Science.gov

Sample records for affect embryonic development

  1. Cadmium affects retinogenesis during zebrafish embryonic development

    SciTech Connect

    Hen Chow, Elly Suk; Yu Hui, Michelle Nga; Cheng, Chi Wa; Cheng, Shuk Han

    2009-02-15

    Ocular malformations are commonly observed in embryos of aquatic species after exposure to toxicants. Using zebrafish embryos as the model organism, we showed that cadmium exposure from sphere stage (4 hpf) to end of segmentation stage (24 hpf) induced microphthalmia in cadmium-treated embryos. Embryos with eye defects were then assessed for visual abilities. Cadmium-exposed embryos were behaviorally blind, showing hyperpigmentation and loss of camouflage response to light. We investigated the cellular basis of the formation of the small eyes phenotype and the induction of blindness by studying retina development and retinotectal projections. Retinal progenitors were found in cadmium-treated embryos albeit in smaller numbers. The number of retinal ganglion cells (RGC), the first class of retinal cells to differentiate during retinogenesis, was reduced, while photoreceptor cells, the last batch of retinal neurons to differentiate, were absent. Cadmium also affected the propagation of neurons in neurogenic waves. The neurons remained in the ventronasal area and failed to spread across the retina. Drastically reduced RGC axons and disrupted optic stalk showed that the optic nerves did not extend from the retina beyond the chiasm into the tectum. Our data suggested that impairment in neuronal differentiation of the retina, disruption in RGC axon formation and absence of cone photoreceptors were the causes of microphthalmia and visual impairment in cadmium-treated embryos.

  2. Nicotine alters bovine oocyte meiosis and affects subsequent embryonic development.

    PubMed

    Liu, Ying; Li, Guang-Peng; White, Kenneth L; Rickords, Lee F; Sessions, Benjamin R; Aston, Kenneth I; Bunch, Thomas D

    2007-11-01

    The effects of nicotine on nuclear maturation and meiotic spindle dynamics of bovine oocytes and subsequent embryonic development were investigated. Maturation rates (85%-94%) derived from nicotine treatments at 0.01 to 1.0 mM were similar to the control (86%), but significantly decreased at 2.0 to 6.0 mM. Haploid complements of metaphase II oocytes in 0.01 to 1.0 mM nicotine (approximately 90%) were similar to the control, while lower (ranged from 63% to 76%, P < 0.05 or P < 0.01) haploid oocytes were observed in the 2.0 to 6.0 mM nicotine groups. The majority of the PB1-free oocytes derived from 3.0 to 6.0 mM nicotine treatments were diploidy (2n = 60). Spindle microtubules changed from characteristically being asymmetrical in the controls to being equally distributed into two separate chromosome groups in the nicotine treatments. Nicotine disorganized the microfilament organization and inhibited the movement of anaphase or telophase chromosomes to the cortical area. The inhibited two chromosome groups became two spindles that either moved close in proximity or merged entirely together resulting in diploidy within the affected oocyte. Nicotine treatment significantly reduced the rate of cleavage and blastocyst development after parthenogenetic activation. Diploidy and cell number were drastically reduced in the resultant blastocysts. In conclusion, nicotine can alter the normal process of bovine oocyte meiosis and affects subsequent embryonic development.

  3. Embryonic genotype and inbreeding affect preimplantation development in cattle.

    PubMed

    Lazzari, G; Colleoni, S; Duchi, R; Galli, A; Houghton, F D; Galli, C

    2011-05-01

    Infertility in cattle herds is a growing problem with multifactorial causes. Embryonic genotype and level of inbreeding are among the many factors that can play a role on reproductive efficiency. To investigate this issue, we produced purebred and crossbred bovine embryos by in vitro techniques from Holstein oocytes and Holstein or Brown Swiss semen and analyzed several cellular and molecular features. In the first experiment, purebred and crossbred embryos, obtained from abattoir oocytes, were analyzed for cleavage, development to morula/blastocyst stages, amino acid metabolism and gene expression of developmentally important genes. The results indicated significant differences in the percentage of compacted morulae, in the expression of three genes at the blastocyst stage (MNSOD, GP130 and FGF4) and in the utilization of serine, asparagine, methionine and tryptophan in day 6 embryos. In the second experiment, bovine oocytes were collected by ovum pick up from ten Holstein donors and fertilized with the semen of the respective Holstein sires or with Brown Swiss semen. The derived embryos were grown in vitro up to day 7, and were then transferred to synchronized recipients and recovered on day 12. We found that purebred/inbred embryos had lower blastocyst rate on days 7-8, were smaller on day 12 and had lower expression of the trophoblast gene PLAC8. Overall, these results indicate reduced and delayed development of purebred embryos compared with crossbred embryos. In conclusion, this study provides evidence that embryo genotype and high inbreeding can affect amino acid metabolism, gene expression, preimplantation development and therefore fertility in cattle.

  4. Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth.

    PubMed

    Momoi, Nobuo; Tinney, Joseph P; Liu, Li J; Elshershari, Huda; Hoffmann, Paul J; Ralphe, John C; Keller, Bradley B; Tobita, Kimimasa

    2008-05-01

    Caffeine consumption during pregnancy is reported to increase the risk of in utero growth restriction and spontaneous abortion. In the present study, we tested the hypothesis that modest maternal caffeine exposure affects in utero developing embryonic cardiovascular (CV) function and growth without altering maternal hemodynamics. Caffeine (10 mg.kg(-1).day(-1) subcutaneous) was administered daily to pregnant CD-1 mice from embryonic days (EDs) 9.5 to 18.5 of a 21-day gestation. We assessed maternal and embryonic CV function at baseline and at peak maternal serum caffeine concentration using high-resolution echocardiography on EDs 9.5, 11.5, 13.5, and 18.5. Maternal caffeine exposure did not influence maternal body weight gain, maternal CV function, or embryo resorption. However, crown-rump length and body weight were reduced in maternal caffeine treated embryos by ED 18.5 (P < 0.05). At peak maternal serum caffeine concentration, embryonic carotid artery, dorsal aorta, and umbilical artery flows transiently decreased from baseline at ED 11.5 (P < 0.05). By ED 13.5, embryonic aortic and umbilical artery flows were insensitive to the peak maternal caffeine concentration; however, the carotid artery flow remained affected. By ED 18.5, baseline embryonic carotid artery flow increased and descending aortic flow decreased versus non-caffeine-exposed embryos. Maternal treatment with the adenosine A(2A) receptor inhibitor reproduced the embryonic hemodynamic effects of maternal caffeine exposure. Adenosine A(2A) receptor gene expression levels of ED 11.5 embryo and ED 18.5 uterus were decreased. Results suggest that modest maternal caffeine exposure has adverse effects on developing embryonic CV function and growth, possibly mediated via adenosine A(2A) receptor blockade.

  5. P-element mutations affecting embryonic peripheral nervous system development in Drosophila melanogaster

    SciTech Connect

    Kania, A.; Salzberg, A.; Bhat, M.

    1995-04-01

    The Drosophila embryonic peripheral nervous system (PNS) is an excellent model system to study the molecular mechanisms governing neural development. To identify genes controlling PNS development, we screened 2000 lethal P-element insertion strains. The PNS of mutant embryos was examined using the neural specific marker MAb 22C10, and 92 mutant strains were retained for further analysis. Genetic and cytological analysis of these strains shows that 42 mutations affect previously isolated genes that are known to be required for PNS development: longitudinals lacking (19), mastermind (15), numb (4), big brain (2), and spitz (2). The remaining 50 mutations were classified into 29 complementation groups and the P-element insertions were cytologically mapped. The mutants were classified in five major classes on the basis of their phenotype: gain of neurons, loss of neurons, organizational defects, pathfinding defects and morphological defects. Herein we report the preliminary phenotypic characterization of each of these complementation groups as well as the embryonic lacZ expression pattern of each P-element strain. Our analysis indicates that in most of the P-element insertion strains, the lacZ reporter gene is not expressed in the developing PNS. 52 refs., 5 figs., 5 tabs.

  6. Genetic deletion of the EGFR ligand epigen does not affect mouse embryonic development and tissue homeostasis.

    PubMed

    Dahlhoff, Maik; Schäfer, Matthias; Wolf, Eckhard; Schneider, Marlon R

    2013-02-15

    The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis.

  7. Does low gas permeability of rigid-shelled gekkotan eggs affect embryonic development?

    PubMed

    Andrews, Robin M; Thompson, Michael B; Greene, Virginia W

    2013-06-01

    Parchment-shelled eggs are characteristic of most squamates, including the basal clades of gekkotan lizards. The majority of gekkotan lizards, however, produce rigid-shelled eggs that are highly impermeable to gas exchange; eggs are laid in dry sites and experience a net loss of water during incubation. We tested the hypothesis that the 1,000-fold lower rate of oxygen diffusion through the shells of rigid- compared to parchment-shelled eggs imposes a physiological cost on development. To do this, we contrasted species with rigid and with parchment shells with regards to (1) rates of embryonic metabolism and (2) rates and patterns of development of the yolk sac and chorioallantois, the vascularized extra-embryonic membranes that transport oxygen to embryonic tissues. Metabolic rates of embryos from the rigid-shelled eggs of Gehyra variegata did not differ from those of the parchment-shelled eggs of Oedura lesueurii. Moreover, maximum metabolic rates of gekkotans with rigid shells did not differ from those of gekkotan or scincid lizards with parchment shells. In contrast, the yolk sac covered more of the surface area of the egg at oviposition, and the chorioallantois reached its full extent earlier for the species with rigid shelled eggs (Chondrodactylus turneri, G. variegata) than for the species with parchment-shelled eggs (Eublepharis macularius, O. lesueurii). Differences in the temporal patterns of yolk sac and chorioallantois development would thus serve to compensate for low rates of oxygen diffusion through rigid shells of gekkotans.

  8. IVF affects embryonic development in a sex-biased manner in mice.

    PubMed

    Tan, Kun; Wang, Zhuqing; Zhang, Zhenni; An, Lei; Tian, Jianhui

    2016-04-01

    Increasing evidence indicates that IVF (IVF includes in vitro fertilization and culture) embryos and babies are associated with a series of health complications, and some of them show sex-dimorphic patterns. Therefore, we hypothesized that IVF procedures have sex-biased or even sex-specific effects on embryonic and fetal development. Here, we demonstrate that IVF-induced side effects show significant sexual dimorphic patterns from the pre-implantation to the prenatal stage. During the pre-implantation stage, female IVF embryos appear to be more vulnerable to IVF-induced effects, including an increased percentage of apoptosis (7.22 ± 1.94 vs 0.71 ± 0.76, P<0.01), and dysregulated expression of representative sex-dimorphic genes (Xist, Hprt, Pgk1 and Hsp70). During the mid-gestation stage, IVF males had a higher survival rate than IVF females at E13.5 (male:female=1.33:1), accompanied with a female-biased pregnancy loss. In addition, while both IVF males and females had reduced placental vasculogenesis/angiogenesis, the compensatory placental overgrowth was more evident in IVF males. During the late-gestation period, IVF fetuses had a higher sex ratio (male:female=1.48:1) at E19.5, and both male and female IVF placentas showed overgrowth. After birth, IVF males grew faster than their in vivo (IVO) counterparts, while IVF females showed a similar growth pattern with IVO females. The present study provides a new insight into understanding IVF-induced health complications during embryonic and fetal development. By understanding and minimizing these sex-biased effects of the IVF process, the health of IVF-conceived babies may be improved in the future.

  9. Retinoid-like compounds produced by phytoplankton affect embryonic development of Xenopus laevis.

    PubMed

    Smutná, M; Priebojová, J; Večerková, J; Hilscherová, K

    2017-04-01

    Teratogenic effects, which were remarkably similar to those induced by retinoic acids, have been seen in wild frogs indicating possible source of retinoids in the environment. Recent studies indicate that some cyanobacterial species can contain teratogenic retinoic acids (RAs) and their analogues. Retinoids are known to regulate important processes such as differentiation, development, and embryogenesis. The study investigated the effects of exudates (extracellular compounds) of two cyanobacteria species with retinoic-like activity and one algae species on embryonic development of amphibians. The retinoid-like activity determined by in vitro reporter gene assay reached 528ng retinoid equivalents (REQ)/L and 1000ng REQ/L in exudates of Cylindrospermopsis raciborskii and Microcystis aeruginosa, respectively, while algal exudates showed no detectable activity. Total mean of retinoid-like copounds into exudate was 35.6ng ATRA/mil.cells for M.aeruginosa and 6.71ng ATRA/mil.cells for C.raciborskii, respectively. Toxicity tests with amphibian embryos up to 96h of development were carried out according to the standard guide for the Frog Embryo Teratogenesis Assay Xenopus. Lowest observed effect concentrations (LOEC) of malformations (2.5-2.6µg/L REQ) were two times lower than LOEC for ATRA (5µg/L). The exudates of both cyanobacteria were indeed provoking diverse teratogenic effects (e.g. tail, gut and eyes deformation) and interference with growth in frogs embryos, while such effects were not observed for the algae. Xenopus embryos were also exposed to all-trans retinoic acid (ATRA) in concentration range (1-40µg/L) equivalent to the REQs detected in cyanobacterial exudates. ATRA (10µg/L) caused similar teratogenic phenotypes at corresponding REQs as cyanobacterial exudates. The study confirms the ability of some species of cyanobacteria to produce retinoids naturally and excrete them directly into the environment at concentrations which might have adverse influence on

  10. Gravity and embryonic development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1976-01-01

    The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.

  11. Embryonic development during chronic acceleration

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Abbott, U. K.

    1982-01-01

    Experiments carried out on chicken eggs indicate that the embryo is affected during very early development, especially over the first four days, and during hatching. In the first four days, the brain develops as well as the anlage for all other organs. In addition, the heart commences to function and the extraembryonic membranes that compartmentalize the egg contents form. The latter require an appreciable extension and folding of tissue which may be disrupted by the mechanical load. Observations of embryonic abnormalities that occur during chronic acceleration suggest an inhibition of development of the axial skeleton, which is rarely seen otherwise, a general retardation of embryonic growth, and circulatory problems. The final stages of development (after 18 days) involve the uptake of fluids, the transition to aerial respiration, and the reorientation of the embryo into a normal hatching position. At 4 G mortality is very high during this period, with a majority of embryos failing to reorient into the normal hatching position.

  12. Embryonic development and skeletogenic gene expression affected by X-rays in the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Matranga, Valeria; Zito, Francesca; Costa, Caterina; Bonaventura, Rosa; Giarrusso, Salvatore; Celi, Filippo

    2010-03-01

    International concern over environmental nuclear contamination of salt water fisheries and coastal resources has attracted the interests of ecologists, marine biologists and stakeholders. There are not many studies on the effects of X-rays, a component of radionuclides emissions, on embryonic development and gene expression. The sea urchin embryo is emerging as a useful model system for environmental and eco-toxicological studies. Here, we describe how X-rays affect development and gene expression in embryos of the Mediterranean sea urchin Paracentrotus lividus. Cleavage embryos were exposed to doses from 0.1 to 5 Gy, using an Ag source of X radiation. We found a dose-dependent increase in developmental delays and severe morphological defects in embryos microscopically inspected at two endpoints, 24 and 48 h after irradiation. By analogy with classical toxicity tests parameters we defined the No Observed Effect Dose at 0.1 Gy, the Lowest Observed Effect Dose at 0.5 Gy and ED50 at 1.0 Gy. Major perturbations concerned primitive intestine and skeleton differentiation and development: X-rays exposed embryos had both no gut and arms or poorly and abnormally developed ones. We found a dose-dependent reduction in the mRNA levels of two skeleton-specific genes, Pl-SM30 (spicule matrix 30) and Pl-msp130 (matrix spicule protein 130), as measured by semi-quantitative RT-PCR and whole mount in situ hybridization, respectively. These findings indicate the sea urchin embryo as a sensible bioindicator of X-radiation and propose its use as an alternative model, emphasizing the need for further investigation aimed to protect ecosystem health.

  13. Endogenous and exogenous estrogens during embryonic development affect timing of hatch and growth in the American alligator (Alligator mississippiensis).

    PubMed

    Cruze, Lori; Roark, Alison M; Rolland, Gabrielle; Younas, Mona; Stacy, Nicole; Guillette, Louis J

    2015-06-01

    Prenatal exposure to estrogenic endocrine disrupting chemicals (EDCs) can affect length of gestation and body mass and size of offspring. However, the dose, timing, and duration of exposure as well as sex and strain of the experimental animals determine the direction and magnitude of these effects. In this study, we examined the effects of a one-time embryonic exposure to either 17 β-estradiol (E2) or bisphenol A (BPA) on rate of development and growth in American alligators (Alligator mississippiensis). Our results indicate that BPA and E2-treated alligators hatched approximately 1.4 days earlier than vehicle-treated (control) alligators, suggesting that estrogenic chemicals hasten hatching in these animals. We assessed growth rates, growth allometry, and body condition for 21 weeks after hatching and found that BPA-treated alligators grew more quickly shortly after hatching but more slowly thereafter compared to control alligators. Conversely, E2-treated alligators grew more slowly shortly after hatching but more quickly thereafter compared to control alligators. As a result of differences in growth rate, BPA-treated alligators were heavier, longer, and fatter than control alligators at age 5 weeks but were similar in size and leaner than control alligators at age 21 weeks. Biochemical analytes were examined at the end of the 21-week study to assess overall metabolic condition. We found that E2-treated alligators had significantly higher circulating plasma concentrations of cholesterol and triglycerides than control alligators while BPA-treated alligators had blood profiles comparable to control alligators. Our results provide important insights into the effects of exogenous estrogens on morphology and metabolism in an oviparous, semi-aquatic reptile.

  14. Chilling Affects Phytohormone and Post-Embryonic Development Pathways during Bud Break and Fruit Set in Apple (Malus domestica Borkh.)

    PubMed Central

    Kumar, Gulshan; Gupta, Khushboo; Pathania, Shivalika; Swarnkar, Mohit Kumar; Rattan, Usha Kumari; Singh, Gagandeep; Sharma, Ram Kumar; Singh, Anil Kumar

    2017-01-01

    The availability of sufficient chilling during bud dormancy plays an important role in the subsequent yield and quality of apple fruit, whereas, insufficient chilling availability negatively impacts the apple production. The transcriptome profiling during bud dormancy release and initial fruit set under low and high chill conditions was performed using RNA-seq. The comparative high number of differentially expressed genes during bud break and fruit set under high chill condition indicates that chilling availability was associated with transcriptional reorganization. The comparative analysis reveals the differential expression of genes involved in phytohormone metabolism, particularly for Abscisic acid, gibberellic acid, ethylene, auxin and cytokinin. The expression of Dormancy Associated MADS-box, Flowering Locus C-like, Flowering Locus T-like and Terminal Flower 1-like genes was found to be modulated under differential chilling. The co-expression network analysis indentified two high chill specific modules that were found to be enriched for “post-embryonic development” GO terms. The network analysis also identified hub genes including Early flowering 7, RAF10, ZEP4 and F-box, which may be involved in regulating chilling-mediated dormancy release and fruit set. The results of transcriptome and co-expression network analysis indicate that chilling availability majorly regulates phytohormone-related pathways and post-embryonic development during bud break. PMID:28198417

  15. Mechanotransduction in Embryonic Vascular Development

    PubMed Central

    Roman, Beth L.; Pekkan, Kerem

    2015-01-01

    A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial-venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities. PMID:22744845

  16. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda: Palinuridae).

    PubMed

    Day, Ryan D; McCauley, Robert D; Fitzgibbon, Quinn P; Semmens, Jayson M

    2016-03-07

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8-12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa(2) · s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages.

  17. ER type I signal peptidase subunit (LmSPC1) is essential for the survival of Locusta migratoria manilensis and affects moulting, feeding, reproduction and embryonic development.

    PubMed

    Zhang, W; Xia, Y

    2014-06-01

    The endoplasmic reticulum type I signal peptidase complex (ER SPC) is a conserved enzyme that cleaves the signal peptides of secretory or membrane preproteins. The deletion of this enzyme leads to the accumulation of uncleaved proteins in biomembranes and cell death. However, the physiological functions of ER SPC in insects are not fully understood. Here, a catalytic subunit gene of ER SPC, LmSPC1, was cloned from Locusta migratoria manilensis and its physiological functions were analysed by RNA interference (RNAi). The LmSPC1 open reading frame encoded a protein of 178 amino acids with all five conserved regions of signal peptidases. RNAi-mediated knockdown of LmSPC1 resulted in high mortality. Sixty-nine per cent of dead nymphs died of abnormal moulting, corresponding to decreased activity of moulting fluid protease. Moreover, insects in the RNAi group experienced a decline in food intake, and a decrease in the secretion of total protein and digestive enzymes from midgut tissues to the midgut lumen. Furthermore, the females produced fewer eggs and eggs with disrupted embryogenesis. These results indicate that LmSPC1 is required for the secretion of secretory proteins, affects physiological functions, including moulting, feeding, reproduction and embryonic development, and is essential for survival. Therefore, LmSPC1 may be a potential target for locust control.

  18. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda:Palinuridae)

    PubMed Central

    Day, Ryan D.; McCauley, Robert D.; Fitzgibbon, Quinn P.; Semmens, Jayson M.

    2016-01-01

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8–12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa2·s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages. PMID:26947006

  19. Embryonic development in Zungaro jahu.

    PubMed

    Marques, Camila; Faustino, Francine; Bertolucci, Bruno; Paes, Maria do Carmo Faria; Silva, Regiane Cristina da; Nakaghi, Laura Satiko Okada

    2017-02-01

    The aim of this study was to characterize the embryonic development of Zungaro jahu, a fresh water teleostei commonly known as 'jaú'. Samples were collected at pre-determined times from oocyte release to larval hatching and analysed under light microscopy, transmission electron microscopy and scanning electron microscopy. At the first collection times, the oocytes and eggs were spherical and yellowish, with an evident micropyle. Embryo development took place at 29.4 ± 1.5°C and was divided into seven stages: zygote, cleavage, morula, blastula, gastrula, organogenesis, and hatching. The differentiation of the animal and vegetative poles occured during the zygote stage, at 10 min post-fertilization (mpf), leading to the development of the egg cell at 15 mpf. From 20 to 75 mpf, successive cleavages resulted in the formation of 2, 4, 8, 16, 32 and 64 blastomeres. The morula stage was observed between 90 and 105 mpf, and the blastula and gastrula stage at 120 and 180 mpf; respectively. The end of the gastrula stage was characterized by the presence of the yolk plug at 360 mpf. Organogenesis followed, with differentiation of the cephalic and caudal regions, elongation of the embryo by the cephalo-caudal axis, and somitogenesis. Hatching occurred at 780 mpf, with mean larval total length of 3.79 ± 0.11 mm.

  20. Avian embryonic development in hyperdynamic environments

    NASA Technical Reports Server (NTRS)

    Abbott, U. K.; Smith, A. H.

    1983-01-01

    Embryos which developed for 24 hours in the oviduct of hens maintained at 2 G and which were subsequently incubated at Earth gravity had a 14% reduction in hatchability. Increased mortality during the first 4 days, and an increase in embryonic abnormalities were of the types usually found during the first mortality peak (2-3 days). Embryos in eggs that were produced at Earth gravity and continued their development on the centrifuge at fields of 2 G or less did not appear to be greatly affected by the treatment. At 4 G, 91% of the embryos died, mostly on the first and second days of incubation. Abnormalities prominent in the centrifuged eggs include: (a) a failure of the primitive streak to develop; (b) interference with the development of the axial skeleton; (c) multiple hemorrhages, mostly petechial which is consistent with capillary fragility; and (d) retardation of embryo growth, possibly caused by an interference with gaseous diffusion, the result of an acceleration-induced increase in gas density in the centrifuging incubator.

  1. Rho GTPases in embryonic development

    PubMed Central

    Duquette, Philippe M; Lamarche-Vane, Nathalie

    2014-01-01

    In the last decade, several mouse models for RhoA, Rac1, and Cdc42 have emerged and have contributed a great deal to understanding the precise functions of Rho GTPases at early stages of development. This review summarizes our current knowledge of various mouse models of tissue-specific ablation of Cdc42, Rac1, and RhoA with emphasis on early embryogenesis, epithelial and skin morphogenesis, tubulogenesis, development of the central nervous system, and limb development. PMID:25483305

  2. Embryonic development of Pelteobagrus fulvidraco (Richardson, 1846)

    NASA Astrophysics Data System (ADS)

    Wang, Weimin; Abbas, Khalid; Yan, Ansheng

    2006-12-01

    For production enhancement and procedure upgrade, the developmental phases of laboratory-reared eggs of catfish Pelteobagrus fulvidraco were investigated. Twenty mature females and 10 males were collected from Dadongmen wholesale fisheries market in Wuhan City on May 8, 2003. Zygotes were stripped from mature fish after hormone-induced ovulation, fertilized, and incubated through whole embryonic development. The fertilized eggs were stocked in density of 100 eggs/L in white square tanks of 10 L. Incubation water was dechlorinated tap water with continuous aeration. The tanks were lit directly with 60 W fluorescent bulbs with a 12 light: 12 dark photoperiod. Water temperature, dissolved oxygen and pH were 29.0±0.5°C, 6.7±0.4 mg/L and 7.4±2, respectively. The results showed that the eggs of P. fulvidraco were yellow, sticky and contained much yolk. The mean diameter of fertilized eggs was 2.03 mm. At the water temperature of 29.0±0.5°C, the ontogenesis spent about 33 h after fertilization. From fertilization to hatching, the embryonic development can be divided into 30 40 phases, which varies in the emphasis and direction of development. The detailed embryonic movement was also described.

  3. Deficiency in Crumbs homolog 2 (Crb2) affects gastrulation and results in embryonic lethality in mice.

    PubMed

    Xiao, Zhijie; Patrakka, Jaakko; Nukui, Masatoshi; Chi, Lijun; Niu, Dadi; Betsholtz, Christer; Pikkarainen, Timo; Pikkarainan, Timo; Vainio, Seppo; Tryggvason, Karl

    2011-12-01

    The Crumbs family of transmembrane proteins has an important role in the differentiation of the apical membrane domain in various cell types, regulating such processes as epithelial cell polarization. The mammalian Crumbs protein family is composed of three members. Here, we inactivated the mouse Crb2 gene with gene-targeting techniques and found that the protein is crucial for early embryonic development with severe abnormalities appearing in Crb2-deficient embryos at late-gastrulation. Our findings indicate that the primary defect in the mutant embryos is disturbed polarity of the epiblast cells at the primitive streak, which affects epithelial to mesenchymal transition (EMT) during gastrulation, resulting in impaired mesoderm and endoderm formation, and embryonic lethality by embryonic day 12.5. These findings therefore indicate a novel role for the Crumbs family of proteins.

  4. Informing tendon tissue engineering with embryonic development.

    PubMed

    Glass, Zachary A; Schiele, Nathan R; Kuo, Catherine K

    2014-06-27

    Tendon is a strong connective tissue that transduces muscle-generated forces into skeletal motion. In fulfilling this role, tendons are subjected to repeated mechanical loading and high stress, which may result in injury. Tissue engineering with stem cells offers the potential to replace injured/damaged tissue with healthy, new living tissue. Critical to tendon tissue engineering is the induction and guidance of stem cells towards the tendon phenotype. Typical strategies have relied on adult tissue homeostatic and healing factors to influence stem cell differentiation, but have yet to achieve tissue regeneration. A novel paradigm is to use embryonic developmental factors as cues to promote tendon regeneration. Embryonic tendon progenitor cell differentiation in vivo is regulated by a combination of mechanical and chemical factors. We propose that these cues will guide stem cells to recapitulate critical aspects of tenogenesis and effectively direct the cells to differentiate and regenerate new tendon. Here, we review recent efforts to identify mechanical and chemical factors of embryonic tendon development to guide stem/progenitor cell differentiation toward new tendon formation, and discuss the role this work may have in the future of tendon tissue engineering.

  5. Informing tendon tissue engineering with embryonic development

    PubMed Central

    Glass, Zachary A.; Schiele, Nathan R.; Kuo, Catherine K.

    2014-01-01

    Tendon is a strong connective tissue that transduces muscle-generated forces into skeletal motion. In fulfilling this role, tendons are subjected to repeated mechanical loading and high stress, which may result in injury. Tissue engineering with stem cells offers the potential to replace injured/damaged tissue with healthy, new living tissue. Critical to tendon tissue engineering is the induction and guidance of stem cells towards the tendon phenotype. Typical strategies have relied on adult tissue homeostatic and healing factors to influence stem cell differentiation, but have yet to achieve tissue regeneration. A novel paradigm is to use embryonic developmental factors as cues to promote tendon regeneration. Embryonic tendon progenitor cell differentiation in vivo is regulated by a combination of mechanical and chemical factors. We propose that these cues will guide stem cells to recapitulate critical aspects of tenogenesis and effectively direct the cells to differentiate and regenerate new tendon. Here, we review recent efforts to identify mechanical and chemical factors of embryonic tendon development to guide stem/progenitor cell differentiation toward new tendon formation, and discuss the role this work may have in the future of tendon tissue engineering. PMID:24484642

  6. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro.

    PubMed

    Feng, Ruizhi; Sang, Qing; Zhu, Yan; Fu, Wei; Liu, Miao; Xu, Yan; Shi, Huijuan; Xu, Yao; Qu, Ronggui; Chai, Renjie; Shao, Ruijin; Jin, Li; He, Lin; Sun, Xiaoxi; Wang, Lei

    2015-03-03

    Previous work from our laboratory demonstrated the existence of miRNAs in human follicular fluid. In the current study, we have sought to identify miRNAs that might affect oocyte/embryo quality in patients undergoing intracytoplasmic sperm injection and to investigate their roles in in vitro fertilization outcomes in mouse oocytes. 53 samples were classified as Group 1 (high quality) if the day-3 embryos had seven and more cells or as Group 2 (low quality) if the embryos had six and fewer cells. TaqMan Human microRNAs cards and qRT-PCR were performed to verify differently expressed miRNAs. The function of the corresponding miRNA was investigated in mouse oocytes by injecting them with miRNA-inhibitor oligonucleotides. We found that hsa-miR-320a and hsa-miR-197 had significantly higher expression levels in the Group 1 follicular fluids than in Group 2 (p = 0.0073 and p = 0.008, respectively). Knockdown of mmu-miR-320 in mouse oocytes strongly decreased the proportions of MII oocytes that developed into two-cell and blastocyst stage embryos (p = 0.0048 and p = 0.0069, respectively). Wnt signaling pathway components had abnormal expression level in miR-320 inhibitor-injected oocytes. This study provides the first evidence that miRNAs in human follicular fluid are indicative of and can influence embryo quality.

  7. Effects of embryonic cyclosporine exposures on brain development and behavior.

    PubMed

    Clift, Danielle E; Thorn, Robert J; Passarelli, Emily A; Kapoor, Mrinal; LoPiccolo, Mary K; Richendrfer, Holly A; Colwill, Ruth M; Creton, Robbert

    2015-04-01

    Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures.

  8. Embryonic development of the cricket Gryllus bimaculatus.

    PubMed

    Donoughe, Seth; Extavour, Cassandra G

    2016-03-01

    Extensive research into Drosophila melanogaster embryogenesis has improved our understanding of insect developmental mechanisms. However, Drosophila development is thought to be highly divergent from that of the ancestral insect and arthropod in many respects. We therefore need alternative models for arthopod development that are likely to be more representative of basally-branching clades. The cricket Gryllus bimaculatus is such a model, and currently has the most sophisticated functional genetic toolkit of any hemimetabolous insect. The existing cricket embryonic staging system is fragmentary, and it is based on morphological landmarks that are not easily visible on a live, undissected egg. To address this problem, here we present a complementary set of "egg stages" that serve as a guide for identifying the developmental progress of a cricket embryo from fertilization to hatching, based solely on the external appearance of the egg. These stages were characterized using a combination of brightfield timelapse microscopy, timed brightfield micrographs, confocal microscopy, and measurements of egg dimensions. These egg stages are particularly useful in experiments that involve egg injection (including RNA interference, targeted genome modification, and transgenesis), as injection can alter the speed of development, even in control treatments. We also use 3D reconstructions of fixed embryo preparations to provide a comprehensive description of the morphogenesis and anatomy of the cricket embryo during embryonic rudiment assembly, germ band formation, elongation, segmentation, and appendage formation. Finally, we aggregate and schematize a variety of published developmental gene expression patterns. This work will facilitate further studies on G. bimaculatus development, and serve as a useful point of reference for other studies of wild type and experimentally manipulated insect development in fields from evo-devo to disease vector and pest management.

  9. [Microglial cells and development of the embryonic central nervous system].

    PubMed

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  10. Characterization of mechanical and biochemical properties of developing embryonic tendon

    PubMed Central

    Marturano, Joseph E.; Arena, Jeffrey D.; Schiller, Zachary A.; Georgakoudi, Irene; Kuo, Catherine K.

    2013-01-01

    Tendons have uniquely high tensile strength, critical to their function to transfer force from muscle to bone. When injured, their innate healing response results in aberrant matrix organization and functional properties. Efforts to regenerate tendon are challenged by limited understanding of its normal development. Consequently, there are few known markers to assess tendon formation and parameters to design tissue engineering scaffolds. We profiled mechanical and biological properties of embryonic tendon and demonstrated functional properties of developing tendon are not wholly reflected by protein expression and tissue morphology. Using force volume-atomic force microscopy, we found that nano- and microscale tendon elastic moduli increase nonlinearly and become increasingly spatially heterogeneous during embryonic development. When we analyzed potential biochemical contributors to modulus, we found statistically significant but weak correlation between elastic modulus and collagen content, and no correlation with DNA or glycosaminoglycan content, indicating there are additional contributors to mechanical properties. To investigate collagen cross-linking as a potential contributor, we inhibited lysyl oxidase-mediated collagen cross-linking, which significantly reduced tendon elastic modulus without affecting collagen morphology or DNA, glycosaminoglycan, and collagen content. This suggests that lysyl oxidase-mediated cross-linking plays a significant role in the development of embryonic tendon functional properties and demonstrates that changes in cross-links alter mechanical properties without affecting matrix content and organization. Taken together, these data demonstrate the importance of functional markers to assess tendon development and provide a profile of tenogenic mechanical properties that may be implemented in tissue engineering scaffold design to mechanoregulate new tendon regeneration. PMID:23576745

  11. Cysteamine supplementation during in vitro maturation of slaughterhouse- and opu-derived bovine oocytes improves embryonic development without affecting cryotolerance, pregnancy rate, and calf characteristics.

    PubMed

    Merton, J S; Knijn, H M; Flapper, H; Dotinga, F; Roelen, B A J; Vos, P L A M; Mullaart, E

    2013-09-01

    Optimization of ovum pick up (OPU) followed by in vitro embryo production (IVP) is strongly driven by the needs of both beef and dairy cattle breeders to enhance genetic improvement. The rapidly growing use of genomic selection in cattle has increased the interest in using OPU-IVP technology to increase the number of embryos and offspring per donor, thus allowing enhanced selection intensity for the next generation. The aim of this study was to optimize embryo production through supplementation of cysteamine during in vitro maturation (IVM) and in vitro culture (IVC) of both slaughterhouse- and OPU-derived oocytes. The effects on embryo production and on embryo cryotolerance, post-transfer embryo survival, and calf characteristics, including gestation length, birth weight, perinatal mortality, and sex ratio were studied. In study 1, immature slaughterhouse-derived cumulus-oocyte complexes (COCs) were matured in IVM medium supplemented with or without 0.1 mM cysteamine, fertilized and cultured for 7 days in 0.5 ml SOFaaBSA. In study 2, cysteamine was present during both IVM (0.1 mM) and IVC (0.01, 0.05, 0.1 mM) from Days 1 to 4. In study 3, OPU-derived COCs were matured in medium supplemented with or without 0.1 mM cysteamine in a 2 × 2 factorial design (OPU week and cysteamine treatment). Embryos were evaluated for stage and grade on Day 7 and, depending on the number of transferable embryos and recipients available, the embryos were transferred either fresh or frozen-thawed at a later date. The presence of cysteamine during IVM significantly increased the embryo production rate with slaughterhouse-derived COCs (24.0% vs. 19.4%). The higher number of embryos at Day 7 was due to an increased number of blastocysts, whereas the distribution of embryos among different quality grades and cryotolerance was not affected. Embryo production rate was negatively affected when cysteamine was present during both the processes of IVM and IVC during Days 1 to 4 of culture (13

  12. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    PubMed

    Wang, Guang; Zhong, Shan; Zhang, Shi-yao; Ma, Zheng-lai; Chen, Jian-long; Lu, Wen-hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development.

  13. Laser fusion of mouse embryonic cells and intra-embryonic fusion of blastomeres without affecting the embryo integrity.

    PubMed

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.

  14. The role of the pupal determinant broad during embryonic development of a direct-developing insect

    PubMed Central

    Rynerson, Melody R.; Truman, James W.; Riddiford, Lynn M.

    2010-01-01

    Metamorphosis is one of the most common, yet dramatic of life history strategies. In insects, complete metamorphosis with morphologically distinct larval stages arose from hemimetabolous ancestors that were more direct developing. Over the past century, several ideas have emerged that suggest the holometabolous pupa is developmentally homologous to the embryonic stages of the hemimetabolous ancestor. Other theories consider the pupal stage to be a modification of a hemimetabolous nymph. To address this question, we have isolated an ortholog of the pupal determinant, broad (br), from the hemimetabolous milkweed bug and examined its role during embryonic development. We show that Oncopeltus fasciatus br (Of'br) is expressed in two phases. The first occurs during germ band invagination and segmentation when Of'br is expressed ubiquitously in the embryonic tissues. The second phase of Of'br expression appears during the pronymphal phase of embryogenesis and persists through nymphal differentiation to decline just before hatching. Knock-down of Of'br transcripts results in defects that range from posterior truncations in the least-affected phenotypes to completely fragmented embryonic tissues in the most severe cases. Analysis of the patterning genes engrailed and hunchback reveal loss of segments and a failure in neural differentiation after Of'br depletion. Finally, we show that br is constitutively expressed during embyrogenesis of the ametabolous firebrat, Thermobia domestica. This suggests that br expression is prominent during embryonic development of ametabolous and hemimetabolous insects but was lost with the emergence of the completely metamorphosing insects. PMID:20127251

  15. A trade-off between embryonic development rate and immune function of avian offspring is concealed by embryonic temperature

    USGS Publications Warehouse

    Martin, Thomas E.; Arriero, Elena; Majewska, Ania

    2011-01-01

    Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.

  16. Ornithine-δ-Aminotransferase Inhibits Neurogenesis During Xenopus Embryonic Development

    PubMed Central

    Peng, Ying; Cooper, Sandra K.; Li, Yi; Mei, Jay M.; Qiu, Shuwei; Borchert, Gregory L.; Donald, Steven P.; Kung, Hsiang-fu; Phang, James M.

    2015-01-01

    Purpose. In humans, deficiency of ornithine-δ-aminotransferase (OAT) results in progressive degeneration of the neural retina (gyrate atrophy) with blindness in the fourth decade. In this study, we used the Xenopus embryonic developmental model to study functions of the OAT gene on embryonic development. Methods. We cloned and sequenced full-length OAT cDNA from Xenopus oocytes (X-OAT) and determined X-OAT expression in various developmental stages of Xenopus embryos and in a variety of adult tissues. The phenotype, gene expression of neural developmental markers, and enzymatic activity were detected by gain-of-function and loss-of-function manipulations. Results. We showed that X-OAT is essential for Xenopus embryonic development, and overexpression of X-OAT produces a ventralized phenotype characterized by a small head, lack of axial structure, and defective expression of neural developmental markers. Using X-OAT mutants based on mutations identified in humans, we found that substitution of both Arg 180 and Leu 402 abrogated both X-OAT enzymatic activity and ability to modulate the developmental phenotype. Neurogenesis is inhibited by X-OAT during Xenopus embryonic development. Conclusions. Neurogenesis is inhibited by X-OAT during Xenopus embryonic development, but it is essential for Xenopus embryonic development. The Arg 180 and Leu 402 are crucial for these effects of the OAT molecule in development. PMID:25783604

  17. Embryonic zebrafish neuronal growth is not affected by an applied electric field in vitro.

    PubMed

    Cormie, Peter; Robinson, Kenneth R

    2007-01-10

    Naturally occurring electric fields (EFs) have been implicated in cell guidance during embryonic development and adult wound healing. Embryonic Xenopus laevis neurons sprout preferentially towards the cathode, turn towards the cathode, and migrate faster towards the cathode in the presence of an external EF in vitro. A recent Phase 1 clinical trial has investigated the effects of oscillating EFs on human spinal cord regeneration. The purpose of this study was to investigate whether embryonic zebrafish neurons respond to an applied EF, and thus extend this research into another vertebrate system. Neural tubes of zebrafish embryos (16-17 somites) were dissected and dissociated neuroblasts were plated onto laminin-coated glass. A 100 mV/mm EF was applied to cell cultures for 4 or 20 h and the responses of neurons to the applied EFs were investigated. After 4h in an EF neurites were significantly shorter than control neurites. No other statistically significant effects were observed. After 20 h, control and EF-exposed neurites were no different in length. No length difference was seen between cathodally- and anodally-sprouted neurites. Application of an EF did not affect the average number of neurons in a chamber. Growth cones did not migrate preferentially towards either pole of the EF and no asymmetry was seen in neurite sprout sites. We conclude that zebrafish neurons do not respond to a 100 mV/mm applied EF in vitro. This suggests that neurons of other vertebrate species may not respond to applied EFs in the same ways as Xenopus laevis neurons.

  18. Embryonic exposure to thimerosal, an organomercury compound, causes abnormal early development of serotonergic neurons.

    PubMed

    Ida-Eto, Michiru; Oyabu, Akiko; Ohkawara, Takeshi; Tashiro, Yasura; Narita, Naoko; Narita, Masaaki

    2011-11-14

    Even though neuronal toxicity due to organomercury compounds is well known, thimerosal, an organomercury compound, is widely used in pediatric vaccine preservation. In the present study, we examined whether embryonic exposure to thimerosal affects early development of serotonergic neurons. Thimerosal (1mg Hg/kg) was intramuscularly administered to pregnant rats on gestational day 9 (susceptible time window for development of fetal serotonergic system), and fetal serotonergic neurons were assessed at embryonic day 15 using anti-serotonin antibodies. A dramatic increase in the number of serotonergic neurons localized to the lateral portion of the caudal raphe was observed in thimerosal group (1.9-fold increase, p<0.01 compared to control). These results indicate that embryonic exposure to thimerosal affects early development of serotonergic neurons.

  19. Histone demethylase JMJD5 is essential for embryonic development

    SciTech Connect

    Oh, Sangphil; Janknecht, Ralf

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Histone demethylase JMJD5 is essential for embryogenesis. Black-Right-Pointing-Pointer Transcription of tumor suppressor p53 is upregulated in JMJD5 knockout embryos. Black-Right-Pointing-Pointer JMJD5 may antagonize p53-dependent growth inhibition and apoptosis. Black-Right-Pointing-Pointer JMJD5 is overexpressed in leukemias and breast cancer. -- Abstract: Histone lysine methylation is pivotal in regulating chromatin structure and thus profoundly affects the transcriptome. JMJD5 (jumonji C domain-containing 5) is a histone demethylase that specifically removes methyl moieties from dimethylated lysine 36 on histone H3 and exerts a pro-proliferative effect on breast cancer cells. Here, we generated JMJD5 knockout mice in order to study the physiological significance of this enzyme. Whereas heterozygous knockout mice displayed no overt phenotype, homozygous JMJD5 knockouts died around day 10 of embryonal development. JMJD5{sup -/-} embryos showed delayed development already at E8.5 and were actively resorbed at E10.5. While strong JMJD5 expression was observed only in the yolk sac at E8.5, JMJD5 was robustly expressed in E10.5 embryos at several sites, including the heart and eye. Lack of JMJD5 resulted in transcriptional upregulation of the tumor suppressor p53. Concurrently, the cell cycle inhibitor p21 and the pro-apoptotic molecule Noxa, both of which are prominent p53 target genes, became strongly upregulated in JMJD5{sup -/-} embryos. Collectively, our data indicate that JMJD5 is essential during embryonal development and a repressor of p53 expression. The latter suggests that JMJD5 has oncogenic activity and accordingly JMJD5 is upregulated in leukemias and breast cancer.

  20. Actin Cytoskeleton Contributes to the Elastic Modulus of Embryonic Tendon During Early Development

    PubMed Central

    Schiele, Nathan R.; von Flotow, Friedrich; Tochka, Zachary L.; Hockaday, Laura A.; Marturano, Joseph E.; Thibodeau, Jeffrey J.; Kuo, Catherine K.

    2016-01-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties. PMID:25721681

  1. Actin cytoskeleton contributes to the elastic modulus of embryonic tendon during early development.

    PubMed

    Schiele, Nathan R; von Flotow, Friedrich; Tochka, Zachary L; Hockaday, Laura A; Marturano, Joseph E; Thibodeau, Jeffrey J; Kuo, Catherine K

    2015-06-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties.

  2. PTBP1 is required for embryonic development before gastrulation.

    PubMed

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A Francis; Solimena, Michele

    2011-02-17

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.

  3. PTBP1 Is Required for Embryonic Development before Gastrulation

    PubMed Central

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A. Francis; Solimena, Michele

    2011-01-01

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures. PMID:21423341

  4. Mechanobiology of Embryonic Skeletal Development: Insights from Animal Models

    PubMed Central

    Nowlan, Niamh C.; Sharpe, James; Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula

    2016-01-01

    A range of clinical conditions in which foetal movement is reduced or prevented can have a severe effect on skeletal development. Animal models have been instrumental to our understanding of the interplay between mechanical forces and skeletal development, in particular the mouse and the chick model systems. In the chick, the most commonly used means of altering the mechanical environment is by pharmaceutical agents which induce paralysis, while genetically modified mice with non-functional or absent skeletal muscle offer a valuable tool for examining the interplay between muscle forces and skeletogenesis in mammals. This article reviews the body of research on animal models of bone or joint formation in vivo in the presence of an altered or abnormal mechanical environment. In both immobilised chicks and ‘muscleless limb’ mice, a range of effects are seen, such as shorter rudiments with less bone formation, changes in rudiment and joint shape and abnormal joint cavitation. However, while all bones and synovial joints are affected in immobilised chicks, some rudiments and joints are unaffected in muscleless mice. We propose that extrinsic mechanical forces from movements of the mother or littermates impact on skeletogenesis in mammals, while the chick embryo is reliant on intrinsic movement for mechanical stimulation. The insights gained from animal models into the mechanobiology of embryonic skeletal development could provide valuable cues to prospective tissue engineers of cartilage and bone, and contribute to new or improved treatments to minimise the impact on skeletal development of human disorders of reduced movement in utero. PMID:20860060

  5. Embryonic development of Girardia tigrina (Girard, 1850) (Platyhelminthes, Tricladida, Paludicola).

    PubMed

    Vara, D C; Leal-Zanchet, A M; Lizardo-Daudt, H m

    2008-11-01

    The embryonic development of freshwater triclads is mainly known from studies of species of Dendrocoelum, Planaria, Polycelis, and, more recently, Schmidtea. The present study characterizes the development of Girardia tigrina (Girard, 1850) by means of optical microcopy using glycol methacrylate semi-thin sections. 94 cocoons were collected in the period from laying to hatching, with intervals of up to twenty-four hours. The sequence of morphological changes occurring in the embryo permitted the identification of nine embryonic stages. At the time of cocoon laying, numerous embryos were dispersed among many yolk cells, with a rigid capsule covering the entire cocoon. In the first stage (approx. up to 6 hours after cocoon laying), yolk cells and embryonic cells showed random distribution. Stage II (between 12 and 24 hours after cocoon laying) is characterized by aggregates of blastomeres, which later aggregate forming an enteroblastula. Approximately 2 days after cocoon laying (stage III), formation of the embryonic epidermis and embryonic digestive system took place, the latter degenerating during the subsequent stage. Stage V (until the fourth day) is characterized by the formation of the definitive epidermis. Between 4 and 6 days after laying, organogenesis of the definitive inner organs starts (stage VI). Approximately 14 days after laying (stage IX), formation of the nervous system is completed. At this stage, the embryo shows similar characteristics to those of newly hatched juveniles. The hatching of Girardia tigrina occurs in the period between twelve to twenty-two days after cocoon laying.

  6. [Effect of zuoguiwan on early embryonic development of mice].

    PubMed

    Feng, Q J; Feng, M L; Wang, Y L

    1996-11-01

    Effects of Zuoguiwan (ZGW, a prescription for reinforcing Kidney Yin) on early embryonic development were observed by using embryonic developmental retardation model of mice formed by alcohol. Drug was given in three ways: add ZGW into cultural medium directly (group A), add the serum of mice received ZGW (group B) and cultured the embryo taken from ZGW treated mice (group C). The result was compared with that treated with Bazhen decoction (BZD, a prescription for supplementing Qi and blood). Results showed that the in vitro developmental rate of embryo from 2-cell stage to blastula stage in group B and C, which approached to normal control group, was higher than that in untreated model obviously. While in BZW group, it was higher than in normal control group only in certain stage. However, adding ZGW directly into culture medium didn't reveal marked effect on early embryonic development.

  7. Functional analysis of Scr during embryonic and post-embryonic development in the cockroach, Periplaneta americana.

    PubMed

    Hrycaj, Steven; Chesebro, John; Popadić, Aleksandar

    2010-05-01

    The cockroach, Periplaneta americana represents a basal insect lineage that undergoes the ancestral hemimetabolous mode of development. Here, we examine the embryonic and post-embryonic functions of the hox gene Scr in Periplaneta as a way of better understanding the roles of this gene in the evolution of insect body plans. During embryogenesis, Scr function is strictly limited to the head with no role in the prothorax. This indicates that the ancestral embryonic function of Scr was likely restricted to the head, and that the posterior expansion of expression in the T1 legs may have preceded any apparent gain of function during evolution. In addition, Scr plays a pivotal role in the formation of the dorsal ridge, a structure that separates the head and thorax in all insects. This is evidenced by the presence of a supernumerary segment that occurs between the labial and T1 segments of RNAiScr first nymphs and is attributed to an alteration in engrailed (en) expression. The fact that similar Scr phenotypes are observed in Tribolium but not in Drosophila or Oncopeltus reveals the presence of lineage-specific variation in the genetic architecture that controls the formation of the dorsal ridge. In direct contrast to the embryonic roles, Scr has no function in the head region during post-embryogenesis in Periplaneta, and instead, strictly acts to provide identity to the T1 segment. Furthermore, the strongest Periplaneta RNAiScr phenotypes develop ectopic wing-like tissue that originates from the posterior region of the prothoracic segment. This finding provides a novel insight into the current debate on the morphological origin of insect wings.

  8. The effects of light exposure during incubation on embryonic development and hatchling traits in lizards.

    PubMed

    Zhang, Yong-Pu; Li, Shu-Ran; Ping, Jun; Li, Shi-Wen; Zhou, Hua-Bin; Sun, Bao-Jun; Du, Wei-Guo

    2016-12-05

    Light is an environmental factor that is known to profoundly affect embryonic development in some oviparous vertebrates, but such effects are unstudied in reptiles. We investigated the light sensitivity of lizard embryos by examining the thickness and light transmittance of eggshells as well as the effect of light on embryonic development and hatchling traits in four lizard species, the Chinese skink (Plestiodon chinensis), the northern grass lizard (Takydromus septentrionalis), the oriental leaf-toed gecko (Hemidactylus bowringii) and the Japanese gecko (Gekko japonicus). The eggshells were thinner and thus had higher light transmittance in Chinese skink than the other three species. Light exposure during incubation significantly accelerated the embryonic development in all species, with higher light intensity resulting in faster embryonic development. Interestingly, light stimulation negatively influenced hatchling size and survival in skinks, but had no effect in lacertids and geckos. This interspecific discrepancy not only relates to the differences in thickness and light transmittance of eggshells, but might also reflect the differences in the reproductive habits of these species. Given the diversity of light conditions that reptile embryos face during development, studies on the response of reptile embryos to light may offer a unique opportunity to understand the mechanisms of embryonic light sensitivity in animals.

  9. The effects of light exposure during incubation on embryonic development and hatchling traits in lizards

    PubMed Central

    Zhang, Yong-Pu; Li, Shu-Ran; Ping, Jun; Li, Shi-Wen; Zhou, Hua-Bin; Sun, Bao-Jun; Du, Wei-Guo

    2016-01-01

    Light is an environmental factor that is known to profoundly affect embryonic development in some oviparous vertebrates, but such effects are unstudied in reptiles. We investigated the light sensitivity of lizard embryos by examining the thickness and light transmittance of eggshells as well as the effect of light on embryonic development and hatchling traits in four lizard species, the Chinese skink (Plestiodon chinensis), the northern grass lizard (Takydromus septentrionalis), the oriental leaf-toed gecko (Hemidactylus bowringii) and the Japanese gecko (Gekko japonicus). The eggshells were thinner and thus had higher light transmittance in Chinese skink than the other three species. Light exposure during incubation significantly accelerated the embryonic development in all species, with higher light intensity resulting in faster embryonic development. Interestingly, light stimulation negatively influenced hatchling size and survival in skinks, but had no effect in lacertids and geckos. This interspecific discrepancy not only relates to the differences in thickness and light transmittance of eggshells, but might also reflect the differences in the reproductive habits of these species. Given the diversity of light conditions that reptile embryos face during development, studies on the response of reptile embryos to light may offer a unique opportunity to understand the mechanisms of embryonic light sensitivity in animals. PMID:27917935

  10. DNA Methylation Variation Trends during the Embryonic Development of Chicken

    PubMed Central

    Li, Shizhao; Zhu, Yufei; Zhi, Lihui; Han, Xiaoying; Shen, Jing; Liu, Yanli; Yao, Junhu; Yang, Xiaojun

    2016-01-01

    The embryogenesis period is critical for epigenetic reprogramming and is thus of great significance in the research field of poultry epigenetics for elucidation of the trends in DNA methylation variations during the embryonic development of birds, particularly due to differences in embryogenesis between birds and mammals. Here, we first examined the variations in genomic DNA methylation during chicken embryogenesis through high-performance liquid chromatography using broilers as the model organism. We then identified the degree of DNA methylation of the promoters and gene bodies involved in two specific genes (IGF2 and TNF-α) using the bisulfite sequencing polymerase chain reaction method. In addition, we measured the expression levels of IGF2, TNF-α and DNA methyltransferase (DNMT) 1, 3a and 3b. Our results showed that the genomic DNA methylation levels in the liver, heart and muscle increased during embryonic development and that the methylation level of the liver was significantly higher in mid-anaphase. In both the muscle and liver, the promoter methylation levels of TNF-α first increased and then decreased, whereas the gene body methylation levels remained lower at embryonic ages E8, 11 and 14 before increasing notably at E17. The promoter methylation level of IGF2 decreased persistently, whereas the methylation levels in the gene body showed a continuous increase. No differences in the expression of TNF-α were found among E8, 11 and 14, whereas a significant increase was observed at E17. IGF2 showed increasing expression level during the examined embryonic stages. In addition, the mRNA and protein levels of DNMTs increased with increasing embryonic ages. These results suggest that chicken shows increasing genomic DNA methylation patterns during the embryonic period. Furthermore, the genomic DNA methylation levels in tissues are closely related to the genes expression levels, and gene expression may be simultaneously regulated by promoter hypomethylation

  11. Pattern formation during development of the embryonic cerebellum

    PubMed Central

    Dastjerdi, F. V.; Consalez, G. G.; Hawkes, R.

    2012-01-01

    The patterning of the embryonic cerebellum is vital to establish the elaborate zone and stripe architecture of the adult. This review considers early stages in cerebellar Purkinje cell patterning, from the organization of the ventricular zone to the development of Purkinje cell clusters—the precursors of the adult stripes. PMID:22493569

  12. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  13. In silico Testing of Environmental Impact on Embryonic Vascular Development

    EPA Science Inventory

    Understanding risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. EPA’s Virtual Embryo project is building in silico models of morphogenesis to tes...

  14. Ca2+ signalling and early embryonic patterning during zebrafish development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2007-09-01

    1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.

  15. FGF-16 is required for embryonic heart development

    PubMed Central

    Lu, Shun Yan; Sheikh, Farah; Sheppard, Patricia C.; Fresnoza, Agnes; Duckworth, Mary Lynn; Detillieux, Karen A.; Cattini, Peter A.

    2016-01-01

    Fibroblast growth factor 16 (FGF-16) expression has previously been detected in mouse heart at mid-gestation in the endocardium and epicardium, suggesting a role in embryonic heart development. More specifically, exogenously applied FGF-16 has been shown to stimulate growth of embryonic myocardial cells in tissue explants. We have generated mice lacking FGF-16 by targeting the Fgf16 locus on the X chromosome. Elimination of Fgf16 expression resulted in embryonic death as early as day 11.5 (E11.5). External abnormalities, including hemorrhage in the heart and ventral body region as well as facial defects, began to appear in null embryos from E11.5. Morphological analysis of FGF-16 null hearts revealed cardiac defects including chamber dilation, thinning of the atrial and ventricular walls, and poor trabeculation, which were visible at E10.5 and more pronounced at E11.5. These findings indicate FGF-16 is required for embryonic heart development in mid-gestation through its positive effect on myocardial growth. PMID:18565327

  16. Embryonic Development of the Central Nervous System.

    PubMed

    de Lahunta, Alexander; Glass, Eric N; Kent, Marc

    2016-03-01

    Ultimately, it is only with an understanding of normal embryologic development that there can be an understanding of why and how a specific malformation develops. Knowing from where and when a specific part of the nervous system develops and what morphogens are at play will enable us to identify undescribed malformation as well as better define causality. The following article reviews the normal embryologic development of the mammalian nervous system and is intended to serve as a foundation for the understanding of the various malformations presented in this issue.

  17. Quantitative in vivo imaging of embryonic development: opportunities and challenges.

    PubMed

    Gregg, Chelsea L; Butcher, Jonathan T

    2012-07-01

    Animal models are critically important for a mechanistic understanding of embryonic morphogenesis. For decades, visualizing these rapid and complex multidimensional events has relied on projection images and thin section reconstructions. While much insight has been gained, fixed tissue specimens offer limited information on dynamic processes that are essential for tissue assembly and organ patterning. Quantitative imaging is required to unlock the important basic science and clinically relevant secrets that remain hidden. Recent advances in live imaging technology have enabled quantitative longitudinal analysis of embryonic morphogenesis at multiple length and time scales. Four different imaging modalities are currently being used to monitor embryonic morphogenesis: optical, ultrasound, magnetic resonance imaging (MRI), and micro-computed tomography (micro-CT). Each has its advantages and limitations with respect to spatial resolution, depth of field, scanning speed, and tissue contrast. In addition, new processing tools have been developed to enhance live imaging capabilities. In this review, we analyze each type of imaging source and its use in quantitative study of embryonic morphogenesis in small animal models. We describe the physics behind their function, identify some examples in which the modality has revealed new quantitative insights, and then conclude with a discussion of new research directions with live imaging.

  18. Passage number affects the pluripotency of mouse embryonic stem cells as judged by tetraploid embryo aggregation.

    PubMed

    Li, Xiang-Yun; Jia, Qing; Di, Ke-Qian; Gao, Shu-Min; Wen, Xiao-Hui; Zhou, Rong-Yan; Wei, Wei; Wang, Li-Ze

    2007-03-01

    The aim of this study was to determine whether the number of passages affected the developmental pluripotency of embryonic stem (ES) cells as measured by the attainment of adult fertile mice derived from embryonic stem (ES) cell/tetraploid embryo complementation. Thirty-six newborns were produced by the aggregation of tetraploid embryos and hybrid ES cells after various numbers of passages. These newborns were entirely derived from ES cells as judged by microsatellite DNA, coat-color phenotype, and germline transmission. Although 15 survived to adulthood, 17 died of respiratory failure, and four were eaten by their foster mother. From the 15 mice that reached adulthood and that could reproduce, none arose from ES cells at passage level 15 or more. All 15 arose from cells at passages 3-11. Our results demonstrate that the number of passages affects the developmental pluripotency of ES cells.

  19. Imaging of mouse embryonic eye development using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Kasiraj, Alyssa; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2010-02-01

    Congenital abnormalities are often caused by genetic disorders which alter the normal development of the eye. Embryonic eye imaging in mouse model is important for understanding of normal and abnormal eye development and can contribute to prevention and treatment of eye defects in humans. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) to image eye structure in mouse embryos at 12.5 to 17.5 days post coitus (dpc). The imaging depth of the OCT allowed us to visualize the whole eye globe at these stages. Different ocular tissues including lens, cornea, eyelids, and hyaloid vasculature were visualized. These results suggest that OCT imaging is a useful tool to study embryonic eye development in the mouse model.

  20. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish skeletal development.

