Science.gov

Sample records for affect energy supply

  1. Supply curves of conserved energy

    NASA Astrophysics Data System (ADS)

    Meier, A. K.

    1982-05-01

    Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes.

  2. US energy consumption and supply

    NASA Astrophysics Data System (ADS)

    Vanatta, C. M.

    1981-01-01

    Energy consumption and cost in 1978 and 1979 are discussed with emphasis on the effect of imported oil on the economy of the United States. Some of the international aspects of energy supply are described, and actions to meet the probability of a cutoff of oil imports from the Persian Gulf area are suggested. Short and long range strategies for ensuring energy self sufficiency are discussed. A rationale for major, long range dependence on fission and fusion power is given, and the possible advantages of a nearly all electric energy system are mentioned. Projection of energy consumption and supply to the year 2020 based upon economic and demographic models is discussed.

  3. Supply Curves of Conserved Energy

    SciTech Connect

    Meier, Alan Kevin

    1982-05-01

    Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes. The conservation supply curve concept can be applied to peak power, water, pollution, and other markets where consumers demand a service rather than a particular good.

  4. 76 FR 67721 - PNE Energy Supply, LLC;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission PNE Energy Supply, LLC; Supplemental Notice that Initial Market-Based Rate...-referenced proceeding of PNE Energy Supply, LLC's application for market-based rate authority, with...

  5. Water supply and demand in an energy supply model

    SciTech Connect

    Abbey, D; Loose, V

    1980-12-01

    This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

  6. Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary

    SciTech Connect

    Hurlbut, D. J.; McLaren, J.; Gelman, R.

    2013-08-01

    This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

  7. Global Energy: Supply, Demand, Consequences, Opportunities

    SciTech Connect

    Majumdar, Arun

    2008-08-14

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  8. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema

    Majumdar, Arun

    2016-07-12

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  9. Turkey's energy demand and supply

    SciTech Connect

    Balat, M.

    2009-07-01

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  10. Energy supply problems for emergency telephones

    NASA Astrophysics Data System (ADS)

    Steiger, S.

    1983-09-01

    The energy supply for isolated emergency telephones is discussed. The required energy for telephoning is so low that dry batteries are used. An illumination was necessary to recognize and find these telephones. Besides reflecting foils, five energy supplies are used: cable connection to the public electric grid, dry batteries, rechargeable batteries, solar energy, and chemical sources. A solar generator (40W, 12V) was developed. Tests show that an 80W solar generator and 200 A/hr buffer batteries are required. The utilization of these generators could be endangered by theft.

  11. Energy supply and demand in California

    NASA Technical Reports Server (NTRS)

    Griffith, E. D.

    1978-01-01

    The author expresses his views on future energy demand on the west coast of the United States and how that energy demand translates into demand for major fuels. He identifies the major uncertainties in determining what future demands may be. The major supply options that are available to meet projected demands and the policy implications that flow from these options are discussed.

  12. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  13. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.

  14. Factors affecting household satisfaction with electricity supply in rural India

    NASA Astrophysics Data System (ADS)

    Aklin, Michaël; Cheng, Chao-Yo; Urpelainen, Johannes; Ganesan, Karthik; Jain, Abhishek

    2016-11-01

    Electricity is an important component of socio-economic development, but most studies of household electricity access focus exclusively on the presence or absence of a connection. Here we reach beyond connectivity by examining the relationship between various dimensions of the quality of electricity supply and a household's subjective satisfaction with their electricity or lighting situation. Studying the results from a survey of 8,568 households in six large, energy-poor states from northern, central and eastern India, we find that household satisfaction responds strongly to the average hours of electricity available on a typical day. The positive effect of increasing the number of hours per day by one standard deviation on satisfaction is almost as large as that of electrifying a non-electrified household. These findings underscore the importance of moving from counting electricity connections to enhancing the quality of electricity supply.

  15. Energy supply chain optimization of hybrid feedstock processes: a review.

    PubMed

    Elia, Josephine A; Floudas, Christodoulos A

    2014-01-01

    The economic, environmental, and social performances of energy systems depend on their geographical locations and the surrounding market infrastructure for feedstocks and energy products. Strategic decisions to locate energy conversion facilities must take all upstream and downstream operations into account, prompting the development of supply chain modeling and optimization methods. This article reviews the contributions of energy supply chain studies that include heat, power, and liquid fuels production. Studies are categorized based on specific features of the mathematical model, highlighting those that address energy supply chain models with and without considerations of multiperiod decisions. Studies that incorporate uncertainties are discussed, and opportunities for future research developments are outlined.

  16. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  17. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema

    Majumdar, Arun

    2016-07-12

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  18. Assuring Supply Through New Energy Alternatives and Opportunities: The Defense Energy Support Center

    DTIC Science & Technology

    2009-04-27

    an energy and fuel supplier, DESC is sup- porting programs and initiatives that involve renewable energy , synthetic paraffinic kerosene, waste-to...overseeing their energy sustainment needs for the contract duration. BRANCHING INTO RENEWABLE ENERGY DESC recently developed the Renewable...projects intended to use renewable energy sources to supply power to installations. Solar Energy and Hydrogen The Defense Energy Supply Center has

  19. Energy supply alternatives for Picatinny Arsenal, NJ. Final report

    SciTech Connect

    Savoie, M.J.; Moshage, R.E.; Davidson, J.E.; Schanche, G.W.

    1992-09-01

    This report documents a study to determine the most economic methods of supplying thermal and electrical energy to Picatinny Arsenal, NJ. Based on energy use patterns and the condition of existing equipment, 10 major potential energy supply alternatives were identified and evaluated. Most of the alternatives contain additional options for various fuels and electrical generation. Each alternative was evaluated on the basis of (1) availability of funds, (2) initial capital costs, and (3) annual O and M costs.

  20. Factors Affecting Nurse Supply and Demand: An Exploration.

    ERIC Educational Resources Information Center

    Rose, Mary Ann

    1982-01-01

    This article addresses the nursing shortage from an economic standpoint by exploring supply and demand factors that influence the availability of nurses. Demand factors include payment mechanisms, cost containment, and availability of substitutes. Supply factors include the women's movement, labor force participation, and entry-level preparation.…

  1. Energy Supply and Development: A Major Concern.

    ERIC Educational Resources Information Center

    Avery, J. S.

    1978-01-01

    Reviews (1) problems created by United States dependence on foreign oil, (2) recent progress in oil and natural gas development in the U.S., and (3) alternative sources of energy such as the sun, coal, and uranium. (AV)

  2. Wind Energy: A Maturing Power Supply Possibility.

    ERIC Educational Resources Information Center

    Petersen, Erik Lundtang; And Others

    1987-01-01

    Suggests that wind energy for electrification will prove to be an appropriate technology with very positive socioeconomic benefits, especially in developing countries. Provides examples of projects conducted by a Danish wind research laboratory. (TW)

  3. Regional growth and energy supply: Is there an energy security issue?

    SciTech Connect

    Roop, J.M.; Freund, K.A.; Godoy-Kain, P.; Gu, A.Y.; Johnson, A.K.; Paananen, O.H.; Woodruff, M.G.

    1996-12-01

    This study examines how the growth of the developing world might affect energy markets in the future. Based on recent growth trends, world energy demand could reasonably be expected to grow from about 350 Exajoules (EJ: 1.0E18=0.95 Quad) to nearly 1025 EJ by the year 2020, nearly 3x current consumption estimates. Introduction of more energy-efficient technologies could reduce this growth by about 17% to 830 EJ. But one cannot rely exclusively on current trends to forecast future energy demand. The growth of the developing world will interact with supply to affect prices, which in turn will mitigate the growth of demand, and growth rates of energy use will be much more modes. Under the Business as Usual scenario, energy demand will grow to 835 EJ by 2020, and this could be reduced a further 15% to 714 EJ through the adoption of more energy efficient technologies. Fuel prices based on model results are analyzed. Energy security implications of rapid growth in the developing world are considered and found to be of likely little significance.

  4. Optimizing energy for a 'green' vaccine supply chain.

    PubMed

    Lloyd, John; McCarney, Steve; Ouhichi, Ramzi; Lydon, Patrick; Zaffran, Michel

    2015-02-11

    This paper describes an approach piloted in the Kasserine region of Tunisia to increase the energy efficiency of the distribution of vaccines and temperature sensitive drugs. The objectives of an approach, known as the 'net zero energy' (NZE) supply chain were demonstrated within the first year of operation. The existing distribution system was modified to store vaccines and medicines in the same buildings and to transport them according to pre-scheduled and optimized delivery circuits. Electric utility vehicles, dedicated to the integrated delivery of vaccines and medicines, improved the regularity and reliability of the supply chains. Solar energy, linked to the electricity grid at regional and district stores, supplied over 100% of consumption meeting all energy needs for storage, cooling and transportation. Significant benefits to the quality and costs of distribution were demonstrated. Supply trips were scheduled, integrated and reliable, energy consumption was reduced, the recurrent cost of electricity was eliminated and the release of carbon to the atmosphere was reduced. Although the initial capital cost of scaling up implementation of NZE remain high today, commercial forecasts predict cost reduction for solar energy and electric vehicles that may permit a step-wise implementation over the next 7-10 years. Efficiency in the use of energy and in the deployment of transport is already a critical component of distribution logistics in both private and public sectors of industrialized countries. The NZE approach has an intensified rationale in countries where energy costs threaten the maintenance of public health services in areas of low population density. In these countries where the mobility of health personnel and timely arrival of supplies is at risk, NZE has the potential to reduce energy costs and release recurrent budget to other needs of service delivery while also improving the supply chain.

  5. Renewable energy water supply - Mexico program summary

    SciTech Connect

    Foster, R.

    1997-12-01

    This paper describes a program directed by the US Agency for International Development and Sandia National Laboratory which installed sustainable energy sources in the form of photovoltaic modules and wind energy systems in rural Mexico to pump water and provide solar distillation services. The paper describes the guidelines which appeared most responsible for success as: promote an integrated development program; install quality systems that develop confidence; instill local project ownership; train local industry and project developers; develop a local maintenance infrastructure; provide users training and operations guide; develop clear lines of responsibilities for system upkeep. The paper emphasizes the importance of training. It also presents much collected data as to the characteristics and performance of the installed systems.

  6. (Energy and electricity supply and demand)

    SciTech Connect

    Wilbanks, T.J.

    1990-10-09

    At the request of the International Atomic Energy Agency (IAEA), representing eleven international agencies which are sponsoring the 1991 Helsinki Symposium on Electricity and the Environment, I traveled to Brussels to participate in the second meeting of one of four advisory groups established to prepare for the Symposium. At the meeting, I was involved in a review of a draft issue paper being prepared for the Symposium and of the Symposium program.

  7. Optimizing energy for a ‘green’ vaccine supply chain

    PubMed Central

    Lloyd, John; McCarney, Steve; Ouhichi, Ramzi; Lydon, Patrick; Zaffran, Michel

    2015-01-01

    This paper describes an approach piloted in the Kasserine region of Tunisia to increase the energy efficiency of the distribution of vaccines and temperature sensitive drugs. The objectives of an approach, known as the ‘net zero energy’ (NZE) supply chain were demonstrated within the first year of operation. The existing distribution system was modified to store vaccines and medicines in the same buildings and to transport them according to pre-scheduled and optimized delivery circuits. Electric utility vehicles, dedicated to the integrated delivery of vaccines and medicines, improved the regularity and reliability of the supply chains. Solar energy, linked to the electricity grid at regional and district stores, supplied over 100% of consumption meeting all energy needs for storage, cooling and transportation. Significant benefits to the quality and costs of distribution were demonstrated. Supply trips were scheduled, integrated and reliable, energy consumption was reduced, the recurrent cost of electricity was eliminated and the release of carbon to the atmosphere was reduced. Although the initial capital cost of scaling up implementation of NZE remain high today, commercial forecasts predict cost reduction for solar energy and electric vehicles that may permit a step-wise implementation over the next 7–10 years. Efficiency in the use of energy and in the deployment of transport is already a critical component of distribution logistics in both private and public sectors of industrialized countries. The NZE approach has an intensified rationale in countries where energy costs threaten the maintenance of public health services in areas of low population density. In these countries where the mobility of health personnel and timely arrival of supplies is at risk, NZE has the potential to reduce energy costs and release recurrent budget to other needs of service delivery while also improving the supply chain. PMID:25444811

  8. A reduced energy supply strategy in active vibration control

    NASA Astrophysics Data System (ADS)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  9. 76 FR 57897 - Energy Conservation Program: Energy Conservation Standards for Certain External Power Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... mode energy efficiency standards established in paragraph (w)(1)(i) of this section shall not apply to... RIN 1904-AB57 Energy Conservation Program: Energy Conservation Standards for Certain External Power Supplies AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Final...

  10. Supply of and demand for selected energy related mineral commodities

    USGS Publications Warehouse

    Sibley, Scott F.

    2010-01-01

    In this report, subjects discussed include components of mineral supply, production, and consumption data, and information on selected mineral commodities in which the Energy Critical Elements Study Group has an interest, and U.S. Geological Survey (USGS) recycling studies, with some results of these studies.

  11. Structural Optimization of an Energy Supply System from Economic Viewpoint

    NASA Astrophysics Data System (ADS)

    Gamou, Satoshi; Ito, Koichi; Yokoyama, Ryohei; Yoshida, Shu

    An optimal planning method of system structure is proposed to determine kinds, numbers and capacities of equipment for an energy supply system installed in commercial and public buildings from economic viewpoint. In this method, they are determined together with maximum contract demands of utilities such as electricity and natural gas so as to minimize the annual total cost in consideration of system's annual operational strategies corresponding to seasonal and hourly energy demand requirements. A numerical study is carried out for an office building with total floor area of 15000m2. Through the study, the following are clarified: (a) the optimal system structure for the office building; (b) the economic effects of the optimal system compared to other typical energy supply systems; (c) the influence on the optimal system structure of the future efficiency improvement and initial capital cost reduction of equipment.

  12. Demand-driven energy supply from stored biowaste for biomethanisation.

    PubMed

    Aichinger, Peter; Kuprian, Martin; Probst, Maraike; Insam, Heribert; Ebner, Christian

    2015-10-01

    Energy supply is a global hot topic. The social and political pressure forces a higher percentage of energy supplied by renewable resources. The production of renewable energy in form of biomethane can be increased by co-substrates such as municipal biowaste. However, a demand-driven energy production or its storage needs optimisation, the option to store the substrate with its inherent energy is investigated in this study. The calorific content of biowaste was found unchanged after 45 d of storage (19.9±0.19 kJ g(-1) total solids), and the methane yield obtained from stored biowaste was comparable to fresh biowaste or even higher (approx. 400 m(3) Mg(-1) volatile solids). Our results show that the storage supports the hydrolysis of the co-substrate via acidification and production of volatile fatty acids. The data indicate that storage of biowaste is an efficient way to produce bioenergy on demand. This could in strengthen the role of biomethane plants for electricity supply the future.

  13. Performance of fuel cell for energy supply of passive house

    SciTech Connect

    Badea, G.; Felseghi, R. A. Mureşan, D.; Naghiu, G.; Răboacă, S. M.; Aşchilean, I.

    2015-12-23

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  14. Performance of fuel cell for energy supply of passive house

    NASA Astrophysics Data System (ADS)

    Badea, G.; Felseghi, R. A.; Rǎboacǎ, S. M.; Aşchilean, I.; Mureşan, D.; Naghiu, G.

    2015-12-01

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  15. Possibilities of energy recovery and integrated energy supply for foundries

    NASA Astrophysics Data System (ADS)

    Pautz, J.

    1980-08-01

    The energy utilization of foundries equipped with electric melting and arc furnaces was investigated. Systems were studied which optimize heat economy. Studies of the energy balance of arc furnaces with conventional refractory linings and with water cooled linings clearly demonstrate recovery possibilities as a function of the temperature of the waste heat. Domestic water heating, central heating, scrap drying and steam generator plant applications are proposed for the recovered heat. A considerable overall improvement in efficiency can be achieved.

  16. 75 FR 32743 - Action Affecting Export Privileges; Green Supply, Inc.; Robert Leland Green and William Robert...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... Bureau of Industry and Security Action Affecting Export Privileges; Green Supply, Inc.; Robert Leland Green and William Robert Green; Order Denying Export Privileges In the Matter of: Green Supply, Inc., 3059 Audrian Road 581,) Vandalia, Missouri 63382, Respondent; Robert Leland Green, 3059 Audrian...

  17. Miscellaneous: Uruguay energy supply options study assessing the market for natural gas - executive summary.

    SciTech Connect

    Conzelmann, G.; Veselka, T.; Decision and Information Sciences

    2008-03-04

    Uruguay is in the midst of making critical decisions affecting the design of its future energy supply system. Momentum for change is expected to come from several directions, including recent and foreseeable upgrades and modifications to energy conversion facilities, the importation of natural gas from Argentina, the possibility for a stronger interconnection of regional electricity systems, the country's membership in MERCOSUR, and the potential for energy sector reforms by the Government of Uruguay. The objective of this study is to analyze the effects of several fuel diversification strategies on Uruguay's energy supply system. The analysis pays special attention to fuel substitution trends due to potential imports of natural gas via a gas pipeline from Argentina and increasing electricity ties with neighboring countries. The Government of Uruguay has contracted with Argonne National Laboratory (ANL) to study several energy development scenarios with the support of several Uruguayan institutions. Specifically, ANL was asked to conduct a detailed energy supply and demand analysis, develop energy demand projections based on an analysis of past energy demand patterns with support from local institutions, evaluate the effects of potential natural gas imports and electricity exchanges, and determine the market penetration of natural gas under various scenarios.

  18. Understanding the influence of climate change on the embodied energy of water supply.

    PubMed

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems.

  19. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Guidelines defining inadequate fuel or energy supply. 205... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility system fuel inventory or energy supply is a matter of managerial and engineering judgment based on...

  20. Survey on a cold-energy supply system using natural energy

    NASA Astrophysics Data System (ADS)

    1991-03-01

    This paper examines how unused cold energy sources are distributed and exist in the natural world and also evaluates the feasibility of the system to take out these cold energy sources by the use of solar energy, etc. and to supply them as cold energy to the surrounding area. Using a heat supply model building located at the dam-lake side, the system is outlined in the following three cases: dam-lake water and commercial electric power source system; dam-lake water and photovoltaic power generation system; and conventional energy system. These are viewed in terms of economy and effective energy utilization. When using a cold energy source below 10 C directly for the cold energy supply, a large effect is expected in terms of cost and energy. In a combination with the photovoltaic power generation, the problem is measured against snowfall, etc. The cold energy supply system which uses dam-lake water as a heat source of the heat pump has a large significance. A marked effect can be expected from a combination of an ice making heat pump and low temperature dam-lake water, in terms of effective energy utilization and cost reduction.

  1. Energy supplies and future engines for land, sea, and air.

    PubMed

    Wilson, David Gordon

    2012-06-01

    The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically.

  2. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  3. Supply of reactants for Redox bulk energy storage systems

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.

    1978-01-01

    World resources, reserves, production, and costs of reactant materials, iron, chromium, titanium and bromine for proposed redox cell bulk energy storage systems are reviewed. Supplying required materials for multimegawatt hour systems appears to be feasible even at current production levels. Iron and chromium ores are the most abundant and lowest cost of four reactants. Chromium is not a domestic reserve, but redox system installations would represent a small fraction of U.S. imports. Vast quantities of bromine are available, but present production is low and therefore cost is high. Titanium is currently available at reasonable cost, with ample reserves available for the next fifty years.

  4. Energy demand and supply in human skeletal muscle.

    PubMed

    Barclay, C J

    2017-03-12

    The energy required for muscle contraction is provided by the breakdown of ATP but the amount of ATP in muscles cells is sufficient to power only a short duration of contraction. Buffering of ATP by phosphocreatine, a reaction catalysed by creatine kinase, extends the duration of activity possible but sustained activity depends on continual regeneration of PCr. This is achieved using ATP generated by oxidative processes and, during intense activity, by anaerobic glycolysis. The rate of ATP breakdown ranges from 70 to 140 mM min(-1) during isometric contractions of various intensity to as much as 400 mM min(-1) during intense, dynamic activity. The maximum rate of oxidative energy supply in untrained people is ~50 mM min(-1) which, if the contraction duty cycle is 0.5 as is often the case in cyclic activity, is sufficient to match an ATP breakdown rate during contraction of 100 mM min(-1). During brief, intense activity the rate of ATP turnover can exceed the rates of PCr regeneration by combined oxidative and glycolytic energy supply, resulting in a net decrease in PCr concentration. Glycolysis has the capacity to produce between 30 and 50 mM of ATP so that, for example, anaerobic glycolysis could provide ATP at an average of 100 mM min(-1) over 30 s of exhausting activity. The creatine kinase reaction plays an important role not only in buffering ATP but also in communicating energy demand from sites of ATP breakdown to the mitochondria. In that role, creatine kinases acts to slow and attenuate the response of mitochondria to changes in energy demand.

  5. Transforming intermittent wind energy to a baseload power supply economically

    SciTech Connect

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload power supply cost-effectively by taking advantage of the fundamental properties of wind and by the efficient utilization of compressed air energy storage (CAES) systems. A utility scale wind-CAES-transmission system can have a 95 percent capacity factor at a cost of delivered electricity that is about 15 percent greater than a conventional wind energy system with a 34 percent capacity factor. This approach has several compelling advantages. It is based on existing technology and makes best use of costly transmission lines. It produces electricity that is the technical equivalent of that from fossil fuel or nuclear power stations. It minimizes greenhouse gas and other fossil fuel pollution, and is an industrial scale system that could cover a significant fraction of total electrical demand in regions such as the US, Mexico, China or Europe.

  6. Problems of cosmic laser energy supply to users on Earth

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Boris A.; Batenin, Vyatcheslav M.; Klimovskii, Ivan I.; Konev, Yuri B.

    1999-01-01

    The global cosmic systems may be used for solution of problems of the Earth supply with energy in the nearest future. Such system can involve several cosmic platforms on the polar or heliostationary orbits. The present paper deals with prospects for using 3 types of the high power IR lasers for the cosmic power systems. The first laser type is a laser optically pumped by thermal radiation; it uses an intermediate 'black body' radiator heated by solar radiation and offers substantial and important advantages. The second laser type is a CO2 laser with radio frequency pumping. We can use several 33 X 30000 W lasers in one module for approximately 1 MW cosmic laser system. The module of 320 X 320 m2 solar cells is needed for such laser system energy supply. The third laser type is a CO2 gas-dynamic laser. The numerical studies of carbon dioxide laser that is pumped by solar-thermal heating were made, and the output laser power approximately 1 MW was calculated. The parameters studies were conducted for this laser conception.

  7. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  8. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  9. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  10. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  11. Wind Energy's New Role in Supplying the World's Energy: What Role Will Structural Health Monitoring Play?

    SciTech Connect

    Butterfield, S.; Sheng, S.; Oyague, F.

    2009-12-01

    Wind energy installations are leading all other forms of new energy installations in the United States and Europe. In Europe, large wind plants are supplying as much as 25% of Denmark's energy needs and 8% of the electric needs for Germany and Spain, who have more ambitious goals on the horizon. Although wind energy only produces about 2% of the current electricity demand in the United States, the U.S. Department of Energy, in collaboration with wind industry experts, has drafted a plan that would bring the U.S. installed wind capacity up to 20% of the nation's total electrical supply. To meet these expectations, wind energy must be extremely reliable. Structural health monitoring will play a critical role in making this goal successful.

  12. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply

    PubMed Central

    Stobart, Jillian L.; Anderson, Christopher M.

    2013-01-01

    Dynamic adjustments to neuronal energy supply in response to synaptic activity are critical for neuronal function. Glial cells known as astrocytes have processes that ensheath most central synapses and express G-protein-coupled neurotransmitter receptors and transporters that respond to neuronal activity. Astrocytes also release substrates for neuronal oxidative phosphorylation and have processes that terminate on the surface of brain arterioles and can influence vascular smooth muscle tone and local blood flow. Membrane receptor or transporter-mediated effects of glutamate represent a convergence point of astrocyte influence on neuronal bioenergetics. Astrocytic glutamate uptake drives glycolysis and subsequent shuttling of lactate from astrocytes to neurons for oxidative metabolism. Astrocytes also convert synaptically reclaimed glutamate to glutamine, which is returned to neurons for glutamate salvage or oxidation. Finally, astrocytes store brain energy currency in the form of glycogen, which can be mobilized to produce lactate for neuronal oxidative phosphorylation in response to glutamatergic neurotransmission. These mechanisms couple synaptically driven astrocytic responses to glutamate with release of energy substrates back to neurons to match demand with supply. In addition, astrocytes directly influence the tone of penetrating brain arterioles in response to glutamatergic neurotransmission, coordinating dynamic regulation of local blood flow. We will describe the role of astrocytes in neurometabolic and neurovascular coupling in detail and discuss, in turn, how astrocyte dysfunction may contribute to neuronal bioenergetic deficit and neurodegeneration. Understanding the role of astrocytes as a hub for neurometabolic and neurovascular coupling mechanisms is a critical underpinning for therapeutic development in a broad range of neurodegenerative disorders characterized by chronic generalized brain ischemia and brain microvascular dysfunction. PMID:23596393

  13. Factors Affecting the Supply of Recent College Graduates in New England. Policy Brief 09-1

    ERIC Educational Resources Information Center

    Sasser, Alicia

    2009-01-01

    This policy brief investigates factors affecting New England's supply of recent college graduates and how those factors have changed over time, and suggests steps that states might take to expand this source of skilled labor. (Contains 3 figures.) [This brief summarizes analysis in NEPPC research report 08-1: "The Future of the Skilled Labor…

  14. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options

    SciTech Connect

    Pless, S.; Torcellini, P.

    2010-06-01

    A net-zero energy building (NZEB) is a residential or commercial building with greatly reduced energy needs. In such a building, efficiency gains have been made such that the balance of energy needs can be supplied with renewable energy technologies. Past work has developed a common NZEB definition system, consisting of four well-documented definitions, to improve the understanding of what net-zero energy means. For this paper, we created a classification system for NZEBs based on the renewable sources a building uses.

