns for media with an age difference of 65 days. The results from this study may be specific for the G-1 PLUS v5 culture medium and extrapolation of the results to other media should be done with caution because of the differences in composition and shelf life. Age of G-1 PLUS v5 medium used to culture human embryos affects birthweight of the respective newborn. This could imply that the preimplantation embryo adapts to its in vitro environment with lasting in vivo consequences. Therefore, it is important that companies are transparent about the exact composition of their embryo culture media, which will allow IVF clinics to further investigate the effects of the media or media components on the health of IVF children. No funding and no competing interests declared. Not applicable. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review.
Gleicher, Norbert; Orvieto, Raoul
2017-03-27
The hypothesis of preimplantation genetic diagnosis (PGS) was first proposed 20 years ago, suggesting that elimination of aneuploid embryos prior to transfer will improve implantation rates of remaining embryos during in vitro fertilization (IVF), increase pregnancy and live birth rates and reduce miscarriages. The aforementioned improved outcome was based on 5 essential assumptions: (i) Most IVF cycles fail because of aneuploid embryos. (ii) Their elimination prior to embryo transfer will improve IVF outcomes. (iii) A single trophectoderm biopsy (TEB) at blastocyst stage is representative of the whole TE. (iv) TE ploidy reliably represents the inner cell mass (ICM). (v) Ploidy does not change (i.e., self-correct) downstream from blastocyst stage. We aim to offer a review of the aforementioned assumptions and challenge the general hypothesis of PGS. We reviewed 455 publications, which as of January 20, 2017 were listed in PubMed under the search phrase < preimplantation genetic screening (PGS) for aneuploidy>. The literature review was performed by both authors who agreed on the final 55 references. Various reports over the last 18 months have raised significant questions not only about the basic clinical utility of PGS but the biological underpinnings of the hypothesis, the technical ability of a single trophectoderm (TE) biopsy to accurately assess an embryo's ploidy, and suggested that PGS actually negatively affects IVF outcomes while not affecting miscarriage rates. Moreover, due to high rates of false positive diagnoses as a consequence of high mosaicism rates in TE, PGS leads to the discarding of large numbers of normal embryos with potential for normal euploid pregnancies if transferred rather than disposed of. We found all 5 basic assumptions underlying the hypothesis of PGS to be unsupported: (i) The association of embryo aneuploidy with IVF failure has to be reevaluated in view how much more common TE mosaicism is than has until recently been appreciated. (ii) Reliable elimination of presumed aneuploid embryos prior to embryo transfer appears unrealistic. (iii) Mathematical models demonstrate that a single TEB cannot provide reliable information about the whole TE. (iv) TE does not reliably reflect the ICM. (v) Embryos, likely, still have strong innate ability to self-correct downstream from blastocyst stage, with ICM doing so better than TE. The hypothesis of PGS, therefore, no longer appears supportable. With all 5 basic assumptions underlying the hypothesis of PGS demonstrated to have been mistaken, the hypothesis of PGS, itself, appears to be discredited. Clinical use of PGS for the purpose of IVF outcome improvements should, therefore, going forward be restricted to research studies.
Testing the embryo, testing the fetus
Ehrich, K; Farsides, B; Williams, C; Scott, Rosamund
2008-01-01
This paper stems from an ethnographic, multidisciplinary study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the area of PGD for serious genetic disorders. We focus here on staff perceptions and experiences of working with embryos and helping women/couples to make choices that will result in selecting embryos for transfer and disposal of ‘affected’ embryos, compared to the termination of affected pregnancies following PND. Analysis and discussion of our data led us to consider the possible advantages of PGD and whether a gradualist account of the embryo’s and fetus’s moral status can account for all of these, particularly since a gradualist account concentrates on the significance of time (developmental stage) and makes no comment as to the significance of place (in-vitro, in-utero). PMID:18516224
Pressure for a select committee on human embryo research and genetic engineering.
McKie, David
1985-11-02
By a commanding majority of almost five million votes, this year's Labour Party conference agreed that Labour Members of Parliament should not be permitted to let their consciences decide their votes on "issues affecting the reproductive rights of women." The targets for this censure were the 44 Labour MPs who backed Enoch Powell's bill to outlaw experiments on embryos. Conservative supporters of the Powell bill are countering their defeat by advocating a Parliamentary select committee to examine "matters of human embryo research and human genetic engineering." McKie comments that they are thus shifting emphasis from "fertility," which has public support, to genetic engineering, which generates fear.
Development of a large commercial camel embryo transfer program: 20 years of scientific research.
Anouassi, Abdelhaq; Tibary, Ahmed
2013-01-10
Embryo transfer in camels was initiated to respond to demand from the camel industry particularly in the United Arab Emirates since 1990. This paper reviews the research performed in critical areas of reproductive physiology and reproductive function evaluation that constitute a pre-requisite for a successful embryo transfer program. A description of donor and recipient management as well as a retrospective evaluation of calf production in the embryo transfer program at Sweihan, UAE is provided. The program utilized two management systems for donors, with and without ovarian superstimulation. Non-stimulated donors are flushed every 14-15 days with a mean embryo production per year per female of 8.5±3.1 (mean±SEM). Response to gonadotropin stimulation is extremely variable. FSH doses and frequency of administration is often adjusted to a specific female. In the period of 1990-2010, 11,477 embryos were transferred to recipients. Transfers from 1990 to 2009 (n=10,600) resulted in 2858 weaned calves, representing an overall efficiency (% weaned calves/transfer) of 27%. Pregnancy rates at 60 days post transfer varied from 19 to 44%. Pregnancy length following transfer is extremely variable. A major challenge in a large embryo transfer program is finding good quality recipients. Causes of pregnancy and neonatal losses are under study. Copyright © 2012 Elsevier B.V. All rights reserved.
[Technical and biological evolution of medically assisted procreation (MAP)].
Camier, B
1990-12-01
Compared to IUI (to which one knows that an ovulation induction must not be associated and where 6 cycles must not be exceeded), in vitro fertilization has undergone an important evolution. It has now become ambulatory. Its evolution has been marked by the use of LH-RH agonists, the vaginal route for the echographic puncture and freezing of the embryos. The two progresses expected are: in the short term, the mastering of the retrograde catheterization of the tube, to enable the embryo replacement in sterilities of healthy tubes and, in middle term, a better assessment of the quality of the conceptus to carry out a selective embryo transfer and to reduce the rate of multiple pregnancies.