    PubMed

    Ju, Li; Tang, Kai; Guo, Xi-Rong; Yang, Yang; Zhu, Guan-Zhong; Lou, Yue

    2012-05-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that affect embryonic development. The purpose of this study was to examine the effects of embryonic exposure to PCBs on early skeletal development in zebrafish (Danio rerio). Zebrafish embryos were immediately exposed to various concentrations (0, 0.125, 0.25, 0.5 and 1.0 mg/l) of PCBs (Aroclor 1254) after fertilization. Embryos were assessed at 24, 48, 72, 96 and 120 h post-fertilization (hpf) for changes in embryonic survival and malformation rates. Calcium content and vitamin D receptor (VDR), parathyroid hormone (PTH) and TRVP6 mRNA expressions were assessed at 120 hpf. The results showed that PCBs exposure decreased the survival rate of the embryos in a time-and dose-dependent manner. The embryos exposed to the higher concentrations of PCBs (0.5 and 1.0 mg/l) displayed obvious skeletal morphological deformities. At 120 hpf, the calcium content of the zebrafish was downregulated in all the PCB-treated groups. VDR, PTH and TRVP6 mRNA expressions were all affected by PCBs. By 120 hpf, the mRNA expressions of VDR, PTH and TRVP6 from the PCB-treated larvae were all upregulated. The expressions of PTH and TRVP6 positively correlated with the level of PCBs to which the embryos were exposed. These results suggest that embryonic exposure to PCBs induces developmental deficits in the zebrafish skeleton.

  1. Cell Labeling and Injection in Developing Embryonic Mouse Hearts

    PubMed Central

    Dirschinger, Ralf J.; Evans, Sylvia M.; Puceat, Michel

    2014-01-01

    Testing the fate of embryonic or pluripotent stem cell-derivatives in in vitro protocols has led to controversial outcomes that do not necessarily reflect their in vivo potential. Preferably, these cells should be placed in a proper embryonic environment in order to acquire their definite phenotype. Furthermore, cell lineage tracing studies in the mouse after labeling cells with dyes or retroviral vectors has remained mostly limited to early stage mouse embryos with still poorly developed organs. To overcome these limitations, we designed standard and ultrasound-mediated microinjection protocols to inject various agents in targeted regions of the heart in mouse embryos at E9.5 and later stages of development.  Embryonic explant or embryos are then cultured or left to further develop in utero. These agents include fluorescent dyes, virus, shRNAs, or stem cell-derived progenitor cells. Our approaches allow for preservation of the function of the organ while monitoring migration and fate of labeled and/or injected cells. These technologies can be extended to other organs and will be very helpful to address key biological questions in biology of development. PMID:24797676

  2. Development of Scalable Culture Systems for Human Embryonic Stem Cells

    PubMed Central

    Azarin, Samira M.; Palecek, Sean P.

    2009-01-01

    The use of human pluripotent stem cells, including embryonic and induced pluripotent stem cells, in therapeutic applications will require the development of robust, scalable culture technologies for undifferentiated cells. Advances made in large-scale cultures of other mammalian cells will facilitate expansion of undifferentiated human embryonic stem cells (hESCs), but challenges specific to hESCs will also have to be addressed, including development of defined, humanized culture media and substrates, monitoring spontaneous differentiation and heterogeneity in the cultures, and maintaining karyotypic integrity in the cells. This review will describe our current understanding of environmental factors that regulate hESC self-renewal and efforts to provide these cues in various scalable bioreactor culture systems. PMID:20161686

  3. Developing Human Embryonic Stem Cells for Grafting in Parkinson’s Disease

    DTIC Science & Technology

    2007-03-01

    AD_________________ Award Number: W81XWH-04-1-0366 TITLE: Developing human embryonic stem cells ...Mar 04 – 28 Feb 07 4. TITLE AND SUBTITLE Developing human embryonic stem cells for grafting in Parkinson’s disease 5a...TERMS Parkinson’s disease, transplantation, embryonic stem cell , neuronal differentiation, dopamine, xenograft, functional recovery 16. SECURITY

  4. Embryonic cerebrospinal fluid in brain development: neural progenitor control.

    PubMed

    Gato, Angel; Alonso, M Isabel; Martín, Cristina; Carnicero, Estela; Moro, José Antonio; De la Mano, Aníbal; Fernández, José M F; Lamus, Francisco; Desmond, Mary E

    2014-08-28

    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called "embryonic CSF." Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life.

  5. Embryonic cerebrospinal fluid in brain development: neural progenitor control

    PubMed Central

    Gato, Angel; Alonso, M. Isabel; Martín, Cristina; Carnicero, Estela; Moro, José Antonio; De la Mano, Aníbal; Fernández, José M. F.; Lamus, Francisco; Desmond, Mary E.

    2014-01-01

    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called “embryonic CSF.” Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life. PMID:25165044

  6. Essential role for Max in early embryonic growth and development

    PubMed Central

    Shen-Li, Hong; O'Hagan, Rónán C.; Hou, Harry; Horner, James W.; Lee, Han-Woong; DePinho, Ronald A.

    2000-01-01

    Loss of Max function in the mouse resulted in generalized developmental arrest of both embryonic and extraembryonic tissues at early postimplantation (∼E5.5–6.5), coincident with loss or dilution of maternal Max stores in the expanding embryo in vivo and in blastocyst outgrowths in vitro. Developmentally arrested embryos were reduced in size and exhibited widespread cytological degeneration and feeble BrdU incorporation. Max and, by extension, the Myc superfamily, serve essential roles in early mammalian development and a maternal reservoir of Max exists in sufficient amount to sustain Myc superfamily function through preimplantation stages of development. PMID:10640271

  7. Spatiotemporal development of the embryonic nervous system of Saccoglossus kowalevskii.

    PubMed

    Cunningham, Doreen; Casey, Elena Silva

    2014-02-01

    Defining the organization and temporal onset of key steps in neurogenesis in invertebrate deuterostomes is critical to understand the evolution of the bilaterian and deuterostome nervous systems. Although recent studies have revealed the organization of the nervous system in adult hemichordates, little attention has been paid to neurogenesis during embryonic development in this third major phylum of deuterostomes. We examine the early events of neural development in the enteropneust hemichordate Saccoglossus kowalevskii by analyzing the expression of 11 orthologs of key genes associated with neurogenesis in an expansive range of bilaterians. Using in situ hybridization (ISH) and RT-PCR, we follow the course of neural development to track the transition of the early embryonic diffuse nervous system to the more regionalized midline nervous system of the adult. We show that in Saccoglossus, neural progenitor markers are expressed maternally and broadly encircle the developing embryo. An increase in their expression and the onset of pan neural markers, indicate that neural specification occurs in late blastulae - early gastrulae. By mid-gastrulation, punctate expression of markers of differentiating neurons encircling the embryo indicate the presence of immature neurons, and at the end of gastrulation when the embryo begins to elongate, markers of mature neurons are expressed. At this stage, expression of a subset of neuronal markers is concentrated along the trunk ventral and dorsal midlines. These data indicate that the diffuse embryonic nervous system of Saccoglossus is transient and quickly reorganizes before hatching to resemble the adult regionalized, centralized nervous system. This regionalization occurs at a much earlier developmental stage than anticipated indicating that centralization is not linked in S. kowalevskii to a lifestyle change of a swimming larva metamorphosing to a crawling worm-like adult.

  8. Expression Patterns of Atlantic Sturgeon (Acipenser oxyrinchus) During Embryonic Development

    PubMed Central

    Kaitetzidou, Elisavet; Ludwig, Arne; Gessner, Jörn; Sarropoulou, Elena

    2016-01-01

    During teleost ontogeny the larval and embryonic stages are key stages, since failure during this period of tissue differentiation may cause malformations, developmental delays, poor growth, and massive mortalities. Despite the rapid advances in sequencing technologies, the molecular backgrounds of the development of economically important but endangered fish species like the Atlantic sturgeon (Acipenser oxyrinchus) have not yet been thoroughly investigated. The current study examines the differential expression of transcripts involved in embryonic development of the Atlantic sturgeon. Addressing this goal, a reference transcriptome comprising eight stages was generated using an Illumina HiSequation 2500 platform. The constructed de novo assembly counted to 441,092 unfiltered and 179,564 filtered transcripts. Subsequently, the expression profile of four developmental stages ranging from early (gastrula) to late stages of prelarval development [2 d posthatching (dph)] were investigated applying an Illumina MiSeq platform. Differential expression analysis revealed distinct expression patterns among stages, especially between the two early and the two later stages. Transcripts upregulated at the two early stages were mainly enriched in transcripts linked to developmental processes, while transcripts expressed at the last two stages were mainly enriched in transcripts important to muscle contraction. Furthermore, important stage-specific expression has been detected for the hatching stage with transcripts enriched in molecule transport, and for the 2 dph stage with transcripts enriched in visual perception and lipid digestion. Our investigation represents a significant contribution to the understanding of Atlantic sturgeon embryonic development, and transcript characterization along with the differential expression results will significantly contribute to sturgeon research and aquaculture. PMID:27974440

  9. Can physics help to explain embryonic development? An overview.

    PubMed

    Fleury, V

    2013-10-01

    Recent technical advances including digital imaging and particle image velocimetry can be used to extract the full range of embryonic movements that constitute the instantaneous 'morphogenetic fields' of a developing animal. The final shape of the animal results from the sum over time (integral) of the movements that make up the velocity fields of all the tissue constituents. In vivo microscopy can be used to capture the details of vertebrate development at the earliest embryonic stages. The movements thus observed can be quantitatively compared to physical models that provide velocity fields based on simple hypotheses about the nature of living matter (a visco-elastic gel). This approach has cast new light on the interpretation of embryonic movement, folding, and organisation. It has established that several major discontinuities in development are simple physical changes in boundary conditions. In other words, with no change in biology, the physical consequences of collisions between folds largely explain the morphogenesis of the major structures (such as the head). Other discontinuities result from changes in physical conditions, such as bifurcations (changes in physical behaviour beyond specific yield points). For instance, beyond a certain level of stress, a tissue folds, without any new gene being involved. An understanding of the physical features of movement provides insights into the levers that drive evolution; the origin of animals is seen more clearly when viewed under the light of the fundamental physical laws (Newton's principle, action-reaction law, changes in symmetry breaking scale). This article describes the genesis of a vertebrate embryo from the shapeless stage (round mass of tissue) to the development of a small, elongated, bilaterally symmetric structure containing vertebral precursors, hip and shoulder enlarges, and a head.

  10. The 'ventral organs' of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development.

    PubMed

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior

  11. Manipulation and in vitro maturation of Xenopus laevis oocytes, followed by intracytoplasmic sperm injection, to study embryonic development.

    PubMed

    Miyamoto, Kei; Simpson, David; Gurdon, John B

    2015-02-09

    Amphibian eggs have been widely used to study embryonic development. Early embryonic development is driven by maternally stored factors accumulated during oogenesis. In order to study roles of such maternal factors in early embryonic development, it is desirable to manipulate their functions from the very beginning of embryonic development. Conventional ways of gene interference are achieved by injection of antisense oligonucleotides (oligos) or mRNA into fertilized eggs, enabling under- or over-expression of specific proteins, respectively. However, these methods normally require more than several hours until protein expression is affected, and, hence, the interference of gene functions is not effective during early embryonic stages. Here, we introduce an experimental system in which expression levels of maternal proteins can be altered before fertilization. Xenopus laevis oocytes obtained from ovaries are defolliculated by incubating with enzymes. Antisense oligos or mRNAs are injected into defolliculated oocytes at the germinal vesicle (GV) stage. These oocytes are in vitro matured to eggs at the metaphase II (MII) stage, followed by intracytoplasmic sperm injection (ICSI). By this way, up to 10% of ICSI embryos can reach the swimming tadpole stage, thus allowing functional tests of specific gene knockdown or overexpression. This approach can be a useful way to study roles of maternally stored factors in early embryonic development.

  12. The regulation of Dkk1 expression during embryonic development.

    PubMed

    Lieven, Oliver; Knobloch, Jürgen; Rüther, Ulrich

    2010-04-15

    During embryogenesis, the Dkk1 mediated Wnt inhibition controls the spatiotemporal dynamics of cell fate determination, cell differentiation and cell death. Furthermore, the Dkk1 dose is critical for the normal Wnt homeostasis, as alteration of the Dkk1 activity is associated with various diseases. We investigated the regulation of Dkk1 expression during embryonic development. We identified nine conserved non-coding elements (CNEs), located 3' to the Dkk1 locus. Analyses of the regulatory potential revealed that four of these CNEs in combination drive reporter expression very similar to Dkk1 expression in several organs of transgenic embryos. We extended the knowledge of Dkk1 expression during hypophysis, external genitalia and kidney development, suggesting so far to unexplored functions of Dkk1 during the development of these organs. Characterization of the regulatory potential of four individual CNEs revealed that each of these promotes Dkk1 expression in brain and kidney. In combination, two enhancers are responsible for expression in the pituitary and the genital tubercle. Furthermore, individual CNEs mediates craniofacial, optic cup and limb specific Dkk1 regulation. Our study substantially improves the knowledge of Dkk1 regulation during embryonic development and thus might be of high relevance for therapeutic approaches.

  13. Embryonic development of circadian clocks in the mammalian suprachiasmatic nuclei.

    PubMed

    Landgraf, Dominic; Koch, Christiane E; Oster, Henrik

    2014-01-01

    In most species, self-sustained molecular clocks regulate 24-h rhythms of behavior and physiology. In mammals, a circadian pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN) receives photic signals from the retina and synchronizes subordinate clocks in non-SCN tissues. The emergence of circadian rhythmicity during development has been extensively studied for many years. In mice, neuronal development in the presumptive SCN region of the embryonic hypothalamus occurs on days 12-15 of gestation. Intra-SCN circuits differentiate during the following days and retinal projections reach the SCN, and thus mediate photic entrainment, only after birth. In contrast the genetic components of the clock gene machinery are expressed much earlier and during midgestation SCN explants and isolated neurons are capable of generating molecular oscillations in culture. In vivo metabolic rhythms in the SCN, however, are observed not earlier than the 19th day of rat gestation, and rhythmic expression of clock genes is hardly detectable until after birth. Together these data indicate that cellular coupling and, thus, tissue-wide synchronization of single-cell rhythms, may only develop very late during embryogenesis. In this mini-review we describe the developmental origin of the SCN structure and summarize our current knowledge about the functional initiation and entrainment of the circadian pacemaker during embryonic development.

  14. The glucocorticoid-glucocorticoid receptor signal transduction pathway, transforming growth factor-beta, and embryonic mouse lung development in vivo.

    PubMed

    Jaskoll, T; Choy, H A; Melnick, M

    1996-05-01

    Lung morphogenesis has been shown to be regulated by glucocorticoids (CORT). Because CORT has been primarily thought to affect fetal lung development, previous studies have focused on the role of CORT receptor (GR)-mediated regulation of fetal lung development. Although endogenous CORT increases during embryonic and fetal stages and exogenous CORT treatment in vivo and in vitro clearly accelerates embryonic lung development, little is known about the morphoregulatory role of the embryonic CORT-GR signal transduction pathway during lung development. In this study, we characterize the embryonic mouse CORT-GR pathway and demonstrate: stage-specific in situ patterns of GR immunolocalization; similarity in GR relative mobility with progressive (E13 --> E17) development; that embryonic GR can be activated to bind a GR response element (GRE); significantly increasing levels of functional GR with increasing lung maturation; and the presence of heat shock protein (hsp) 70 and hsp90 from early (E13) to late (E17) developmental stages. These results support the purported importance of the embryonic CORT-GR signal transduction pathway in progressive lung differentiation. To demonstrate that the embryonic CORT-GR directed pathway plays a role in lung development, early embryonic (E12) lungs were exposed to CORT in utero and surfactant-associated protein A (SP-A) expression was analyzed; CORT treatment up-regulates SP-A mRNA expression and spatiotemporal protein distribution. Finally, to determine whether CORT-GR-directed pulmonary morphogenesis in vivo involves the modulation of growth factors, we studied the effect of CORT on TGF-beta gene expression. Northern analysis of TGF-beta 1, TGF-beta 2, and TGF-beta 3 transcript levels in vivo indicates that CORT regulates the rate of lung morpho- and histodifferentiation by down-regulating TGF-beta 3 gene expression.

  15. The embryonic development of frogs under strong DC magnetic fields

    SciTech Connect

    Ueno, S.; Harada, K.; Shiodawa, K.

    1984-09-01

    Possible influence of d.c. magnetic fields in the early embryonic development of frogs was studied. Embryos of African clawed toads, Xenopus laevis, were exposed to 1.0 T magnetic fields with different gradients of a range from 10 T/m to 10/sup 3/ T/m either during cleavage to neurula stage, blastula to neurula stage, or neurula to tail bud stage. The developmental processes of embryos during and after magnetic field exposures were followed to examine a possibility of teratogenic effects. The results suggest that the magnetic field exerts no harmful or modifying effects on the important morphogenetic movements such as gastrulation and neurulation. However, it was observed that embryos which were exposed to the gradient magnetic fields during cleavage to neurula stage occasionally developed into tadpoles with reduced pigmentation or some axial anomalies such as the formation of curled tail. Tadpoles with edema or microcephaly were also observed. Compared with the control, the rate of malformation was higher by about 35 %. The influence of oxygen concentration in Ringer's solution on the embryonic development was also studied, and toxicity of oxygen with high concentration is discussed.

  16. Folic acid supplementation can adversely affect murine neural tube closure and embryonic survival.

    PubMed

    Marean, Amber; Graf, Amanda; Zhang, Ying; Niswander, Lee

    2011-09-15

    Neural tube defects (NTDs), a common birth defect in humans, result from the failure of the embryonic neural tube (NT) to close properly. NT closure is a complex, poorly understood morphogenetic process influenced by genes and environment. The most effective environmental influence in decreasing the risk for NTDs is folic acid (FA) fortification and supplementation, and these findings led to the recommendation of periconceptual FA intake and mandatory fortification of the US grain supply in 1998. To explore the relationship between genetics and responsiveness to FA supplementation, we used five mouse NTDs models-Zic2, Shroom3, Frem2, Grhl2 (Grainyhead-like 2) and L3P (Line3P)-and a long-term generational FA supplementation scheme. Contrary to expectations, we find that three genetic mutants respond adversely to FA supplementation with increased incidence of NTDs in homozygous mutants, occurrence of NTDs in heterozygous embryos and embryonic lethality prior to NT closure. Because of these unexpected responses, we examined NTD risk after short-term FA supplementation. Our results indicate that, for the same genetic allele, NTD risk can depend on the length of FA exposure. Our data indicate that, depending on the gene mutation, FA supplementation may adversely influence embryonic development and NT closure.

  17. Early embryonic development of frogs under intense magnetic fields up to 8 T

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Iwasaka, M.; Shiokawa, K.

    1994-05-01

    A possible influence of intense magnetic fields on the embryonic development of frogs was studied in reference to a potential hazard in magnetic resonance imaging technology. Some of the most serious hazardous effects that could be induced by intense magnetic fields are teratogenic effects on developing embryos. In the present experiment, the possible influence of intense magnetic fields up to 8 T on the early embryonic development of Xenopus laevis was studied. Embryos were exposed to magnetic fields up to 8 T for the period from the precleavage stage to neurula in a small glass vial. Embryos were then cultured in Brown-Caston's medium until the feeding-tadpole stage. No apparent teratogenic effects were observed when embryos were cultured for 20 h from the stage of uncleaved fertilized egg to the neurula stage under magnetic fields of 8 T. We conclude that static magnetic fields up to 8 T do not appreciably affect the rapid cleavage and the following cell multiplication and differentiation in Xenopus laevis. We have also studied the early embryonic development of Xenopus laevis in a 40 nT magnetic field, or 1/1000 of the earth's magnetic field, and obtained negative results. Thus, again under this very low magnetic field, fertilized eggs developed normally and formed tadpoles with no appreciable abnormality.

  18. TRPM Channels and Magnesium in Early Embryonic Development

    PubMed Central

    Komiya, Yuko; Runnels, Loren W.

    2015-01-01

    Magnesium (Mg2+) is the second most abundant cellular cation and is essential for all stages of life, from the early embryo to adult. Mg2+ deficiency causes or contributes to many human diseases, including migraine headaches, Parkinson’s disease, Alzheimer’s disease, hypotension, type 2 diabetes mellitus and cardiac arrhythmias. Although the concentration of Mg2+ in the extracellular environment can vary significantly, the total intracellular Mg2+ concentration is actively maintained within a relatively narrow range (14 – 20 mM) via tight, yet poorly understood, regulation of intracellular Mg2+ by Mg2+ transporters and Mg2+-permeant ion channels. Recent studies have continued to add to the growing number of Mg2+ transporters and ion channels involved in Mg2+ homeostasis, including TRPM6 and TRPM7, members of the transient receptor potential (TRP) ion channel family. Mutations in TRPM6, including amino acid substitutions that prevent its heterooligomerization with TRPM7, occur in the rare autosomal-recessive disease hypomagnesemia with secondary hypocalcemia (HSH). However, is the fact that genetic ablation of either gene in mice results in early embryonic lethality that has raised the question of whether these channels’ capacity to mediate Mg2+ influx plays an important role in embryonic development. Here we review what is known of the function of Mg2+ in early development and summarize recent findings regarding the function of the TRPM6 and TRPM7 ion channels during embryogenesis. PMID:26679946

  19. Temperature dependent embryonic development of Trichuris suis eggs in a medicinal raw material.

    PubMed

    Vejzagić, Nermina; Kringel, Helene; Bruun, Johan Musaeus; Roepstorff, Allan; Thamsborg, Stig Milan; Grossi, Anette Blak; Kapel, Christian M O

    2016-01-15

    The therapeutic potential of infective pig whipworm eggs, Trichuris suis ova (TSO), is currently tested in several clinical trials on immune-mediated diseases. This paper studied the embryonic development of TSO in a medicinal raw product, where the parasite eggs were suspended in sulphuric acid (pH1). Unembryonated T. suis egg batches were stored at 5, 10, 15, 20, 25, 30, and 40°C (±1°C) and examined at 2, 4, 8, and 14 weeks. Subsequently, sub-batches from each temperature were allowed to embryonate for additional 14 weeks at 25°C, and selected samples were tested for infectivity in Göttingen minipigs. Both male and female pigs were used to evaluate eventual gender specific infectivity. Storage at 30°C up to 14 weeks and subsequent embryonation for 14 weeks at 25°C did not significantly reduce the overall larval establishment in minipigs, as compared to storage at 5°C and subsequent embryonation at 25°C. As marked impairment of egg development was observed during storage at 40°C, a second set of unembryonated egg batches were incubated at 30, 32, 34, 36, 38, and 40°C (±1°C) for 1-8 weeks. The development of the eggs was repeatedly examined by manual light microscopy, multispectral analysis (OvaSpec), and an egg hatching assay prior to the final testing in minipigs (Trial 1). These methods showed that the development started earlier at higher temperatures, but the long-term storage at higher temperature affected the egg development. The present study further documents tolerance of the TSO to storage at temperature 5-15°C, at which temperature development of larvae is not initiated.

  20. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization.

    PubMed

    Redies, Christoph; Neudert, Franziska; Lin, Juntang

    2011-09-01

    Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.

  1. The mushroom ribosome-inactivating protein lyophyllin exerts deleterious effects on mouse embryonic development in vitro.

    PubMed

    Chan, W Y; Ng, T B; Lam, Joyce S Y; Wong, Jack H; Chu, K T; Ngai, P H K; Lam, S K; Wang, H X

    2010-01-01

    Earlier investigations disclose that some plant ribosome-inactivating proteins (RIPs) adversely affect mouse embryonic development. In the present study, a mushroom RIP, namely lyophyllin from Lyophyllum shimeji, was isolated, partially sequenced, and its translation inhibitory activity determined. Its teratogenicity was studied by using a technique entailing microinjection and postimplantation whole-embryo culture. It was found that embryonic abnormalities during the period of organogenesis from E8.5 to E9.5 were induced by lyophyllin at a concentration as low as 50 microg/ml, and when the lyophyllin concentration was raised, the number of abnormal embryos increased, the final somite number decreased, and the abnormalities increased in severity. The affected embryonic structures included the cranial neural tube, forelimb buds, branchial arches, and body axis, while optic and otic placodes were more resistant. Lyophyllin at a concentration higher than 500 microg/ml also induced forebrain blisters within the cranial mesenchyme. When the abnormal embryos were examined histologically, an increase of cell death was found to be associated with abnormal structures, indicating that cell death may be one of the underlying causes of teratogenicity of the mushroom RIP. This constitutes the first report on the teratogenicity of a mushroom RIP.

  2. Knockdown of Maternal Homeobox Transcription Factor SEBOX Gene Impaired Early Embryonic Development in Porcine Parthenotes

    PubMed Central

    ZHENG, Zhong; ZHAO, Ming-Hui; JIA, Jia-Lin; HEO, Young-Tae; CUI, Xiang-Shun; OH, Jeong Su; KIM, Nam-Hyung

    2013-01-01

    Abstract A number of germ cell-specific transcription factors essential for ovarian formation and folliculogenesis have been identified and studied. However, the role of these factors during early embryonic development has been poorly explored. In the present study, we investigated the role of SEBOX, a maternal homeobox transcription factor, during early embryonic development in porcine parthenotes. mRNA for SEBOX is preferentially expressed in oocytes, and expression persists until embryonic genome activation (EGA). Knockdown of SEBOX by siRNA disrupted early embryonic development, but not oocyte maturation. Many maternal genes essential for early embryonic development were upregulated in SEBOX-depleted embryos. Moreover, some pluripotency-associated genes, including SOX2 and NANOG, were upregulated when SEBOX was knocked down. Therefore, our data demonstrate that SEBOX is required for early embryonic development in pigs and appears to regulate the degradation of maternal transcripts and the expression of pluripotency genes. PMID:24018616

  3. Knockdown of maternal homeobox transcription factor SEBOX gene impaired early embryonic development in porcine parthenotes.

    PubMed

    Zheng, Zhong; Zhao, Ming-Hui; Jia, Jia-Lin; Heo, Young-Tae; Cui, Xiang-Shun; Oh, Jeong Su; Kim, Nam-Hyung

    2013-12-17

    A number of germ cell-specific transcription factors essential for ovarian formation and folliculogenesis have been identified and studied. However, the role of these factors during early embryonic development has been poorly explored. In the present study, we investigated the role of SEBOX, a maternal homeobox transcription factor, during early embryonic development in porcine parthenotes. mRNA for SEBOX is preferentially expressed in oocytes, and expression persists until embryonic genome activation (EGA). Knockdown of SEBOX by siRNA disrupted early embryonic development, but not oocyte maturation. Many maternal genes essential for early embryonic development were upregulated in SEBOX-depleted embryos. Moreover, some pluripotency-associated genes, including SOX2 and NANOG, were upregulated when SEBOX was knocked down. Therefore, our data demonstrate that SEBOX is required for early embryonic development in pigs and appears to regulate the degradation of maternal transcripts and the expression of pluripotency genes.

  4. GLUT1 deficiency links nutrient availability and apoptosis during embryonic development.

    PubMed

    Jensen, Penny J; Gitlin, Jonathan D; Carayannopoulos, Mary O

    2006-05-12

    GLUT1 is essential for human brain development and function, as evidenced by the severe epileptic encephalopathy observed in children with GLUT1 deficiency syndrome resulting from inherited loss-of-function mutations in the gene encoding this facilitative glucose transporter. To further elucidate the pathophysiology of this disorder, the zebrafish orthologue of human GLUT1 was identified, and expression of this gene was abrogated during early embryonic development, resulting in a phenotype of aberrant brain organogenesis consistent with the observed expression of Glut1 in the embryonic tectum and specifically rescued by human GLUT1 mRNA. Affected embryos displayed impaired glucose uptake concomitant with increased neural cell apoptosis and subsequent ventricle enlargement, trigeminal ganglion cell loss, and abnormal hindbrain architecture. Strikingly, inhibiting expression of the zebrafish orthologue of the proapoptotic protein Bad resulted in complete rescue of this phenotype, and this occurred even in the absence of restoration of apparent glucose uptake. Taken together, these studies describe a tractable system for elucidating the cellular and molecular mechanisms of Glut1 deficiency and provide compelling in vivo genetic evidence directly linking nutrient availability and activation of mitochondria-dependent apoptotic mechanisms during embryonic brain development.

  5. The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation

    SciTech Connect

    Li Jianzhong; Chen Xia; Yang Hua; Wang Shuiliang; Guo Baoyu; Yu Long; Wang Zhugang; Fu Jiliang . E-mail: fu825@mail.tongji.edu.cn

    2006-12-10

    Human zinc finger protein 191 (ZNF191/ZNF24) was cloned and characterized as a SCAN family member, which shows 94% identity to its mouse homologue zinc finger protein 191 (Zfp191). ZNF191 can specifically interact with an intronic polymorphic TCAT repeat (HUMTH01) in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. Zfp191 is widely expressed during embryonic development and in multiple tissues and organs in adult. To investigate the functions of Zfp191 in vivo, we have used homologous recombination to generate mice that are deficient in Zfp191. Heterozygous Zfp191 {sup +/-} mice are normal and fertile. Homozygous Zfp191 {sup -/-} embryos are severely retarded in development and die at approximately 7.5 days post-fertilization. Unexpectedly, in Zfp191 {sup -/-} and Zfp191 {sup +/-} embryos, TH gene expression is not affected. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of ZNF191 in cultured cells revealed an essential role for Zfp191 in cell proliferation. In further agreement with this function, no viable Zfp191 {sup -/-} cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of Zfp191 {sup +/-} intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of G418. These data show that Zfp191 is indispensable for early embryonic development and cell proliferation.

  6. Dual effects of fluoxetine on mouse early embryonic development

    SciTech Connect

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  7. [Development of human embryonic stem cell model for toxicity evaluation].

    PubMed

    Yu, Guang-yan; Cao, Tong; Ouyang, Hong-wei; Peng, Shuang-qing; Deng, Xu-liang; Li, Sheng-lin; Liu, He; Zou, Xiao-hui; Fu, Xin; Peng, Hui; Wang, Xiao-ying; Zhan, Yuan

    2013-02-18

    The current international standard for toxicity screening of biomedical devices and materials recommend the use of immortalized cell lines because of their homogeneous morphologies and infinite proliferation which provide good reproducibility for in vitro cytotoxicity screening. However, most of the widely used immortalized cell lines are derived from animals and may not be representative of normal human cell behavior in vivo, in particular in terms of the cytotoxic and genotoxic response. Therefore, It is vital to develop a model for toxicity evaluation. In our studies, two Chinese human embryonic stem cell (hESC) lines as toxicity model were established. hESC derived tissue/organ cell model for tissue/organ specific toxicity evaluation were developed. The efficiency and accuracy of using hESC model for cytoxicity, embryotoxicity and genotoxicity evaluation were confirmed. The results indicated that hESCs might be good tools for toxicity testing and biosafety evaluation in vitro.

  8. Embryonic development period and the prevalence of avian blood parasites.

    PubMed Central

    Ricklefs, R E

    1992-01-01

    Variation in prevalence of avian hematozoa is related to taxonomic affiliation at the level of the family or subfamily but not of the genus within families. Prevalence is comparatively insensitive to the influences of habitat and season; however, temperate species have higher incidences of infection than tropical species belonging to the same families. Among taxa of nonraptorial altricial landbirds, hematozoan prevalence is inversely related to the length of the incubation period but shows little relationship to body size and rate of postnatal development. This finding suggests a possible link between the duration of embryonic development and the ability to resist or control infection, possibly due to maturational processes in the avian immune system. PMID:1584808

  9. The embryonic development of the centipede Strigamia maritima.

    PubMed

    Brena, Carlo; Akam, Michael

    2012-03-01

    The geophilomorph centipede Strigamia maritima is an emerging model for studies of development and evolution among the myriapods. A draft genome sequence has recently been completed, making it also an important reference for comparative genomics, and for studies of myriapod physiology more generally. Here we present the first detailed description of myriapod development using modern techniques. We describe a timeline for embryonic development, with a detailed staging system based on photographs of live eggs and fixed embryos. We show that the early, cleavage and nuclear migration, stages of development are remarkably prolonged, accounting for nearly half of the total developmental period (approx 22 of 48 days at 13 °C). Towards the end of this period, cleavage cells migrate to the egg periphery to generate a uniform blastoderm. Asymmetry quickly becomes apparent as cells in the anterior half of the egg condense ventrally to form the presumptive head. Five anterior segments, the mandibular to the first leg-bearing segment (1st LBS) become clearly visible through the chorion almost simultaneously. Then, after a short pause, the next 35 leg-bearing segments appear at a uniform rate of 1 segment every 3.2 h (at 13 °C). Segment addition then slows to a halt with 40-45 LBS, shortly before the dramatic movements of germ band flexure, when the left and right halves of the embryo separate and the embryo folds deeply into the yolk. After flexure, segment morphogenesis and organogenesis proceed for a further 10 days, before the egg hatches. The last few leg-bearing segments are added during this period, much more slowly, at a rate of 1-2 segments/day. The last leg-bearing segment is fully defined only after apolysis of the embryonic cuticle, so that at hatching the embryo displays the final adult number of leg-bearing segments (typically 47-49 in our population).

  10. Specialized mouse embryonic stem cells for studying vascular development.

    PubMed

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  11. NG2 glia are required for vessel network formation during embryonic development

    PubMed Central

    Minocha, Shilpi; Valloton, Delphine; Brunet, Isabelle; Eichmann, Anne

    2015-01-01

    The NG2+ glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2+ glia originate from the Nkx2.1+ progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2+ glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2+ glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2+ glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2+ glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains. DOI: http://dx.doi.org/10.7554/eLife.09102.001 PMID:26651999

  12. Loss of function of KIF1B impairs oocyte meiotic maturation and early embryonic development in mice.

    PubMed

    Kong, Xiang-Wei; Wang, Dong-Hui; Zhou, Cheng-Jie; Zhou, Hong-Xia; Liang, Cheng-Guang

    2016-11-01

    Kinesin family member 1B (KIF1B) is an important microtubule-dependent monomeric motor in mammals, although little is known about its role in meiosis. We profiled KIF1B expression and localization during oocyte maturation and early embryonic development in mice, revealing a dynamic pattern throughout meiotic progression. Depletion or inhibition of KIF1B leads to abnormal polar body extrusion, disordered spindle dynamics, defects in chromosome congression, increased aneuploidy, and impaired embryonic development. Further, KIF1B depletion affects the distribution of mitochondria and abundance of ATP. Taken together, our study demonstrates that mouse KIF1B is important for spindle assembly, chromosome congression, and mitochondrial distribution during oocyte maturation and early embryonic development. Mol. Reprod. Dev. 83: 1027-1040, 2016 © 2016 Wiley Periodicals, Inc.

  13. Reelin expression during embryonic brain development in Crocodylus niloticus.

    PubMed

    Tissir, F; Lambert De Rouvroit, C; Sire, J-Y; Meyer, G; Goffinet, A M

    2003-03-10

    The expression of reelin mRNA and protein was studied during embryonic brain development in the Nile crocodile Crocodylus niloticus, using in situ hybridization and immunohistochemistry. In the forebrain, reelin was highly expressed in the olfactory bulb, septal nuclei, and subpial neurons in the marginal zone of the cerebral cortex, dorsal ventricular ridge, and basal forebrain. At early stages, reelin mRNA was also detected in subventricular zones. In the diencephalon, the ventral lateral geniculate nuclei and reticular nuclei were strongly positive, with moderate expression in the habenula and focal expression in the hypothalamus. High expression levels were noted in the retina, the tectum, and the external granule cell layer of the cerebellum. In the brainstem, there was a high level of signal in cochleovestibular, sensory trigeminal, and some reticular nuclei. No expression was observed in the cortical plate or Purkinje cells. Comparison with reelin expression during brain development in mammals, birds, turtles, and lizards reveals evolutionarily conserved, homologous features that presumably define the expression profile in stem amniotes. The crocodilian cortex contains subpial reelin-positive cells that are also p73 positive, suggesting that they are homologous to mammalian Cajal-Retzius cells, although they express the reelin gene less intensely. Furthermore, the crocodilian cortex does not contain the subcortical reelin-positive cells that are typical of lizards but expresses reelin in subventricular zones at early stages. These observations confirm that reelin is prominently expressed in many structures of the embryonic brain in all amniotes and further emphasize the unique amplification of reelin expression in mammalian Cajal-Retzius cells and its putative role in the evolution of the cerebral cortex.

  14. Regulation of bone morphogenetic proteins in early embryonic development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  15. FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells.

    PubMed

    Avitzour, Michal; Mor-Shaked, Hagar; Yanovsky-Dagan, Shira; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Eldar-Geva, Talia; Schonberger, Oshrat; Levy-Lahad, Ephrat; Epsztejn-Litman, Silvina; Eiges, Rachel

    2014-11-11

    Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5'-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%). In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases.

  16. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development.

    PubMed

    Abu-Issa, Radwan

    2015-01-24

    Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell-cell and/or cellmatrix adhesion during cardiac development.

  17. Biotic and abiotic factors affect the nest environment of embryonic leatherback turtles, Dermochelys coriacea.

    PubMed

    Wallace, Bryan P; Sotherland, Paul R; Spotila, James R; Reina, Richard D; Franks, Bryan F; Paladino, Frank V

    2004-01-01

    Clutches of leatherback turtles, Dermochelys coriacea, have lower hatching success than those of other sea turtles, but causes of high embryonic mortality are unknown. We measured characteristics of clutches along with spatial and temporal changes in PO(2) and temperature during incubation to determine the extent to which they affected the developmental environment of leatherback embryos. Minimum PO(2) in nests decreased as both the total number and mass of metabolizing embryos increased. Increases in both the number and mass of metabolizing embryos caused an increase in maximum nest temperature. However, neither PO(2) nor temperature was correlated with hatching success. Our measurements of relatively high nest PO(2) (lowest 17.1 kPa or 16.9% O(2)) indicate that hypoxia apparently does not cause the low hatching success of leatherback clutches. Oxygen partial pressure increased and temperature decreased from the center toward the periphery of leatherback nests. We inferred from these measurements that positions of eggs within nests vary in quality and potentially affect overall developmental success of entire clutches. The large metabolic mass of leatherback clutches and limits to gas flux imposed by the sand create a situation in which leatherback embryos collectively affect their own environment.

  18. Effects of Hypergravity on Statocyst Development in Embryonic Aplysia californica

    NASA Technical Reports Server (NTRS)

    Pedrozo, Hugo A.; Wiederhold, Michael L.

    1994-01-01

    Aplysia californica is a marine gastropod mollusc with bilaterally paired statocysts as gravity-reccptor organs. Data from three experiments in which embryonic Aplysia californica were exposed to 2 x g arc discussed. The experimental groups were exposed to excess gravity until hatching (9-12 day), whereas control groups were maintained at normal gravity. Body diameter was measured before exposure to 2 x g. Statocyst, statolith and body diameter were each determined for samples of 20 embryos from each group on successive days. Exposure to excess gravity led to an increase in body size. Statocyst size was not affected by exposure to 2 x g. Statolith size decreased with treatment as indicated by smaller statolith-to-body ratios observed in the 2 x g group in all three experiments. Mean statolith diameter was significantly smaller for the 2 x g group in Experiment 1 but not in Experiments 2 and 3. Defective statocysts, characterized by very small or no statoliths, were found in the 2 x g group in Experiments 1 and 2.

  19. Autonomy of tendon development in the embryonic chick wing.

    PubMed

    Kieny, M; Chevallier, A

    1979-01-01

    The aim of this study performed in the embryonic chick wing is to test the ability of the tendons to form and develop in the absence of the muscle bellies. The experiments were performed on 2-day chick embryos by destroying a portion of the somitic mesoderm by local X-irradiation. The irradiated part included the wing somite level 15-20 and extended three somites (or presumptive somites) in front and two to six presumptive somites in the rear of the wing somite levels. The wings of the operated side were examined histologically 3-8 days after the X-irradiation. The radio-destruction of the somitic mesoderm totally inhibited or severely impaired the development of the forearm muscles. But, despite the absence of the flexor and extensor muscles the differentiation of the distal manus tendons could be observed. This differentiation occurred at the same time and in the same positions as in controls. However, these tendons were transient structures. They disappeared within three days after their individuation. Two mechanisms that progressed in proximo-distal direction were involved in their resorption: cellular dislocation and cell death. We conclude that tendons start to develop autonomously from the muscle bulks, but for their maintenance and further development they require connexion to a muscle belly.

  20. Description of embryonic development of spotted green pufferfish (Tetraodon nigroviridis).

    PubMed

    Zaucker, Andreas; Bodur, Türker; Roest Crollius, Hugues; Hadzhiev, Yavor; Gehrig, Jochen; Loosli, Felix; Watson, Craig; Müller, Ferenc

    2014-12-01

    Pufferfish species of the Tetraodontidae family carry the smallest genomes among vertebrates. Their compressed genomes are thought to be enriched for functional DNA compared to larger vertebrate genomes, and they are important models for comparative genomics. The significance of pufferfish as model organisms in comparative genomics is due to the availability of two sequenced genomes, that of spotted green pufferfish (Tetraodon nigroviridis) and fugu (Takifugu rubripes). However, there is only a very limited utilization of pufferfish as an experimental model organism, due to the lack of established husbandry and developmental genetics protocols. In this study, we provide the first description of the normal embryonic development of Tetraodon nigroviridis. Embryos were obtained by in vitro fertilization of eggs, and subsequent development was monitored by brightfield microscopy at constant temperature. Tetraodon development was divided into distinct stages based on diagnostic morphological features, which were adopted from published literature on normal development of other fish species like medaka (Oryzias latipes), zebrafish (Danio rerio), and fugu. Tetraodon embryos show more similar morphologies to medaka than to zebrafish, reflecting its phylogenetic position. The early developmental stage series described in this study forms the foundation for the utilization of tetraodon as an experimental model organism for comparative developmental studies.

  1. Description of Embryonic Development of Spotted Green Pufferfish (Tetraodon nigroviridis)

    PubMed Central

    Zaucker, Andreas; Bodur, Türker; Roest Crollius, Hugues; Hadzhiev, Yavor; Gehrig, Jochen; Loosli, Felix; Watson, Craig

    2014-01-01

    Abstract Pufferfish species of the Tetraodontidae family carry the smallest genomes among vertebrates. Their compressed genomes are thought to be enriched for functional DNA compared to larger vertebrate genomes, and they are important models for comparative genomics. The significance of pufferfish as model organisms in comparative genomics is due to the availability of two sequenced genomes, that of spotted green pufferfish (Tetraodon nigroviridis) and fugu (Takifugu rubripes). However, there is only a very limited utilization of pufferfish as an experimental model organism, due to the lack of established husbandry and developmental genetics protocols. In this study, we provide the first description of the normal embryonic development of Tetraodon nigroviridis. Embryos were obtained by in vitro fertilization of eggs, and subsequent development was monitored by brightfield microscopy at constant temperature. Tetraodon development was divided into distinct stages based on diagnostic morphological features, which were adopted from published literature on normal development of other fish species like medaka (Oryzias latipes), zebrafish (Danio rerio), and fugu. Tetraodon embryos show more similar morphologies to medaka than to zebrafish, reflecting its phylogenetic position. The early developmental stage series described in this study forms the foundation for the utilization of tetraodon as an experimental model organism for comparative developmental studies. PMID:25243591

  2. Developing Effective Affective Assessment Practices

    ERIC Educational Resources Information Center

    Glennon, William; Hart, Aaron; Foley, John T.

    2015-01-01

    Physical educators generally understand the importance of the affective domain for student growth and development. However, many teachers struggle with assessing affective behaviors in a way that can be documented and reported. The five-step process outlined in this article can assist teachers in developing an effective way to assess the affective…

  3. CP27 affects viability, proliferation, attachment and gene expression in embryonic fibroblasts.

    PubMed

    Luan, X; Diekwisch, T G H

    2002-08-01

    CP27 is a gene that has been cloned from an E11 early embryonic library and has been suggested to mediate early organogenesis (Diekwisch et al., 1999, Gene 235, 19). We have hypothesized that CP27 exhibits its effects on organogenesis by affecting individual cell function. Based on the CP27 expression pattern we have selected the CP27 expressing embryonic fibroblast cell line BALB/c 3T3 to determine the effects of CP27 on cell function. CP27 loss of function strategies were performed by adding 5, 12.5 or 25 micro g/ml anti-CP27 antibody to cultured BALB/c 3T3 cells and comparing the results to controls in which identical concentrations of rabbit serum were added to the culture medium. Other controls included an antibody against another extracellular matrix protein amelogenin (negative control) and anti-CP27 antibodies directed against other areas of the CP27 molecule (positive control). Following cell culture, cell viability, apoptosis, cell proliferation, cell shape, cellular attachment and fibronectin matrix production were assayed using MTT colourimetric assay, BrdU staining, morphometry, immunostaining and western blot analysis. Block of CP27 function using an antibody strategy resulted in the following significant changes: (i) reduced viability, (ii) increased number of apoptotic cells, (iii) reduced proliferation, (iv) alterations in cell shape, (v) loss of attachment, and (vi) reduction in fibronectin matrix production. There was also a redistribution in fibronectin matrix organization demonstrated by immunohistochemistry. We conclude that CP27 plays an important role in the maintance of normal cell function and that CP27 block leads to significant changes in cellular behaviour.

  4. SSAO/VAP-1 protein expression during mouse embryonic development.

    PubMed

    Valente, Tony; Solé, Montse; Unzeta, Mercedes

    2008-09-01

    SSAO/VAP-1 is a multifunctional enzyme depending on in which tissue it is expressed. SSAO/VAP-1 is present in almost all adult mammalian tissues, especially in highly vascularised ones and in adipocytes. SSAO/VAP-1 is an amine oxidase able to metabolise various endogenous or exogenous primary amines. Its catalytic activity can lead to cellular oxidative stress, which has been implicated in several pathologies (atherosclerosis, diabetes, and Alzheimer's disease). The aim of this work is to achieve a study of SSAO/VAP-1 protein expression during mouse embryogenesis. Our results show that SSAO/VAP-1 appears early in the development of the vascular system, adipose tissue, and smooth muscle cells. Moreover, its expression is strong in several epithelia of the sensory organs, as well as in the development of cartilage sites. Altogether, this suggests that SSAO/VAP-1 enzyme could be involved in the differentiation processes that take place during embryonic development, concretely in tissue vascularisation.

  5. Live imaging of mitosis in the developing mouse embryonic cortex.

    PubMed

    Pilaz, Louis-Jan; Silver, Debra L

    2014-06-04

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis.

  6. Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium.

    PubMed

    Lynch, Jeremy A; El-Sherif, Ezzat; Brown, Susan J

    2012-01-01

    Studying the embryogenesis of diverse insect species is crucial to understanding insect evolution. Here, we review current advances in understanding the development of two emerging model organisms: the wasp Nasonia vitripennis and the beetle Tribolium castaneum in comparison with the well-studied fruit fly Drosophila melanogaster. Although Nasonia represents the most basally branching order of holometabolous insects, it employs a derived long germband mode of embryogenesis, more like that of Drosophila, whereas Tribolium undergoes an intermediate germband mode of embryogenesis, which is more similar to the ancestral mechanism. Comparing the embryonic development and genetic regulation of early patterning events in these three insects has given invaluable insights into insect evolution. The similar mode of embryogenesis of Drosophila and Nasonia is reflected in their reliance on maternal morphogenetic gradients. However, they employ different genes as maternal factors, reflecting the evolutionary distance separating them. Tribolium, on the other hand, relies heavily on self-regulatory mechanisms other than maternal cues, reflecting its sequential nature of segmentation and the need for reiterated patterning.

  7. Diverging functions of Scr between embryonic and post-embryonic development in a hemimetabolous insect, Oncopeltus fasciatus

    PubMed Central

    Chesebro, John; Hrycaj, Steven; Mahfooz, Najmus; Popadić, Aleksandar

    2009-01-01

    Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development. PMID:19382295

  8. Diverging functions of Scr between embryonic and post-embryonic development in a hemimetabolous insect, Oncopeltus fasciatus.

    PubMed

    Chesebro, John; Hrycaj, Steven; Mahfooz, Najmus; Popadić, Aleksandar

    2009-05-01

    Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development.

  9. Development of an invitro technique to use mouse embryonic stem cell in evaluating effects of xenobiotics

    EPA Science Inventory

    Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...

  10. Embryonic development rates of northern grasshoppers (Orthoptera: Acrididae): implications for climate change and habitat management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature-dependent rates of embryonic development are a primary determinant of the life cycle of many species of grasshoppers which, in cold climates, spend two winters in the egg stage. Knowledge of embryonic developmental rates is important for an assessment of the effects of climate change and...

  11. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    SciTech Connect

    Abu-Issa, Radwan

    2015-01-24

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development.

  12. Early embryonic development and transplantation in tree shrews.

    PubMed

    Yan, Lan-Zhen; Sun, Bin; Lyu, Long-Bao; Ma, Yu-Hua; Chen, Jia-Qi; Lin, Qing; Zheng, Ping; Zhao, Xu-Dong

    2016-07-18

    As a novel experimental animal model, tree shrews have received increasing attention in recent years. Despite this, little is known in regards to the time phases of their embryonic development. In this study, surveillance systems were used to record the behavior and timing of copulations; embryos at different post-copulation stages were collected and cultured in vitro; and the developmental characteristics of both early-stage and in vitro cultured embryos were determined. A total of 163 females were collected following effective copulation, and 150 were used in either unilateral or bilateral oviduct embryo collections, with 307 embryos from 111 females obtained (conception rate=74%). Among them, 237 embryos were collected from 78 females, bilaterally, i.e., the average embryo number per female was 3.04; 172 fertilized eggs collected from 55 females, bilaterally, were cultured for 24-108 h in vitro for developmental observations; finally, 65 embryos from 23 bilateral cases and 70 embryos from 33 unilateral cases were used in embryo transplantation.

  13. Immunostaining of the developing embryonic and larval Drosophila brain.

    PubMed

    Diaper, Danielle C; Hirth, Frank

    2014-01-01

    Immunostaining is used to visualize the spatiotemporal expression pattern of developmental control genes that regulate the genesis and specification of the embryonic and larval brain of Drosophila. Immunostaining uses specific antibodies to mark expressed proteins and allows their localization to be traced throughout development. This method reveals insights into gene regulation, cell-type specification, neuron and glial differentiation, and posttranslational protein modifications underlying the patterning and specification of the maturing brain. Depending on the targeted protein, it is possible to visualize a multitude of regions of the Drosophila brain, such as small groups of neurons or glia, defined subcomponents of the brain's axon scaffold, or pre- and postsynaptic structures of neurons. Thus, antibody probes that recognize defined tissues, cells, or subcellular structures like axons or synaptic terminals can be used as markers to identify and analyze phenotypes in mutant embryos and larvae. Several antibodies, combined with different labels, can be used concurrently to examine protein co-localization. This protocol spans over 3-4 days.

  14. Embryonic development of endoderm in chicken (Gallus gallus domesticus).

    PubMed

    Alcântara, Dayane; Rodrigues, Marcio N; Franciolli, André L R; Da Fonseca, Erika T; Silva, Fernanda M O; Carvalho, Rafael C; Fratini, Paula; Sarmento, Carlos Alberto P; Ferreira, Antonio José P; Miglino, Maria Angelica

    2013-08-01

    The poultry industry is a sector of agribusiness which represents an important role in the country's agricultural exports. Therefore, the study about embryogenesis of the domestic chicken (Gallus gallus domesticus) has a great economic importance. The aim of this study was to evaluate embryonic development of the endoderm in chicken (Gallus gallus domesticus). Forty fertilized eggs of domestic chickens, starting from the 1st day of gestation and so on until the 19 days of the incubation were collected from the Granja São José (Amparo, SP, Brazil). Embryos and fetus were fixed in 10% formaldehyde solution, identified, weighed, measured, and subjected to light and scanning electron microscopy. The endoderm originates the internal lining epithelium of the digestive, immune, respiratory systems, and the organs can be visualized from the second day (48 h) when the liver is formed. The formation of the digestive system was complete in the 12th day. Respiratory system organs begin at the fourth day as a disorganized tissue and undifferentiated. Their complete differentiation was observed at the 10 days of incubation, however, until the 19 days the syrinx was not observed. The formation of immune system at 10th day was observed with observation of the spleen, thymus, and cloacal bursa. The study of the organogenesis of the chicken based on germ layers is very complex and underexplored, and the study of chicken embryology is very important due the economic importance and growth of the use of this animal model studies such as genetic studies.

  15. FoxP2 regulates neurogenesis during embryonic cortical development.

    PubMed

    Tsui, David; Vessey, John P; Tomita, Hideaki; Kaplan, David R; Miller, Freda D

    2013-01-02

    The transcription factor FoxP2 has been associated with the development of human speech but the underlying cellular function of FoxP2 is still unclear. Here we provide evidence that FoxP2 regulates genesis of some intermediate progenitors and neurons in the mammalian cortex, one of the key centers for human speech. Specifically, knockdown of FoxP2 in embryonic cortical precursors inhibits neurogenesis, at least in part by inhibiting the transition from radial glial precursors to neurogenic intermediate progenitors. Moreover, overexpression of human, but not mouse, FoxP2 enhances the genesis of intermediate progenitors and neurons. In contrast, expression of a human FoxP2 mutant that causes vocalization deficits decreases neurogenesis, suggesting that in the murine system human FoxP2 acts as a gain-of-function protein, while a human FoxP2 mutant acts as a dominant-inhibitory protein. These results support the idea that FoxP2 regulates the transition from neural precursors to transit-amplifying progenitors and ultimately neurons, and shed light upon the molecular changes that might contribute to evolution of the mammalian cortex.

  16. Embryonic development of the sea bass Dicentrarchus labrax

    NASA Astrophysics Data System (ADS)

    Cucchi, Patricia; Sucré, Elliott; Santos, Raphaël; Leclère, Jeremy; Charmantier, Guy; Castille, René

    2012-06-01

    The embryonic development of the sea bass Dicentrarchus labrax during the endotrophic period is discussed. An 8 cells stage, not reported for other studied species, results from two rapid successive cleavages. Blastula occurs at the eighth division when the embryo is made of 128 cells. During gastrulation, the infolded blastoderm creates the endomesoblastic layer. The Kupffer's vesicle is reported to drive the left/right patterning of brain, heart and digestive tract. Heart formation starts at 8 pairs of somites, differentiation of myotomes and sclerotomes starts at the stage 18 pairs of somites; main parts of the digestive tract are entirely formed at 25 pairs of somites. At 28 pairs of somites, a rectal region is detected, however, the digestive tube is closed at both ends, the jaw appears the fourth day after hatching, but the mouth is not opened before the fifth day. Although cardiac beating and blood circulation are observed, gills are not reported in newly hatched individuals; eye melanization appears concomitant with exotrophic behavior.

  17. Early embryonic development and transplantation in tree shrews

    PubMed Central

    YAN, Lan-Zhen; SUN, Bin; LYU, Long-Bao; MA, Yu-Hua; CHEN, Jia-Qi; LIN, Qing; ZHENG, Ping; ZHAO, Xu-Dong

    2016-01-01

    As a novel experimental animal model, tree shrews have received increasing attention in recent years. Despite this, little is known in regards to the time phases of their embryonic development. In this study, surveillance systems were used to record the behavior and timing of copulations; embryos at different post-copulation stages were collected and cultured in vitro; and the developmental characteristics of both early-stage and in vitro cultured embryos were determined. A total of 163 females were collected following effective copulation, and 150 were used in either unilateral or bilateral oviduct embryo collections, with 307 embryos from 111 females obtained (conception rate=74%). Among them, 237 embryos were collected from 78 females, bilaterally, i.e., the average embryo number per female was 3.04; 172 fertilized eggs collected from 55 females, bilaterally, were cultured for 24-108 h in vitro for developmental observations; finally, 65 embryos from 23 bilateral cases and 70 embryos from 33 unilateral cases were used in embryo transplantation. PMID:27469257

  18. Critical Timing without a Timer for Embryonic Development

    PubMed Central

    Tufcea, Daniel E.; François, Paul

    2015-01-01

    Timing of embryonic development is precisely controlled, but the mechanisms underlying biological timers are still unclear. Here, a validated model for timing under control of Sonic Hedgehog is revisited and generalized to an arbitrary number of genes. The developmental dynamics where a temporal sequence of gene expression recapitulates a steady-state spatial pattern can be realized through a simple network close to criticality, controlled by the duration of exposure to a morphogen. Criticality simultaneously accounts for many observed biological properties, such as timing, multistability, and canalization of genetic expression. This process can be parsimoniously generalized in many dimensions with a minimum number of genes, all repressing each other with asymmetrical strengths, which also explains sequential activation of different fates. Separation of timescales allows for a simple analytical interpretation. Finally, it is shown that even in the presence of noise, coupling between cells preserves criticality and robust patterning. The model offers a simple theoretical framework for the study of emergent developmental timers. PMID:26488664

  19. [Characterization of hematopoietic progenitor cells during the human embryonic development].

    PubMed

    Coulombel, L; Huyhn, A; Izac, B

    1995-01-01

    In a search for assays that might facilitate identification of pluripotent stem cells with extended potentialities, we analysed the properties of hematopoietic progenitor cells detected in the extraembryonic yolk sac and in the intraembryonic part of human embryos between approximately 28 and 45 days of development. Cells from the yolk sac, the liver rudiment and the remainder of the embryo were plated in semi solid methylcellulose colony-assays supplemented with combinations of cytokines. Large BFU-E-derived colonies as well as granulocytic colonies were detected in every yolk sac sample. Interestingly, progenitor cells were also detected in the intraembryonic part, outside the liver and a subclass of these progenitors were detected that generated large granulomacrophagic colonies capable of generating secondary colonies when replated. These were preferentially located in the embryo. Colony-assays initiated with CD34+ cells sorted from the different tissues confirmed these data. These results first indicate that embryonic progenitors exhibit unique phenotypic features, and second, analysis of the distribution of progenitors between the different tissues may suggest the existence of other sites of hematopoietic production. More detailed analysis of the potentialities of these progenitors should now be assessed in vitro in cocultures assays and in vivo by reconstituting immunodeficient mice.

  20. Integrin antagonists affect growth and pathfinding of ventral motor nerves in the trunk of embryonic zebrafish.

    PubMed

    Becker, Thomas; McLane, Mary Ann; Becker, Catherina G

    2003-05-01

    Integrins are thought to be important receptors for extracellular matrix (ECM) components on growing axons. Ventral motor axons in the trunk of embryonic zebrafish grow in a midsegmental pathway through an environment rich in ECM components. To test the role of integrins in this process, integrin antagonists (the disintegrin echistatin in native and recombinant form, as well as the Arg-Gly-Asp-Ser peptide) were injected into embryos just prior to axon outgrowth at 14-16 h postfertilization (hpf). All integrin antagonists affected growth of ventral motor nerves in a similar way and native echistatin was most effective. At 24 hpf, when only the three primary motor axons per trunk hemisegment had grown out, 80% (16 of 20) of the embryos analyzed had abnormal motor nerves after injection of native echistatin, corresponding to 19% (91 of 480) of all nerves. At 33 hpf, when secondary motor axons were present in the pathway, 100% of the embryos were affected (24 of 24), with 20% of all nerves analyzed (196 of 960) being abnormal. Phenotypes comprised abnormal branching (64% of all abnormal nerves) and truncations (36% of all abnormal nerves) of ventral motor nerves at 24 hpf and mostly branching of the nerves at 33 hpf (94% of all abnormal nerves). Caudal branches were at least twice as frequent as rostral branches. Surrounding trunk tissue and a number of other axon fascicles were apparently not affected by the injections. Thus integrin function contributes to both growth and pathfinding of axons in ventral motor nerves in the trunk of zebrafish in vivo.

  1. Neuregulin 3 and erbb signalling networks in embryonic mammary gland development.

    PubMed

    Kogata, Naoko; Zvelebil, Marketa; Howard, Beatrice A

    2013-06-01

    We review the role of Neuregulin 3 (Nrg3) and Erbb receptor signalling in embryonic mammary gland development. Neuregulins are growth factors that bind and activate its cognate Erbb receptor tyrosine kinases, which form a signalling network with established roles in breast development and breast cancer. Studies have shown that Nrg3 expression profoundly impacts early stages of embryonic mammary development. Network analysis shows how Nrg/Erbb signals could integrate with other major regulators of embryonic mammary development to elicit the morphogenetic processes and cell fate decisions that occur as the mammary lineage is established.

  2. Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells.

    PubMed

    Guo, Chuanliang; Xue, Yan; Yang, Guanheng; Yin, Shang; Shi, Wansheng; Cheng, Yan; Yan, Xiaoshuang; Fan, Shuyue; Zhang, Huijun; Zeng, Fanyi

    2016-08-01

    Nanog is a well-known transcription factor that plays a fundamental role in stem cell self-renewal and the maintenance of their pluripotent cell identity. There remains a large data gap with respect to the spectrum of the key pluripotency transcription factors' interaction partners. Limited information is available concerning Nanog-associated RNA-binding proteins (RBPs), and the intrinsic protein-RNA interactions characteristic of the regulatory activities of Nanog. Herein, we used an improved affinity protocol to purify Nanog-interacting RBPs from mouse embryonic stem cells (ESCs), and 49 RBPs of Nanog were identified. Among them, the interaction of YBX1 and ILF3 with Nanog mRNA was further confirmed by in vitro assays, such as Western blot, RNA immunoprecipitation (RIP), and ex vivo methods, such as immunofluorescence staining and fluorescent in situ hybridization (FISH), MS2 in vivo biotin-tagged RNA affinity purification (MS2-BioTRAP). Interestingly, RNAi studies revealed that YBX1 and ILF3 positively affected the expression of Nanog and other pluripotency-related genes. Particularly, downregulation of YBX1 or ILF3 resulted in high expression of mesoderm markers. Thus, a reduction in the expression of YBX1 and ILF3 controls the expression of pluripotency-related genes in ESCs, suggesting their roles in further regulation of the pluripotent state of ESCs.