  15. Possibilities of utilizing alternative energy sources for combined heat supply systems in the Baltic

    SciTech Connect

    Shipkovs, P.; Grislis, V.; Zebergs, V. )

    1991-01-01

    The problem of alternative energy sources is an issue of major importance for the Baltic republics because of the limited supply of conventional energy resources. One of the ways to solve this problem could be the introduction of combined heat supply systems (CHSS). The combined heat supply systems are such systems where various energy sources in different regimes are made use of to ensure the optimum temperature on residential and industrial premises. The influence of climatic conditions on the selection of heat supply systems has been studied at large. In the present paper the use of alternative energy sources (AES) in combined heat supply systems (CHSS) is described.

  16. Electric vehicle (EV) storage supply chain risk and the energy market: A micro and macroeconomic risk management approach

    NASA Astrophysics Data System (ADS)

    Aguilar, Susanna D.

    As a cost effective storage technology for renewable energy sources, Electric Vehicles can be integrated into energy grids. Integration must be optimized to ascertain that renewable energy is available through storage when demand exists so that cost of electricity is minimized. Optimization models can address economic risks associated with the EV supply chain- particularly the volatility in availability and cost of critical materials used in the manufacturing of EV motors and batteries. Supply chain risk can reflect itself in a shortage of storage, which can increase the price of electricity. We propose a micro-and macroeconomic framework for managing supply chain risk through utilization of a cost optimization model in combination with risk management strategies at the microeconomic and macroeconomic level. The study demonstrates how risk from the EVs vehicle critical material supply chain affects manufacturers, smart grid performance, and energy markets qualitatively and quantitatively. Our results illustrate how risk in the EV supply chain affects EV availability and the cost of ancillary services, and how EV critical material supply chain risk can be mitigated through managerial strategies and policy.

  17. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.

    PubMed

    Lee, Dasheng

    2008-12-02

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  18. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    PubMed Central

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  19. Adoption and supply of a distributed energy technology

    NASA Astrophysics Data System (ADS)

    Strachan, Neil Douglas

    2000-12-01

    Technical and economic developments in distributed generation (DG) represent an opportunity for a radically different energy market paradigm, and potentially significant cuts in global carbon emissions. This thesis investigates DG along two interrelated themes: (1) Early adoption and supply of the DG technology of internal combustion (IC) engine cogeneration. (2) Private and social cost implications of DG for private investors and within an energy system. IC engine cogeneration of both power and heat has been a remarkable success in the Netherlands with over 5,000 installations and 1,500MWe of installed capacity by 1997. However, the technology has struggled in the UK with an installed capacity of 110Mwe, fulfilling only 10% of its large estimated potential. An investment simulation model of DG investments in the UK and Netherlands was used, together with analysis of site level data on all DG adoptions from 1985 through 1997. In the UK over 60% of the early installations were sized too small (<140kWe) to be economically attractive (suppliers made their money with maintenance contracts). In the Netherlands, most facilities were sized well above the economic size threshold of 100kWe (lower due to reduced operating and grid connection costs). Institutional players were key in improved sizing of DG. Aided by energy market and CO2 reduction regulatory policy, Dutch distributions utilities played a proactive role in DG. This involved joint ventures with engine cogen suppliers and users, offering improved electricity buy-back tariffs and lower connection costs. This has allowed flexible operation of distributed generation, especially in electricity sales to the grid. Larger units can be sized for on-site heat requirements with electricity export providing revenue and aiding in management of energy networks. A comparison of internal and external costs of three distributed and three centralized generation technologies over a range of heat to power ratios (HPR) was made

  20. Energy development scenarios and water demands and supplies: an overview

    USGS Publications Warehouse

    Kilpatrick, F.A.

    1977-01-01

    On the basis of average mean annual flows, ample water exists in the upper Missouri River basin for energy development. The lack of storage and diversion works upstream as well as State compacts preclude the ready use of this surplus water. These surplus flows are impounded in mainstream reservoirs on the Missouri downstream from coal mining areas but could be transported back at some expense for use in Wyoming and North Dakota. There are limited water supplies available for the development of coal and oil shale industries in the upper Colorado River Basin. Fortunately oil shale mining, retorting and reclamation do not require as much water as coal conversion; in-situ oil shale retorting would seem to be particularly desirable in the light of reduced water consumption. Existing patterns of energy production, transport, and conversion suggest that more of the coal to be mined out West is apt to be transmitted to existing load centers rather than converted to electricity or gas in the water-short West. Scenarios of development of the West 's fossil fuels may be overestimating the need for water since they have assumed that major conversion industries would develop in the West. Transport of coal to existing users will require all means of coal movement including unit trains, barges, and coal slurry pipelines. The latter is considered more desirable than the development of conversion industries in the West when overall water consumption is considered. (Woodard-USGS)

  1. Engineering manpower supply and demand in the petroleum industry as affected by engineering salary trends

    SciTech Connect

    Brown, D.C.

    1984-03-01

    To understand the changes that occur periodically in engineering manpower supply/demand trends in the petroleum industry, it is desirable to have an awareness of some of the major activity factors affecting such trends, of starting Petroleum Engineering salaries relating to that background, of the on-going engineering salary status which developed from these activities and of the large effect that high starting and on-going salaries do have in attracting and retaining engineers within the petroleum industry.

  2. 77 FR 20019 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM... Practice and Procedure, 18 CFR 385.206 and 206(h), FirstEnergy Solutions Corp. (FirstEnergy Solutions)...

  3. 77 FR 790 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM...) Rules of Practice and Procedures, 18 CFR 385.206, FirstEnergy Solutions Corp., Allegheny Energy...

  4. Effects of energy supply on leucine utilization by growing steers at two body weights.

    PubMed

    Schroeder, G F; Titgemeyer, E C; Moore, E S

    2007-12-01

    The effects of energy supplementation on Leu utilization in growing steers were evaluated in 2 experiments by using 6 ruminally cannulated Holstein steers. In Exp. 1, steers (initial BW = 150 +/- 7 kg) were limit-fed (2.3 kg of DM/d) a diet based on soybean hulls and received a basal ruminal infusion of 100 g of acetate/d, 75 g of propionate/d, and 75 g of butyrate/d, as well as abomasal infusions of 200 g of glucose/d and a mixture (215 g/d) containing all essential AA except Leu. Treatments were arranged as a 3 x 2 factorial, with 3 amounts of Leu infused abomasally (0, 4, and 8 g/d) and supplementation of diets with 2 amounts of energy (0 and 1.9 Mcal/d of GE). Supplemental energy was supplied by ruminal infusion of 100 g of acetate/ d, 75 g of propionate/d, and 75 g of butyrate/d, as well as abomasal infusion of 200 g of glucose/d to provide energy to the animal without affecting the microbial protein supply. When no supplemental energy was provided, Leu supplementation increased N balance, with no difference between 4 and 8 g/d of Leu (24.5, 27.0, and 27.3 g/d for 0, 4, and 8 g/d of Leu), but when additional energy was supplied, N retention increased linearly in response to Leu (25.6, 28.5, and 31.6 g/d for 0, 4, and 8 g/d of Leu; Leu x energy interaction, P = 0.06). The changes in N balance were the result of changes in urinary N excretion. The greater Leu retentions in response to energy supplementation when Leu was the most limiting nutrient indicate that energy supplementation improved the true efficiency of Leu utilization. In addition, supplemental energy increased the gross efficiency of Leu utilization when the Leu supply was not limiting by increasing the maximal rates of protein deposition. Experiment 2 was similar to Exp. 1, but steers had an initial BW of 275 +/- 12 kg and were limit-fed at 3.6 kg of DM/d. Retention of N was not affected (P = 0.22) by Leu supplementation, indicating that Leu did not limit protein deposition. Energy supply increased

  5. Electric energy supply systems: description of available technologies

    SciTech Connect

    Eisenhauer, J.L.; Rogers, E.A.; King, J.C.; Stegen, G.E.; Dowis, W.J.

    1985-02-01

    When comparing coal transportation with electric transmission as a means of delivering electric power, it is desirable to compare entire energy systems rather than just the transportation/transmission components because the requirements of each option may affect the requirements of other energy system components. PNL's assessment consists of two parts. The first part, which is the subject of this document, is a detailed description of the technical, cost, resource and environmental characteristics of each system component and technologies available for these components. The second part is a computer-based model that PNL has developed to simulate construction and operation of alternative system configurations and to compare the performance of these systems under a variety of economic and technical conditions. This document consists of six chapters and two appendices. A more thorough description of coal-based electric energy systems is presented in the Introduction and Chapter 1. Each of the subsequent chapters describes technologies for five system components: Western coal resources (Chapter 2), coal transportation (Chapter 3), coal gasification and gas transmission (Chapter 4), and electric power transmission (Chapter 6).

  6. Solar Energy Economics Revisited: The Promise and Challenge of Orbiting Reflectors for World Energy Supply

    NASA Technical Reports Server (NTRS)

    Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.

    1978-01-01

    A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.

  7. Modeling sustainability in renewable energy supply chain systems

    NASA Astrophysics Data System (ADS)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  8. Water-supply options in arsenic-affected regions in Cambodia: targeting the bottom income quintiles.

    PubMed

    Chamberlain, Jim F; Sabatini, David A

    2014-08-01

    In arsenic-affected regions of Cambodia, rural water committees and planners can choose to promote various arsenic-avoidance and/or arsenic-removal water supply systems. Each of these has different costs of providing water, subsequently born by the consumer in order to be sustainable. On a volumetric basis ($/m3-yr) and of the arsenic-avoidance options considered, small-scale public water supply - e.g., treated water provided to a central tap stand - is the most expensive option on a life-cycle cost basis. Rainwater harvesting, protected hand dug wells, and vendor-supplied water are the cheapest with a normalized present worth value, ranging from $2 to $10 per cubic meter per year of water delivered. Subsidization of capital costs is needed to make even these options affordable to the lowest (Q5) quintile. The range of arsenic-removal systems considered here, using adsorptive media, is competitive with large-scale public water supply and deep tube well systems. Both community level and household-scale systems are in a range that is affordable to the Q4 quintile, though more research and field trials are needed. At a target cost of $5.00/m3, arsenic removal systems will compete with the OpEx costs for most of the arsenic-safe water systems that are currently available. The life-cycle cost approach is a valuable method for comparing alternatives and for assessing current water supply practices as these relate to equity and the ability to pay.

  9. Association between shortage of energy supply and nuclear gene mutations leading to carcinomatous transformation.

    PubMed

    DU, Jianping

    2016-01-01

    Anaerobic bacteria use glycolysis, an oxygen-independent metabolic pathway, whereas energy metabolism in the evolved eukaryotic cell is performed via oxidative phosphorylation, with all eukaryotic cell activities depending upon high energy consumption. However, in cancer cells evolving from eukaryotic cells, the energy metabolism switches from oxidative phosphorylation to glycolysis. The shortage of energy supply induces cancer cells to acquire specific characteristics. Base pair renewal is the most energy-consuming process in the cell, and shortage of energy supply may lead to errors in this process; the more prominent the shortage in energy supply, the more errors are likely to occur in base pair renewal, resulting in gene mutations and expression of cancer cell characteristics. Thus, shortage of energy supply is associated with carcinomatous transformation.

  10. 78 FR 12750 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM... sections 206 and 306 of the Federal Power Act, 16 U.S.C. 824(e) and 825(e), FirstEnergy Solutions Corp....

  11. Statistical evaluation of variables affecting occurrence of hydrocarbons in aquifers used for public supply, California

    USGS Publications Warehouse

    Landon, Matthew K.; Burton, Carmen A.; Davis, Tracy A.; Belitz, Kenneth; Johnson, Tyler D.

    2014-01-01

    The variables affecting the occurrence of hydrocarbons in aquifers used for public supply in California were assessed based on statistical evaluation of three large statewide datasets; gasoline oxygenates also were analyzed for comparison with hydrocarbons. Benzene is the most frequently detected (1.7%) compound among 17 hydrocarbons analyzed at generally low concentrations (median detected concentration 0.024 μg/l) in groundwater used for public supply in California; methyl tert-butyl ether (MTBE) is the most frequently detected (5.8%) compound among seven oxygenates analyzed (median detected concentration 0.1 μg/l). At aquifer depths used for public supply, hydrocarbons and MTBE rarely co-occur and are generally related to different variables; in shallower groundwater, co-occurrence is more frequent and there are similar relations to the density or proximity of potential sources. Benzene concentrations are most strongly correlated with reducing conditions, regardless of groundwater age and depth. Multiple lines of evidence indicate that benzene and other hydrocarbons detected in old, deep, and/or brackish groundwater result from geogenic sources of oil and gas. However, in recently recharged (since ~1950), generally shallower groundwater, higher concentrations and detection frequencies of benzene and hydrocarbons were associated with a greater proportion of commercial land use surrounding the well, likely reflecting effects of anthropogenic sources, particularly in combination with reducing conditions.

  12. How energy policies affect public health.

    PubMed Central

    Romm, J J; Ervin, C A

    1996-01-01

    The connection between energy policy and increased levels of respiratory and cardiopulmonary disease has become clearer in the past few years. People living in cities with high levels of pollution have a higher risk of mortality than those living in less polluted cities. The pollutants most directly linked to increased morbidity and mortality include ozone, particulates, carbon monoxide, sulfur dioxide, volatile organic compounds, and oxides of nitrogen. Energy-related emissions generate the vast majority of these polluting chemicals. Technologies to prevent pollution in the transportation, manufacturing, building, and utility sectors can significantly reduce these emissions while reducing the energy bills of consumers and businesses. In short, clean energy technologies represent a very cost-effective investment in public health. Some 72% of the Federal government's investment in the research, development, and demonstration of pollution prevention technologies is made by the Department of Energy, with the largest share provided by the Office of Energy Efficiency and Renewable Energy. This article will examine the connections between air pollution and health problems and will discuss what the Department of Energy is doing to prevent air pollution now and in the future. Images p390-a p391-a p392-a p393-a p394-a p395-a p396-a p397-a PMID:8837627

  13. Renewable Energy Supply for Power Dominated, Energy Intense Production Processes - A Systematic Conversion Approach for the Anodizing Process

    NASA Astrophysics Data System (ADS)

    >D Stollenwerk, T Kuvarakul, I Kuperjans,

    2013-06-01

    European countries are highly dependent on energy imports. To lower this import dependency effectively, renewable energies will take a major role in future energy supply systems. To assist the national and inter-European efforts, extensive changes towards a renewable energy supply, especially on the company level, will be unavoidable. To conduct this conversion in the most effective way, the methodology developed in this paper can support the planning procedure. It is applied to the energy intense anodizing production process, where the electrical demand is the governing factor for the energy system layout. The differences between the classical system layout based on the current energy procurement and an approach with a detailed load-time-curve analysis, using process decomposition besides thermodynamic optimization, are discussed. The technical effects on the resulting energy systems are shown besides the resulting energy supply costs which will be determined by hourly discrete simulation.

  14. How clustering dark energy affects matter perturbations

    NASA Astrophysics Data System (ADS)

    Mehrabi, A.; Basilakos, S.; Pace, F.

    2015-09-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.

  15. Energy utilization, nitrogen balance and microbial protein supply in cattle fed Pennisetum purpureum and condensed tannins.

    PubMed

    Piñeiro-Vázquez, A T; Canul-Solis, J R; Alayón-Gamboa, J A; Chay-Canul, A J; Ayala-Burgos, A J; Solorio-Sánchez, F J; Aguilar-Pérez, C F; Ku-Vera, J C

    2017-02-01

    The aim of the experiment was to assess the effect of condensed tannins (CT) on feed intake, dry matter digestibility, nitrogen balance, supply of microbial protein to the small intestine and energy utilization in cattle fed a basal ration of Pennisetum purpureum grass. Five heifers (Bos taurus × Bos indicus) with an average live weight of 295 ± 19 kg were allotted to five treatments consisting of increasing levels of CT (0, 1, 2, 3 and 4% CT/kg DM) in a 5 × 5 Latin square design. Dry matter intake (DMI) was similar (p > 0.05) between treatments containing 0, 1, 2 and 3% of CT/kg DM and it was reduced (p < 0.05) to 4% CT (5.71 kg DM/day) with respect to that observed with 0% CT (6.65 kg DM/day). Nitrogen balance, purine derivatives excretion in urine, microbial protein synthesis and efficiency of synthesis of microbial nitrogen in the rumen were not affected (p ≥ 0.05) by the increase in the levels of condensed tannins in the ration. Energy loss as CH4 was on average 2.7% of the gross energy consumed daily. Metabolizable energy intake was 49.06 MJ/day in cattle fed low-quality tropical grass with a DMI of 6.27 kg/day. It is concluded that concentrations of CT between 2 and 3% of DM of ration reduced energy loss as CH4 by 31.3% and 47.6%, respectively, without affecting intakes of dry and organic matter; however, digestibilities of dry and organic matter are negatively affected.

  16. World Energy Supplies: The Present Use and Future Prospects.

    ERIC Educational Resources Information Center

    Harris, John; Osborne, Jonathan

    1978-01-01

    Presents Unit Nine Change and Chance of the Nuffield Advanced Physics, dealing with energy conservation, and a novel statistical approach to diffusion, thermal equilibrium and thermodynamics. Information about energy resources, alternative sources of energy, and energy-cost of materials are also presented. (HM)

  17. Opportunities for renewable energy technologies in water supply in developing country villages

    SciTech Connect

    Niewoehner, J.; Larson, R.; Azrag, E.; Hailu, T.; Horner, J.; VanArsdale, P.

    1997-03-01

    This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

  18. A high voltage power supply for the AE-C and D low energy electron experiment

    NASA Technical Reports Server (NTRS)

    Gillis, J. A.

    1974-01-01

    A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.

  19. [Energy and nutrient supply during childhood. VII. Vitamins. (author's transl)].

    PubMed

    Droese, W; Stolley, H; Kersting, M

    1980-06-01

    Vitamin intake (retinol, carotene, thiamine, riboflavin, niacin, ascorbic acid) of 2--14 year old children living at home is reported. The vitamin supply corresponds with the recommendations of the committees for nutrition of the Federal Republic of Germany, of the German Democratic Republic, of the United Kingdom and of USA. The vitamin intake of the children is in the same range with the vitamin intake of children in similar European countries. Children in USA get more vitamins with their diet. There are more foodstuffs with added vitamins in USA than in Europe. The children observed by us received with their warm midday meals 40--60% of their daily vitamin intake. Determinations of the mean vitamin intake for an individual child need longer observation periods (6--8 weeks) than determinations for other nutrients. With a mixed well-composed diet children have a good supply with vitamins.

  20. Decentralized control of units in smart grids for the support of renewable energy supply

    SciTech Connect

    Sonnenschein, Michael; Lünsdorf, Ontje; Bremer, Jörg; Tröschel, Martin

    2015-04-15

    controlled appliance sets is necessary. We introduce a method for self-organized clustering for this purpose and show how control of such clusters can affect load peaks in distribution grids. Subsequently, we give a short overview on how we are going to expand the idea of self-organized clusters of units into creating a virtual control center for dynamic virtual power plants (DVPP) offering products at a power market. For an efficient organization of DVPPs, the flexibilities of units have to be represented in a compact and easy to use manner. We give an introduction how the problem of representing a set of possibly 10{sup 100} feasible schedules can be solved by a machine-learning approach. In summary, this article provides an overall impression how we use agent based control techniques and methods of self-organization to support the further integration of distributed and renewable energy sources into power grids and energy markets. - Highlights: • Distributed load management for electrical vehicles supports local supply from PV. • Appliances can self-organize into so called virtual appliances for load control. • Dynamic VPPs can be controlled by extensively decentralized control centers. • Flexibilities of units can efficiently be represented by support-vector descriptions.

  1. The energy and emissions footprint of water supply for Southern California

    NASA Astrophysics Data System (ADS)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  2. Ecology of conflict: marine food supply affects human-wildlife interactions on land

    PubMed Central

    Artelle, Kyle A.; Anderson, Sean C.; Reynolds, John D.; Cooper, Andrew B.; Paquet, Paul C.; Darimont, Chris T.

    2016-01-01

    Human-wildlife conflicts impose considerable costs to people and wildlife worldwide. Most research focuses on proximate causes, offering limited generalizable understanding of ultimate drivers. We tested three competing hypotheses (problem individuals, regional population saturation, limited food supply) that relate to underlying processes of human-grizzly bear (Ursus arctos horribilis) conflict, using data from British Columbia, Canada, between 1960–2014. We found most support for the limited food supply hypothesis: in bear populations that feed on spawning salmon (Oncorhynchus spp.), the annual number of bears/km2 killed due to conflicts with humans increased by an average of 20% (6–32% [95% CI]) for each 50% decrease in annual salmon biomass. Furthermore, we found that across all bear populations (with or without access to salmon), 81% of attacks on humans and 82% of conflict kills occurred after the approximate onset of hyperphagia (July 1st), a period of intense caloric demand. Contrary to practices by many management agencies, conflict frequency was not reduced by hunting or removal of problem individuals. Our finding that a marine resource affects terrestrial conflict suggests that evidence-based policy for reducing harm to wildlife and humans requires not only insight into ultimate drivers of conflict, but also management that spans ecosystem and jurisdictional boundaries. PMID:27185189

  3. Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study

    SciTech Connect

    Masanet, Eric; Kramer, Klaas Jan; Homan, Gregory; Brown, Richard; Worrell, Ernst

    2009-01-01

    This paper summarizes a modeling framework that characterizes the key underlying technologies and processes that contribute to the supply chain energy use and greenhouse gas (GHG) emissions of a variety of goods and services purchased by U.S. consumers. The framework couples an input-output supply chain modeling approach with"bottom-up" fuel end use models for individual IO sectors. This fuel end use modeling detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the supply chain energy and GHG"footprints" of goods and services. To illustrate the policy-relevance of thisapproach, a case study was conducted to estimate achievable household GHG footprint reductions associated with the adoption of best practice energy-efficient supply chain technologies.

  4. NEMS International Energy Module, model documentation report: World Oil Market, Petroleum Products Supply and Oxygenates Supply components

    SciTech Connect

    Not Available

    1994-04-04

    The Energy Information Administration (EIA) is developing the National Energy Modeling System (NEMS) to enhance its energy forecasting capabilities and to provide the Department of Energy with a comprehensive framework for analyzing alternative energy` futures. NEMS is designed with a multi-level modular structure that represents specific energy supply activities, conversion processes, and demand sectors as a series of self-contained units which are linked by an integrating mechanism. The NEMS International Energy Module (IEM) computes world oil prices and the resulting patterns of international trade in crude oil and refined products. This report is a reference document for energy analysts, model users, and the public that is intended to meet EIA`s legal obligation to provide adequate documentation for all statistical and forecast reports (Public Law 93-275, section 57(b)(1). Its purpose is to describe the structure of the IEM. Actual operation of the model is not discussed here. The report contains four sections summarizing the overall structure of the IEM and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods. Following a general description of the function and rationale of its key components, system and equation level information sufficient to permit independent evaluation of the model`s technical details is presented.

  5. Nonstationary flow in a channel with variable cross section under conditions of periodic pulsed energy supply

    NASA Astrophysics Data System (ADS)

    Zamuraev, V. P.; Kalinina, A. P.

    2007-04-01

    The effect of a periodic pulsed supply of energy, equal to that of hydrogen combustion in air, on the structure of a supersonic flow in a channel of variable cross section modeling a ramjet tract has been studied. The flow has been numerically simulated based on two-dimensional gasdynamic equations. Various flow regimes are obtained depending on the configuration of energy supply zones and the excess air ratio in the channel.

  6. Local Energy Supply and Resiliency Act of 2013

    THOMAS, 113th Congress

    Sen. Franken, Al [D-MN

    2013-06-20

    06/25/2013 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. With printed Hearing: S.Hrg. 113-70. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  7. An overview of energy supply and demand in China

    SciTech Connect

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  8. An overview of energy supply and demand in China

    SciTech Connect

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  9. Factors Affecting Public-Supply Well Vulnerability in Two Karst Aquifers

    PubMed Central

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. PMID:24841501

  10. Factors affecting public-supply well vulnerability in two karst aquifers

    USGS Publications Warehouse

    Musgrove, MaryLynn; Katz, Brian G.; Fahlquist, Lynne S.; Crandall, Christy A.; Lindgren, Richard J.

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management.

  11. Factors affecting public-supply well vulnerability in two karst aquifers.

    PubMed

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management.

  12. Atmospheric Emissions from Forest Biomass Residues to Energy Supply Chain: A Case Study in Portugal

    PubMed Central

    Rafael, Sandra; Tarelho, Luis; Monteiro, Alexandra; Monteiro, Tânia; Gonçalves, Catarina; Freitas, Sylvio; Lopes, Myriam

    2015-01-01

    Abstract During the past decades, pressures on global environment and energy security have led to an increasing demand on renewable energy sources and diversification of the world's energy supply. The Portuguese energy strategy considers the use of Forest Biomass Residues (FBR) to energy as being essential to accomplish the goals established in the National Energy Strategy for 2020. However, despite the advantages pointing to FBR to the energy supply chain, few studies have evaluated the potential impacts on air quality. In this context, a case study was selected to estimate the atmospheric emissions of the FBR to the energy supply chain in Portugal. Results revealed that production, harvesting, and energy conversion processes are the main culprits for the biomass energy supply chain emissions (with a contribution higher than 90%), while the transport processes have a minor importance for all the pollutants. Compared with the coal-fired plants, the FBR combustion produces lower greenhouses emissions, on a mass basis of fuel consumed; the same is true for NOX and SO2 emissions. PMID:26064039

  13. Atmospheric Emissions from Forest Biomass Residues to Energy Supply Chain: A Case Study in Portugal.

    PubMed

    Rafael, Sandra; Tarelho, Luis; Monteiro, Alexandra; Monteiro, Tânia; Gonçalves, Catarina; Freitas, Sylvio; Lopes, Myriam

    2015-06-01

    During the past decades, pressures on global environment and energy security have led to an increasing demand on renewable energy sources and diversification of the world's energy supply. The Portuguese energy strategy considers the use of Forest Biomass Residues (FBR) to energy as being essential to accomplish the goals established in the National Energy Strategy for 2020. However, despite the advantages pointing to FBR to the energy supply chain, few studies have evaluated the potential impacts on air quality. In this context, a case study was selected to estimate the atmospheric emissions of the FBR to the energy supply chain in Portugal. Results revealed that production, harvesting, and energy conversion processes are the main culprits for the biomass energy supply chain emissions (with a contribution higher than 90%), while the transport processes have a minor importance for all the pollutants. Compared with the coal-fired plants, the FBR combustion produces lower greenhouses emissions, on a mass basis of fuel consumed; the same is true for NOX and SO2 emissions.