  3. Toxicological Effects of the Different Substances in Tobacco Smoke on Human Embryonic Development by a Systems Chemo-Biology Approach

    PubMed Central

    Feltes, Bruno César; Poloni, Joice de Faria; Notari, Daniel Luis; Bonatto, Diego

    2013-01-01

    The physiological and molecular effects of tobacco smoke in adult humans and the development of cancer have been well described. In contrast, how tobacco smoke affects embryonic development remains poorly understood. Morphological studies of the fetuses of smoking pregnant women have shown various physical deformities induced by constant fetal exposure to tobacco components, especially nicotine. In addition, nicotine exposure decreases fetal body weight and bone/cartilage growth in addition to decreasing cranial diameter and tibia length. Unfortunately, the molecular pathways leading to these morphological anomalies are not completely understood. In this study, we applied interactome data mining tools and small compound interaction networks to elucidate possible molecular pathways associated with the effects of tobacco smoke components during embryonic development in pregnant female smokers. Our analysis showed a relationship between nicotine and 50 additional harmful substances involved in a variety of biological process that can cause abnormal proliferation, impaired cell differentiation, and increased oxidative stress. We also describe how nicotine can negatively affect retinoic acid signaling and cell differentiation through inhibition of retinoic acid receptors. In addition, nicotine causes a stress reaction and/or a pro-inflammatory response that inhibits the agonistic action of retinoic acid. Moreover, we show that the effect of cigarette smoke on the developing fetus could represent systemic and aggressive impacts in the short term, causing malformations during certain stages of development. Our work provides the first approach describing how different tobacco constituents affect a broad range of biological process in human embryonic development. PMID:23637898

  4. Toxicological effects of the different substances in tobacco smoke on human embryonic development by a systems chemo-biology approach.

    PubMed

    Feltes, Bruno César; de Faria Poloni, Joice; Notari, Daniel Luis; Bonatto, Diego

    2013-01-01

    The physiological and molecular effects of tobacco smoke in adult humans and the development of cancer have been well described. In contrast, how tobacco smoke affects embryonic development remains poorly understood. Morphological studies of the fetuses of smoking pregnant women have shown various physical deformities induced by constant fetal exposure to tobacco components, especially nicotine. In addition, nicotine exposure decreases fetal body weight and bone/cartilage growth in addition to decreasing cranial diameter and tibia length. Unfortunately, the molecular pathways leading to these morphological anomalies are not completely understood. In this study, we applied interactome data mining tools and small compound interaction networks to elucidate possible molecular pathways associated with the effects of tobacco smoke components during embryonic development in pregnant female smokers. Our analysis showed a relationship between nicotine and 50 additional harmful substances involved in a variety of biological process that can cause abnormal proliferation, impaired cell differentiation, and increased oxidative stress. We also describe how nicotine can negatively affect retinoic acid signaling and cell differentiation through inhibition of retinoic acid receptors. In addition, nicotine causes a stress reaction and/or a pro-inflammatory response that inhibits the agonistic action of retinoic acid. Moreover, we show that the effect of cigarette smoke on the developing fetus could represent systemic and aggressive impacts in the short term, causing malformations during certain stages of development. Our work provides the first approach describing how different tobacco constituents affect a broad range of biological process in human embryonic development.

  5. Visualization of an endogenous retinoic acid gradient across embryonic development.

    PubMed

    Shimozono, Satoshi; Iimura, Tadahiro; Kitaguchi, Tetsuya; Higashijima, Shin-Ichi; Miyawaki, Atsushi

    2013-04-18

    In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source-sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and

  6. Wnt-3a is critical for caudal embryonic development

    SciTech Connect

    Camper, S.A.; Greco, T.L.; Newhouse, M.M.

    1994-09-01

    Skeletal and neural tube defects represent an important class of birth defects. The majority of mouse mutants with neural tube defects also have malformations of the tail. Vestigial tail (vt) is an autosomal recessive mouse mutation characterized by reduction or absence of the tail, vertebral abnormalities, and reduced fertility. The phenotype has been described as the result of failure of cell migration through the primitive streak, causing abnormalities in the development of the neural tube and a reduction in the ventral ectodermal ridge. Wnt3a is an excellent candidate gene for vt because Wnt3a is expressed in the primitive streak and in the embryonic mesoderm, and it is thought to be involved in cell-to-cell communication and formation of the dorsal-ventral axis in the CNS. A lack of Wnt3a might be expected to result in overdorsalization of the neural tube and reduction of the ventral ectodermal ridge characteristic of vt/vt embryos. In a high resolution backcross segregating vt, we observed no recombination between vt and Wnt3a in 363 individuals analyzed. In vt/vt mice, Southern blot analysis revealed no abnormalities in the Wnt3a gene, and the Wnt3a cDNA sequence does not encode any amino acid changes. Whole mount in situ hybridization analysis demonstrated that Wnt3a expression is severely reduced in the developing tailbud of day 9.5 vt/vt embryos, suggestive of a lesion in the regulation on Wnt3a expression. An alleleism test, carried out by mating vt/vt males with Wnt3a +/Wnt3a- females, demonstrated that vt and Wnt3a are noncomplementing alleles. All of the compound heterozygotes exhibited severe tail defects, including occasional examples of hind limb parlaysis and spina bifida. The vertebral defects are intermediate between those of vt and Wnt3a homozygotes, suggesting that the concentration of Wnt3a correlates with the severity of the defect.

  7. Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids

    PubMed Central

    Simonet, Pierre; Gaget, Karen; Parisot, Nicolas; Duport, Gabrielle; Rey, Marjolaine; Febvay, Gérard; Charles, Hubert; Callaerts, Patrick; Colella, Stefano; Calevro, Federica

    2016-01-01

    Phenylalanine hydroxylase (PAH) is a key tyrosine-biosynthetic enzyme involved in neurological and melanin-associated physiological processes. Despite extensive investigations in holometabolous insects, a PAH contribution to insect embryonic development has never been demonstrated. Here, we have characterized, for the first time, the PAH gene in a hemimetabolous insect, the aphid Acyrthosiphon pisum. Phylogenetic and sequence analyses confirmed that ApPAH is closely related to metazoan PAH, exhibiting the typical ACT regulatory and catalytic domains. Temporal expression patterns suggest that ApPAH has an important role in aphid developmental physiology, its mRNA levels peaking at the end of embryonic development. We used parental dsApPAH treatment to generate successful knockdown in aphid embryos and to study its developmental role. ApPAH inactivation shortens the adult aphid lifespan and considerably affects fecundity by diminishing the number of nymphs laid and impairing embryonic development, with newborn nymphs exhibiting severe morphological defects. Using single nymph HPLC analyses, we demonstrated a significant tyrosine deficiency and a consistent accumulation of the upstream tyrosine precursor, phenylalanine, in defective nymphs, thus confirming the RNAi-mediated disruption of PAH activity. This study provides first insights into the role of PAH in hemimetabolous insects and demonstrates that this metabolic gene is essential for insect embryonic development. PMID:27694983

  8. Adverse Outcome Pathway for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptors During Development

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  9. G-quadruplexes as novel cis-elements controlling transcription during embryonic development.

    PubMed

    David, Aldana P; Margarit, Ezequiel; Domizi, Pablo; Banchio, Claudia; Armas, Pablo; Calcaterra, Nora B

    2016-05-19

    G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology.

  10. G-quadruplexes as novel cis-elements controlling transcription during embryonic development

    PubMed Central

    David, Aldana P.; Margarit, Ezequiel; Domizi, Pablo; Banchio, Claudia; Armas, Pablo; Calcaterra, Nora B.

    2016-01-01

    G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology. PMID:26773060

  11. Normal table of embryonic development in the four-toed salamander, Hemidactylium scutatum.

    PubMed

    Hurney, C A; Babcock, S K; Shook, D R; Pelletier, T M; Turner, S D; Maturo, J; Cogbill, S; Snow, M C; Kinch, K

    2015-05-01

    We present a complete staging table of normal development for the lungless salamander, Hemidactylium scutatum (Caudata: Plethodontidae). Terrestrial egg clutches from naturally ovipositing females were collected and maintained at 15 °C in the laboratory. Observations, photographs, and time-lapse movies of embryos were taken throughout the 45-day embryonic period. The complete normal table of development for H. scutatum is divided into 28 stages and extends previous analyses of H. scutatum embryonic development (Bishop, 1920; Humphrey, 1928). Early embryonic stage classifications through neurulation reflect criteria described for Xenopus laevis, Ambystoma maculatum and other salamanders. Later embryonic stage assignments are based on unique features of H. scutatum embryos. Additionally, we provide morphological analysis of gastrulation and neurulation, as well as details on external aspects of eye, gill, limb, pigmentation, and tail development to support future research related to phylogeny, comparative embryology, and molecular mechanisms of development.

  12. Development of sympathetic cardiovascular control in embryonic, hatchling, and yearling female American alligator (Alligator mississippiensis).

    PubMed

    Eme, John; Elsey, Ruth M; Crossley, Dane A

    2013-06-01

    We used arterial tyramine injections to study development of sympathetic actions on in vivo heart rate and blood pressure in embryonic, hatching and yearling female American alligators. Tyramine is a pharmacological tool for understanding comparative and developmental sympathetic regulation of cardiovascular function, and this indirect sympathomimetic agent causes endogenous neuronal catecholamine release, increasing blood pressure and heart rate. Arterial tyramine injection in hatchling and yearling alligators caused the typical vertebrate response - rise in heart rate and blood pressure. However, in embryonic alligators, tyramine caused a substantial and immediate bradycardia at both 70% and 90% of embryonic development. This embryonic bradycardia was accompanied by hypotension, followed by a sustained hypertension similar to the hatchling and juvenile responses. Pretreatment with atropine injection (cholinergic receptor blocker) eliminated the embryonic hypotensive bradycardia, and phentolamine pretreatment (α-adrenergic receptor blocker) eliminated the embryonic hypotensive and hypertensive responses but not the bradycardia. In addition, hexamethonium pretreatment (nicotinic receptor blocker) significantly blunted embryos' bradycardic tyramine response. However, pretreatment with 6-hydroxydopamine, a neurotoxin that destroys catecholaminergic terminals, did not eliminate the embryonic bradycardia. Tyramine likely stimulated a unique embryonic response - neurotransmitter release from preganglionic nerve terminals (blocked with hexamethonium) and an acetylcholine mediated bradycardia with a secondary norepinephrine-dependent sustained hypertension. In addition, tyramine appears to stimulate sympathetic nerve terminals directly, which contributed to the overall hypertension in the embryonic, hatchling and yearling animals. Data demonstrated that humoral catecholamine control of cardiovascular function was dominant over the immature parasympathetic nervous system

  13. Oral Fertility and Early Embryonic Development Study of WR242511 Tartrate in Rats

    DTIC Science & Technology

    1995-12-21

    ORAL FERTILITY AND EARLY EMBRYONIC DEVELOPMENT STUDY OF WR242511 TARTRATE IN RATS PRECOHABITATION AND COHABITATION PHASES [ DMH SUMMARY OF WEIGHT...Classification) Oral Fertility and Early Embryonic Development Study of WR242511 Tartrate in Rats 12. PERSONAL AUTHOR(S) Levine, Barry S...This study evaluated the toxic potential of WR242511 Tartrate on reproductive capability in CD® male and female rats . WR242511 Tartrate is being

  14. Effects of temperature on embryonic development of lake herring (Coregonus artedii)

    USGS Publications Warehouse

    Colby, Peter J.; Brooke, L.T.

    1973-01-01

    Embryonic development of lake herring (Coregonus artedii) was observed in the laboratory at 13 constant temperatures from 0.0 to 12.1 C and in Pickerel Lake (Washtenaw County, Michigan) at natural temperature regimes. Rate of development during incubation was based on progression of the embryos through 20 identifiable stages. An equation was derived to predict development stage at constant temperatures, on the general assumption that development stage (DS) is a function of time (days, D) and temperature (T). The equation should also be useful in interpreting estimates from future regressions that include other environmental variables that affect egg development. A second regression model, derived primarily for fluctuating temperatures, related development rate for stage j (DRj), expressed as the reciprocal of time, to temperature (x). The generalized equation for a development stage is: DRj = abx cx2 dx3. In general, time required for embryos to reach each stage of development in Pickerel Lake agreed closely with the time predicted from this equation, derived from our laboratory observations. Hatching time was predicted within 1 day in 1969 and within 2 days in 1970. We used the equations derived with the second model to predict the effect of the superimposition of temperature increases of 1 and 2 C on the measured temperatures in Pickerel Lake. Conceivably, hatching dates could be affected sufficiently to jeopardize the first feeding of lake herring through loss of harmony between hatching date and seasonal food availability.

  15. Embryonic development of pleuropodia of the cicada, Magicicada cassini.

    PubMed

    Strauss, Johannes; Lakes-Harlan, Reinhard

    2006-01-01

    In many insects the first abdominal segment possesses embryonic appendages called pleuropodia. Here we show the embryogenesis of pleuropodial cells of the periodical cicada, Magicicada cassini (Fisher 1851) (Insecta, Homoptera, Cicadidae). An antibody, anti-horseradish perioxidase (HRP), that is usually neuron-specific strongly marked the pleuropodial anlagen and revealed their ectodermal origin shortly after limb bud formation. Thereafter the cells sank into the epidermis and their apical parts enlarged. A globular part protruded from the body wall. Filamentous structures were marked at the stem region and into the apical dilation. In later embryonic stages the pleuropodia degenerated. Despite the binding of anti-HRP the cells had no morphological neuronal characters and cannot be regarded as neurons. The binding indicates that glycosylated cell surface molecules contribute to the adhesion between the presumably glandular pleuropodial cells. In comparison, anti-HRP does not mark the pleuropodia of Orthoptera.

  16. [Embryonic development of the cestode Mosgovoyia ctenoides (Anoplocephalidae)].

    PubMed

    Młocicki, Daniel

    2007-01-01

    In this study the cleavage divisions and the ultrastructural analysis of early embryos as well as cellular organisation of infective oncosphere of the anoplocephalid cestode Mosgovoyia ctenoides are described. The early cleavage is unequal and results in the formation of three types of blastomeres: 2 large macromeres containing large electron dense granules, 3 medium-size mesomeres and several small micromeres. In the early stage of oncospheral morphogenesis, formation of three following primary embryonic envelopes takes place: (1) the capsule replaced by thick, rigid outer coat originated form the uterine material secretion, (2) the outer envelope and (3) the inner envelope. The capsule is formed from the vitellocyte material. Two macromeres contribute to the formation of the outer envelope and three mesomeres take part in the formation of the inner envelope. The inner envelope undergoes differentiation into three sublayers: (1) a thick extraembryophoral cytoplasmic layer, (2) an electron-dense embryophore, as a stiff pyriform apparatus, and (3) a thin intraembryophoral cytoplasmic layer containing mesomere nuclei. The oncosphere is located in the extended cupule-like part of the pyriform apparatus. Four egg envelopes surround the mature infective oncosphere of M. ctenoides: (1) a thick outer coat, (2) the outer envelope, (3) the inner envelope with a characteristic pyriform apparatus and (4) the oncospheral membrane. Hook morphogenesis takes place inside six symmetrically arranged oncoblasts, each of which shows a characteristic large nucleus of semi-lunar shape. At the beginning the "hook-forming center" appears in the cytoplasmic part of each oncoblast. It consists of numerous free ribosomes, polyribosomes, mitochondria and Golgi complexes. The hook-forming center is involved in synthesis of a hook primordium, which undergoes differentiation and elongation into the fully developed hook. Mature hook consists of three parts: (1) blade, (2) shank, (3) base, and at

  17. Type 1 and 3 inositol trisphosphate receptors are required for extra-embryonic vascular development.

    PubMed

    Uchida, Keiko; Nakazawa, Maki; Yamagishi, Chihiro; Mikoshiba, Katsuhiko; Yamagishi, Hiroyuki

    2016-10-01

    The embryonic-maternal interface of the placental labyrinth, allantois, and yolk sac are vital during embryogenesis; however, the precise mechanism underlying the vascularization of these structures remains unknown. Herein we focus on the role of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R), which are intracellular Ca(2+) release channels, in placentation. Double knockout (DKO) of type 1 and 3 IP3Rs (IP3R1 and IP3R3, respectively) in mice resulted in embryonic lethality around embryonic day (E) 11.5. Because IP3R1 and IP3R3 were co-expressed in endothelial cells in the labyrinth, allantois, and yolk sac, we investigated extra-embryonic vascular development in IP3R1- and IP3R3-DKO mice. The formation of chorionic plates and yolk sac vessels seemed dysregulated around the timing of the chorio-allantoic attachment, immediately followed by the disorganization of allantoic vessels, the decreased expression of the spongiotrophoblast cell marker Tpbpa and the growth retardation of the embryos in DKO mice. Fluorescent immunohistochemistry demonstrated downregulation of a vascular endothelial marker, CD31, in labyrinth embryonic vessels and poor elongation of extra-embryonic mesoderm into the labyrinth layer in DKO placenta, whereas the branching of the DKO chorionic trophoblast was initiated. In addition, allantoic and yolk sac vessels in extra-embryonic tissues were less remodeled in DKO mice. In vitro endothelial cord formation and migration activities of cultured vascular endothelial cells derived from human umbilical vein were downregulated under the inhibition of IP3R. Our results suggest that IP3R1 and IP3R3 are required for extra-embryonic vascularization in the placenta, allantois, and yolk sac. This is the first demonstration of the essential role of IP3/IP3Rs signaling in the development of the vasculature at the embryonic-maternal interface.

  18. Effect of embryonic development on the chicken egg yolk plasma proteome after 12 days of incubation.

    PubMed

    Réhault-Godbert, Sophie; Mann, Karlheinz; Bourin, Marie; Brionne, Aurélien; Nys, Yves

    2014-03-26

    To better appreciate the dynamics of yolk proteins during embryonic development, we analyzed the protein quantitative changes occurring in the yolk plasma at the day of lay and after 12 days of incubation, by comparing unfertilized and fertilized chicken eggs. Of the 127 identified proteins, 69 showed relative abundance differences among conditions. Alpha-fetoprotein and two uncharacterized proteins (F1NHB8 and F1NMM2) were identified for the first time in the egg. After 12 days of incubation, five proteins (vitronectin, α-fetoprotein, similar to thrombin, apolipoprotein B, and apovitellenin-1) showed a major increase in relative abundance, whereas 15 proteins showed a significant decrease in the yolks of fertilized eggs. In unfertilized/table eggs, we observed an accumulation of proteins likely to originate from other egg compartments during incubation. This study provides basic knowledge on the utilization of egg yolk proteins by the embryo and gives some insight into how storage can affect egg quality.

  19. Influence of air composition during egg storage on egg characteristics, embryonic development, hatchability, and chick quality.

    PubMed

    Reijrink, I A M; van Duijvendijk, L A G; Meijerhof, R; Kemp, B; van den Brand, H

    2010-09-01

    Egg storage beyond 7 d is associated with an increase in incubation duration and a decrease in hatchability and chick quality. Negative effects of prolonged egg storage may be caused by changes in the embryo, by changes in egg characteristics, or by both. An adjustment in storage air composition may reduce negative effects of prolonged egg storage because it may prevent changes in the embryo and in egg characteristics. An experiment was conducted to investigate the effects of high CO(2) concentrations or a low O(2) concentration in the storage air on egg characteristics, embryonic development, hatchability, and chick quality. Eggs were stored for 14 d in 4 different storage air compositions: normal air (control; 20.9% O(2), 0.05% CO(2), 78.1% N(2)), 0.74% CO(2) treatment (20.8% O(2), 0.74% CO(2), 77.5% N(2)), 1.5% CO(2) treatment (20.6% O(2), 1.5% CO(2), 77.0% N(2))(,) or 3.0% O(2) treatment (3.0% O(2), 0.04% CO(2), 96.0% N(2)). The storage temperature was 16 degrees C and the RH was 75%. Results showed that the change in albumen pH and albumen height between oviposition and the end of storage was less in the 0.74 and 1.5% CO(2) treatments than in the control and 3.0% O(2) treatments (P < 0.001 and P < 0.001, respectively). None of the treatments affected the stage of embryonic development on d 4 of incubation, hatchability, or chick quality on the day of hatch in terms of BW, chick length, and yolk-free body mass. Although high CO(2) concentrations in the storage air had a positive effect on albumen height and albumen pH, it is concluded that the storage air compositions, studied in the current study, do not affect embryonic development, hatchability, or chick quality when eggs are stored for 14 d at a storage temperature of 16 degrees C.

  20. A low ethanol dose affects all types of cells in mixed long-term embryonic cultures of the cerebellum.

    PubMed

    Pickering, Chris; Wicher, Grzegorz; Rosendahl, Sofi; Schiöth, Helgi B; Fex-Svenningsen, Asa

    2010-06-01

    The beneficial effect of the '1-drink-a-day' lifestyle is suggested by studies of cardiovascular health, and this recommendation is increasingly followed in many countries. The main objective of this study was to determine whether this pattern of ethanol use would be detrimental to a pregnant woman. We exposed a primary culture of rat cerebellum from embryonic day 17 (corresponding to second trimester in humans) to ethanol at a concentration of 17.6 mM which is roughly equivalent to one glass of wine. Acutely, there was no change in cell viability after 5 or 8 days of exposure relative to control. By 11 days, a reduction in the number of viable cells was observed without an accompanying change in caspase-3 activity (marker of apoptotic cell death), suggesting changes in cell proliferation. As the proportion of nestin-positive cells was higher in the ethanol-treated cultures after 5 days, we hypothesized that an increase in differentiation to neurons would compensate for the ongoing neuronal death. However, there were limits to this compensatory ability as the relative proportion of nestin-positive cells was decreased after 11 days. To further illustrate the negative long-term effects of this ethanol dose, cultures were exposed for 30 days. After this period, virtually no neurons or myelinating oligodendrocytes were present in the ethanol-treated cultures. In conclusion, chronic exposure to ethanol, even at small doses, dramatically and persistently affects normal development.

  1. Effects of dehydration on cardiovascular development in the embryonic American alligator (Alligator mississipiensis).

    PubMed

    Tate, Kevin B; Eme, John; Swart, Justin; Conlon, J Michael; Crossley, Dane A

    2012-07-01

    Effects of dehydration on reptilian embryonic cardiovascular function are unknown. Here, we present the first morphological and physiological data quantifying the cumulative effects of four acute dehydration events on the embryonic American alligator, Alligator mississipiensis. We hypothesized that dehydration would alter embryonic morphology, reduce blood volume and augment the response to angiotensin II (Ang II), a key osmotic and blood volume regulatory response element in adult vertebrates. Drying events at 30%, 40%, 50%, and 60% of embryonic incubation reduced total egg water content by 14.43 ± 0.37 g, a 3.4 fold increase relative to controls. However, embyronic blood volume was greater in the dehydration group at 70% of embryonic incubation compared to controls (0.39 ± 0.044 mLg(-1) and 0.22 ± 0.03 mLg(-1), respectively), however, both groups were similar at 90% of incubation (0.18 ± 0.02 mLg(-1) in the controls and 0.23 ± 0.03 mLg(-1) in the dehydrated group). Dehydration altered the morphological phenotype and resulted in an overall reduction in embryonic mass at both incubation time points measured. Dehydration also altered the physiological phenotype, resulting in embryonic alligators that were relatively bradycardic at 90% of incubation. Arterial Ang II injections resulted in a dose dependent hypertension, which increased in intensity over the span of incubation studied. While progressive incubation altered the Ang II response, dehydration had no impact on the cardiovascular responses to the peptide. Quantification of Ang II type-1 receptor protein using western blot analysis illustrated that dehydration condition and incubation time point did not alter protein quantity. Collectively, our results show that dehydration during embryonic development of the American alligator alters embryonic morphology and baseline heart rate without altering arterial pressure and response to Ang II.

  2. Influence of egg storage time and preincubation warming profile on embryonic development, hatchability, and chick quality.

    PubMed

    Reijrink, I A M; Berghmans, D; Meijerhof, R; Kemp, B; van den Brand, H

    2010-06-01

    When eggs are stored beyond 7 d, hatchability and chick quality decrease. The cause of the negative effects of prolonged egg storage is not clear. The negative effects may be caused by a decrease in embryo viability due to an increase in cell death. The optimal time and curve of preincubation warming (the preincubation warming profile) may be different for eggs stored over short and long periods of time because embryo viability is dependent on egg storage time. The aim of this study was to investigate whether preincubation warming profiles affect embryonic development, hatchability, and chick quality when eggs are stored for a short or prolonged time. Two experiments were conducted. In both experiments, a 2x2 completely randomized design was used with 2 storage times (4 and 14 d at 17 degrees C in experiment I and 4 and 13 d at 19 degrees C in experiment II) and 2 preincubation warming profiles (within 4 or 24 h from storage temperature to 37.8 degrees C). In experiment I, results suggested that the effect of preincubation warming profile on hatchability was dependent on storage time. However, because a low number of eggs were used in this experiment, these differences were not significant. In experiment II, the interaction between storage time and preincubation warming profile was observed for embryonic mortality during the first 2 d of incubation and hatchability (P=0.006 and P=0.01, respectively). When storage time was 13 d, embryonic mortality during the first 2 d of incubation decreased by 4.4% and hatchability increased by 5.7% when the 24-h preincubation warming profile was used instead of the 4-h preincubation warming profile. However, no effect of preincubation warming profile was observed when storage time was 4 d. In both experiments, chick quality decreased when storage time increased but was not affected by preincubation warming profile. We concluded that a slow preincubation warming profile is beneficial for hatchability when storage time is prolonged

  3. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    PubMed

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly.

  4. Domain-specific functions of Stardust in Drosophila embryonic development

    PubMed Central

    Koch, Leonie; Feicht, Sabine; Sun, Rui; Sen, Arnab

    2016-01-01

    In Drosophila, the adaptor protein Stardust is essential for the stabilization of the polarity determinant Crumbs in various epithelial tissues, including the embryonic epidermis, the follicular epithelium and photoreceptor cells of the compound eye. In turn, Stardust recruits another adaptor protein, PATJ, to the subapical region to support adherens junction formation and morphogenetic events. Moreover, Stardust binds to Lin-7, which is dispensable in epithelial cells but functions in postsynaptic vesicle fusion. Finally, Stardust has been reported to bind directly to PAR-6, thereby linking the Crumbs–Stardust–PATJ complex to the PAR-6/aPKC complex. PAR-6 and aPKC are also capable of directly binding Bazooka (the Drosophila homologue of PAR-3) to form the PAR/aPKC complex, which is essential for apical–basal polarity and cell–cell contact formation in most epithelia. However, little is known about the physiological relevance of these interactions in the embryonic epidermis of Drosophila in vivo. Thus, we performed a structure–function analysis of the annotated domains with GFP-tagged Stardust and evaluated the localization and function of the mutant proteins in epithelial cells of the embryonic epidermis. The data presented here confirm a crucial role of the PDZ domain in binding Crumbs and recruiting the protein to the subapical region. However, the isolated PDZ domain is not capable of being recruited to the cortex, and the SH3 domain is essential to support the binding to Crumbs. Notably, the conserved N-terminal regions (ECR1 and ECR2) are not crucial for epithelial polarity. Finally, the GUK domain plays an important role for the protein's function, which is not directly linked to Crumbs stabilization, and the L27N domain is essential for epithelial polarization independently of recruiting PATJ. PMID:28018665

  5. Effect of parental hypoxic exposure on embryonic development of the offspring of two serpulid polychaetes: Implication for transgenerational epigenetic effect.

    PubMed

    Leung, J Y S; Cheung, S G; Qiu, J W; Ang, P O; Chiu, J M Y; Thiyagarajan, V; Shin, P K S

    2013-09-15

    Sperm production and motility, fecundity, and egg size, complexity and viability of serpulid polychaetes Hydroides elegans and Hydroides diramphus after 2-week treatment to hypoxia (2 mg O2 l(-1)) was compared with those under normoxia (6 mg O2 l(-1)). Despite reduced fecundity, the effect of parental hypoxic exposure on gamete quality was not discernible for both species. However, regardless of their subsequent dissolved oxygen environment, eggs spawned by H. elegans after hypoxic exposure were found to have lower fertilization success, slower embryonic development and a significantly higher yield of malformed embryos than those with a parental normoxic treatment. In contrast, neither fertilization success nor rate of embryonic development was affected for H. diramphus. The results implied that hypoxia was a potential stress reducing the recruitment of H. elegans through non-adaptive epigenetic effect, whereas H. diramphus was a more tolerant species to survive hypoxic events.

  6. Chronic effects of triclosan on embryonic development of Chinese toad, Bufo gargarizans.

    PubMed

    Chai, Lihong; Wang, Hongyuan; Zhao, Hongfeng; Deng, Hongzhang

    2016-10-01

    Triclosan (TCS) is commonly used worldwide in a range of personal care and sanitizing products. The aim of this study was to evaluate potential effects of TCS exposure on embryonic development of Bufo gargarizans, an endemic frog species in China. Standard Gosner stage 3 B. gargarizans embryos were exposed to 10 ~ 150 μg/L TCS during embryogenesis. Survival, total length, weight, developmental stage, duration of different embryo stages, malformation, and type II and III deiodinase (D2 and D3) expression were measured. Inhibitory effects on embryo developmental stage, total length and weight were found at 30 ~ 150 μg/L TCS. Moreover, the duration of embryonic development was increased at gastrula, neural, circulation, and operculum development stage in TCS-treated groups. In addition, TCS exposure induced morphological malformations in B. gargarizans embryos, which are characterized by hyperplasia, abdominal edema, and axial flexures. Furthermore, our results showed that the expression of D2 in embryos was probably down-regulated at 60 and 150 μg/L TCS, but its spatial expression patterns was not affected by TCS. In summary, our study suggested that TCS exposure not only resulted in delayed growth and development but also caused teratogenic effects in B. gargarizans embryos, and the developmental effects of TCS at high concentrations may be associated with disruption of THs homeostasis. Although further studies are necessary, the present findings could provide a basis for understanding on harmful effects and the potential mechanisms of TCS in amphibian embryos.

  7. Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development

    PubMed Central

    Hasegawa, Yu; Taylor, Deanne; Ovchinnikov, Dmitry A.; Wolvetang, Ernst J.; de Torrenté, Laurence; Mar, Jessica C.

    2015-01-01

    An analysis of gene expression variability can provide an insightful window into how regulatory control is distributed across the transcriptome. In a single cell analysis, the inter-cellular variability of gene expression measures the consistency of transcript copy numbers observed between cells in the same population. Application of these ideas to the study of early human embryonic development may reveal important insights into the transcriptional programs controlling this process, based on which components are most tightly regulated. Using a published single cell RNA-seq data set of human embryos collected at four-cell, eight-cell, morula and blastocyst stages, we identified genes with the most stable, invariant expression across all four developmental stages. Stably-expressed genes were found to be enriched for those sharing indispensable features, including essentiality, haploinsufficiency, and ubiquitous expression. The stable genes were less likely to be associated with loss-of-function variant genes or human recessive disease genes affected by a DNA copy number variant deletion, suggesting that stable genes have a functional impact on the regulation of some of the basic cellular processes. Genes with low expression variability at early stages of development are involved in regulation of DNA methylation, responses to hypoxia and telomerase activity, whereas by the blastocyst stage, low-variability genes are enriched for metabolic processes as well as telomerase signaling. Based on changes in expression variability, we identified a putative set of gene expression markers of morulae and blastocyst stages. Experimental validation of a blastocyst-expressed variability marker demonstrated that HDDC2 plays a role in the maintenance of pluripotency in human ES and iPS cells. Collectively our analyses identified new regulators involved in human embryonic development that would have otherwise been missed using methods that focus on assessment of the average expression

  8. Mouse embryo motion and embryonic development from the 2-cell to blastocyst stage using mechanical vibration systems.

    PubMed

    Asano, Yuka; Matsuura, Koji

    2014-06-01

    We investigated the effect of mechanical stimuli on mouse embryonic development from the 2-cell to blastocyst stage to evaluate physical factors affecting embryonic development. Shear stress (SS) applied to embryos using two mechanical vibration systems (MVSs) was calculated by observing microscopic images of moving embryos during mechanical vibration (MV). The MVSs did not induce any motion of the medium and the diffusion rate using MVSs was the same as that under static conditions. Three days of culture using MVS did not improve embryonic development. MVS transmitted MV power more efficiently to embryos than other systems and resulted in a significant decrease in development to the morula or blastocyst stage after 2 days. Comparison of the results of embryo culture using dynamic culture systems demonstrated that macroscopic diffusion of secreted materials contributes to improved development of mouse embryos to the blastocyst stage. These results also suggest that the threshold of SS and MV to induce negative effects for mouse embryos at stages earlier than the blastocyst may be lower than that for the blastocyst, and that mouse embryos are more sensitive to physical and chemical stimuli than human or pig embryos because of their thinner zona pellucida.

  9. How do hatcheries influence embryonic development of sea turtle eggs? Experimental analysis and isolation of microorganisms in leatherback turtle eggs.

    PubMed

    Patino-Martinez, Juan; Marco, Adolfo; Quiñones, Liliana; Abella, Elena; Abad, Roberto Muriel; Diéguez-Uribeondo, Javier

    2012-01-01

    Many conservation programs consider translocation of turtle nests to hatcheries as a useful technique. The repeated use of the same incubation substrate over several seasons in these hatcheries could, however, be harmful to embryos if pathogens were able to accumulate or if the physical and chemical characteristics of the incubation environment were altered. However, this hypothesis has yet to be tested. We conducted two field experiments to evaluate the effects of hatchery sand and eggshell decay on the embryonic development of leatherback sea turtle eggs in Colombia. We identified the presence of both fungi and bacteria species on leatherback turtle eggs. Sea turtle eggs exposed to previously used hatchery substrates or to decaying eggshells during the first and middle third of the embryonic development produced hatchlings that were smaller and/or weighed less than control eggs. However, this did not negatively influence hatching success. The final third of embryonic development seems to be less susceptible to infection by microorganisms associated with decaying shells. We discuss the mechanisms that could be affecting sea turtle egg development when in contact with fungi. Further studies should seek to understand the infection process and the stages of development in which the fungi are more virulent to the eggs of this critically endangered species.

  10. Shh expression is required for embryonic hair follicle but not mammary gland development.

    PubMed

    Michno, Kinga; Boras-Granic, Kata; Mill, Pleasantine; Hui, C C; Hamel, Paul A

    2003-12-01

    The embryonic mammary gland and hair follicle are both derived from the ventral ectoderm, and their development depends on a number of common fundamental developmental pathways. While the Hedgehog (Hh) signaling pathway is required for hair follicle morphogenesis, the role of this pathway during embryonic mammary gland development remains undetermined. We demonstrate here that, unlike the hair follicle, both Shh and Ihh are expressed in the developing embryonic mouse mammary rudiment as early as E12.5. In Shh(-/-) embryos, hair follicle development becomes arrested at an early stage, while the mammary rudiment, which continues to express Ihh, develops in a manner indistinguishable from that of wild-type littermates. The five pairs of mammary buds in Shh(-/-) female embryos exhibit normal branching morphogenesis at E16.5, forming a rudimentary ductal structure identical to wild-type embryonic mammary glands. We further demonstrate that loss of Hh signaling causes altered cyclin D1 expression in the embryonic dermal mesenchyme. Specifically, cyclin D1 is expressed at E14.5 principally in the condensed mesenchymal cells of the presumptive hair follicles and in both mesenchymal and epithelial cells of the mammary rudiments in wild-type and Shh-deficient embryos. By E18.5, robust cyclin D1 expression is maintained in mammary rudiments of both wild-type and Shh-deficient embryos. In hair follicles of wild-type embryos by E18.5, cyclin D1 expression switches to follicular epithelial cells. In contrast, strong cyclin D1 expression is observed principally in the mesenchymal cells of arrested hair follicles in Shh(-/-) embryos at E18.5. These data reveal that, despite the common embryonic origin of hair follicles and mammary glands, distinct patterns of Hh-family expression occur in these two tissues. Furthermore, these data suggest that cyclin D1 expression in the embryonic hair follicle is mediated by both Hh-independent and Hh-dependent mechanisms.

  11. Revealing the bovine embryo transcript profiles during early in vivo embryonic development.

    PubMed

    Vallée, Maud; Dufort, Isabelle; Desrosiers, Stéphanie; Labbe, Aurélie; Gravel, Catherine; Gilbert, Isabelle; Robert, Claude; Sirard, Marc-André

    2009-07-01

    Gene expression profiling is proving to be a powerful approach for the identification of molecular mechanisms underlying complex cellular functions such as the dynamic early embryonic development. The objective of this study was to perform a transcript abundance profiling analysis of bovine early embryonic development in vivo using a bovine developmental array. The molecular description of the first week of life at the mRNA level is particularly challenging when considering the important fluctuations in RNA content that occur between developmental stages. Accounting for the different intrinsic RNA content between developmental stages was achieved by restricting the reaction time during the global amplification steps and by using spiked controls and reference samples. Analysis based on intensity values revealed that most of the transcripts on the array were present at some point during in vivo bovine early embryonic development, while the varying number of genes detected in each developmental stage confirmed the dynamic profile of gene expression occurring during embryonic development. Pair-wise comparison of gene expression showed a marked difference between oocytes and blastocysts profiles, and principal component analysis revealed that the majority of the transcripts could be regrouped into three main clusters representing distinct RNA abundance profiles. Overall, these data provide a detailed temporal profile of the abundance of mRNAs revealing the richness of signaling processes in early mammalian development. Results presented here provide better knowledge of bovine in vivo embryonic development and contribute to the progression of our current knowledge regarding the first week of life in mammals.

  12. Proliferation of mouse embryonic stem cell progeny and the spontaneous contractile activity of cardiomyocytes are affected by microtopography.

    PubMed

    Biehl, Jesse K; Yamanaka, Satoshi; Desai, Tejal A; Boheler, Kenneth R; Russell, Brenda

    2009-08-01

    The niche in which stem cells reside and differentiate is a complex physicochemical microenvironment that regulates cell function. The role played by three-dimensional physical contours was studied on cell progeny derived from mouse embryonic stem cells using microtopographies created on PDMS (poly-dimethyl-siloxane) membranes. While markers of differentiation were not affected, the proliferation of heterogeneous mouse embryonic stem cell-derived progeny was attenuated by 15 microm-, but not 5 microm-high microprojections. This reduction was reversed by Rho kinase and myosin light chain kinase inhibition, which diminishes the tension generating ability of stress fibers. Purified cardiomyocytes derived from embryonic stem cells also showed significant blunting of proliferation and increased beating rates compared with cells grown on flat substrates. Thus, proliferation of stem cell-derived progeny appears to be regulated by microtopography through tension-generation of contractility in the third-dimension. These results emphasize the importance of topographic cues in the modulation of stem cell progeny behavior.

  13. Microfluidic-based patterning of embryonic stem cells for in vitro development studies.

    PubMed

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang

    2013-12-07

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.

  14. [Teratogenesis and gene targets of 17alpha-ethynylestradiol on embryonic development in zebrafish].

    PubMed

    Tong, Jun-Wei; Zhang, Jing-Pu; Meng, Jie

    2011-01-01

    The pharmaceutical ethynylestradiol (EE) is a potent endocrine modulator. Application enlargement of ethynylestradiol in clinics and abuse in livestock farming and fishing make it important to explore ethynylestradiol toxicological action on vertebrate embryonic development and to establish an in vivo method for EE toxicity detection efficiently and conveniently. In the present study, using a model animal zebrafish and 17alpha-ethynylestradiol as a representative compound, we have investigated EE2 teratogenicity, target tissues and target genes on zebrafish embryo. The results show that median teratogenesis concentration (TC50) of EE2 is 0.8 microg x mL(-1), and median lethal dose (LD50) is 3.3 microg x mL(-1). Targets of EE2 action were implicated in brain, eyes, heart, muscle, skeleton, pigment and viscera. Embryonic cardiac arrhythmia caused by EE2 is probably resulted from heart abnormal structure. The embryonic stage sensitive to EE2 mainly started at cleavage and last up to the organogenesis with time-accumulating effect. RT-PCR results indicate that EE2 treatment disturbed gene expression pattern at the early period of zebrafish embryonic development by suppressing transcription of gene boz that promotes brain development, upregulating genes for trunk and tail, such as ntl, spt, shh, and perturbing Nodal signal expression of TGFbeta superfamily, for example, cyc, sqt and oep. Using zebrafish, an efficient in vivo method for quick evaluation of EE toxicity on embryonic development has been developed.

  15. Nogo-B receptor deficiency causes cerebral vasculature defects during embryonic development in mice

    PubMed Central

    Rana, Ujala; Liu, Zhong; Kumar, Suresh N.; Zhao, Baofeng; Hu, Wenquan; Bordas, Michelle; Cossette, Stephanie; Szabo, Sara; Foeckler, Jamie; Weiler, Hartmut; Chrzanowska-Wodnicka, Magdalena; Holtz, Mary L.; Misra, Ravindra P.; Salato, Valerie; North, Paula; Ramchandran, Ramani; Miao, Qing Robert

    2016-01-01

    Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Here, we further demonstrated the roles of NgBR in regulating vasculature development in mouse embryo and primitive blood vessel formation in embryoid body culture systems, respectively. Our results showed that NgBR homozygous knockout mice are embryonically lethal at E7.5 or earlier, and Tie2Cre-mediated endothelial cell-specific NgBR knockout (NgBR ecKO) mice die at E11.5 and have severe blood vessel assembly defects in embryo. In addition, mutant embryos exhibit dilation of cerebral blood vessel, resulting in thin-walled endothelial caverns. The similar vascular defects also were detected in Cdh5(PAC)-CreERT2 NgBR inducible ecKO mice. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. Mechanistically, NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also decreases the expression of CCM1 and CCM2 proteins. Furthermore, we performed immunofluorescence (IF) staining of NgBR in human cerebral cavernous malformation patient tissue sections. The quantitative analysis results showed that NgBR expression levels in CD31 positive endothelial cells is significantly decreased in patient tissue sections. These results suggest that NgBR may be one of important genes coordinating the cerebral vasculature development. PMID:26746789

  16. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development

    SciTech Connect

    Cheng, Xin; Chen, Jian-long; Ma, Zheng-lai; Zhang, Zhao-long; Lv, Shun; Mai, Dong-mei; Liu, Jia-jia; Chuai, Manli; Lee, Kenneth Ka Ho; Wan, Chao; Yang, Xuesong

    2014-11-15

    Dexamethasone (Dex) has anti-inflammatory and immunomodulatory properties against many conditions. There is a potential teratogenic risk, however, for pregnant women receiving Dex treatment. It has been claimed that Dex exposure during pregnancy could affect osteogenesis in the developing embryo, which still remains highly controversial. In this study, we employed chick embryos to investigate the effects of Dex exposure on skeletal development using combined in vivo and in vitro approach. First, we demonstrated that Dex (10{sup −8}–10{sup −6} μmol/egg) exposure resulted in a shortening of the developing long bones of chick embryos, and it accelerated the deposition of calcium salts. Secondly, histological analysis of chick embryo phalanxes exhibited Dex exposure inhibited the proliferation of chondrocytes, increased apoptosis of chondrocytes and osteocytes, and led to atypical arranged hypertrophic chondrocytes. The expression of genes related to skeletogenesis was also analyzed by semi-quantitative RT-PCR. The expression of ALP, Col1a2 and Col2a1 was decreased in the Dex treated phalanxes. A detectable increase was observed in Runx-2 and Mmp-13 expression. We next examined how Dex affected the different stages of skeletogenesis in vitro. Utilizing limb bud mesenchyme micromass cultures, we determined that Dex exposure exerted no effect on apoptosis but impaired chondrogenic cell proliferation. Interestingly, low dose of Dex moderately prompted nodule formation as revealed by alcian blue staining, but higher doses of Dex significantly inhibited similar chondrogenic differentiation. Dex exposure did not induce apoptosis when the chondrogenic precursors were still at the mesenchymal stage, however, cell viability was suppressed when the mesenchyme differentiated into chondrocytes. Alizarin red staining revealed that the capacity to form mineralized bone nodules was correspondingly enhanced as Dex concentrations increased. The mRNA level of Sox-9 was slightly

  17. Comparative effects of neutron irradiation and X irradiation on the embryonic development of the rat

    SciTech Connect

    Solomon, H.M. ); Beckman, D.A.; Buck, S.J.; Brent, R.L. Thomas Jefferson Univ., Philadelphia, PA ); Gorson, R.O. ); Mills, R.E. )

    1994-02-01

    Our aim was to compare the dose-response relationship for the embryotoxic effects of 0.43 MeV neutrons with those of 240 kVp X rays after in utero exposures during early organogenesis in the rat. At 9.5 days after conception, pregnant rats were exposed to 0.025 to 0.35 Gy 0.43 MeV neutrons at a dose rate of 0.04 to 0.07 Gy/h. Comparable biological effects were produced using 0.50 to 2.05 Gy 240 kVp X rays. Neutron irradiation produced a greater proportion of offspring with very low body weight than with malformations when compared to X rays. There were no embryotoxic effects observed at neutron exposures of 0.025, 0.049, 0.079, 0.10, 0.15, and 0.20 Gy or X-ray exposures of 0.50 and 0.96 Gy. Taken together, the results suggest that the mechanisms by which neutron irradiation affects embryonic development may, in part, be both quantitatively and qualitatively different from those by which X irradiation affects development. These results support the generalization that the embryo exhibits a nonlinear response to increasing doses of ionizing radiations during the period of early organogenesis. 25 refs., 3 tabs.

  18. Changes in the concentrations of four maternal steroids during embryonic development in the threespined stickleback (Gasterosteus aculeatus).

    PubMed

    Paitz, Ryan Thomas; Mommer, Brett Christian; Suhr, Elissa; Bell, Alison Marie

    2015-08-01

    Embryonic exposure to steroids often leads to long-term phenotypic effects. It has been hypothesized that mothers may be able to create a steroid environment that adjusts the phenotypes of offspring to current environmental conditions. Complicating this hypothesis is the potential for developing embryos to modulate their early endocrine environment. This study utilized the threespined stickleback (Gasterosteus aculeatus) to characterize the early endocrine environment within eggs by measuring four steroids (progesterone, testosterone, estradiol, and cortisol) of maternal origin. We then examined how the concentrations of these four steroids changed over the first 12 days post fertilization (dpf). Progesterone, testosterone, estradiol, and cortisol of maternal origin could be detected within unfertilized eggs and levels of all four steroids declined in the first 3 days following fertilization. While levels of progesterone, testosterone, and estradiol remained low after the initial decline, levels of cortisol rose again by 8 dpf. These results demonstrate that G. aculeatus embryos begin development in the presence of a number of maternal steroids but levels begin to change quickly following fertilization. This suggests that embryonic processes change the early endocrine environment and hence influence the ability of maternal steroids to affect development. With these findings, G. aculeatus becomes an intriguing system in which to study how selection may act on both maternal and embryonic processes to shape the evolutionary consequence of steroid-mediated maternal effects.

  19. Derivation of Huntington Disease affected Genea046 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; Chami, Omar; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea046 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying HTT gene CAG expansion of 45 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 85% of cells expressed Nanog, 92% Oct4, 75% Tra1-60 and 99% SSEA4 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination.

  20. Derivation of Huntington Disease affected Genea091 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; Schaft, Julia; McKernan, Robert; Hu, Jesselyn; Schmidt, Uli

    2016-03-01

    The Genea091 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 40 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 92% of cells expressed Nanog, 97% Oct4, 79% Tra1-60 and 98% SSEA4 and gave a Pluritest pluripotency score of 38.36, Novelty of 1.35. The cell line was negative for Mycoplasma and visible contamination.

  1. Derivation of Huntington Disease affected Genea089 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; McKernan, Robert; Hu, Jesselyn; Schmidt, Uli

    2016-03-01

    The Genea089 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 41 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 91% of cells expressed Nanog, 95% Oct4, 90% Tra1-60 and 100% SSEA4 and gave a PluriTest Pluripotency score of 39.28, Novelty of 1.2. The cell line was negative for Mycoplasma and visible contamination.

  2. Derivation of Huntington disease affected Genea020 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; Peura, Teija; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea020 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 48 repeats, indicative of Huntington disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female allele pattern. The hESC line had pluripotent cell morphology, 89% of cells expressed Nanog, 95% Oct4, 29% Tra1-60 and 99% SSEA4, gave a Pluritest pluripotency score of 27.51, novelty of 1.43 and demonstrated alkaline phosphatase activity. The cell line was negative for Mycoplasma and visible contamination.

  3. Derivation of Huntington Disease affected Genea018 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; Main, Heather; McKernan, Robert; Goel, Divya; Schmidt, Uli; Peura, Teija

    2016-03-01

    The Genea018 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 46 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 75% of cells expressed Nanog, 91% Oct4, 73% Tra1-60 and 96% SSEA4, gave a Pluritest pluripotency score of 31.12, Novelty of 1.45, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  4. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.

  5. Vitamin B-complex initiates growth and development of human embryonic brain cells in vitro.

    PubMed

    Danielyan, K E; Abramyan, R A; Galoyan, A A; Kevorkian, G A

    2011-09-01

    We studied a combined effect of subcomponents of vitamin B complex on the growth, development, and death of human embryonic brain-derived cells (E90) cultured using a modified method of Matson. Cell death was detected by trypan blue staining. According to our results, vitamin B-complex in low-doses promote the development, maturation, and enlargement of human embryonic brain cells, on the one hand, and increases the percent of cell death, which attests to accelerated maturation and metabolism, on the other.

  6. Effects of petroleum creosote on selected stages of embryonic development

    SciTech Connect

    Iyer, P.R.

    1989-01-01

    The prenatal toxicity of petroleum creosote, a complex mixture of chemicals, was investigated via an in vivo study and an in vitro embryo culture system. Additionally, the prenatal toxicity of naphthalene, one chemical component of petroleum creosote, was determined in the in vitro system. The purpose of the study was to provide specific data on the prenatal toxicity of petroleum creosote and demonstrate the value of the two techniques. In the in vivo study, petroleum creosote was not embryotoxic or teratogenic in ICR mice when administered on gestation days 5-9, at a dose of 4000 mg/kg body weight. In vitro, petroleum creosote becomes embryotoxic to ICR mouse blastocysts at some exposure level between 22 and 33 {mu}g/ml of media. Bioactivation plays a major role in embryotoxicity of naphthalene. Naphthalene without rodent liver microsomal enzymes added to the media was not embryotoxic at levels as high as 100 {mu}g/ml media, whereas naphthalene became embryotoxic at some level between 10 and 50 {mu}g/ml of media in the presence of microsomes. The data indicate that naphthalene is one of the embryotoxic components of petroleum creosote, and that exposure to sufficient levels of petroleum creosote during early pregnancy could result in embryonic loss.

  7. Embryonic mouse pre-metatarsal development in organ culture

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse pre-metatarsals were removed from embryos at 13 days of gestation and cultured in a defined, serum-free medium for up to 15 days. By histological analysis, we observe that the cultured pre-metatarsal tissue undergoes a similar developmental profile as pre-metatarsals growing normally in vivo. The initial mesenchyme condensation regions undergo differentiation and morphogenesis to form distinct rods made up of cartilage tissue. A marker of this differentiation step is the synthesis of type II collagen. Metabolic labelling, pepsin digestion, SDS-PAGE, and autoradiography were used to demonstrate this protein when cartilage tissue is present in the cultures. After additional culture time, terminal chondrocyte differentiation and morphogenesis take place in specific regions of the cartilage rods to form bands of hypertrophied chondrocytes. One marker of this differentiation step is the synthesis of the enzyme alkaline phosphatase. We have measured the activity of this enzyme throughout the culture period and see a substantial increase at the time of terminal chondrocyte differentiation. Another feature of hypertrophied chondrocytes is that the matrix around the cells becomes calcified. Calcified matrix in our cultured pre-metatarsals was visualized by staining with alizarin red. By supplementing the defined culture medium with ITS, we observed that terminal chondrocyte differentiation took place in a shorter culture time. Supplementation of the medium with serum results in a similar acceleration of terminal differentiation, and, with additional culture time, an osteoid-like matrix forms around the central region of the rods.

  8. Effects of Microgravity on Embryonic Quail Eye Development

    NASA Technical Reports Server (NTRS)

    Barrett, Joyce E.; Wells, Diane C.; Paulsen, Avelina Q.; Conrad, Gary W.

    1997-01-01

    Immunohistochemical methods were used to stain neurofilament protein in corneal nerves of Embryonic Day 16 (E16) quail eyes that had been fixed in 4% paraformaldehyde at room temperature for several months. Fixation was according to the methods used by the Mir 21/NASA 2 Avian Developmental Biology Flight Experiments for quail embryos incubated on the Mir Space Station. After fixation, corneas were pretreated to improve immunohistochemical visualization of neurofilaments. A sequential combination of three pretreatments [microwave heating in saline G, followed by extraction with sodium dodecyl sulfate (SDS) at 37 C, followed by digestion with hyaluronidase at 37 C], produced increased antibody staining of corneal nerve neurofilament proteins, compared with corneas subjected to no prior pretreatments. Darker nerve staining and increased numbers of fine branches were observed, together with lower background staining after such pretreatments. In contrast, use of any single pretreatment or pair of pretreatments resulted in only slight and inconsistent enhancement of nerve staining. Only the sequential combination of all three pretreatments resulted in consistently better nerve staining.

  9. Medical Student Retention of Embryonic Development: Impact of the Dimensions Added by Multimedia Tutorials

    ERIC Educational Resources Information Center

    Marsh, Karen R.; Giffin, Bruce F.; Lowrie, Donald J., Jr.

    2008-01-01

    The purpose of this project was to develop Web-based learning modules that combine (1) animated 3D graphics; (2) 3D models that a student can manipulate independently; (3) passage of time in embryonic development; and (4) animated 2D graphics, including 2D cross-sections that represent different "slices" of the embryo, and animate in…

  10. Effects of dieldrin treatment on physiological and biochemical aspects of the toad embryonic development

    SciTech Connect

    Gauna, L.; Caballero de Castro, A.; Chifflet de Llamas, M.; Pechen de D'Angelo, A.M. )

    1991-04-01

    Dieldrin is a cylclodiene insecticide highly persistent in nature due to its chemical stability. The exposure of toad embryos to Dieldrin induces hyperactivity in the swimming larvae and inhibition of cholinesterases. However, the inhibition of these enzymes during early development is not life threatening. The present report provides a physiological and biochemical study of the noxious effect of Dieldrin on the toad embryonic development.

  11. Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

    EPA Science Inventory

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...

  12. The ‘Ventral Organs’ of Pycnogonida (Arthropoda) Are Neurogenic Niches of Late Embryonic and Post-Embryonic Nervous System Development

    PubMed Central

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient

  13. beta-Catenin in early development of the lancelet embryo indicates specific determination of embryonic polarity.

    PubMed

    Yasui, Kinya; Li, Guorong; Wang, Yong; Saiga, Hidetoshi; Zhang, Peijun; Aizawa, Shinichi

    2002-12-01

    The lancelet (amphioxus) embryo develops from a miolecithal egg and starts gastrulation when it is approximately 400 cells in size, in a fashion similar to that of some non-chordate deuterostomes. Throughout this type of gastrulation, the embryo develops characteristics such as the notochord and hollow nerve cord that commonly appear in chordates. beta-Catenin is an important factor in initiating body patterning. The behavior and developmental pattern of this protein in early lancelet development was examined in this study. Cytoplasmic beta-catenin was localized to the animal pole after fertilization and then was incorporated asymmetrically into the blastomeres during the first cleavage. Asymmetric distribution was observed at least until the 32-cell stage. The first nuclear localization was at the 64-cell stage, and involved all of the cells. At the initial gastrula stage, however, concentrated beta-catenin was found on the dorsal side. LiCl treatment affected the asymmetric pattern of beta-catenin during the first cleavage. LiCl also changed distribution of nuclear beta-catenin at the initial gastrula stage: distribution extended to cells on the animal side. Apparently associated with this change, expression domains of goosecoid, lhx3 and otx also changed to a radially symmetric pattern centered at the animal pole. However, LiCl-treated embryos were able to establish embryonic polarity. The present study suggests that in the lancelet embryo, polarity determination is independent of dorsal morphogenesis.

  14. Regulation of embryonic size in early mouse development in vitro culture system.

    PubMed

    Hisaki, Tomoka; Kawai, Ikuma; Sugiura, Koji; Naito, Kunihiko; Kano, Kiyoshi

    2014-08-01

    Mammals self-regulate their body size throughout development. In the uterus, embryos are properly regulated to be a specific size at birth. Previously, size and cell number in aggregated embryos, which were made from two or more morulae, and half embryos, which were halved at the 2-cell stage, have been analysed in vivo in preimplantation and post-implantation development in mice. Here, we examined whether or not the mouse embryo has the capacity to self-regulate growth using an in vitro culture system. To elucidate embryonic histology, cells were counted in aggregated or half embryos in comparison with control embryos. Both double- and triple-aggregated embryos contained more cells than did control embryos during all culture periods, and the relative growth ratios showed no growth inhibition in an in vitro culture system. Meanwhile, half embryos contained fewer cells than control embryos, but the number grew throughout the culture period. Our data suggest that the growth of aggregated embryos is not affected and continues in an in vitro culture system. On the other hand, the growth of half embryos accelerates and continues in an in vitro culture system. This situation, in turn, implied that post-implantation mouse embryos might have some potential to regulate their own growth and size as seen by using an in vitro culture system without uterus factors. In conclusion, our results indicated that embryos have some ways in which to regulate their own size in mouse early development.

  15. Embryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation

    PubMed Central

    Budi, Erine H.; Patterson, Larissa B.; Parichy, David M.

    2009-01-01

    SUMMARY Vertebrate pigment cells are derived from neural crest cells and are a useful system for studying neural crest-derived traits during post-embryonic development. In zebrafish, neural crest-derived melanophores differentiate during embryogenesis to produce stripes in the early larva. Dramatic changes to the pigment pattern occur subsequently during the larva-to-adult transformation, or metamorphosis. At this time, embryonic melanophores are replaced by newly differentiating metamorphic melanophores that form the adult stripes. Mutants with normal embryonic/early larval pigment patterns but defective adult patterns identify factors required uniquely to establish, maintain, or recruit the latent precursors to metamorphic melanophores. We show that one such mutant, picasso, lacks most metamorphic melanophores and results from mutations in the ErbB gene erbb3b, encoding an EGFR-like receptor tyrosine kinase. To identify critical periods for ErbB activities, we treated fish with pharmacological ErbB inhibitors and also knocked-down erbb3b by morpholino injection. These analyses reveal an embryonic critical period for ErbB signaling in promoting later pigment pattern metamorphosis, despite the normal patterning of embryonic/early larval melanophores. We further demonstrate a peak requirement during neural crest migration that correlates with early defects in neural crest pathfinding and peripheral ganglion formation. Finally, we show that erbb3b activities are both autonomous and non-autonomous to the metamorphic melanophore lineage. These data identify a very early, embryonic, requirement for erbb3b in the development of much later metamorphic melanophores, and suggest complex modes by which ErbB signals promote adult pigment pattern development. PMID:18508863

  16. Embryonic muscle development in direct and indirect developing marine flatworms (Platyhelminthes, Polycladida).

    PubMed

    Bolaños, D Marcela; Litvaitis, Marian K

    2009-01-01

    We compared embryonic myogenesis of the direct-developing acotylean polyclad Melloplana ferruginea with that of Maritigrella crozieri, a cotylean that develops via a larval stage. Fluorescently labeled F-actin was visualized with laser confocal microscopy. Developmental times are reported as percentages of the time from oviposition to hatching: 7 days for M. crozieri and 22 days for M. ferruginea. The epithelium began to form at 30% development in M. crozieri and at 15% development in M. ferruginea. Random myoblasts appeared in peripheral areas of the embryo at 36% and 22-30% development in M. crozeri and M. ferruginea, respectively. Circular and longitudinal muscle bands formed synchronously at 37-44% development in M. crozieri; yolk obscured observations of early myogenesis in M. ferruginea. An orthogonal muscle grid was established by 45-50% development in both species. Diagonal muscles developed in M. ferruginea at 60-71% development. Hence, juveniles of this species hatch with the same basic body-wall musculature as adults. Larvae of M. crozieri did not hatch with diagonal muscles; these muscles are acquired postmetamorphosis. Additionally, a specialized musculature developed in the larval lobes of M. crozieri. Oral musculature was complex and established by 72% development in both species. Our results are comparable to the muscle differentiation reported for other indirect-developing polyclads and for direct-developing species of macrostomid flatworms. Furthermore, they provide additional support that the orthogonal muscle pattern of circular and longitudinal muscles is a symplesiomorphy of Spiralia.

  17. [Acceleration of Embryonic Development of Pinus sibirica Trees with a One-Year Reproductive Cycle].

    PubMed

    Tret'yakova, I N; Lukina, N V

    2016-01-01

    The study of the formation of embryonic structures in Pinus sibirica forms with a one-year reproductive cycle showed that the acceleration of the embryonic process manifested itself as a reduction of the coenocytic stage of the female gametophyte development (1.5 months instead of 1 year). The egg was not fertilized because of the asynchronous maturation of male and female gametophytes. Seeds without embryos were formed. We assumed that the acceleration of the reproductive process in Pinus sibirica was caused by a mutation in the female generative organs.

  18. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  19. Embryonic development of Ampheres leucopheus and Iporangaia pustulosa (Arachnida: Opiliones: Gonyleptidae).

    PubMed

    Gnaspini, Pedro; Lerche, Cristiano Frederico

    2010-09-15

    The first studies concerning the embryonic development of harvestmen started in the late 19th century, and focused mostly on holarctic species, and only three species of the suborder Laniatores (the largest, among the four suborders considered presently) were studied. Moreover, the last studies on embryology of harvestmen were made during the late 1970s. This study focused on the embryonic development of Ampheres leucopheus (Gonyleptidae, Caelopyginae) and Iporangaia pustulosa (Gonyleptidae, Progonyleptoidellinae). The embryonic development was followed in the field, by taking daily photographs of different eggs during about 2 months. When laid, eggs of A. leucopheus and I. pustulosa have approximately 1.13 and 1.30 mm in diameter, respectively, and the second is embedded in a large amount of mucus. The eggs grow, mainly due to water absorption at the beginning of the process, and they reach a diameter of about 1.35 and 1.59 mm, respectively, close to hatching. It took, respectively, 29-56 days and 35-66 days from egg laying to hatching. For the description of the embryonic development, we use photographs from the field, SEM micrographs, and histological analysis. This allowed us, for instance, to document the progression of structures and pigmentation directly from live embryos in the field, and to record microstructures, such as the presence of perforations in the cuticle of the embryo in the place where eyes are developing. Yet, contrary to what was expected in the literature, we record an egg tooth in one of the studied laniatoreans.

  20. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    PubMed Central

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-01-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring. PMID:27731423

  1. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    NASA Astrophysics Data System (ADS)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  2. Derivation of Huntington Disease affected Genea017 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; McKernan, Robert; Goel, Divya; Schmidt, Uli; Peura, Teija

    2016-03-01

    The Genea017 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 40 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, genetic analysis confirmed a 46, XY karyotype and male allele pattern through CGH and STR analysis. The hESC line had pluripotent cell morphology, 87% of cells expressed Nanog, 95% Oct4, 88% Tra1-60 and 99% SSEA4, gave a PluriTest pluripotency score of 34.74, novelty of 1.27, demonstrated alkaline phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  3. Derivation of FSHD1 affected human embryonic stem cell line Genea049.

    PubMed

    Dumevska, Biljana; Chami, Omar; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea049 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying a deletion in 4q35 with only 5 D4Z4 repeats by PGD linkage analysis, indicative of FSHD1. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 90% of cells expressed Nanog, 96% Oct4, 80% Tra1-60 and 99% SSEA4, gave a Pluritest Pluripotency score of 23.16, Novelty of 1.43 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination.

  4. Phenotypic plasticity in the common snapping turtle (Chelydra serpentina): long-term physiological effects of chronic hypoxia during embryonic development.

    PubMed

    Wearing, Oliver H; Eme, John; Rhen, Turk; Crossley, Dane A

    2016-01-15

    Studies of embryonic and hatchling reptiles have revealed marked plasticity in morphology, metabolism, and cardiovascular function following chronic hypoxic incubation. However, the long-term effects of chronic hypoxia have not yet been investigated in these animals. The aim of this study was to determine growth and postprandial O2 consumption (V̇o2), heart rate (fH), and mean arterial pressure (Pm, in kPa) of common snapping turtles (Chelydra serpentina) that were incubated as embryos in chronic hypoxia (10% O2, H10) or normoxia (21% O2, N21). We hypothesized that hypoxic development would modify posthatching body mass, metabolic rate, and cardiovascular physiology in juvenile snapping turtles. Yearling H10 turtles were significantly smaller than yearling N21 turtles, both of which were raised posthatching in normoxic, common garden conditions. Measurement of postprandial cardiovascular parameters and O2 consumption were conducted in size-matched three-year-old H10 and N21 turtles. Both before and 12 h after feeding, H10 turtles had a significantly lower fH compared with N21 turtles. In addition, V̇o2 was significantly elevated in H10 animals compared with N21 animals 12 h after feeding, and peak postprandial V̇o2 occurred earlier in H10 animals. Pm of three-year-old turtles was not affected by feeding or hypoxic embryonic incubation. Our findings demonstrate that physiological impacts of developmental hypoxia on embryonic reptiles continue into juvenile life.

  5. Correlation between Exposure to Magnetic Fields and Embryonic Development in the First Trimester

    PubMed Central

    Su, Xiu-Juan; Yuan, Wei; Tan, Hui; Liu, Xiang-Yun; Li, Dan; Li, De-Kun; Huang, Guo-Ying; Zhang, Li-Wen; Miao, Mao-Hua

    2014-01-01

    Objective To explore the correlation between maternal magnetic field (MF) exposure in daily life and embryonic development. Methods A cross-sectional study was conducted among 149 pregnant women who were seeking induced abortion of unwanted pregnancies. Participating women were asked to wear an EMDEX Lite magnetic field meter for a 24-h period to obtain MF exposure level within 4 weeks following the abortion. Embryonic bud and sac lengths were measured through B-mode ultrasound before the surgical abortion. Embryo sections were prepared and examined for histological changes, and the apoptosis status of the deciduas was examined using the TUNEL apoptosis assay. Results Embryonic bud length was inversely associated with maternal daily MF exposure level; the association was statistically significant at the time-weighted-average and 75th percentile of MF exposure levels, with coefficients of −3.09 (P = 0.0479) and −3.07(P = 0.0228), respectively. Logistic regression for examining the risk of higher MF exposure indicated that women with her 75th percentile of daily MF measurements ≥0.82 mG had a 3.95-fold risk of having a fetus with a shorter embryonic bud length than those whose daily MF exposure were <0.82 mG. MF exposure was associated with a higher degree of apoptosis, but the association was not statistically significant. We failed to find a statistical correlation between MF exposure and embryonic sac length and histological changes in the first trimester. Conclusion Prenatal MF exposure may have an adverse effect on embryonic development. PMID:24977708

  6. Surviving a flood: effects of inundation period, temperature and embryonic development stage in locust eggs.

    PubMed

    Woodman, J D

    2015-08-01

    The Australian plague locust, Chortoicetes terminifera (Walker), is an important agricultural pest and oviposits into compacted soil across vast semi-arid and arid regions prone to irregular heavy summer rainfall. This study aimed to quantify the effects of flooding (control, 7, 14, 21, 28 and 35 days) at different temperatures (15, 20 and 25°C) and embryonic development stages (25 and 75%) on egg viability, hatchling nymph body mass and survival to second-instar. Egg viability after flooding was dependent on temperature and flood duration. Eggs inundated at 15°C showed ≥53.5% survival regardless of flood duration and development stage compared with ≤29.6% for eggs at 25°C for ≥21 days early in development and ≥14 days late in development. Hatchling nymphs did not differ in body mass relative to temperature or flood duration, but weighed more from eggs inundated early in development rather than late. Survival to second-instar was ≤55.1% at 15 and 20°C when eggs were flooded for ≥28 days late in development, ≤35.6% at 25°C when flooded for ≥28 days early in development, and zero when flooded for ≥21 days late in development. These results suggest that prolonged flooding in summer and early autumn may cause very high egg mortality and first-instar nymph mortality of any survivors, but is likely to only ever affect a small proportion of the metapopulation. More common flash flooding for ≤14 days is unlikely to cause high mortality and have any direct effect on distribution and abundance.

  7. Alveolar flows of the developing lungs:from embryonic to early childhood airways

    NASA Astrophysics Data System (ADS)

    Tenenbaum-Katan, Janna; Hofemeier, Philipp; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josue

    2014-11-01

    At the onset of life in utero the respiratory system is simply a liquid-filled duct. With our first breath, alveoli are filled with air and become a significant port of entry for airborne particles. As such, alveolar lining is nearly fully functional at birth, though lung development continues during childhood as structural changes increase alveolar surface area to optimize ventilation. We hypothesize that such fluid dynamical changes potentially affect two phenomena occurring within alveoli: (i) flow patterns in airspaces at distinct stages of both in- and ex-utero life and (ii) fate of inhaled particles ex-utero. To investigate these phenomena, we combine experimental and numerical approaches where (i) microfluidic in vitro devices mimic liquid flows across the epithelium of fetal airspaces, and (ii) computational simulations are employed to examine particle transport and deposition in the deep alveolated regions of infants' lungs. Our approaches capture anatomically-inspired geometries based on morphometrical data, as well as physiological flows, including the convective-diffusive nature of submicron particle transport in alveolar regions.Overall, we investigate respiratory flows in alveolar regions of developing lungs, from early embryonic stages to late childhood

  8. Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1.

    PubMed

    Wang, Feng; Tian, XiuZhi; Zhang, Lu; Gao, Chao; He, ChangJiu; Fu, Yao; Ji, PengYun; Li, Yu; Li, Ning; Liu, GuoShi

    2014-04-01

    In the current study, a fundamental question, that is, the mechanisms related to the beneficial effects of melatonin on mammalian embryonic development, was addressed. To examine the potential beneficial effects of melatonin on bovine embryonic development, different concentrations of melatonin (10(-11), 10(-9), 10(-7), 10(-5), 10(-3) M) were incubated with fertilized embryos. Melatonin in the range of 10(-11) to 10(-5) M significantly promoted embryonic development both in early culture medium (CR1aa +3 mg/mL BSA) and in later culture medium (CR1aa + 6%FBS). The most effective concentrations applied in the current studies were 10(-9) and 10(-7) M. Using quantitative real-time PCR with immunofluorescence and Western blot assays, the expression of melatonin receptor MT1 and MT2 genes was identified in bovine embryos. Further studies indicate that the beneficial effects of melatonin on bovine embryo development were mediated by the MT1 receptor. This is based on the facts that luzindole, a nonselective MT1 and MT2 antagonist, blocked the effect on melatonin-induced embryo development, while 4-P-PDOT, a selective MT2 antagonist, had little effect. Mechanistic explorations uncovered that melatonin application during bovine embryonic development significantly up-regulated the expression of antioxidative (Gpx4, SOD1, bcl-2) and developmentally important genes (SLC2A1, DNMT1A, and DSC2) while down-regulating expression of pro-apoptotic genes (P53, BAX, and Caspase-3). The results obtained from the current studies provide new information regarding the mechanisms by which melatonin promotes bovine embryonic development under both in vitro and in vivo conditions.

  9. Generation of the Dimensional Embryology Application (App) for Visualization of Early Chick and Frog Embryonic Development

    ERIC Educational Resources Information Center

    Webb, Rebecca L.; Bilitski, James; Zerbee, Alyssa; Symans, Alexandra; Chop, Alexandra; Seitz, Brianne; Tran, Cindy

    2015-01-01

    The study of embryonic development of multiple organisms, including model organisms such as frogs and chicks, is included in many undergraduate biology programs, as well as in a variety of graduate programs. As our knowledge of biological systems increases and the amount of material to be taught expands, the time spent instructing students about…

  10. Correlation of Versican Expression, Accumulation, and Degradation during Embryonic Development by Quantitative Immunohistochemistry

    PubMed Central

    Snyder, Jessica M.; Washington, Ida M.; Birkland, Timothy; Chang, Mary Y.; Frevert, Charles W.

    2015-01-01

    Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection. PMID:26385570

  11. Correlation of Versican Expression, Accumulation, and Degradation during Embryonic Development by Quantitative Immunohistochemistry.

    PubMed

    Snyder, Jessica M; Washington, Ida M; Birkland, Timothy; Chang, Mary Y; Frevert, Charles W

    2015-12-01

    Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection.

  12. Extraembryonic but not embryonic SUMO-specific protease 2 is required for heart development

    PubMed Central

    Maruyama, Eri O.; Lin, Heng; Chiu, Shang-Yi; Yu, H.-M. Ivy; Porter, George A.; Hsu, Wei

    2016-01-01

    SUMO-specific protease 2 (SENP2) activities to remove SUMO from its substrates is essential for development of trophoblast stem cells, niches and lineages. Global deletion of SENP2 leads to midgestation lethality, and causes severe defects in the placenta which is accompanied by embryonic brain and heart abnormalities. Because of the placental deficiencies, the role of SENP2 in development of the embryonic tissues has not been properly determined. The brain and heart abnormalities may be secondary to placental insufficiency. Here we have created a new mouse strain permitting conditional inactivation of SENP2. Mice homozygous for germline deletion of the conditional allele exhibit trophoblast defects and embryonic abnormalities resembling the global SENP2 knockout. However, tissue-specific disruptions of SENP2 demonstrate its dispensable role in embryogenesis. Placental expression of SENP2 is necessary and sufficient for embryonic heart and brain development. Using a protease deficient model, we further demonstrate the requirement of SENP2-dependent SUMO modification in development of all major trophoblast lineages. SENP2 regulates sumoylation of Mdm2 which controls p53 activities critical for G-S transition of mitotic division and endoreduplication in trophoblast proliferation and differentiation, respectively. The differentiation of trophoblasts is also dependent on SENP2-mediated activation of p57Kip2, a CDK-specific inhibitor required for endoreduplication. PMID:26883797

  13. Spatiotemporal expression of histone acetyltransferases, p300 and CBP, in developing embryonic hearts

    PubMed Central

    Chen, Guozhen; Zhu, Jing; Lv, Tiewei; Wu, Gang; Sun, Huichao; Huang, Xupei; Tian, Jie

    2009-01-01

    Histone acetyltransferases (HATs), p300 and cAMP response element binding protein (CREB)-binding protein (CBP) are two structurally related transcriptional co-activators that activate expression of many eukaryotic genes involved in cellular growth and signaling, muscle differentiation and embryogenesis. However, whether these proteins play important and different roles in mouse cardiogenesis is not clear. Here, we investigate the protein distributions and mRNA expression of the two HATs in embryonic and adult mouse heart during normal heart development by using immunohistochemical and RT-PCR techniques. The data from immunohistochemical experiments revealed that p300 was extensively present in nearly every region of the hearts from embryonic stages to the adulthood. However, no CBP expression was detected in embryonic hearts at day E7.5. CBP expression appeared at the later stages, and the distribution of CBP was less than that of p300. In the developmental hearts after E10.5, both for p300 and CBP, the mRNA expression levels reached a peak on day E10.5, and then were gradually decreased afterwards. These results reveal that both p300 and CBP are related to embryonic heart development. The dynamic expression patterns of these two enzymes during mouse heart development indicate that they may play an important role on heart development. However, there is a difference in spatiotemporal expression patterns between these two enzymes during heart development. The expression of p300 is earlier and more predominate, suggesting that p300 may play a more important role in embryonic heart development especially during cardiac precursor cell induction and interventricular septum formation. PMID:19272189

  14. Acid water interferes with salamander-green algae symbiosis during early embryonic development.

    PubMed

    Bianchini, Kristin; Tattersall, Glenn J; Sashaw, Jessica; Porteus, Cosima S; Wright, Patricia A

    2012-01-01

    The inner egg capsule of embryos of the yellow-spotted salamander (Ambystoma maculatum) are routinely colonized by green algae, such as Oophila amblystomatis, that supply O(2) in the presence of light and may consume nitrogenous wastes, forming what has been proposed to be a mutualistic relationship. Given that A. maculatum have been reported to breed in acidic (pH <5.0) and neutral lakes, we hypothesized that low water pH would negatively affect these symbiotic organisms and alter the gradients within the jelly mass. Oxygen gradients were detected within jelly masses measured directly in a natural breeding pond (pH 4.5-4.8) at midday in full sunlight. In the lab, embryo jelly masses reared continuously at pH 4.5 had lower P(O)₂and higher ammonia levels relative to jelly masses held at pH 8.0 (control). Ammonia and lactate concentrations in embryonic tissues were approximately 37%-93% higher, respectively, in embryos reared at water pH 4.5 compared with pH 8.0. Mass was also reduced in embryos reared at pH 4.5 versus pH 8.0. In addition, light conditions (24 h light, 12L : 12D, or 24 h dark) and embryonic position (periphery vs. center) in the jelly mass affected P(O)₂but not ammonia gradients, suggesting that algal symbionts generate O(2) but do not significantly impact local ammonia concentrations, regardless of the pH of the water. We conclude that chronic exposure to acidic breeding ponds had a profound effect on the microenvironment of developing A. maculatum embryos, which in turn resulted in an elevation of potentially harmful metabolic end products and inhibited growth. Under acidic conditions, the expected benefit provided by the algae to the salamander embryo (i.e., high O(2) and low ammonia microenvironment) is compromised, suggesting that the A. maculatum-algal mutualism is beneficial to salamanders only at higher water pH values.

  15. Divergent selection for shape of growth curve in Japanese quail. 2. Embryonic development and growth.

    PubMed

    Hyánková, L; Novotná, B; Knízetová, H; Horácková, S

    2004-04-01

    1. Embryonic growth and development were analysed using meat type lines of Japanese quail, HG and LG, divergently selected for shape of the growth curve. A total of 1020 embryos of generations 9, 10 or 13 were used for analysis. 2. Considerable inter-line differences were observed in the rate of embryonic development. When compared to HG, LG embryos appeared to be developmentally accelerated during the first 42 h of incubation (larger blastoderm diameter, more somites and higher frequency of more advanced Hamburger-Hamilton stages) as well as at the end of the prenatal period (more embryos with the yolk sac inside the body cavity, shorter incubation period). This corresponded with the trend in postnatal development. 3. Embryonic growth of both lines exhibited an exponential trend. However, considerable inter-line differences were noted in the rate of embryonic growth. Initial growth retardation compensated subsequently by a higher growth rate of HG vs LG quail, characterised the lines after hatching. The same growth pattern repeated three times during the prenatal period (between d 0 and 3, 3 and 8, and 8 and 16). 4. The repeated occurrence of transient decreases in growth rate of the developmentally delayed HG line could be associated with a delayed onset of genetically determined physiological functions mediating utilisation of nutrient supply. 5. Hence, different shapes of growth curves in two genotypes with similar growth potential reveal inter-line differences in physiological age persisting during the whole ontogenesis.

  16. Pregnancy outcomes, embryonic and fetal development in maternal exposure to Chinese medicines.

    PubMed

    Wang, Chi Chiu; Li, Lu; San Lau, Clara Bik; Leung, Ping Chung; Fung, Kwok Pui

    2013-12-01

    Chinese medicine is a common name for a collection of Chinese Materia Medica with therapeutic properties for medical treatment and healing. Similar to Western pharmaceuticals, Chinese medicines are not free of risk, and have the potential to cause adverse pregnancy outcomes and affect embryonic and fetal development. However, most clinical data concerning safety of maternal exposure to Chinese medicines during pregnancy are not available and the conclusion remains elusive. Some individual clinical trials of Chinese medicines reported some minor adverse effects during pregnancy, whereas few animal studies identified some adverse maternal and perinatal effects, as well as embryotoxic potentials. Basic research and mechanistic studies of the teratogenicity of Chinese medicines are still lacking. There is an urgent need for testing the safety of Chinese medicines before recommendation and commercialization. Until more reliable and scientific research data become available, clinicians should consider both the risks and benefits before recommending Chinese medicines to pregnant women. More systematic investigations of the safety implications of the use of Chinese medicines are highly recommended, in addition to more clinical trials with a larger sample size to confirm its safety during pregnancy. This review includes a critical overview of available clinical and experimental data and provides directions to study the safety issue of Chinese medicines for pregnancy.

  17. IQGAP3 Is Essential for Cell Proliferation and Motility During Zebrafish Embryonic Development

    PubMed Central

    Fang, Xiaolan; Zhang, Bianhong; Thisse, Bernard; Bloom, George S.; Thisse, Christine

    2015-01-01

    IQGAPs are scaffolding proteins that regulate actin assembly, exocyst function, cell motility, morphogenesis, adhesion and division. Vertebrates express 3 family members: IQGAP1, IQGAP2 and IQGAP3. IQGAP1 is known to stimulate nucleation of branched actin filaments through N-WASP and the Arp2/3 complex following direct binding to cytoplasmic tails of ligand-activated growth factor receptors, including EGFR, VEGFR2 and FGFR1. By contrast, little is known about functions of IQGAP2 or IQGAP3. Using in situ hybridization on whole mount zebrafish (Danio rerio) embryos, we show that IQGAP1 and IQGAP2 are associated with discrete tissues and organs, while IQGAP3 is mainly expressed in proliferative cells throughout embryonic and larval development. Morpholino knockdowns of IQGAP1 and IQGAP2 have little effect on embryo morphology while loss of function of IQGAP3 affects both cell proliferation and cell motility. IQGAP3 morphant phenotypes are similar to those resulting from overexpression of dominant negative forms of Ras or of Fibroblast Growth Factor Receptor 1 (FGFR1), suggesting that IQGAP3 plays a role in FGFR1-Ras-ERK signaling. In support of this hypothesis, dominant negative forms of FGFR1 or Ras could be rescued by co-injection of zebrafish IQGAP3 mRNA, strongly suggesting that IQGAP3 acts as a downstream regulator of the FGFR1-Ras signaling pathway. PMID:26286209

  18. Indispensable role of Mdm2/p53 interaction during the embryonic and postnatal inner ear development

    PubMed Central

    Laos, M.; Sulg, M.; Herranen, A.; Anttonen, T.; Pirvola, U.

    2017-01-01

    p53 is a key component of a signaling network that protects cells against various stresses. As excess p53 is detrimental to cells, its levels are tightly controlled by several mechanisms. The E3 ubiquitin ligase Mdm2 is a major negative regulator of p53. The significance of balanced p53 levels in normal tissues, at different stages of lifetime, is poorly understood. We have studied in vivo how the disruption of Mdm2/p53 interaction affects the early-embryonic otic progenitor cells and their descendants, the auditory supporting cells and hair cells. We found that p53 accumulation, as a consequence of Mdm2 abrogation, is lethal to both proliferative progenitors and non-proliferating, differentiating cells. The sensitivity of postmitotic supporting cells to excess p53 decreases along maturation, suggesting that maturation-related mechanisms limit p53′s transcriptional activity towards pro-apoptotic factors. We have also investigated in vitro whether p53 restricts supporting cell’s regenerative capacity. Unlike in several other regenerative cellular models, p53 inactivation did not alter supporting cell’s proliferative quiescence nor transdifferentiation capacity. Altogether, the postmitotic status of developing hair cells and supporting cells does not confer protection against the detrimental effects of p53 upregulation. These findings might be linked to auditory disturbances observed in developmental syndromes with inappropriate p53 upregulation. PMID:28181574

  19. Imaging of murine embryonic cardiovascular development using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yongyang; Degenhardt, Karl R.; Astrof, Sophie; Zhou, Chao

    2016-03-01

    We have demonstrated the capability of spectral domain optical coherence tomography (SDOCT) system to image full development of mouse embryonic cardiovascular system. Monitoring morphological changes of mouse embryonic heart occurred in different embryonic stages helps identify structural or functional cardiac anomalies and understand how these anomalies lead to congenital heart diseases (CHD) present at birth. In this study, mouse embryo hearts ranging from E9.5 to E15.5 were prepared and imaged in vitro. A customized spectral domain OCT system was used for imaging, with a central wavelength of 1310nm, spectral bandwidth of ~100nm and imaging speed of 47kHz A-scans/s. Axial resolution of this system was 8.3µm in air, and transverse resolution was 6.2 µm with 5X objective. Key features of mouse embryonic cardiovascular development such as vasculature remodeling into circulatory system, separation of atria and ventricles and emergence of valves could be clearly seen in three-dimensional OCT images. Optical clearing was applied to overcome the penetration limit of OCT system. With high resolution, fast imaging speed, 3D imaging capability, OCT proves to be a promising biomedical imaging modality for developmental biology studies, rivaling histology and micro-CT.

  20. An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster.

    PubMed Central

    Luschnig, Stefan; Moussian, Bernard; Krauss, Jana; Desjeux, Isabelle; Perkovic, Josip; Nüsslein-Volhard, Christiane

    2004-01-01

    Large-scale screens for female-sterile mutations have revealed genes required maternally for establishment of the body axes in the Drosophila embryo. Although it is likely that the majority of components involved in axis formation have been identified by this approach, certain genes have escaped detection. This may be due to (1) incomplete saturation of the screens for female-sterile mutations and (2) genes with essential functions in zygotic development that mutate to lethality, precluding their identification as female-sterile mutations. To overcome these limitations, we performed a genetic mosaic screen aimed at identifying new maternal genes required for early embryonic patterning, including zygotically required ones. Using the Flp-FRT technique and a visible germline clone marker, we developed a system that allows efficient screening for maternal-effect phenotypes after only one generation of breeding, rather than after the three generations required for classic female-sterile screens. We identified 232 mutants showing various defects in embryonic pattern or morphogenesis. The mutants were ordered into 10 different phenotypic classes. A total of 174 mutants were assigned to 86 complementation groups with two alleles on average. Mutations in 45 complementation groups represent most previously known maternal genes, while 41 complementation groups represent new loci, including several involved in dorsoventral, anterior-posterior, and terminal patterning. PMID:15166158

  1. Environmental issues affecting CCT development

    SciTech Connect

    Reidy, M.

    1997-12-31

    While no final legislative schedule has been set for the new Congress, two issues with strong environmental ramifications which are likely to affect the coal industry seem to top the list of closely watched debates in Washington -- the Environmental Protection Agency`s proposed new ozone and particulate matter standards and utility restructuring. The paper discusses the background of the proposed standards, public comment, the Congressional review of regulations, other legislative options, and utility restructuring.

  2. [Study on the effect of alcohol on embryonic development by using in vitro post-implantation rat whole embryo culture].

    PubMed

    Qu, W; Zhang, B; Wu, D; Wu, W

    2000-01-30

    In order to explore the effects of drinking alcohol during pregnancy on embryonic development and its mechanisms, a post-implantation whole embryo culture(WEC) technique was used. The 9.5 day rat embryos were explanted in rat serum medium(immediately centrifugal serum, ICS) with alcohol(0.0.4.1.0, 2.00 and 4.00 g/L), and cultured for 48 hours. The index of embryo development and morphological scores induced by alcohol were observed. The result showed that alcohol had obviously effects on the development and growth of embryos with a dose-response relationship. Embryonic development of 0.4 g/L group was not significantly different from the control group, whereas 1.0 g/L group could interfere with the development score of mid-brain, forebrain, neurotube, and visceral yolk sac(VYS) circle obviously. All scores of the 2.00 g/L group were significantly lower than that of control group (P < 0.05). Moreover, the rate of embryo lethality and teratogenecity were obvious increased. It is concluded that alcohol has developmental toxicity and teratogenicity. The target organ affected by alcohol is brain. The effects of alcohol on the developmental differentiation of visceral yolk sac and DNA synthesis are probably related to its developmental abnormalities.

  3. Embryonic and posthatching development of the barn owl (Tyto alba): reference data for age determination.

    PubMed

    Köppl, Christine; Futterer, Eva; Nieder, Bärbel; Sistermann, Ralf; Wagner, Hermann

    2005-08-01

    The normal development of the barn owl was documented with the intent of providing a guideline for determining the maturational stage of embryos and posthatching individuals. Embryonic development up to stage 39 could be well described using the well-known developmental atlas for the chicken (Hamburger and Hamilton [1951] J. Morphol. 88:49-92). For later stages, limb size was established as a suitable indicator. In addition, measuring the egg's vascularized area through candling was found to be a useful, noninvasive method for staging very early embryos, up to stage 25. An average relationship between incubation period and embryonic stage was derived, which showed that development in the barn owl initially lags that in the chicken. For posthatching individuals, skeletal measures (tarsal and ulnar length, skull width and length) were the most reliable parameters for judging maturation, up to 1 month. For older individuals, feather development (e.g., length of primary wing feathers) provided the only cue.

  4. WNT regulation of embryonic development likely involves pathways independent of nuclear CTNNB1.

    PubMed

    Tribulo, Paula; Moss, James I; Ozawa, Manabu; Jiang, Zongliang; Tian, Xiuchun Cindy; Hansen, Peter J

    2017-04-01

    The bovine was used to examine the potential for WNT signaling to affect the preimplantation embryo. Expression of seven key genes involved in canonical WNT signaling declined to a nadir at the morula or blastocyst stage. Expression of 80 genes associated with WNT signaling in the morula and inner cell mass (ICM) and trophectoderm (TE) of the blastocyst was also evaluated. Many genes associated with WNT signaling were characterized by low transcript abundance. Seven genes were different between ICM and TE, and all of them were overexpressed in TE as compared to ICM, including WNT6, FZD1, FZD7, LRP6, PORCN, APC and SFRP1 Immunoreactive CTNNB1 was localized primarily to the plasma membrane at all stages examined from the 2-cell to blastocyst stages of development. Strikingly, neither CTNNB1 nor non-phospho (i.e., active) CTNNB1 was observed in the nucleus of blastomeres at any stage of development even after the addition of WNT activators to culture. In contrast, CTNNB1 associated with the plasma membrane was increased by activators of WNT signaling. The planar cell polarity pathway (PCP) could be activated in the embryo as indicated by an experiment demonstrating an increase in phospho-JNK in the nucleus of blastocysts treated with the non-canonical WNT11. Furthermore, WNT11 improved development to the blastocyst stage. In conclusion, canonical WNT signaling is attenuated in the preimplantation bovine embryo but WNT can activate the PCP component JNK. Thus, regulation of embryonic development by WNT is likely to involve activation of pathways independent of nuclear actions of CTNNB1.

  5. Vitamin K2 Biosynthetic Enzyme, UBIAD1 Is Essential for Embryonic Development of Mice

    PubMed Central

    Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio

    2014-01-01

    UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1−/−) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1−/− embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1+/− mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1+/− E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1−/− mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1+/− mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2. PMID:25127365

  6. Forkhead box transcription factors in embryonic heart development and congenital heart disease.

    PubMed

    Zhu, Hong

    2016-01-01

    Embryonic heart development is a very complicated process regulated precisely by a network composed of many genes and signaling pathways in time and space. Forkhead box (Fox, FOX) proteins are a family of transcription factors characterized by the presence of an evolutionary conserved "forkhead"or "winged-helix" DNA-binding domain and able to organize temporal and spatial gene expression during development. They are involved in a wide variety of cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism and DNA damage response. An abundance of studies in model organisms and systems has established that Foxa2, Foxc1/c2, Foxh1 and Foxm1, Foxos and Foxps are important components of the signaling pathways that instruct cardiogenesis and embryonic heart development, playing paramount roles in heart development. The previous studies also have demonstrated that mutations in some of the forkhead box genes and the aberrant expression of forkhead box gene are heavily implicated in the congenital heart disease (CHD) of humans. This review primarily focuses on the current understanding of heart development regulated by forkhead box transcription factors and molecular genetic mechanisms by which forkhead box factors modulate heart development during embryogenesis and organogenesis. This review also summarizes human CHD related mutations in forkhead box genes as well as the abnormal expression of forkhead box gene, and discusses additional possible regulatory mechanisms of the forkhead box genes during embryonic heart development that warrant further investigation.

  7. The embryonic development of the central American wandering spider Cupiennius salei

    PubMed Central

    2011-01-01

    Background The spider Cupiennius salei (Keyserling 1877) has become an important study organism in evolutionary and developmental biology. However, the available staging system for its embryonic development is difficult to apply to modern studies, with strong bias towards the earliest developmental stages. Furthermore, important embryonic events are poorly understood. We address these problems, providing a new description of the embryonic development of C. salei. The paper also discusses various observations that will improve our understanding of spider development. Results Conspicuous developmental events were used to define numbered stages 1 to 21. Stages 1 to 9 follow the existing staging system for the spider Achaearanea tepidariorum, and stages 10 to 21 provide a high-resolution description of later development. Live-embryo imaging shows cell movements during the earliest formation of embryonic tissue in C. salei. The imaging procedure also elucidates the encircling border between the cell-dense embryo hemisphere and the hemisphere with much lower cell density (a structure termed 'equator' in earlier studies). This border results from subsurface migration of primordial mesendodermal cells from their invagination site at the blastopore. Furthermore, our detailed successive sequence shows: 1) early differentiation of the precheliceral neuroectoderm; 2) the morphogenetic process of inversion and 3) initial invaginations of the opisthosomal epithelium for the respiratory system. Conclusions Our improved staging system of development in C. salei development should be of considerable value to future comparative studies of animal development. A dense germ disc is not evident during development in C. salei, but we show that the gastrulation process is similar to that in spider species that do have a dense germ disc. In the opisthosoma, the order of appearance of precursor epithelial invaginations provides evidence for the non-homology of the tracheal and book lung

  8. A comparative study of embryonic development of some bird species with different patterns of postnatal growth.

    PubMed

    Blom, Jonas; Lilja, Clas

    2005-01-01

    Some studies show that birds with high postnatal growth rates (e.g. altricial species) are characterized by a rapid early development of "supply" organs, such as digestive organs. Birds with low postnatal growth rates (e.g. precocial species) exhibit a slower early development of these organs and a more rapid early development of other "demand" organs, such as brain, muscles, skeleton and feathers. To test whether these differences can be traced back to early embryonic development and whether they can be associated with changes in developmental timing, i.e. heterochrony, we compared embryos of the precocial quail and the altricial fieldfare, two bird species with low and high postnatal growth rates, respectively. We used classical staging techniques that use developmental landmarks to categorize embryonic maturity as well as morphological measurements. These techniques were combined with immune detection of muscle specific proteins in the somites. Our data showed that the anlagen of the head, brain and eyes develop earlier in the quail than in the fieldfare in contrast to the gut which develops earlier in the fieldfare than in the quail. Our data also showed that the quail and the fieldfare displayed different rates of myotome formation in the somites which contribute to muscle formation in the limbs and thorax. We believe these observations are connected with important differences in neonatal characteristics, such as the size of the brain, eyes, organs for locomotion and digestion. This leads us to the conclusion that selection for late ontogenetic characteristics can alter early embryonic development and that growth rate is of fundamental importance for the patterning of avian embryonic development. It also appears that this comparative system offers excellent opportunities to test hypotheses about heterochrony.

  9. Final Report for Regulation of Embryonic Development in Higher Plants

    SciTech Connect

    Harada, John J.

    2013-10-22

    The overall goal of the project was to define the cellular processes that underlie embryo development in plants at a mechanistic level. Our studies focused on a critical transcriptional regulator, Arabidopsis LEAFY COTYLEDON (LEC1), that is necessary and sufficient to induce processes required for embryo development. Because LEC1 regulates lipid accumulation during the maturation phase of embryo development, information about LEC1 may be useful in designing approaches to enhance biofuel production in plants. During the tenure of this project, we determined the molecular mechanisms by which LEC1 acts as a transcription factor in embryos. We also identified genes directly regulated by LEC1 and showed that many of these genes are involved in maturation processes. This information has been useful in dissecting the gene regulatory networks controlling embryo development. Finally, LEC1 is a novel isoform of a transcription factor that is conserved among eukaryotes, and LEC1 is active primarily in seeds. Therefore, we determined that the LEC1-type transcription factors first appeared in lycophytes during land plant evolution. Together, this study provides basic information that has implications for biofuel production.

  10. [Conception and embryonic development between poetry and medical science: Dracontius].

    PubMed

    Mazzini, Innocenzo

    2010-01-01

    The article examines on the ancient theme of conception and development of embryo such as presented in the narration of Christus' conception in the De laudibus dei by Dracontius. Dracontius' description is not the only one in ancient Christian poetry, but it is surely the most ancient and the richest in medical details.

  11. Variability in human embryonic development and its implications for the susceptibility to environmental teratogenesis.

    PubMed

    Shiota, Kohei

    2009-08-01

    Considerable variability is observed in the size and developmental stage among human embryos at a given gestational age, suggesting that prenatal development does not proceed at the same speed in every embryo. Such variability in embryonic development seems to occur in many (probably all) animal species, and is probably a normal "biologic" phenomenon to some extent. In the case of humans, some other factors (e.g., maternal memory bias, difficulty in assessing the timing of ovulation and fertilization) make it more difficult to assess the developmental stage of embryos in utero. Such facts related to human embryonic development should be taken into account when the teratogenic risk of a human embryo is considered.

  12. Embryonic and postnatal development of GABA, calbindin, calretinin, and parvalbumin in the mouse claustral complex.

    PubMed

    Dávila, José Carlos; Real, M Angeles; Olmos, Luis; Legaz, Isabel; Medina, Loreta; Guirado, Salvador

    2005-01-03

    We analyzed the development of immunoreactive expression patterns for the neurotransmitter gamma-aminobutyric acid (GABA) and the calcium-binding proteins calbindin, calretinin, and parvalbumin in the embryonic and postnatal mouse claustral complex. Each calcium-binding protein shows a different temporal and spatial pattern of development. Calbindin-positive cells start to be seen very early during embryogenesis and increase dramatically until birth, thus becoming the most abundant cell type during embryonic development, especially in the ventral pallial part of the claustrum. The distribution of calbindin neurons throughout the claustrum during embryonic development partly parallels that of GABA neurons, suggesting that at least part of the calbindin neurons of the claustral complex are GABAergic and originate in the subpallium. Parvalbumin cells, on the other hand, start to be seen only postnatally, and their number then increases while the density of calbindin neurons decreases. Based on calretinin expression in axons, the core/shell compartments of the dorsal claustrum start to be clearly seen at embryonic day 18.5 and may be related to the development of the thalamoclaustral input. Comparison with the expression of Cadherin 8, a marker of the developing dorsolateral claustrum, indicates that the core includes a central part of the dorsolateral claustrum, whereas the shell includes a peripheral area of the dorsolateral claustrum, plus the adjacent ventromedial claustrum. The present data on the spatiotemporal developmental patterns of several subtypes of GABAergic neurons in the claustral complex may help for future studies on temporal lobe epilepsies, which have been related to an alteration of the GABAergic activity.

  13. Kinetics of energy source utilization in Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae) embryonic development.

    PubMed

    Campos, Eldo; Moraes, Jorge; Façanha, Arnoldo R; Moreira, Erica; Valle, Denise; Abreu, Leonardo; Manso, Pedro P A; Nascimento, Aline; Pelajo-Machado, Marcelo; Lenzi, Henrique; Masuda, Aoi; Vaz, Itabajara da Silva; Logullo, Carlos

    2006-06-15

    The present work evaluates the kinetics of utilization of the main potential energy sources throughout the embryonic developmental stages of Boophilus microplus. The embryonic development of this arthropod is completed in 21 days. Cellularization of the blastoderm occurs on the 6th day and is rapidly followed by germ band extension and segmentation, whose first signs are visible on the 7th day. Cellularization is typically a maternal-driven process, carried out by molecular determinants deposited in the oocyte during oogenesis. On the other hand, segmentation is of zygotic nature, being the consequence of the synthesis of various components by the growing embryo. The enhancement in total B. microplus RNA was observed after cellularization, corroborating the replacement of maternal-driven processes by embryonic zygotic expression. An abrupt increase in oxygen consumption was observed from cellularization until the 8th day of development. The reduction in dry weight at the same period and the susceptibility of oxygen consumption to KCN suggest that the respiration process is activated during early embryonic development. A marked decrease in total lipid content occurred between the 5th and 7th days of development, suggesting this is the main energy source for cellularization. A major reduction in carbohydrate content occurred later, between the 7th and 9th days, and it could be assigned to the morphological segmentation of the embryo. Although the total amount of proteins remains unchanged from oviposition to hatching, a 15% reduction in vitellin (VT) content was observed before cellularization, up to the 4th day after egglaying. This observation was correlated to the synthesis of new proteins needed to support early embryo development. Additional 20% of VT was consumed thereafter, mainly at the end of embryogenesis, and in this case VT is probably used as energy source to the older embryo. Altogether, these data indicate different energy sources for maternal and

  14. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation

    PubMed Central

    Kantor, Gal; Cheishvili, David; Even, Aviel; Birger, Anastasya; Turetsky, Tikva; Gil, Yaniv; Even-Ram, Sharona; Aizenman, Einat; Bashir, Nibal; Maayan, Channa; Razin, Aharon; Reubinoff, Benjamim E.; Weil, Miguel

    2015-01-01

    A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD. PMID:26437462

  15. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    PubMed

    Lefler, Sharon; Cohen, Malkiel A; Kantor, Gal; Cheishvili, David; Even, Aviel; Birger, Anastasya; Turetsky, Tikva; Gil, Yaniv; Even-Ram, Sharona; Aizenman, Einat; Bashir, Nibal; Maayan, Channa; Razin, Aharon; Reubinoff, Benjamim E; Weil, Miguel

    2015-01-01

    A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  16. The solid state environment orchestrates embryonic development and tissue remodeling

    NASA Technical Reports Server (NTRS)

    Damsky, C. H.; Moursi, A.; Zhou, Y.; Fisher, S. J.; Globus, R. K.

    1997-01-01

    Cell interactions with extracellular matrix and with other cells play critical roles in morphogenesis during development and in tissue homeostasis and remodeling throughout life. Extracellular matrix is information-rich, not only because it is comprised of multifunctional structural ligands for cell surface adhesion receptors, but also because it contains peptide signaling factors, and proteinases and their inhibitors. The functions of these groups of molecules are extensively interrelated. In this review, three primary cell culture models are described that focus on adhesion receptors and their roles in complex aspects of morphogenesis and remodeling: the regulation of proteinase expression by fibronectin and integrins in synovial fibroblasts; the regulation of osteoblast differentiation and survival by fibronectin, and the regulation of trophoblast differentiation and invasion by integrins, cadherins and immunoglobulin family adhesion receptors.

  17. Embryonic Development of the Deer Mouse, Peromyscus maniculatus

    PubMed Central

    Davis, Shannon W.; Keisler, Jessica L.

    2016-01-01

    Deer mice, or Peromyscus maniculatus, are an emerging model system for use in biomedicine. P. maniculatus are similar in appearance to laboratory mice, Mus musculus, but are more closely related to hamsters than to Mus. The laboratory strains of Peromyscus have captured a high degree of the genetic variability observed in wild populations, and are more similar to the genetic variability observed in humans than are laboratory strains of Mus. The Peromyscus Genetic Stock Center at the University of South Carolina maintains several lines of Peromyscus harboring mutations that result in developmental defects. We present here a description of P. maniculatus development from gastrulation to late gestation to serve as a guide for researchers interested in pursuing developmental questions in Peromyscus. PMID:26930071

  18. Micro-magnetic resonance imaging study of live quail embryos during embryonic development.

    PubMed

    Duce, Suzanne; Morrison, Fiona; Welten, Monique; Baggott, Glenn; Tickle, Cheryll

    2011-01-01

    Eggs containing live Japanese quail embryos were imaged using micro-magnetic resonance imaging (μMRI) at 24-h intervals from Day 0 to 8, the period during which the main body axis is being laid down and organogenesis is taking place. Considerable detail of non-embryonic structures such as the latebra was revealed at early stages but the embryo could only be visualized around Day 3. Three-dimensional (3D) changes in embryo length and volume were quantified and also changes in volume in the extra- and non-embryonic components. The embryo increased in length by 43% and nearly trebled in volume between Day 4 and Day 5. Although the amount of yolk remained fairly constant over the first 5 days, the amount of albumen decreases significantly and was replaced by extra-embryonic fluid (EEF). ¹H longitudinal (T₁) and transverse (T₂) relaxation times of different regions within the eggs were determined over the first 6 days of development. The T₂ measurements mirrored the changes in image intensity observed, which can be related to the aqueous protein concentrations. In addition, a comparison of the development of Day 0 to 3 quail embryos exposed to radiofrequency (rf) pulses, 7 T static magnetic fields and magnetic field gradients for an average of 7 h with the development of control embryos did not reveal any gross changes, thus confirming that μMRI is a suitable tool for following the development of live avian embryos over time from the earliest stages.

  19. Gli1 is not required for Pdgfralpha expression during mouse embryonic development.

    PubMed

    Zhang, Xiao-Qun; Afink, Gijs B; Hu, Xin-Rong; Forsberg-Nilsson, Karin; Nistér, Monica

    2005-03-01

    Pdgfra is expressed in the mesenchyme of multiple organs during embryonic development and Pdgfralpha is involved in cell proliferation, differentiation, migration, and apoptosis in many tissues. A fine-tuned regulation of gene transcription is required to achieve these effects. To investigate if the Shh signaling pathway is involved in the tightly regulated Pdgfra expression during embryogenesis, we systematically compared Gli1 and Pdgfralpha mRNA expression patterns in vivo from mouse embryonic day 9.5 to 14.5. We found that an initial partly overlapping expression of Gli1 and Pdgfralpha in the mesenchyme of foregut and somites was changed to different expression patterns when the mesenchyme differentiated into specialized structures such as intestinal villi and chondrocytes. Gli1 and Pdgfra were also expressed differently in the developing lung, heart, central nervous system, skin, tooth, and eye. Importantly, neither Pdgfralpha mRNA patterns nor levels were altered in Ihh mutant embryos although Gli1 and Ptc mRNA levels were dramatically reduced. Our results demonstrate that Gli1 is not required to induce Pdgfra expression during embryonic bone development, and are consistent with previous findings that Pdgfralpha and Hh pathways serve different functions in, e.g., bone, gut, and lung development. However, we cannot exclude the possibility that Glis can have more complex regulatory effects on Pdgfra gene activity, nor can we exclude such effects in pathological conditions.

  20. Long-term in vivo study of vertebrate embryonic development using noninvasive harmonics optical microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Yu; Hsieh, C.-S.; Chu, S.-W.; Lin, Cheng-Yung; Ko, C.-Y.; Chen, Y.-C.; Tsai, Huai-Jen; Hu, C.-H.; Sun, Chi-Kuang

    2005-03-01

    Harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on the nonlinear natures, it provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power (~1μm axial resolution) without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamages. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can be used to do functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Zebrafish embryos now have been used to study many vertebrate physiological systems. We have demonstrated an in vivo HOM study of developmental dynamics of several embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.

  1. Embryonic development of the alimentary canal of the scorpionfly Panorpa obtusa Cheng (Mecoptera: Panorpidae).

    PubMed

    Yue, Chao; Hua, Baozhen

    2013-05-01

    The embryonic origin of the alimentary canal, especially the midgut, is a controversial problem in insects, and it has not been satisfactorily resolved to date. The organogenesis of the digestive system in the embryonic development was observed in the scorpionfly Panorpa obtusa Cheng using light, transmission, and scanning electron microscopy. The embryonic development lasts about 150-160 h at 24°C. The stomodaeum is formed from an invagination in the medioposterior portion of the protocephalon mid-ventrally posterior to the labral segment at 76 h after oviposition. The proctodaeum arises as an invagination from the caudal end of the abdomen at 78 h. Four anal forks are formed from within the opening of proctodaeum. Three pairs of proctodaeal evaginations are formed from the anterior part of the proctodaeum, and eventually developing into Malpighian tubules, thus are of ectodermal origin. The cardiac and pyloric valves develop from stomodaeum and proctodaeum, respectively, and also of ectodermal origin. The midgut epithelium originates from anterior and posterior midgut rudiments in blind ends of the stomodaeum and proctodaeum, and it is of endodermal origin. The two cell-bands (rudiments) cover the yolk ventrally and then dorsally, elongate to each other, and eventually fuse to form the midgut. The midgut formation pattern is briefly discussed in different insects.

  2. Xenotransplantation of embryonic stem cell-derived motor neurons into the developing chick spinal cord.

    PubMed

    Wichterle, Hynek; Peljto, Mirza; Nedelec, Stephane

    2009-01-01

    A growing number of specific cell types have been successfully derived from embryonic stem cells (ES cells), including a variety of neural cells. In vitro generated cells need to be extensively characterized to establish functional equivalency with their in vivo counterparts. The ultimate test for the ability of ES cell-derived neurons to functionally integrate into neural networks is transplantation into the developing central nervous system, a challenging technique limited by the poor accessibility of mammalian embryos. Here we describe xenotransplantation of mouse embryonic stem cell-derived motor neurons into the developing chick neural tube as an alternative for testing the ability of in vitro generated neurons to survive, integrate, extend axons, and form appropriate synaptic contacts with functionally relevant targets in vivo. Similar methods can be adapted to study functionality of other mammalian cells, including derivatives of human ES cells.

  3. Ectodysplasin/NF-κB signaling in embryonic mammary gland development.

    PubMed

    Lindfors, Päivi H; Voutilainen, Maria; Mikkola, Marja L

    2013-06-01

    The ectodysplasin (Eda) signaling pathway consists of a TNF-like ligand Eda, its receptor Edar, and an adaptor protein Edaradd and its activation leads to NF-κB mediated transcription. In humans, mutations in the EDA pathway genes cause hypohidrotic ectodermal dysplasia, a disorder characterized by defective formation of hair follicles, teeth, and several exocrine glands including the breast. Embryonic mammary gland development proceeds via placode, bud, bulb and sprout stages before the onset of branching morphogenesis. Studies on mouse models have linked Eda with two aspects of embryonic mammary gland morphogenesis: placode induction and ductal growth and branching. Here we summarize the current knowledge on the role of Eda/NF-κB in mammary gland development.

  4. Reading Enjoyment and Affective Development.

    ERIC Educational Resources Information Center

    Reporting on Reading, 1978

    1978-01-01

    The articles in this publication offer ideas for developing enjoyment of reading in children. Among the topics discussed are the following: the need for teachers and parents to build children's self-esteem through increasing their experiences of success, their expectations of success, and the value they place on reading; methods for increasing…

  5. Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish.

    PubMed

    Scott, Graham R; Johnston, Ian A

    2012-08-28

    Global warming is intensifying interest in the mechanisms enabling ectothermic animals to adjust physiological performance and cope with temperature change. Here we show that embryonic temperature can have dramatic and persistent effects on thermal acclimation capacity at multiple levels of biological organization. Zebrafish embryos were incubated until hatching at control temperature (T(E) = 27 °C) or near the extremes for normal development (T(E) = 22 °C or 32 °C) and were then raised to adulthood under common conditions at 27 °C. Short-term temperature challenge affected aerobic exercise performance (U(crit)), but each T(E) group had reduced thermal sensitivity at its respective T(E). In contrast, unexpected differences arose after long-term acclimation to 16 °C, when performance in the cold was ∼20% higher in both 32 °C and 22 °C T(E) groups compared with 27 °C T(E) controls. Differences in performance after acclimation to cold or warm (34 °C) temperatures were partially explained by variation in fiber type composition in the swimming muscle. Cold acclimation changed the abundance of 3,452 of 19,712 unique and unambiguously identified transcripts detected in the fast muscle using RNA-Seq. Principal components analysis differentiated the general transcriptional responses to cold of the 27 °C and 32 °C T(E) groups. Differences in expression were observed for individual genes involved in energy metabolism, angiogenesis, cell stress, muscle contraction and remodeling, and apoptosis. Therefore, thermal acclimation capacity is not fixed and can be modified by temperature during early development. Developmental plasticity may thus help some ectothermic organisms cope with the more variable temperatures that are expected under future climate-change scenarios.

  6. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis.

    PubMed

    Hao, Ruixin; Bondesson, Maria; Singh, Amar V; Riu, Anne; McCollum, Catherine W; Knudsen, Thomas B; Gorelick, Daniel A; Gustafsson, Jan-Åke

    2013-01-01

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post fertilization (dpf), harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP)). Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database). The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.

  7. Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

    PubMed Central

    Hao, Ruixin; Bondesson, Maria; Singh, Amar V.; Riu, Anne; McCollum, Catherine W.; Knudsen, Thomas B.; Gorelick, Daniel A.; Gustafsson, Jan-Åke

    2013-01-01

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post fertilization (dpf), harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP)). Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database). The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific. PMID:24223173

  8. Information superhighway: Issues affecting development

    NASA Astrophysics Data System (ADS)

    1994-09-01

    Technological advances in the transmission of voice, video, and data are fostering fundamental changes in the telecommunications industry. For example, large local telephone companies plan to offer video services in competition with cable and broadcast television, while cable television companies plan to offer local telephone service over their wires in competition with the local telephone companies. The administration believes that these technological changes provide the opportunity to develop an 'Information Superhighway' that could provide every element of society with ready access to data, voice, and video communications. Concurrently, the Congress is considering sweeping changes to telecommunications regulations to keep pace with this dynamic industry. GAO prepared this report to serve as an overview of three key issues that decisionmakers may face as they deliberate telecommunications legislation; it focuses on three pivotal issues they face in formulating new telecommunications legislation: (1) managing the transition to a more competitive local telecommunications marketplace; (2) ensuring that all consumers have access to affordable telecommunications as competition develops; and (3) ensuring that the Information Superhighway provides adequate security, privacy, reliability, and interoperability.

  9. Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development.

    PubMed

    Jaskoll, Tina; Zhou, Yan-Min; Trump, Gary; Melnick, Michael

    2003-04-01

    Hypohidrotic (anhidrotic) ectodermal dysplasia (HED), the most common of the approximately 150 described ectodermal dysplasias, is a disorder characterized by abnormal hair, teeth, sweat glands, and salivary glands. Mutations in the EDA (ectodysplasin-A) and EDAR (ectodysplasin-A receptor) genes are responsible for X-linked and autosomal HED, respectively. Abnormal phenotypes similar to HED are seen in Tabby (Eda(Ta)) and downless (Edar(dl)) mutant mice. Although recent studies have focused on the role of Eda/Edar signaling during hair and tooth development, very little is known about its role during embryonic submandibular salivary gland (SMG) development. To this end, we analyzed the SMG phenotypes in Tabby (Ta) and downless (dl) mutant mice and determined that Ta SMGs are hypoplastic, whereas dl SMGs are severely dysplastic. The absence of SMG ducts and acini in dl SMGs suggests that Eda/Edar signaling is essential for lumina formation and glandular histodifferentiation. Our localization of Eda and Edar proteins at sites of lumen and acini formation supports this conclusion. Moreover, the presence of SMGs in both Ta and dl mutant mice, as well as the absence of immunodetectable Eda and Edar protein in Initial Bud and Early Pseudoglandular stage SMGs, indicate that Eda/Edar-mediated signaling is important for branching morphogenesis and histodifferentiation, but not for initial gland formation. To initially delineate the morphoregulatory role of Eda/Edar-mediated signaling during embryonic SMG development, we cultured embryonic day 14 SMGs with enhanced or abrogated Eda/Edar signaling. Eda supplementation induced a significant increase in SMG branching, and enhanced activation of NF-kappaB. Abrogating Eda/Edar signaling by adding the soluble form of Edar to bind endogenous ligand in embryonic SMGs results in a significant dose-dependent decrease in branching morphogenesis. Taken together, our results suggest that the Eda/Edar/NF-kappaB pathway exerts its effect

  10. Epigenetic modifications of embryonic stem cells: current trends and relevance in developing regenerative medicine.

    PubMed

    Chung, Henry; Sidhu, Kuldip S

    2008-11-17

    Epigenetics is a growing field not only in the area of cancer research but recently in stem cells including human embryonic stem cell (hESC) research. The hallmark of profiling epigenetic changes in stem cells lies in maintaining pluripotency or multipotency and in attaining lineage specifications that are relevant for regenerative medicine. Epigenetic modifications including DNA methylation, histone acetylation and methylation, play important roles in regulating gene expressions. Other epigenetic modifications include X chromosome silencing, genomic stability and imprinting and mammalian development. This review attempts to elucidate the mechanism(s) behind epigenetic modifications and review techniques scientists use for identifying each modification. We also discuss some of the trends of epigenetic modifications in the fields of directed differentiation of embryonic stem cells and de-differentiation of somatic cells.

  11. Mechanical factors in embryonic tendon development: Potential cues for stem cell tenogenesis

    PubMed Central

    Schiele, Nathan R.; Marturano, Joseph E.; Kuo, Catherine K.

    2013-01-01

    Tendons are connective tissues required for motion and are frequently injured. Poor healing and inadequate return to normal tissue structure and mechanical function make tendon a prime candidate for tissue engineering, however functional tendons have yet to be engineered. The physical environment, from substrate stiffness to dynamic mechanical loading, may regulate tenogenic stem cell differentiation. Tissue stiffness and loading parameters derived from embryonic development may enhance tenogenic stem cell differentiation and tendon tissue formation. We highlight current understanding of the mechanical environment experienced by embryonic tendons and how progenitor cells may sense and respond to physical inputs. We further discuss how mechanical factors have only recently been used to induce tenogenic fate in stem cells. PMID:23916867

  12. Mechanical factors in embryonic tendon development: potential cues for stem cell tenogenesis.

    PubMed

    Schiele, Nathan R; Marturano, Joseph E; Kuo, Catherine K

    2013-10-01

    Tendons are connective tissues required for motion and are frequently injured. Poor healing and inadequate return to normal tissue structure and mechanical function make tendon a prime candidate for tissue engineering; however functional tendons have yet to be engineered. The physical environment, from substrate stiffness to dynamic mechanical loading, may regulate tenogenic stem cell differentiation. Tissue stiffness and loading parameters derived from embryonic development may enhance tenogenic stem cell differentiation and tendon tissue formation. We highlight the current understanding of the mechanical environment experienced by embryonic tendons and how progenitor cells may sense and respond to physical inputs. We further discuss how mechanical factors have only recently been used to induce tenogenic fate in stem cells.

  13. Folic acid supplementation affects apoptosis and differentiation of embryonic neural stem cells exposed to high glucose.

    PubMed

    Jia, De-yong; Liu, Hui-juan; Wang, Fu-wu; Liu, Shang-ming; Ling, Eng-Ang; Liu, Kai; Hao, Ai-jun

    2008-07-25

    Folic acid (FA) supplementation has been shown to be extremely effective in reducing the occurrence of neural tube defects (NTDs), one of the most common birth defects associated with diabetic pregnancy. However, the antiteratogenic mechanism of FA in diabetes-induced NTDs is unclear. This study investigated the neuroprotective mechanism of FA in neural stem cells (NSCs) exposed to high glucose in vitro. The undifferentiated or differentiated NSCs were cultured in normal D-glucose concentration (NG) or high D-glucose concentration (HG) with or without FA. FA supplementation significantly decreased apoptosis induced by HG and lowered the expression of p53 in the nucleus of undifferentiated NSCs exposed to HG. Administration of FA in differentiated NSCs did not alter their precocious differentiation induced by HG. The increased mRNA expression levels of the basic helix-loop-helix factors including Neurog1, Neurog2, NeuroD2, Mash1, Id1, Id2, and Hes5 in the presence of HG were not significantly affected by FA. The present results provided a cellular mechanism by which FA supplementation may have a potential role in prevention of NTDs in diabetic pregnancies. On the other hand, FA increased the mRNA expression levels of the above transcription factors and accelerated the differentiation of NSCs in the NG medium, suggesting that it may adversely affect the normal differentiation of NSCs. Therefore, the timing and dose of FA would be critical factors in considering FA supplementation in normal maternal pregnancy.

  14. Embryonic development of the histaminergic system in the ventral nerve cord of the Marbled Crayfish (Marmorkrebs).

    PubMed

    Rieger, V; Harzsch, S

    2008-04-01

    The embryonic development of neurotransmitter systems in crustaceans so far is poorly understood. Therefore, in the current study we monitored the ontogeny of histamine-immunoreactive neurons in the ventral nerve cord of the Marbled Crayfish, an emerging crustacean model system for developmental studies. The first histaminergic neurons arise around 60% of embryonic development, well after the primordial axonal scaffold of the ventral nerve cord has been established. This suggests that histaminergic neurons do not serve as pioneer neurons but that their axons follow well established axonal tracts. The developmental sequence of the different types of histaminergic neurons is charted in this study. The analysis of the histaminergic structures is also extended into adult specimens, showing a persistence of embryonic histaminergic neurons into adulthood. Our data are compared to the pattern of histaminergic neurons in other crustaceans and discussed with regard to our knowledge on other aspects of neurogenesis in Crustacea. Furthermore, the possible role of histaminergic neurons as characters in evolutionary considerations is evaluated.

  15. Ethanol effects on embryonic craniofacial growth and development: implications for study of the fetal alcohol syndrome.

    PubMed

    Weston, W M; Greene, R M; Uberti, M; Pisano, M M

    1994-02-01

    Fetal alcohol syndrome (FAS), which is brought about by maternal consumption of ethanol during pregnancy, is a major public health problem. To gain understanding of the etiology of this condition, a number of teratological studies have been performed in different animal systems to develop an animal model for FAS. The C57BL/6J mouse strain has been described as susceptible to the teratogenic effects of ethanol, whereas the ICR (CD-1) strain is considered relatively insensitive. We have compared the effects of ethanol on DNA and protein synthesis in cultured embryonic palate mesenchymal cells from both strains to determine if the reported differential sensitivity to ethanol is reflected in differences in ethanol's effects on cell behavior. Chronic exposure to 200 mM ethanol for 48 hr had a strong inhibitory effect on DNA synthesis in palate cells derived from both the C57BL/6J and ICR strains and a significant effect on protein synthesis in C57BL/6J palate cells. When we attempted to verify strain differences in susceptibility to ethanol teratogenesis, we were not able to observe an increased incidence of birth defects due to ethanol in either strain. High doses of ethanol (5.8 g/kg, administered by intraperitoneal injection on gestational day 8) resulted in death in both C57BL/6J and ICR mice. A lower dose (4.8 g/kg) caused decreased fetal weight and increased resorption in both strains, but did not bring about FAS-like craniofacial dysmorphology in either strain. It appears, therefore, that whereas ethanol can significantly affect the behavior of cells derived from craniofacial tissue, these effects cannot be correlated with sensitivity to ethanol teratogenesis in the mouse system.