  14. Sustainable energy development and water supply security in Kamojang Geothermal Field: The Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Sofyan, Y.; Nishijima, J.; Fujimitsu, Y.

    2014-12-01

    The Kamojang Geothermal Field (KGF) is a typical vapor dominated hydrothermal system in West Java, Indonesia. This geothermal field is the oldest exploited geothermal field in Indonesia. From 1983 to 2005, more than 160 million tons of steam have been exploited from the KGF and more than 30 million tons of water were injected into the reservoir system. The injected water come from condensed water, local river and ground water. Sustainable production in the geothermal energy development is the ability of the production system applied to sustain the stable production level over long times and to manage the mass balance between production, injection and natural recharge in the geothermal reservoir during exploitation. Mass balance in the reservoir system can be monitored by using time lapse gravity monitoring. Mass variation of hydrodynamic in the reservoir of KGF from 1999 to 2005 is about -3.34 Mt/year while is about -3.78 Mt/year from 1999 to 2008. Another period between 2009 and 2010, mass variation decreased about -8.24 Mt. According to the history of production and injection, natural recharge to the KGF's reservoir is estimated at about 2.77 Mt/year from 1999 to 2005 and 2.75 Mt/year from 1999 to 2008. Between 2009 and 2010, KGF has a bigger mass deficiency rate throughout 200 MWe maintain production. Large amount of fresh water is needed for sustainable geothermal energy production, while the domestic water supply need is also increased. Natural recharge, about 50% of injected water, cooling system, drilling and other production activities in KGF spend large amounts of fresh water. Water consumption for local people around KGF is about 1.46 MT/year. The water volume around KGF of total runoff is the range between dry season 0.07 MT/month and rainy season 4.4 MT/month. The water demands for sustainable geothermal production of KGF and for local people's consumption will increase in the future. Integrated planning between the energy and water sectors in KGF

  15. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    plants can be economically substituted by low carbon based technologies. Furthermore, the integrated annual load management notably contributes to innovative process integration becoming economic in an energy system affected by low efficiency and flexibility. Further limiting flexibility, the geographic location of this innovative low carbon energy production technology strictly depends on geological boundary conditions, namely the presence of exploitable coal resources, and availability of energy transport networks to supply potential end users with the product. Hereby, feeding upgraded synthesis gas directly into the Bulgarian gas pipeline network avoiding its conversion into electricity is an alternative approach with relevant economic potentials. For that purpose, the proximity and availability of these transport networks as well as the demand of end users are validated by the integrated energy system model. Coupling our techno-economic process model to an energy system-modelling framework allows the determination of the future economical potentials and the limitations for the implementation of a low carbon energy production technology into the Bulgarian energy system. The obtained results show that the Bulgarian energy system can significantly benefit from the integration of underground coal gasification considering carbon dioxide mitigation technologies potentially initiating a continuous substitution of imported fuels by domestic coal resources.

  16. Nonregenerative natural resources in a sustainable system of energy supply.

    PubMed

    Bradshaw, Alex M; Hamacher, Thomas

    2012-03-12

    Following the lead of the European Union in introducing binding measures to promote the use of regenerative energy forms, it is not unreasonable to assume that the global demand for combustible raw materials for energy generation will be reduced considerably in the second half of this century. This will not only have a favourable effect on the CO(2) concentration in the atmosphere, but will also help preserve fossil fuels-important as raw materials in the chemical industry-for future generations. Nevertheless, associated with the concomitant massive shift to regenerative energy forms, there will be a strong demand for other exhaustible raw materials, in particular metals, some of which are already regarded as scarce. After reviewing the debate on mineral depletion between "cornucopians" and "pessimists", we discuss the meaning of mineral "scarcity", particularly in the geochemical sense, and mineral "exhaustion". The expected drastic increase in demand for mineral resources caused by demographic and societal pressures, that is, due to the increase in in-use stock, is emphasised. Whilst not discussing the issue of "strong" versus "weak" sustainability in detail, we conclude that regenerative energy systems-like nearly all resource-consuming systems in our society-do not necessarily satisfy generally accepted sustainability criteria. In this regard, we discuss some current examples, namely, lithium and cobalt for batteries, rare earth-based permanent magnets for wind turbines, cadmium and tellurium for solar cells and copper for electrical power distribution.

  17. Energy Crisis: Environmental Issue Exacerbates Power Supply Problem

    ERIC Educational Resources Information Center

    Boffey, Philip M.

    1970-01-01

    Analyzes problems of providing sufficient electrical power in terms of inefficiency of industry and of the conflict between need for power and need for environmental quality. Suggests ways of slowing the growth in demand, and indicates needed research into energy production. (EB)

  18. Critique of the mid-range energy forecasting, system oil and gas supply models

    SciTech Connect

    Patton, W.P.

    1980-10-01

    The Mid-Range Energy Forecasting System (MEFS) is a model used by the Department of Energy to forecast domestic production, consumption and price for conventional energy sources on a regional basis over a period of 5 to 15 years. Among the energy sources included in the model are oil, gas and other petroleum fuels, coal, uranium, and electricity. Final consumption of alternative energy sources is broken into end-use categories, such as residential, commercial and industrial uses. Regional prices for all energy sources are calculated by iteratively equating domestic supply and demand. The purpose of this paper is to assess the ability of the Oil and Gas Supply Submodels of MEFS to reliably and accurately project oil and gas supply curves, which are used in the integrating model, along with fuel demand curves to estimate market price. The reliability and accuracy of the oil and gas model cannot be judged by comparing its predictions against actual observations because those observations have not yet occurred. The reliability and reasonableness of the oil and gas supply model can be judged, however, by analyzing how well its assumptions and predictions correspond to accepted economic principles. This is the approach taken in this critique. The remainder of this paper describes the general structure of the oil and gas supply model and how it functions to project the quantity of oil and gas forthcoming at given prices in a particular year, then discusses the economic soundness of the model, and finally suggests model changes to improve its performance.

  19. Potential supply and cost of biomass from energy crops in the TVA region

    SciTech Connect

    Graham, R.L.; Downing, M.E.

    1995-04-01

    The economic and supply structures of energy crop markets have not been established. Establishing the likely price and supply of energy crop biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas, and coal. In this study, the cost and supply of short-rotation woody crop (SRWC) and switchgrass biomass for the Tennessee Valley Authority (TVA) region-a 276-county area that includes portions of 11 states in the southeastern United States - are projected. Projected prices and quantities of biomass are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected energy crop yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curves of SRWC and switchgrass biomass that are projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of energy crop production. Finally, the results of sensitivity analysis on the projected cost and supply of energy crop biomass are shown. In particular, the separate impacts of varying energy crop production costs and yields, and interest rates are examined.

  20. Increased food energy supply as a major driver of the obesity epidemic: a global analysis

    PubMed Central

    Chow, Carson C; Hall, Kevin D; Umali, Elaine; Swinburn, Boyd A

    2015-01-01

    Abstract Objective We investigated associations between changes in national food energy supply and in average population body weight. Methods We collected data from 24 high-, 27 middle- and 18 low-income countries on the average measured body weight from global databases, national health and nutrition survey reports and peer-reviewed papers. Changes in average body weight were derived from study pairs that were at least four years apart (various years, 1971–2010). Selected study pairs were considered to be representative of an adolescent or adult population, at national or subnational scale. Food energy supply data were retrieved from the Food and Agriculture Organization of the United Nations food balance sheets. We estimated the population energy requirements at survey time points using Institute of Medicine equations. Finally, we estimated the change in energy intake that could theoretically account for the observed change in average body weight using an experimentally-validated model. Findings In 56 countries, an increase in food energy supply was associated with an increase in average body weight. In 45 countries, the increase in food energy supply was higher than the model-predicted increase in energy intake. The association between change in food energy supply and change in body weight was statistically significant overall and for high-income countries (P < 0.001). Conclusion The findings suggest that increases in food energy supply are sufficient to explain increases in average population body weight, especially in high-income countries. Policy efforts are needed to improve the healthiness of food systems and environments to reduce global obesity. PMID:26170502

  1. Research on Load Energy Efficiency of DC Power Supply

    NASA Astrophysics Data System (ADS)

    Yue, Qing; Sun, Yiwei; Li, Ke; Li, Mengyu

    Traditional distribution network based on AC current has severely suffered from low efficiency in actual application, especially when an increasing numbers of home appliances are technically rely on DC current. In this paper, the energy efficiency of DC distribution system was analysed by means of comparison with traditional AC system. Firstly four types of typical appliances were discussed in terms of energy efficiency, which are the server, air conditioner, laptop computer and lighting. And then Models were further built up to perform the case study of three familiar situations in modern life, namely a typical living apartment, an office building and a data center. Finally, the power efficiencies of the three buildings were sorted up for comparison and analysis.

  2. The place of hard coal in energy supply pattern of Turkey

    SciTech Connect

    Yilmaz, A.O.; Aydiner, K.

    2009-07-01

    Lignite and hard coal are the major sources of domestic energy sources of Turkey. Hard coal is produced at only one district in the country. Zonguldak Hard Coal Basin is the major power for development of the Turkish steel-making industry. It is the only hard coal basin in the country and it has, to date, supplied approximately 400 million tons of run-of-mine hard coal. This article investigates the potential of hard coal as an energy source and discusses the measures to activate the region for the future energy supply objectives of the country.

  3. Nonstationary flow in the model channel of a ramjet engine in pulse-periodic energy supply

    NASA Astrophysics Data System (ADS)

    Zamuraev, V. P.; Kalinina, A. P.

    2008-05-01

    A study has been made of the influence of the pulse-periodic supply of energy that is equal to the energy released in the combustion of hydrogen in air on the structure of supersonic flow in a channel of variable cross section, modeling the duct of a ramjet engine. The flow has been modeled on the basis of two-dimensional nonstationary gas-dynamic equations. Different flow regimes have been obtained depending on the configuration of the zones of energy supply and the excess-air coefficients.

  4. Materials Flows Through Industry Tool to Track Supply Chain Energy Demand

    SciTech Connect

    Carpenter, Alberta; Mann, Margaret; Gelman, Rachel; Lewis, John; Benson, David; Cresko, Joe; Ma, Seungwook

    2014-10-01

    In evaluating next-generation materials and processes, the supply chain can have a large impact on the life cycle energy impacts. The Materials Flow through Industry (MFI) tool was developed for the Department of Energy's Advanced Manufacturing Office to be able to evaluate the energy impacts of the U.S. supply chain. The tool allows users to perform process comparisons, material substitutions, and grid modifications, and to see the effects of implementing sector efficiency potentials (Masanet, et al. 2009). This paper reviews the methodology of the tool and provides results around specific scenarios.

  5. 75 FR 16957 - Energy Conservation Program: Test Procedures for Battery Chargers and External Power Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... the definitions for active, standby, and off mode (42 U.S.C. 6295(gg)(2)(A)) The Department presented... energy consumption in active mode. Modify 4(c) to change standby mode measurement time. Modify 4(d) to... power supplies. In particular, DOE proposes to insert a new active mode energy consumption...

  6. Exogenous lactate supply affects lactate kinetics of rainbow trout, not swimming performance

    PubMed Central

    Omlin, Teye; Langevin, Karolanne

    2014-01-01

    Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal (Rd) is not stimulated as strongly as lactate appearance (Ra). This mismatch suggests that maximal Rd is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal Rd and minimal Ra. Our goals were to determine how exogenous lactate affects: 1) Ra and Rd of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, Ucrit) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal Rd lactate by 40% and reach impressive rates of 56 μmol·kg−1·min−1. This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest Rd normally observed after intense swimming. Baseline endogenous Ra (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect Ucrit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in Rd lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport. PMID:25121611

  7. Evaluating Opportunities to Improve Material and Energy Impacts in Commodity Supply Chains

    SciTech Connect

    Hanes, Rebecca J.; Carpenter, Alberta

    2017-01-01

    When evaluated at the scale of individual processes, next-generation technologies may be more energy and emissions intensive than current technology. However, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Materials Flow through Industry (MFI) supply chain modeling tool. The MFI tool is a cradle-to-gate linear network model of the US industrial sector that can model a wide range of manufacturing scenarios, including changes in production technology and increases in industrial energy efficiency. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing three lightweight vehicle supply chains to the supply chain of a conventional, standard weight vehicle. Several of the lightweight vehicle supply chains are evaluated under manufacturing scenarios that include next-generation production technologies and next-generation materials. Results indicate that producing lightweight vehicles is more energy and emission intensive than producing the non-lightweight vehicle, but the fuel saved during vehicle use offsets this increase. In this case study, greater reductions in supply chain energy and emissions were achieved through the application of the next-generation technologies than from application of energy efficiency increases.

  8. Placental supply of energy and protein substrates to the fetus.

    PubMed

    Hay, W W

    1994-12-01

    Table 1 shows an approximate metabolic balance sheet for the fetal sheep at late gestation. The metabolic balance in humans has not been determined but is estimated to be similar, except for a greater caloric requirement for fat deposition, adding about 33 kcal/kg/day to the total fetal caloric intake (34). The total fetal metabolic rate accounts for about 58% of caloric uptake. This percentage is close to the sum of the measured oxidation percentages of the principal energy substrates; this discrepancy cannot yet be explained.

  9. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  10. The Effect of Natural Gas Supply on US Renewable Energy and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Shearer, C.; Bistline, J.; Inman, M.; Davis, S. J.

    2014-12-01

    Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that more abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall energy use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013-2055 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable energy, more abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.

  11. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    NASA Astrophysics Data System (ADS)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and

  12. Opportunities of energy supply of farm holdings on the basis of small-scale renewable energy sources

    NASA Astrophysics Data System (ADS)

    Efendiev, A. M.; Nikolaev, Yu. E.; Evstaf'ev, D. P.

    2016-02-01

    One of the major national economic problems of Russia is raising of agricultural production, which will provide strategic security and sustainable supply of the population with provisions. Creation of subsidiary small holdings, farm holdings, and peasant farm holdings will require addressing issues of energy supply. At considerable distance of small farms from centralized energy systems (by fuel, electricity and thermal energy) it is proposed to create a system of local energy networks on the basis of low-powered power plants using renewable energy sources (RES). There is economic unreasonableness of use of imported components of small power plants. Creation of new combined small power plants on renewable energy sources produced by domestic manufacturers is recommended. Schemes of arrangements of small power plants based on renewable energy sources are proposed, variants and characteristics of a basic source are provided—biogas plants developed by the authors. Calculations revealed that heat and power supply of self-contained farms distant from small power plants based on renewable energy sources is 2.5-2.6 times cheaper than from centralized networks. Production of biogas through anaerobic fermentation of organic waste of cattle complexes is considered as the basis. The analysis of biowaste output in various cattle farms is carried out, and the volume of biogas is determined to meet the requirements of these farms in electrical and thermal energy. The objective of the present article is to study the possibility of creating small combined power plants in Russia based on renewable sources of energy for independent consumers.

  13. Edible energy: balancing inputs and waste in food supply chain and biofuels from algae

    NASA Astrophysics Data System (ADS)

    Alimonti, Gianluca; Brambilla, Riccardo; Pileci, Rosaria; Romano, Riccardo; Rosa, Francesca; Spinicci, Luca

    2017-01-01

    Energy is life. Without it there is no water, there is no nutrition. Man's ability to live, grow, produce wealth is closely linked to the energy availability and use. Fire has been the first energy conversion technology; since that moment, the link between energy and progress has been indissoluble. Nowadays, a much greater energy input into the food supply chain has made a much higher food production possible. This might have an impact on the water availability. Algae are a promising solution for the energy-food-water nexus.

  14. Public utilities supply solar energy to eager customers

    SciTech Connect

    1995-01-01

    This articles examines how photovoltaic power is an alternative source of energy that can help utilities earn goodwill from their customers for being innovative, saving money, and reducing harmful emissions. Planners at municipal utilities are discovering the advantages that photovoltaic (PV) power offers. In addition to the thousands of private, federal, state, and commercial PV systems installed during the last 20 years, more than 65 cities in 24 states also have installed such systems. PV power is cost effective in selected utility applications today, and those applications are expanding every year. PV can be useful in applications ranging from low-power uses to decentralized applications to large, central stations. Public utilities in Austin and Sacramento are among those successfully using PV power for all three types of applications.

  15. Regional industrial ecology: examples from regional economic systems of forest industry and energy supply in Finland.

    PubMed

    Korhonen, J

    2001-12-01

    Industrial ecology (IE) promotes the development of industrial systems based on recycling of matter and cascading of energy through cooperation. In this paper, the local/regional industrial ecosystem approach is reflected in two examples from Finland. The local forest industry system is based on renewable resources, waste materials and energy utilisation between forestry companies, a saw-mill, a pulp mill, a paper mill and a forest industry power plant. Waste energy from electricity production is used for production of heat and process steam. Regional city energy supply systems in Finland are also to a large extent arranged around power plants that utilise waste energy. The potential of combining the forest industry system with the energy supply systems of cities is considered and the conditions for success in the Finnish case are discussed.

  16. Reducing supply chain energy use in next-generation vehicle lightweighting

    SciTech Connect

    Hanes, Rebecca J.; Das, Sujit; Carpenter, Alberta

    2016-09-29

    Vehicle lightweighting reduces the amount of fuel consumed in a vehicle's use phase, but depending on what lightweight materials replace the conventional materials, and in what amounts, the manufacturing energy may increase or decrease. For carbon fiber reinforced polymer (CFRP), a next-generation lightweighting material, the increase in vehicle manufacturing energy is greater than the fuel savings, resulting in a net increase in energy consumption over a vehicle's manufacturing and use relative to a standard non-lightweighted car. [1] This work explores ways to reduce the supply chain energy of CFRP lightweighted vehicles through alternative production technologies and energy efficiency improvements. The objective is to determine if CFRP can offer energy savings comparable to or greater than aluminum, a conventional lightweighting material. Results of this analysis can be used to inform additional research and development efforts in CFRP production and future directions in lightweight vehicle production. The CFRP supply chain is modeled using the Material Flows through Industry (MFI) scenario modeling tool, which calculates 'mine to materials' energy consumption, material inventories and greenhouse gas emissions for industrial supply chains. In this analysis, the MFI tool is used to model the supply chains of two lightweighted vehicles, an aluminum intensive vehicle (AIV) and a carbon fiber intensive vehicle (CFV), under several manufacturing scenarios. Vehicle specifications are given in [1]. Scenarios investigated cover alternative carbon fiber (CF) feedstocks and energy efficiency improvements at various points in the vehicle supply chains. The alternative CF feedstocks are polyacrylonitrile, lignin and petroleum-derived mesophase pitch. Scenarios in which the energy efficiency of CF and CFRP production increases are explored using sector efficiency potential values, which quantify the reduction in energy consumption achievable when process equipment is

  17. Summary report on the Department of Energy`s management and operating contractors` use of government supply sources

    SciTech Connect

    Not Available

    1994-08-19

    Since 1992, the Office of Inspector General (OIG) audited the use of Government supply sources by five Department of Energy management and operating (M&O) contractors. The Department of Energy Acquisition Regulation (DEAR) prescribes that M&O contractors should use Government supply sources to satisfy their requirements for goods and services when these sources are made available to them and when it is economically advantageous. Four of the five audits disclosed that M&O contractors did not always use Government supply sources when these sources were available at a lower cost to the Government. As a result, these contractors incurred costs of approximately $13.6 million more for the supplies and services than necessary. The audit reports addressing these issues are summarized. Management did not agree with all aspects of the audit findings. It raised several objections which, when analyzed, questioned the very basis for the Federal Supply Schedule Program and its application to the Department`s contractors. These included: (1) questions about the Regulation language establishing the Federal Supply Schedule Program, (2) the impacts the Federal Supply Schedule Program had on the ability of the M&O`s to meet their small and small disadvantaged business procurement targets, and (3) the cost effectiveness of the Federal Supply Schedule Program itself. In addition to management`s objections to several of the audit findings, the authors noted that the re-invention concepts embodied in the National Performance Review (NPR) appear not to support the policy of centralized procurement. The purpose of this report is to highlight unresolved issues so that policies related to the use of Government supply sources can be clarified for use throughout the Department`s complex.

  18. 77 FR 59840 - Statutory Amendments Affecting Transportation of Agricultural Commodities and Farm Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... retail store deliveries. Thus, it is clear Congress intended to limit this exemption to retail... transportation from a retail distribution point of the farm supply to a location (farm or other location where the farm supply product would be used) within a 100 air-mile radius of the retail distribution...

  19. A decision model for cost effective design of biomass based green energy supply chains.

    PubMed

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures.

  20. Mimicking bipolar sextupole power supplies for low-energy operations at RHIC

    SciTech Connect

    Montag, C.; Bruno, D.; Jain, A.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.

    2011-03-28

    RHIC operated at energies below the nominal ion injection energy of E=9.8 GeV/u in 2010. Earlier test runs and magnet measurements indicated that all defocusing sextupole unipolar power supplies should be reversed to provide the proper sign of chromaticity. However, vertical chromaticity at E=3.85 GeV/u with this power supply configuration was still not optimal. This uncertainty inspired a new machine configuration where only half of the defocusing sextupole power supplies were reversed, taking advantage of the flexibility of the RHIC nonlinear chromaticity correction system to mimic bipolar sextupoles. This configuration resulted in a 30 percent luminosity gain and eliminated the need for further polarity changes for later 2010 low energy physics operations. Here we describe the background to this problem, operational experience, and RHIC online model changes to implement this solution.

  1. Evaluating Opportunities to Improve Material and Energy Impacts in Commodity Supply Chains.

    SciTech Connect

    Hanes, Rebecca J.; Carpenter, Alberta

    2016-06-28

    When evaluated at the process level, next-generation technologies may be more energy and emissions intensive than current technology. However, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Material Flows through Industry (MFI) scenario modeling tool. The MFI tool is a cradle-to-gate linear network model of the U.S. industrial sector that can model a wide range of manufacturing scenarios, including changes in production technology, increases in industrial energy efficiency, and substitution between functionally equivalent materials. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing a steel supply chain to the supply chains of several functionally equivalent materials. Several of the alternatives to the baseline steel supply chain include next-generation production technologies and materials. Results of the case study show that aluminum production scenarios can out-perform the steel supply chain by using either an advanced smelting technology or an increased aluminum recycling rate. The next-generation material supply chains do not perform as well as either aluminum or steel, but may offer additional use phase reductions in energy and emissions that are outside the scope of the MFI tool. Future work will combine results from the MFI tool with a use phase analysis.

  2. Bowman-Birk inhibitor affects pathways associated with energy metabolism in Drosophila melanogaster.

    PubMed

    Li, H-M; Sun, L; Mittapalli, O; Muir, W M; Xie, J; Wu, J; Schemerhorn, B J; Jannasch, A; Chen, J Y; Zhang, F; Adamec, J; Murdock, L L; Pittendrigh, B R

    2010-06-01

    Bowman-Birk inhibitor (BBI) is toxic when fed to certain insects, including the fruit fly, Drosophila melanogaster. Dietary BBI has been demonstrated to slow growth and increase insect mortality by inhibiting the digestive enzymes trypsin and chymotrypsin, resulting in a reduced supply of amino acids. In mammals, BBI influences cellular energy metabolism. Therefore, we tested the hypothesis that dietary BBI affects energy-associated pathways in the D. melanogaster midgut. Through microarray and metabolomic analyses, we show that dietary BBI affects energy utilization pathways in the midgut cells of D. melanogaster. In addition, ultrastructure studies indicate that microvilli are significantly shortened in BBI-fed larvae. These data provide further insights into the complex cellular response of insects to dietary protease inhibitors.

  3. Energy supply and demand modeling. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (Contains 250 citations and includes a subject term index and title list.)

  4. Energy supply and demand modeling. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (Contains 250 citations and includes a subject term index and title list.)

  5. Energy supply and demand modeling. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (Contains 250 citations and includes a subject term index and title list.)

  6. Legal and regulatory issues affecting aquifer thermal energy storage

    SciTech Connect

    Hendrickson, P.L.

    1981-10-01

    This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  7. Exudation of organic acids by Lupinus albus and Lupinus angustifolius as affected by phosphorus supply

    NASA Astrophysics Data System (ADS)

    Hentschel, Werner; Wiche, Oliver

    2016-04-01

    In phytomining and phytoremediation research mixed cultures of bioenergy crops with legumes hold promise to enhance availability of trace metals and metalloids in the soil plant system. This is due to the ability of certain legumes to mobilize trace elements during acquisition of nutrients making these elements available for co-cultured species. The legumes achieve this element mobilization by exudating carboxylates and enzymes as well as by lowering the pH value in the rhizosphere. The aim of our research was to determine characteristics and differences in the exudation of Lupinus albus and Lupinus angustifolius regarding to quantitative as to qualitative aspects. Especially the affection by phosphorus (P) supply was a point of interest. Thus we conducted laboratory batch experiments, wherein the plants were grown over four weeks under controlled light, moisture and nutritional conditions on sand as substrate. Half of the plants were supplied with 12 mg P per kg substrate, the other half were cultivated under a total lack of P. After cultivation the plants were transferred from the cultivation substrate into a 0,05 mmolṡL-1 CaCl2 solution. After two hours the plants were removed, moist and dry mass off shoots and roots were measured together with the root length (Tennants' method). Concentrations of exudated carboxylates in the CaCl2 solution were determined via IC (column: Metrosept OrganicAcids, eluent 0.5 molṡL-1 H2SO4 + 15% acetone, pH=3; 0.5 mLṡmin-1). As a result four different organic acids were identified (citric acid, fumaric acid, tartaric acid, malic acid) in concentration ranges of 0.15 mgṡL-1 (fumaric acid) to 9.21 mgṡL-1 (citric acid). Lupinus angustifolius showed a higher exudation rate (in nmol per cm root length per hour) than Lupinus albus in the presence of phosphorus (e.g. regarding citric acid: 1.99 vs 0.64 nmolṡ(gṡh)-1). However, as the root complexity and length of L. albus were far higher than of L. angustifolius, the total

  8. Short-Term Energy Outlook Model Documentation: Petroleum Products Supply Module

    EIA Publications

    2013-01-01

    The Petroleum Products Supply Module of the Short-Term Energy Outlook (STEO) model provides forecasts of petroleum refinery inputs (crude oil, unfinished oils, pentanes plus, liquefied petroleum gas, motor gasoline blending components, and aviation gasoline blending components) and refinery outputs (motor gasoline, jet fuel, distillate fuel, residual fuel, liquefied petroleum gas, and other petroleum products).