  16. Cerebellar defects in Pdss2 conditional knockout mice during embryonic development and in adulthood.

    PubMed

    Lu, Song; Lu, Lin-Yu; Liu, Meng-Fei; Yuan, Qiu-Ju; Sham, Mai-Har; Guan, Xin-Yuan; Huang, Jian-Dong

    2012-01-01

    PDSS2 is a gene that encodes one of the two subunits of trans-prenyl diphosphate synthase that is essential for ubiquinone biosynthesis. It is known that mutations in PDSS2 can cause primary ubiquinone deficiency in humans and a similar disease in mice. Cerebellum is the most often affected organ in ubiquinone deficiency, and cerebellar atrophy has been diagnosed in many infants with this disease. In this study, two Pdss2 conditional knockout mouse lines directed by Pax2-cre and Pcp2-cre were generated to investigate the effect of ubiquinone deficiency on cerebellum during embryonic development and in adulthood, respectively. The Pdss2(f/-); Pax2-cre mouse recapitulates some symptoms of ubiquinone deficiency in infants, including severe cerebellum hypoplasia and lipid accumulation in skeletal muscles at birth. During early cerebellum development (E12.5-14.5), Pdss2 knockout initially causes the delay of radial glial cell growth and neuron progenitor migration, so the growth of mutant cerebellum is retarded. During later development (E15.5-P0), increased ectopic apoptosis of neuroblasts and impaired cell proliferation result in the progression of cerebellum hypoplasia in the mutant. Thus, the mutant cerebellum contains fewer neurons at birth, and the cells are disorganized. The developmental defect of mutant cerebellum does not result from reduced Fgf8 expression before E12.5. Electron microscopy reveals mitochondrial defects and increased autophagic-like vacuolization that may arise in response to abnormal mitochondria in the mutant cerebellum. Nevertheless, the mutant mice die soon after birth probably due to cleft palate and micrognathia, which may result from Pdss2 knockout caused by ectopic Pax2-cre expression in the first branchial arch. On the other hand, the Pdss2(f/-); Pcp2-cre mouse is healthy at birth but gradually loses cerebellar Purkinje cells and develops ataxia-like symptoms at 9.5 months; thus this conditional knockout mouse may serve as a model for

  17. The effect of CO2 acidified sea water and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach).

    PubMed

    Egilsdottir, Hronn; Spicer, John I; Rundle, Simon D

    2009-08-01

    We investigated the effect of CO(2) acidified sea water (S=35, 22 and 10(PSU)) on embryonic development of the intertidal amphipod Echinogammarus marinus (Leach). Low pH, but not low salinity (22(PSU)), resulted in a more protracted embryonic development in situ although the effect was only evident at low salinity. However reduced salinity, not pH, exerted a strong significant effect, on numbers and calcium content of hatchlings. Females exposed to low salinity (10(PSU)) did not carry eggs through to hatching. There was no significant difference in the number of viable hatchlings between females cultured in 22 and 35(PSU) but the exoskeleton of the juveniles at 22(PSU) contained significantly less calcium. Ocean acidification may affect aspects of E. marinus development but exposure to realistic low salinities appear, in the short term, to be more important in impacting development than exposure to CO(2) acidified sea water at levels predicted for 300 years time.

  18. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development.

    PubMed

    Mora-Lorca, José Antonio; Sáenz-Narciso, Beatriz; Gaffney, Christopher J; Naranjo-Galindo, Francisco José; Pedrajas, José Rafael; Guerrero-Gómez, David; Dobrzynska, Agnieszka; Askjaer, Peter; Szewczyk, Nathaniel J; Cabello, Juan; Miranda-Vizuete, Antonio

    2016-07-01

    Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode.

  19. Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development.

    PubMed

    Hellingman, Catharine A; Koevoet, Wendy; Kops, Nicole; Farrell, Eric; Jahr, Holger; Liu, Wei; Baatenburg de Jong, Robert J; Frenz, Dorothy A; van Osch, Gerjo J V M

    2010-02-01

    Adult mesenchymal stem cells (MSCs) are considered promising candidate cells for therapeutic cartilage and bone regeneration. Because tissue regeneration and embryonic development may involve similar pathways, understanding common pathways may lead to advances in regenerative medicine. In embryonic limb development, fibroblast growth factor receptors (FGFRs) play a role in chondrogenic differentiation. The aim of this study was to investigate and compare FGFR expression in in vivo embryonic limb development and in vitro chondrogenesis of MSCs. Our study showed that in in vitro chondrogenesis of MSCs three sequential stages can be found, as in embryonic limb development. A mesenchymal condensation (indicated by N-cadherin) is followed by chondrogenic differentiation (indicated by collagen II), and hypertrophy (indicated by collagen X). FGFR1-3 are expressed in a stage-dependent pattern during in vitro differentiation and in vivo embryonic limb development. In both models FGFR2 is clearly expressed by cells in the condensation phase. No FGFR expression was observed in differentiating and mature hyaline chondrocytes, whereas hypertrophic chondrocytes stained strongly for all FGFRs. To evaluate whether stage-specific modulation of chondrogenic differentiation in MSCs is possible with different subtypes of FGF, FGF2 and FGF9 were added to the chondrogenic medium during different stages in the culture process (early or late). FGF2 and FGF9 differentially affected the amount of cartilage formed by MSCs depending on the stage in which they were added. These results will help us understand the role of FGF signaling in chondrogenesis and find new tools to monitor and control chondrogenic differentiation.

  20. Temperature during embryonic development has persistent effects on metabolic enzymes in the muscle of zebrafish.

    PubMed

    Schnurr, Meghan E; Yin, Yi; Scott, Graham R

    2014-04-15

    Global warming is intensifying interest in the physiological consequences of temperature change in ectotherms, but we still have a relatively poor understanding of the effects of temperature on early life stages. This study determined how embryonic temperature (TE) affects development and the activity of metabolic enzymes in the swimming muscle of zebrafish. Embryos developed successfully to hatching (survival ≥ 88%) from 22 to 32°C, but suffered sharp increases in mortality outside of this range. Embryos that were incubated until hatching at a control TE (27°C) or near the extremes for successful development (22 or 32°C) were next raised to adulthood under control conditions at 27°C. Growth trajectories after hatching were altered in the 22°C and 32°C TE groups compared with 27°C TE controls, but growth slowed after 3 months of age in all groups. Maximal enzyme activities of cytochrome c oxidase (COX), citrate synthase (CS), hydroxyacyl-coA dehydrogenase (HOAD), pyruvate kinase (PK) and lactate dehydrogenase (LDH) were measured across a range of assay temperatures (22, 27, 32 and 36°C) in adults from each TE group that were acclimated to 27 or 32°C. Substrate affinities (Km) were also determined for COX and LDH. In adult fish acclimated to 27°C, COX and PK activities were higher in 22°C and 32°C TE groups than in 27°C TE controls, and the temperature optimum for COX activity was higher in the 32°C TE group than in the 22°C TE group. Warm acclimation reduced COX, CS and/or PK activities in the 22 and 32°C TE groups, possibly to compensate for thermal effects on molecular activity. This response did not occur in the 27°C TE controls, which instead increased LDH and HOAD activities. Warm acclimation also increased thermal sensitivity (Q10) of HOAD to cool temperatures across all TE groups. We conclude that the temperature experienced during early development can have a persistent impact on energy metabolism pathways and acclimation capacity in

  1. Protective effects of resveratrol on ethanol-induced apoptosis in embryonic stem cells and disruption of embryonic development in mouse blastocysts.

    PubMed

    Huang, Lien-Hung; Shiao, Nion-Heng; Hsuuw, Yan-Der; Chan, Wen-Hsiung

    2007-12-05

    Previous studies have established that ethanol induces apoptosis, but the precise molecular mechanisms are currently unclear. Here, we show that 0.3-1.0% (w/v) ethanol induces apoptosis in mouse blastocysts and that resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties, prevents ethanol-induced apoptosis and inhibition of cell proliferation. Moreover, ethanol-treated blastocysts show normal levels of implantation on culture dishes in vitro but a reduced ability to reach the later stages of embryonic development. Pretreatment with resveratrol prevented ethanol-induced disruption of embryonic development in vitro and in vivo. In an in vitro cell-based assay, we further found that ethanol increases the production of reactive oxygen species in ESC-B5 embryonic stem cells, leading to an increase in the intracellular concentrations of cytoplasmic free Ca(2+) and NO, loss of mitochondrial membrane potential, mitochondrial release of cytochrome c, activation of caspase-9 and -3, and apoptosis. These changes were blocked by pretreatment with resveratrol. Based on these results, we propose a model for the protective effect of resveratrol on ethanol-induced cell injury in blastocysts and ESC-B5 cells.

  2. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    PubMed Central

    Prajumwongs, Piya; Weeranantanapan, Oratai; Jaroonwitchawan, Thiranut; Noisa, Parinya

    2016-01-01

    Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation. PMID:27239201

  3. Embryonic and larval development in the caecilian Ichthyophis kohtaoensis (Amphibia, gymnophiona): a staging table.

    PubMed

    Dünker, N; Wake, M H; Olson, W M

    2000-01-01

    Little is known about the developmental biology of caecilians-tropical, elongate, limbless, mostly fossorial amphibians that are members of the Order Gymnophiona. Ichthyophis kohtaoensis (Family Ichthyophiidae; southeast Asia) is an oviparous species in which maternal care of the clutch is provided. The clutch is laid in a burrow on land, and the embryos develop in their egg membranes, curved around a large yolk mass. Larvae are aquatic and exhibit characteristic features that are not present in the terrestrial adults. Because accurate descriptions of ontogenies and the establishment of standardized stages of embryonic and larval development are useful for both experimental and comparative embryology, a staging table for I.kohtaoensis was developed based on external morphological features. Development from the end of neurulation to metamorphosis was divided into 20 stages. Principal diagnostic features include development of the lateral line organs, formation of three pairs of external gills, development of the eyes, changes in yolk structure, changes in the structure of the cloacal aperture and growth of the tail, including the formation and regression of the tail fin. This study provides a comparison with descriptions of embryonic stages of I.glutinosus and Hypogeophis rostratus and with a recent staging table for the aquatic, viviparous caecilian Typhlonectes compressicauda, the only other caecilians for which reasonably complete ontogenetic information exists in the literature. Comparisons with established staging tables for selected frogs and salamanders are also presented.

  4. Hyaluronate degradation affects ventricular function of the early postlooped embryonic rat heart in situ.

    PubMed

    Baldwin, H S; Lloyd, T R; Solursh, M

    1994-02-01

    Hyaluronic acid is the major glycosaminoglycan of the early cardiac extracellular matrix or "cardiac jelly," yet little is known about its role in the ontogeny of early ventricular performance. To investigate the in situ effect of hyaluronate degradation on ventricular function, whole rat embryos were cultured in rat serum alone (control embryos) or rat serum plus 20 TRU/mL of Streptomyces hyaluronidase (treatment embryos) from gestational day 9.5 (before formation of the heart tube) through initial looping of the heart. Cardiac function was measured before looping (24 hours in culture) and immediately after looping (36 hours in culture) by video motion analysis of the external wall motion of the bulbus cordis and primitive ventricle. Degradation of hyaluronic acid in the treated embryos was confirmed by Alcian blue staining at pH 2.5. Significant increases in heart rate, circumferential shortening fraction, maximum velocity of circumferential contraction, and maximum velocity of circumferential relaxation were observed with looping in both control and treatment embryos. Although there was minimal difference in ventricular performance between control and treatment embryos before looping, there was a significant increase in all parameters of ventricular performance in the hyaluronidase-treated embryos immediately after looping of the heart. Endocardial cushions were absent in hyaluronidase-treated embryos, and an additional group of embryos cultured in the presence of Streptomyces hyaluronidase for 48 to 72 hours failed to develop endocardial cushions. These experiments are the first to (1) document a quantifiable increase in ventricular performance during early cardiac looping and (2) demonstrate that hyaluronate degradation results in abnormal endocardial cushion formation and altered ventricular performance of the postlooped heart.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. A1 demonstrates restricted tissue distribution during embryonic development and functions to protect against cell death.

    PubMed Central

    Carrió, R.; López-Hoyos, M.; Jimeno, J.; Benedict, M. A.; Merino, R.; Benito, A.; Fernández-Luna, J. L.; Núñez, G.; García-Porrero, J. A.; Merino, J.

    1996-01-01

    Members of the bcl-2 gene family are essential regulators of cell survival in a wide range of biological processes. A1, a member of the family, is known to be expressed in certain adult tissues. However, the precise tissue distribution and function of A1 remains poorly understood. We show here that A1 is expressed in multiple tissues during murine embryonic development. In the embryo, A1 was detected first at embryonic day 11.5 in liver, brain, and limbs. At day 13.5 of gestation, A1 expression was observed in the central nervous system, liver, perichondrium, and digital zones of developing limbs in a pattern different from that of bcl-X. In the central nervous system of 15.5-day embryos, A1 was expressed at high levels in the ventricular zone and cortical plate of brain cortex. Significantly, the interdigital zones of limbs and the intermediate region of the developing brain cortex, two sites associated with extensive cell death, were devoid of A1 and bcl-X. The expression of A1 was retained in many adult tissues. To assess the ability of A1 to modulate cell death, stable transfectants expressing different amounts of A1 protein were generated in K562 cells. Expression of A1 was associated with retardation of apoptotic cell death induced by actinomycin D and cycloheximide as well as by okadaic acid. Confocal microscopy showed that the A1 protein was localized to the cytoplasm in a pattern similar to that of Bcl-2. These results demonstrate that the expression of A1 is wider than previously reported in adult tissues. Furthermore, its distribution in multiple tissues of the embryo suggests that A1 plays a role in the regulation of physiological cell death during embryonic development. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8952545

  6. Characterization of tweety gene (ttyh1-3) expression in Xenopus laevis during embryonic development

    PubMed Central

    Rabe, Brian A.; Huyck, Ryan W.; Williams, Cheyenne C.; Saha, Margaret S.

    2015-01-01

    The tweety family of genes encodes large-conductance chloride channels and has been implicated in a wide array of cellular processes including cell division, cell adhesion, regulation of calcium activity, and tumorigenesis, particularly in neuronal cells. However, their expression patterns during early development remain largely unknown. Here, we describe the spatial and temporal patterning of ttyh1, ttyh2, and ttyh3 in Xenopus laevis during early embryonic development. Ttyh1 and ttyh3 are initially expressed at the late neurula stage are and primarily localized to the developing nervous system; however ttyh1 and ttyh3 both show transient expression in the somites. By swimming tadpole stages, all three genes are expressed in the brain, spinal cord, eye, and cranial ganglia. While ttyh1 is restricted to proliferative, ventricular zones, ttyh3 is primarily localized to postmitotic regions of the developing nervous system. Ttyh2, however, is strongly expressed in cranial ganglia V, VII, IX and X. The differing temporal and spatial expression patterns of ttyh1, ttyh2, and ttyh3 suggest that they may play distinct roles throughout embryonic development. PMID:25541457

  7. Preliminary observations on the effects of selenate on the development of the embryonic skate, Raja eglanteria

    NASA Technical Reports Server (NTRS)

    Conrad, G. W.; Luer, C. A.; Paulsen, A. Q.; Funderburgh, J. L.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Morphogenesis of the clearnose skate, Raja eglanteria, was not significantly inhibited as a result of 7 days of exposure to 1-2 mM selenate in the sea water during Days 59-69 of embryonic development (hatching would normally have occurred at 82 +/- 4 days of incubation). Although corneal transparency appeared normal in the eye, preliminary measurements of the thickness of Bowman's layer of the cornea suggested that it was significantly thinner in the corneas of embryos exposed to 1-2 mM selenate. Selenate is an ion reported to inhibit sulfation of glycosaminoglycans in connective tissue.

  8. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    NASA Astrophysics Data System (ADS)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  9. Embryonic and larval development of the sonic motor nucleus in the oyster toadfish

    SciTech Connect

    Galeo, A.J.; Fine, M.L.; Stevenson, J.A.

    1987-07-01

    The sonic motor nucleus (SMN), a likely homologue of the hypoglossal nucleus, provides the final common pathway for sound production in the oyster toadfish (Opsanus tau). SMN neurons increase in size and number for 7-8 years postnatally, and the swimbladder-sonic muscle complex grows throughout life. This study describes the normal embryonic and larval development of the SMN from its initial differentiation on about day 19 through day 40, when the yolk sac is resorbed and the fish is free swimming. In contrast to the rapid development of CNS nuclei in mammals, the SMN gradually increased in maturity with more active growth at the beginning and end of the observation period and a relatively static period in the middle. Consistent with a hypoglossal homology, the SMN differentiated within the spinal cord, added cells rostrally, and eventually extended into the medulla. Immature neurons appeared to originate from precursor cells in the ventral portion of the ventricular zone of the central canal. Such cells were initially round with little cytoplasmic development and later added processes and Nissl substance. The number of neurons increased 10-fold from a median of 35 to 322 cells, and no evidence of cell death was observed. Soma area approximately doubled from 20.6 to 41.2 micron 2, and cell nucleus area followed a similar pattern. (/sup 3/H)-thymidine autoradiography demonstrated that neurons were added continuously throughout the nucleus during embryonic and larval development.

  10. Essential role for Galpha13 in endothelial cells during embryonic development.

    PubMed

    Ruppel, Kathleen M; Willison, David; Kataoka, Hiroshi; Wang, Alice; Zheng, Yao-Wu; Cornelissen, Ivo; Yin, Liya; Xu, Shan Mei; Coughlin, Shaun R

    2005-06-07

    Toward identifying the roles of protease-activated receptor-1 (PAR1) and other G protein-coupled receptors important for vascular development, we investigated the role of Galpha13 in endothelial cells in the mouse embryo. LacZ inserted into Galpha13 exon 1 was highly expressed in endothelial cells at midgestation. Endothelial-specific Galpha13 knockout embryos died at embryonic days 9.5-11.5 and resembled the PAR1 knockout. Restoration of Galpha13 expression in endothelial cells by use of a Tie2 promoter-driven Galpha13 transgene rescued development of endothelial-specific Galpha13 knockout embryos as well the embryonic day 9.5 vascular phenotype in Galpha13 conventional knockouts; transgene-positive Galpha13-/- embryos developed for several days beyond their transgene-negative Galpha13-/- littermates and then manifested a previously uncharacterized phenotype that included intracranial bleeding and exencephaly. Taken together, our results suggest a critical role for Galpha13 in endothelial cells during vascular development, place Galpha13 as a candidate mediator of PAR1 signaling in this process, and reveal roles for Galpha13 in other cell types in the mammalian embryo.

  11. The energy cost of embryonic development in fishes and amphibians, with emphasis on new data from the Australian lungfish, Neoceratodus forsteri.

    PubMed

    Mueller, Casey A; Joss, Jean M P; Seymour, Roger S

    2011-01-01

    The rate of oxygen consumption throughout embryonic development is used to indirectly determine the 'cost' of development, which includes both differentiation and growth. This cost is affected by temperature and the duration of incubation in anamniote fish and amphibian embryos. The influences of temperature on embryonic development rate, respiration rate and energetics were investigated in the Australian lungfish, Neoceratodus forsteri, and compared with published data. Developmental stage and oxygen consumption rate were measured until hatching, upon which wet and dry gut-free masses were determined. A measure of the cost of development, the total oxygen required to produce 1 mg of embryonic dry tissue, increased as temperature decreased. The relationship between the oxygen cost of development (C, ml mg(-1)) and dry hatchling mass (M, mg) in fishes and amphibians is described by C = 0.30 M(0.22 0.13 (95% CI)), r (2) = 0.52. The scaling exponent indicates that the cost of embryonic development increases disproportionally with increasing hatchling mass. At 15 and 20°C, N. forsteri cost of development is significantly lower than the regression mean for all species, and at 25°C is lower than the allometrically scaled data set. Unexpectedly, incubation of N. forsteri is long, despite natural development under relatively warm conditions, and may be related to a large genome size. The low cost of development may be associated with construction of a rather sluggish fish with a low capacity for aerobic metabolism. The metabolic rate is lower in N. forsteri hatchlings than in any other fishes or amphibians at the same temperature, which matches the extremely low aerobic metabolic scope of the juveniles.

  12. Impacts of arginine nutrition on embryonic and fetal development in mammals.

    PubMed

    Wu, Guoyao; Bazer, Fuller W; Satterfield, M Carey; Li, Xilong; Wang, Xiaoqiu; Johnson, Gregory A; Burghardt, Robert C; Dai, Zhaolai; Wang, Junjun; Wu, Zhenlong

    2013-08-01

    Embryonic loss and intrauterine growth restriction (IUGR) are significant problems in humans and other animals. Results from studies involving pigs and sheep have indicated that limited uterine capacity and placental insufficiency are major factors contributing to suboptimal reproduction in mammals. Our discovery of the unusual abundance of the arginine family of amino acids in porcine and ovine allantoic fluids during early gestation led to the novel hypothesis that arginine plays an important role in conceptus (embryo and extra-embryonic membranes) development. Arginine is metabolized to ornithine, proline, and nitric oxide, with each having important physiological functions. Nitric oxide is a vasodilator and angiogenic factor, whereas ornithine and proline are substrates for uterine and placental synthesis of polyamines that are key regulators of gene expression, protein synthesis, and angiogenesis. Additionally, arginine activates the mechanistic (mammalian) target of rapamycin cell signaling pathway to stimulate protein synthesis in the placenta, uterus, and fetus. Thus, dietary supplementation with 0.83 % L-arginine to gilts consuming 2 kg of a typical gestation diet between either days 14 and 28 or between days 30 and 114 of pregnancy increases the number of live-born piglets and litter birth weight. Similar results have been reported for gestating rats and ewes. In sheep, arginine also stimulates development of fetal brown adipose tissue. Furthermore, oral administration of arginine to women with IUGR has been reported to enhance fetal growth. Collectively, enhancement of uterine as well as placental growth and function through dietary arginine supplementation provides an effective solution to improving embryonic and fetal survival and growth.

  13. A novel approach for studying the temporal modulation of embryonic skeletal development using organotypic bone cultures and microcomputed tomography.

    PubMed

    Kanczler, Janos M; Smith, Emma L; Roberts, Carol A; Oreffo, Richard O C

    2012-10-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal

  14. Junction-mediating and regulatory protein (JMY) is essential for early porcine embryonic development.

    PubMed

    Lin, Zi Li; Cui, Xiang-Shun; Namgoong, Suk; Kim, Nam-Hyung

    2015-01-01

    Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. JMY is a critical nucleation-promoting factor (NPF); however, its role in the development of mammalian embryos is poorly understood. In the current study, we investigated the functional roles of the NPF JMY in porcine embryos. Porcine embryos expressed JMY mRNA and protein, and JMY protein moved from the cytoplasm to the nucleus at later embryonic developmental stages. Knockdown of JMY by RNA interference markedly decreased the rate of blastocyst development, validating its role in the development of porcine embryos. Furthermore, injection of JMY dsRNA also impaired actin and Arp2 expression, and co-injection of actin and Arp2 mRNA partially rescued blastocyst development. Taken together, our results show that the NPF JMY is involved in the development of porcine embryos by regulating the NPF-Arp2-actin pathway.

  15. Junction-mediating and regulatory protein (JMY) is essential for early porcine embryonic development

    PubMed Central

    LIN, Zi Li; CUI, Xiang-Shun; NAMGOONG, Suk; KIM, Nam-Hyung

    2015-01-01

    Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. JMY is a critical nucleation-promoting factor (NPF); however, its role in the development of mammalian embryos is poorly understood. In the current study, we investigated the functional roles of the NPF JMY in porcine embryos. Porcine embryos expressed JMY mRNA and protein, and JMY protein moved from the cytoplasm to the nucleus at later embryonic developmental stages. Knockdown of JMY by RNA interference markedly decreased the rate of blastocyst development, validating its role in the development of porcine embryos. Furthermore, injection of JMY dsRNA also impaired actin and Arp2 expression, and co-injection of actin and Arp2 mRNA partially rescued blastocyst development. Taken together, our results show that the NPF JMY is involved in the development of porcine embryos by regulating the NPF-Arp2-actin pathway. PMID:26052154

  16. RPLP1, a crucial ribosomal protein for embryonic development of the nervous system.

    PubMed

    Perucho, Laura; Artero-Castro, Ana; Guerrero, Sergi; Ramón y Cajal, Santiago; LLeonart, Matilde E; Wang, Zhao-Qi

    2014-01-01

    Ribosomal proteins are pivotal to development and tissue homeostasis. RP Large P1 (Rplp1) overexpression is associated with tumorigenesis. However, the physiological function of Rplp1 in mammalian development remains unknown. In this study, we disrupted Rplp1 in the mouse germline and central nervous system (Rplp1CNSΔ). Rplp1 heterozygosity caused body size reductions, male infertility, systemic abnormalities in various tissues and a high frequency of early postnatal death. Rplp1CNSΔ newborn mice exhibited perinatal lethality and brain atrophy with size reductions of the neocortex, midbrain and ganglionic eminence. The Rplp1 knockout neocortex exhibited progenitor cell proliferation arrest and apoptosis due to the dysregulation of key cell cycle and apoptosis regulators (cyclin A, cyclin E, p21CIP1, p27KIP1, p53). Similarly, Rplp1 deletion in pMEFs led to proliferation arrest and premature senescence. Importantly, Rplp1 deletion in primary mouse embryonic fibroblasts did not alter global protein synthesis, but did change the expression patterns of specific protein subsets involved in protein folding and the unfolded protein response, cell death, protein transport and signal transduction, among others. Altogether, we demonstrated that the translation "fine-tuning" exerted by Rplp1 is essential for embryonic and brain development and for proper cell proliferation.

  17. Expression of macro non-coding RNAs Meg8 and Irm in mouse embryonic development.

    PubMed

    Gu, Tiantian; He, Hongjuan; Han, Zhengbin; Zeng, Tiebo; Huang, Zhijun; Liu, Qi; Gu, Ning; Chen, Yan; Sugimoto, Kenkichi; Jiang, Huijie; Wu, Qiong

    2012-07-01

    Non-coding RNAs (ncRNAs) Meg8 and Irm were previously identified as alternatively splicing isoforms of Rian gene. Ascertaining ncRNAs spatiotemporal expression patterns is crucial for understanding the physiological roles of ncRNAs during tissue and organ development. In this study in mouse embryos, we focused on the developmental regulation expression of imprinted macro ncRNAs, Meg8 and Irm by using in situ hybridization and quantitative real-time RT-PCR (QRT-PCR). The in situ hybridization results showed that Meg8 and Irm were expressed in the developing brain at embryonic day 10.5 (E10.5) and E11.5, while Irm expression signals were strikingly detected in the somite, where Meg8 expression signals were undetectable. By E15.5, they were expressed in brain, tongue, liver, lung and neuroendocrine tissues, while Irm displayed more restricted expression in tongue and skeletal muscle than Meg8. Furthermore, quantitative analysis confirmed that they were highly expressed in tongue and brain at E12.5, E15.5 and E18.5. These results indicated that Meg8 and Irm might be coordinately expressed and functionally correlated in diverse of organs. Notably, Irm was more closely associated with morphogenesis of skeletal muscle in contrast to Meg8 during embryonic development.

  18. NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron

    PubMed Central

    Delpy, Alain; Allain, Anne-Emilie; Meyrand, Pierre; Branchereau, Pascal

    2008-01-01

    Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential (ECl) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional early in development (E11.5–E13.5) when GABAA receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation. At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and hyperpolarizes ECl. In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout both early and late embryonic life. PMID:18096599

  19. Differential gene expression patterns during embryonic development of sea urchin exposed to triclosan.

    PubMed

    Hwang, Jinik; Suh, Sung-Suk; Park, Mirye; Park, So Yun; Lee, Sukchan; Lee, Taek-Kyun

    2017-02-01

    Triclosan (TCS; 2,4,4'-trichloro-2'-hydroxydiphenyl ether) is a broad-spectrum antibacterial agent used in common industrial, personal care and household products which are eventually rinsed down the drain and discharged with wastewater effluent. It is therefore commonly found in the aquatic environment, leading to the continual exposure of aquatic organisms to TCS and the accumulation of the antimicrobial and its harmful degradation products in their bodies. Toxic effects of TCS on reproductive and developmental progression of some aquatic organisms have been suggested but the underlying molecular mechanisms have not been defined. We investigated the expression patterns of genes involved in the early development of TCS-treated sea urchin Strongylocentrotus nudus using cDNA microarrays. We observed that the predominant consequence of TCS treatment in this model system was the widespread repression of TCS-modulated genes. In particular, empty spiracles homeobox 1 (EMX-1), bone morphogenic protein, and chromosomal binding protein genes showed a significant decrease in expression in response to TCS. These results suggest that TCS can induce abnormal development of sea urchin embryos through the concomitant suppression of a number of genes that are necessary for embryonic differentiation in the blastula stage. Our data provide new insight into the crucial role of genes associated with embryonic development in response to TCS. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 426-433, 2017.

  20. Embryonic development and inviability phenotype of chicken-Japanese quail F1 hybrids

    PubMed Central

    Ishishita, Satoshi; Kinoshita, Keiji; Nakano, Mikiharu; Matsuda, Yoichi

    2016-01-01

    Interspecific hybrid incompatibility, including inviability and sterility, is important in speciation; however, its genetic basis remains largely unknown in vertebrates. Crosses between male chickens and female Japanese quails using artificial insemination can generate intergeneric hybrids; however, the hatching rate is low, and hatched hybrids are only sterile males. Hybrid development is arrested frequently during the early embryonic stages, and the sex ratio of living embryos is male-biased. However, the development and sex ratio of hybrid embryos have not been comprehensively analyzed. In the present study, we observed delayed embryonic development of chicken-quail hybrids during the early stage, compared with that of chickens and quails. The survival rate of hybrids decreased markedly during the blastoderm-to-pre-circulation stage and then decreased gradually through the subsequent stages. Hybrid females were observed at more than 10 d of incubation; however, the sex ratio of hybrids became male-biased from 10 d of incubation. Severely malformed embryos were observed frequently in hybrids. These results suggest that developmental arrest occurs at various stages in hybrid embryos, including a sexually non-biased arrest during the early stage and a female-biased arrest during the late stage. We discuss the genetic basis for hybrid inviability and its sex bias. PMID:27199007

  1. Ethanol disrupts the formation of hypochord and dorsal aorta during the development of embryonic zebrafish.

    PubMed

    Qian, Linxi; Wang, Yuexiang; Jiang, Qiu; Zhong, Tao; Song, Houyan

    2005-12-01

    Exposure to ethanol during human embryonic period has severe teratogenic effects on the cardiovascular system. In our study, we demonstrated that ethanol of gradient concentrations can interfere with the establishment of circulatory system in embryonic zebrafish. The effective concentration to cause 50% malformations (EC50) was 182.5 mmol/L. The ethanol pulse exposure experiment displayed that dome stage during embryogenesis is the sensitive time window to ethanol. It is found that 400 mmol/L ethanol pulse exposure can induce circulatory defects in 43% treated embryos. We ruled out the possibility that ethanol can interfere with the process of hematopoiesis in zebrafish. By employing in situ hybridization with endothelial biomarker (Flk-1), we revealed that ethanol disrupts the establishment of trunk axial vasculature, but has no effect on cranial vessels. Combined with the results of semi-thin histological sections, the in situ hybridization experiments with arterial and venous biomarkers (ephrinB2, ephB4) suggested that ethanol mainly interrupts the development of dorsal aorta while has little effect on axial vein. Further study indicated the negative influence of ethanol on the development of hypochord in zebrafish. The consequent lack of vasculogenic factors including Radar and Ang-1 partly explains the defects in formation and integrity of dorsal aorta. These results provide important clues to the study of adverse effects of ethanol on the cardiovascular development in human fetus.

  2. Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network

    PubMed Central

    Chevalier, Marc; Toporikova, Natalia; Simmers, John; Thoby-Brisson, Muriel

    2016-01-01

    Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons. DOI: http://dx.doi.org/10.7554/eLife.16125.001 PMID:27434668

  3. Germ cells of the centipede Strigamia maritima are specified early in embryonic development.

    PubMed

    Green, Jack E; Akam, Michael

    2014-08-15

    We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages.

  4. Nitrogen excretion during embryonic development of the green iguana, Iguana iguana (Reptilia; Squamata).

    PubMed

    Sartori, M R; Taylor, E W; Abe, A S

    2012-10-01

    Development within the cleidoic egg of birds and reptiles presents the embryo with the problem of accumulation of wastes from nitrogen metabolism. Ammonia derived from protein catabolism is converted into the less toxic product urea or relatively insoluble uric acid. The pattern of nitrogen excretion of the green iguana, Iguana iguana, was determined during embryonic development using samples from allantoic fluid and from the whole homogenized egg, and in hatchlings and adults using samples of blood plasma. Urea was the major excretory product over the course of embryonic development. It was found in higher concentrations in the allantoic sac, suggesting that there is a mechanism present on the allantoic membrane enabling the concentration of urea. The newly hatched iguana still produced urea while adults produced uric acid. The time course of this shift in the type of nitrogen waste was not determined but the change is likely to be related to the water relations associated with the terrestrial habit of the adult. The green iguana produces parchment-shelled eggs that double in mass during incubation due to water absorption; the eggs also accumulate 0.02 mM of urea, representing 82% of the total measured nitrogenous residues that accumulate inside the allantois. The increase in egg mass and urea concentration became significant after 55 days of incubation then were unchanged until hatching.

  5. Fetal jaw movement affects condylar cartilage development.

    PubMed

    Habib, H; Hatta, T; Udagawa, J; Zhang, L; Yoshimura, Y; Otani, H

    2005-05-01

    Using a mouse exo utero system to examine the effects of fetal jaw movement on the development of condylar cartilage, we assessed the effects of restraint of the animals' mouths from opening, by suture, at embryonic day (E)15.5. We hypothesized that pre-natal jaw movement is an important mechanical factor in endochondral bone formation of the mandibular condyle. Condylar cartilage was reduced in size, and the bone-cartilage margin was ill-defined in the sutured group at E18.5. Volume, total number of cells, and number of 5-bromo-2'-deoxyuridine-positive cells in the mesenchymal zone were lower in the sutured group than in the non-sutured group at E16.5 and E18.5. Hypertrophic chondrocytes were larger, whereas fewer apoptotic chondrocytes and osteoclasts were observed in the hypertrophic zone in the sutured group at E18.5. Analysis of our data revealed that restricted fetal TMJ movement influences the process of endochondral bone formation of condylar cartilage.

  6. Dynamic Pattern of HOXB9 Protein Localization during Oocyte Maturation and Early Embryonic Development in Mammals

    PubMed Central

    Sauvegarde, Caroline; Paul, Delphine; Bridoux, Laure; Jouneau, Alice; Degrelle, Séverine; Hue, Isabelle; Rezsohazy, René; Donnay, Isabelle

    2016-01-01

    Background We previously showed that the homeodomain transcription factor HOXB9 is expressed in mammalian oocytes and early embryos. However, a systematic and exhaustive study of the localization of the HOXB9 protein, and HOX proteins in general, during mammalian early embryonic development has so far never been performed. Results The distribution of HOXB9 proteins in oocytes and the early embryo was characterized by immunofluorescence from the immature oocyte stage to the peri-gastrulation period in both the mouse and the bovine. HOXB9 was detected at all studied stages with a dynamic expression pattern. Its distribution was well conserved between the two species until the blastocyst stage and was mainly nuclear. From that stage on, trophoblastic cells always showed a strong nuclear staining, while the inner cell mass and the derived cell lines showed important dynamic variations both in staining intensity and in intra-cellular localization. Indeed, HOXB9 appeared to be progressively downregulated in epiblast cells and only reappeared after gastrulation had well progressed. The protein was also detected in the primitive endoderm and its derivatives with a distinctive presence in apical vacuoles of mouse visceral endoderm cells. Conclusions Together, these results could suggest the existence of unsuspected functions for HOXB9 during early embryonic development in mammals. PMID:27798681

  7. Energetics of embryonic development: effects of temperature on egg and hatchling composition in a butterfly.

    PubMed

    Geister, Thorin L; Lorenz, Matthias W; Hoffmann, Klaus H; Fischer, Klaus

    2009-01-01

    Phenotypic plasticity may allow an organism to adjust its phenotype to environmental needs. However, little is known about environmental effects on offspring biochemical composition and turnover rates, including energy budgets and developmental costs. Using the tropical butterfly Bicyclus anynana and employing a full-factorial design with two oviposition and two developmental temperatures, we explore the consequences of temperature variation on egg and hatchling composition, and the associated use and turnover of energy and egg compounds. At the lower temperature, larger but fewer eggs were produced. Larger egg sizes were achieved by provisioning these eggs with larger quantities of all compounds investigated (and thus more energy), whilst relative egg composition was rather similar to that of smaller eggs laid at the higher temperature. Turnover rates during embryonic development differed across developmental temperatures, suggesting an emphasis on hatchling quality (i.e. protein content) at the more stressful lower temperature, but on storage reserves (i.e. lipids) at the higher temperature. These differences may represent adaptive maternal effects. Embryonic development was much more efficient at the lower temperature, providing a possible mechanism underlying the temperature-size rule.

  8. Cell cycle control in the early embryonic development of aquatic animal species.

    PubMed

    Siefert, Joseph C; Clowdus, Emily A; Sansam, Christopher L

    2015-12-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease.

  9. Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development.

    PubMed

    Dorner, Armin A; Wegmann, Frank; Butz, Stefan; Wolburg-Buchholz, Karen; Wolburg, Hartwig; Mack, Andreas; Nasdala, Ines; August, Benjamin; Westermann, Jürgen; Rathjen, Fritz G; Vestweber, Dietmar

    2005-08-01

    The coxsackievirus-adenovirus receptor (CAR) is a cell contact protein on various cell types with unknown physiological function. It belongs to a subfamily of the immunoglobulin-superfamily of which some members are junctional adhesion molecules on epithelial and/or endothelial cells. CAR is dominantly expressed in the hearts and brains of mice until the newborne phase after which it becomes mainly restricted to various epithelial cells. To understand more about the physiological function of CAR, we have generated CAR-deficient mice by gene targeting. We found that these mice die between E11.5 and E13.5 of embryonal development. Ultrastructural analysis of cardiomyocytes revealed that the density of myofibrils was reduced and that their orientation and bundling was disorganized. In addition, mitochondria were enlarged and glycogen storage strongly enriched. In line with these defects, we observed pericardial edema formation as a clear sign of insufficient heart function. Developmental abnormalities likely to be secondary effects of gene ablation were the persistent singular cardial atrio-ventricular canal and dilatations of larger blood vessels such as the cardinal veins. The secondary nature of these defects was supported by the fact that CAR was not expressed on vascular cells or on cells of the vascular wall. No obvious signs for alterations of the histological organization of the placenta were observed. We conclude that CAR is required for embryonal heart development, most likely due to its function during the organization of myofibrils in cardiomyocytes.

  10. Comparison of optical projection tomography and optical coherence tomography for assessment of murine embryonic development

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Nair, Achuth; Vadakkan, Tegy; Piazza, Victor; Udan, Ryan; Frazier, Michael V.; Janecek, Trevor; Dickinson, Mary E.; Larin, Kirill V.

    2015-03-01

    The murine model is a common model for studying developmental diseases. In this study, we compare the performance of the relatively new method of Optical Projection Tomography (OPT) to the well-established technique of Optical Coherence Tomography (OCT) to assess murine embryonic development at three stages, 9.5, 11.5, and 13.5 days post conception. While both methods can provide spatial resolution at the micrometer scale, OPT can provide superior imaging depth compared to OCT. However, OPT requires samples to be fixed, placed in an immobilization media such as agar, and cleared before imaging. Because OCT does not require fixing, it can be used to image embryos in vivo and in utero. In this study, we compare the efficacy of OPT and OCT for imaging murine embryonic development. The data demonstrate the superior capability of OPT for imaging fine structures with high resolution in optically-cleared embryos while only OCT can provide structural and functional imaging of live embryos ex vivo and in utero with micrometer scale resolution.

  11. High levels of maternally transferred mercury do not affect reproductive output or embryonic survival of northern watersnakes (Nerodia sipedon).

    PubMed

    Chin, Stephanie Y; Willson, John D; Cristol, Daniel A; Drewett, David V V; Hopkins, William A

    2013-03-01

    Maternal transfer is an important exposure pathway for contaminants because it can directly influence offspring development. Few studies have examined maternal transfer of contaminants, such as mercury (Hg), in snakes, despite their abundance and high trophic position in many ecosystems where Hg is prevalent. The objectives of the present study were to determine if Hg is maternally transferred in northern watersnakes (Nerodia sipedon) and to evaluate the effects of maternal Hg on reproduction. The authors captured gravid female watersnakes (n = 31) along the South River in Waynesboro, Virginia, USA, where an extensive Hg-contamination gradient exists. The authors measured maternal tissue and litter Hg concentrations and, following birth, assessed (1) reproductive parameters (i.e., litter size and mass, neonate mass); (2) rates of infertility, death during development, stillbirths, malformations, and runts; and (3) the overall viability of offspring. Mercury concentrations in females were strongly and positively correlated with concentrations in litters, suggesting that N. sipedon maternally transfer Hg in proportion to their tissue residues. Maternal transfer resulted in high concentrations (up to 10.10 mg/kg dry wt total Hg) of Hg in offspring. The authors found little evidence of adverse effects of Hg on these measures of reproductive output and embryonic survival, suggesting that N. sipedon may be more tolerant of Hg than other vertebrate species. Given that this is the first study to examine the effects of maternally transferred contaminants in snakes and that the authors did not measure all reproductive endpoints, further research is needed to better understand factors that influence maternal transfer and associated sublethal effects on offspring.

  12. Environmental Factors Affecting Preschoolers' Motor Development

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  13. Embryonic development of the self-fertilizing mangrove killifish Kryptolebias marmoratus.

    PubMed

    Mourabit, Sulayman; Edenbrow, Mathew; Croft, Darren P; Kudoh, Tetsuhiro

    2011-07-01

    The mangrove killifish, Kryptolebias marmoratus, is a self-fertilizing vertebrate offering vast potential as a model species in many biological disciplines. Previous studies have defined developmental stages but lacked visual representations of the various embryonic structures. We offer detailed photographic images of K. marmoratus development with revised descriptions. An improved dechorionation method was developed to provide high resolution photographs, in addition to a microinjection technique enabling cell marking in the yolk syncytial layer. Embryos were also treated with PTU (1-phenyl 2-thiourea), an inhibitor of melanogenesis, to provide optical transparency revealing internal structures in late stages of development. Chemical exposures (PTU and retinoic acid) demonstrated that K. marmoratus embryos were sensitive to chemicals, illustrating further their usefulness in developmental biology studies. Our data suggest that K. marmoratus embryos are easily used and manipulated, supporting the use of this hermaphroditic vertebrate as a strong comparative model system in embryology, evolution, genetics, environmental and medical biology.

  14. The Tendons and Muscles of the Mouse Forelimb during Embryonic Development

    PubMed Central

    Watson, Spencer S.; Riordan, Timothy J.; Pryce, Brian A.; Schweitzer, Ronen

    2009-01-01

    The range and precision of limb movements are dependent on the specific patterns of muscles and tendons. To facilitate analyses of tendon and muscle phenotypes we compiled a description of these tissues in the forelimb of developing mouse embryos. Individual tendons, muscles and ligaments were annotated in a series of transverse sections through the forelimb of an embryo at day 18.5 of embryonic development (E18.5). Transverse sections present a distinctive and highly reproducible pattern of the muscles and tendons at different limb levels that can be used as a simple reference in analyses of mutant phenotypes. A comparable set of sections from an embryo at E14.5 was included to highlight structural features that change during the maturation of the musculoskeletal system. The ability to define the precise position of transverse sections along the proximal-distal axis of the limb may also be useful in studies of other features in developing limbs. PMID:19235726

  15. A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development

    PubMed Central

    Paige, Sharon L.; Thomas, Sean; Stoick-Cooper, Cristi L.; Wang, Hao; Maves, Lisa; Sandstrom, Richard; Pabon, Lil; Reinecke, Hans; Pratt, Gabriel; Keller, Gordon; Moon, Randall T.; Stamatoyannopoulos, John; Murry, Charles E.

    2012-01-01

    Summary Directed differentiation of human embryonic stem cells (ESCs) into cardiovascular cells provides a model for studying molecular mechanisms of human cardiovascular development. Though it is known that chromatin modification patterns in ESCs differ markedly from those in lineage-committed progenitors and differentiated cells, the temporal dynamics of chromatin alterations during differentiation along a defined lineage have not been studied. We show that differentiation of human ESCs into cardiovascular cells is accompanied by programmed temporal alterations in chromatin structure that distinguish key regulators of cardiovascular development from other genes. We used this temporal chromatin signature to identify regulators of cardiac development, including the homeobox gene MEIS2. We demonstrate using the zebrafish model that MEIS2 is critical for proper heart tube formation and subsequent cardiac looping. Temporal chromatin signatures should be broadly applicable to other models of stem cell differentiation to identify regulators and provide key insights into major developmental decisions. PMID:22981225

  16. The role of oxygen availability in embryonic development and stem cell function

    PubMed Central

    Simon, M. Celeste; Keith, Brian

    2010-01-01

    Low levels of oxygen (O2) occur naturally in developing embryos. Cells respond to their hypoxic microenvironment by stimulating several hypoxia-inducible factors (and other molecules that mediate O2 homeostasis), which then coordinate the development of the blood, vasculature, placenta, nervous system, and other organs. Furthermore, embryonic stem and progenitor cells frequently occupy hypoxic ‘niches’ and low O2 regulates their differentiation. Recent work has revealed an important link between factors involved in regulating stem/progenitor cell behaviour and hypoxia-inducible factors, which provides a molecular framework for hypoxic control of differentiation and cell fate. These findings have important implications for the development of therapies for tissue regeneration and disease. PMID:18285802

  17. [Embryonic development of whitefishes (Coregonidae) as representatives of the "pagophilous" ecological group].

    PubMed

    Cherniaev, Zh A

    2013-01-01

    Studies of reproduction and embryonic development in six species of coregonid fishes have revealed the possibility of their fertilized eggs to develop normally while being embedded in the ice of a spawning water body (optionally). Such ability is facilitated by extremely low respiratory activity of embryos at early stages of embryogenesis (from the stage of fission to the stage of organogenesis). Low level of oxygen consumption and carbon dioxide emission is an adaptation to low diffusion gas permeability of the ice. The main factor controlling the rate of coregonids embryonic development is not temperature, but intensity and periodicity of insolation. Without the sunlight--an obligatory external factor--normal development is just not possible. Under experimental conditions, when developing in the water at near zero temperature or in the ice, normal morphogenesis of Arctic cisco and Sevan whitefish embryos was observed at the illumination of 50-300 lux. Hemoproteid cytochrome beta560, the pigment that has been discovered in water-soluble part of coregonids oocyte yolk and is treated as a biochemical marker for eggs of the family Coregonidae, in all likelihood performs protective (antioxidant) functions preventing spontaneous oxidation of embryo's fatty inclusions. Under the oxygen shortage inside the ice envelope, cytochrome beta560 probably sets conditions for oxidation processes of embryo's tissue respiration. Spherome, being kept till the time of hatching, acts as a temporary hydrostatic organ and ensures larvae buoyancy at the stage of postembryonic metamorphosis. It also serves as an energy store after downstream migration of larvae from the spawning areas till their shift to exogenous feeding on zooplankton. Conforming to ecological traits of reproduction and development, and also to revealed morphogenetic, physiological, and biochemical features, it is proposed to ascribe all of the currently known 26 species of whitefishes to "pagophilous" ecological group.

  18. Student Learning of Early Embryonic Development via the Utilization of Research Resources from the Nematode "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Lu, Fong-Mei; Eliceiri, Kevin W.; Squirrell, Jayne M.; White, John G.; Stewart, James

    2008-01-01

    This study was undertaken to gain insights into undergraduate students' understanding of early embryonic development, specifically, how well they comprehend the concepts of volume constancy, cell lineages, body plan axes, and temporal and spatial dimensionality in development. To study student learning, a curriculum was developed incorporating…

  19. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development

    SciTech Connect

    Simeone, A.; Mavilio, F.; Acampora, D.; Giampaolo, A.; Faiella, A.; Zappavigna, V.; D'Esposito, M.; Pannese, M.; Russo, G.; Boncinelli, E.; Peschle, C.

    1987-07-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomains identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hybridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.

  20. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    PubMed

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  1. A scanning electron microscopy study of the embryonic development of Pycnogonum litorale (Arthropoda, Pycnogonida).

    PubMed

    Machner, Jakob; Scholtz, Gerhard

    2010-11-01

    The phylogenetic position of the enigmatic Pycnogonida (sea spiders) is still controversial. This is in part due to a lack of detailed data about the morphology and ontogenesis of this, in many aspects, aberrant group. In particular, studies on the embryonic development of pycnogonids are rare and in part contradictory. Here, we present the first embryological study of a pycnogonid species using scanning electron microscopy (SEM). We describe the late embryogenesis of Pycnogonum litorale from the first visible appendage anlagen to the hatchling in 11 embryonic stages. The three pairs of appendage anlagen gain in length by growth, as well as by extension of furrows into the embryo. The opening of the stomodaeum is located far in front of the anlagen of the chelifores and has a Y-shaped lumen from the onset. During further embryogenesis, the position of the mouth shifts ventrally, until it is located between the chelifores. The proboscis anlage grows out as a circumoral wall-like structure, which is initially more pronounced ventrally. Hypotheses about the evolution of the proboscis by fusion of originally separated components are critically discussed, because the proboscis anlage of P. litorale shows no indications of a composite nature. In particular, a participation of post-cheliforal elements in proboscis formation is rejected by our data. Further, no preoral structure and no stage in proboscis formation was found, which could plausibly be homologized with the labrum of othereuarthropods. Thus, our study supports the assumption of a complete lack of a labrum in Pycnogonida.

  2. Transcriptional repression of p27 is essential for murine embryonic development

    PubMed Central

    Teratake, Youichi; Kuga, Chisa; Hasegawa, Yuta; Sato, Yoshiharu; Kitahashi, Masayasu; Fujimura, Lisa; Watanabe-Takano, Haruko; Sakamoto, Akemi; Arima, Masafumi; Tokuhisa, Takeshi; Hatano, Masahiko

    2016-01-01

    The Nczf gene has been identified as one of Ncx target genes and encodes a novel KRAB zinc-finger protein, which functions as a sequence specific transcriptional repressor. In order to elucidate Nczf functions, we generated Nczf knockout (Nczf−/−) mice. Nczf−/− mice died around embryonic day 8.5 (E8.5) with small body size and impairment of axial rotation. Histopathological analysis revealed that the cell number decreased and pyknotic cells were occasionally observed. We examined the expression of cell cycle related genes in Nczf−/− mice. p27 expression was increased in E8.0 Nczf−/− mice compared to that of wild type mice. Nczf knockdown by siRNA resulted in increased expression of p27 in mouse embryonic fibroblasts (MEFs). Furthermore, p27 promoter luciferase reporter gene analysis confirmed the regulation of p27 mRNA expression by Nczf. Nczf−/−; p27−/− double knockout mice survived until E11.5 and the defect of axial rotation was restored. These data suggest that p27 repression by Nczf is essential in the developing embryo. PMID:27196371

  3. Effect of rearing temperatures during embryonic development on the phenotypic sex in zebrafish (Danio rerio).

    PubMed

    Abozaid, H; Wessels, S; Hörstgen-Schwark, G

    2011-01-01

    In zebrafish, Danio rerio, a polygenic pattern of sex determination or a female heterogamety with possible influences of environmental factors is assumed. The present study focuses on the effects of an elevated water temperature (35° C) during the embryonic development on sex determination in zebrafish. Eggs derived from 3 golden females were fertilized by the same mitotic gynogenetic male and exposed to a water temperature of 35° C, applied from 5 to 10 h post fertilization (hpf), from 5 to 24 hpf, and from 5 to 48 hpf, which correspond to the following developmental stages: gastrula, gastrula to segmentation, and gastrula to pharyngula stage, respectively. Hatching and survival rates decreased with increasing exposure to high water temperatures. Reductions in the hatching and survival rates were not responsible for differences in sex ratios. Accordingly, exposition of the fertilized eggs to a high temperature (35° C) leads to an increase of the male proportion from 22.0% in the controls to a balanced sex ratio (48.3, 47.5, and 52.6%) in the gastrula, segmentation, and pharyngula groups, respectively. These results prove the possibility to change the pathway of sexual determination during early embryonic stages in zebrafish by exposure to a high water temperature.

  4. The murine homologue of HIRA, a DiGeorge syndrome candidate gene, is expressed in embryonic structures affected in human CATCH22 patients.

    PubMed

    Wilming, L G; Snoeren, C A; van Rijswijk, A; Grosveld, F; Meijers, C

    1997-02-01

    A wide spectrum of birth defects is caused by deletions of the DiGeorge syndrome chromosomal region at 22q11. Characteristic features include cranio-facial, cardiac and thymic malformations, which are thought to arise form disturbances in the interactions between hindbrain neural crest cells and the endoderm of the pharyngeal pouches. Several genes have been identified in the shortest region of deletion overlap at 22q11, but nothing is known about the expression of these genes in mammalian embryos. We report here the isolation of several murine embryonic cDNAs of the DiGeorge syndrome candidate gene HIRA. We identified several alternatively spliced transcripts. Sequence analysis reveals that Hira bears homology to the p60 subunit of the human Chromatin Assembly Factor I and yeast hir1p and Hir2p, suggesting that Hira might have some role in chromatin assembly and/or histone regulation. Whole mount in situ hybridization of mouse embryos at various stages of development show that Hira is ubiquitously expressed. However, higher levels of transcripts are detected in the cranial neural folds, frontonasal mass, first two pharyngeal arches, circumpharyngeal neural crest and the limb buds. Since many of the structures affected in DiGeorge syndrome derive from these Hira expressing cell populations we propose that haploinsufficiency of HIRA contributes to at least some of the features of the DiGeorge phenotype.

  5. Deep Brain Photoreceptor (val-opsin) Gene Knockout Using CRISPR/Cas Affects Chorion Formation and Embryonic Hatching in the Zebrafish

    PubMed Central

    Hang, Chong Yee; Moriya, Shogo; Ogawa, Satoshi; Parhar, Ishwar S.

    2016-01-01

    Non-rod non-cone photopigments in the eyes and the brain can directly mediate non-visual functions of light in non-mammals. This was supported by our recent findings on vertebrate ancient long (VAL)-opsin photopigments encoded by the val-opsinA (valopa) and val-opsinB (valopb) genes in zebrafish. However, the physiological functions of valop isoforms remain unknown. Here, we generated valop-mutant zebrafish using CRISPR/Cas genome editing, and examined the phenotypes of loss-of-function mutants. F0 mosaic mutations and germline transmission were confirmed via targeted insertions and/or deletions in the valopa or valopb gene in F1 mutants. Based on in silico analysis, frameshift mutations converted VAL-opsin proteins to non-functional truncated forms with pre-mature stop codons. Most F1 eggs or embryos from F0 female valopa/b mutants showed either no or only partial chorion elevation, and the eggs or embryos died within 26 hour-post-fertilization. However, most F1 embryos from F0 male valopa mutant developed but hatched late compared to wild-type embryos, which hatched at 4 day-post-fertilization. Late-hatched F1 offspring included wild-type and mutants, indicating the parental effects of valop knockout. This study shows valop gene knockout affects chorion formation and embryonic hatching in the zebrafish. PMID:27792783

  6. Cholinesterase activity during embryonic development in the blood-feeding bug Triatoma patagonica.

    PubMed

    Visciarelli, E C; Chopa, C Sánchez; Picollo, M I; Ferrero, A A

    2011-09-01

    Triatoma patagonica Del Ponte (Hemiptera: Reduviidae), a vector of Chagas' disease, is widely distributed in Argentina and is found in sylvatic and peridomiciliary ecotopes, as well as occasionally in human dwellings after the chemical control of Triatoma infestans. Anti-cholinesteratic products can be applied in peridomiciliary areas and thus knowledge of cholinesterase activity during embryonic development in this species might contribute further information relevant to effective chemical control. Cholinesterase activity was characterized by reactions to eserine 10(-5) m, to increasing concentrations of substrate and to varying centrifugal speeds. Acetylcholinesterase activity was detected on day 4 and was significant from day 5. A reduction in cholinesterase activity towards acetylthiocholine (ATC) was observed on days 9 and 10 of development. Cholinesterase activity towards ATC and butyrylthiocholine (BTC) in homogenates of eggs was inhibited by eserine 10(-5) m. The shape of the curve indicating levels of inhibition at different concentrations of ATC was typical of acetylcholinesterase. Activity towards BTC did not appear to be inhibited by excess substrate, which parallels the behaviour of butyrylcholinesterases. Cholinesterase activity towards ATC was reduced in supernatant centrifuged at 15 000 g compared with supernatant centrifuged at 1100 g. The cholinesterase system that hydrolyzes mainly ATC seems to belong to the nervous system, as indicated by its behaviour towards the substrates assayed, its greater insolubility and the fact that it evolves parallel to the development of the nervous system. Knowledge of biochemical changes associated with the development and maturation of the nervous system during embryonic development would contribute to the better understanding of anti-cholinesteratic compounds with ovicidal action that might be used in control campaigns against vectors of Chagas' disease.

  7. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis.

    PubMed

    Zhong, J-X; Zhou, L; Li, Z; Wang, Y; Gui, J-F

    2014-06-01

    Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcription is initiated from this stage and mainly localized in YSL of the embryos. The zNoxa expression alterations result in strong embryonic development defects, demonstrating that zNoxa regulates apoptosis from 75% epiboly stage of development onward, in which zNoxa firstly induces the expression of zBik, and then cooperates with zBik to regulate apoptosis. Moreover, zNoxa knockdown also causes a reduction in number of mitotic cells before 8 h.p.f., suggesting that zNoxa also promotes mitosis before 75% epiboly stage. The effect of zNoxa on mitosis is mediated by zWnt4b in early embryos, whereas zMcl1a and zMcl1b suppress the ability of zNoxa to regulate mitosis and apoptosis at different developmental stages. In addition, mammalian mouse Noxa (mNoxa) mRNA was demonstrated to rescue the arrest of mitosis when zNoxa was knocked down, suggesting that mouse and zebrafish Noxa might have similar dual functions. Therefore, the current findings indicate that Noxa is a novel regulator of early mitosis before 75% epiboly stage when it translates into a key mediator of apoptosis in subsequent embryogenesis.

  8. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development.

    PubMed

    Spikings, Emma C; Alderson, Jon; St John, Justin C

    2007-02-01

    Cellular ATP is mainly generated through mitochondrial oxidative phosphorylation, which is dependent on mitochondrial DNA (mtDNA). We have previously demonstrated the importance of oocyte mtDNA for porcine and human fertilization. However, the role of nuclear-encoded mitochondrial replication factors during oocyte and embryo development is not yet understood. We have analyzed two key factors, mitochondrial transcription factor A (TFAM) and polymerase gamma (POLG), to determine their role in oocyte and early embryo development. Competent and incompetent oocytes, as determined by brilliant cresyl blue (BCB) dye, were assessed intermittently during the maturation process for TFAM and POLG mRNA using real-time RT-PCR, for TFAM and POLG protein using immunocytochemistry, and for mtDNA copy number using real-time PCR. Analysis was also carried out following treatment of maturing oocytes with the mtDNA replication inhibitor, 2',3'-dideoxycytidine (ddC). Following in vitro fertilization, preimplantation embryos were also analyzed. Despite increased levels of TFAM and POLG mRNA and protein at the four-cell stage, no increase in mtDNA copy number was observed in early preimplantation development. To compensate for this, mtDNA appeared to be replicated during oocyte maturation. However, significant differences in nuclear-encoded regulatory protein expression were observed between BCB(+) and BCB(-) oocytes and between untreated oocytes and those treated with ddC. These changes resulted in delayed mtDNA replication, which correlated to reduced fertilization and embryonic development. We therefore conclude that adherence to the regulation of the timing of mtDNA replication during oocyte maturation is essential for successful embryonic development.

  9. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    PubMed

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility

  10. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    PubMed

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development.

  11. Effects of latex from "Amapazeiro"Parahancornia amapa (Apocynaceae) on blowfly Chrysomya megacephala (Diptera: Calliphoridae) post-embryonic development.

    PubMed

    Mendonça, Paloma M; Lima, Mariana G; Albuquerque, Luis R M; Carvalho, Mario G; Queiroz, Margareth M C

    2011-06-10

    Nowadays, insect control is usually carried out using chemical insecticides, but insect resistance and other negative side effects have prompted the search for alternatives. Biopesticides provide a positive alternative to synthetic pesticides because they have low impact on the environmental, low toxicity to humans and low costs among other advantages. This research was carried out to evaluate the activity of Parahancornia amapa (Huber) Ducke (Apocynaceae) lyophilized latex on the post embryonic development of Chrysomya megacephala (F.) (Diptera: Calliphoridae). Larvae treated with 1.0% latex showed a shorter post embryonic development period (larval, pupal and newly hatched larvae to adult); whereas larvae treated with 3.0% latex provoked a prolongation of these periods. Viability (53%) was also very low at the newly hatched larvae to adult period for larvae treated with 3.0% latex, indicating that latex from P. amapa at high concentrations could change C. megacephala post embryonic development.

  12. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea).

    PubMed

    Nobre, C R; Santana, M F M; Maluf, A; Cortez, F S; Cesar, A; Pereira, C D S; Turra, A

    2015-03-15

    Apart from the physiological impacts on marine organisms caused by ingesting microplastics, the toxicity caused by substances leaching from these particles into the environment requires investigation. To understand this potential risk, we evaluated the toxicity of virgin (raw) and beach-stranded plastic pellets to the development of embryos of Lytechinus variegatus, simulating transfers of chemical compounds to interstitial water and water column by assays of pellet-water interface and elutriate, respectively. Both assays showed that virgin pellets had toxic effects, increasing anomalous embryonic development by 58.1% and 66.5%, respectively. The toxicity of stranded pellets was lower than virgin pellets, and was observed only for pellet-water interface assay. These results show that (i) plastic pellets act as a vector of pollutants, especially for plastic additives found on virgin particles; and that (ii) the toxicity of leached chemicals from pellets depends on the exposure pathway and on the environmental compartment in which pellets accumulate.