  9. Minimax Analysis of Economic and Energy Efficiencies of Heat-Supply Pipelines

    NASA Astrophysics Data System (ADS)

    Sabdenov, K. O.

    2016-11-01

    A minimax problem of minimization of financial expenses and energy expenditure in a heat-supply system of buildings has been formulated and solved. The optimum parameters of a pipeline, i.e., the pipe radius and the thickness of the heat-insulating material, have been found.

  10. Colostrum production in ewes: a review of regulation mechanisms and of energy supply.

    PubMed

    Banchero, G E; Milton, J T B; Lindsay, D R; Martin, G B; Quintans, G

    2015-05-01

    In sheep production systems based on extensive grazing, neonatal mortality often reaches 15% to 20% of lambs born, and the mortality rate can be doubled in the case of multiple births. An important contributing factor is the nutrition of the mother because it affects the amount of colostrum available at birth. Ewes carrying multiple lambs have higher energy requirements than ewes carrying a single lamb and this problem is compounded by limitations to voluntary feed intake as the gravid uterus compresses the rumen. This combination of factors means that the nutritional requirements of the ewe carrying multiple lambs can rarely be met by the supply of pasture alone. This problem can overcome by supplementation with energy during the last week of pregnancy, a treatment that increases colostrum production and also reduces colostrum viscosity, making it easier for the neonatal lamb to suck. In addition, litter size and nutrition both accelerate the decline in concentration of circulating progesterone that, in turn, triggers the onsets of both birth and lactogenesis, and thus ensures the synchrony of these two events. Furthermore, the presence of colostrum in the gut of the lamb increases its ability to recognize its mother, and thus improves mother-young bonding. Most cereal grains that are rich in energy in the form of starch, when used as supplements in late pregnancy will increase colostrum production by 90% to 185% above control (unsupplemented) values. Variation among types of cereal grain in the response they induce may be due to differences in the amount of starch digested post-ruminally. As a percentage of grain dry matter intake, the amount of starch entering the lower digestive tract is 14% for maize, 8.5% for barley and 2% for oats. Supplements of high quality protein from legumes and oleiferous seeds can also increase colostrum production but they are less effective than cereal grains. In conclusion, short-term supplementation before parturition

  11. Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models.

    PubMed

    Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  12. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China): A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    PubMed Central

    Zhao, Xiuli; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor. PMID:24511292

  13. Lithuanian Energy Security: Lithuania’s Dependence on Energy Supply From Russia

    DTIC Science & Technology

    2011-03-16

    security13. The 2007 energy strategy encourages Lithuania to participate in the common EU energy policy development process, and relate its energy...of the participating EU countries violates energy security interests of other member states. Projects such as Nord Stream should conform to EU...upon exported energy resources and participation in the energy markets of other countries, aiming at 10 controlling energy resources and energy

  14. Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS

    SciTech Connect

    David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

    2008-05-31

    ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

  15. Modeling the influence of various water stressors on regional water supply infrastructures and their embodied energy

    NASA Astrophysics Data System (ADS)

    Mo, Weiwei; Zhang, Qiong

    2016-06-01

    Water supply consumes a substantial amount of energy directly and indirectly. This study aims to provide an enhanced understanding of the influence of water stressors on the embodied energy of water supply (EEWS). To achieve this goal, the EEWS in 75 North Carolina counties was estimated through an economic input-output based hybrid life cycle assessment. Ten water stressor indicators related to population, economic development, climate, water source, and land use were obtained for the 75 counties. A multivariate analysis was performed to understand the correlations between water stressor indicators and the EEWS. A regression analysis was then conducted to identify the statistically significant indicators in describing the EEWS. It was found that the total amount of water supply energy varies significantly among selected counties. Water delivery presents the highest energy use and water storage presents the least. The total embodied energy was found to be highly correlated with total population. The regression analysis shows that the total embodied energy can be best described by total population and temperature indicators with a relatively high R square value of 0.69.

  16. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  17. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  18. Heterogeneous Light Supply Affects Growth and Biomass Allocation of the Understory Fern Diplopterygium glaucum at High Patch Contrast

    PubMed Central

    Guo, Wei; Song, Yao-Bin; Yu, Fei-Hai

    2011-01-01

    Spatial heterogeneity in resource supply is common and responses to heterogeneous resource supply have been extensively documented in clonal angiosperms but not in pteridophytes. To test the hypotheses that clonal integration can modify responses of pteridophytes to heterogeneous resource supply and the integration effect is larger at higher patch contrast, we conducted a field experiment with three homogeneous and two heterogeneous light treatments on the rhizomatous, understory fern Diplopterygium glaucum in an evergreen broad-leaved forest in East China. In homogeneous treatments, all D. glaucum ramets in 1.5 m×1.5 m units were subjected to 10, 40 and 100% natural light, respectively. In the heterogeneous treatment of low patch contrast, ramets in the central 0.5 m×0.5 m plots of the units were subjected to 40% natural light and their interconnected ramets in the surrounding area of the units to 100%; in the heterogeneous treatment of high patch contrast, ramets in the central plots were subjected to 10% natural light and those in the surrounding area to 100%. In the homogeneous treatments, biomass and number of living ramets in the central plots decreased and number of dead ramets increased with decreasing light supply. At low contrast heterogeneous light supply did not affect performance or biomass allocation of D. glaucum in the central plots, but at high contrast it increased lamina biomass and number of living ramets older than annual and modified biomass allocation to lamina and rhizome. Thus, clonal integration can affect responses of understory ferns to heterogeneous light supply and ramets in low light patches can be supported by those in high light. The results also suggest that effects of clonal integration depend on the degree of patch contrast and a significant integration effect may be found only under a relatively high patch contrast. PMID:22132189

  19. Forecasting jobs in the supply chain for investments in residential energy efficiency retrofits in Florida

    NASA Astrophysics Data System (ADS)

    Fobair, Richard C., II

    This research presents a model for forecasting the numbers of jobs created in the energy efficiency retrofit (EER) supply chain resulting from an investment in upgrading residential buildings in Florida. This investigation examined material supply chains stretching from mining to project installation for three product types: insulation, windows/doors, and heating, ventilating, and air conditioning (HVAC) systems. Outputs from the model are provided for the project, sales, manufacturing, and mining level. The model utilizes reverse-estimation to forecast the numbers of jobs that result from an investment. Reverse-estimation is a process that deconstructs a total investment into its constituent parts. In this research, an investment is deconstructed into profit, overhead, and hard costs for each level of the supply chain and over multiple iterations of inter-industry exchanges. The model processes an investment amount, the type of work and method of contracting into a prediction of the number of jobs created. The deconstruction process utilizes data from the U.S. Economic Census. At each supply chain level, the cost of labor is reconfigured into full-time equivalent (FTE) jobs (i.e. equivalent to 40 hours per week for 52 weeks) utilizing loaded labor rates and a typical employee mix. The model is sensitive to adjustable variables, such as percentage of work performed per type of product, allocation of worker time per skill level, annual hours for FTE calculations, wage rate, and benefits. This research provides several new insights into job creation. First, it provides definitions that can be used for future research on jobs in supply chains related to energy efficiency. Second, it provides a methodology for future investigators to calculate jobs in a supply chain resulting from an investment in energy efficiency upgrades to a building. The methodology used in this research is unique because it examines gross employment at the sub-industry level for specific

  20. 77 FR 22472 - Energy Conservation Program: Energy Conservation Standards for Certain External Power Supplies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J...)) Those standards consisted of minimum efficiency levels that these products must meet during active mode... April 9, 2012. Kathleen B. Hogan, Deputy Assistant Secretary for Energy Efficiency, Energy...

  1. Global energy issues affecting aeronautics: a reasoned conjecture

    NASA Astrophysics Data System (ADS)

    Allen, John E.

    1999-07-01

    This paper is a reasoned conjecture of the future up to 2050 AD including estimates of energy supply and consumption, transport system developments and corresponding pollution effects. Results of the logistic substitution methods (Volterra-Lotka) are used in forecasting trends in innovation, transport and energy. Later work on normative forecasts is also included. The future of aeronautics cannot be isolated from events in other transport modes which together create the major problem of crude oil replacement during the next century. Natural gas will be the dominant energy source for the next 80 years and a major question is how best to use it for aviation. The work on which this paper is based was started in 1992 to answer the following questions: Is the future oil shortfall sufficient to restrict aviation traffic and growth in the next 50 years? If so, what is its substitute? Can a substitute be obtained cheaply enough to free aviation from future kerosine shortages? Is it paramount to change to liquid hydrogen fuel to avoid future fuel shortage in aeronautics, incidentally conferring possible environmental advantages? There was no adequate evidence available to answer these questions, hence a method was devised to bring together several sets of partial data that contributed to the solution. The essence is to use the mean annual growth rate of traffic or energy over a future period as a pseudo-independent variable. This allows the inclusion of alternative high and low estimates of all the important quantities involved.

  2. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    NASA Astrophysics Data System (ADS)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  3. Waste biomass-to-energy supply chain management: a critical synthesis.

    PubMed

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas.

  4. Impact of enhanced geothermal systems on US energy supply in the twenty-first century.

    PubMed

    Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria

    2007-04-15

    Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.

  5. Sexual competition and N supply interactively affect the dimorphism and competiveness of opposite sexes in Populus cathayana.

    PubMed

    Chen, Juan; Dong, Tingfa; Duan, Baoli; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2015-07-01

    Several important dioecious species show sexual spatial segregation (SSS) along environmental gradients that have significant ecological effect on terrestrial ecosystem. However, little attention has been paid to understanding of how males and females respond to environmental gradients and sexual competition. We compared eco-physiological parameters of males and females of Populus cathayana under different sexual competition patterns and nitrogen (N) supply levels. We found that males and females interacting with the same or opposite sex showed significant differences in biomass partition, photosynthetic capacity, carbon (C) and N metabolism, and leaf ultrastructure, and that the sexual differences to competition were importantly driven by N supply. The intersexual competition was enhanced under high N, while the intrasexual competition among females was amplified under low N. Under high N, the intersexual competition stimulated the growth of the females and negatively affected the males. In contrast, under low N, the males exposed to intrasexual competition had the highest tolerance, whereas females exposed to intrasexual competition showed the lowest adaptation among all competition patterns. Sexual competition patterns and N supply levels significantly affected the sexual dimorphism and competitiveness, which may play an important role in spatial segregation of P. cathayana populations.

  6. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    NASA Astrophysics Data System (ADS)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater

  7. The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. I. Background and Justification

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Mullan, B.; Sigurdsson, S.; Povich, M. S.

    2014-09-01

    We motivate the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. We discuss some philosophical difficulties of the search for extraterrestrial intelligence (SETI), and how communication SETI circumvents them. We review "Dysonian SETI," the search for artifacts of alien civilizations, and find that it is highly complementary to traditional communication SETI; the two together might succeed where either one alone has not. We discuss the argument of Hart that spacefaring life in the Milky Way should be either galaxy-spanning or non-existent, and examine a portion of his argument that we call the "monocultural fallacy." We discuss some rebuttals to Hart that invoke sustainability and predict long Galaxy colonization timescales. We find that the maximum Galaxy colonization timescale is actually much shorter than previous work has found (<109 yr), and that many "sustainability" counter-arguments to Hart's thesis suffer from the monocultural fallacy. We extend Hart's argument to alien energy supplies and argue that detectably large energy supplies can plausibly be expected to exist because life has the potential for exponential growth until checked by resources or other limitations, and intelligence implies the ability to overcome such limitations. As such, if Hart's thesis is correct, then searches for large alien civilizations in other galaxies may be fruitful; if it is incorrect, then searches for civilizations within the Milky Way are more likely to succeed than Hart argued. We review some past Dysonian SETI efforts and discuss the promise of new mid-infrared surveys, such as that of WISE.

  8. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas

    NASA Astrophysics Data System (ADS)

    Metzger, Jürgen O.; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO2 content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  9. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas.

    PubMed

    Metzger, Jürgen O; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO(2) content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  10. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  11. Do stochastic inhomogeneities affect dark-energy precision measurements?

    PubMed

    Ben-Dayan, I; Gasperini, M; Marozzi, G; Nugier, F; Veneziano, G

    2013-01-11

    The effect of a stochastic background of cosmological perturbations on the luminosity-redshift relation is computed to second order through a recently proposed covariant and gauge-invariant light-cone averaging procedure. The resulting expressions are free from both ultraviolet and infrared divergences, implying that such perturbations cannot mimic a sizable fraction of dark energy. Different averages are estimated and depend on the particular function of the luminosity distance being averaged. The energy flux being minimally affected by perturbations at large z is proposed as the best choice for precision estimates of dark-energy parameters. Nonetheless, its irreducible (stochastic) variance induces statistical errors on Ω(Λ)(z) typically lying in the few-percent range.

  12. Influence of the Mixing Energy Consumption Affecting Coagulation and Floc Aggregation.

    PubMed

    Vadasarukkai, Yamuna S; Gagnon, Graham A

    2017-03-21

    The operational significance of energy-intensive rapid mixing processes remains unaddressed in coagulation and flocculation of insoluble precipitates (flocs), which play an important role in the removal of impurities from drinking water supplies. In this study, the influence of rapid mixing and associated mixing energy on floc aggregation was examined for a surface water source characterized by a high fraction of aquatic humic matter. Infrared spectral analyses showed that the colloidal complexes resulting from ligand exchange between iron and dissolved natural organic matter (DOM) were not substantially influenced by the mixing energy input. This signified that DOM removal by coagulation can be achieved at lower mixing intensity, thereby reducing energy consumption. In contrast, macroscopic investigations showed the coagulation mixing energy affected floc size distributions during the slow mixing stage in flocculation and, to some extent, their settling characteristics. The results from analysis of floc properties clearly showed that more mixing energy was expended than necessary in coagulation, which is typically designed at a high mixing intensity range of 600-1000 s(-1) in treatment plants. The key findings from this study have practical implications to water utilities to strategically meet water quality goals while reducing energy demands.

  13. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    SciTech Connect

    Fullenkamp, Patrick H; Holody, Diane S

    2014-06-15

    The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a

  14. Geothermal Program Review XV: proceedings. Role of Research in the Changing World of Energy Supply

    SciTech Connect

    1997-01-01

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XV in Berkeley, March 24-26, 1997. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focussed on {open_quotes}The Role of Research in the Changing World of Energy Supply.{close_quotes} This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Separate abstracts have been indexed to the database for contributions to this conference.

  15. Neural Energy Supply-Consumption Properties Based on Hodgkin-Huxley Model

    PubMed Central

    2017-01-01

    Electrical activity is the foundation of the neural system. Coding theories that describe neural electrical activity by the roles of action potential timing or frequency have been thoroughly studied. However, an alternative method to study coding questions is the energy method, which is more global and economical. In this study, we clearly defined and calculated neural energy supply and consumption based on the Hodgkin-Huxley model, during firing action potentials and subthreshold activities using ion-counting and power-integral model. Furthermore, we analyzed energy properties of each ion channel and found that, under the two circumstances, power synchronization of ion channels and energy utilization ratio have significant differences. This is particularly true of the energy utilization ratio, which can rise to above 100% during subthreshold activity, revealing an overdraft property of energy use. These findings demonstrate the distinct status of the energy properties during neuronal firings and subthreshold activities. Meanwhile, after introducing a synapse energy model, this research can be generalized to energy calculation of a neural network. This is potentially important for understanding the relationship between dynamical network activities and cognitive behaviors. PMID:28316842

  16. Neural Energy Supply-Consumption Properties Based on Hodgkin-Huxley Model.

    PubMed

    Wang, Yihong; Wang, Rubin; Xu, Xuying

    2017-01-01

    Electrical activity is the foundation of the neural system. Coding theories that describe neural electrical activity by the roles of action potential timing or frequency have been thoroughly studied. However, an alternative method to study coding questions is the energy method, which is more global and economical. In this study, we clearly defined and calculated neural energy supply and consumption based on the Hodgkin-Huxley model, during firing action potentials and subthreshold activities using ion-counting and power-integral model. Furthermore, we analyzed energy properties of each ion channel and found that, under the two circumstances, power synchronization of ion channels and energy utilization ratio have significant differences. This is particularly true of the energy utilization ratio, which can rise to above 100% during subthreshold activity, revealing an overdraft property of energy use. These findings demonstrate the distinct status of the energy properties during neuronal firings and subthreshold activities. Meanwhile, after introducing a synapse energy model, this research can be generalized to energy calculation of a neural network. This is potentially important for understanding the relationship between dynamical network activities and cognitive behaviors.

  17. Nitrogen stress affects the turnover and size of nitrogen pools supplying leaf growth in a grass.

    PubMed

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-08-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic ¹⁵N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with ¹⁵NO₃⁻/¹⁴NO₃⁻ from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r² > 0.99). This consisted of a "substrate pool," which received N from current uptake and supplied the growth zone, and a recycling/mobilizing "store," which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.

  18. Effect of improved hydrogen supply on energy state, ureogenesis and gluconeogenesis in isolated hepatocytes.

    PubMed

    Letko, G; Halangk, W

    1986-01-01

    The cellular energy state as well as ureogenesis and gluconeogenesis as ATP-consuming processes were studied as a function of hydrogen supply of mitochondria in isolated hepatocytes. Even though the ATP turnover was quite different during ureogenesis and gluconeogenesis and in the absence of these syntheses both the safranine signals (as a probe for the mitochondrial membrane potential) and the total ATP contents of the cells did not vary to a great extent. Partial uncoupling by FCCP destroyed the mitochondrial membrane potential and decreased the cellular ATP totally. Under these conditions the presence of ornithine plus lactate maintained a measurable membrane potential and ATP level. In order to demonstrate the relevance of hydrogen supply of mitochondria to the syntheses of glucose and urea, the load on energy metabolism was additionally increased by partial uncoupling, and the cells were incubated in a parallel mode in Krebs-Henseleit buffer and an 80 mM succinate containing medium, the latter forcing succinate into the cells. After partial uncoupling, ureogenesis and gluconeogenesis as well as the ATP level were seen to decrease markedly in Krebs-Henseleit buffer, whereas in the succinate medium the improved hydrogen supply of mitochondria counteracted the drain by FCCP, and substantially higher rates of the syntheses and elevated ATP levels were maintained.

  19. Energy Levels and Co-evolution of Product Innovation in Supply Chain Clusters

    NASA Astrophysics Data System (ADS)

    Ji, Guojun

    In the last decade supply chain clusters phenomenon has emerged as a new approach in product innovation studies. This article makes three contributions to the approach by addressing some open issues. The first contribution is to explicitly incorporate the energy levels in the analysis. Hence, the unit of analysis is widened from sectoral systems of innovation to socio-technical systems. Hence, the unit of analysis is widened from sectoral systems of innovation to socio-technical systems. The second contribution is to suggest an analytical distinction between different evolution method, actors involved in them, and the institutions which guide actor's perceptions and activities. Thirdly, the article opens up the black box of institutions, making them an integral part of supply chain. The article provides a coherent conceptual multi-level perspective, using insights from sociology, institutional theory and innovation studies. The perspective is particularly useful to analyze long-term dynamics supply chain clusters phenomenon, shifts from one energy level to another and the co-evolution of product innovation.

  20. Energy Costs of Urban Water Supply Systems: Evidence from India (Invited)

    NASA Astrophysics Data System (ADS)

    Malghan, D.; Mehta, V. K.; Goswami, R.

    2013-12-01

    For the first time in human history more people around the globe now live in urban centres rather than in rural settings. Although India's urban population proportion at 31% is still below the global average, it has been urbanizing rapidly. The population growth rate in urban India is more than two-and-half times that of rural India. The current Indian urban population, of over 370 million people, exceeds that of the total population of every other country on the planet with the exception of China. Supplying water to India's burgeoning urban agglomerations poses a challenge in terms of social equity, biophysical sustainability, and economic efficiency. A typical Indian city relies on both surface and ground water sources. Several Indian cities import surface water from distances that now exceed a hundred kilometres and across gradients of up to three thousand metres. While the depleting groundwater levels as a result of rapidly growing demand from urban India is at least anecdotally understood even when reliable estimates are not available, the energy costs of supplying water to urban India has thus far not received academic or policy attention it deserves. We develop a simple framework to integrate distributed groundwater models with water consumption data to estimate the energy and emissions associated with supplying water to urban centres. We assemble a unique data set from seventy five of the largest urban agglomerations in India and derive estimated values of energy consumption and carbon emissions associated with water provision in urban India. Our analysis shows that in every major city, the energy cost associated with long distance import of surface water significantly exceeds groundwater extraction. However, with rapidly depleting groundwater levels, we estimate inflection points for select cities when energy costs of groundwater extraction will exceed energy required to import surface water into the city. In addition to the national snapshot, we also

  1. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  2. Modulation of energy and protein supplies in sequential feeding in laying hens.

    PubMed

    Traineau, M; Bouvarel, I; Mulsant, C; Roffidal, L; Launay, C; Lescoat, P

    2015-01-01

    Sequential feeding (SF) consists of splitting energy (E) and protein/calcium (P) fractions temporally, improving the feed conversion ratio (FCR) of hens compared with a continuous distribution during the day. In a previous study, the E fraction (with a low level of protein) was provided in the morning, whereas the P fraction (with low level of energy) was given in the afternoon. However, there is no clear evidence that a requirement in energy or proteins is connected to these distribution sequences, whereas the requirement for calcium is known to be required in the afternoon. To evaluate the effects on performances of the modulation of energy and protein supplies in SF, five different sequential treatments were offered: E0P0/E0P0; E+P+/E-P-; E+P-/E-P+; E0P+/E0P- and E+P0/E-P0 where E+ represents a high energy level, E0 a moderate one and E- a low one (with the same meaning for P regarding protein supply). Afternoon fractions were provided with particulate calcium. A total of 168 Hendrix hens were housed in individual cages from 20 to 39 weeks of age in two environmentally contrasted rooms. Feed intake in the morning and afternoon fractions, egg production, egg weight, BW and weight of digestive organs were recorded. No diet effect was observed concerning feed intake, egg production and BW. These results suggested that hens are not able to fit their feed intake on energy or protein level of fractions within half-day duration, whereas at the day scale same protein and energy intakes were observed. Moreover, the time of nutrient distribution in feeding did not seem to have an impact on birds' performances. These studies have also demonstrated that, despite strong environmental pressure, the hens with SF had attenuated performance but continue to produce eggs.

  3. A simple metabolic model of glacial-interglacial energy supply to the upper ocean

    NASA Astrophysics Data System (ADS)

    Pelegrí, J. L.; Olivella, R.; García-Olivares, A.

    2011-03-01

    We use a simple two-state two-box ocean to simulate the CO2 signal during the last four glacial-interglacial transitions in the earth system. The model is inspired by the similarity in spatial organization and temporal transition patterns between the earth and other complex systems, such as mammals. The comparison identifies the earth's metabolic rate with net autotrophic primary production in the upper ocean, sustained through new inorganic carbon and nutrients advected from the deep ocean and organic matter remineralized within the upper ocean. We view the glacial-interglacial transition as a switch of the upper ocean from a basal to an enhanced metabolic state, with energy supply initially relying on the remineralization of the local organic sources and the eventual steady state resulting from the increased advective supply of inorganic deep sources. During the interglacial-glacial transition the opposite occurs, with an initial excess of advective supply and primary production that allows the replenishment of the upper-ocean organic storages. We set the relative change in energy supply from the CO2 signal and use genetic algorithms to explore the sensitivity of the model output to both the basal recirculation rate and the intensity-timing of the maximum recirculation rate. The model is capable of reproducing quite well the long-term oscillations, as shown by correlations with observations typically about 0.8. The dominant time scale for each cycle ranges between about 40 and 45 kyr, close to the 41 kyr average obliquity astronomical period, and the deep-ocean recirculation rate increases between one and two orders of magnitude from glacial to interglacial periods.

  4. Experimental manipulations of tissue oxygen supply do not affect warming tolerance of European perch.

    PubMed

    Brijs, Jeroen; Jutfelt, Fredrik; Clark, Timothy D; Gräns, Albin; Ekström, Andreas; Sandblom, Erik

    2015-08-01

    A progressive inability of the cardiorespiratory system to maintain systemic oxygen supply at elevated temperatures has been suggested to reduce aerobic scope and the upper thermal limit of aquatic ectotherms. However, few studies have directly investigated the dependence of thermal limits on oxygen transport capacity. By manipulating oxygen availability (via environmental hyperoxia) and blood oxygen carrying capacity (via experimentally induced anaemia) in European perch (Perca fluviatilis Linneaus), we investigated the effects of oxygen transport capacity on aerobic scope and the critical thermal maximum (CT(max)). Hyperoxia resulted in a twofold increase in aerobic scope at the control temperature of 23°C, but this did not translate to an elevated CT(max) in comparison with control fish (34.6±0.1 versus 34.0±0.5°C, respectively). Anaemia (∼43% reduction in haemoglobin concentration) did not cause a reduction in aerobic scope or CT(max) (33.8±0.3°C) compared with control fish. Additionally, oxygen consumption rates of anaemic perch during thermal ramping increased in a similar exponential manner to that in control fish, highlighting that perch have an impressive capacity to compensate for a substantial reduction in blood oxygen carrying capacity. Taken together, these results indicate that oxygen limitation is not a universal mechanism determining the CT(max) of fishes.