  13. Expression pattern of glypican-3 (GPC3) during human embryonic and fetal development.

    PubMed

    Iglesias, Bibiana V; Centeno, Gloria; Pascuccelli, Hector; Ward, Flavia; Peters, María Giselle; Filmus, Jorge; Puricelli, Lydia; de Kier Joffé, Elisa Bal

    2008-11-01

    Glypicans represent a family of cell surface proteoglycans. Loss-of-function mutations in the human glypican-3 (GPC3) gene results in the Simpson-Golabi-Behmel syndrome, characterized by severe malformations and pre- and postnatal overgrowth. Because the expression of GPC3 during human embryonic and fetal periods remains largely unknown, we investigated by immunohistochemistry its pattern of expression during four periods of human development covering the embryonic period (P1) from 5 to 8 weeks of development, and the fetal periods (P2, P3 and P4) from 9 to 28 weeks of development. Hepatocytes were homogeneously positive for GPC3 during the four periods while pancreatic acini and ducts showed a rather high staining only during P1. GPC3 was also detected in several kidney structures and in the genital system where the sex cords were weakly positive in P1 and P2. In later developmental stages the male's genital system expressed GPC3 while the female's did not. While the mesenchyme in the limbs showed positive staining in P1, GPC3 was not detected during the following stages. The mesenchymal tissue localized between the most caudal vertebrae was also positive in P1. A strong GPC3 signal was observed in neurons of the spinal cord and dorsal root ganglia in P2 and P3, while the brain was negative. In sum our studies revealed that GPC3 expression is highly tissue- and stage-specific during human development. The expression pattern of GPC3 is consistent with the abnormalities seen in the Simpson-Golabi-Behmel syndrome.

  14. Induced spawning and embryonic development of Liza ramada reared in freshwater ponds.

    PubMed

    Mousa, Mostafa A

    2010-05-01

    The possibility of inducing and synchronizing spawning can be very useful to facilitate fish farming, particularly in species that achieve ovarian development in captivity without ovulation occuring. The present study was undertaken to observe the morphological and normal embryonic development of thin-lipped mullet, Liza ramada, after spawning induction of fish reared in freshwater fish farms. The use of pregnyl (HCG) as a priming injection at a dose of 20,000 IU/kg body weight followed by a second injection of 40,000 IU HCG/kg body weight 24 h later, proved to be effective in inducing final oocyte maturation, ovulation and spawning in L. ramada at 52-60 h after hormonal injection. The mean number of the ovulated eggs for each female was 700 +/- 80.3 eggsg(-1) body weight. The mean rates of buoyancy, fertilization and hatching were 46 +/- 7.1, 55 +/- 8.4 and 60 +/- 6.6, respectively. Fertilized eggs were kept under normal environmental conditions in seawater at 20-21 degrees C. The first cleavage occurred at 40 min, epiboly began at 5 h, the embryonic body was formed at 24 h and hatching occurred at 48 h after spawning. Newly hatched larvae were approximately 2.5 mm (total length) and similar to those of the other mullet species in terms of external features except no pigment spots were present over the yolk. The mouth and foregut opened on the 5th day after hatching; at which the total length of larvae was 3.5 mm; the hindgut and anus had developed prior to hatching. The induced ovulation technique using acute injections of hormones is an important step in the development of the mullet culture.

  15. Analysis of transcription factor Stk40 expression and function during mouse pre-implantation embryonic development.

    PubMed

    Zhang, Junqiang; Zhang, Juanjuan; Zhao, Chun; Shen, Rong; Guo, Xirong; Li, Chaojun; Ling, Xiufeng; Liu, Chang

    2014-02-01

    Determining the molecular mechanisms in the regulation of early embryonic development is crucial for assisted reproductive technology clinical applications. Serine/threonine protein kinase 40 (Stk40) is a member of the serine/threonine kinase family. It is essential in diverse signaling pathways associated with a wide range of cellular activities, including proliferation, differentiation, survival and apoptosis. However, its involvement and molecular mechanisms in pre‑implantation embryonic development have not been well‑defined. In the present study, it was demonstrated that Stk40 was involved in the development of mouse pre‑implantation embryos. Immunofluorescence and confocal microscopy analyses showed that Stk40 was equally expressed in the nuclei and cytoplasm during all stages of pre‑implantation mouse embryos of imprinting control region mice. Reverse transcription‑polymerase chain reaction showed a significantly higher transcription rate of Stk40 mRNA in the two‑cell stage. The results demonstrated that Stk40 downregulation by microinjection of small interfering RNA into the mouse zygote markedly decreased the blastulation compared with that in the control (Stk40i‑1 vs. control: 65.2% and 77.0%, P<0.05 and Stk40i‑2 vs. control: 49.8% and 70.1%, respectively, P<0.05). In addition, silencing of Stk40 significantly increased the transcription rate of reticulocalbin‑2, whereas that of the homeobox protein, Cdx2, was decreased. In conclusion, the results suggested that Stk40 may be critical in the development of pre‑implantation embryos.

  16. Effects of androstenedione exposure on fathead minnow (Pimephales promelas) reproduction and embryonic development.

    PubMed

    DeQuattro, Zachary A; Hemming, Jocelyn D C; Barry, Terence P

    2015-11-01

    High concentrations (300 ng/L) of androstenedione (A4) were identified in snowmelt runoff from fields fertilized with manure from livestock feeding operations in Wisconsin, USA. In fishes, A4 is an active androgen and substrate for biosynthesis of functional androgens (e.g., testosterone and 11-ketotestosterone) and estrogens (e.g., estradiol-17β). Thus, A4 has the potential to be a powerful endocrine disruptor. This hypothesis was tested by exposing reproductively mature fathead minnows to 0.0 ng/L, 4.5 ng/L, 74 ng/L, and 700 ng/L A4 for 26 d in a flow-through system. Various reproductive endpoints were measured including fecundity, fertilization success, secondary sexual characteristics, gonadosomatic index (GSI), and hepatic vitellogenin messenger RNA (mRNA) expression. In addition, fertilized embryos from the reproduction assay were used in an embryonic development assay to assess A4 effects on development and hatchability. In males, A4 significantly increased Vtg mRNA expression (estrogenic effect), significantly reduced GSI, and had no effect on tubercle expression (p = 0.067). In females, A4 induced tubercle development (androgenic effect) with no effects on GSI. Fecundity was not significantly impacted. Exposure to A4 had no effect on fertilization, embryonic development, or hatchability. These data indicate that exogenous A4, at environmentally relevant concentrations, can significantly modulate the reproductive physiology of the fathead minnows in a sex-specific manner and that A4 should be monitored as an endocrine disruptor.

  17. A conserved role of αA-crystallin in the development of the zebrafish embryonic lens

    PubMed Central

    Zou, Ping; Wu, Shu-Yu; Koteiche, Hanane A.; Mishra, Sanjay; Levic, Daniel S.; Knapik, Ela; Chen, Wenbiao; Mchaourab, Hassane S

    2015-01-01

    αA- and αB-crystallins are small heat shock proteins that bind thermodynamically destabilized proteins thereby inhibiting their aggregation. Highly expressed in the mammalian lens, the α-crystallins have been postulated to play a critical role in the maintenance of lens optical properties by sequestering age-damaged proteins prone to aggregation as well as through a multitude of roles in lens epithelial cells. Here, we have examined the role of α-crystallins in the development of the vertebrate zebrafish lens. For this purpose, we have carried out morpholino-mediated knockdown of αA-, αBa- and αBb-crystallin and characterized the gross morphology of the lens. We observed lens abnormalities, including increased reflectance intensity, as a consequence of the interference with expression of these proteins. These abnormalities were less frequent in transgenic zebrafish embryos expressing rat αA-crystallin suggesting a specific role of α-crystallins in embryonic lens development. To extend and confirm these findings, we generated an αA-crystallin knockout zebrafish line. A more consistent and severe lens phenotype was evident in maternal/zygotic αA-crystallin mutants compared to those observed by morpholino knockdown. The penetrance of the lens phenotype was reduced by transgenic expression of rat αA-crystallin and its severity was attenuated by maternal αA-crystallin expression. These findings demonstrate that the role of α-crystallins in lens development is conserved from mammals to zebrafish and set the stage for using the embryonic lens as a model system to test mechanistic aspects of α-crystallin chaperone activity and to develop strategies to fine-tune protein-protein interactions in aging and cataracts. PMID:26149094

  18. Investment choices in post-embryonic development: quantifying interactions among growth, regeneration, and asexual reproduction in the annelid Pristina leidyi.

    PubMed

    Zattara, Eduardo E; Bely, Alexandra E

    2013-12-01

    Animals capable of multiple forms of post-embryonic development, such as growth, regeneration, and asexual reproduction, must make choices about which processes to invest in. What strategies guide post-embryonic resource allocation investments? We investigated this question in the annelid Pristina leidyi, which can grow continuously, regenerates well, and reproduces asexually by fission. We found that in this species growth is concentrated in three zones: a subterminal posterior zone (forming new segments), a mid-body zone (forming fission zones), and a previously undescribed subterminal anterior zone at the base of the prostomium (which we suggest continually builds the prostomium through a "conveyor-belt" like process). Body-wide counts of proliferating cells are greater under high food than low food conditions but proliferation patterns themselves are independent of feeding level. Proliferation patterns are strongly affected by amputation, however, with proliferation rapidly shutting-down throughout the body, except at the wound site, following injury. Relative investment to fission and regeneration is highly context-dependent, being sensitive to the position of the cut and the stage of fission. Outcomes range from fission acceleration and regeneration stalling (high fission:regeneration investment) to resorption of fission zones and progression of regeneration (low fission:regeneration investment). Our findings reveal strong interactions between growth, regeneration, and fission and demonstrate a particularly important effect of injury on resource allocation patterns. Patterns of resource investment in P. leidyi show similarities to those described in two other groups that evolved fission independently (naidine annelids and catenulid flatworms), suggesting that similar developmental and physiological contexts may drive convergent evolution of resource allocation strategies.

  19. Variation in maternal effects and embryonic development rates among passerine species

    USGS Publications Warehouse

    Martin, T.E.; Schwabl, H.

    2008-01-01

    Embryonic development rates are reflected by the length of incubation period in birds, and these vary substantially among species within and among geographical regions. The incubation periods are consistently shorter in North America (Arizona study site) than in tropical (Venezuela) and subtropical (Argentina) South America based on the study of 83 passerine species in 17 clades. Parents, mothers in particular, may influence incubation periods and resulting offspring quality through proximate pathways, while variation in maternal strategies among species can result from selection by adult and offspring mortality. Parents of long-lived species, as is common in the tropics and subtropics, may be under selection to minimize costs to themselves during incubation. Indeed, time spent incubating is often lower in the tropical and subtropical species than the related north temperate species, causing cooler average egg temperatures in the southern regions. Decreased egg temperatures result in longer incubation periods and reflect a cost imposed on offspring by parents because energy cost to the embryo and risk of offspring predation are both increased. Mothers may adjust egg size and constituents as a means to partially offset such costs. For example, reduced androgen concentrations in egg yolks may slow development rates, but may enhance offspring quality through physiological trade-offs that may be particularly beneficial in longer-lived species, as in the tropics and subtropics. We provide initial data to show that yolks of tropical birds contain substantially lower concentrations of growth-promoting androgens than north temperate relatives. Thus, maternal (and parental) effects on embryonic development rates may include contrasting and complementary proximate influences on offspring quality and deserve further field study among species. ?? 2007 The Royal Society.

  20. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development.

    PubMed

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio

    2015-12-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development.

  1. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development

    PubMed Central

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V.; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K.; Bellusci, Saverio

    2015-01-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927

  2. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development.

    PubMed

    Kropp, Jenna; Khatib, Hasan

    2015-01-01

    In vitro production (IVP) systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage) embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerate conditioned media. Differential expression was confirmed by quantitative real-time PCR for fragments of mRNA POSTN and VSNL-1, in four additional biological replicates of media. To better understand the mechanisms of mRNA secretion into the media, the expression of a predicted RNA binding protein of POSTN, PUM2, was knocked down using an antisense oligonucleotide gapmer. Supplementation of a PUM2 gapmer significantly reduced blastocyst development and decreased secretion of POSTN mRNA into the media. Overall, differential mRNA expression in the media was repeatable and sets the framework for future study of mRNA biomarkers in in vitro culture media to improve predictability of reproductive performance.

  3. Effects of simulated-microgravity on zebrafish embryonic development and microRNA expression

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Zhang, Meng; Li, Hui

    2012-07-01

    Microgravity is a constant physical factor astronauts must meet during space flight. Therefore, the mechanism of microgravity-induced biological effects is one of the most important issues in space biological studies. In this research, zebrafish (Danio rerio) embryos at different development stages were exposed to simulated microgravity, respectively, using a rotary cell culture system (RCCS) designed by NASA. Biological effects of simulated microgravity on zebrafish embryos were investigated at the phenotypic and microRNA expression levels. Malformation rate and mortality rate were found increased after simulated microgravity exposure. Body length and heart rate were also increased during microgravity exposure and after a shot period of gravity recovery, but both returned to normal level after 10 days and 7 days of gravity recovery, respectively. Additionally, significant changes in microRNA expression profiles of zebrafish embryos were observed, depending on the development stages of embyos exposed to simulated microgravity and the exposure time. All together, nine miRNAs showed significant changes after three different microgravity exposures (8-72hpf, 24-72hpf and 24-48hpf). Four miRNAs, dre-miR-738, dre-miR-133a, dre-miR-133b and dre-miR-22a, were up-regulated. Two miRNAs, dre-miR-1 and dre-miR-16a, were down-regulated. The other three miRNAs, dre-miR-204, dre-miR-9* and dre-miR-429, were found up-regulated when microgravity exposures ended at 72hpf, but down-regulated when microgravity exposures ended at 48hpf. Above results demonstrated microRNA expression of zebrafish embryos could be induced by both embryonic development stage and simulated microgravity. Key Words: Danio rerio; Simulated-microgravity; embryonic devlopment; microRNA expression

  4. Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...

  5. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis

    PubMed Central

    Ogas, Joe; Kaufmann, Scott; Henderson, Jim; Somerville, Chris

    1999-01-01

    The life cycle of angiosperms is punctuated by a dormant phase that separates embryonic and postembryonic development of the sporophyte. In the pickle (pkl) mutant of Arabidopsis, embryonic traits are expressed after germination. The penetrance of the pkl phenotype is strongly enhanced by inhibitors of gibberellin biosynthesis. Map-based cloning of the PKL locus revealed that it encodes a CHD3 protein. CHD3 proteins have been implicated as chromatin-remodeling factors involved in repression of transcription. PKL is necessary for repression of LEC1, a gene implicated as a critical activator of embryo development. We propose that PKL is a component of a gibberellin-modulated developmental switch that functions during germination to prevent reexpression of the embryonic developmental state. PMID:10570159

  6. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis.

    PubMed

    Ogas, J; Kaufmann, S; Henderson, J; Somerville, C

    1999-11-23

    The life cycle of angiosperms is punctuated by a dormant phase that separates embryonic and postembryonic development of the sporophyte. In the pickle (pkl) mutant of Arabidopsis, embryonic traits are expressed after germination. The penetrance of the pkl phenotype is strongly enhanced by inhibitors of gibberellin biosynthesis. Map-based cloning of the PKL locus revealed that it encodes a CHD3 protein. CHD3 proteins have been implicated as chromatin-remodeling factors involved in repression of transcription. PKL is necessary for repression of LEC1, a gene implicated as a critical activator of embryo development. We propose that PKL is a component of a gibberellin-modulated developmental switch that functions during germination to prevent reexpression of the embryonic developmental state.

  7. Prion Protein and Shadoo Are Involved in Overlapping Embryonic Pathways and Trophoblastic Development

    PubMed Central

    Makhzami, Samira; Vilotte, Marthe; Jaffrezic, Florence; Halliez, Sophie; Bouet, Stéphan; Marthey, Sylvain; Khalifé, Manal; Kanellopoulos-Langevin, Colette; Béringue, Vincent; Le Provost, Fabienne; Laude, Hubert; Vilotte, Jean-Luc

    2012-01-01

    The potential requirement of either the Prion or Shadoo protein for early mouse embryogenesis was recently suggested. However, the current data did not allow to precise the developmental process that was affected in the absence of both proteins and that led to the observed early lethal phenotype. In the present study, using various Prnp transgenic mouse lines and lentiviral vectors expressing shRNAs that target the Shadoo-encoding mRNA, we further demonstrate the specific requirement of at least one of these two PrP-related proteins at early developmental stages. Histological analysis reveals developmental defect of the ectoplacental cone and important hemorrhage surrounding the Prnp-knockout-Sprn-knockdown E7.5 embryos. By restricting the RNA interference to the trophoblastic cell lineages, the observed lethal phenotype could be attributed to the sole role of these proteins in this trophectoderm-derived compartment. RNAseq analysis performed on early embryos of various Prnp and Sprn genotypes indicated that the simultaneous down-regulation of these two proteins affects cell-adhesion and inflammatory pathways as well as the expression of ectoplacental-specific genes. Overall, our data provide biological clues in favor of a crucial and complementary embryonic role of the prion protein family in Eutherians and emphasizes the need to further evaluate its implication in normal and pathological human placenta biology. PMID:22860039

  8. Organization versus activation: the role of endocrine-disrupting contaminants (EDCs) during embryonic development in wildlife.

    PubMed Central

    Guillette, L J; Crain, D A; Rooney, A A; Pickford, D B

    1995-01-01

    Many environmental contaminants disrupt the vertebrate endocrine system. Although they may be no more sensitive to endocrine-disrupting contaminants (EDCs) than other vertebrates, reptiles are good sentinels of exposure to EDCs due to the lability in their sex determination. This is exemplified by a study of alligators at Lake Apopka, Florida, showing that EDCs have altered the balance of reproductive hormones resulting in reproductive dysfunction. Such alterations may be activationally or organizationally induced. Much research emphasizes the former, but a complete understanding of the influence of EDCs in nature can be generated only after consideration of both activational and organizational alterations. The organizational model suggests that a small quantity of an EDC, administered during a specific period of embryonic development, can permanently modify the organization of the reproductive, immune, and nervous systems. Additionally, this model helps explain evolutionary adaptations to naturally occurring estrogenic compounds, such as phytoestrogens. PMID:8593864

  9. A simple slice culture system for the imaging of nerve development in embryonic mouse.

    PubMed

    Brachmann, Isabel; Jakubick, Vera Catherine; Shakèd, Maya; Unsicker, Klaus; Tucker, Kerry Lee

    2007-12-01

    Newborn neurons elaborate an axon that undertakes a complicated journey to find its ultimate target in the brain or periphery. Although major progress in the study of this process has been made by analysis of dissociated neurons in vitro, one would like to observe and manipulate axonal outgrowth and pathfinding as it occurs in situ, as fasciculated nerves growing within the tissue itself. Here, we present a simple technique to do this, through cultivation of embryonic mouse slices expressing enhanced green fluorescent protein (EGFP) specifically in newborn neurons. This system allows for imaging of outgrowth of peripheral nerves into structures such as the developing limb. We demonstrate a reproduction of normal innervation patterns by spinal nerves derived from spinal cord motor neurons and sensory neurons of the dorsal root ganglia. The slices can be manipulated pharmacologically as well as genetically, by crossing the EGFP-expressing line with lines containing targeted mutations in genes of interest.

  10. From Embryonic Development to Human Diseases: The Functional Role of Caveolae/Caveolin

    PubMed Central

    Sohn, Jihee; Brick, Rachel M.; Tuan, Rocky S.

    2017-01-01

    Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders. PMID:26991990

  11. Plac1 (placenta-specific 1) is essential for normal placental and embryonic development.

    PubMed

    Jackman, Suzanne M; Kong, Xiaoyuan; Fant, Michael E

    2012-08-01

    Plac1 is a recently identified, X-linked gene whose expression is restricted primarily to cells of the trophoblast lineage. It localizes to a chromosomal locus previously implicated in placental growth. We therefore sought to determine if Plac1 is necessary for placental and embryonic development by examining a mutant mouse model. Plac1 ablation resulted in placentomegaly and mild intrauterine growth retardation (IUGR). At E16.5, knockout (KO) and heterozygous (Het) placentae of the Plac1-null allele inherited from the mother (X(m-) X) weighed approximately 100% more than wildtype (WT) placentae, whereas the corresponding embryos weighed 7-12% less. Histologically, Plac1 mutants exhibited an expanded spongiotrophoblast layer that invaded the labyrinth. By contrast, Het placentae that inherited the null allele from the father (XX(p-) ) exhibited normal growth and were histologically indistinguishable from WT placentae, consistent with paternal imprinting of Plac1. When examined across gestation, WT and X(m-) X placental weights peaked at E16.5 and decreased slightly thereafter. KO placentae (X(m-) X(p-) and X(m-) Y), however, continued to increase in weight after E16.5, consistent with a functional role for the paternal Plac1 allele. Subsequent analysis confirmed that the paternal allele partially escapes complete X-inactivation and thus contributes to placental growth regulation. Additionally, although male Plac1 KO mice can survive, they exhibit decreased viability as a consequence of events occurring late in gestation or shortly after birth. Thus, Plac1 is a paternally imprinted, X-linked gene essential for normal placental and embryonic development.

  12. The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development.

    PubMed

    Biersmith, Bridget; Liu, Ze Cindy; Bauman, Kenneth; Geisbrecht, Erika R

    2011-01-25

    Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development.

  13. Development and characterization of pathways descending to the spinal cord in the embryonic chick.

    PubMed

    Sholomenko, G N; O'Donovan, M J

    1995-03-01

    1. We used an isolated preparation of the embryonic chick brain stem and spinal cord to examine the origin, trajectory, and effects of descending supraspinal pathways on lumbosacral motor activity. The in vitro preparation remained viable for < or 24 h and was sufficiently stable for electrophysiological, pharmacological, and neuroanatomic examination. In this preparation, as in the isolated spinal cord, spontaneous episodes of both forelimb and hindlimb motor activity occur in the absence of phasic afferent input. Motor activity can also be evoked by brain stem electrical stimulation or modulated by the introduction of neurochemicals to the independently perfused brain stem. 2. At embryonic day (E)6, lumbosacral motor activity could be evoked by brain stem electrical stimulation. At E5, neither brain stem nor spinal cord stimulation evoked activity in the lumbosacral spinal cord, although motoneurons did express spontaneous activity. 3. Lesion and electrophysiological studies indicated that axons traveling in the ventral cord mediated the activation of lumbosacral networks by brain stem stimulation. 4. Partition of the preparation into three separately perfused baths, using a zero-Ca2+ middle bath that encompassed the cervical spinal cord, demonstrated that the brain stem activation of spinal networks could be mediated by long-axoned pathways connecting the brain stem and lumbosacral spinal cord. 5. Using retrograde tracing from the spinal cord combined with brain stem stimulation, we found that the brain stem regions from which spinal activity could be evoked lie in the embryonic reticular formation close to neurons that send long descending axons to the lumbosacral spinal cord. The cells giving rise to these descending pathways are found in the ventral pontine and medullary reticular formation, a region that is the source of reticulospinal neurons important for motor activity in adult vertebrates. 6. Electrical recordings from this region revealed that the

  14. Novel dose-dependent alterations in excitatory GABA during embryonic development associated with lead (Pb) neurotoxicity.

    PubMed

    Wirbisky, Sara E; Weber, Gregory J; Lee, Jang-Won; Cannon, Jason R; Freeman, Jennifer L

    2014-08-17

    Lead (Pb) is a heavy metal that is toxic to numerous physiological processes. Its use in industrial applications is widespread and results in an increased risk of human environmental exposure. The central nervous system (CNS) is most sensitive to Pb exposure during early development due to rapid cell proliferation and migration, axonal growth, and synaptogenesis. One of the key components of CNS development is the Gamma-aminobutyric acid (GABA)-ergic system. GABA is the primary inhibitory neurotransmitter in the adult brain. However, during development GABA acts as an excitatory neurotrophic factor which contributes to these cellular processes. Multiple studies report effects of Pb on GABA in the mature brain; however, little is known regarding the adverse effects of Pb exposure on the GABAergic system during embryonic development. To characterize the effects of Pb on the GABAergic system during development, zebrafish embryos were exposed to 10, 50, or 100 ppb Pb or a control treatment. Tissue up-take, gross morphological alterations, gene expression, and neurotransmitter levels were analyzed. Analysis revealed that alterations in gene expression throughout the GABAergic system and GABA levels were dose and developmental time point specific. These data provide a framework for further analysis of the effects of Pb on the GABAergic system during the excitatory phase and as GABA transitions to an inhibitory neurotransmitter during development.

  15. Recent developments in affective recommender systems

    NASA Astrophysics Data System (ADS)

    Katarya, Rahul; Verma, Om Prakash

    2016-11-01

    Recommender systems (RSs) are playing a significant role since 1990s as they provide relevant, personalized information to the users over the internet. Lots of work have been done in information filtering, utilization, and application related to RS. However, an important area recently draws our attention which is affective recommender system. Affective recommender system (ARS) is latest trending area of research, as publication in this domain are few and recently published. ARS is associated with human behaviour, human factors, mood, senses, emotions, facial expressions, body gesture and physiological with human-computer interaction (HCI). Due to this assortment and various interests, more explanation is required, as it is in premature phase and growing as compared to other fields. So we have done literature review (LR) in the affective recommender systems by doing classification, incorporate reputed articles published from the year 2003 to February 2016. We include articles which highlight, analyse, and perform a study on affective recommender systems. This article categorizes, synthesizes, and discusses the research and development in ARS. We have classified and managed ARS papers according to different perspectives: research gaps, nature, algorithm or method adopted, datasets, the platform on executed, types of information and evaluation techniques applied. The researchers and professionals will positively support this survey article for understanding the current position, research in affective recommender systems and will guide future trends, opportunity and research focus in ARS.

  16. Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China

    PubMed Central

    Xia, Ke; Hill, Lisa M.; Li, De-Zhu; Walters, Christina

    2014-01-01

    Background and Aims Quercus species are often considered ‘foundation’ components of several temperate and/or subtropical forest ecosystems. However, the populations of some species are declining and there is considerable urgency to develop ex situ conservation strategies. In this study, the storage physiology of seeds within Quercus was explored in order to determine factors that affect survival during cryopreservation and to provide a quantitative assessment of seed recalcitrance to support future studies of this complex trait. Methods Water relations and survival of excised axes in response to water loss and cryo-exposure were compared for four Quercus species from subtropical China (Q. franchetii, Q. schottkyana) and temperate USA (Q. gambelii, Q. rubra). Key Results Seed tissues initially had high water contents and water potentials. Desiccation tolerance of the embryonic axis was not correlated with the post-shedding rainfall patterns where the samples originated. Instead, higher desiccation tolerance was observed in samples growing in areas with colder winters. Survival following cryo-exposure correlated with desiccation tolerance. Among species, plumule tissues were more sensitive than radicles to excision, desiccation and cryo-exposure, and this led to a higher proportion of abnormally developing embryos during recovery following stress. Conclusions Quercus species adapted to arid and semi-humid climates still produce recalcitrant seeds. The ability to avoid freezing rather than drought may be a more important selection factor to increase desiccation tolerance. Cryopreservation of recalcitrant germplasm from temperate species is currently feasible, whilst additional protective treatments are needed for ex situ conservation of Quercus from tropical and subtropical areas. PMID:25326139

  17. Embryonic development of goldfish (Carassius auratus): A model for the study of evolutionary change in developmental mechanisms by artificial selection

    PubMed Central

    Tsai, Hsin-Yuan; Chang, Mariann; Liu, Shih-Chieh; Abe, Gembu; Ota, Kinya G

    2013-01-01

    Background: Highly divergent morphology among the different goldfish strains (Carassius auratus) may make it a suitable model for investigating how artificial selection has altered developmental mechanisms. Here we describe the embryological development of the common goldfish (the single fin Wakin), which retains the ancestral morphology of this species. Results: We divided goldfish embryonic development into seven periods consisting of 34 stages, using previously reported developmental indices of zebrafish and goldfish. Although several differences were identified in terms of their yolk size, epiboly process, pigmentation patterns, and development rate, our results indicate that the embryonic features of these two teleost species are highly similar in their overall morphology from the zygote to hatching stage. Conclusions: These results provide an opportunity for further study of the evolutionary relationship between domestication and development, through applying well-established zebrafish molecular biological resources to goldfish embryos. Developmental Dynamics 242:1262–1283, 2013. © 2013 Wiley Periodicals, Inc. Key findings This study provides the first reliable descriptions of normal embryonic stages of wild-type goldfish. The embryonic features of goldfish and zebrafish are almost directly comparable. Goldfish embryos provide a novel model for the investigation of the evolutionary relationship between domestication and development. PMID:23913853

  18. Mechanisms Involved in Glucocorticoid Induction of Pituitary GH Expression During Embryonic Development

    PubMed Central

    Ellestad, Laura E.; Puckett, Stefanie A.

    2015-01-01

    Glucocorticoid hormones are involved in functional differentiation of GH-producing somatotrophs. Glucocorticoid treatment prematurely induces GH expression in mammals and birds in a process requiring protein synthesis and Rat sarcoma (Ras) signaling. The objective of this study was to investigate mechanisms through which glucocorticoids initiate GH expression during embryogenesis, taking advantage of the unique properties of chicken embryos as a developmental model. We determined that stimulation of GH expression occurred through transcriptional activation of GH, rather than enhancement of mRNA stability, and this process requires histone deacetylase activity. Through pharmacological inhibition, we identified the ERK1/2 pathway as a likely downstream Ras effector necessary for glucocorticoid stimulation of GH. However, we also found that chronic activation of ERK1/2 activity with a constitutively active mutant or stimulatory ligand reduced initiation of GH expression by glucocorticoid treatment. Corticosterone treatment of cultured embryonic pituitary cells increased ERK1/2 activity in an apparent cyclical manner, with a rapid increase within 5 minutes, followed by a reduction to near-basal levels at 3 hours, and a subsequent increase again at 6 hours. Therefore, we conclude that ERK1/2 signaling must be strictly controlled for maximal glucocorticoid induction of GH to occur. These results are the first in any species to demonstrate that Ras- and ERK1/2-mediated transcriptional events requiring histone deacetylase activity are involved in glucocorticoid induction of pituitary GH during embryonic development. This report increases our understanding of the molecular mechanisms underlying glucocorticoid recruitment of somatotrophs during embryogenesis and should provide insight into glucocorticoid-induced developmental changes in other tissues and cell types. PMID:25560830

  19. Aspects of embryonic and larval development in bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix

    USGS Publications Warehouse

    George, Amy E.; Chapman, Duane C.

    2013-01-01

    As bighead carp Hypophthalmichthys nobilis and silver carp H. molitrix (the bigheaded carps) are poised to enter the Laurentian Great Lakes and potentially damage the region’s economically important fishery, information on developmental rates and behaviors of carps is critical to assessing their ability to establish sustainable populations within the Great Lakes basin. In laboratory experiments, the embryonic and larval developmental rates, size, and behaviors of bigheaded carp were tracked at two temperature treatments, one “cold” and one “warm”. Developmental rates were computed using previously described stages of development and the cumulative thermal unit method. Both species have similar thermal requirements, with a minimum developmental temperature for embryonic stages of 12.1° C for silver carp and 12.9° C for bighead carp, and 13.3° C for silver carp larval stages and 13.4° C for bighead carp larval stages. Egg size differed among species and temperature treatments, as egg size was larger in bighead carp, and “warm" temperature treatments. The larvae started robust upwards vertical swimming immediately after hatching, interspersed with intervals of sinking. Vertical swimming tubes were used to measure water column distribution, and ascent and descent rates of vertically swimming fish. Water column distribution and ascent and descent rates changed with ontogeny. Water column distribution also showed some diel periodicity. Developmental rates, size, and behaviors contribute to the drift distance needed to fulfill the early life history requirements of bigheaded carps and can be used in conjunction with transport information to assess invasibility of a river.

  20. Immunolocalization of myosin Va in the developing nervous system of embryonic chicks.

    PubMed

    Azevedo, Alexandre; Lunardi, Laurelúcia O; Larson, Roy E

    2004-08-01

    Myosins are molecular motors associated with the actin cytoskeleton that participate in the mechanisms of cellular motility. During the development of the nervous system, migration of nerve cells to specific sites, extension of growth cones, and axonal transport are dramatic manifestations of cellular motility. We demonstrate, via immunoblots, the expression of myosin Va during early stages of embryonic development in chicks, extending from the blastocyst period to the beginning of the fetal period. The expression of myosin Va in specific regions and cellular structures of the nervous system during these early stages was determined by immunocytochemistry using a polyclonal antibody. Whole mounts of chick embryos at 24-30-h stages showed intense immunoreactivity of the neural tube in formation along its full extent. Cross-sections at these stages of development showed strong labeling in neuroepithelial cells at the basal and apical regions of the neural tube wall. Embryos at more advanced periods of development (48 h and 72 h) showed distinctive immunolabeling of neuroepithelial cells, neuroblasts and their cytoplasmic extensions in the mantle layer of the stratified neural tube wall, and neuroblasts and their cytoplasmic extensions in the internal wall of the optic cup, as well as a striking labeling of cells in the apparent nuclei of cranial nerves and budding fibers. These immunolocalization studies indicate temporal and site-specific expression of myosin Va during chick embryo development, suggesting that myosin Va expression is related to recruitment for specific cellular tasks.

  1. Embryonic development of the skull of the Andean lizard Ptychoglossus bicolor (Squamata, Gymnophthalmidae)

    PubMed Central

    Hernández-Jaimes, Carlos; Jerez, Adriana; Ramírez-Pinilla, Martha Patricia

    2012-01-01

    The study of cranial design and development in Gymnophthalmidae is important to understand the ontogenetic processes behind the morphological diversity of the group and to examine the possible effects of microhabitat use and other ecological parameters, as well as phylogenetic constraints, on skull anatomy. Complete morphological descriptions of embryonic skull development within Gymnophthalmidae are non-existent. Likewise, very little is known about the complete chondrocranium of the family. Herein, the development of the skull of the semi-fossorial lizard Ptychoglossus bicolor is described along with an examination of the chondrocranium of other gymnophthalmid taxa and the teiid Cnemidophorus lemniscatus. Cranial chondrification begins with early condensations in the ethmoid, orbitotemporal and occipital regions of the chondrocranium as well as the viscerocranium. Ossification of the skull starts with elements of the dermatocranium (pterygoid, prefrontal, maxilla and jugal). The orbitosphenoid is the last chondral bone to appear. At birth, the skull is almost completely ossified and exhibits a large frontoparietal fontanelle. In general terms, the chondrocranium of the gymnophthalmids studied is characteristic of lacertiform terrestrial lizards, in spite of their life habits, and resembles the chondrocranium of C. lemniscatus in many aspects. However, the gymnophthalmids show great variation in the orbitosphenoid and a complex nasal capsule. The latter exhibits greater development of some nasal cartilages, which make it more complex than in C. lemniscatus. These characteristics might be related to microhabitat use and the well-developed olfactory and vomeronasal systems observed within this clade. PMID:22881276

  2. Second heart field and the development of the outflow tract in human embryonic heart.

    PubMed

    Yang, Yan-Ping; Li, Hai-Rong; Cao, Xi-Mei; Wang, Qin-Xue; Qiao, Cong-Jin; Ya, Jing

    2013-04-01

    The second heart field (SHF) is indicated to contribute to the embryonic heart development. However, less knowledge is available about SHF development of human embryo due to the difficulty of collecting embryos. In this study, serial sections of human embryos from Carnegie stage 10 (CS10) to CS16 were stained with antibodies against Islet-1 (Isl-1), Nkx2.5, GATA4, myosin heavy chain (MHC) and α-smooth muscle actin (α-SMA) to observe spatiotemporal distribution of SHF and its contribution to the development of the arterial pole of cardiac tube. Our findings suggest that during CS10 to CS12, SHF of the human embryo is composed of the bilateral pharyngeal mesenchyme, the central mesenchyme of the branchial arch and splanchnic mesoderm of the pericardial cavity dorsal wall. With development, SHF translocates and consists of ventral pharyngeal mesenchyme and dorsal wall of the pericardial cavity. Hence, the SHF of human embryo shows a dynamic spatiotemporal distribution pattern. The formation of the Isl-1 positive condense cell prongs provides an explanation for the saddle structure formation at the distal pole of the outflow tract. In human embryo, the Isl-1 positive cells of SHF may contribute to the formation of myocardial outflow tract (OFT) and the septum during different development stages.

  3. Perturbations of heart development and function in cardiomyocytes from human embryonic stem cells with trisomy 21.

    PubMed

    Bosman, Alexis; Letourneau, Audrey; Sartiani, Laura; Del Lungo, Martina; Ronzoni, Flavio; Kuziakiv, Rostyslav; Tohonen, Virpi; Zucchelli, Marco; Santoni, Federico; Guipponi, Michel; Dumevska, Biljana; Hovatta, Outi; Antonarakis, Stylianos E; Jaconi, Marisa E

    2015-05-01

    Congenital heart defects (CHD) occur in approximately 50% of patients with Down syndrome (DS); the mechanisms for this occurrence however remain unknown. In order to understand how these defects evolve in early development in DS, we focused on the earliest stages of cardiogenesis to ascertain perturbations in development leading to CHD. Using a trisomy 21 (T21) sibling human embryonic stem cell (hESC) model of DS, we show that T21-hESC display many significant differences in expression of genes and cell populations associated with mesodermal, and more notably, secondary heart field (SHF) development, in particular a reduced number of ISL1(+) progenitor cells. Furthermore, we provide evidence for two candidate genes located on chromosome 21, ETS2 and ERG, whose overexpression during cardiac commitment likely account for the disruption of SHF development, as revealed by downregulation or overexpression experiments. Additionally, we uncover an abnormal electrophysiological phenotype in functional T21 cardiomyocytes, a result further supported by mRNA expression data acquired using RNA-Seq. These data, in combination, revealed a cardiomyocyte-specific phenotype in T21 cardiomyocytes, likely due to the overexpression of genes such as RYR2, NCX, and L-type Ca(2+) channel. These results contribute to the understanding of the mechanisms involved in the development of CHD. Stem Cells 2015;33:1434-1446.

  4. Thyroid hormone deiodinases during embryonic development of the saltwater crocodile (Crocodylus porosus).

    PubMed

    Shepherdley, Caroline A; Richardson, Samantha J; Evans, Barbara K; Kühn, Eduard R; Darras, Veerle M

    2002-04-01

    All tissues of the embryonic saltwater crocodile (Crocodylus porosus) gradually increased in weight during development except for lung tissue, which had a peak weight of 1.09 g at day 67, thereafter decreasing in weight. The brain was a relatively large organ. Deiodinase activities in liver, kidney, lung, heart, gut, and brain from day 29 to day 77 of development of the saltwater crocodile were investigated. High-K(m) reverse triiodothyronine (rT(3)) outer ring deiodination (ORD) activity was present in all tissues except the brain. Activity ranged from 559 +/- 51.3 pmol rT(3) deiodinated/mg protein/min in the liver at day 77 to below 10 pmol rT(3) deiodinated/mg protein/min in gut, lung, and heart tissue. rT(3) ORD increased during development in the liver and kidney but decreased in the gut and lung. Activity in the heart was very low (less than 2 pmol rT(3) deiodinated/mg protein/min) and did not change during development. Low-K(m) thyroxine (T(4)) ORD in liver and kidney tissue had peaks of activity around day 49 of incubation (0.52 and 0.09 fmol T(4) deiodinated/mg protein/min, respectively). After day 49, T(4) ORD activity in these tissues decreased. T(4) ORD activity in gut, lung, and heart was very low (less than 0.04 fmol T(4) deiodinated/mg protein/min), with activity in lung increasing slightly during the rest of development. T(4) ORD activity in the brain increased toward day 77 (0.14 +/- 0.03 fmol T(4) deiodinated/mg protein/min), illustrating its importance in local triiodothyronine (T(3)) production during brain development. T(3) inner ring deiodination activity was present only in the embryonic liver and peaked at day 49 (10.1 fmol T(3) deiodinated/mg protein/min), after which activity decreased.

  5. Antiviral responses in mouse embryonic stem cells: differential development of cellular mechanisms in type I interferon production and response.

    PubMed

    Wang, Ruoxing; Wang, Jundi; Acharya, Dhiraj; Paul, Amber M; Bai, Fengwei; Huang, Faqing; Guo, Yan-Lin

    2014-09-05

    We have recently reported that mouse embryonic stem cells (mESCs) are deficient in expressing type I interferons (IFNs) in response to viral infection and synthetic viral RNA analogs (Wang, R., Wang, J., Paul, A. M., Acharya, D., Bai, F., Huang, F., and Guo, Y. L. (2013) J. Biol. Chem. 288, 15926-15936). Here, we report that mESCs are able to respond to type I IFNs, express IFN-stimulated genes, and mediate the antiviral effect of type I IFNs against La Crosse virus and chikungunya virus. The major signaling components in the IFN pathway are expressed in mESCs. Therefore, the basic molecular mechanisms that mediate the effects of type I IFNs are functional in mESCs; however, these mechanisms may not yet be fully developed as mESCs express lower levels of IFN-stimulated genes and display weaker antiviral activity in response to type I IFNs when compared with fibroblasts. Further analysis demonstrated that type I IFNs do not affect the stem cell state of mESCs. We conclude that mESCs are deficient in type I IFN expression, but they can respond to and mediate the cellular effects of type I IFNs. These findings represent unique and uncharacterized properties of mESCs and are important for understanding innate immunity development and ESC physiology.

  6. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    EPA Science Inventory

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  7. Effects of catechins and low temperature on embryonic development and hatching in Heterodera glycines and Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mimics of two natural influences, a chemical similar to one present in cyst nematodes and low temperature exposure of nematode eggs, were evaluated for their effects on quantitative and qualitative features of embryonic development and hatching. The polyphenol epigallocatechin gallate (EGCG), an ana...

  8. Development of a 3D co-culture model using human stem cells for studying embryonic palatal fusion.

    EPA Science Inventory

    Morphogenetic tissue fusion is a critical and complex event in embryonic development and failure of this event leads to birth defects, such as cleft palate. Palatal fusion requires adhesion and subsequent dissolution of the medial epithelial layer of the mesenchymal palatal shelv...

  9. Development and embryonic pattern of body wall musculature in the crassiclitellate Eisenia andrei (Annelida, Clitellata).

    PubMed

    Hunnekuhl, Vera S; Bergter, Annette; Purschke, Günter; Paululat, Achim

    2009-09-01

    During early development of Eisenia andrei (Crassiclitellata), a loose arrangement of primary circular and longitudinal muscles encloses the whole embryo. Circular muscles differentiate in an anterior-posterior progression creating a segmental pattern. Primary circular muscles emerge at the segmental borders while later in development the central part of each segment is filled with circular strands. Longitudinal muscles develop in an anterio-posterior manner as well, but by continuous lengthening. Muscle growth is not restricted by segmental boundaries. The development begins with one pair of prominent longitudinal muscles differentiating ventrally along the right and the left germ band. These first muscles provide a guiding structure for the parallel organization of the afterwards differentiating longitudinal musculature. Additional primary longitudinal muscles emerge and form, together with the initial circular muscles, the primary muscle grid of the embryo. During the following development, secondary longitudinal muscle strands develop and integrate themselves into the primary grid. Meanwhile the primary circular muscles split into thin strands in a ventral to dorsal progression. Thus, a fine structured mesh of circular and longitudinal muscles is generated. Compared to other "Oligochaeta", embryonic muscle patterns in E. andrei are adapted to the development of a lecithotrophic embryo. Nevertheless, two general characteristics of annelid muscle development become evident. The first is the segmental development of the circular muscles from a set of initial muscles situated at the segment borders. Second, there is a continuous development of primary longitudinal muscles starting at the anterior pole. At least one pair of main primary longitudinal strands is characteristic in Annelida. The space between all primary strands is filled with secondary longitudinal strands during further development.

  10. Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development

    PubMed Central

    Minocha, Shilpi; Valloton, Delphine; Arsenijevic, Yvan; Cardinaux, Jean-René; Guidi, Raffaella; Hornung, Jean-Pierre; Lebrand, Cécile

    2017-01-01

    The homeodomain transcription factor Nkx2.1 (NK2 homeobox 1) controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here we show that Nkx2.1 also regulates astrogliogenesis of the telencephalon from embryonic day (E) 14.5 to E16.5. Moreover we identify the different mechanisms by which Nkx2.1 controls the telencephalic astrogliogenesis. In Nkx2.1 knockout (Nkx2.1−/−) mice a drastic loss of astrocytes is observed that is not related to cell death. Further, in vivo analysis using BrdU incorporation reveals that Nkx2.1 affects the proliferation of the ventral neural stem cells that generate early astrocytes. Also, in vitro neurosphere assays showed reduced generation of astroglia upon loss of Nkx2.1, which could be due to decreased precursor proliferation and possibly defects in glial specification/differentiation. Chromatin immunoprecipitation analysis and in vitro co-transfection studies with an Nkx2.1-expressing plasmid indicate that Nkx2.1 binds to the promoter of glial fibrillary acidic protein (GFAP), primarily expressed in astrocytes, to regulate its expression. Hence, Nkx2.1 controls astroglial production spatiotemporally in embryos by regulating proliferation of the contributing Nkx2.1-positive precursors. PMID:28266561

  11. Embryonic development of the grass pufferfish (Takifugu niphobles): From egg to larvae.

    PubMed

    Gallego, V; Yoshida, M; Kurokawa, D; Asturiano, J F; Fraser, G J

    2017-03-01

    Tetraodontidae (pufferfish) family members carry the smallest genomes among vertebrates, and these pocket-sized genomes have directly contributed to our understanding of the structure and evolution of higher animals. The grass pufferfish (Takifugu niphobles) could be considered a potential new model organism for comparative genomics and development due to the potential access to embryos, and availability of sequence data for two similar genomes: that of spotted green pufferfish (Tetraodon nigroviridis) and Fugu (Takifugu rubripes). In this study, we provide the first description of the normal embryonic development of T. niphobles, by drawing comparisons with the closely related species cited above. Embryos were obtained by in vitro fertilization of eggs, and subsequent development was monitored at a constant temperature consistent with natural conditions. T. niphobles development was divided into seven periods of embryogenesis: the zygote, cleavage, blastula, gastrula, segmentation, pharyngula, and hatching periods; and stages subdividing these periods are defined based on morphological characteristics. The developmental stage series described in this study aims to provide the utilization of T. niphobles as an experimental model organism for comparative developmental studies.

  12. How, when, and where in pattern formation: Spying on embryonic development one molecule at a time

    NASA Astrophysics Data System (ADS)

    Garcia, Hernan

    An abiding mystery in the study of living matter is how a single cell develops into a multicellular organism. As this cell divides, its progeny read the program encoded on their DNA and adopt different fates becoming familiar cell types such as those found in muscle, liver and our brains. We now know that the decisions that cells make during development are not so much based on which genes to express, but rather on when, where and how to express them. Despite advances in determining the identities of the molecules that mediate these decisions we are still incapable of predicting how simple physical parameters such as the number, position and affinity of binding sites for these molecules on the DNA determine developmental fates. Using the fruit fly, one of the classic model systems for embryonic development, I will show how a combination of new technologies, quantitative experiments, and statistical mechanics is providing new insights about cellular decision making during development. In particular, I will describe how the specification of macroscopic body parts in an organism is linked to the non-equilibrium molecular-scale processes inside single cells. The goal of this interdisciplinary research is to produce a predictive understanding of developmental programs which will enable the rational control of biological size, shape and function.

  13. Development of the embryonic and larval peripheral nervous system of Drosophila.

    PubMed

    Singhania, Aditi; Grueber, Wesley B

    2014-01-01

    The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. Many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development.

  14. Development of the embryonic and larval peripheral nervous system of Drosophila

    PubMed Central

    Singhania, Aditi; Grueber, Wesley B.

    2014-01-01

    The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. The many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development. PMID:24896657

  15. Bone morphogenetic protein 1 is expressed in porcine ovarian follicles and promotes oocyte maturation and early embryonic development

    PubMed Central

    LEI, Xiaocan; CUI, Kuiqing; CAI, Xiaoyan; REN, Yanping; LIU, Qingyou; SHI, Deshun

    2016-01-01

    In the present study, we tried to determine whether bone morphogenetic protein 1 (BMP1) plays a role in ovarian follicular development and early embryo development. We systematically investigated the expression and influence of BMP1 during porcine follicle and early embryonic development. Immunohistochemistry demonstrated that the BMP1 protein is expressed in granular cells and oocytes during follicular development, from primary to pre-ovulatory follicles, including atretic follicles and the corpus luteum. The mRNA expression of BMP1 significantly increased as the porcine follicles grew. Immunofluorescence analysis indicated that BMP1 was expressed in cumulus-oocyte complexes (COCs), oocytes and porcine embryos during early in vitro culture. qPCR and western blot analysis showed that the expression of BMP1 was significantly up-regulated in mature porcine oocytes and COCs compared to immature oocytes and COCs. BMP1 is expressed in early porcine embryos, and its expression reaches a peak at the 8-cell stage. To determine the effect of BMP1 on the maturation of oocytes and the development of early embryos, various concentrations of BMP1 recombinant protein or antibody were added to the in vitro culture media, respectively. BMP1 significantly affected the porcine oocyte maturation rate, the cleavage rate and the blastocyst development rate of embryos cultured in vitro in a positive way, as well as the blastocyst cell number. In conclusion, BMP1 is expressed throughout porcine ovarian follicle development and early embryogenesis, and it promotes oocyte maturation and the developmental ability of embryos during early in vitro culture. PMID:27890905

  16. Spatial distributions of AQP5 and AQP0 in embryonic and postnatal mouse lens development

    PubMed Central

    Petrova, Rosica S.; Schey, Kevin L.; Donaldson, Paul J.; Grey, Angus C.

    2015-01-01

    The expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established. Immunohistochemistry was used to map the cellular and sub-cellular distribution of AQP5 and AQP0 throughout the lens in cryosections from adult (6 weeks to 8 months) and postnatal (0-2 weeks) mouse lenses and in sections from paraffin embedded mouse embryos (E10-E19). All sections were imaged by fluorescence confocal microscopy. Using antibodies directed against the C-terminus of each AQP, AQP5 was abundantly expressed early in development, being found in the cytoplasm of cells of the lens vesicle and surrounding tissues (E10), while AQP0 was detected later (E11), and only in the membranes of elongating primary fibre cells. During the course of subsequent embryonic and postnatal development the pattern of cytoplasmic AQP5 and membranous AQP0 labelling was maintained until postnatal day 6 (P6). From P6 AQP5 labelling became progressively more membranous initially in the lens nucleus and then later in all regions of the lens, while AQP0 labelling was abruptly lost in the lens nucleus due to C-terminal truncation. Our results show that the spatial distribution patterns of AQP0 and AQP5 observed in the adult lens are established during a narrow window of post natal development (P6-P15) that precedes eye opening and coincides

  17. Serial block face-scanning electron microscopy: a tool for studying embryonic development at the cell-matrix interface.

    PubMed

    Starborg, Tobias; Kadler, Karl E

    2015-03-01

    Studies of gene regulation, signaling pathways, and stem cell biology are contributing greatly to our understanding of early embryonic vertebrate development. However, much less is known about the events during the latter half of embryonic development, when tissues comprising mostly extracellular matrix (ECM) are formed. The matrix extends far beyond the boundaries of individual cells and is refractory to study by conventional biochemical and molecular techniques; thus major gaps exist in our knowledge of the formation and three-dimensional (3D) organization of the dense tissues that form the bulk of adult vertebrates. Serial block face-scanning electron microscopy (SBF-SEM) has the ability to image volumes of tissue containing numerous cells at a resolution sufficient to study the organization of the ECM. Furthermore, whereas light microscopy was once relatively straightforward and electron microscopy was performed in specialist laboratories, the tables are turned; SBF-SEM is relatively straightforward and is becoming routine in high-end resolution studies of embryonic structures in vivo. In this review, we discuss the emergence of SBF-SEM as a tool for studying embryonic vertebrate development.

  18. Impact of supplementary royal jelly on in vitro maturation of sheep oocytes: genes involved in apoptosis and embryonic development.

    PubMed

    Valiollahpoor Amiri, Mohammad; Deldar, Hamid; Ansari Pirsaraei, Zarbakht

    2016-01-01

    Optimizing culture conditions lead to the improvement of oocyte developmental competence and additives with anti-oxidative activity in culture media improved embryonic development. Royal jelly (RJ) is a product from the cephalic glands of nurse bees that has considerable health effects. The aim of this study was to investigate the effect of different concentrations of RJ on the maturation, cleavage, and blastocyst rates and gene expression in the oocyte and cumulus cells during in vitro maturation (IVM) of sheep oocyte. IVM of oocyte was performed in the presence of control (RJ0), 2.5 (RJ2.5), 5 (RJ5), 10 (RJ10), 20 (RJ20), and 40 (RJ40) mg/mL of RJ. Following the maturation period, parthenogenetic activation was carried out in two treatment groups (RJ0 and RJ10) and embryonic development was examined three and eight days thereafter. Moreover, the relative expression of BCL2 and BAX in oocyte as well as BCL2, BAX, HAS2, PTGS2, and STAR in cumulus cells were assessed. The results indicated that the addition of 10 mg/mL of RJ (90 ± 4.51%) to the maturation medium linearly increased the oocyte maturation rate compared to the control group (57 ± 2.42%), then it remained constant to the RJ40 (93 ± 3.10%) group. The higher RJ concentrations were associated with increased (p < 0.01) cleavage (53.3 ± 1.55% to 82.3 ± 2.82%) and blastocyst rate (15.5 ± 1.16% to 33.8 ± 3.09%) from the RJ0 to the RJ10 group. The relative mRNA expression of BCL2 and BAX in the oocyte was higher at RJ10. In cumulus cells, the expression of BCL2 was not affected, but that of BAX decreased, and expression of HAS2, PTGS2, and STAR were increased following the addition of RJ to the maturation media. In conclusion, the addition of 10 mg/mL of RJ to maturation medium improved blastocyst formation and decreased the apoptotic incidence in sheep cumulus cells and the oocyte during the in vitro development.

  19. Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function.

    PubMed

    Bueno, David; Garcia-Fernàndez, Jordi

    2016-03-15

    Within the consolidated field of evolutionary development, there is emerging research on evolutionary aspects of central nervous system development and its implications for adult brain structure and function, including behaviour. The central nervous system is one of the most intriguing systems in complex metazoans, as it controls all body and mind functions. Its failure is responsible for a number of severe and largely incurable diseases, including neurological and neurodegenerative ones. Moreover, the evolution of the nervous system is thought to be a critical step in the adaptive radiation of vertebrates. Brain formation is initiated early during development. Most embryological, genetic and evolutionary studies have focused on brain neurogenesis and regionalisation, including the formation and function of organising centres, and the comparison of homolog gene expression and function among model organisms from different taxa. The architecture of the vertebrate brain primordium also reveals the existence of connected internal cavities, the cephalic vesicles, which in fetuses and adults become the ventricular system of the brain. During embryonic and fetal development, brain cavities and ventricles are filled with a complex, protein-rich fluid called cerebrospinal fluid (CSF). However, CSF has not been widely analysed from either an embryological or evolutionary perspective. Recently, it has been demonstrated in higher vertebrates that embryonic cerebrospinal fluid has key functions in delivering diffusible signals and nutrients to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. Moreover, it has been shown that the composition and homeostasis of CSF are tightly controlled in a time-dependent manner from the closure of the anterior neuropore, just before the initiation of primary neurogenesis, up to the formation of functional choroid plexuses. In

  20. Dynamic expression and heterogeneous intracellular location of En-1 during late mouse embryonic development.

    PubMed

    Zhong, Shan-chuan; Chen, Xing-shu; Cai, Qi-yan; Luo, Xue; Chen, Xing-hua; Liu, Jing; Yao, Zhong-xiang

    2010-01-01

    Engrailed-1 (En-1) is a transcription factor involved in the development of the midbrain/hindbrain during mouse early embryogenesis. Although En-1 is expressed from embryogenesis to adulthood, there has been no detailed description of its expression during late mouse embryonic development. Here we report the expression pattern of En-1 in the mouse embryo from E10.5 to the neonatal state. With immunohistochemistry we found that En-1 was expressed in the central nervous system (CNS) from E10.5 to the neonatal state, mostly restricted to the midbrain/hindbrain junction. Outside the CNS, En-1 is dynamically expressed in several neural crest-associated structures including the cranial mesenchyme, the mandibular arches, the vagus nerve, the dorsal root ganglia, the sympathetic ganglia, the somites, the heart and the cloaca. Additionally, we found that in the CNS, most of the En-1 was located in the nuclei, while outside the CNS, En-1 was mainly expressed in the cytoplasm. These findings provided additional evidence that En-1 may be involved in the development of neural crest cells.

  1. Embryonic development of the nervous system in the planarian Schmidtea polychroa.

    PubMed

    Monjo, Francisco; Romero, Rafael

    2015-01-15

    The development of a nervous system is a key innovation in the evolution of metazoans, which is illustrated by the presence of a common developmental toolkit for the formation of this organ system. Neurogenesis in the Spiralia, in particular the Platyhelminthes, is, however, poorly understood when compared with other animal groups. Here, we characterize embryonic neurogenesis in the freshwater flatworm Schmidtea polychroa and analyze the expression of soxB and a set of proneural bHLH genes, which are gene families with a well-established role in metazoan early neural development. We show that the nervous system is fully de novo assembled after the early embryo ingests the maternal nutrients. At early stages of neurogenesis, soxB1 genes are expressed in putative neural progenitor cells, whereas soxB2 and neural bHLH genes (achaete-scute, neuroD and beta3) are associated with late neurogenesis and the specification of neural subpopulations of the central and peripheral nervous system. Our findings are consistent with the role of proneural genes in other bilaterians, suggesting that the ancestral neural-specific gene regulatory network is conserved in triclads, despite exhibiting a divergent mode of development.

  2. Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development.

    PubMed

    Ackermann, Julien; Ashton, Garry; Lyons, Steve; James, Dominic; Hornung, Jean-Pierre; Jones, Nic; Breitwieser, Wolfgang

    2011-04-21

    The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.

  3. Caffeine interferes embryonic development through over-stimulating serotonergic system in chicken embryo.

    PubMed

    Li, Xiao-Di; He, Rong-Rong; Qin, Yang; Tsoi, Bun; Li, Yi-Fang; Ma, Zheng-Lai; Yang, Xuesong; Kurihara, Hiroshi

    2012-06-01

    The potential harmful effects of caffeine in pregnant women aroused public interests due to its possibility to jeopardize fetal development. Monoamine neurotransmitters are thought to regulate neural development processes through maternal-fetal interactions, which may have long term impact on mental and behavioral effects. The current study focuses on investigating the effects of caffeine on the monoamine neurotransmitter system using developmental chicken embryos. The ED(50) value of caffeine toxicity was 27.3 μmol/egg in chicken embryo. Administration of caffeine, with lower dosage than ED(50) (2.5, 5.0 and 10.0 μmol/egg), caused failure of neural tube closure. In addition, contents of 5-HT and its metabolite 5-HIAA were increased under dosage of 10.0 μmol/egg caffeine administration. Gene expression of TPH2 was also increased by caffeine treatment. Caffeine could result in defect of neural tube closure and induce disorder of serotonergic system development, which may increase teratogenic rate of embryos. Meanwhile, it is probably an underlying factor for inducing psychological and behavioral disorders in adult. Moreover, caffeine was found to be accumulated in the embryonic brain and not being metabolized, which may incur a magnification of adverse effects. This study may provide valuable data for further investigations on toxicology of caffeine during different stages of pregnancy.

  4. Diverse functions of kindlin/fermitin proteins during embryonic development in Xenopus laevis.

    PubMed

    Rozario, Tania; Mead, Paul E; DeSimone, Douglas W

    2014-08-01

    The kindlin/fermitin family includes three proteins involved in regulating integrin ligand-binding activity and adhesion. Loss-of-function mutations in kindlins1 and 3 have been implicated in Kindler Syndrome and Leukocyte Adhesion Deficiency III (LAD-III) respectively, whereas kindlin2 null mice are embryonic lethal. Post translational regulation of cell-cell and cell-ECM adhesion has long been presumed to be important for morphogenesis, however, few specific examples of activation-dependent changes in adhesion molecule function in normal development have been reported. In this study, antisense morpholinos were used to reduce expression of individual kindlins in Xenopus laevis embryos in order to investigate their roles in early development. Kindlin1 knockdown resulted in developmental delays, gross malformations of the gut and eventual lethality by tadpole stages. Kindlin2 morphant embryos displayed late stage defects in vascular maintenance and angiogenic branching consistent with kindlin2 loss of function in the mouse. Antisense morpholinos were also used to deplete maternal kindlin2 protein in oocytes and eggs. Embryos lacking maternal kindlin2 arrested at early cleavage stages due to failures in cytokinesis. Kindlin3 morphant phenotypes included defects in epidermal ciliary beating and partial paralysis at tailbud stages but these embryos recovered eventually as morpholino levels decayed. These results indicate a remarkably diverse range of kindlin functions in vertebrate development.