  5. Energy supply and environmental issues: The Los Alamos National Laboratory experience in regional and international programs

    SciTech Connect

    Goff, S.J.

    1995-12-31

    The Los Alamos National Laboratory, operated by the University of California, encompasses more than forty-three square miles of mesas and canyons in northern New Mexico. A Department of Energy national laboratory, Los Alamos is one of the largest multidisciplinary, multiprogram laboratories in the world. Our mission, to apply science and engineering capabilities to problems of national security, has expanded to include a broad array of programs. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, computational science, environmental protection and cleanup, materials science, and other basic sciences. The Energy Technology Programs Office is responsible for overseeing and developing programs in three strategic areas: energy systems and the environment, transportation and infrastructure, and integrated chemicals and materials processing. Our programs focus on developing reliable, economic and environmentally sound technologies that can help ensure an adequate supply of energy for the nation. To meet these needs, we are involved in programs that range from new and enhanced oil recovery technologies and tapping renewable energy sources, through efforts in industrial processes, electric power systems, clean coal technologies, civilian radioactive waste, high temperature superconductivity, to studying the environmental effects of energy use.

  6. On maximizing the lifetime of Wireless Sensor Networks by optimally assigning energy supplies.

    PubMed

    Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; González-Castano, Francisco Javier

    2013-08-09

    The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.

  7. On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies

    PubMed Central

    Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier

    2013-01-01

    The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582

  8. The Ĝ infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification

    SciTech Connect

    Wright, J. T.; Mullan, B.; Sigurdsson, S.; Povich, M. S.

    2014-09-01

    We motivate the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. We discuss some philosophical difficulties of the search for extraterrestrial intelligence (SETI), and how communication SETI circumvents them. We review 'Dysonian SETI', the search for artifacts of alien civilizations, and find that it is highly complementary to traditional communication SETI; the two together might succeed where either one alone has not. We discuss the argument of Hart that spacefaring life in the Milky Way should be either galaxy-spanning or non-existent, and examine a portion of his argument that we call the 'monocultural fallacy'. We discuss some rebuttals to Hart that invoke sustainability and predict long Galaxy colonization timescales. We find that the maximum Galaxy colonization timescale is actually much shorter than previous work has found (<10{sup 9} yr), and that many 'sustainability' counter-arguments to Hart's thesis suffer from the monocultural fallacy. We extend Hart's argument to alien energy supplies and argue that detectably large energy supplies can plausibly be expected to exist because life has the potential for exponential growth until checked by resources or other limitations, and intelligence implies the ability to overcome such limitations. As such, if Hart's thesis is correct, then searches for large alien civilizations in other galaxies may be fruitful; if it is incorrect, then searches for civilizations within the Milky Way are more likely to succeed than Hart argued. We review some past Dysonian SETI efforts and discuss the promise of new mid-infrared surveys, such as that of WISE.

  9. The General Evolving Model for Energy Supply-Demand Network with Local-World

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Han, Dun; Li, Dandan; Fang, Cuicui

    2013-10-01

    In this paper, two general bipartite network evolving models for energy supply-demand network with local-world are proposed. The node weight distribution, the "shifting coefficient" and the scaling exponent of two different kinds of nodes are presented by the mean-field theory. The numerical results of the node weight distribution and the edge weight distribution are also investigated. The production's shifted power law (SPL) distribution of coal enterprises and the installed capacity's distribution of power plants in the US are obtained from the empirical analysis. Numerical simulations and empirical results are given to verify the theoretical results.

  10. Geothermal energy and the utility market -- the opportunities and challenges for expanding geothermal energy in a competitive supply market: Proceedings

    SciTech Connect

    Not Available

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year's conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,'' focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  11. Integrating renewable energy technologies in the electric supply industry: A risk management approach

    SciTech Connect

    Hoff, T.E.

    1997-07-01

    Regulatory and technical forces are causing electric utilities to move from a natural monopoly to a more competitive environment. Associated with this movement is an increasing concern about how to manage the risks associated with the electric supply business. One approach to managing risks is to purchase financial instruments such as options and futures contracts. Another approach is to own physical assets that have low risk attributes or characteristics. This research evaluates how investments in renewable energy technologies can mitigate risks in the electric supply industry. It identifies risks that are known to be of concern to utilities and other power producers. These risks include uncertainty in fuel prices, demand, environmental regulations, capital cost, supply, and market structure. The research then determines how investments in renewables can mitigate these risks. Methods are developed to calculate the value of renewables in terms of their attributes of fuel costs, environmental costs, lead-time, modularity, availability, initial capital costs, and investment reversibility. Examples illustrate how to apply the methods.

  12. American Security and the International Energy Situation. Volume 2. World Energy and the Security of Supply

    DTIC Science & Technology

    1975-04-15

    countries: Arab countries like Lebanon, Jordan, Egypt, and Tunisia; Islamic countries which Import Saudi crude such as Pakistan, Turkey, and Malaysia ...global energy crisis Is but a manifestation of the precariousness of the structure of global Interdependence. The Uberal promise that trade will

  13. The sustainable water-energy nexus: Life-cycle impacts and feasibility of regional energy and water supply scenarios

    NASA Astrophysics Data System (ADS)

    Dale, Alexander T.

    Water and energy are critical, interdependent, and regional resources, and effective planning and policies around which sources to use requires combining information on environmental impacts, cost, and availability. Questions around shifting energy and water sources towards more renewable options, as well as the potential role of natural gas from shale formations are under intense discussion. Decisions on these issues will be made in the shadow of climate change, which will both impact and be impacted by energy and water supplies. This work developed a model for calculating the life-cycle environmental impacts of regional energy and water supply scenarios (REWSS). The model was used to discuss future energy pathways in Pennsylvania, future electricity impacts in Brazil, and future water pathways in Arizona. To examine energy in Pennsylvania, this work also developed the first process-based life-cycle assessment (LCA) of shale gas, focusing on greenhouse gas (GHG) emissions, energy consumption, and water consumption. This LCA confirmed results that shale gas is similar to conventional gas in GHG emissions, though potentially has a lower net energy due to a wide range of production rates for wells. Brazil's electricity-related impacts will rise as development continues. GHG emissions are shown to double by 2020 due to expanded natural gas (NG) and coal usage, with a rise of 390% by 2040 posssible with tropical hydropower reservoirs. While uncertainty around reservoir impacts is large, Brazil's low GHG emissions intensity and future carbon emissions targets are threatened by likely electricity scenarios. Pennsylvania's energy-related impacts are likely to hinge on whether NG is used as a replacement for coal, allowing GHG emissions to drop and then plateau at 93% of 2010 values; or as a transition fuel to expanded renewable energy sources, showing a steady decrease to 86% in 2035. Increased use of biofuels will dominate land occupation and may dominate water

  14. Variations in Nutrient and Energy Supplies as Foundations for Hydrothermal Ecosystems

    NASA Astrophysics Data System (ADS)

    Shock, E. L.

    2008-12-01

    Our field work at Yellowstone National Park, and associated analytical and theoretical work, is guided by the hypothesis that the enormous phylogenetic diversity of hot spring microbial communities reflects the metabolic diversity that is allowed by the geochemical diversity of nutrient and energy supplies. Wide-ranging fluid compositions result from differences in fluid sources, host rock compositions, the extent of water-rock reaction progress, phase separation, subsurface mixing with groundwater or soil water, atmospheric exchange, aeolian deposition, and biological activity. In the systems we have studied pH varies from 0.8 to 9.3, and serves as a reference frame for other variations in composition. Major nutrients show several order of magnitude variations (phosphate from 0.0005 to 0.05 millimolal, nitrate from micro to millimolal, ammonia from micro to 0.1 molal). Micronutrients also have highly variable concentrations (Mo and V over 3; Zn, W and Mn over 5; and Fe over 6 orders of magnitude). As a consequence, the combined multi-component compositional diversity presents an enormous array of possible geochemical habitats. Likewise, the supply of chemical energy in hot spring ecosystems varies with composition, with some reactions universally providing similar amounts of energy (oxidation of CO, formate, hydrogen, ammonia, magnetite or methane), while others change dramatically depending on subtleties of fluid composition (ferrous ion oxidation coupled to reduction of oxygen, nitrate, or nitrite; sulfur disproportionation to pyrite and sulfate). Increasing pH amplifies the energy yield from reactions in which sulfur is reduced to pyrite, or in which ferrous ions are oxidized, while at strongly acidic pH, magnetite rivals oxygen in energy yield for oxidation reactions. Chemical affinities for many reactions change sign from one spring to the next, exemplified by the coupling of ferrous ion oxidation to magnetite, hematite or goethite with sulfur reduction to

  15. Policy implications of the GRI baseline projection of U. S. energy supply and demand to 2010, 1992

    SciTech Connect

    Not Available

    1992-01-01

    The 1992 Edition of the GRI Baseline Projection of U.S. Energy Supply and Demand is summarized. Three broad implications concerning the future of the natural gas industry are highlighted: the residual impact of the August 1990 Gulf War on crude oil prices and the factors influencing the long-term price path, the impact of the growing number of environmental constraints on future energy use, and the effect of recent developments in gas production on future gas supply and price.

  16. A Preliminary Analysis of the Economics of Using Distributed Energy as a Source of Reactive Power Supply

    SciTech Connect

    Li, Fangxing; Kueck, John D; Rizy, D Tom; King, Thomas F

    2006-04-01

    A major blackout affecting 50 million people in the Northeast United States, where insufficient reactive power supply was an issue, and an increased number of filings made to the Federal Energy Regulatory Commission by generators for reactive power has led to a closer look at reactive power supply and compensation. The Northeastern Massachusetts region is one such area where there is an insufficiency in reactive power compensation. Distributed energy due to its close proximity to loads seems to be a viable option for solving any present or future reactive power shortage problems. Industry experts believe that supplying reactive power from synchronized distributed energy sources can be 2 to 3 times more effective than providing reactive support in bulk from longer distances at the transmission or generation level. Several technology options are available to supply reactive power from distributed energy sources such as small generators, synchronous condensers, fuel cells or microturbines. In addition, simple payback analysis indicates that investments in DG to provide reactive power can be recouped in less than 5 years when capacity payments for providing reactive power are larger than $5,000/kVAR and the DG capital and installation costs are lower than $30/kVAR. However, the current institutional arrangements for reactive power compensation present a significant barrier to wider adoption of distributed energy as a source of reactive power. Furthermore, there is a significant difference between how generators and transmission owners/providers are compensated for reactive power supplied. The situation for distributed energy sources is even more difficult, as there are no arrangements to compensate independent DE owners interested in supplying reactive power to the grid other than those for very large IPPs. There are comparable functionality barriers as well, as these smaller devices do not have the control and communications requirements necessary for automatic

  17. Compost may affect volatile and semi-volatile plant emissions through nitrogen supply and chlorophyll fluorescence.

    PubMed

    Ormeño, Elena; Olivier, Romain; Mévy, Jean Philippe; Baldy, Virginie; Fernandez, Catherine

    2009-09-01

    The use of composted biosolids as an amendment for forest regeneration in degraded ecosystems is growing since sewage-sludge dumping has been banned in the European Community. Its consequences on plant terpenes are however unknown. Terpene emissions of both Rosmarinus officinalis (a terpene-storing species) and Quercus coccifera (a non-storing species) and terpene content of the former, were studied after a middle-term exposure to compost at intermediate (50tha(-1): D50) and high (100tha(-1): D100) compost rates, in a seven-year-old post-fire shrubland ecosystem. Some chlorophyll fluorescence parameters (Fv/Fm, ETR, Phi(PSII)), soil and plant enrichment in phosphorus (P) and nitrogen (N) were monitored simultaneously in amended and non-amended plots in order to establish what factors were responsible for possible compost effect on terpenes. Compost affected all studied parameters with the exception of Fv/Fm and terpene content. For both species, mono- and sesquiterpene basal emissions were intensified solely under D50 plots. On the contrary leaf P, leaf N levels reached in D50 were partly responsible of terpene changes, suggesting that optimal N conditions occurred therein. N also affected ETR and Phi(PSII) which were, in turn, robustly correlated to terpene emissions. These results imply that emissions of terpene-storing and non-storing species were under nitrogen and chlorophyll fluorescence control, and that a correct management of compost rates applied on soil may modify terpene emission rate of plants, which in turn has consequences in air quality and plant defense mechanisms.

  18. Meeting today's challenges to supply tomorrow's energy. Clean fossil energy technical and policy seminar

    SciTech Connect

    2005-07-01

    Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.

  19. Facing Water Scarcity in Jordan: Reuse, Demand Reduction, Energy and Transboundary Approaches to Assure Future Water Supplies

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; El-Naser, H.; Hagan, R. E.; Hijazi, A.

    2001-05-01

    Jordan is extremely water-scarce with just 170 cubic meters per capita per year to meet domestic, industrial, agricultural, tourism, and environmental demands for water. Given the natural climatological conditions, demographic pressure, and transboundary nature of water resources, all renewable water resources of suitable quality are being exploited and some non-renewable aquifers are being depleted. The heavy exploitation of water resources has contributed to declines in the level of the Dead Sea. Rapid growth in demand, particularly for higher quality water for domestic, industrial and tourism uses, is significantly increasing pressure on agricultural and environmental uses of water, both of which must continue to adapt to reduced volumes and lower quality water. The agricultural sector has begun to respond by improving irrigation efficiency and increasing the use of recycled water. Total demand for water still exceeds renewable supplies while inadequate treatment of sewage used for irrigation creates potential environmental and health risks and presents agricultural marketing challenges that undermine the competitiveness of exports. The adaptive capability of the natural environment may already be past sustainable limits with groundwater discharge oasis wetlands that have been seriously affected. Development of new water resources is extremely expensive in Jordan with an average investment cost of US\\$ 4-5 per cubic meter. Integrated water resources management (IWRM) that incorporates factors external to the 'water sector' as conventionally defined will help to assure sustainable future water supplies in Jordan. This paper examines four IWRM approaches of relevance to Jordan: water reuse, demand management, energy-water linkages, and transboundary water management. While progress in Jordan has been made, the Ministry of Water and Irrigation continues to be concerned about the acute water scarcity the country faces as well as the need to continue working with

  20. Emergency and backup power supplies at Department of Energy facilities: Augmented Evaluation Team -- Final report

    SciTech Connect

    Not Available

    1993-11-01

    This report documents the results of the Defense Programs (DP) Augmented Evaluation Team (AET) review of emergency and backup power supplies (i.e., generator, uninterruptible power supply, and battery systems) at DP facilities. The review was conducted in response to concerns expressed by former Secretary of Energy James D. Watkins over the number of incidents where backup power sources failed to provide electrical power during tests or actual demands. The AET conducted a series of on-site reviews for the purpose of understanding the design, operation, maintenance, and safety significance of emergency and backup power (E&BP) supplies. The AET found that the quality of programs related to maintenance of backup power systems varies greatly among the sites visited, and often among facilities at the same site. No major safety issues were identified. However, there are areas where the AET believes the reliability of emergency and backup power systems can and should be improved. Recommendations for improving the performance of E&BP systems are provided in this report. The report also discusses progress made by Management and Operating (M&O) contractors to improve the reliability of backup sources used in safety significant applications. One area that requires further attention is the analysis and understanding of the safety implications of backup power equipment. This understanding is needed for proper graded-approach implementation of Department of Energy (DOE) Orders, and to help ensure that equipment important to the safety of DOE workers, the public, and the environment is identified, classified, recognized, and treated as such by designers, users, and maintainers. Another area considered important for improving E&BP system performance is the assignment of overall ownership responsibility and authority for ensuring that E&BP equipment performs adequately and that reliability and availability are maintained at acceptable levels.

  1. Securing US energy supplies: the private sector as an instrument of public policy

    SciTech Connect

    Prast, W.G.

    1981-01-01

    Dr. Prast suggests that policy options that rely on private companies to help secure energy supplies need to consider the conflicts and tensions that exist between these companies and the public agencies, especially Federal agencies, that regulate their activities. The US still needs a combination of private initiative and public control, but the naive approach of the 1960s should be replaced with an atmosphere of continuous assessment to make sure the companies are meeting public policy goals. A new kind of private/public arrangement may be needed to deal with the large reserves on Federal lands. This will require redefining present Federal roles in energy production to focus on frontier technology and eliminate a duplication of effort. Dr. Prast feels that improvements can be made in the effectiveness of the Federal bureaucracy by profiting from past errors, but that efforts to disband DOE are premature until a relationship of cooperation and confidence develops between private companies and regulators. 64 references. (DCK)

  2. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  3. Energy supply processes for magnetospheric substorms and solar flares - Tippy bucket model or pitcher model?

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1985-01-01

    In the past, both magnetospheric substorms and solar flares have almost exclusively been discussed in terms of explosive magnetic reconnection. Such a model may conceptually be illustrated by the so-called 'tippy-bucket model', which causes sudden unloading processes, namely a sudden (catastrophic, stochastic, and unpredictable) conversion of stored magnetic energy. However, recent observations indicate that magnetospheric substorms can be understood as a result of a directly driven process which can conceptually be illustrated by the 'pitcher model' in which the output rate varies in harmony with the input rate. It is also possible that solar flare phenomena are directly driven by a photospheric dynamo. Thus, explosive magnetic reconnection may simply be an unworkable hypothesis and may not be a puzzle to be solved as the primary energy supply process for magnetospheric substorms and solar flares.

  4. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  5. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    PubMed

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  6. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    SciTech Connect

    Muenster, M.; Meibom, P.

    2010-12-15

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  7. Induced lung inflammation and dietary protein supply affect nitrogen retention and amino acid metabolism in growing pigs.

    PubMed

    Kampman-van de Hoek, Esther; Sakkas, Panagiotis; Gerrits, Walter J J; van den Borne, Joost J G C; van der Peet-Schwering, Carola M C; Jansman, Alfons J M

    2015-02-14

    It is hypothesised that during immune system activation, there is a competition for amino acids (AA) between body protein deposition and immune system functioning. The aim of the present study was to quantify the effect of immune system activation on N retention and AA metabolism in growing pigs, depending on dietary protein supply. A total of sixteen barrows received an adequate (Ad) or restricted (Res) amount of dietary protein, and were challenged at day 0 with intravenous complete Freund's adjuvant (CFA). At days - 5, 3 and 8, an irreversible loss rate (ILR) of eight AA was determined. CFA successfully activated the immune system, as indicated by a 2- to 4-fold increase in serum concentrations of acute-phase proteins (APP). Pre-challenge C-reactive protein concentrations were lower (P< 0·05) and pre- and post-challenge albumin tended to be lower in Res-pigs. These findings indicate that a restricted protein supply can limit the acute-phase response. CFA increased urinary N losses (P= 0·04) and tended to reduce N retention in Ad-pigs, but not in Res-pigs (P= 0·07). The ILR for Val was lower (P= 0·05) at day 8 than at day 3 in the post-challenge period. The ILR of most AA, except for Trp, were strongly affected by dietary protein supply and positively correlated with N retention. The correlations between the ILR and APP indices were absent or negative, indicating that changes in AA utilisation for APP synthesis were either not substantial or more likely outweighed by a decrease in muscle protein synthesis during immune system activation in growing pigs.

  8. Legal and regulatory issues affecting compressed air energy storage

    SciTech Connect

    Hendrickson, P.L.

    1981-07-01

    Several regulatory and legal issues that can potentially affect implementation of a compressed air energy storage (CAES) system are discussed. This technology involves the compression of air using base load electric power for storage in an underground storage medium. The air is subsequently released and allowed to pass through a turbine to generate electricity during periods of peak demand. The storage media considered most feasible are a mined hard rock cavern, a solution-mined cavern in a salt deposit, and a porous geologic formation (normally an aquifer) of suitable structure. The issues are discussed in four categories: regulatory issues common to most CAES facilities regardless of storage medium, regulatory issues applicable to particular CAES reservoir media, issues related to possible liability from CAES operations, and issues related to acquisition of appropriate property rights for CAES implementation. The focus is on selected federal regulation. Lesser attention is given to state and local regulation. (WHK)

  9. Effects of prepartal body condition score and peripartal energy supply of dairy cows on postpartal lipolysis, energy balance and ketogenesis: an animal model to investigate subclinical ketosis.

    PubMed

    Schulz, Kirsten; Frahm, Jana; Meyer, Ulrich; Kersten, Susanne; Reiche, Dania; Rehage, Jürgen; Dänicke, Sven

    2014-08-01

    Subclinical ketosis is a metabolic disorder which often goes undiagnosed and leads to constricted performance and an impairment of general condition. In the current study subclinical ketosis was characterised by a β-hydroxybutyrate (BHB) concentration of >1·2 mmol/l in blood serum. To generate this metabolic situation, an animal model was created. The model, based on group-specific interaction of dietary energy supply and body condition, is appropriate for testing the medical effectiveness of treating this kind of ketosis and its concomitants. During the trial, 18 dairy cows (primiparous and pluriparous) were assigned, according to their body condition score (BCS) 6 weeks before expected parturition, to a normal [6.78 MJ net energy for lactation (NEL)/kg dry matter; 20% concentrate] or to a high-energy feeding group (7·71 MJ NEL/kg dry matter; 60% concentrate). Therefore cows with the highest BCS were allocated to the high-energy group to enhance the contrast with the control group. Statistical analysis was done using the MIXED procedure of SAS. Effects were declared significant when P-values were ⩽0.05. Owing to the higher energy concentration and dry matter intake, the energy intake and balance was significantly higher in the high-energy feeding group, with strong effects on lipid metabolism and health in blood and liver post partum. Within the first 2 weeks after calving, 8 out of 9 cows (89%) of the high-energy group had BHB values indicative of subclinical ketosis. These cows also had significantly higher values of non-esterified fatty acids (NEFA), aspartate transaminase (AST) and glutamate dehydrogenase (GLDH) post partum, as well as a raised total lipid content of the liver. RQUICKI, a calculated parameter which is based on serum concentrations of glucose, insulin and NEFA to assess the insulin sensitivity, was not affected by treatment. Therefore, RQUICKI does not seem to be the right parameter for diagnosing decreased insulin sensitivity in cows

  10. Supply evaluation of a herbaceous and woody energy crop at three midwest regions

    SciTech Connect

    English, B.C.; Dillivan, K.D.; Ojo, M.A.

    1994-12-31

    While substantial research has been conducted on the argronomic issues of biomass production and on the processes of converting biofuel crops into energy, little work has been completed analyzing the economic and physical impacts of biofuel production on an agriculturally based region. Acres currently devoted to traditional crops will be replaced by biomass crops if such a conversion proves to be economically attractive. These shifts could have impacts on local and regional levels of farm income, current farmland market values, commodity prices received, and the demand for and prices of farm level inputs. This paper examines the economic and physical ramifications of introducing biomass production to three Midwest regions centered in the following counties; Cass County, North Dakota, Olmsted County, Minnesota, and Orange County, Indiana. Using a regional linear programming model that maximizes net returns to producers subject to several constraints, a supply curve for biomass is developed for each of the three regions. The model predicts that at a plant gate price of $26, $40, and $52 per dry ton, biomass begins to enter into production in the Cass, Olmsted, and Orange Regions respectively. Prices of $28, $44, and $54 per dry ton of biomass are sufficient to supply a quantity necessary to operate a power plant requiring 5,000 dry tons per day in Cass, Olmsted, and Orange regions respectively. In the Olmsted and Orange regions, biomass production results in fertilizer being applied, however, in the Cass Region a slight increase in fertilizer use corresponds to biomass production.

  11. State of and prospects for automation of energy-supply sources of iron and steel industry enterprises

    NASA Astrophysics Data System (ADS)

    Kryukov, G. Y.; Lyambakh, R. V.; Lyashenko, L. E.; Sergeev, A. D.

    1982-07-01

    Automation at various levels of items of the energy management of enterprises belonging to the iron and steel industry is considered in the light of recent developments and the energy-supply situation as a whole. Examples of benefits obtained through automation are given.

  12. [Control of supply and use of energy substrates in the encephalon].

    PubMed

    Schelp, A O; Burini, R C

    1995-09-01

    Although accounting for 2% of body weight, brain has one of the greatest metabolic rates compared with other organs and systems. The energy metabolic consum is expended mainly in the maintenance of ionic gradient, essential to neuronal activity. Brain receives energy substrates from circulation, with interference of blood brain barrier (BBB). Glucose is the main substrate and has a metabolic rate so high as 150 g/day (0.7 mM/G/min). At cellular level, metabolism of glucose seems to be controlled by phosphofructokynase. If the cellular level were high enough, manose and other products like fructose 1,6 biphosphate, pyruvate, lactate and acetate can be used in the place of glucose. Lactate, when oxyded, consums at least 21% of the cerebral needs of O2. In ischemia and inflammatory infections, brain tissue produces lactate instead of use it. Ketone bodies reduce cerebral needs of glucose; in view of the disturbances that occur in cerebral production of succinyl CoA and guanosine 3 phosphate (GTP), they must be considered as complementary substrate but not as an alternative one. Although they can be metabolized, there are no evidences that brain could produce energy from systemic free fatty acids, even when hypoglicemia is present. Ethanol and glycerol are considered only at experimental level. Brain uptake of aminoacids occur better for long chain aminoacids, specially valine. The aminoacids that are synthetised in the brain (aspartate, gluconate and alanine) show the lower absortion rates. All aminoacids should be oxided to CO2 and H2O. Even when glucose consum is reduced to 30%, aminoacid accounts for only 10% of the energetic expenditure of the brain. To maintain cerebral glucose and oxygen supply to the brain, blood flow must be at least 800 ml/min. The regulation of supply and consumption of energy substrate by the brain is changed in few situations. Among them, are included the oxidation of lactate immediately before milk diet early in development and

  13. Assessment of Change Drivers Affecting the Sustainability of Gravity Fed Water Supply in the Alto Beni Watershed of Bolivia

    NASA Astrophysics Data System (ADS)

    Fry, L. M.; Mihelcic, J. R.; Watkins, D. W.; Reents, N.

    2008-12-01

    In the Alto Beni region of Bolivia, most communities rely on gravity fed systems for their drinking water. Gravity fed drinking water systems are often viewed as a feasible and sustainable method of delivering safe natural spring water to developing communities, because minimal treatment is required and pumping is unnecessary. However, communities in the Alto Beni watershed are finding the need to extend their systems to more distant springs to provide sufficient water. Drivers of change within the watershed that have the potential to affect the sustainability of gravity fed water systems include a 3% population growth rate, an expected 200% increase in agricultural use of land, expansion of water and sanitation coverage (83% and 72% increases in coverage respectively), and a changing climate with a roughly 1.5% projected increase in the mean annual temperature from the 1990s and a 2 to 4% decrease in dry season precipitation by the 2030s. These changes affect both demand and supply from springs. Indicators for these change drivers are evaluated in seventeen watersheds within the Alto Beni. The research presented is the beginning of a monitoring program using low cost methods and local participants to study the impacts of changes on the sustainability of water systems in the region.

  14. A novel four-quadrant power supply for low-energy correction magnets

    NASA Astrophysics Data System (ADS)

    García-Gil, R.; Espí, J. M.; Voelker, F.; Dede, E. J.; Castelló, J.

    2003-09-01

    This paper describes an efficient power supply to feed low-energy correction magnets in particle accelerator applications, where a controlled current with trapezoidal profile and four-quadrant operation is needed. The selected design is based on an AC-DC matrix converter topology, which uses the Space Vector Modulation (SVM) technique to obtain a near unity power factor at the AC input and output DC current regulation. This topology allows performing high-frequency isolation, while four-quadrant operation is maintained, and reducing volume and weight as compared with the classical thyristor (SCR)-based technology. Control tasks are implemented on an all-digital control card: output current regulation is accomplished in a digital signal processor device and SVM is implemented in a Field-Programmable Gate-Array. Simulations and experimental results of a 1.2 kW prototype validate the design.

  15. Supply and demand for wood as a source of energy in Zambia: An econometric analysis

    SciTech Connect

    Mupimpila, C.

    1993-01-01

    This study examines the status of biomass energy in Zambia. In its current usage, the concept of biomass energy often implies woodfuel because woodfuel is the main biomass energy. This study develops an econometric model of household woodfuel demand and also evaluates the supply of woodfuel in Zambia. The study finds that there are significant sectoral differences in woodfuel demand between the rural and urban sectors. In the rural sector, inflation is by far the most significant determinant of household woodfuel demand. The coefficients on inflation are statistically significant at better than the one percent level and also have expected positive signs. In the urban sector, inflation is again by far the most significant determinant of woodfuel demand. However, in the urban sector, household income and woodfuel price are also significant determinants of demand. The coefficients on inflation, household income, and woodfuel price are all significant at better than the one percent level and have expected signs. The income elasticity of woodfuel demand is positive, suggesting that in the short-run, woodfuel is a normal good. However, the elasticity of woodfuel demand with respect to growth in investment is negative, indicating that long-run structural change in the economy reduces woodfuel demand.

  16. Impact of innovations on future energy supply - chemical enhanced oil recovery (CEOR).

    PubMed

    Bittner, Christian

    2013-01-01

    The International Energy Agency (IEA) expects an increase of global energy demand by one-third during next 20 years together with a change in the global energy mix. A key-influencing factor is a strong expected increase in oil and gas production in the United States driven by 'new' technologies such as hydraulic fracturing. Chemical enhanced oil recovery (CEOR) is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. In the case of polymer flooding with poly acrylamide, the number of full field implementations has increased in recent years. In the meantime new polymers have been developed to cover previously unmet needs - such polymers can be applied in fields of high salinity and high temperature. Use of surfactants is in an earlier stage, but pilot tests show promising results.

  17. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    PubMed

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals.

  18. Factors affecting the availability of wood energy from nonindustrial private forest lands in the Northeast. Forest Service Resource Bulletin (Final)

    SciTech Connect

    Lindsay, J.J.; Gilbert, A.H.; Birch, T.W.

    1992-05-01

    The report describes the factors that affect the availability of fuelwood from NIPF lands in the Northeastern United States (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, Maryland, New Jersey, New York, and Pennsylvania). It is part of a comprehensive wood-for-energy study entitled 'The Production, Consumption, and Marketing of Wood for Energy in the Northeast (Northeast Regional Study 142).'' The study is designed to: (1) Estimate the demand for wood energy in the Northeast by consuming sectors, state, and region; (2) Analyze the managment and supply of wood for energy processing as well as marketing structures; (3) Identify goals and effectiveness of actual and alternative local, state, and Federal forest policies and contrast these with the objectives of forest owners with regard to the use of wood for energy. The objective of the study is to analyze the supply of wood energy, that is, to identify and describe the factors that influence NIPF owners to harvest, or permit the harvest, of fuelwood from their land.

  19. Evidence of Energy Supply by Active-Region Spicules to the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Zeighami, S.; Ahangarzadeh Maralani, A. R.; Tavabi, E.; Ajabshirizadeh, A.

    2016-03-01

    We investigate the role of active-region spicules in the mass balance of the solar wind and energy supply in heating the solar atmosphere. We use high-cadence observations from the Solar Optical Telescope (SOT) onboard the Hinode satellite in the Ca ii H-line filter obtained on 26 January 2007. The observational technique provides the high spatio-temporal resolution required to detect fine structures such as spicules. We apply a Fourier power spectrum and wavelet analysis to Hinode/SOT time series of an active-region data set to explore the existence of coherent intensity oscillations. Coherent waves could be evidence of energy transport that serves to heat the solar atmosphere. Using time series, we measure the phase difference between two intensity profiles obtained at two different heights, which gives information about the phase difference between oscillations at those heights as a function of frequency. The results of a fast Fourier transform (FFT) show peaks in the power spectrum at frequencies in the range from 2 to 8 mHz at four different heights (above the limb), while the wavelet analysis indicates dominant frequencies similar to those of the Fourier power spectrum results. A coherency study indicates coherent oscillations at about 5.5 mHz (3 min). We measure mean phase speeds in the range 250-425 km s^{-1} increasing with height. The energy flux of these waves is estimated to be F = 1.8 × 106-11.2 × 106 erg cm^{-2} s^{-1} or 1.8-11.2 kW m^{-2}, which indicates that they are sufficiently energetic to accelerate the solar wind and heat the corona to temperatures of several million degrees. We compute the the mass flux carried by spicules of 3 × 10^{-10}-2 × 10^{-9} g cm^{-2} s^{-1}, which is 10-60 times higher than the mass that is carried away from the corona because of the solar wind (about 3 × 10^{-11} g cm^{-2} s^{-1}). Therefore, our results indicate that about 0.02-0.1 of the spicule mass is ejected from the corona, while the remainder reverts

  20. Coalmines as Underground Pumped Storage Power Plants (UPP) - A Contribution to a Sustainable Energy Supply?

    NASA Astrophysics Data System (ADS)

    Luick, H.; Niemann, A.; Perau, E.; Schreiber, U.

    2012-04-01

    In Europe, electrical power generation from renewable energy sources rose by about 50% in the last 20 years. In Germany, renewable electricity is mainly provided by wind power and photovoltaic. Energy output depends on weather conditions like wind speed or solar radiation and may therefore vary considerably. Rapid fluctuations in power generation already require regulation of conventional power plants by the distribution network operators to stabilize and ensure grid frequency and overall system stability. In order to avoid future blackouts caused by intermittent energy sources, it is necessary to increase the storage capacity for electric power. Theoretically, there are many technologies for storing energy, like accumulators, hydrogen storage systems, biomethane facilities (hydrocarbon synthesis) or compressed air storage. Only a few technologies combine sufficient capacity, fast response, high efficiency, low storage loss and long-term application experience. A pumped storage power plant (PSPP) is a state of the art technology which combines all of these aspects. Energy is stored in form of potential energy by pumping water to an upper reservoir in times of energy surplus or low energy costs. In times of insufficient power supply or high energy costs, the water is released through turbines to produce electric energy. The efficiency of state-of-the-art systems is about 70-80%. The total head (geodetic height between upper and lower reservoirs) and the storage capacity of the reservoirs as given in a mountainous terrain, determine the energy storage capacity of a PSPP. An alternative is the use of man-made geodetic height differences as given in ore, coal or open cast lignite mines. In these cases, the lower reservoir of the plant is located in the drifts or at the bottom of the mine. Energieforschungszentrum Niedersachsen (EFZN) has already explored the installation of a PSPP in abandoned ore mines in the Harz-region/Germany (Beck 2011). In 2011/2012 a basic

  1. Amino acid and energy interrelationships in growing beef steers: II. Effects of energy intake and metabolizable lysine supply on growth.

    PubMed

    Ludden, P A; Kerley, M S

    1998-12-01

    We conducted three experiments to determine the optimal metabolizable Lys:net energy ratio for growth of beef calves. The single basal diet fed contained corn (56.1%), soybean hulls (18%), cottonseed hulls (15%), animal fat (4.25%), and corn gluten meal (5.6%). In Exp. 1, 54 steers were individually fed the basal diet at 1.5, 2.25, and 3.0 times NEm requirement; rations were top-dressed with 3.4 g of rumen-stable (RS) Met and either 0, 2, 4, 6, 8, or 12 g of RS-Lys daily. An additional 18 steers were fed the same three levels of energy and supplemented with 125 g of blood meal per steer. In Exp. 2, 68 crossbred steers were subjected to the same experimental protocol, with the exception that only the two highest levels of energy were used. Of these steers, 48 were fed individually and received the RS-Lys treatments; the remaining 20 steers received 125 g of blood meal per steer. No interaction (P > .10) was detected between level of supplemental Lys and energy intake in Exp. 1 or 2. Supplementation with RS-Lys improved (P < .01) ADG in Exp. 1, but it had no effect (P > .10) on growth in Exp. 2. The Lys requirement estimates were 44.3 and 51.3 g/d, corresponding to maximal growth rates of 1.21 and 1.64 kg/d for the 2.25 and 3.0 times maintenance treatments, respectively. Comparing the growth rates of steers fed supplemental Lys with those of steers fed blood meal in Exp. 1 and 2 revealed an ADG advantage (P < .03) with blood meal supplementation. To confirm the blood meal response, Exp. 3 used 75 crossbred steers fed the basal diet at 3.0 times NEm requirement plus either 3.4 g RS-Met, 3.4 g RS-Met and 12 g RS-Lys, or 125 g of blood meal per steer. Blood meal supplementation improved (P < .01) growth of steers over those fed supplemental Met or Met plus Lys. Although a distinct relationship between amino acid requirements and energy supply may exist, Lys and Met were not first-limiting in these experiments, or selective supplementation with undegradable protein may

  2. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  3. A bottom-up assessment method of limitations to and vulnerability of energy supply in developing countries

    NASA Astrophysics Data System (ADS)

    Lissner, Tabea; Olonscheck, Mady; Walther, Carsten; Kropp, Jürgen P.; Reusser, Dominik

    2015-04-01

    Sufficient energy access is essential for development and adequate livelihood conditions, as the majority of societal activities depend on reliable and sufficient energy. Especially in developing and threshold countries, energy access remains limited and intermittent. Moreover, compared to developed countries, often the expenditures for energy constitute a huge part of the available money. The vulnerability of energy systems to the impacts of climate change differs depending on the utilized source of energy. A special characteristic of developing and threshold countries is the fact that the spatial heterogeneity of the energy supply structure, especially between urban and rural regions, is generally larger than in developed countries, while the adaptive capacity of people is often much lower. A sound consideration of these complex conditions is a necessary basis for determining in how far climate change impacts can further diminish energy access in regions, where energy access is already limited. The topic of energy vulnerability has often been addressed for developed countries, but assessments for less developed countries remain scarce. On the one hand, data needed for energy vulnerability assessments, as they exist for the developed world, is usually not available. On the other hand, existing assessment methods for the developed world are often not transferable because they focus on specific supply infrastructure or energy carriers. Transferability is also hindered by the large differences in energy access and energy use patterns. We propose a novel approach to assess domestic energy supply vulnerability, by reversing the usual chain of assessment. On the basis of a basket of household energy needs for different purposes, we first assess which sources are used in order to fulfil specific energy needs. By focussing on the regionally specific energy carriers, we are able to significantly reduce data needs and assess directly, how energy vulnerability may play out

  4. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China.

    PubMed

    Fan, Liangxin; Liu, Guobin; Wang, Fei; Geissen, Violette; Ritsema, Coen J

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use) and cultural backgrounds (age, education).

  5. [General profile of the nutrition surplus in Mexico from 1990-2013: An approach using the energy supplied by macronutrients and food groups].

    PubMed

    Hernández Ramírez, José Cutberto; Ortega Canto, Judith Elena

    2016-01-01

    This text analyzes the evolution of the excessive food energy supply in Mexico from 1990 to 2013. For each year, the energy and macronutrient requirements of the Mexican population were estimated and contrasted with the per capita energy supply. Discrepancies between requirement and supply were analyzed as a time series. The energy surplus ranged from 700 to 800 kcal per capita per day throughout the studied period and sugar/sweeteners contributed the highest above-requirement energy supply. Lipids excess increased steadily and intensely, mainly due to lipid increases from poultry and pork. Excess energy from alcoholic beverages tended to be concentrated into growing beer consumption. In summary, the energy supply and the corresponding surplus tended to be made up mainly of sugar/sweeteners and meat. This has direct implications for the prevalence of chronic non-communicable diseases as well as unsustainable use of land, water and energy.

  6. The Influence on Population Weight Gain and Obesity of the Macronutrient Composition and Energy Density of the Food Supply.

    PubMed

    Crino, Michelle; Sacks, Gary; Vandevijvere, Stefanie; Swinburn, Boyd; Neal, Bruce

    2015-03-01

    Rates of overweight and obesity have increased dramatically in all regions of the world over the last few decades. Almost all of the world's population now has ubiquitous access to low-cost, but highly-processed, energy-dense, nutrient-poor food products. These changes in the food supply, rather than decreases in physical activity, are most likely the primary driver of population weight gain and obesity. To-date, the majority of prevention efforts focus on personalised approaches targeting individuals. Population-wide food supply interventions addressing sodium and trans fat reduction have proven highly effective and comparable efforts are now required to target obesity. The evidence suggests that strategies focusing upon reducing the energy density and portion size of foods will be more effective than those targeting specific macronutrients. Government leadership, clearly specified targets, accountability and transparency will be the key to achieving the food supply changes required to address the global obesity epidemic.

  7. Is energy supply the trigger for reproductive activity in male edible dormice (Glis glis)?

    PubMed

    Fietz, Joanna; Kager, Timo; Schauer, Sebastian

    2009-10-01

    In edible dormice (Glis glis) reproduction is synchronised with the intermittent masting of the European beech (Fagus sylvatica). In years of mast failure dormouse males seem to anticipate future low food availability and fail to develop functional testes. We hypothesised that the availability of high-quality food is linked to male reproductive capacity, because of high male energetic demands during gonad maturation. We therefore evaluated the relationship between beech seed production and male reproductivity in the field between 1993 and 2005. In order to know whether the energy content of the food as such triggers sexual capacity, we supplemented high-quality food in the field for 3 years and investigated reproductive output, reproductive capacity, and body mass changes. Results revealed that male reproductive capacity was positively linked with beech seed production. Body mass changes of reference males during the high reproductive year further revealed high energetic demands of male reproduction, which were counter balanced in food-supplemented males. However, in contrast to our assumptions, artificial food supply during a year of mast failure failed to evoke high reproductivity in edible dormice. The availability of high-quality food can therefore be ruled out from being the primary trigger for sexual activity in male edible dormice.

  8. Limiting factors in photosynthesis. V. Photochemical energy supply colimits photosynthesis at low values of intercellular CO/sub 2/ concentration

    SciTech Connect

    Taylor, S.E.; Terry, N.

    1984-05-01

    Although there is now some agreement with the view that the supply of photochemical energy may influence photosynthetic rate (P) at high CO/sub 2/ pressures, it is less clear whether this limitation extends to P at low CO/sub 2/. This was investigated by measuring P per area as a function of the intercellular CO/sub 2/ concentration (C/sub i/) at different levels of photochemical energy supply. Changes in the latter were obtained experimentally by varying the level of irradiance to normal (Fe-sufficient) leaves of Beta vulgaris L. cv F58-554H1, and by varying photosynthetic electron transport capacity using leaves from Fe-deficient and Fe-sufficient plants. P and C/sub i/ were determined for attached sugar beet leaves using open flow gas exchange. The results suggest the P/area was colimited by the supply of photochemical energy at very low as well as high values of C/sub i/. Using the procedure developed by Perchorowicz et al., we investigated the effect or irradiance on ribulose bisphosphate carboxylase (RuBPCase) activation. The ratio of initial extractable activity to total inducible RuBPCase activity increased from 0.25 to 0.90 as leaf irradiance increased from 100 to 1500 microeinsteins photosynthetically active radiation per square meter per second. These data suggest that colimitation by photochemical energy supply at low C/sub i/ may be mediated via effects on RuBPCase activation.

  9. 10 CFR Appendix Z to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of External Power Supplies

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... multiple-voltage external power supply). b. Active mode efficiency is the ratio, expressed as a percentage..., “General Conditions for Measurement,” of the CEC's “Test Method for Calculating the Energy Efficiency of... separately powered fans, air conditioners, or heat sinks. The UUT shall be conditioned, rested, and tested...

  10. 10 CFR Appendix Z to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of External Power Supplies

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... multiple-voltage external power supply). b. Active mode efficiency is the ratio, expressed as a percentage..., “General Conditions for Measurement,” of the CEC's “Test Method for Calculating the Energy Efficiency of... separately powered fans, air conditioners, or heat sinks. The UUT shall be conditioned, rested, and tested...

  11. 10 CFR Appendix Z to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of External Power Supplies

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... multiple-voltage external power supply). b. Active mode efficiency is the ratio, expressed as a percentage..., “General Conditions for Measurement,” of the CEC's “Test Method for Calculating the Energy Efficiency of... separately powered fans, air conditioners, or heat sinks. The UUT shall be conditioned, rested, and tested...

  12. 78 FR 2392 - Allegheny Energy Supply, LLC; Notice of Intent To File License Application, Filing of Pre...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Energy Supply, LLC. e. Name of Project: Millville Hydroelectric. f. Location: On the Shenandoah River... must include on the first page, project name (Millville Hydroelectric Project) and ] number (P-2343-081... should meet at Millville Hydroelectric Project, on the Shenandoah River, WV. All participants...

  13. Resource limits and conversion efficiency with implications for climate change and California's energy supply

    NASA Astrophysics Data System (ADS)

    Croft, Gregory Donald

    There are two commonly-used approaches to modeling the future supply of mineral resources. One is to estimate reserves and compare the result to extraction rates, and the other is to project from historical time series of extraction rates. Perceptions of abundant oil supplies in the Middle East and abundant coal supplies in the United States are based on the former approach. In both of these cases, an approach based on historical production series results in a much smaller resource estimate than aggregate reserve numbers. This difference is not systematic; natural gas production in the United States shows a strong increasing trend even though modest reserve estimates have resulted in three decades of worry about the gas supply. The implication of a future decline in Middle East oil production is that the market for transportation fuels is facing major changes, and that alternative fuels should be analyzed in this light. Because the U.S. holds very large coal reserves, synthesizing liquid hydrocarbons from coal has been suggested as an alternative fuel supply. To assess the potential of this process, one has to look at both the resource base and the net efficiency. The three states with the largest coal production declines in the 1996 to 2006 period are among the top 5 coal reserve holders, suggesting that gross coal reserves are a poor indicator of future production. Of the three categories of coal reserves reported by the U.S. Energy Information Administration, reserves at existing mines is the narrowest category and is approximately the equivalent of proved developed oil reserves. By this measure, Wyoming has the largest coal reserves in the U.S., and it accounted for all of U.S. coal production growth over the 1996 to 2006 time period. In Chapter 2, multi-cycle Hubbert curve analysis of historical data of coal production from 1850 to 2007 demonstrates that U.S. anthracite and bituminous coal are past their production peak. This result contradicts estimates based

  14. A method to estimate cow potential and subsequent responses to energy and protein supply according to stage of lactation.

    PubMed

    Daniel, J B; Friggens, N C; Van Laar, H; Ferris, C P; Sauvant, D

    2017-03-02

    Milk responses to dietary change are influenced by the relative production level, that is, the distance between observed production and potential production. The closer the animal is to its potential, the smaller the expected response is to extra nutrients. Therefore, the aim of this work was to provide a method to quantify cow potential, to estimate subsequent responses to changes in nutrient supply. The observed efficiencies in net energy for lactation (NEL) and metabolizable protein (MP) are proposed as a basis to estimate the relative production level of the animal. The rationale for using NEL and MP efficiency (ratios of milk energy yield/NEL above maintenance supply and milk protein yield/MP above maintenance supply) builds on the uniformity of the observed relationships between size of the milk responses and extra NEL supply and MP supply, when centered on a given efficiency. From there, a pivot nutritional situation where MP and NEL efficiency are 0.67 and 1.00, respectively, was defined, from which milk responses could be derived across animals varying in production potential. An implicit assumption of using response equations centered on reference efficiency pivots is that the size of the response to a fixed change in nutrient supply, relative to the pivot, is identical for animals with different production capacities. The proposed approach was evaluated with 2 independent data sets, where different dietary treatments were applied during the whole lactation. In these data sets, MP and NEL above maintenance supply were calculated weekly using the recently updated INRA Systali feed units system. Differences in NEL and MP supply above maintenance between the extreme dietary treatments were large, on average 667 g of MP/d and 13 MJ of NEL/d (3.11 Mcal/d) in the first data set, and 513 g of MP/d and 29 MJ of NEL/d (6.93 Mcal/d) for the second data set. Milk energy yield and milk component yields were predicted with root mean square prediction errors between 7

  15. Designing Energy Supply Chains with the P-graph Framework under Cost Constraints and Sustainability Considerations

    EPA Science Inventory

    A computer-aided methodology for designing sustainable supply chains is presented using the P-graph framework to develop supply chain structures which are analyzed using cost, the cost of producing electricity, and two sustainability metrics: ecological footprint and emergy. They...

  16. Factors Affecting the Control of Rotylenchulus reniformis with Electromagnetic Energy

    PubMed Central

    Heald, C. M.; Wayland, J. R.

    1975-01-01

    The reniform nematode Rotylenchulus reniformis was reduced in the upper 10 cm of soil with application of UHF electromagnetic energy. Bioassay of treated soil indicated no delayed effect on the population from the treatment. The population was significantly reduced by hot water treatments at 40 C for 10 min, and at 45 C for 5 and 10 min, 50 C and above killed all nematodes. Data were inconclusive as to whether the effect of UHF electromagnetic energy was thermal or nonthermal. PMID:19308151

  17. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  18. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  19. Factors affecting the energy consumption of two refrigerator-freezers

    SciTech Connect

    Kao, J.Y.; Kelley, G.E.

    1996-12-31

    Two refrigerator-freezers, one with a top-mounted freezer and one with side-by-side doors, were tested in the laboratory to determine the sensitivity of their energy consumption to various operational factors. Room temperature, room humidity, door openings, and the setting of the anti-sweat heater switch were the factors examined. The results indicated that the room temperature and door openings had a significantly greater effect on energy consumption than the other two factors. More detailed tests were then performed under different room temperature and door-opening combinations. The relationship of door openings and the equivalent test room temperature was established. Finally, the effect on energy of different temperature settings was studied. Test results are presented and discussed.

  20. The Form in Which Nitrogen Is Supplied Affects the Polyamines, Amino Acids, and Mineral Composition of Sweet Pepper Fruit under an Elevated CO2 Concentration.

    PubMed

    Piñero, Maria C; Otálora, Ginés; Porras, Manuel E; Sánchez-Guerrero, Mari C; Lorenzo, Pilar; Medrano, Evangelina; Del Amor, Francisco M

    2017-02-01

    We investigated the effect of supplying nitrogen, as NO3(-) or as NO3(-)/NH4(+), on the composition of fruits of sweet pepper (Capsicum annuum L. cv. Melchor) plants grown with different CO2 concentrations ([CO2]): ambient or elevated (800 μmol mol(-1)). The results show that the application of NH4(+) and high [CO2] affected the chroma related to the concentrations of chlorophylls. The concentrations of Ca, Cu, Mg, P, and Zn were significantly reduced in the fruits of plants nourished with NH4(+), the loss of Fe being more dramatic at increased [CO2], which was also the case with the protein concentration. The concentration of total phenolics was increased by NH4(+), being unaffected by [CO2]. Globally, the NH4(+) was the main factor that affected fruit free amino acid concentrations. Polyamines were affected differently: putrescine was increased by elevated [CO2], while the response of cadaverine depended on the form of N supplied.

  1. Analysis on spatial transfer model of energy development layout and the ecological footprint affection

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoxia; Zhang, Jinfang

    2017-01-01

    Consider the global energy interconnection, the global is concentrating on carrying out clean energy alternative, which is mainly focusing on using the clean energy to take place of fossil energy, and change the global energy layout and ecological atmosphere condition. This research gives the energy spatial transfer model of energy development layout to analyse the global energy development layout condition and ecological affection. And it is a fast and direct method to analyse its energy usage process and environmental affection. The paper also gives out a system dynamics model of energy spatial transfer shows, which electric power transmission is better than original energy usage and transportation. It also gives the comparison of different parameters. The energy spatial transfer can affect the environment directly. Consider its three environmental factors, including energy saving, climate changing and conventional pollutant emission reduction, synthetic combine with the spatial transfer model, it can get the environmental change parameters, which showed that with the clean energy wide usage, the ecological footprint affection will be affected significantly.

  2. A proposed national wind power R and D program. [offshore wind power system for electric energy supplies

    NASA Technical Reports Server (NTRS)

    Heronemus, W.