  5. Fibroblast growth factor 13 is essential for neural differentiation in Xenopus early embryonic development.

    PubMed

    Nishimoto, Satoko; Nishida, Eisuke

    2007-08-17

    In Xenopus embryonic development, the MEK5-ERK5 pathway, one of the MAPK pathways, lies downstream of SoxD and upstream of Xngnr1 in a signaling pathway regulating neural differentiation. It remains unclear, however, how the MEK5-ERK5 pathway is regulated in Xenopus neural development. As SoxD is a transcription factor, we hypothesized that some growth factor should be induced by SoxD and activate the MEK5-ERK5 pathway. As the expression level of fibroblast growth factor 13 (FGF13) is increased by SoxD, we analyzed the function of FGF13 in neural development. Knockdown of FGF13 with antisense morpholino-oligonucleotides (MOs) results in the reduced head structure and inhibition of neural differentiation. FGF13 MOs inhibit the SoxD-induced expression of Xngnr1 and the Xngnr1-induced expression of NeuroD, suggesting that FGF13 is necessary both upstream and downstream of Xngnr1 in neural differentiation. In addition, FGF13 MOs inhibit the activation of the MEK5-ERK5 pathway by dominant-negative bone morphogenetic protein receptor, a mimicker of neural inducers, indicating that FGF13 is involved in the activation of the MEK5-ERK5 pathway. Together, these results identify a role of FGF13 in Xenopus neural differentiation.

  6. Dixdc1 is a critical regulator of DISC1 and embryonic cortical development

    PubMed Central

    Singh, Karun K.; Ge, Xuecai; Mao, Yingwei; Drane, Laurel; Meletis, Konstantinos; Samuels, Benjamin A.; Tsai, Li-Huei

    2010-01-01

    Summary The psychiatric illness risk gene Disrupted in Schizophrenia-1 (DISC1) plays an important role in brain development, however, it is unclear how DISC1 is regulated during cortical development. Here, we report that DISC1 is regulated during embryonic neural progenitor proliferation and neuronal migration through an interaction with DIX domain containing-1 (Dixdc1), the third mammalian gene discovered to contain a Disheveled-Axin (DIX) domain. We determined that Dixdc1 functionally interacts with DISC1 to regulate neural progenitor proliferation by co-modulating Wnt-GSK3β/β-catenin signaling. However, DISC1 and Dixdc1 do not regulate migration via this pathway. During neuronal migration, we discovered that phosphorylation of Dixdc1 by cyclin-dependent kinase 5 (Cdk5) facilitates its interaction with the DISC1-binding partner Ndel1. Furthermore, Dixdc1 phosphorylation and its interaction with DISC1/Ndel1 in vivo is required for neuronal migration. Together, these data reveal that Dixdc1 integrates DISC1 into Wnt-GSK3β/β-catenin-dependent and -independent signaling pathways during cortical development, and further delineate how DISC1 contributes to neuropsychiatric disorders. PMID:20624590

  7. An embryonic staging table for in ovo development of Eublepharis macularius, the leopard gecko.

    PubMed

    Wise, Patrick A D; Vickaryous, Matthew K; Russell, Anthony P

    2009-08-01

    Squamates constitute a major vertebrate radiation, representing almost one-third of all known amniotes. Although speciose and morphologically diverse, they remain poorly represented in developmental studies. Here, we present an embryonic staging table of in ovo development for the basal gekkotan Eublepharis macularius (the leopard gecko) and advocate this species as a laboratory-appropriate developmental model. E. macularius, is a hardy and tractable species of relatively large body size (with concomitantly relatively large eggs and embryos), that is widely available and easy to maintain and propagate. Additionally, E. macularius displays a body plan appropriate to the study of the plesiomorphic quadrupedal condition of early pentadactylous terrestrial amniotes. Although not unexpected, it is worth noting that the morphological events characterizing limb development in E. macularius are comparable with those described for the avian Gallus gallus. Therefore, E. macularius holds great promise as a model for developmental studies focusing on pentadactyly and the formation of digits. Furthermore, it is also attractive as a developmental model because it demonstrates temperature-dependent sex determination. The staging table presented herein is based on an all-female series and represents the entire 52 day in ovo period. Overall, embryogenesis of E. macularius is similar to that of other squamates in terms of developmental stage attained at the time of oviposition, patterns of limb and pharyngeal arch development, and features of the appearance of scalation and pigmentation, indicative of a conserved developmental program.

  8. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review)

    PubMed Central

    AGROGIANNIS, GEORGIOS D.; SIFAKIS, STAVROS; PATSOURIS, EFSTRATIOS S.; KONSTANTINIDOU, ANASTASIA E.

    2014-01-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre-implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development. PMID:24859417

  9. Crim1 has cell-autonomous and paracrine roles during embryonic heart development

    PubMed Central

    Iyer, Swati; Chou, Fang Yu; Wang, Richard; Chiu, Han Sheng; Raju, Vinay K. Sundar; Little, Melissa H.; Thomas, Walter G.; Piper, Michael; Pennisi, David J.

    2016-01-01

    The epicardium has a critical role during embryonic development, contributing epicardium-derived lineages to the heart, as well as providing regulatory and trophic signals necessary for myocardial development. Crim1 is a unique trans-membrane protein expressed by epicardial and epicardially-derived cells but its role in cardiogenesis is unknown. Using knockout mouse models, we observe that loss of Crim1 leads to congenital heart defects including epicardial defects and hypoplastic ventricular compact myocardium. Epicardium-restricted deletion of Crim1 results in increased epithelial-to-mesenchymal transition and invasion of the myocardium in vivo, and an increased migration of primary epicardial cells. Furthermore, Crim1 appears to be necessary for the proliferation of epicardium-derived cells (EPDCs) and for their subsequent differentiation into cardiac fibroblasts. It is also required for normal levels of cardiomyocyte proliferation and apoptosis, consistent with a role in regulating epicardium-derived trophic factors that act on the myocardium. Mechanistically, Crim1 may also modulate key developmentally expressed growth factors such as TGFβs, as changes in the downstream effectors phospho-SMAD2 and phospho-ERK1/2 are observed in the absence of Crim1. Collectively, our data demonstrates that Crim1 is essential for cell-autonomous and paracrine aspects of heart development. PMID:26821812

  10. Embryonic and larval development of Eugerres mexicanus (Perciformes: Gerreidae) in Tenosique, Tabasco, Mexico.

    PubMed

    Hernández, Raúl E; Perera, Martha A; Castillo, Alfonso; Luna, Emiliano; de la Cruz, José A; Gómez, Luis M; Valdez Zenil, José

    2012-03-01

    Most studies on Eugerres mexicanus mainly consider biogeographic and systematic aspects and rarely address reproductive characteristics, which are useful for fishery population management plans. This study aimed at evaluating the ontogeny of E. mexicanus, based on 30 embryos and 30 larvae sampled by induced spawning of breeders, taken in February 2009 from the Usumacinta River in Tenosique, Tabasco, Mexico. All descriptions of the embryonic development were based on morphometric and meristic data and followed standard methods. Eggs, recovered at the gastrula stage, had an average diameter of 1.17mm (SD=0.08). The bud stage appeared during the first three hours of development, in which the posterior side was adhered to the vitellus; Kupffer's vesicle was visible. Yolk-sac larvae hatched 18 hours after fertilization, exhibiting a light brown color and an average total length of 2.94mm (SD=0.70); the preflexion stage was reached eight days after hatching, with a total average length of 4.67mm (SD=0.50) and a total notochord length of 4.45mm (SD=0.50). The flexion stage was reached on the 16th day, with an average total length of 6.66mm (SD=1.53), while postflexion was reached on the 24th day, with 10.33mm (SD=1.45). The pre-juvenile stage was reached on the 33rd day, with a total length of 14.30mm (SD=0.93), showing IX spines and 10 rays and III spines and eight rays in the dorsal and anal fins, respectively. The juvenile stage was reached by the 45th day, with an average length of 28.16mm (SD=1.93) and average weight of 4.75g (SD=1.49). Prejuveniles showed an initial pigmentation with dark colored dots in the superior and inferior jaw and dispersed on the head, while juveniles presented the same pigmentation pattern, decreasing towards the margin of the caudal peduncle. In conclusion, the embryonic developmental stages of E. mexicanus were typical for the Gerreidae group. However, their morphometric characters were slightly different since the diameter and size of

  11. Cytokine activation during embryonic development and in hen ovary and vagina during reproductive age and Salmonella infection.

    PubMed

    Anastasiadou, M; Michailidis, G

    2016-12-01

    Salmonellosis is one of the most important zoonotic diseases and is usually associated with consumption of Salmonella Enteritidis (SE) contaminated poultry meat or eggs. Contamination with SE is usually the result of infection of the digestive tract, or reproductive organs, especially the ovary and vagina. Thus, knowledge of endogenous innate immune mechanisms operating in the ovary and vagina of hen is an emerging aspect of reproductive physiology. Cytokines are key factors for triggering the immune response and inflammation in chicken to Salmonella infection. The aim of this study was to investigate the expression profile of 11 proinflammatory cytokines in the chicken embryos during embryonic development, as well as in the hen ovary and vagina in vivo, to investigate whether sexual maturation affects their ovarian and vaginal mRNA abundance and to determine whether cytokine expression was constitutive or induced in the ovary and vagina as a response to SE infection. RT-PCR analysis revealed that several cytokines were expressed in the chicken embryos, and in the ovary and vagina of healthy birds. Expression of various cytokines during sexual maturation appeared to be developmentally regulated. In addition, a significant up-regulation of several cytokines in the ovary and vagina of sexually mature SE infected birds compared to healthy birds of the same age was observed. These results suggest a cytokine-mediated immune response mechanism against Salmonella infection in the hen reproductive organs.

  12. Embryonic exposure of medaka (Oryzias latipes) to propylparaben: effects on early development and post-hatching growth.

    PubMed

    González-Doncel, Miguel; García-Mauriño, José Enrique; San Segundo, Laura; Beltrán, Eulalia M; Sastre, Salvador; Fernández Torija, Carlos

    2014-01-01

    Here we proposed a battery of non-invasive biomarkers and a histological survey to examine physiological/anatomical features in embryos, eleutheroembryos (13 days post-fertilization, dpf), and larvae (28-42 dpf) of medaka to investigate the effects of embryonic exposure to propylparaben (PrP). Concentrations <1000 μg PrP/L didn't exert early or late toxic effects. However, survivorship was affected at 4000 μg/L in eleutheroembryos and at ≥1000 μg/L in larvae. Histological alterations were found in 37.5% of eleutheroembryos exposed to 4000 μg PrP/L. Morphometric analysis of the gallbladder revealed significant dilation at ≥400 μg/L throughout embryo development. Ethoxyresorufin-O-deethylase (EROD), as indicator of cytochrome P4501A activity, didn't reveal induction/inhibition although its combination with a P4501A agonist (i.e. β-naphthoflavone) resulted in a synergic EROD response. Results suggest a low toxicity of PrP for fish and support the use of fish embryos and eleutheroembryos as alternatives of in vivo biomarkers indicative of exposure/toxicity.

  13. Post-embryonic photoreceptor development and dark/light adaptation in the spittle bug Philaenus spumarius (L.) (Homoptera, Cercopidae).

    PubMed

    Keskinen, Essi; Meyer-Rochow, V Benno

    2004-10-01

    The aims of this paper have been to describe (1) the general structure of the compound eye of the spittle bug Philaenus spumarius, (2) the eye's post-embryonic development, (3) photomechanical changes upon dark/light adaptation in the eye, and (4) how leaving the semi-aquatic foam bubble and turning into an adult affects the organization of the eye. Spittle bugs, irrespective of size or sex, possess apposition type compound eyes. The eye's major components (i.e. facet, cornea, cone and rhabdom) grow rather isometrically from the smallest nymph to the adult. Photomechanical changes can occur during both nymphal and adult phases and manifest themselves through pigment granules and mitochondria migrating to and away from the rhabdom, and rhabdom diameters varying with time of day and ambient light level. When a nymph transforms into an adult, its compound eyes' dorsoventral axes widen, facet diameters increase, facet shapes turn from circular to pentagonal and hexagonal, the cornea thickens and the rhabdoms become thinner. The agile adults, free from the foam that surrounds the nymphs, can be expected to need their vision more than the nymphs, and the changes in eye structure do, indeed, indicate that the adults have superior visual acuity. A thicker cornea in the adults reduces water loss and protects the compound eye from mechanical and light-induced damage: protection given to the nymphs by their foam bubbles.

  14. Acetylsalicylic acid interferes with embryonic kidney growth and development by a prostaglandin-independent mechanism

    PubMed Central

    Welham, Simon J M; Sparrow, Alexander J; Gardner, David S; Elmes, Matthew J

    2017-01-01

    AIM To evaluate the effects of the non-selective, non-steroidal anti-inflammatory drug (NSAID) acetylsalicylic acid (ASA), on ex vivo embryonic kidney growth and development. METHODS Pairs of fetal mouse kidneys at embryonic day 12.5 were cultured ex vivo in increasing concentrations of ASA (0.04-0.4 mg/mL) for up to 7 d. One organ from each pair was grown in control media and was used as the internal control for the experimental contralateral organ. In some experiments, organs were treated with ASA for 48 h and then transferred either to control media alone or control media containing 10 μmol/L prostaglandin E2 (PGE2) for a further 5 d. Fetal kidneys were additionally obtained from prostaglandin synthase 2 homozygous null or heterozygous (PTGS2-/- and PTGS2-/+) embryos and grown in culture. Kidney cross-sectional area was used to determine treatment effects on kidney growth. Whole-mount labelling to fluorescently detect laminin enabled crude determination of epithelial branching using confocal microscopy. RESULTS Increasing ASA concentration (0.1, 0.2 and 0.4 mg/mL) significantly inhibited metanephric growth (P < 0.05). After 7 d of culture, exposure to 0.2 mg/mL and 0.4 mg/mL reduced organ size to 53% and 23% of control organ size respectively (P < 0.01). Addition of 10 μmol/L PGE2 to culture media after exposure to 0.2 mg/mL ASA for 48 h resulted in a return of growth area to control levels. Application of control media alone after cessation of ASA exposure showed no benefit on kidney growth. Despite the apparent recovery of growth area with 10 μmol/L PGE2, no obvious renal tubular structures were formed. The number of epithelial tips generated after 48 h exposure to ASA was reduced by 40% (0.2 mg/mL; P < 0.05) and 47% (0.4 mg/mL; P < 0.01). Finally, growth of PTGS2-/- and PTGS2+/- kidneys in organ culture showed no differences, indicating that PTGS2 derived PGE2 may at best have a minor role. CONCLUSION ASA reduces early renal growth and development but the

  15. Formation of the hindgut cuticular lining during embryonic development of Porcellio scaber (Crustacea, Isopoda)

    PubMed Central

    Mrak, Polona; Bogataj, Urban; Štrus, Jasna; Žnidaršič, Nada

    2015-01-01

    Abstract The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellio scaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stage – stage 18 – an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial manca, possibly

  16. Convergent evolution of embryonic growth and development in the eastern fence lizard (Sceloporus undulatus).

    PubMed

    Oufieroi, Christopher E; Angilletta, Michael J

    2006-05-01

    Theory predicts that cold environments will select for strategies that enhance the growth of ectotherms, such as early emergence from nests and more efficient use of resources. We used a common garden experiment to detect parallel clines in rates of embryonic growth and development by eastern fence lizards (Sceloporus undulatus). Using realistic thermal conditions, we measured growth efficiencies and incubation periods of lizards from five populations representing two distinct clades. In both clades, embryos from cold environments (Indiana, New Jersey, and Virginia) grew more efficiently and hatched earlier than embryos from warm environments (Florida and South Carolina). Because eggs from cold environments were larger than eggs from warm environments, we experimentally miniaturized eggs from one population (Virginia) to determine whether rapid growth and development were caused by a greater maternal investment. Embryos in miniaturized eggs grew as efficiently and incubated for the same duration as embryos in unmanipulated eggs. Taken together, our results suggest countergradient variation has evolved at least twice in S. undulatus.

  17. Impact of Ultrabithorax alternative splicing on Drosophila embryonic nervous system development.

    PubMed

    Geyer, Aenne; Koltsaki, Ioanna; Hessinger, Christian; Renner, Simone; Rogulja-Ortmann, Ana

    2015-11-01

    Hox genes control divergent segment identities along the anteroposterior body axis of bilateral animals by regulating a large number of processes in a cell context-specific manner. How Hox proteins achieve this functional diversity is a long-standing question in developmental biology. In this study we investigate the role of alternative splicing in functional specificity of the Drosophila Hox gene Ultrabithorax (Ubx). We focus specifically on the embryonic central nervous system (CNS) and provide a description of temporal expression patterns of three major Ubx isoforms during development of this tissue. These analyses imply distinct functions for individual isoforms in different stages of neural development. We also examine the set of Ubx isoforms expressed in two isoform-specific Ubx mutant strains and analyze for the first time the effects of splicing defects on regional neural stem cell (neuroblast) identity. Our findings support the notion of specific isoforms having different effects in providing individual neuroblasts with positional identity along the anteroposterior body axis, as well as being involved in regulation of progeny cell fate.

  18. Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana.

    PubMed

    Shigeno, S; Tsuchiya, K; Segawa, S

    2001-09-03

    The embryonic development of the central nervous system (CNS) in the oval squid Sepioteuthis lessoniana is described. It has three distinct phases: (1) The ganglionic accumulation phase: Ganglionic cell clusters develop by ingression, migration, and accumulation of neuroblasts. (2) The lobe differentiation phase: Ganglia differentiate into lobes. The phase is identified by the beginning of an axogenesis. During this phase, neuropils are first formed in the suboesophageal mass, then in the basal lobe system, and finally in the inferior frontal lobes and the superior frontal-vertical lobe systems. (3) The neuropil increment phase: After the shape of the lobes reached its typical form, neuropil growth occurs, specifically in the vertical lobe. The paralarval central nervous system (CNS) is characterized by neuronal gigantism of the giant fibers and some suboesophageal commissures and connectives. The neuropil formation in the CNS of S. lessoniana occurs somewhat earlier than in Octopus vulgaris, although the principal developmental plan is quite conservative among the other coleoids investigated. Some phylogenetic aspects are discussed based on the similarities in the morphologic organization of their brains.

  19. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    PubMed

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  20. Pax3 overexpression induces cell aggregation and perturbs commissural axon projection during embryonic spinal cord development.

    PubMed

    Lin, Juntang; Fu, Sulei; Yang, Ciqing; Redies, Christoph

    2017-05-01

    Pax3 is a transcription factor that belongs to the paired box family. In the developing spinal cord it is expressed in the dorsal commissural neurons, which project ascending axons contralaterally to form proper spinal cord-brain circuitry. While it has been shown that Pax3 induces cell aggregation in vitro, little is known about the role of Pax3 in cell aggregation and spinal circuit formation in vivo. We have reported that Pax3 is involved in neuron differentiation and that its overexpression induces ectopic cadherin-7 expression. In this study we report that Pax3 overexpression also induces cell aggregation in vivo. Tissue sections and open book preparations revealed that Pax3 overexpression prevents commissural axons from projecting to the contralateral side of the spinal cord. Cells overexpressing Pax3 aggregated in cell clusters that contained shortened neurites with perturbed axon growth and elongation. Pax3-specific shRNA partially rescued the morphological change induced by Pax3 overexpression in vivo. Our results indicate that the normal expression of Pax3 is necessary for proper axonal pathway finding and commissural axon projection. In conclusion, Pax3 regulates neural circuit formation during embryonic development. J. Comp. Neurol. 525:1618-1632, 2017. © 2016 Wiley Periodicals, Inc.

  1. Development and Maturation of Embryonic Cortical Neurons Grafted into the Damaged Adult Motor Cortex

    PubMed Central

    Ballout, Nissrine; Frappé, Isabelle; Péron, Sophie; Jaber, Mohamed; Zibara, Kazem; Gaillard, Afsaneh

    2016-01-01

    Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as 2 weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2, and Tbr1 were generated after grafting as evidenced with BrdU co-labeling. The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons. PMID:27536221

  2. Requirement for highly efficient pre-mRNA splicing during Drosophila early embryonic development

    PubMed Central

    Guilgur, Leonardo Gastón; Prudêncio, Pedro; Sobral, Daniel; Liszekova, Denisa; Rosa, André; Martinho, Rui Gonçalo

    2014-01-01

    Drosophila syncytial nuclear divisions limit transcription unit size of early zygotic genes. As mitosis inhibits not only transcription, but also pre-mRNA splicing, we reasoned that constraints on splicing were likely to exist in the early embryo, being splicing avoidance a possible explanation why most early zygotic genes are intronless. We isolated two mutant alleles for a subunit of the NTC/Prp19 complexes, which specifically impaired pre-mRNA splicing of early zygotic but not maternally encoded transcripts. We hypothesized that the requirements for pre-mRNA splicing efficiency were likely to vary during development. Ectopic maternal expression of an early zygotic pre-mRNA was sufficient to suppress its splicing defects in the mutant background. Furthermore, a small early zygotic transcript with multiple introns was poorly spliced in wild-type embryos. Our findings demonstrate for the first time the existence of a developmental pre-requisite for highly efficient splicing during Drosophila early embryonic development and suggest in highly proliferative tissues a need for coordination between cell cycle and gene architecture to ensure correct gene expression and avoid abnormally processed transcripts. DOI: http://dx.doi.org/10.7554/eLife.02181.001 PMID:24755291

  3. KCTD10 is involved in the cardiovascular system and Notch signaling during early embryonic development.

    PubMed

    Ren, Kaiqun; Yuan, Jing; Yang, Manjun; Gao, Xiang; Ding, Xiaofeng; Zhou, Jianlin; Hu, Xingwang; Cao, Jianguo; Deng, Xiyun; Xiang, Shuanglin; Zhang, Jian

    2014-01-01

    As a member of the polymerase delta-interacting protein 1 (PDIP1) gene family, potassium channel tetramerisation domain-containing 10 (KCTD10) interacts with proliferating cell nuclear antigen (PCNA) and polymerase δ, participates in DNA repair, DNA replication and cell-cycle control. In order to further investigate the physiological functions of KCTD10, we generated the KCTD10 knockout mice. The heterozygous KCTD10(+/-) mice were viable and fertile, while the homozygous KCTD10(-/-) mice showed delayed growth from E9.0, and died at approximately E10.5, which displayed severe defects in angiogenesis and heart development. Further study showed that VEGF induced the expression of KCTD10 in a time- and dose-dependent manner. Quantitative real-time PCR and western blotting results revealed that several key members in Notch signaling were up-regulated either in KCTD10-deficient embryos or in KCTD10-silenced HUVECs. Meanwhile, the endogenous immunoprecipitation (IP) analysis showed that KCTD10 interacted with Cullin3 and Notch1 simultaneously, by which mediating Notch1 proteolytic degradation. Our studies suggest that KCTD10 plays crucial roles in embryonic angiogenesis and heart development in mammalians by negatively regulating the Notch signaling pathway.

  4. Characterizing Semaphorin-Mediated Effects on Sensory and Motor Axon Pathfinding and Connectivity During Embryonic Development.

    PubMed

    Huettl, Rosa Eva; Huber, Andrea B

    2017-01-01

    How are precise connectivity to peripheral targets and corresponding sensory-motor networks established during developmental innervation of the vertebrate extremities? The formation of functional sensory-motor circuits requires highly appropriate temporal and spatial regulation of axon growth which is achieved through the combination of different molecular mechanisms such as communication between heterotypic fiber systems, axon-environment, or axon-glia interactions that ensure proper fasciculation and accurate pathfinding to distal targets. Family members of the class 3 semaphorins and their cognate receptors, the neuropilins, were shown to govern various events during wiring of central and peripheral circuits, with mice lacking Sema3-Npn signaling showing deficits in timing of growth, selective fasciculation, guidance fidelity, and coupling of sensory axon growth to motor axons at developmental time points. Given the accuracy with which these processes have to interact in a stepwise manner, deficiency of the smallest cog in the wheel may impact severely on the faithful establishment and functionality of peripheral circuitries, ultimately leading to behavioral impairments or even cause the death of the animal. Reliable quantitative analyses of sensory-motor fasciculation, extension, and guidance of axons to their cognate target muscles and the skin during development, but also assessment of physiological and behavioral consequences at adult age, are therefore a necessity to extend our understanding of the molecular mechanisms of peripheral circuit formation. In this chapter we provide a detailed methodology to characterize class 3 semaphorin-mediated effects on peripheral sensory and motor axon pathfinding and connectivity during embryonic development.

  5. Melanosomes in pigmented epithelia maintain eye lens transparency during zebrafish embryonic development

    PubMed Central

    Takamiya, Masanari; Xu, Feng; Suhonen, Heikki; Gourain, Victor; Yang, Lixin; Ho, Nga Yu; Helfen, Lukas; Schröck, Anne; Etard, Christelle; Grabher, Clemens; Rastegar, Sepand; Schlunck, Günther; Reinhard, Thomas; Baumbach, Tilo; Strähle, Uwe

    2016-01-01

    Altered levels of trace elements are associated with increased oxidative stress that is eventually responsible for pathologic conditions. Oxidative stress has been proposed to be involved in eye diseases, including cataract formation. We visualized the distribution of metals and other trace elements in the eye of zebrafish embryos by micro X-ray fluorescence (μ-XRF) imaging. Many elements showed highest accumulation in the retinal pigment epithelium (RPE) of the zebrafish embryo. Knockdown of the zebrafish brown locus homologues tyrp1a/b eliminated accumulation of these elements in the RPE, indicating that they are bound by mature melanosomes. Furthermore, albino (slc45a2) mutants, which completely lack melanosomes, developed abnormal lens reflections similar to the congenital cataract caused by mutation of the myosin chaperon Unc45b, and an in situ spin trapping assay revealed increased oxidative stress in the lens of albino mutants. Finally transplanting a wildtype lens into an albino mutant background resulted in cataract formation. These data suggest that melanosomes in pigment epithelial cells protect the lens from oxidative stress during embryonic development, likely by buffering trace elements. PMID:27141993

  6. Molecular characterization and expression analysis of ADAM12 during chicken embryonic development.

    PubMed

    Lin, Juntang; Luo, Jiankai; Redies, Christoph

    2010-12-01

    ADAM12 is a member of the disintegrin and metalloprotease (ADAM) family of molecules, which consist of multiple domains. ADAM12 is involved in different physiological and pathological processes. In the present study, full-length sequences of two chicken ADAM12 isoforms were cloned and identified by reverse transcription-polymerase chain reaction (RT-PCR), rapid amplification of cDNA ends methods and bioinformatics analysis. The long isoform consists of all domains characteristic for ADAMs and is strongly expressed in different tissues, whereas the short isoform lacks large parts of the metalloprotease and disintegrin domains and is only expressed weakly. Results from semi-quantitative RT-PCR show that the complete ADAM12 is stably expressed throughout chicken embryonic development, while the short isoform is only regionally detectable in the lung and brain. Results from in situ hybridization show that chicken ADAM12 is expressed exclusively in tissues and organs derived from the neural tube, the neural crest or the mesoderm, with a highly regulated spatiotemporal expression pattern. Our data confirm and extend studies of ADAM12 in other species, and suggest that ADAM12 may play a role in the development of several organs, including the formation of feather buds.

  7. Neural differentiation from human embryonic stem cells as a tool to study early brain development and the neuroteratogenic effects of ethanol.

    PubMed

    Taléns-Visconti, Raquel; Sanchez-Vera, Irene; Kostic, Jelena; Perez-Arago, Maria Amparo; Erceg, Slaven; Stojkovic, Miodrag; Guerri, Consuelo

    2011-02-01

    The in vitro generation of neural cells from human embryonic stem cells is a powerful tool to acquire better knowledge of the cellular and molecular events involved in early human neural and brain development under physiological and pathological conditions. Prenatal alcohol exposure can induce important anomalies in the developing brain, the embryogenesis being an important critical period for the craniofacial defects and mental disabilities associated with fetal alcohol syndrome. Here, we report the generation of neural progenitors (NPs) from human embryonic stem cells. Neuroepithelial progenitors display the morphological and functional characteristics of their embryonic counterparts and the proper timing of neurons and glia cells generation. Immunocytochemical and real time (RT)-polymerase chain reaction analyses reveal that cells appeared as clusters during neuroepithelial cell proliferation and that the genes associated with the neuroectodermal (Pax-6) and the endodermic (α-fetoprotein) lineages decreased in parallel to the upregulation of the genes of NPs (nestin and Tuj1), followed by their differentiation into neurons (MAP-2+, GABA+), oligodendrocytes [galactocerebroside (GalC+)], and astrocytes (GFAP+). We further demonstrate, for the first time, that human NPs express the endocannabinoid receptors (CB1 and CB2) and the enzymes involved in endocannabinoids synthesis (NAPE-PLD) and degradation (FAAH). Using this in vitro culture, we demonstrate that ethanol exposure impairs NPs survival, affects the differentiation of NPs into neurons and astrocytes, disrupts the actin cytoskeleton, and affects the expression of different genes associated with neural differentiation. The results provide new insights into the effects of ethanol on human embryogenesis and neuroprogenitors and offer an opportunity to delineate potential therapeutic strategies to restore early ethanol-induced brain damage.

  8. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    PubMed

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson; de Oliveira, Carlos Jorge Logullo; Campos, Eldo; da Fonseca, Rodrigo Nunes

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  9. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum

    PubMed Central

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237

  10. 61 REVERSIBLE INHIBITION OF BOVINE MINOR EMBRYONIC GENOME ACTIVATION IMPAIRS PRE-IMPLANTATION DEVELOPMENT.

    PubMed

    Nociti, R P; Sampaio, R V; de Lima, V F M H; Schultz, R M; Ross, P J

    2016-01-01

    Bovine pre-implantation embryos can develop in the absence of gene expression up to the 8/16-cell stage, the time when the major embryonic genome activation (EGA) occurs. Some embryonic genes, however, are transcribed before EGA (minor EGA). This study used a reversible inhibitor of RNA Polymerase II (5,6 dichlorobenzimidazole 1-β-D-ribofuranoside; DRB) to assess the importance of minor EGA for development to the blastocyst stage. Oocytes were matured and inseminated in vitro, and the fertilized eggs were cultured in supplemented KSOMaa and allocated to different treatments 16h post-insemination (hpi). Development was recorded at 44 and 72 hpi, and the incidence of blastocyst formation on Day 7 (IVF=Day 0) was recorded. Data were analysed by ANOVA followed by Duncan test. First, we tested different DRB concentrations [50μM (D50), 75μM (D75), 100μM (D100), and dimethyl sulfoxide vehicle control (CTRL)] to block development to blastocyst when continuously present. Only embryos in CTRL produced blastocysts (45.0±5.8%; 4 replicates with a total of 391 oocytes examined). No difference in development was observed at 44h (57.9±16.5, 53.3±10.5, 60.5±19.0, and 52.3±5.8% for D50, D75, D100, and CTRL, respectively) and 72h (78.9±8.8, 66.1±11.7, 71.5±16.5, and 70.8±5.6% for D50, D75, D100, and CTRL, respectively). Next, in 7 replicates (751 oocytes) we determined the effect of blocking transcription (50μM DRB) spanning 2 embryo stages (periods of 28h), initiated at 16hpi (1&2C), 30hpi (2&4C), and 44hpi (4&8C). Controls included DRB treatment from 16 to 72hpi (1-8C) and CTRL. There was no difference in development at 44 and 72h. The incidence of blastocyst formation, however, was significantly decreased in all treatment groups compared with CTRL (27.7±4.7; 15.1±3.5; 23.3±3.1; 20.5±1.9; and 42.1±3.2% for 1&2C, 2&4C, 4&8C, 1-8C, and CTRL, respectively). Finally, in 12 replicates (1499 oocytes), the effect of blocking transcription for 14-h periods, spanning

  11. Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus.

    PubMed

    Kanold, Julia Maxi; Wang, Jiabin; Brümmer, Franz; Šiller, Lidija

    2016-05-01

    The presence of nanoparticles in many industrial applications and daily products is making it nowadays crucial to assess their impact when exposed to the environment. Metallic nickel nanoparticles (Ni NPs) are of high industrial interest due to their ability to catalyze the reversible hydration of CO2 to carbonic acid at ambient conditions. We characterized metallic Ni NPs by XRD, HRTEM and EDS and determined the solubility of free nickel ions from 3 mg/L metallic Ni NPs in seawater by ICP-MS over 96 h, which was below 3%. Further, embryonic development of the sea urchin Paracentrotus lividus was investigated for 48 h in the presence of metallic Ni NPs (0.03 mg/L to 3 mg/L), but no lethal effects were observed. However, 3 mg/L metallic Ni NPs caused a size reduction similar to 1.2 mg/L NiCl2*6 H2O. The obtained results contribute to current studies on metallic Ni NPs and point to their consequences for the marine ecosystem.

  12. Lightsticks content toxicity: effects of the water soluble fraction on the oyster embryonic development.

    PubMed

    de Araujo, Milena Maria Sampaio; Menezes Filho, Adalberto; Nascimento, Iracema Andrade; Pereira, Pedro Afonso P

    2015-11-01

    Lightsticks are artifacts used as attractors in a type of commercial fishery, known as surface longline gear. Despite the excessive use, the contamination risks of these devices have not yet been properly investigated. This research aimed to fill up this gap by determining the chemical composition and the toxicity of lightsticks recently activated, compared to those one year after activation and to the ones collected on the beaches. The analyzes were carried out by Gas Chromatography coupled with Mass Spectrometry (GC-MS). Additionally, the variations in composition and the toxicity of their sea Water Soluble Fractions (WSF) were evaluated based on the WSF-effects of Crassostrea rhizophorae embryonic development. The GC-MS analysis made possible the identification of nineteen substances in the water soluble fraction of the lightsticks, such as dibutyl phthalate (DBP) and dimethyl phthalate (DMP). The value of the WSF-effective concentration (EC50) was in an average of 0.35%. After one year of the lightsticks activation, the toxicity was even higher (0.65%). Furthermore, other substances, also present in the lightsticks-WSF caused persistent toxicity even more dangerous to the environment than DBP and DMP. This essay discusses their toxicity effects and possible environment damages.

  13. Embryonic and postnatal development of the layer I-directed ("matrix") thalamocortical system in the rat.

    PubMed

    Galazo, Maria J; Martinez-Cerdeño, Verónica; Porrero, César; Clascá, Francisco

    2008-02-01

    Inputs to the layer I apical dendritic tufts of pyramidal cells are crucial in "top-down" interactions in the cerebral cortex. A large population of thalamocortical cells, the "matrix" (M-type) cells, provides a direct robust input to layer I that is anatomically and functionally different from the thalamocortical input to layer VI. The developmental timecourse of M-type axons is examined here in rats aged E (embryonic day) 16 to P (postnatal day) 30. Anterograde techniques were used to label axons arising from 2 thalamic nuclei mainly made up of M-type cells, the Posterior and the Ventromedial. The primary growth cones of M-type axons rapidly reached the subplate of dorsally situated cortical areas. After this, interstitial branches would sprout from these axons under more lateral cortical regions to invade the overlying cortical plate forming secondary arbors. Moreover, retrograde labeling of M-type cell somata in the thalamus after tracer deposits confined to layer I revealed that large numbers of axons from multiple thalamic nuclei had already converged in a given spot of layer I by P3. Because of early ingrowth in such large numbers, interactions of M-type axons may significantly influence the early development of cortical circuits.

  14. Effects of Krenite? brush control agent (fosamine ammonium) on embryonic development in mallards and bobwhite

    USGS Publications Warehouse

    Hoffman, D.J.

    1988-01-01

    Fosamine ammonium (Krenite) is a highly water-soluble carbamoylphosphonate herbicide used to control woody brush. It has been reported to be teratogenic to avian embryos following spray application of the eggs. The embryotoxic and teratogenic potential of Krenite was examined in mallards (Anas platyrhynchos) and bobwhite (Colinus virginianus). At 96 h of development, eggs were briefly immersed in distilled water or in Krenite formulation in distilled water at concentrations of 1.5, 6.5, or 30% fosamine ammonium. At 6.5% active ingredient (a.i.), Krenite reduced hatching success in bobwhite and mallards to 85 and 33% of that in the distilled-water controls. At 30% a.i., Krenite caused 95 to 100% mortality in both species by the time of hatching. Early embryonic growth was impaired by 30% Krenite in both species. There was no evidence of teratogenesis of the axial skeleton, as reported previously in chickens and Japanese quail (Coturnix japonica). Most abnormal embryos had severe edema and some stunting. Mallard hatchlings from the 1.5 and 6.5% Krenite groups weighed significantly less than controls and had lower plasma alanine aminotransferase and aspartate aminotransferase activities, with elevated plasma glucose and cholesterol concentrations. Brain acetylcholinesterase activity was unaffected by Krenite in embryos and hatchlings.

  15. Embryonic and early fetal period development and morphogenesis of human craniovertebral junction.

    PubMed

    Hita-Contreras, Fidel; Roda, Olga; Martínez-Amat, Antonio; Cruz-Díaz, David; Mérida-Velasco, Juan A; Sánchez-Montesinos, Indalecio

    2014-04-01

    Several studies have focused on the cartilaginous, articular, and ligamentous development of the craniovertebral joint (CVJ), but there are no unifying criteria regarding the origin and morphogenetic timetable of the structures that make up the CVJ. In our study, serial sections of 53 human embryonic (n = 27) and fetal (n = 26) specimens from O'Rahilly stages 17-23 and 9-13 weeks, respectively, have been analyzed. Our results demonstrate that the chondrification of the pars basioccipitalis and exoccipitalis becomes observable at stage 19, and all future bones in the CVJ are in their cartilaginous form except for the future odontoid process. In addition, two chondrification centers appear for the body of the axis. From stage 21, the apical, alar, and transverse atlantal ligaments begin to acquire a ligamentous structure and the odontoid process initiates its chondrogenic phase. Stage 22 witnesses the first signs of the articular cavities of the atlanto-occipital joint, and by stage 23 all joints have cavities except for the transverse-odontoid joint, which will wait until week 9. In week 10, the ossification of the basilar part of the occipital bone begins, followed by the rest of the structures except for the odontoid process, which will start at week 13, thus completing the osteogenesis of all bones in the CVJ. The results of this study could help in establishing the anatomical basis of the normally functioning CVJ and for detecting its related pathologies, abnormalities, and malformations.

  16. Spatio-temporal expression patterns of anterior Hox genes during Nile tilapia (Oreochromis niloticus) embryonic development.

    PubMed

    Lyon, R Stewart; Davis, Adam; Scemama, Jean-Luc

    2013-01-01

    Hox genes encode transcription factors that function to pattern regional tissue identities along the anterior-posterior axis during animal embryonic development. Divergent nested Hox gene expression patterns within the posterior pharyngeal arches may play an important role in patterning morphological variation in the pharyngeal jaw apparatus (PJA) between evolutionarily divergent teleost fishes. Recent gene expression studies have shown the expression patterns from all Hox paralog group (PG) 2-6 genes in the posterior pharyngeal arches (PAs) for the Japanese medaka (Oryzias latipes) and from most genes of these PGs for the Nile tilapia (Oreochromis niloticus). While several orthologous Hox genes exhibit divergent spatial and temporal expression patterns between these two teleost species in the posterior PAs, several tilapia Hox gene expression patterns from PG3-6 must be documented for a full comparative study. Here we present the spatio-temporal expression patterns of hoxb3b, c3a, b4a, a5a, b5a, b5b, b6a and b6b in the neural tube and posterior PAs of the Nile tilapia. We show that several of these tilapia Hox genes exhibit divergent expression patterns in the posterior PAs from their medaka orthologs. We also compare these gene expression patterns to orthologs in other gnathostome vertebrates, including the dogfish shark.

  17. Heat tolerance during embryonic development has not diverged among populations of a widespread species (Sceloporus undulatus)

    PubMed Central

    Angilletta, Michael J.; Zelic, Maximilian H.; Adrian, Gregory J.; Hurliman, Alex M.; Smith, Colton D.

    2013-01-01

    The frequency and magnitude of heat waves have increased in recent decades, imposing additional stresses on organisms in extreme environments. Most reptilian embryos are regularly exposed to thermal stress because they develop in shallow, warm soils for weeks to months. We studied cardiac performance during warming to infer lethal temperatures for embryonic lizards in the Sceloporus undulatus complex. Embryos from four populations throughout the geographical range (New Jersey, South Carolina, Colorado, and Arizona) were warmed at a rate observed in natural nests. Embryos from all populations exhibited a similar pattern of thermal sensitivity, as follows: heart rate rose between 34 and 41°C, remained stable between 41 and 44°C, and dropped sharply between 44 and 47°C. No embryos recovered from cardiac arrest, indicating that the upper lethal temperature was ≤47°C. Despite the putative selective pressures, the thermal limit to cardiac performance seems to have been conserved during the evolution of this species. PMID:27293602

  18. Septate Junction Proteins Play Essential Roles in Morphogenesis Throughout Embryonic Development in Drosophila

    PubMed Central

    Hall, Sonia; Ward, Robert E.

    2016-01-01

    The septate junction (SJ) is the occluding junction found in the ectodermal epithelia of invertebrate organisms, and is essential to maintain chemically distinct compartments in epithelial organs, to provide the blood–brain barrier in the nervous system, and to provide an important line of defense against invading pathogens. More than 20 genes have been identified to function in the establishment or maintenance of SJs in Drosophila melanogaster. Numerous studies have demonstrated the cell biological function of these proteins in establishing the occluding junction, whereas very few studies have examined further developmental roles for them. Here we examined embryos with mutations in nine different core SJ genes and found that all nine result in defects in embryonic development as early as germ band retraction, with the most penetrant defect observed in head involution. SJ genes are also required for cell shape changes and cell rearrangements that drive the elongation of the salivary gland during midembryogenesis. Interestingly, these developmental events occur at a time prior to the formation of the occluding junction, when SJ proteins localize along the lateral membrane and have not yet coalesced into the region of the SJ. Together, these observations reveal an underappreciated role for a large group of SJ genes in essential developmental events during embryogenesis, and suggest that the function of these proteins in facilitating cell shape changes and rearrangements is independent of their role in the occluding junction. PMID:27261004

  19. The ubiquitin hybrid gene UBA52 regulates ubiquitination of ribosome and sustains embryonic development

    PubMed Central

    Kobayashi, Masanori; Oshima, Shigeru; Maeyashiki, Chiaki; Nibe, Yoichi; Otsubo, Kana; Matsuzawa, Yu; Nemoto, Yasuhiro; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Watanabe, Mamoru

    2016-01-01

    Ubiquitination is a crucial post-translational modification; however, the functions of ubiquitin-coding genes remain unclear. UBA52 encodes a fusion protein comprising ubiquitin at the N-terminus and ribosomal protein L40 (RPL40) at the C-terminus. Here we showed that Uba52-deficient mice die during embryogenesis. UBA52-deficient cells exhibited normal levels of total ubiquitin. However, UBA52-deficient cells displayed decreased protein synthesis and cell-cycle arrest. The overexpression of UBA52 ameliorated the cell-cycle arrest caused by UBA52 deficiency. Surprisingly, RPL40 expression itself is insufficient to regulate cyclin D expression. The cleavage of RPL40 from UBA52 was required for maintaining protein synthesis. Furthermore, we found that RPL40 formed a ribosomal complex with ubiquitin cleaved from UBA52. UBA52 supplies RPL40 and ubiquitin simultaneously to the ribosome. Our study demonstrated that the ubiquitin-coding gene UBA52 is not just an ubiquitin supplier to the ubiquitin pool but is also a regulator of the ribosomal protein complex. These findings provide novel insights into the regulation of ubiquitin-dependent translation and embryonic development. PMID:27829658

  20. Expression patterns of ubiquitin conjugating enzyme UbcM2 during mouse embryonic development.

    PubMed

    Yanjiang, Xing; Hongjuan, He; Tiantian, Gu; Yan, Zhang; Zhijun, Huang; Qiong, Wu

    2012-01-01

    Ubiquitin conjugating enzyme UbcM2 (Ubiquitin-conjugating enzymes from Mice, the number reveals the identification order) has been implicated in many critical processes, such like growth-inhibiting, mediating cell proliferation and regulation of some transcription factor, but the expression profile during mouse embryo development remains unclear. Hereby, during mid-later embryonic stage, the expression patterns of UbcM2 were examined using in situ hybridization and quantitative real-time PCR (qRT-PCR). The signals were significantly intense in central nervous system and skeletal system, weak in tongue, heart, lung, liver, and kidney. In the central nervous system, UbcM2 was principally expressed in thalamus, external germinal layer of cerebellum (EGL), mitral cell layer of olfactory bulb, hippocampus, marginal zone and ventricular zone of cerebral cortex, and spinal cord. In the skeletal system, UbcM2 was primarily expressed in proliferating cartilage. Furthermore, qRT-PCR analysis displayed that the expression of UbcM2 was ubiquitous at E15.5, most prominent in brain, weaker in lung liver and kidney, accompanied by the lowest level in tongue and heart. During brain development, the expression level of UbcM2 first ascended and then decreased from E12.5 to E18.5, the peak of which sustained starting at E14.5 until E16.5. Together, these results suggest that UbcM2 may play potential roles in the development of mouse diverse tissues and organs, particularly in the development of brain and skeleton.

  1. Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea).

    PubMed

    Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Shamsudin, Mariana Nor; Amin, S M N

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition.

  2. Salmonid sexual development is not consistently altered by embryonic exposure to endocrine-active chemicals.

    PubMed Central

    Carlson, D B; Curtis, L R; Williams, D E

    2000-01-01

    Fish sexual development is sensitive to exogenous hormone manipulation, and salmonids have been used extensively as environmental sentinels and models for biomedical research. We simulated maternal transfer of contaminants by microinjecting rainbow trout (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) embryos. Fish were reared for 6 months and sexed, and gonads were removed for histology and measurement of in vitro steroid production. Analysis of fat samples showed that dichlorodiphenylethylene (DDE) levels, o, p'M-DDE and p,o, p'-DDE isomers, were elevated 6 months after treatment. A preliminary study showed an increased ratio of males to females after treatment with 80 mg/kg and 160 mg/kg of the xenoestrogen o,o, p'-DDE. One fish treated with 160 mg/kg o,o, p'-DDE had gonads with cells typical of both males and females. A follow-up study, using more fish and excluding the highly toxic 160 mg/kg o,o, p'-DDE dose, showed no effect on sex ratio or gonadal histology. Embryonic exposure of monosex male trout, monosex female trout, and mixed sex salmon to o, o, p'-DDE, p,o, p'-DDE, mixtures of DDE isomers, and octylphenol failed to alter sexual development. We observed no treatment-dependent changes in in vitro gonadal steroid production in any experiments. Trout exposed in ovo and reared to maturity spawned successfully. These results suggest that mortality attributable to the xenoestrogens o,o, p'-DDE, chlordecone, and octylphenol, and the antiandrogen p,o, p'-DDE, is likely to occur before the appearance of subtle changes in sexual development. Because trout appeared to be sensitive to endocrine disruption, we cannot dismiss the threat of heavily contaminated sites or complex mixtures to normal sexual development of salmonids or other aquatic organisms. Images Figure 1 Figure 2 Figure 3 PMID:10706532

  3. Effects of exposure to four endocrine disrupting-chemicals on fertilization and embryonic development of Barbel chub ( Squaliobarbus curriculus)

    NASA Astrophysics Data System (ADS)

    Niu, Cuijuan; Wang, Wei; Gao, Ying; Li, Li

    2013-09-01

    The toxicities of 4 common endocrine-disrupting chemicals (EDCs), 17β-estradiol (E2), p,p'-dichlorodiphenyldichloro-ethylene (DDE), 4-nonylphenol (NP) and tributyltin (TBT), to sperm motility, fertilization rate, hatching rate and embryonic development of Barbel chub ( Squaliobarbus curriculus) were investigated in this study. The duration of sperm motility was significantly shortened by exposure to the EDCs at the threshold concentrations of 10 ng L-1 for E2 and TBT, 1 μg L-1 for NP and 100 μg L-1 for DDE, respectively. The fertilization rate was substantially reduced by the EDCs at the lowest observable effect concentrations (LOECs) of 10 ng L-1 for E2 and TBT and 10 μg L-1 for DDE and NP, respectively. Of the tested properties of S. curriculus, larval deformity rate was most sensitive to EDC exposure and was significantly increased by DDE at the lowest experimental level of 0.1 μg L-1. Other EDCs increased the larval deformity rate at the LOECs of 1 ng L-1 for E2, 10 ng L-1 for TBT and 1 μg L-1 for NP, respectively. Despite their decreases with the increasing EDC concentrations, the hatching rate and larval survival rate of S. curriculus were not significantly affected by the exposure to EDCs. The results indicated that all the 4 EDCs affected significantly and negatively the early life stages of the freshwater fish S. curriculus. Overall, E2 and TBT were more toxic than NP and DDE, while DDE might be more toxic to larval deformity rate than to other measured parameters. Thus, the 4 EDCs showed potential negative influences on natural population dynamics of S. curriculus. Our findings provided valuable basic data for the ecological risk assessment of E2, DDE, NP and TBT.

  4. Developing Hierarchical Structures Integrating Cognition and Affect.

    ERIC Educational Resources Information Center

    Hurst, Barbara Martin

    Several categories of the affective domain are important to the schooling process. Schools are delegated the responsibility of helping students to clarify their esthetic, instrumental, and moral values. Three areas of affect are related to student achievement: subject-related affect, school-related affect, and academic self concept. In addition,…

  5. Histology Atlas of the Developing Mouse Hepatobiliary System with Emphasis on Embryonic Days 9.5-18.5

    PubMed Central

    Crawford, Laura Wilding; Foley, Julie F.; Elmore, Susan A.

    2012-01-01

    Animal model phenotyping, in utero exposure toxiciy studies, and investigation into causes of embryonic, fetal, or perinatal deaths have required pathologists to recognize and diagnose developmental disorders in spontaneous and engineered mouse models of disease. In mammals, the liver is the main site of hematopoiesis during fetal development, has endocrine and exocrine functions important for maintaining homeostasis in fetal and adult life; and performs other functions including waste detoxification, production and removal of glucose, glycogen storage, triglyceride and fatty acid processing, and serum protein production. Due to its role in many critical functions, alterations in the size, morphology, or function(s) of the liver often lead to embryonic lethality. Many publications and websites describe individual aspects of hepatobiliary development at defined stages. However, no single resource provides a detailed histological evaluation of H&E-stained sections of the developing murine liver and biliary systems using high-magnification and high-resolution color images. The work herein provides a histology atlas of hepatobiliary development between embryonic days 9.5-18.5. Although the focus of this work is normal hepatobiliary development, common defects in liver development are also described as a reference for pathologists who may be asked to phenotype mice with congenital, inherited, or treatment-related hepatobiliary defects. PMID:20805319

  6. Perchlorate disrupts embryonic androgen synthesis and reproductive development in threespine stickleback without changing whole-body levels of thyroid hormone.

    PubMed

    Petersen, Ann M; Dillon, Danielle; Bernhardt, Richard R; Torunsky, Roberta; Postlethwait, John H; von Hippel, Frank A; Loren Buck, C; Cresko, William A

    2015-01-01

    Perchlorate, an environmental contaminant, disrupts normal functioning of the thyroid. We previously showed that perchlorate disrupts behavior and gonad development, and induces external morphological changes in a vertebrate model organism, the threespine stickleback. Whether perchlorate alters these phenotypes via a thyroid-mediated mechanism, and the extent to which the effects depend on dose, are unknown. To address these questions, we chronically exposed stickleback to control conditions and to three concentrations of perchlorate (10, 30 and 100ppm) at various developmental stages from fertilization to reproductive maturity. Adults chronically exposed to perchlorate had increased numbers of thyroid follicles and decreased numbers of thyrocytes. Surprisingly, T4 and T3 levels in larval, juvenile, and adult whole fish chronically exposed to perchlorate did not differ from controls, except at the lowest perchlorate dose, suggesting a non-monotonic dose response curve. We found no detectable abnormalities in external phenotype at any dose of perchlorate, indicating that the increased number of thyroid follicles compensated for the disruptive effects of these doses. In contrast to external morphology, gonadal development was altered substantially, with the highest dose of perchlorate causing the largest effects. Perchlorate increased the number both of early stage ovarian follicles in females and of advanced spermatogenic stages in males. Perchlorate also disrupted embryonic androgen levels. We conclude that chronic perchlorate exposure may not result in lasting adult gross morphological changes but can produce lasting modifications to gonads when compensation of T3 and T4 levels occurs by thyroid follicle hyperplasia. Perchlorate may therefore affect vertebrate development via both thyroidal and non-thyroidal mechanisms.

  7. Critical tissue copper residues for marine bivalve (Mytilus galloprovincialis) and echinoderm (Strongylocentrotus purpuratus) embryonic development: conceptual, regulatory and environmental implications.

    PubMed

    Rosen, Gunther; Rivera-Duarte, Ignacio; Chadwick, D Bart; Ryan, Adam; Santore, Robert C; Paquin, Paul R

    2008-09-01

    Critical tissue copper (Cu) residues associated with adverse effects on embryo-larval development were determined for the Mediterranean mussel (Mytilus galloprovincialis) and purple sea urchin (Strongylocentrotus purpuratus) following laboratory exposure to Cu-spiked seawater collected from San Diego Bay, California, USA. Whole body no-observed-effect-residues (NOER) were similar, with means of 21 and 23 microg g(-1) dw, for M. galloprovincialis and S. purpuratus, respectively. Mean whole body median effect residues (ER50) were 49 and 142 microg g(-1) dw for M. galloprovincialis and S. purpuratus, respectively. The difference in ER50s between species was reduced to a factor of <2 when expressed as soft tissue residues. Coefficients of variation among whole body-ER50s were 3-fold lower than median waterborne effect concentrations (EC50) for both species exposed to samples varying in water quality characteristics. This suggests that tissue concentrations were a better predictor of toxicity than water concentrations. The CBRs described herein do not differentiate between the internal Cu concentrations that are metabolically available and those that are accumulated and then detoxified. They do appear, however, to be well enough related to the level of accumulation at the site of action of toxicity that they serve as useful surrogates for the copper concentration that affects embryonic development of the species tested. Results presented have potentially important implications for a variety of monitoring and assessment strategies. These include regulatory approaches for deriving saltwater ambient water quality criteria for Cu, contributions towards the development of a saltwater biotic ligand model, the conceptual approach of using CBRs, and ecological risk assessment.

  8. Changes in yolk sac membrane absorptive area and fat digestion during chick embryonic development.

    PubMed

    Yadgary, L; Kedar, O; Adepeju, O; Uni, Z

    2013-06-01

    The capacity of yolk sac (YS) utilization by the chick embryo may be affected by structural changes in the YS membrane (YSM) and by the mechanisms within its cells for digestion, absorption, and transfer of nutrients. Two experiments were conducted to examine structural and digestive changes in the YS of the broiler chick embryo; weights of embryo, YS, and YSM, as well as the total area of the YSM and the absorptive area of the YSM, were measured between embryonic day (E) 5 and E21. In addition, fat content, lipase activity, and bile acid concentration in the YSM and YS contents (YSC) were measured between E11 and E21. Results showed that YSM weight increased from 0.19 g on E5 to 6.46 g on E15, and decreased by 3.74 g between E17 and E21. The absorptive YSM area increased from 536 mm² on E5 (51% of total YSM area) to 6,370 mm² (86% of total area) on E17, and decreased to 4,439 mm(2) on E21 (85% of total area). The smaller YSM area between E17 and E21 did not decrease the rate of YS fat utilization, which could suggest that YSM mechanisms for fat absorption, digestion, and secretion increased during that period. Total YSM lipase activity relative to fat content (units per g of YSM fat) increased from approximately 1,000 units on E15 to 1,500 units on E21. The detection of lipase in the YSM lends support to the hypothesis that YS lipids are hydrolyzed in the lipolysosomes of the YSM. The current study also confirmed for the first time that bile acids are present in the YS, with levels that ranged from 0.61 to 1.06 µmol/g in the YSM, and may suggest that bile is synthesized in the YSM of the chick embryo. Results of the current study contribute to our understanding of the developmental changes that affect YS functionality and could give insight into the coordination between the embryo's demands and YSM morphological, absorptive, digestive, and secretive changes.

  9. Temperature during the last week of incubation. I. Effects on hatching pattern and broiler chicken embryonic organ development.

    PubMed

    Maatjens, C M; van Roovert-Reijrink, I A M; Engel, B; van der Pol, C W; Kemp, B; van den Brand, H

    2016-04-01

    We investigated the effects of an eggshell temperature (EST) of 35.6, 36.7, 37.8, and 38.9°C applied from d of incubation (E) 15, E17, and E19 on hatching pattern and embryonic organ development. A total of 2,850 first-grade eggs of a 43-week-old Ross 308 broiler breeder flock were incubated at an EST of 37.8°C until E15. From E15, E17, or E19 onward, eggs were incubated at an EST of 35.6, 36.7, 37.8, or 38.9°C. Moment of internal pipping (IP), external pipping (EP), and hatch was determined, and organ development was measured at E15, E17, E19, IP, EP, and hatch. A lower EST extended incubation duration compared to a higher EST. The lower incubation duration was mainly caused by the extended time until IP, whereas time between IP and hatch hardly varied between treatments. Relative heart weight was affected by EST already from 2 d after the start of EST treatment on E15, and effects became more pronounced at longer exposure time to various EST treatments. At hatch, the largest difference in relative heart weight was found between an EST of 35.6 and 38.9°C started at E15 (Δ=64.4%). From E17 onward, EST affected yolk-free body mass (YFBM) and relative stomach weight, where a lower EST resulted in a lower YFBM and relative stomach weight before IP and a higher YFBM and relative stomach weight after IP. From E19 onward, a lower EST resulted in a higher relative liver and spleen weight regardless of start time of treatment. Yolk weight and relative intestine weight were not affected by EST before and at E19, but a higher EST resulted in a higher yolk weight and lower relative intestine weight from IP onward. Based on the higher YFBM and higher relative organ growth found at hatch, we concluded that an EST lower than 37.8°C from E15 onward appears to be beneficial for optimal embryo development.

  10. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    PubMed Central

    2011-01-01

    Background Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome. PMID:22111588

  11. Redundant functions of I-BAR family members, IRSp53 and IRTKS, are essential for embryonic development

    PubMed Central

    Chou, Ai Mei; Sem, Kai Ping; Lam, Wei Jun; Ahmed, Sohail; Lim, Chin Yan

    2017-01-01

    The insulin receptor substrate of 53 kDa, IRSp53, is an adaptor protein that works with activated GTPases, Cdc42 and Rac, to modulate actin dynamics and generate membrane protrusions in response to cell signaling. Adult mice that lack IRSp53 fail to regulate synaptic plasticity and exhibit hippocampus-associated learning deficiencies. Here, we show that 60% of IRSp53 null embryos die at mid to late gestation, indicating a vital IRSp53 function in embryonic development. We find that IRSp53 KO embryos displayed pleiotropic phenotypes such as developmental delay, oligodactyly and subcutaneous edema, and died of severely impaired cardiac and placental development. We further show that double knockout of IRSp53 and its closest family member, IRTKS, resulted in exacerbated placental abnormalities, particularly in spongiotrophoblast differentiation and development, giving rise to complete embryonic lethality. Hence, our findings demonstrate a hitherto under-appreciated IRSp53 function in embryonic development, and further establish an essential genetic interaction between IRSp53 and IRTKS in placental formation. PMID:28067313

  12. Long-term in vivo harmonics imaging of zebrafish embryonic development based on a femtosecond Cr:forsterite laser

    NASA Astrophysics Data System (ADS)

    Chen, S.-Y.; Tsai, T.-H.; Hsieh, C.-S.; Tai, S.-P.; Lin, C.-Y.; Ko, C.-Y.; Chen, Y.-C.; Tsai, H.-J.; Hu, C.-H.; Sun, C.-K.

    2005-03-01

    Based on a femtosecond Cr:forsterite laser, harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on optical nonlinearity, HOM provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamage. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can perform functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Here we demonstrate in vivo HOM studies of developmental dynamics of several important embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.

  13. Expression of PINK1 in the brain, eye and ear of mouse during embryonic development.

    PubMed

    d'Amora, Marta; Angelini, Cristiano; Marcoli, Manuela; Cervetto, Chiara; Kitada, Tohru; Vallarino, Mauro

    2011-03-01

    PINK1 is a 581 amino acid protein with a serine/threonine kinase domain and an N-terminal mitochondrial targeting motif. The enzyme is expressed in the brain as well as in several tissues such as heart, skeletal muscle, liver, kidney, pancreas and testis. In the present study, we have investigated by Western blot analysis and immunohistochemistry the presence and distribution of PINK1 in the brain, eye and inner ear of mouse during embryonic development. In the brain we detected two PINK1 molecular isoforms of 55 kDa and 66 kDa. Immunoreactive perikarya first appeared at stage E15 in the diencephalon within the thalamus, the hypothalamus, the periventricular layers of the third ventricle and in the rhombencephalon at level of the pons. Subsequently, new PINK1-positive neurons were found in the midbrain within the floor and the periventricular layers of the ventral wall of the mesencephalic vesicle (stage E17) as well as in the neopallial cortex, the tegmentum of the midbrain and the periventricular region of the caudal part of the rhombencephalon (stage E19). At P0, PINK1-immunoreactive cells appeared in the striatum, the mantle layer and caudal part of the medulla oblongata and the cerebellum. The spatio-temporal expression of PINK1 and its heterogeneous distribution suggest that the enzyme might be involved in neuroregulatory processes during embryogenesis. In the eye, PINK1-immunoreactivity was found in the lens and in the cornea, whereas in the inner ear the enzyme was expressed in the ependymal and subependymal cells of the saccule and in the semicircular canals indicating that PINK1 plays a role in the development of these sensory organs.