    1973-01-01

    An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.

  3. Regionalized LCA-based optimization of building energy supply: method and case study for a Swiss municipality.

    PubMed

    Saner, Dominik; Vadenbo, Carl; Steubing, Bernhard; Hellweg, Stefanie

    2014-07-01

    This paper presents a regionalized LCA-based multiobjective optimization model of building energy demand and supply for the case of a Swiss municipality for the minimization of greenhouse gas emissions and particulate matter formation. The results show that the environmental improvement potential is very large: in the optimal case, greenhouse gas emissions from energy supply could be reduced by more than 75% and particulate emissions by over 50% in the municipality. This scenario supposes a drastic shift of heat supply systems from a fossil fuel dominated portfolio to a portfolio consisting of mainly heat pump and woodchip incineration systems. In addition to a change in heat supply technologies, roofs, windows and walls would need to be refurbished in more than 65% of the municipality's buildings. The full potential of the environmental impact reductions will hardly be achieved in reality, particularly in the short term, for example, because of financial constraints and social acceptance, which were not taken into account in this study. Nevertheless, the results of the optimization model can help policy makers to identify the most effective measures for improvement at the decision making level, for example, at the building level for refurbishment and selection of heating systems or at the municipal level for designing district heating networks. Therefore, this work represents a starting point for designing effective incentives to reduce the environmental impact of buildings. While the results of the optimization model are specific to the municipality studied, the model could readily be adapted to other regions.

  4. Controlling a transonic flow around airfoils by means of energy supply with allowance for real properties of air

    NASA Astrophysics Data System (ADS)

    Aulchenko, S. M.; Zamuraev, V. P.; Kalinina, A. P.

    2010-05-01

    The influence of molecular (thermodynamic and transport) properties of air on gas-dynamic effects of pulsed-periodic energy supply in a transonic flow around airfoils is studied. Relations for air with allowance for excitation of vibrations and dissociation are taken as the thermal equation of state and the caloric equation. The influence of the transport properties (viscosity) is taken into account approximately, within the framework of the boundary layer model. It is demonstrated that the effects in qualitative considerations do not depend on taking into account the molecular properties, but the allowance for internal degrees of freedom yields a significantly lower temperature than the temperature predicted by the ideal gas model. Allowance for viscosity ensures certain attenuation of the energy supply effects.

  5. Preliminary investigation on a primary energy saving heat supply system for the residential district "Maria Lindenhof" in Dorsten, West Germany

    NASA Astrophysics Data System (ADS)

    Bechtel, A.; Berlinghoff, K.; Grossmann, H.; Kaschube, H.; Reinmuth, F.

    1980-12-01

    Ways and means to operate a heating station by gas motor-driven heat pumps, using river water as heat source are investigated. The economic viability of the scheme is considered. A comparison with conventional technologies clearly shows the feasibility and effectiveness of this application, and at the same time supplies guidelines for design and dimensioning. Because of possible energy saving, the present investigation supports the realization of the project.

  6. Educational Interpreters in Virginia's Public Schools: Factors Affecting Supply, Demand and Training. A New Vision for Education.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond.

    This report presents the Virginia Department of Education's study of the current standards for qualified educational interpreters for deaf and hearing impaired students and the impact of qualification standards on the supply and demand of educational interpreters. The study involved synthesis of data concerning the Virginia Quality Assurance…

  7. Energy II: Use, Conservation and Supply. No. 6 in a Series of Special "Science" Compendia.

    ERIC Educational Resources Information Center

    Abelson, Philip H., Ed.; Hammond, Allen L., Ed.

    Presented are 26 articles originally published in "Science" during 1975-78. The document is divided into three parts. The first part contains articles on changes in energy use. Included are articles on industrial energy use, energy options and strategies for Western Europe, energy use in Brazil, and solar energy for village development, as well as…

  8. Impact of active and break wind spells on the demand-supply balance in wind energy in India

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2017-01-01

    With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.

  9. Nutritional plane and selenium supply during gestation affect yield and nutrient composition of colostrum and milk in primiparous ewes.

    PubMed

    Meyer, A M; Reed, J J; Neville, T L; Thorson, J F; Maddock-Carlin, K R; Taylor, J B; Reynolds, L P; Redmer, D A; Luther, J S; Hammer, C J; Vonnahme, K A; Caton, J S

    2011-05-01

    The objectives were to investigate effects of nutritional plane and Se supply during gestation on yield and nutrient composition of colostrum and milk in first parity ewes. Rambouillet ewe lambs (n = 84, age = 240 ± 17 d, BW = 52.1 ± 6.2 kg) were allocated to 6 treatments in a 2 × 3 factorial array. Factors included Se [adequate Se (ASe, 11.5 µg/kg of BW) or high Se (HSe, 77.0 µg/kg of BW)] initiated at breeding, and nutritional plane [60 (RES), 100 (CON), or 140% (HIH) of requirements] initiated at d 40 of gestation. Ewes were fed individually from d 40, and lambs were removed at parturition. Colostrum was milked from all ewes at 3 h postpartum, and one-half of the ewes (n = 42) were transitioned to a common diet meeting lactation requirements and mechanically milked for 20 d. Colostrum yield was greater (P = 0.02) for HSe ewes than ASe, whereas CON had greater (P < 0.05) colostrum yield than RES and HIH. Colostrum Se (%) was greater (P < 0.01) for HSe than ASe. Colostrum from ewes fed HSe had less (P = 0.03) butterfat (%), but greater (P ≤ 0.05) total butterfat, solids-not-fat, lactose, protein, milk urea N, and Se than ASe. Colostrum from HIH ewes had greater (P ≤ 0.02) solids-not-fat (%) than RES, whereas RES had greater (P ≤ 0.04) butterfat (%) than CON and HIH. Colostrum from ewes fed the CON diet had greater (P = 0.01) total butterfat than HIH. Total solids-not-fat, lactose, and protein were greater (P < 0.05) in colostrum from CON than RES and HIH. Ewes fed HSe had greater (P < 0.01) milk yield (g/d and mL/d) than ASe, and CON and HIH had greater (P < 0.01) yield than RES. Milk protein (%) was greater (P ≤ 0.01) in RES compared with CON or HIH. Ewes fed HSe had greater (P < 0.01) milk Se (µg/g and mg/d) than ASe on each sampling day. Milk from CON and HIH ewes had greater (P < 0.01) total solids-not-fat, lactose, protein, and milk urea N than RES. Total Se was greater (P = 0.02) in milk from ewes fed the CON diet compared with RES. Somatic

  10. The quality of our Nation's waters: factors affecting public-supply-well vulnerability to contamination: understanding observed water quality and anticipating future water quality

    USGS Publications Warehouse

    Eberts, Sandra M.; Thomas, Mary Ann; Jagucki, Martha L.

    2013-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, a study was conducted from 2001 to 2011 to shed light on factors that affect the vulnerability of water from public-supply wells to contamination (referred to hereafter as “public-supply-well vulnerability”). The study was designed as a follow-up to earlier NAWQA studies that found mixtures of contaminants at low concentrations in groundwater near the water table in urban areas across the Nation and, less frequently, in deeper groundwater typically used for public supply. Beside the factors affecting public-supply-well vulnerability to contamination, this circular describes measures that can be used to determine which factor (or factors) plays a dominant role at an individual public-supply well. Case-study examples are used throughout to show how such information can be used to improve water quality. In general, the vulnerability of the water from public-supply wells to contamination is a function of contaminant input within the area that contributes water to a well, the mobility and persistence of a contaminant once released to the groundwater, and the ease of groundwater and contaminant movement from the point of recharge to the open interval of a well. The following measures described in this circular are particularly useful for indicating which contaminants in an aquifer might reach an individual public-supply well and when, how, and at what concentration they might arrive: * Sources of recharge—Information on the sources of recharge for a well provides insight into contaminants that might enter the aquifer with the recharge water and potentially reach the well. * Geochemical conditions—Information on the geochemical conditions encountered by groundwater traveling to a well provides insight into contaminants that might persist in the water all the way to the well. * Groundwater-age mixtures—Information on the ages of the different waters that mix in a well

  11. Secondary Work Force Movement into Energy Industry Employment in Areas Affected by "Boom Town" Growth.

    ERIC Educational Resources Information Center

    Jurado, Eugene A.

    A labor market study of implications of rapid energy development in the West examined the dimensions of work force movement from secondary occupations to primary energy occupations in areas affected by "boom town" growth. (Secondary occupations were defined as those in all industries not categorized as primary energy industries.) Focus…

  12. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    PubMed

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  13. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    PubMed Central

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  14. Design and Development of an Affective Interface for Supporting Energy-saving Activities and its Evaluation

    NASA Astrophysics Data System (ADS)

    Ito, Kyoko; Tomita, Daisuke; Imaki, Tomotaka; Hongo, Taishiro; Yoshikawa, Hidekazu

    Toward a sustainable society, energy and environmental issues are very important and controversial problems, and it is expected to support various human activities for the measures by using Information Technology. The purpose of this study is to develop an affective interface for supporting people's energy-saving activities. First, a model for supporting people's energy-saving activities involving affective elements has been constructed for supporting people's energy-saving activities, based on social psychological approaches. Based on the proposed model, the requirements on an affective interface for people's energy-saving activities have been considered. In this study, the affective interface presents suitable energy-saving activities and current electric energy consumption by a character agent with a graphical shape and synthesized voice. The character agent recommends people's energy-saving activities, tells the method of energy-saving activities and the effectiveness, and so on. The affective interface for supporting energy-saving activities has been designed in detail and developed. Then, the evaluation experiment of the developed interface has been conducted, and the results of the experiments were analyzed.

  15. 78 FR 58533 - FirstEnergy Generation, LLC, Allegheny Energy Supply Company, LLC, and Green Valley Hydro, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 2280-017, 2343-084, 2459-245, 2516-057, 2517-036, 3494- 091, 3671-086, 2391-046, 2425-052, and 2509-046] FirstEnergy Generation, LLC, Allegheny Energy...

  16. Synthesis of Sustainable Energy Supply Chain by the P-Graph Framework

    EPA Science Inventory

    The present work proposes a computer-aided methodology for designing sustainable supply chains in terms of sustainability metrics by utilizing the P-graph framework. The methodology is an outcome of the collaboration between the Office of Research and Development (ORD) of the U.S...

  17. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A

    2016-07-01

    Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories.

  18. Biodiesel Supply and Consumption in the Short-Term Energy Outlook

    EIA Publications

    2009-01-01

    The historical biodiesel consumption data published in the Energy Information Administration's Monthly Energy Review March 2009 edition were revised to account for imports and exports. Table 10.4 of the Monthly Energy Review was expanded to display biodiesel imports, exports, stocks, stock change, and consumption. Similar revisions were made in the April 2009 edition of the Short-Term Energy Outlook (STEO).

  19. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon.

    PubMed

    Shi, Pengbao; Li, Bing; Chen, Haiju; Song, Changzheng; Meng, Jiangfei; Xi, Zhumei; Zhang, Zhenwen

    2017-02-14

    Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines (Vitis vinifera) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di (o-hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and cyanidin-3-O-(6-O-coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O-methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  20. Energy-efficient and low-voltage design methodology for a supply-sensing CMOS biosensor using biofuel cells for energy-autonomous healthcare applications

    NASA Astrophysics Data System (ADS)

    Kobayashi, Atsuki; Ikeda, Kei; Nakazato, Kazuo; Niitsu, Kiichi

    2017-01-01

    The power sources of wearable sensors play a key role in sensing-system architecture. As potential power sources for sensors monitoring physiological signals near the human body, biofuel cells, which generate energy from the biological environment through chemical methods, have attracted much attention. However, the insufficient open-circuit voltage of biofuel cells owing to thermodynamic limitation is a basic issue. Thus, the use of biofuel cells as a power supply for a sensor imposes a strict limitation upon the power budget. In this report, we propose a design methodology for a low-voltage supply-sensing CMOS biosensor using biofuel cells. To explore the design methodology for performance optimization, a SPICE simulation was conducted. The simulated results reveal an optimum energy-efficient point in the biosensor design parameters. A fabricated 250 nm CMOS test chip was used to verify the validity of the design methodology and the measurement results matched the simulated results.

  1. Technical regulation in low-rise construction in the context of heat supply energy efficient projects

    NASA Astrophysics Data System (ADS)

    Prokofyeva, G. I.; Gusakova, N. V.

    2015-01-01

    The present article is devoted to the problem of energy saving and energy efficiency in construction industry and solving the issues of technical regulation and development of the sufficient regulatory basis. Economic calculations have been performed to study the influence of energy efficient heat sources and application of energy saving ventilation systems on the total operation costs. The efficiency of their use has been proved. The use of energy efficient heat sources and energy saving ventilation systems allowed significant reduction of utility expenses providing comfortable living conditions for the residents.

  2. Neutralization of space charge on high-current low-energy ion beam by low-energy electrons supplied from silicon based field emitter arrays

    SciTech Connect

    Gotoh, Yasuhito; Tsuji, Hiroshi; Taguchi, Shuhei; Ikeda, Keita; Kitagawa, Takayuki; Ishikawa, Junzo; Sakai, Shigeki

    2012-11-06

    Neutralization of space charge on a high-current and low-energy ion beam was attempted to reduce the divergence with an aid of low-energy electrons supplied from silicon based field emitter arrays (Si-FEAs). An argon ion beam with the energy of 500 eV and the current of 0.25 mA was produced by a microwave ion source. The initial beam divergence and the emittance were measured at the entrance of the analysis chamber in order to estimate the intrinsic factors for beam divergence. The current density distribution of the beam after transport of 730 mm was measured by a movable Faraday cup, with and without electron supply from Si-FEAs. A similar experiment was performed with tungsten filaments as an electron source. The results indicated that the electron supply from FEA had almost the same effect as the thermionic filament, and it was confirmed that both electron sources can neutralize the ion beam.

  3. Impact of energy prices and cellulosic biomass supply on agriculture, energy, and the environment: An integrated modeling approach

    EPA Science Inventory

    The accelerated growth in biofuels markets has both created and reinforced linkages between agricultural and energy markets. This study investigates the dynamics in agricultural and biofuel markets under alternative price scenarios for both crude oil and natural gas. Two energy ...

  4. P.L. 95-619, "National Energy Supply Policy Act" (NECPA) (1978)

    SciTech Connect

    2011-12-13

    The purposes of this Act are to provide for the regulation of interstate commerce, to reduce the growth in demand for energy, and to conserve non-renewable energy resources without inhibiting beneficial economic growth.

  5. An overview of US energy options: Supply- and demand-side history and prospects

    NASA Technical Reports Server (NTRS)

    Hirshberg, A. S.

    1977-01-01

    An overview was provided of nonsolar energy policy options available to the United States until solar energy conversion and utilization devices can produce power at a cost competitive with that obtained from fossil fuels. The economics of the development of new fossil fuel sources and of mandatory conservation measures in energy usage were clarified in the context of the historic annual rate of increase in U.S. energy demand. An attempt was made to compare the costs and relative efficiencies of energy obtainable from various sources by correlating the many confusing measurement units in current use.

  6. High hydrogen peroxide concentration in the feed-zone affects bioreactor cell productivity with liquid phase oxygen supply strategy.

    PubMed

    Sarkar, Pritish; Ghosh, Kaushik; Suraishkumar, G K

    2008-06-01

    Liquid phase oxygen supply strategy (LPOS), in which hydrogen peroxide (H(2)O(2)) is used to supply oxygen to the bioreactor, leads to low cell productivity despite high specific productivities of relevant metabolites. We hypothesized that high H(2)O(2) concentrations in the feed-zone led to local cell death, which in turn, lead to lower cell productivity. To test the hypothesis, a mathematical model was developed. Bacillus subtilis 168 was used as the model system in this study. The model simulations of cell concentrations in the bioreactor-zone were verified with the experimental results. The feed-zone H(2)O(2) concentrations remained 12-14 times higher than bulk bioreactor concentrations. The high local concentrations are expected to cause local cell killing, which explains the decrease in overall cell production by 50% at 300 rpm compared to conventional cultivation. Further, among the four different feed strategies studied using the model, dissolved oxygen (DO) controlled H(2)O(2) feed strategy caused least local cell killing and improved overall cell production by 34%.

  7. Supply and demand in energy and agriculture: Emitters of CO{sub 2} and possibilities for global biomass energy strategies

    SciTech Connect

    Ahamer, G.; Hubergasse, J.

    1996-12-31

    As seen from the perspective of global E3-modelling (= environment-economy-energy), the sectors of energy and of agriculture are double players situated in a field of tension: both exhibit growing emissions--but both also exhibit reduction potentials for CO{sub 2}, if areas are used for growth of biomass energy carriers. On the one hand, meeting food demand requires increasing agricultural land use in some regions, on the other hand in other regions, an important input of fossil fuels buys higher efficiency levels. In the First World, newly set-aside land can be used for biomass energy production. Before envisaging global strategies for CO{sub 2} emission reductions and more specifically for an enhanced use of biomass for energy, the present boundary conditions of the global energy and agricultural systems have to be analyzed. In a second step, a likely future development has to be contrasted with the desirable increase of bioenergy.

  8. The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. II. Framework, Strategy, and First Result

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Griffith, R. L.; Sigurdsson, S.; Povich, M. S.; Mullan, B.

    2014-09-01

    We describe the framework and strategy of the Ĝ infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although GAIA will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited "free" energy generation.

  9. the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. II. Framework, strategy, and first result

    SciTech Connect

    Wright, J. T.; Griffith, R. L.; Sigurdsson, S.; Povich, M. S.; Mullan, B.

    2014-09-01

    We describe the framework and strategy of the Ĝ infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although GAIA will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited 'free' energy generation.

  10. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells.

    PubMed

    Jacobson, Kyle S; Kelly, Patrick T; He, Zhen

    2015-03-01

    Energy recovery and consumption in a microbial fuel cell (MFC) can be significantly affected by the operating conditions. This study investigated the effects of electrolyte recirculation and operation mode (continuous vs sequence batch reactor) on the energy balance in a tubular MFC. It was found that decreasing the anolyte recirculation also decreased the energy recovery. Because of the open environment of the cathode electrode, the catholyte recirculation consumed 10 to 50 times more energy than the anolyte recirculation, and resulted in negative energy balances despite the reduction of the anolyte recirculation. Reducing the catholyte recirculation to 20% led to a positive energy balance of 0.0288 kWh m(-3). The MFC operated as a sequence batch reactor generated less energy and had a lower energy balance than the one with continuous operation. Those results encourage the further development of MFC technology to achieve neutral or even positive energy output.

  11. Optimal planning and design of a renewable energy based supply system for microgrids

    DOE PAGES

    Hafez, Omar; Bhattacharya, Kankar

    2012-03-03

    This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less

  12. Optimal planning and design of a renewable energy based supply system for microgrids

    SciTech Connect

    Hafez, Omar; Bhattacharya, Kankar

    2012-03-03

    This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are also presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.

  13. Hawaii Integrated Energy Assessment. Volume V. Rules, regulations, permits and policies affecting the development of alternate energy sources in Hawaii

    SciTech Connect

    Not Available

    1980-01-01

    A comprehensive presentaton of the major permits, regulations, rules, and controls which are likely to affect the development of alternate energy sources in Hawaii is presented. An overview of the permit process, showing the major categories and types of permits and controls for energy alternatives is presented. This is followed by a brief resume of current and projected changes designed to streamline the permit process. The permits, laws, regulations, and controls that are applicable to the development of energy alternatives in Hawaii are described. The alternate energy technologies affected, a description of the permit or control, and the requirements for conformance are presented for each applicable permit. Federal, state, and county permits and controls are covered. The individual energy technologies being considered as alternatives to the State's present dependence on imported fossil fuels are emphasized. The alternate energy sources covered are bioconversion, geothermal, ocean thermal, wind, solar (direct), and solid waste. For each energy alternative, the significant permits are summarized with a brief explanation of why they may be necessary. The framework of policy development at each of the levels of government with respect to the alternate energy sources is covered.

  14. On the Integration of Wind and Solar Energy to Provide a Total Energy Supply in the U.S

    NASA Astrophysics Data System (ADS)

    Liebig, E. C.; Rhoades, A.; Sloggy, M.; Mills, D.; Archer, C. L.

    2009-12-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary sources of energy in the U.S., under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the US national load on a monthly basis. Other studies have shown that solar or wind alone can power the present US grid on average. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from a particular year will be used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hydro and geothermal generation can provide additional controllable output, when needed, to fulfill the hourly electricity and/or energy needs. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental US using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra’s model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat

  15. Revitalization of Energy Supply Systems in the Scale of a Town, a District and an Island

    NASA Astrophysics Data System (ADS)

    Juchimiuk, Justyna

    2016-09-01

    Model actions undertaken in HafenCity and Wilhelmsburg during IBA Hamburg 2006- 13 as well as energy transformation of Danish island of Samsø towards self-sufficiency are examples of the use of energy as one of the key factors in the design of revitalization process in various scales. An important issue is to determine the impact of renewable energy systems on design process, architecture and urbanism of revitalized structures. Article examines the programs and projects related to the processes: renewal of degraded inner-industrial areas (brownfields), ecological restoration of degraded land, the revitalization of port and underdeveloped areas in the aspects of climate protection, the use of energy from renewable sources and improvement of technical conditions of building substance while maintaining the principles of sustainable development.

  16. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    EIA Publications

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  17. Heterogeneous water supply affects growth and benefits of clonal integration between co-existing invasive and native Hydrocotyle species

    PubMed Central

    Wang, Yong-Jian; Bai, Yun-Fei; Zeng, Shi-Qi; Yao, Bin; Wang, Wen; Luo, Fang-Li

    2016-01-01

    Spatial patchiness and temporal variability in water availability are common in nature under global climate change, which can remarkably influence adaptive responses of clonal plants, i.e. clonal integration (translocating resources between connected ramets). However, little is known about the effects of spatial patchiness and temporal heterogeneity in water on growth and clonal integration between congeneric invasive and native Hydrocotyle species. In a greenhouse experiment, we subjected severed or no severed (intact) fragments of Hydrocotyle vulgaris, a highly invasive species in China, and its co-existing, native congener H. sibthorpioides to different spatial patchiness (homogeneous and patchy) and temporal interval (low and high interval) in water supply. Clonal integration had significant positive effects on growth of both species. In the homogeneous water conditions, clonal integration greatly improved the growth in fragments of both species under low interval in water. However, in the patchy water conditions, clonal integration significantly increased growth in both ramets and fragments of H. vulgaris under high interval in water. Therefore, spatial patchiness and temporal interval in water altered the effects of clonal integration of both species, especially for H. vulgaris. The adaptation of H. vulgaris might lead to invasive growth and potential spread under the global water variability. PMID:27439691

  18. Can low-energy electrons affect high-energy physics accelerators?

    SciTech Connect

    Cimino, R.; Collins, I.R.; Furman, M.A.; Pivi, M.; Ruggiero, F.; Rumolo, G.; Zimmermann, F.

    2004-02-09

    Present and future accelerators performances may be limited by the electron cloud (EC) effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber.We present measurements of the total secondary electron yield (SEY) and the related energy distribution curves of the secondary electrons as a function of incident-electron energy. Particular attention has been paid to the emission process due to very low-energy primary electrons (<20 eV). It is shown that the SEY approaches unity and the reflected electron component is predominant in the limit of zero primary incident electron energy. Motivated by these measurements, we have used state-of-the-art EC simulation codes to predict how these results may impact the production of the electron cloud in the Large Hadron Collider, under construction at CERN, and the related surface heat load.

  19. Analysis of Time-of-Day Energy Demand and Supply in University and Hospital

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi

    The aim of this study was to estimate the time-of-day energy demand in University of Yamanashi. Our University consisted of Kofu campus (Faculty of Education & Human Sciences and Faculty of Engineering) and Faculty of Medicine campus (Faculty of Medicine and University Hospital). The energy data of 4 facilities were classified into hot water, heating, cooling and electric power demands based on electric power consumptions, city gas and heavy oil from 1996 to 2005. For 10 years, primary energy increased 1.2 times in the whole of the university. The amount of electric power consumption was 63% in the fuel classification. The amount of electric power consumption of faculty reacted to the change in temperature greatly. In 2005, it was found that thermoelectric-ratios for 4 facilities, i.e. Education, Engineering, Medicine and Hospital were 2.3, 1.5, 2.0 and 2.7 respectively. These data are very useful for the energy saving and energy management of university.

  20. Legal and regulatory issues affecting the aquifer thermal energy storage concept

    SciTech Connect

    Hendrickson, P.L.

    1980-10-01

    A number of legal and regulatory issus that potentially can affect implementation of the Aquifer Thermal Energy Storage (ATES) concept are examined. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  1. On the integration of wind and solar energy to provide a total energy supply in the USA

    NASA Astrophysics Data System (ADS)

    Archer, Cristina; Mills, David; Cheng, Weili; Sloggy, Matthew; Liebig, Edwin; Rhoades, Alan

    2010-05-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary source of energy in the USA, under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar or wind alone can power the present U.S. grid on average. Other studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the U.S. national load on a monthly basis. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from the year 2006 are used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental U.S. using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all suitable locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra's model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat processing, and future electrified transportation loads were calculated from monthly and yearly energy consumption data from the Energy Information

  2. Impact of forest biomass residues to the energy supply chain on regional air quality.

    PubMed

    Rafael, S; Tarelho, L; Monteiro, A; Sá, E; Miranda, A I; Borrego, C; Lopes, M

    2015-02-01

    The increase of the share of renewable energy in Portugal can be met from different sources, of which forest biomass residues (FBR) can play a main role. Taking into account the demand for information about the strategy of FBR to energy, and its implications on the Portuguese climate policy, the impact of energy conversion of FBR on air quality is evaluated. Three emission scenarios were defined and a numerical air quality model was selected to perform this evaluation. The results reveal that the biomass thermal plants contribute to an increment of the pollutant concentrations in the atmosphere, however restricted to the surrounding areas of the thermal plants, and most significant for NO₂ and O₃.