  14. Regional development of Langerhans cells and formation of Birbeck granules in human embryonic and fetal skin.

    PubMed

    Fujita, M; Furukawa, F; Horiguchi, Y; Ueda, M; Kashihara-Sawami, M; Imamura, S

    1991-07-01

    The regional development of Langerhans cells (LC) and the formation of Birbeck granules (BG) were examined in human embryonic and fetal skin. Samples were obtained from multiple anatomic sites and stained with anti-CD36, anti-CD1a, and anti-HLA-DR antibody as well as Lag antibody specifically reactive to BG and some vacuoles of human LC. In the first trimester, CD36+ dendritic epidermal cells were identified before the appearance of CD1a+ cells and Lag+ cells. Some of the former co-expressed HLA-DR antigens but not CD1a antigens. In the second trimester, regional variations in LC development were observed. Epidermal LC of palms and soles reached a peak in number in the first trimester but were rarely detected after 18 weeks estimated gestation age (EGA), whereas, in other regions, their number increased with age. In the second trimester, CD1a+ cells and Lag+ cells were also identified in the epidermis, although Lag+ cells appeared later than CD1a+ cells. The Lag+ cells until 17 weeks EGA showed a variety of staining intensities and immunoelectron microscopy revealed that they contained various amounts of Lag-reactive BG. Flow cytometric analysis showed that relative amounts of Lag antigens in LC increased during the second trimester and that fetal LC of 18 weeks EGA expressed the same amounts of HLA-DR, CD1a, and Lag antigens as did adult human LC. In the dermis, in the second trimester, numerous CD36+ cells and HLA-DR+ cells were found, whereas CD1a+ cells and Lag+ cells were rarely detected. Taken together, it is suggested that HLA-DR+ dendritic cells acquire CD1a+ antigens first and then form BG after migration to the epidermis and that fetal LC are phenotypically mature in the second trimester.

  15. Dynamic expression of the cell adhesion molecule fasciclin I during embryonic development in Drosophila.

    PubMed

    McAllister, L; Goodman, C S; Zinn, K

    1992-05-01

    A number of different cell surface glycoproteins expressed in the central nervous system (CNS) have been identified in insects and shown to mediate cell adhesion in tissue culture systems. The fasciclin I protein is expressed on a subset of CNS axon pathways in both grasshopper and Drosophila. It consists of four homologous 150-amino acid domains which are unrelated to other sequences in the current databases, and is tethered to the cell surface by a glycosyl-phosphatidylinositol linkage. In this paper we examine in detail the expression of fasciclin I mRNA and protein during Drosophila embryonic development. We find that fasciclin I is expressed in several distinct patterns at different stages of development. In blastoderm embryos it is briefly localized in a graded pattern. During the germ band extended period its expression evolves through two distinct phases. Fasciclin I mRNA and protein are initially localized in a 14-stripe pattern which corresponds to segmentally repeated patches of neuroepithelial cells and neuroblasts. Expression then becomes confined to CNS and peripheral sensory (PNS) neurons. Fasciclin I is expressed on all PNS neurons, and this expression is stably maintained for several hours. In the CNS, fasciclin I is initially expressed on all commissural axons, but then becomes restricted to specific axon bundles. The early commissural expression pattern is not observed in grasshopper embryos, but the later bundle-specific pattern is very similar to that seen in grasshopper. The existence of an initial phase of expression on all commissural bundles helps to explain the loss-of-commissures phenotype of embryos lacking expression of both fasciclin I and of the D-abl tyrosine kinase. Fasciclin I is also expressed in several nonneural tissues in the embryo.

  16. Tissue distribution of PEBBLE RNA and pebble protein during Drosophila embryonic development.

    PubMed

    Prokopenko, S N; Saint, R; Bellen, H J

    2000-02-01

    pebble (pbl) is required for cytokinesis during postblastoderm mitoses (Hime, G., Saint, R., 1992. Zygotic expression of the pebble locus is required for cytokinesis during the postblastoderm mitoses of Drosophila. Development 114, 165-171; Lehner, C.F., 1992. The pebble gene is required for cytokinesis in Drosophila. J. Cell Sci. 103, 1021-1030) and encodes a putative guanine nucleotide exchange factor (RhoGEF) for Rho1 GTPase (Prokopenko, S.N., Brumby, A., O'Keefe, L., Prior, L., He, Y., Saint, R., Bellen, H.J., 1999. A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. Genes Dev. 13, 2301-2314). Mutations in pbl result in the absence of a contractile ring leading to a failure of cytokinesis and formation of polyploid multinucleate cells. Analysis of the subcellular distribution of PBL demonstrated that during mitosis, PBL accumulates at the cleavage furrow at the anaphase to telophase transition when assembly of a contractile ring is initiated (Prokopenko, S.N., Brumby, A., O'Keefe, L., Prior, L., He, Y., Saint, R., Bellen, H.J., 1999. A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. Genes Dev. 13, 2301-2314). In addition, levels of PBL protein cycle during each round of cell division with the highest levels of PBL found in telophase and interphase nuclei. Here, we report the expression pattern of pbl during embryonic development. We show that PEBBLE RNA and PBL protein have a similar tissue distribution and are expressed in a highly dynamic pattern throughout embryogenesis. We show that PBL is strongly enriched in dividing nuclei in syncytial embryos and in pole cells as well as in nuclei of dividing cells in postblastoderm embryos. Our expression data correlate well with the phenotypes observed in pole cells and, particularly, with the absence of cytokinesis after cellular blastoderm formation in pbl mutants.

  17. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  18. Characterization of the skeletal fusion with sterility (sks) mouse showing axial skeleton abnormalities caused by defects of embryonic skeletal development.

    PubMed

    Akiyama, Kouyou; Katayama, Kentaro; Tsuji, Takehito; Kunieda, Tetsuo

    2014-01-01

    The development of the axial skeleton is a complex process, consisting of segmentation and differentiation of somites and ossification of the vertebrae. The autosomal recessive skeletal fusion with sterility (sks) mutation of the mouse causes skeletal malformations due to fusion of the vertebrae and ribs, but the underlying defects of vertebral formation during embryonic development have not yet been elucidated. For the present study, we examined the skeletal phenotypes of sks/sks mice during embryonic development and the chromosomal localization of the sks locus. Multiple defects of the axial skeleton, including fusion of vertebrae and fusion and bifurcation of ribs, were observed in adult and neonatal sks/sks mice. In addition, we also found polydactyly and delayed skull ossification in the sks/sks mice. Morphological defects, including disorganized vertebral arches and fusions and bifurcations of the axial skeletal elements, were observed during embryonic development at embryonic day 12.5 (E12.5) and E14.5. However, no morphological abnormality was observed at E11.5, indicating that defects of the axial skeleton are caused by malformation of the cartilaginous vertebra and ribs at an early developmental stage after formation and segmentation of the somites. By linkage analysis, the sks locus was mapped to an 8-Mb region of chromosome 4 between D4Mit331 and D4Mit199. Since no gene has already been identified as a cause of malformation of the vertebra and ribs in this region, the gene responsible for sks is suggested to be a novel gene essential for the cartilaginous vertebra and ribs.

  19. Reproduction and embryonic development in two species of squaliform sharks, Centrophorus granulosus and Etmopterus princeps: Evidence of matrotrophy?

    NASA Astrophysics Data System (ADS)

    Cotton, Charles F.; Dean Grubbs, R.; Dyb, Jan E.; Fossen, Inge; Musick, John A.

    2015-05-01

    Modes of reproduction and embryonic development vary greatly among the elasmobranchs, and prior studies have suggested that the energetic toll of embryogenesis in lecithotrophic species depletes embryonic organic matter by 20% or more. Matrotrophic species experience a lesser reduction or an increase in organic matter during embryogenesis. To investigate the maternal-embryonic nutritional relationship, we measured changes in organic matter from fertilization to near-parturition in embryos of Centrophorus granulosus and Etmopterus princeps. Embryos of C. granulosus experienced a reduction of 19.5% in organic matter, while E. princeps embryos experienced a reduction of 7.7% in organic matter over the course of embryonic development, suggesting some level of matrotrophy occurs, particularly for the latter species. Uterine villi were present in both species and developed concurrently with the embryos, increasing in length and thickness while becoming progressively vascularized. Embryos of C. granulosus were dissected to track the partitioning of water, organic matter, and inorganic matter to the liver, external yolk sac, internal yolk sac, digestive tract, and evicerated body throughout development. Mating was aseasonal for both species and spatially-mediated segregation by sex and maturity stage was observed. Ovarian cycles were concurrent for C. granulosus and consecutive for E. princeps. Size at maturity for C. granulosus was determined to be 111 cm TL for males and 143 cm TL for females, with an average fecundity of 5.3 embryos (range=4-7). Size at maturity for E. princeps was determined to be 56.5 cm TL for males and 61 cm TL for females north of the Azores and 54 cm TL for males and 69 cm TL for females near the Charlie Gibbs Fracture Zone. Average fecundity was 11.2 embryos (range=7-18) for this species. This is the first reporting of reproductive parameters for these two species, and the information provided will be valuable for informing stock assessment

  20. Fatty acids dynamics during embryonic development in genus Uca (Brachyura: Ocypodidae), from the mangroves of Inhaca Island, Mozambique

    NASA Astrophysics Data System (ADS)

    Torres, Paulo; Penha-Lopes, Gil; Narciso, Luís; Macia, Adriano; Paula, José

    2008-11-01

    Variations in egg volume and fatty acid (FA) content through embryogenesis were evaluated in Uca species from Inhaca island, Mozambique. Egg volume increased 96.1%, 93.3%, 84.2%, 92.9%, 96.3%, respectively, in Uca annulipes, Uca inversa, Uca urvillei, Uca chlorophthalmus and Uca vocans ( p < 0.05). Fatty acid content decreased through embryogenesis, showing its importance as fuel during embryonic development. Major fatty acids were 16:0, 18:0, 16:1 n-7, 18:1 n-9, 18:1 n-7, 18:2 n-6, 20:5 n-3 and 20:4 n-3. Unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were used up at a similar rate for U. annulipes and U. inversa contrarily to the other three species. Within the UFA, MUFA were more consumed than PUFA for all species except U. chlorophthalmus. The high values detected for fatty acid trophic markers (essential C 18 and C 20 PUFAs) and odd-numbered fatty acid suggest that Uca species occupy medium trophic level, primarily omnivores and scavengers/detritivores consuming algae common in the intertidal habitats. The fatty acid consumption pattern during embryonic development was essentially similar between species with some variation as expected, as FA content varies within species mainly due to female feeding ecology, nutritional and physiological conditions, differential demands on resource allocation and geographic and seasonal variations in embryonic development.

  1. Effects of Cadmium and Zinc on the Gamete Viability, Fertilization, and Embryonic Development of Tripneustes gratilla (Linnaeus)

    PubMed Central

    Tualla, Ivan Patrick B.; Bitacura, Jayzon G.

    2016-01-01

    Heavy metals are frequently reported for their mutagenic and teratogenic effects on benthic organisms. Thus, this study aimed to determine the toxicity of cadmium (Cd) and zinc (Zn) in the gametes of T. gratilla and to compare its fertilization and embryonic development under the highest nongametotoxic concentrations of these heavy metals. Gamete viability of T. gratilla under CdCl2 and ZnSO4 treatments was assayed through resazurin reduction test (RRT) and was confirmed through gamete morphology assay. ZnSO4 was more toxic to T. gratilla gametes than CdCl2 and egg cells were more sensitive to both than the sperm cells. Higher concentrations of CdCl2 and ZnSO4 induced gamete apoptosis and necrosis while highest nongametotoxic concentrations were determined at 1 × 10−3 M and 1 × 10−4 M, respectively, and were used in an in vitro fertilization and embryonic development experiment. ZnSO4 treatment inhibited fertilization more than CdCl2 and yielded more deformed embryos, while both induced abnormalities and hindered further embryonic development. This study gives the first report on the specific concentrations of Cd and Zn that are toxic to T. gratilla gametes and has confirmed the teratogenic effects of these heavy metals. PMID:27200213

  2. Conditional ablation of p63 indicates that it is essential for embryonic development of the central nervous system.

    PubMed

    Cancino, Gonzalo I; Fatt, Michael P; Miller, Freda D; Kaplan, David R

    2015-01-01

    p63 is a member of the p53 family that regulates the survival of neural precursors in the adult brain. However, the relative importance of p63 in the developing brain is still unclear, since embryonic p63(-/-) mice display no apparent deficits in neural development. Here, we have used a more definitive conditional knockout mouse approach to address this issue, crossing p63(fl/fl) mice to mice carrying a nestin-CreERT2 transgene that drives inducible recombination in neural precursors following tamoxifen treatment. Inducible ablation of p63 following tamoxifen treatment of mice on embryonic day 12 resulted in highly perturbed forebrain morphology including a thinner cortex and enlarged lateral ventricles 3 d later. While the normal cortical layers were still present following acute p63 ablation, cortical precursors and neurons were both reduced in number due to widespread cellular apoptosis. This apoptosis was cell-autonomous, since it also occurred when p63 was inducibly ablated in primary cultured cortical precursors. Finally, we demonstrate increased expression of the mRNA encoding another p53 family member, ΔNp73, in cortical precursors of p63(-/-) but not tamoxifen-treated p63(fl/fl);R26YFP(fl/fl);nestin-CreERT2(+/Ø) embryos. Since ΔNp73 promotes cell survival, then this compensatory increase likely explains the lack of an embryonic brain phenotype in p63(-/-) mice. Thus, p63 plays a key prosurvival role in the developing mammalian brain.

  3. Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development

    SciTech Connect

    Nishikawa, Masaki; Yanagawa, Naomi; Kojima, Nobuhiko; Yuri, Shunsuke; Hauser, Peter V.; Jo, Oak D.; Yanagawa, Norimoto

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer We induced renal lineages from mESCs by following the in vivo developmental cues. Black-Right-Pointing-Pointer We induced nephrogenic intermediate mesoderm by stepwise addition of factors. Black-Right-Pointing-Pointer We induced two types of renal progenitor cells by reciprocal conditioned media. Black-Right-Pointing-Pointer We propose the potential role of CD24 for the enrichment of renal lineage cells. -- Abstract: The in vitro derivation of renal lineage progenitor cells is essential for renal cell therapy and regeneration. Despite extensive studies in the past, a protocol for renal lineage induction from embryonic stem cells remains unestablished. In this study, we aimed to induce renal lineages from mouse embryonic stem cells (mESC) by following in vivo developmental stages, i.e., the induction of mesoderm (Stage I), intermediate mesoderm (Stage II) and renal lineages (Stage III). For stage I induction, in accordance with known signaling pathways involved in mesoderm development in vivo, i.e., Nodal, bone morphogenic proteins (BMPs) and Wnt, we found that the sequential addition of three factors, i.e., Activin-A (A), a surrogate for Nodal signaling, during days 0-2, A plus BMP-4 (4) during days 2-4, and A4 plus lithium (L), a surrogate for Wnt signaling, during days 4-6, was most effective to induce the mesodermal marker, Brachyury. For stage II induction, the addition of retinoic acid (R) in the continuous presence of A4L during days 6-8 was most effective to induce nephrogenic intermediate mesodermal markers, such as Pax2 and Lim1. Under this condition, more than 30% of cells were stained positive for Pax2, and there was a concomitant decrease in the expression of non-mesodermal markers. For stage III induction, in resemblance to the reciprocal induction between ureteric bud (UB) and metanephric mesenchyme (MM) during kidney development, we found that the exposure to conditioned media derived from UB and MM cells was

  4. The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess retinoic acid during embryonic development

    PubMed Central

    Billings, Sara E.; Pierzchalski, Keely; Butler Tjaden, Naomi E.; Pang, Xiao-Yan; Trainor, Paul A.; Kane, Maureen A.; Moise, Alexander R.

    2013-01-01

    Oxidation of retinol via retinaldehyde results in the formation of the essential morphogen all-trans-retinoic acid (ATRA). Previous studies have identified critical roles in the regulation of embryonic ATRA levels for retinol, retinaldehyde, and ATRA-oxidizing enzymes; however, the contribution of retinaldehyde reductases to ATRA metabolism is not completely understood. Herein, we investigate the role of the retinaldehyde reductase Dhrs3 in embryonic retinoid metabolism using a Dhrs3-deficient mouse. Lack of DHRS3 leads to a 40% increase in the levels of ATRA and a 60% and 55% decrease in the levels of retinol and retinyl esters, respectively, in Dhrs3−/− embryos compared to wild-type littermates. Furthermore, accumulation of excess ATRA is accompanied by a compensatory 30–50% reduction in the expression of ATRA synthetic genes and a 120% increase in the expression of the ATRA catabolic enzyme Cyp26a1 in Dhrs3−/− embryos vs. controls. Excess ATRA also leads to alterations (40–80%) in the expression of several developmentally important ATRA target genes. Consequently, Dhrs3−/− embryos die late in gestation and display defects in cardiac outflow tract formation, atrial and ventricular septation, skeletal development, and palatogenesis. These data demonstrate that the reduction of retinaldehyde by DHRS3 is critical for preventing formation of excess ATRA during embryonic development.—Billings, S. E., Pierzchalski, K., Butler Tjaden, N. E., Pang, X.-Y., Trainor, P. A., Kane, M. A., Moise, A. R. The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess retinoic acid during embryonic development. PMID:24005908

  5. Embryo-endometrial interactions during early development after embryonic diapause in the marsupial tammar wallaby.

    PubMed

    Renfree, Marilyn B; Shaw, Geoff

    2014-01-01

    The marsupial tammar wallaby has the longest period of embryonic diapause of any mammal. Reproduction in the tammar is seasonal, regulated by photoperiod and also lactation. Reactivation is triggered by falling daylength after the austral summer solstice in December. Young are born late January and commence a 9-10-month lactation. Females mate immediately after birth. The resulting conceptus develops over 6- 7 days to form a unilaminar blastocyst of 80-100 cells and enters lactationally, and later seasonally, controlled diapause. The proximate endocrine signal for reactivation is an increase in progesterone which alters uterine secretions. Since the diapausing blastocyst is surrounded by the zona and 2 other acellular coats, the mucoid layer and shell coat, the uterine signals that maintain or terminate diapause must involve soluble factors in the secretions rather than any direct cellular interaction between uterus and embryo. Our studies suggest involvement of a number of cytokines in the regulation of diapause in tammars. The endometrium secretes platelet activating factor (PAF) and leukaemia inhibitory factor, which increase after reactivation. Receptors for PAF are low on the blastocyst during diapause but are upregulated at reactivation. Conversely, there is endometrial expression of the muscle segment homeobox gene MSX2 throughout diapause, but it is rapidly downregulated at reactivation. These patterns are consistent with those observed in diapausing mice and mink after reactivation, despite the very different patterns of endocrine control of diapause in these 3 divergent species. These common patterns suggest a similar underlying mechanism for diapause, perhaps common to all mammals, but which is activated in only a few.

  6. Role of sodium-calcium exchanger (Ncx1) in embryonic heart development: a transgenic rescue?

    PubMed

    Conway, Simon J; Kruzynska-Frejtag, Agnieszka; Wang, Jian; Rogers, Rhina; Kneer, Paige L; Chen, Hongmei; Creazzo, Tony; Menick, Donald R; Koushik, Srinagesh V

    2002-11-01

    Na(+)/Ca(2+) exchanger (Ncx-1) is highly expressed in cardiomyocytes, is thought to be required to maintain a low intracellular Ca(2+) concentration, and may play a role in excitation-contraction coupling. Significantly, targeted deletion of Ncx-1 results in Ncx1-null embryos that do not have a spontaneously beating heart and die in utero. Ultrastructural analysis revealed gross anomalies in the Ncx1-null contractile apparatus, but physiologic analysis showed normal field-stimulated Ca(2+) transients, suggesting that Ncx-1 function may not be critical for Ca(2+) extrusion from the cytosol as previously thought. Using caffeine to empty the intracellular Ca(2+) stores, we show that the sarcoplasmic reticulum is not fully functional within the 9.5-dpc mouse heart, indicating that the sarcoplasmic reticulum is unlikely to account for the unexpected maintenance of intracellular Ca(2+) homeostasis. Using the Ncx1-lacZ reporter, our data indicate restricted expression patterns of Ncx1 and that Ncx1 is highly expressed within the conduction system, suggesting Ncx1 may be required for spontaneous pacemaking activity. To test this hypothesis, we used transgenic mice overexpressing one of the two known adult Ncx1 isoforms under the control of the cardiac-specific a-myosin heavy chain promoter to restore Ncx1 expression within the Ncx1-null hearts. Results indicate that the transgenic re-expression of one Ncx1 isoform was unable to rescue the lethal null mutant phenotype. Furthermore, our in situ results indicate that both known adult Ncx1 isoforms are coexpressed within the embryonic heart, suggesting that effective transgenic rescue may require the presence of both isoforms within the developing heart.

  7. Embryonic development and implantation related gene expression of oocyte reconstructed with bovine trophoblast cells.

    PubMed

    Saadeldin, Islam M; Choi, WooJae; Roibas Da Torre, Bego; Kim, BongHan; Lee, ByeongChun; Jang, Goo

    2012-01-01

    The temporal progressive increase of interferon tau (IFNτ) secretion from the bovine trophoblast is a major embryonic signal of establishing pregnancy. Here, we cultured and isolated bovine trophoblast cells (BTs) from IVM/IVF oocytes and in vitro produced blastocysts, used them, for the first time, as donor cells for nuclear transfer and compared them with adult fibroblasts (AFs) as donor cells. BTs were reprogrammed in enucleated oocytes to blastocysts with similar efficiency to AFs (14.5% and 15.6% respectively, P≤0.05). The levels of IFNτ, CDX2 and OCT4 expression in IVF-, BT- and AF-derived blastocysts were analyzed using reverse transcription polymerase chain reaction and reverse transcription quantitative polymerase chain reaction (RT-PCR and RT-qPCR). IVF-produced embryos were used as reference to analyze the linear progressive expression of IFNτ through mid, expanded and hatching blastocysts. RT-PCR and RT-qPCR studies showed that IFNτ expression was higher in BT-derived blastocysts than IVF- and AF-derived blastocysts. Both IVF- and BT-derived blastocysts showed a progressive increase in IFNτ expression as blastocyst development advanced when it compared with AF-derived blastocysts. OCT4 was inversely related with IFNτ expression, while CDX2 was found to be directly related with IFNτ temporal expression. Persistence of high expression of IFNτ and CDX2 was found to be higher in BT-derived embryos than in IVF- or AF-derived embryos. In conclusion, using BTs expressing IFNτ as donor cells for bovine NT could be a useful tool for understanding the IFNτ genetics and epigenetics.

  8. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    NASA Astrophysics Data System (ADS)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact

  9. The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination.

    PubMed

    Cubillos-Rojas, Monica; Schneider, Taiane; Hadjebi, Ouadah; Pedrazza, Leonardo; de Oliveira, Jarbas Rodrigues; Langa, Francina; Guénet, Jean-Louis; Duran, Joan; de Anta, Josep Maria; Alcántara, Soledad; Ruiz, Rocio; Pérez-Villegas, Eva María; Aguilar-Montilla, Francisco J; Carrión, Ángel M; Armengol, Jose Angel; Baple, Emma; Crosby, Andrew H; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-08-30

    A mutation in the HERC2 gene has been linked to a severe neurodevelopmental disorder with similarities to the Angelman syndrome. This gene codifies a protein with ubiquitin ligase activity that regulates the activity of tumor protein p53 and is involved in important cellular processes such as DNA repair, cell cycle, cancer, and iron metabolism. Despite the critical role of HERC2 in these physiological and pathological processes, little is known about its relevance in vivo. Here, we described a mouse with targeted inactivation of the Herc2 gene. Homozygous mice were not viable. Distinct from other ubiquitin ligases that interact with p53, such as MDM2 or MDM4, p53 depletion did not rescue the lethality of homozygous mice. The HERC2 protein levels were reduced by approximately one-half in heterozygous mice. Consequently, HERC2 activities, including ubiquitin ligase and stimulation of p53 activity, were lower in heterozygous mice. A decrease in HERC2 activities was also observed in human skin fibroblasts from individuals with an Angelman-like syndrome that express an unstable mutant protein of HERC2. Behavioural analysis of heterozygous mice identified an impaired motor synchronization with normal neuromuscular function. This effect was not observed in p53 knockout mice, indicating that a mechanism independent of p53 activity is involved. Morphological analysis showed the presence of HERC2 in Purkinje cells and a specific loss of these neurons in the cerebella of heterozygous mice. In these animals, an increase of autophagosomes and lysosomes was observed. Our findings establish a crucial role of HERC2 in embryonic development and motor coordination.

  10. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development

    PubMed Central

    Hen, Gideon; Nicenboim, Julian; Mayseless, Oded; Asaf, Lihee; Shin, Masahiro; Busolin, Giorgia; Hofi, Roy; Almog, Gabriella; Tiso, Natascia; Lawson, Nathan D.; Yaniv, Karina

    2015-01-01

    Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds. PMID:26525671

  11. The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination

    PubMed Central

    Cubillos-Rojas, Monica; Schneider, Taiane; Hadjebi, Ouadah; Pedrazza, Leonardo; de Oliveira, Jarbas Rodrigues; Langa, Francina; Guénet, Jean-Louis; Duran, Joan; de Anta, Josep Maria; Alcántara, Soledad; Ruiz, Rocio; Pérez-Villegas, Eva María; Aguilar, Francisco J.; Carrión, Ángel M.; Armengol, Jose Angel; Baple, Emma; Crosby, Andrew H.; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-01-01

    A mutation in the HERC2 gene has been linked to a severe neurodevelopmental disorder with similarities to the Angelman syndrome. This gene codifies a protein with ubiquitin ligase activity that regulates the activity of tumor protein p53 and is involved in important cellular processes such as DNA repair, cell cycle, cancer, and iron metabolism. Despite the critical role of HERC2 in these physiological and pathological processes, little is known about its relevance in vivo. Here, we described a mouse with targeted inactivation of the Herc2 gene. Homozygous mice were not viable. Distinct from other ubiquitin ligases that interact with p53, such as MDM2 or MDM4, p53 depletion did not rescue the lethality of homozygous mice. The HERC2 protein levels were reduced by approximately one-half in heterozygous mice. Consequently, HERC2 activities, including ubiquitin ligase and stimulation of p53 activity, were lower in heterozygous mice. A decrease in HERC2 activities was also observed in human skin fibroblasts from individuals with an Angelman-like syndrome that express an unstable mutant protein of HERC2. Behavioural analysis of heterozygous mice identified an impaired motor synchronization with normal neuromuscular function. This effect was not observed in p53 knockout mice, indicating that a mechanism independent of p53 activity is involved. Morphological analysis showed the presence of HERC2 in Purkinje cells and a specific loss of these neurons in the cerebella of heterozygous mice. In these animals, an increase of autophagosomes and lysosomes was observed. Our findings establish a crucial role of HERC2 in embryonic development and motor coordination. PMID:27528230

  12. Leveraging Affective Learning for Developing Future Airmen

    DTIC Science & Technology

    2009-11-01

    sity, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: distribution unlimited...clude affective objectives in their lessons. A student’s affective state influences his or her learning pre- disposition, and educators should consider...but may not be possible for a large number of students or for dispersed learning activity. The ability to discern the affective state of students

  13. Interneurons Differentially Contribute to Spontaneous Network Activity in the Developing Hippocampus Dependent on Their Embryonic Lineage

    PubMed Central

    Wester, Jason C.

    2016-01-01

    Spontaneously generated network activity is a hallmark of developing neural circuits, and plays an important role in the formation of synaptic connections. In the rodent hippocampus, this activity is observed in vitro as giant depolarizing potentials (GDPs) during the first postnatal week. Interneurons importantly contribute to GDPs, due to the depolarizing actions of GABA early in development. While they are highly diverse, cortical interneurons can be segregated into two distinct groups based on their embryonic lineage from either the medial or caudal ganglionic eminences (MGE and CGE). There is evidence suggesting CGE-derived interneurons are important for GDP generation; however, their contribution relative to those from the MGE has never been directly tested. Here, we optogenetically inhibited either MGE- or CGE-derived interneurons in a region-specific manner in mouse neonatal hippocampus in vitro. In CA1, where interneurons are the primary source of recurrent excitation, we found that those from the MGE strongly and preferentially contributed to GDP generation. Furthermore, in dual whole-cell patch recordings in neonatal CA1, MGE interneurons formed synaptic connections to and from neighboring pyramidal cells at a much higher rate than those from the CGE. These MGE interneurons were commonly perisomatic targeting, in contrast to those from the CGE, which were dendrite targeting. Finally, inhibiting MGE interneurons in CA1 suppressed GDPs in CA3 and vice versa; conversely, they could also trigger GDPs in CA1 that propagated to CA3 and vice versa. Our data demonstrate a key role for MGE-derived interneurons in both generating and coordinating GDPs across the hippocampus. SIGNIFICANCE STATEMENT During nervous system development, immature circuits internally generate rhythmic patterns of electrical activity that promote the establishment of synaptic connections. Immature interneurons are excitatory rather than inhibitory and actively contribute to the generation

  14. [Cytological study of the post-embryonic development of the digestive gland of Sepia officinalis L. Mollusca : Cephalopoda (author's transl)].

    PubMed

    Yim, M; Boucaud-Camou, E

    1980-01-01

    A histological and ultrastructural study of the development of the digestive gland of Sepia officinalis L. was carried out on young Sepia reared in the laboratory, during the first month of post-embryonic life. The increasing complexity of the histological structure of the gland is related to the successive appearance of several cell types : immature cell, synthetizing cell, mature digestive cell ("cellule à boules"), and resting cell. These types are, in fact, just the evolutive stages of the same cell, the digestive cell. The sequence of appearance of the different cell types and the changes occurring in feeding can be used to define three stages in the post-embryonic development of the Sepia officinalis L. digestive gland : a multiplication stage (from hatching to the 5th day), a maturation stage (5th to 30th day), and adult stage (after the first month of post-embryonic life). These stages are identical to the three periods previously described by Richard and Decleir (1969) in the life of Sepia.

  15. Passage number of porcine embryonic germ cells affects epigenetic status and blastocyst rate following somatic cell nuclear transfer.

    PubMed

    Li, Juan; Gao, Yu; Petkov, Stoyan; Purup, Stig; Hyttel, Poul; Callesen, Henrik

    2014-06-10

    Epigenetic instability of donor cells due to long-term in vitro culture may influence the success rate of subsequent somatic cell nuclear transfer (SCNT). Therefore, the present study was designed (1) to investigate the epigenetic changes after prolonged culture in vitro of porcine embryonic germ (EG) cells, including differences in expression levels of both DNA methylation and demethylation-related genes and catalyses of histone modifications, and (2) to assess the efficiency of SCNT using EG cells from different passages. Results showed that genes either associated with DNA demethylation including DNMTs and TET1 or genes related to histone acetylation including HDACs were highly expressed in EG cells at higher passages when compared to EG cells at lower passages. In addition, the expression level of H3K27me3 functional methylase EZH2 increased while no changes were observed on H3K27me3 demethylase JMJD3 in relation to passage number. Moreover, the expression levels of both the H3K4me3 methylase MLL1 and the H3K4me3 demethylase RBP2 were increased at high passages. By using lower passage (numbers 3-5) EG cells as donor cells, the SCNT efficiency was significantly lower compared with use of fetal fibroblast donor cells. However, similar blastocyst rates were achieved when using higher passage (numbers 9-12) EG cells as donor cells. In conclusion, the present study suggests that the epigenetic status of EG cells change with increasing passage numbers, and that higher passage number EG cells are better primed for SCNT.

  16. Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development.

    PubMed

    Andersson, Olov; Bertolino, Philippe; Ibáñez, Carlos F

    2007-11-15

    Vg1, a member of the TGF-beta superfamily of ligands, has been implicated in the induction of mesoderm, formation of primitive streak, and left-right patterning in Xenopus and chick embryos. In mice, GDF1 and GDF3 - two TGF-beta superfamily ligands that share high sequence identity with Vg1 - have been shown to independently mimic distinct aspects of Vg1's functions. However, the extent to which the developmental processes controlled by GDF1 and GDF3 and the underlying signaling mechanisms are evolutionarily conserved remains unclear. Here we show that phylogenetic and genomic analyses indicate that Gdf1 is the true Vg1 ortholog in mammals. In addition, and similar to GDF1, we find that GDF3 signaling can be mediated by the type I receptor ALK4, type II receptors ActRIIA and ActRIIB, and the co-receptor Cripto to activate Smad-dependent reporter genes. When expressed in heterologous cells, the native forms of either GDF1 or GDF3 were incapable of inducing downstream signaling. This could be circumvented by using chimeric constructs carrying heterologous prodomains, or by co-expression with the Furin pro-protein convertase, indicating poor processing of the native GDF1 and GDF3 precursors. Unexpectedly, co-expression with Nodal - another TGF-beta superfamily ligand involved in mesoderm formation - could also expose the activities of native GDF1 and GDF3, suggesting a potentially novel mode of cooperation between these ligands. Functional complementarity between GDF1 and GDF3 during embryonic development was investigated by analyzing genetic interactions between their corresponding genes. This analysis showed that Gdf1(-/-);Gdf3(-/-) compound mutants are more severely affected than either Gdf1(-/-) or Gdf3(-/-) single mutants, with defects in the formation of anterior visceral endoderm and mesoderm that recapitulate Vg1 loss of function, suggesting that GDF1 and GDF3 together represent the functional mammalian homologs of Vg1.

  17. Embryonic development of a whirligig beetle, Dineutus mellyi, with special reference to external morphology (insecta: Coleoptera, Gyrinidae).

    PubMed

    Komatsu, Shintaro; Kobayashi, Yukimasa

    2012-05-01

    The egg morphology and successive changes of developing embryos of the whirligig beetle, Dineutus mellyi (Adephaga: Gyrinidae) are described from observations based on light and scanning electron microscopy. The egg surface is characterized by minute conical projections covering the entire egg surface, a stalk-like micropylar projection at the anterior pole of the egg, and a longitudinal split line along which the chorion is cleaved during the middle embryonic stages. The germ band or embryo is formed on the ventral egg surface, and develops on the surface throughout the egg period; thus, the egg is a superficial type, as is the case in most coleopteran species. A pair of lateral tracheal gills (LTGs) of the first abdominal segment originates from appendage-like projections arising at the lateral side of pleuropodia, and the LTGs of the second to ninth abdominal segments are arranged in a row with that of the first segment. Therefore, LTGs are structures with serial homology. The paired dorsal tracheal gills (DTGs) of the ninth abdominal segment are formed on the regions just latero-dorsal to the LTGs of this segment. Regarding the pleuropodia as the structures being homologous with thoracic legs, neither the LTGs nor DTGs are homologous with thoracic legs, but originate in the more lateral region corresponding to the future pleura of the thoracic segments. The last (10th) abdominal segment in the larva is formed by the fusion of the embryonic 10th and 11th abdominal segments. Four terminal hooks at the end of the last abdominal segment originate from two pairs of swellings on the posterior end of the embryonic 11th abdominal segment. It is proposed that the terminal hooks possibly correspond to the claws of medially fused cerci of the embryonic 11th abdominal segment.

  18. Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits

    PubMed Central

    2010-01-01

    Background Planktonic life history stages of spiralians share some muscular, nervous and ciliary system characters in common. The distribution of these characters is patchy and can be interpreted either as the result of convergent evolution, or as the retention of primitive spiralian larval features. To understand the evolution of these characters adequate taxon sampling across the Spiralia is necessary. Polyclad flatworms are the only free-living Platyhelminthes that exhibit a continuum of developmental modes, with direct development at one extreme, and indirect development via a trochophore-like larval stage at the other. Here I present embryological and larval anatomical data from the indirect developing polyclad Maritrigrella crozieri, and consider these data within a comparative spiralian context. Results After 196 h hours of embryonic development, M. crozieri hatches as a swimming, planktotrophic larva. Larval myoanatomy consists of an orthogonal grid of circular and longitudinal body wall muscles plus parenchymal muscles. Diagonal body wall muscles develop over the planktonic period. Larval neuroanatomy consists of an apical plate, neuropile, paired nerve cords, a peri-oral nerve ring, a medial nerve, a ciliary band nerve net and putative ciliary photoreceptors. Apical neural elements develop first followed by posterior perikarya and later pharyngeal neural elements. The ciliated larva is encircled by a continuous, pre-oral band of longer cilia, which follows the distal margins of the lobes; it also possesses distinct apical and caudal cilia. Conclusions Within polyclads heterochronic shifts in the development of diagonal bodywall and pharyngeal muscles are correlated with life history strategies and feeding requirements. In contrast to many spiralians, M. crozieri hatch with well developed nervous and muscular systems. Comparisons of the ciliary bands and apical organs amongst spiralian planktonic life-stages reveal differences; M. crozieri lack a distinct

  19. Parthenogenesis in unfertilized eggs of Coturnix chinensis, the Chinese painted quail, and the effect of egg clutch position on embryonic development.

    PubMed

    Parker, H M; McDaniel, C D

    2009-04-01

    Parthenogenesis, embryonic development of an unfertilized egg, was studied for many years in turkeys. In fact, as many as 49% of unfertilized Beltsville Small White turkey eggs develop embryos. However, no research exists on parthenogenesis in quail. The Chinese painted quail is a close relative of the more common Japanese quail and, unlike turkeys or chickens, the small Chinese painted quail reaches sexual maturity rapidly, making it a great candidate for further research on parthenogenesis. Obviously, a better understanding of avian parthenogenesis should increase our knowledge of avian fertilization and early embryonic development. Therefore, we determined if unfertilized Chinese painted quail hens produce embryos. Second, we explored the possibility that position of the egg within the clutch influences parthenogenesis. When initial secondary sexual plumage was apparent at 4 wk of age, male chicks were separated from females to prevent fertilization. Hens were placed in individual cages near sexual maturity, at approximately 6 wk of age. Individual eggs were collected daily and labeled with hen number and date. Eggs were stored for 0 to 3 d at 20 degrees C before incubation at 37.5 degrees C. After 10 d of incubation, approximately 4,000 eggs from 300 laying hens were examined for embryonic development under a magnifying lamp. On average, 4.8% of the unfertilized eggs contained an abortive form of embryonic development consisting of undifferentiated cells and unorganized membranes. Approximately 27% of the laying hens produced at least 1 egg with parthenogenic development. However, about 10% (30) of these hens exhibited a predisposition for parthenogenesis by producing 2 or more unfertilized eggs with embryonic development. Twenty percent of the eggs from 2 hens produced embryonic development. Additionally, the first egg laid in a clutch was most likely to produce embryonic development, with a steady decline in the percentage of eggs with embryonic development

  20. Comparative analysis of conditional reporter alleles in the developing embryo and embryonic nervous system.

    PubMed

    Ellisor, Debra; Koveal, Dorothy; Hagan, Nellwyn; Brown, Ashly; Zervas, Mark

    2009-10-01

    A long-standing problem in development is understanding how progenitor cells transiently expressing genes contribute to complex anatomical and functional structures. In the developing nervous system an additional level of complexity arises when considering how cells of distinct lineages relate to newly established neural circuits. To address these problems, we used both cumulative marking with Cre/loxP and Genetic Inducible Fate Mapping (GIFM), which permanently and heritably marks small populations of progenitors and their descendants with fine temporal control using CreER/loxP. A key component used in both approaches is a conditional phenotyping allele that has the potential to be expressed in all cell types, but is quiescent because of a loxP flanked Stop sequence, which precedes a reporter allele. Upon recombination, the resulting phenotyping allele is 'turned on' and then constitutively expressed. Thus, the reporter functions as a high fidelity genetic lineage tracer in vivo. Currently there is an array of reporter alleles that can be used in marking strategies, but their recombination efficiency and applicability to a wide array of tissues has not been thoroughly described. To assess the recombination/marking potential of the reporters, we utilized CreER(T) under the control of a Wnt1 transgene (Wnt1-CreER(T)) as well as a cumulative, non-inducible En1(Cre) knock-in line in combination with three different reporters: R26R (LacZ reporter), Z/EG (EGFP reporter), and Tau-Lox-STOP-Lox-mGFP-IRES-NLS-LacZ (membrane-targeted GFP/nuclear LacZ reporter). We marked the Wnt1 lineage using each of the three reporters at embryonic day (E) 8.5 followed by analysis at E10.0, E12.5, and in the adult. We also compared cumulative marking of cells with a history of En1 expression at the same stages. We evaluated the reporters by whole-mount and section analysis and ascertained the strengths and weaknesses of each of the reporters. Comparative analysis with the reporters

  1. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development.

    PubMed

    Caldwell, Katharine E; Labrecque, Matthew T; Solomon, Benjamin R; Ali, Abdulmehdi; Allan, Andrea M

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  2. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development

    PubMed Central

    Caldwell, Katharine E.; Labrecque, Matthew T.; Solomon, Benjamin R.; Ali, Abdulmehdi; Allan, Andrea M.

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50 ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  3. Effect of superovulation induction on embryonic development on day 5 and subsequent development and survival after nonsurgical embryo transfer in pigs.

    PubMed

    Hazeleger, W; Bouwman, E G; Noordhuizen, J P; Kemp, B

    2000-03-15

    To evaluate the effects of eCG dosage on recovery and quality of Day 5 embryos and on subsequent development and survival after embryo transfer, batches of 5 to 10 donor sows were treated with 1000 or 1500 IU eCG. Recipients from the same batch were synchronously treated with 800 IU eCG. Ovulation was induced with 750 IU hCG (72 h after eCG) in donors and recipients. Donors were inseminated and embryos were collected at 162 h after hCG (120 h after ovulation). Ovulation rate was lower using 1000 IU eCG (28.5+/-11.7; n=48) than 1500 IU eCG (45.7+/-20.3; n=32; P<0.0001). Embryo recovery rate (82.9+/-16.9%) and percentage expanded blastocysts (56.2+/-31.4%) were similar (P>0.05). Expanded blastocysts from each group of sows were pooled into 2 groups within eCG treatment, containing embryos from normally ovulating sows (< or = 25 corpora lutea [CL]) or from superovulated sows (> 25 CL). Average diameter and number of cells of a random sample of the expanded blastocysts per pool were recorded. The average diameter of blastocysts (160.5+/-11.5 microm) was not affected by eCG dosage or ovulation rate (P>0.10). The average number of cells per embryo was higher in the 1000 IU eCG group (84.3+/-15.3) than in the 1500 IU eCG group (70.2+/-1.9; P<0.05) but was similar for normal and superovulated donors within each eCG group (P>0.10). Of the 4 groups, litters of 28 to 30 blastocysts were nonsurgically transferred to 27 synchronous recipients. Pregnant recipients were slaughtered on Day 37 after hCG treatment to evaluate embryonic development and survival. Pregnancy rate for the 1000 and 1500 IU eCG donor groups was 71% (10/14) and 46% (6/13; P>0.10), respectively. The number of implantations and fetuses for the 1000 IU eCG groups was 12.9+/-3.0 and 11.1+/-2.7, and 14.2+/-7.0 and 10.5+/-4.6, respectively, for the 1500 IU eCG groups (P>0.10). After post-priory categorizing the litters of blastocysts to below or above the average diameter (158 microm) of the transferred embryos

  4. An experimental model for studying the biomechanics of embryonic tendon: Evidence that the development of mechanical properties depends on the actinomyosin machinery

    PubMed Central

    Kalson, Nicholas S.; Holmes, David F.; Kapacee, Zoher; Otermin, Iker; Lu, Yinhui; Ennos, Roland A.; Canty-Laird, Elizabeth G.; Kadler, Karl E.

    2010-01-01

    Tendons attach muscles to bone and thereby transmit tensile forces during joint movement. However, a detailed understanding of the mechanisms that establish the mechanical properties of tendon has remained elusive because of the practical difficulties of studying tissue mechanics in vivo. Here we have performed a study of tendon-like constructs made by culturing embryonic tendon cells in fixed-length fibrin gels. The constructs display mechanical properties (toe–linear–fail stress–strain curve, stiffness, ultimate tensile strength, and failure strain) as well as collagen fibril volume fraction and extracellular matrix (ECM)/cell ratio that are statistically similar to those of embryonic chick metatarsal tendons. The development of mechanical properties during time in culture was abolished when the constructs were treated separately with Triton X-100 (to solubilise membranes), cytochalasin (to disassemble the actin cytoskeleton) and blebbistatin (a small molecule inhibitor of non-muscle myosin II). Importantly, these treatments had no effect on the mechanical properties of the constructs that existed prior to treatment. Live-cell imaging and 14C-proline metabolic labeling showed that blebbistatin inhibited the contraction of the constructs without affecting cell viability, procollagen synthesis, or conversion of procollagen to collagen. In conclusion, the mechanical properties per se of the tendon constructs are attributable to the ECM generated by the cells but the improvement of mechanical properties during time in culture was dependent on non-muscle myosin II-derived forces. PMID:20736063

  5. Hypoxia during embryonic development increases energy metabolism in normoxic juvenile chicks.

    PubMed

    Amaral-Silva, Lara do; Scarpellini, Carolina da S; Toro-Velasquez, Paula Andrea; Fernandes, Marcia H M R; Gargaglioni, Luciane H; Bícego, Kênia C

    2017-03-07

    Environmental changes during perinatal development can affect the postnatal life. In this sense, chicken embryos that experience low levels of O2 over a specific phase of incubation can have their tissue growth reduced and the ventilatory response to hypoxia blunted, at least until hatching. Additionally, exposure to low level of O2 after birth reduces the thermogenesis as well. In the present study, we tested the hypothesis that hypoxia over the third week of incubation affects the thermoregulation of juvenile chicks at an age when thermogenesis is already expected to be well-developed. To this end, we measured body temperature (Tb) and oxygen consumption (V̇02) under acute hypoxia or different ambient temperatures (Ta) of 1 and 10day-old chicks that have been exposed to 21% O2 for entire incubation (Nx) or to 15% O2 in the last week of incubation (Hx). We also assessed the thermal preference under normoxia or acute hypoxia of the older chicks from both incubation groups in a thermocline. Hypoxia over incubation reduced growth but did not affect the cold-induced thermogenesis in hatchlings. Regarding the juvenile Hx, present data indicate a catch up growth with higher resting V̇02, a thermal preference for warmer Tas and a possible higher thermal conductance. In conclusion, our results show that hypoxia over the third week of incubation can affect the thermoregulation at least until 10days after hatch in chickens.

  6. KDM6 Demethylase Independent Loss of Histone H3 Lysine 27 Trimethylation during Early Embryonic Development

    PubMed Central

    Shpargel, Karl B.; Starmer, Joshua; Yee, Della; Pohlers, Michael; Magnuson, Terry

    2014-01-01

    The early mammalian embryo utilizes histone H3 lysine 27 trimethylation (H3K27me3) to maintain essential developmental genes in a repressive chromatin state. As differentiation progresses, H3K27me3 is removed in a distinct fashion to activate lineage specific patterns of developmental gene expression. These rapid changes in early embryonic chromatin environment are thought to be dependent on H3K27 demethylases. We have taken a mouse genetics approach to remove activity of both H3K27 demethylases of the Kdm6 gene family, Utx (Kdm6a, X-linked gene) and Jmjd3 (Kdm6b, autosomal gene). Male embryos null for active H3K27 demethylation by the Kdm6 gene family survive to term. At mid-gestation, embryos demonstrate proper patterning and activation of Hox genes. These male embryos retain the Y-chromosome UTX homolog, UTY, which cannot demethylate H3K27me3 due to mutations in catalytic site of the Jumonji-C domain. Embryonic stem (ES) cells lacking all enzymatic KDM6 demethylation exhibit a typical decrease in global H3K27me3 levels with differentiation. Retinoic acid differentiations of these ES cells demonstrate loss of H3K27me3 and gain of H3K4me3 to Hox promoters and other transcription factors, and induce expression similar to control cells. A small subset of genes exhibit decreased expression associated with reduction of promoter H3K4me3 and some low-level accumulation of H3K27me3. Finally, Utx and Jmjd3 mutant mouse embryonic fibroblasts (MEFs) demonstrate dramatic loss of H3K27me3 from promoters of several Hox genes and transcription factors. Our results indicate that early embryonic H3K27me3 repression can be alleviated in the absence of active demethylation by the Kdm6 gene family. PMID:25101834

  7. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development

    PubMed Central

    Goktas, Selda; Uslu, Fazil E.; Kowalski, William J.; Ermek, Erhan; Keller, Bradley B.

    2016-01-01

    The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis. PMID:27552150

  8. Relationship of primary and secondary myogenesis to fiber type development in embryonic chick muscle.

    PubMed

    Fredette, B J; Landmesser, L T

    1991-01-01

    The formation of fast and slow myotubes was investigated in embryonic chick muscle during primary and secondary myogenesis by immunocytochemistry for myosin heavy chain and Ca2(+)-ATPase. When antibodies to fast or slow isoforms of these two molecules were used to visualize myotubes in the posterior iliotibialis and iliofibularis muscles, one of the isoforms was observed in all primary and secondary myotubes until very late in development. In the case of myosin, the fast antibody stained virtually all myotubes until after stage 40, when fast myosin expression was lost in the slow myotubes of the iliofibularis. In the case of Ca2(+)-ATPase, the slow antibody also stained all myotubes until after stage 40, when staining was lost in secondary myotubes and in the fast primary myotubes of the posterior iliotibialis and the fast region of the iliofibularis. In contrast, the antibodies against slow muscle myosin heavy chain and fast muscle Ca2(+)-ATPase stained mutually exclusive populations of myotubes at all developmental stages investigated. During primary myogenesis, fast Ca2(+)-ATPase staining was restricted to the primary myotubes of the posterior iliotibialis and the fast region of the iliofibularis, whereas slow myosin heavy chain staining was confined to all of the primary myotubes of the slow region of the iliofibularis. During secondary myogenesis, the fast Ca2(+)-ATPase antibody stained nearly all secondary myotubes, while primaries in the slow region of the iliofibularis remained negative. Thus, in the slow region of the iliofibularis muscle, these two antibodies could be used in combination to distinguish primary and secondary myotubes. EM analysis of staining with the fast Ca2(+)-ATPase antibody confirmed that it recognizes only secondary myotubes in this region. This study establishes that antibodies to slow myosin heavy chain and fast Ca2(+)-ATPase are suitable markers for selective labeling of primary and secondary myotubes in the iliofibularis; these

  9. Influences of reduced expression of maternal bone morphogenetic protein 2 on mouse embryonic development.

    PubMed

    Singh, A P; Castranio, T; Scott, G; Guo, D; Harris, M A; Ray, M; Harris, S E; Mishina, Y

    2008-01-01

    Bone morphogenetic protein 2 (BMP2) was originally found by its osteoinductive ability, and recent genetic analyses have revealed that it plays critical roles during early embryogenesis, cardiogenesis, decidualization as well as skeletogenesis. In the course of evaluation of the conditional allele for Bmp2, we found that the presence of a neo cassette, a selection marker needed for gene targeting events in embryonic stem cells, in the 3' untranslated region of exon 3 of Bmp2, reduced the expression levels of Bmp2 both in embryonic and maternal mouse tissues. Some of the embryos that were genotyped as transheterozygous for the floxed allele with the neo cassette over the conventional null allele (fn/-) showed a lethal phenotype including defects in cephalic neural tube closure and ventral abdominal wall closure. The number of embryos exhibiting these abnormalities was increased when, due to different genotypes, expression levels of Bmp2 in maternal tissues were lower. These results suggest that the expression levels of Bmp2 in both embryonic and maternal tissues influence the normal neural tube closure and body wall closure with different thresholds.

  10. Early development of Xenopus embryos is affected by simulated gravity

    NASA Technical Reports Server (NTRS)

    Yokota, Hiroki; Neff, Anton W.; Malacinski, George M.

    1994-01-01

    Early amphibian (Xenopus laevis) development under clinostat-simulated weightlessness and centrifuge-simulated hypergravity was studied. The results revealed significant effects on (i) 'morphological patterning' such as the cleavage furrow pattern in the vegetal hemisphere at the eight-cell stage and the shape of the dorsal lip in early gastrulae and (ii) 'the timing of embryonic events' such as the third cleavage furrow completion and the dorsal lip appearance. Substantial variations in sensitivity to simulated force fields were observed, which should be considered in interpreting spaceflight data.

  11. Embryonic development of the bovine pineal gland (Bos taurus) during prenatal life (30 to 135 days of gestation).

    PubMed

    Regodón, S; Roncero, V

    2005-10-01

    The ontogenesis of the pineal gland of 30 bovine embryos (Bos taurus) has been analysed from 30 until 135 days of gestation by means of optical microscopy and immunohistochemical techniques. For this study, the specimens were grouped into three stages in accordance with the most relevant histological characteristics: Stage 1 (30 to 64 days of prenatal development); Stage 2 (70 to 90 days) and Stage 3 (106 to 135 days). In the cow, it is from 30 days of gestation that the first glandular outline becomes differentiated from the diencephalic ependyma of the third ventricle. This differentiation includes the phenomena of proliferation and multiplication of the ependymal cells that form the epithelium of the pineal outline in development. At 82 days of intrauterine life, in the interior of the pineal parenchyma, we witnessed some incipient pseudoglandular structures that at 135 days were well differentiated. The pineal parenchyma displays a cytology made up of two cellular types of structurally distinct characteristics: pinealoblasts and interstitial cells. Both cellular types begin differentiation at 70 days of embryonic development, the pinealoblasts being greater in number than the interstitial cells. The glandular stroma is formed from the capsular, trabecular and the perivascular connective tissue, filling the interparenchymal space. A dense network of capillaries, which drive across the trabecular connective tissue towards the central glandular zone where their density increases and their calibre is reduced, complete the glandular structure. GFAP positive cells were observed in the embryonic pineal parenchyma in stage 3. At 135 days of gestation, NPY positive fibers entered the pineal gland through the pineal capsule occupying a perivascular localization. Morphological studies of this nature are vital for future use as parameters, indicative of the functional activity of the bovine pineal gland during embryonic development.

  12. Effect of transforming growth factor-beta1 on decorin expression and muscle morphology during chicken embryonic and posthatch growth and development.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.

  13. Tissue distribution of the laminin beta1 and beta2 chain during embryonic and fetal human development.

    PubMed

    Roediger, Matthias; Miosge, Nicolai; Gersdorff, Nikolaus

    2010-04-01

    Laminins are the major glycoproteins present in all basement membranes. Previously, we showed that perlecan is present during human development. Although an overview of mRNA-expression of the laminin beta1 and beta2 chains in various developing fetal organs is already available, a systematic localization of the laminin beta1 and beta2 chains on the protein level during embryonic and fetal human development is missing. Therefore, we studied the immunohistochemical expression and tissue distribution of the laminin beta1 and beta2 chains in various developing embryonic and fetal human organs between gestational weeks 8 and 12. The laminin beta1 chain was ubiquitously expressed in the basement membrane zones of the brain, ganglia, blood vessels, liver, kidney, skin, pancreas, intestine, heart and skeletal system. Furthermore, the laminin beta2 chain was present in the basement membrane zones of the brain, ganglia, skin, heart and skeletal system. The findings of this study support and expand upon the theory that these two laminin chains are important during human development.

  14. Variables Affecting Economic Development of Wind Energy

    SciTech Connect

    Lantz, E.; Tegen, S.

    2008-07-01

    NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

  15. Cognition and Affect in Early Literacy Development.

    ERIC Educational Resources Information Center

    McNamee, Gillian D.; And Others

    1985-01-01

    Using Vygotsky's theory of development, explores the significance of storytelling and dramatization activities on the intellectual and emotional development of preschool children. Results indicate that dramatizing of children's stories enhances the storytelling of preschool children and, thus, influences their literacy development. (DST)

  16. Embryonic development of chicken (Gallus Gallus Domesticus) from 1st to 19th day-ectodermal structures.

    PubMed

    Toledo Fonseca, Erika; De Oliveira Silva, Fernanda Menezes; Alcântara, Dayane; Carvalho Cardoso, Rafael; Luís Franciolli, André; Sarmento, Carlos Alberto Palmeira; Fratini, Paula; José Piantino Ferreira, Antônio; Miglino, Maria Angélica

    2013-12-01

    Birds occupy a prominent place in the Brazilian economy not only in the poultry industry but also as an animal model in many areas of scientific research. Thus the aim of this study was to provide a description of macro and microscopic aspects of the ectoderm-derived structures in chicken embryos / fetuses poultry (Gallus gallus domesticus) from 1st to 19th day of incubation. 40 fertilized eggs, from a strain of domestic chickens, with an incubation period of 2-19 days were subjected to macroscopic description, biometrics, light, and scanning microscopy. All changes observed during the development were described. The nervous system, skin and appendages and organs related to vision and hearing began to be identified, both macro and microscopically, from the second day of incubation. The vesicles from the primitive central nervous system-forebrain, midbrain, and hindbrain-were identified on the third day of incubation. On the sixth day of incubation, there was a clear vascularization of the skin. The optic vesicle was first observed fourth day of development and on the fifth day there was the beginning of the lens formation. Although embryonic development is influenced by animal line as well as external factors such as incubation temperature, this paper provides a chronological description for chicken (Gallus gallus domesticus) during its embryonic development.

  17. Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys.

    PubMed

    Lawrence, Melanie L; Chang, C-Hong; Davies, Jamie A

    2015-03-13

    Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys.

  18. Student Learning of Early Embryonic Development via the Utilization of Research Resources from the Nematode Caenorhabditis elegans

    PubMed Central

    Eliceiri, Kevin W.; Squirrell, Jayne M.; White, John G.; Stewart, James

    2008-01-01

    This study was undertaken to gain insights into undergraduate students' understanding of early embryonic development, specifically, how well they comprehend the concepts of volume constancy, cell lineages, body plan axes, and temporal and spatial dimensionality in development. To study student learning, a curriculum was developed incorporating resources from the Caenorhabditis elegans research community. Students engaged in a preactivity assessment, followed by instructional materials (IMs) emphasizing inquiry-based learning and a postinstruction assessment to gauge their learning. This study, conducted at two research sites with eight and nine students, respectively, shows that before instruction, most students confused embryonic cell cleavage, where total volume is constant, with regular cell division, in which total cell volume doubles. Despite their ability to construct a cell lineage tree, most of the study participants were not aware of its biological significance. All students correctly identified cells of anterior and posterior axis, but not cells of the dorsal and ventral axis. Although the students had no difficulty with the time dimensional aspect of development, most viewed an embryo as spatially two-dimensional rather than three-dimensional. Furthermore, this study indicates that combining authentic research resources with inquiry-based learning benefits student learning of key concepts in embryology. PMID:18316809

  19. Fecundity, embryonic and ovarian development of blue swimming crab, Portunus pelagicus (Linnaeus, 1758) in coastal water of Johor, Malaysia.

    PubMed

    Ikhwanuddin, M; Azra, M N; Siti-Aimuni, H; Abol-Munafi, A B

    2012-08-01

    Blue swimming crab, Portunus pelagicus is widely study and research throughout the Indo-West Pacific, but little is known of its reproductive biology in Malaysia. The present study describes the fecundity, embryonic development and ovarian development stages of the P. pelagicus from Johor coastal water, Malaysia. Carapace width range of berried crabs sampled was from 9.64 to 13.32 cm, while the body weight range was from 75 to 235 g. The mean number of egg produced by females in different sizes ranged from 105443.333 +/- 35448.075 per eggs batch. Mean egg size during embryonic development at stage 1 was 0.307 +/- 0.037, while 0.386 +/- 0.039 and 0.396 +/- 0.033 for stage 2 and stage 3, respectively. Study showed that there was significant (p < 0.05) relationship between the number of eggs and carapace width/body weight. Mean diameter oocyte during ovarian development at stage 1 was 97.732 +/- 12.391 while for stage 2 was 149.516 +/- 23.287. Stage 3 showed increasingly of size with mean diameter was 158.506 +/- 27.616 and 181.013 +/- 24.339 for stage 4.

  20. Brycon gouldingi (Teleostei, Characidae): aspects of the embryonic development in a new fish species with aquaculture potential.

    PubMed

    Faustino, Francine; Nakaghi, Laura Satiko Okada; Neumann, Erika

    2011-11-01

    Brycon gouldingi is an endemic species from Tocantins-Araguaia basin, used as a food source by riverine communities and relevant to aquaculture. Information about the initial morphology of B. gouldingi, a recently described species, is absent. In the present study, we analysed the fertilization and the embryonic development of this species based on light and scanning electron microscopy. After collection of adult specimens in Mortes River - Mato Grosso, Brazil, adaptation to captivity and induced spawning at Buriti Fishculture, Nova Mutum - Mato Grosso, Brazil, in December 2007 and January 2008, samples were collected at pre-defined periods from egg extrusion up to larval hatching, which occurred at 13.9 ± 0.06 h post-fertilization (hpf) in average. At the moment of extrusion, the eggs were slightly ovoid bearing a single micropyle per oocyte with a funnel-shaped micropyle canal and vestibule covered with longitudinal folds, typical of the genus Brycon. The embryonic development of B. gouldingi was characterized by six stages with distinct features: zygote (from fertilization up to formation of egg-cell); cleavage (cell divisions resulting in blastomeres, including the morula phase); blastula (several embryonic cells in a cup shape, without distinction of cell boundaries); gastrula (cell movement); histogenesis/organogenesis (formation of tissues and organs); and hatching (larval chorion rupture). Right after hatching, the larvae presented neither swimming abilities nor visual accuracy, and the digestive trait was undifferentiated. The present study is the first report on biological features of embryogenesis in B. gouldingi, providing relevant information to several approaches, mainly related to taxonomy, ecology, conservation and captive rearing of this new Brycon species.