  3. Energy storage and thermal control system design status. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  4. Geothermal Program Review X: proceedings. Geothermal Energy and the Utility Market -- the Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market

    SciTech Connect

    Not Available

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R&D program. The conference serves several purposes: a status report on current R&D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year`s conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, ``Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,`` focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R&D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  5. Re-energizing energy supply: Electrolytically-produced hydrogen as a flexible energy storage medium and fuel for road transport

    NASA Astrophysics Data System (ADS)

    Emonts, Bernd; Schiebahn, Sebastian; Görner, Klaus; Lindenberger, Dietmar; Markewitz, Peter; Merten, Frank; Stolten, Detlef

    2017-02-01

    ;Energiewende;, which roughly translates as the transformation of the German energy sector in accordance with the imperatives of climate change, may soon become a byword for the corresponding processes most other developed countries are at various stages of undergoing. Germany's notable progress in this area offers valuable insights that other states can draw on in implementing their own transitions. The German state of North Rhine-Westphalia (NRW) is making its own contribution to achieving the Energiewende's ambitious objectives: in addition to funding an array of 'clean and green' projects, the Virtual Institute Power to Gas and Heat was established as a consortium of seven scientific and technical organizations whose aim is to inscribe a future, renewable-based German energy system with adequate flexibility. Thus, it is tasked with conceiving of and evaluating suitable energy path options. This paper outlines one of the most promising of these pathways, which is predicated on the use of electrolytically-produced hydrogen as an energy storage medium, as well as the replacement of hydrocarbon-based fuel for most road vehicles. We describe and evaluate this path and place it in a systemic context, outlining a case study from which other countries and federated jurisdictions therein may draw inspiration.

  6. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)

    SciTech Connect

    Not Available

    2008-12-01

    This document is a 21-page summary of the 200+ page analysis that explores one clearly defined scenario for providing 20% of our nation's electricity demand with wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

  7. P.L. 100-357, "National Appliance Energy Supply Amendments" (1988)

    SciTech Connect

    2011-12-13

    Amends the Energy Policy and Conservation Act to include fluorescent lamp ballasts within the list of products covered by the Act. Amends the definition of "consumer product" to include fluorescent lamp ballasts distributed in commerce for personal or commercial use or consumption.

  8. U.S. Wind Energy Manufacturing & Supply Chain: A Competitive Analysis

    SciTech Connect

    Fullenkamp, Patrick

    2014-06-15

    The Global Wind Network (GLWN) assessed the key factors that determine wind energy component manufacturing costs and pricing on a global basis in order to provide a better understanding of the factors that will help enhance the competitiveness of U.S. manufacturers, and reduce installed system costs.

  9. 75 FR 56021 - Energy Conservation Standards for Battery Chargers and External Power Supplies: Public Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... Rulemaking Process III. Summary of the Analyses Performed by DOE A. Engineering Analysis B. Markups to...: (1) Engineering, (2) markups to determine product price, (3) energy use, (4) life-cycle cost (LCC.... Markups To Determine Product Prices DOE derives consumer prices for products from data on...

  10. The economic value of transportation energy contingency planning: An objective model for analyzing the economics of domestic renewable energy for supply augmentation

    NASA Astrophysics Data System (ADS)

    Shaten, Richard Jay

    1998-12-01

    Petroleum provides 90% of transportation energy needs. Domestic production is decreasing and global demand is increasing. Risk of escalating prices and supply interruptions are compounded by environmental and military externalities and lost opportunities from the failure to develop alternative domestic resources. Within the context of "energy contingency planning" municipalities should evaluate crisis mitigation strategies. Supply augmentation using domestic renewable fuels is proposed to avert future financial liabilities. A method for calculating the economic value of this strategy is demonstrated. An objective function and associated constraints represent the cost of preparing for each of three possible scenarios: status quo, inflationary and crisis. Constraints ensure that municipal fuel needs are met. Environmental costs may be included. Optimal solutions determine the fuel supply mix for each scenario. A 3 x 3 matrix presents the range of actual costs resulting from preparing for each scenario and subsequent three possible outcomes. The distribution of probabilities of the outcomes is applied to the cost matrix and an "expected value" of preparing for each scenario is calculated. An unanticipated crisis outcome results in. The expected value of the cost of preparing for a crisis is cast as an insurance premium against potential economic liability. Policy makers accept the crisis preparation fuel mix if: (a) they agree with the calculated penalty cost, or (b) they accept the burden of the insurance premium. Green Bay Wisconsin was chosen as a sample municipality. Results show that a perceived 10% chance of crisis requires an annual tax of 4.00 per household to avert economic impacts of 50 million. At a perceived 50% chance of crisis preparing for the crisis would begin to save the municipality money.

  11. P.L. 100-12, "National Appliance Energy Supply Act" (1987)

    SciTech Connect

    2011-12-13

    Amends the Energy Policy and Conservation Act to add to the list of products covered under the Act: (1) freezers which can be operated by alternating current electricity (with specified exceptions); (2) central air conditioning heat pumps; (3) direct heating equipment; and (4) pool heaters. Deletes from specific coverage: (1) humidifiers; and (2) dehumidifiers. Excludes from such coverage consumer products designed solely for use in recreational vehicles and other mobile equipment.

  12. Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)

    SciTech Connect

    Baring-Gould, I.

    2011-03-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.

  13. Long integral temperature Brillouin sensor for off- shore wind energy power supply lines

    NASA Astrophysics Data System (ADS)

    Quintela, M. A.; Ullán, A.; Quintela, A.; Galindez, C.; Perez-Herrera, R. A.; López-Amo, M.; Lopez-Higuera, J. M.

    2011-05-01

    A hybrid Erbium-Brillouin fiber laser sensor to measure the temperature along 22 km fiber is proposed and experimentally demonstrated. A multi-line laser oscillation is induced by the Brillouin gain of different concatenated transducer fiber sections placed in the ring cavity. Integral temperature measurements of each fiber section are obtained through each laser line. This sensor can be used to monitor the temperature of off-shore wind energy power cables.

  14. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    PubMed

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  15. From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security

    PubMed Central

    Kittinger, John N.; Teneva, Lida T.; Koike, Haruko; Stamoulis, Kostantinos A.; Kittinger, Daniela S.; Oleson, Kirsten L. L.; Conklin, Eric; Gomes, Mahana; Wilcox, Bart; Friedlander, Alan M.

    2015-01-01

    Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr-1 (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the “food shed” for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change. PMID:26244910

  16. From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security.

    PubMed

    Kittinger, John N; Teneva, Lida T; Koike, Haruko; Stamoulis, Kostantinos A; Kittinger, Daniela S; Oleson, Kirsten L L; Conklin, Eric; Gomes, Mahana; Wilcox, Bart; Friedlander, Alan M

    2015-01-01

    Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.

  17. Water supply for the Nuclear Rocket Development Station at the U.S. Atomic Energy Commission's Nevada Test Site

    USGS Publications Warehouse

    Young, Richard Arden

    1972-01-01

    The Nuclear Rocket Development Station, in Jackass Flats, occupies about 123 square miles in the southwestern part of the U.S. Atomic Energy Commission's Nevada Test Site. Jackass Flats, an intermontane valley bordered by highlands on all sides except for a drainage outlet in the southwestern corner, has an average annual rainfall of 4 inches. Jackass Flats is underlain by alluvium, colluvium, and volcanic rocks of Cenozoic age and, at greater depth, by sedimentary rocks of Paleozoic age. The alluvium and the colluvium lie above the saturated zone throughout nearly all of Jackass Flats. The Paleozoic sedimentary rocks contain limestone and dolomite units that are excellent water producers elsewhere ; however, these units are too deep in Jackass Flats to be economic sources of water. The only important water-producing unit known in the vicinity of the Nuclear Rocket Development Station is a welded-tuff aquifer, the Topopah Spring Member of the Paintbrush Tuff, which receives no significant recharge. This member contains about 500 feet of highly fractured rock underlying an area 11 miles long and 3 miles wide in western Jackass Flats. Permeability of the aquifer is derived mostly from joints and fractures; however, some permeability may be derived from gas bubbles in the upper part of the unit. Transmissivity, obtained from pumping tests, ranges from 68,000 to 488,000 gallons per day per foot. Volume of the saturated part of the aquifer is about 3.5 cubic miles, and the average specific yield probably ranges from 1 to 5 percent. The volume of ground water in storage is probably within the range of 37-187 billion gallons. This large amount of water should be sufficient to supply the needs of the Nuclear Rocket Development Station for many years. Water at the Nuclear Rocket Development Station is used for public supply, construction, test-cell coolant, exhaust cooling, and thermal shielding during nuclear reactor and engine testing, and washdown. Present (1967) average

  18. Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont's Energy Needs

    SciTech Connect

    Sawyer, Scott; Kahler, Ellen

    2009-05-31

    The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund's (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont's dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy's Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization-the Biofuels Center of North Carolina-in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm's proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5

  19. A PFC power supply with minimized energy storage components and a new control technique for cascaded SMPS

    NASA Astrophysics Data System (ADS)

    Frost, Damien F.

    2009-12-01

    This Master of Applied Science thesis proposes a new design of low power, power factor corrected (PFC), power supplies. By lifting the hold up time restriction for devices that have a battery built in, the energy storage elements of the converter can be reduced, permitting a small and inexpensive power converter to be built. In addition, a new control technique for controlling cascaded converters is presented, named duty mode control (DMC). Its advantages are shown through simulations. The system was proven using a prototype developed in the laboratory designed for a universal ac input voltage (85 - 265 VRMS at 50 - 60Hz) and a 40W output at 12V . It consisted of two interleaved phases sensed and digitally controlled on the isolated side of the converter. The prototype was able to achieve a power factor of greater than 0.98 for all operating conditions, and input harmonic current distortion well below any set of standards.

  20. Power supply

    DOEpatents

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  1. Use of a turboexpander in steam power units for heat energy recovery in heat supply systems

    NASA Astrophysics Data System (ADS)

    Sadykov, R. A.; Daminov, A. Z.; Solomin, I. N.; Futin, V. A.

    2016-05-01

    A method for raising the efficiency of a boiler plant by installing a unit operating by the organic Rankine cycle is presented. Such units allow one to generate electricity to cover the auxiliaries of a heat source at a heat-transfer fluid temperature of no more than 130°C. The results of commissioning tests of boilers revealed that their efficiency is maximized under a load that is close or corresponds to the nominal one. If this load is maintained constantly, excess heat energy is produced. This excess may be used to generate electric energy in a steam power unit with a turboexpander. A way to insert this unit into the flow diagram of a boiler plant is proposed. The results of analysis of turbine types (turboexpanders included) with various capacities are presented, and the optimum type for the proposed flow diagram is chosen. The methodology for the design of turboexpanders and compressors used in the oil and gas industry and their operational data were applied in the analysis of a turboexpander. The results of the thermogasdynamic analysis of a turboexpander and the engineered shape of an axial-radial impeller are presented. Halocarbon R245fa is chosen as the working medium based on its calorimetric properties.

  2. Technological development of high energy density capacitors. [for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Parker, R. D.

    1976-01-01

    A study was conducted to develop cylindrical wound metallized film capacitors rated 2 micron F 500 VDC that had energy densities greater than 0.1J/g. Polysulfone (PS) and polyvinylidene (PVF2) were selected as dielectrics. Single film PS capacitors of 0.2J/g (uncased) were made of 3.75 micron material. Single film PVF2 capacitors of 0.19J/g (uncased) were made of 6.0 micron material. Corona measurements were made at room temperature, and capacitance and dissipation factor measurements were made over the ranges 25 C to 125 C and 120 Hz to 100 kHz. Nineteen of twenty PVF2 components survived a 2500 hour dc plus ac life test. Failure analyses revealed most failures occurred at wrinkles, but some edge failures were also seen. A 0.989g case was designed. When the case was combined with the PVF2 component, a finished energy density of 0.11J/g was achieved.

  3. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States

    USGS Publications Warehouse

    Ayotte, Joseph D.; Belaval, Marcel; Olson, Scott A.; Burow, Karen R.; Flanagan, Sarah M.; Hinkle, Stephen R.; Lindsey, Bruce D.

    2014-01-01

    The occurrence of arsenic in groundwater is a recognized environmental hazard with worldwide importance and much effort has been focused on surveying and predicting where arsenic occurs. Temporal variability is one aspect of this environmental hazard that has until recently received less attention than other aspects. For this study, we analyzed 1245 wells with two samples per well. We suggest that temporal variability, often reported as affecting very few wells, is perhaps a larger issue than it appears and has been masked by datasets with large numbers of non-detect data. Although there was only a slight difference in arsenic concentration variability among samples from public and private wells (p = 0.0452), the range of variability was larger for public than for private wells. Further, we relate the variability we see to geochemical factors—primarily variability in redox—but also variability in pH and major-ion chemistry. We also show that in New England there is a weak but statistically significant indication that seasonality may have an effect on concentrations, whereby concentrations in the first two quarters of the year (January–June) are significantly lower than in the second two quarters (July–December) (p < 0.0001). In the Central Valley of California, though not statistically significant (p = 0.4169), arsenic concentration is lower in the first quarter of the year but increases in subsequent quarters. In both regions, these changes appear to follow groundwater levels. It is possible that this difference in arsenic concentrations is related to groundwater level changes, pumping stresses, evapotranspiration effects, or perhaps mixing of more oxidizing, lower pH recharge water in wetter months. Focusing on the understanding the geochemical conditions in aquifers where arsenic concentrations are concerns and causes of geochemical changes in the groundwater environment may lead to a better understanding of where and by how much arsenic will vary over

  4. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States.

    PubMed

    Ayotte, Joseph D; Belaval, Marcel; Olson, Scott A; Burow, Karen R; Flanagan, Sarah M; Hinkle, Stephen R; Lindsey, Bruce D

    2015-02-01

    The occurrence of arsenic in groundwater is a recognized environmental hazard with worldwide importance and much effort has been focused on surveying and predicting where arsenic occurs. Temporal variability is one aspect of this environmental hazard that has until recently received less attention than other aspects. For this study, we analyzed 1245 wells with two samples per well. We suggest that temporal variability, often reported as affecting very few wells, is perhaps a larger issue than it appears and has been overshadowed by datasets with large numbers of non-detect data. Although there was only a slight difference in arsenic concentration variability among samples from public and private wells (p=0.0452), the range of variability was larger for public than for private wells. Further, we relate the variability we see to geochemical factors-primarily variability in redox-but also variability in major-ion chemistry. We also show that in New England there is a weak but statistically significant indication that seasonality may have an effect on concentrations, whereby concentrations in the first two quarters of the year (January-June) are significantly lower than in the second two quarters (July-December) (p<0.0001). In the Central Valley of California, the relation of arsenic concentration to season was not statistically significant (p=0.4169). In New England, these changes appear to follow groundwater levels. It is possible that this difference in arsenic concentrations is related to groundwater level changes, pumping stresses, evapotranspiration effects, or perhaps mixing of more oxidizing, lower pH recharge water in wetter months. Focusing on the understanding the geochemical conditions in aquifers where arsenic concentrations are concerns and causes of geochemical changes in the groundwater environment may lead to a better understanding of where and by how much arsenic will vary over time.

  5. Water supply implications of herbicide sampling: Hydrologic conditions may affect concentrations of organonitrogen herbicides and may be important considerations in complying with drinking water regulations

    USGS Publications Warehouse

    Stamer, J.K.

    1996-01-01

    The temporal distribution of the herbicides alachlor, atrazine, cyanazine, and metolachlor was documented from September 1991 through August 1992 in the Platte River at Louisville, Neb., the drainage of the Central Nebraska Basins. Lincoln, Ornaha, and other municipalities withdraw groundwater for public supplies from the adjacent alluvium, which is hydraulically connected to the Platte River. Data were collected, in part, to provide information to managers, planners, and public utilities on the likelihood of water supplies being adversely affected by these herbicides. Three computational procedures - monthly means, monthly subsampling, and quarterly subsampling - were used to calculate annual mean herbicide concentrations. When the sampling was conducted quarterly rather than monthly, alachlor and atrazine concentrations were more likely to exceed their respective maximum contaminant levels (MCLs) of 2.0 μg/L and 3.0 μg/L, and cyanazine concentrations were more likely to exceed the health advisory level of 1.0 μg/L. The US Environmental Protection Agency has established a tentative MCL of 1.0 μg/L for cyanazine; data indicate that cyanazine is likely to exceed this level under most hydrologic conditions.

  6. Knock-Down of a Tonoplast Localized Low-Affinity Nitrate Transporter OsNPF7.2 Affects Rice Growth under High Nitrate Supply

    PubMed Central

    Hu, Rui; Qiu, Diyang; Chen, Yi; Miller, Anthony J.; Fan, Xiaorong; Pan, Xiaoping; Zhang, Mingyong

    2016-01-01

    The large nitrate transporter 1/peptide transporter family (NPF) has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa) root-specific family member OsNPF7.2 has not been functionally characterized. Here, our data show that OsNPF7.2 is a tonoplast localized low-affinity nitrate transporter, that affects rice growth under high nitrate supply. Expression analysis showed that OsNPF7.2 was mainly expressed in the elongation and maturation zones of roots, especially in the root sclerenchyma, cortex and stele. It was also induced by high concentrations of nitrate. Subcellular localization analysis showed that OsNPF7.2 was localized on the tonoplast of large and small vacuoles. Heterologous expression in Xenopus laevis oocytes suggested that OsNPF7.2 was a low-affinity nitrate transporter. Knock-down of OsNPF7.2 retarded rice growth under high concentrations of nitrate. Therefore, we deduce that OsNPF7.2 plays a role in intracellular allocation of nitrate in roots, and thus influences rice growth under high nitrate supply. PMID:27826301

  7. Flexible biogas production for demand-driven energy supply--feeding strategies and types of substrates.

    PubMed

    Mauky, Eric; Jacobi, H Fabian; Liebetrau, Jan; Nelles, Michael

    2015-02-01

    Purpose of this work was the evaluation of demand driven biogas production. In laboratory-scale experiments it could be demonstrated that with diurnal flexible feeding and specific combination of substrates with different degradation kinetics biogas can be produced highly flexible in CSTR systems. Corresponding to the feedings the diurnal variation leads to alternations of the methane, carbon dioxide and acid concentrations as well as the pH-value. The long-time process stability was not negatively affected by the dynamic feeding regime at high OLRs of up to 6 kg VS m(-3) d(-1). It is concluded that the flexible gas production can give the opportunity to minimize the necessary gas storage capacity which can save investments for non-required gas storage at site.

  8. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  9. Italian parliamentary debates on energy sustainability: How argumentative 'short-circuits' affect public engagement.

    PubMed

    Brondi, Sonia; Sarrica, Mauro; Caramis, Alessandro; Piccolo, Chiara; Mazzara, Bruno M

    2016-08-01

    Public engagement is considered a crucial process in the transition towards sustainable energy systems. However, less space has been devoted to understand how policy makers and stakeholders view citizens and their relationship with energy issues. Nonetheless, together with technological advancements, policies and political debates on energy affect public engagement as well as individual practices. This article aims at tackling this issue by exploring how policy makers and stakeholders have socially constructed sustainable energy in Italian parliamentary debates and consultations during recent years (2009-2012). Results show that societal discourses on sustainable energy are oriented in a manner that precludes public engagement. The political debate is characterised by argumentative 'short-circuits' that constrain individual and community actions to the acceptance or the refusal of top-down decisions and that leave little room for community empowerment and bottom-up innovation.

  10. A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing.

    PubMed

    Moser, Elke; Grass, Dieter; Tragler, Gernot

    Given the constantly raising world-wide energy demand and the accompanying increase in greenhouse gas emissions that pushes the progression of climate change, the possibly most important task in future is to find a carbon-low energy supply that finds the right balance between sustainability and energy security. For renewable energy generation, however, especially the second aspect turns out to be difficult as the supply of renewable sources underlies strong volatility. Further on, investment costs for new technologies are so high that competitiveness with conventional energy forms is hard to achieve. To address this issue, we analyze in this paper a non-autonomous optimal control model considering the optimal composition of a portfolio that consists of fossil and renewable energy and which is used to cover the energy demand of a small country. While fossil energy is assumed to be constantly available, the supply of the renewable resource fluctuates seasonally. We further on include learning effects for the renewable energy technology, which will underline the importance of considering the whole life span of such a technology for long-term energy planning decisions.

  11. Energy efficiency by use of automated energy-saving windows with heat-reflective screens and solar battery for power supply systems of European and Russian buildings

    NASA Astrophysics Data System (ADS)

    Zakharov, V. M.; Smirnov, N. N.; Tyutikov, V. V.; Flament, B.

    2015-10-01

    The new energy saving windows with heat-reflecting shields have been developed, and for their practical use they need to be integrated into the automated system for controlling heat supply in buildings and the efficiency of their use together with the existing energy-saving measures must be determined. The study was based on the results of field tests of windows with heat-reflective shields in a certified climate chamber. The method to determine the minimum indoor air temperature under standby heating using heat-reflective shields in the windows and multifunctional energy-efficient shutter with solar battery have been developed. Annual energy saving for the conditions of different regions of Russia and France was determined. Using windows with heat-reflecting screens and a solar battery results in a triple power effect: reduced heat losses during the heating season due to increased window resistance; lower cost of heating buildings due to lowering of indoor ambient temperature; also electric power generation.

  12. 25 CFR 224.73 - How will the scope of energy resource development affect the Secretary's determination of the...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... energy resource development under the TERA will include a determination as to each type of energy... 25 Indians 1 2014-04-01 2014-04-01 false How will the scope of energy resource development affect... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE...

  13. Biofuels in the long-run global energy supply mix for transportation.

    PubMed

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels.

  14. SUPPLY AND DEMAND IN CEREBRAL ENERGY METABOLISM: THE ROLE OF NUTRIENT TRANSPORTERS

    PubMed Central

    Simpson, Ian A.; Carruthers, Anthony; Vannucci, Susan J.

    2007-01-01

    Glucose is the obligate energetic fuel for the mammalian brain and most studies of cerebral energy metabolism assume that the vast majority of cerebral glucose utilization fuels neuronal activity via oxidative metabolism, both in the basal and activated state. Glucose transporter proteins (GLUTs) deliver glucose from the circulation to the brain: GLUT1 in the microvascular endothelial cells of the blood brain barrier (BBB) and glia; GLUT3 in neurons. Lactate, the glycolytic product of glucose metabolism, is transported into and out of neural cells by the monocarboxylate transporters: MCT1 in the BBB and astrocytes and MCT2 in neurons. The proposal of the astrocyte-neuron lactate shuttle hypothesis (Pellerin and Magistretti, 1994) suggested that astrocytes play the primary role in cerebral glucose utilization and generate lactate for neuronal energetics, especially during activation. Since the identification of the GLUTs and MCTs in brain, much has been learned about their transport properties, i.e. capacity and affinity for substrate, which must be considered in any model of cerebral glucose uptake and utilization. Using concentrations and kinetic parameters of GLUT1 and GLUT3 in BBB endothelial cells, astrocytes and neurons, along with the corresponding kinetic properties of the monocarboxylate transporters, we have successfully modeled brain glucose and lactate levels as well as lactate transients in response to neuronal stimulation. Simulations based on these parameters suggest that glucose readily diffuses through the basal lamina and interstitium to neurons, which are primarily responsible for glucose uptake, metabolism, and the generation of the lactate transients observed upon neuronal activation. PMID:17579656

  15. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America.

    PubMed

    Barbosa, Larissa de Souza Noel Simas; Bogdanov, Dmitrii; Vainikka, Pasi; Breyer, Christian

    2017-01-01

    Power systems for South and Central America based on 100% renewable energy (RE) in the year 2030 were calculated for the first time using an hourly resolved energy model. The region was subdivided into 15 sub-regions. Four different scenarios were considered: three according to different high voltage direct current (HVDC) transmission grid development levels (region, country, area-wide) and one integrated scenario that considers water desalination and industrial gas demand supplied by synthetic natural gas via power-to-gas (PtG). RE is not only able to cover 1813 TWh of estimated electricity demand of the area in 2030 but also able to generate the electricity needed to fulfil 3.9 billion m3 of water desalination and 640 TWhLHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar and wind electricity storage, diminishing the role of storage technologies. The results for total levelized cost of electricity (LCOE) are decreased from 62 €/MWh for a highly decentralized to 56 €/MWh for a highly centralized grid scenario (currency value of the year 2015). For the integrated scenario, the levelized cost of gas (LCOG) and the levelized cost of water (LCOW) are 95 €/MWhLHV and 0.91 €/m3, respectively. A reduction of 8% in total cost and 5% in electricity generation was achieved when integrating desalination and power-to-gas into the system.

  16. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America

    PubMed Central

    Barbosa, Larissa de Souza Noel Simas; Bogdanov, Dmitrii; Vainikka, Pasi; Breyer, Christian

    2017-01-01

    Power systems for South and Central America based on 100% renewable energy (RE) in the year 2030 were calculated for the first time using an hourly resolved energy model. The region was subdivided into 15 sub-regions. Four different scenarios were considered: three according to different high voltage direct current (HVDC) transmission grid development levels (region, country, area-wide) and one integrated scenario that considers water desalination and industrial gas demand supplied by synthetic natural gas via power-to-gas (PtG). RE is not only able to cover 1813 TWh of estimated electricity demand of the area in 2030 but also able to generate the electricity needed to fulfil 3.9 billion m3 of water desalination and 640 TWhLHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar and wind electricity storage, diminishing the role of storage technologies. The results for total levelized cost of electricity (LCOE) are decreased from 62 €/MWh for a highly decentralized to 56 €/MWh for a highly centralized grid scenario (currency value of the year 2015). For the integrated scenario, the levelized cost of gas (LCOG) and the levelized cost of water (LCOW) are 95 €/MWhLHV and 0.91 €/m3, respectively. A reduction of 8% in total cost and 5% in electricity generation was achieved when integrating desalination and power-to-gas into the system. PMID:28329023

  17. Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes.

    PubMed

    Tocchetti, Carlo G; Stanley, Brian A; Sivakumaran, Vidhya; Bedja, Djahida; O'Rourke, Brian; Paolocci, Nazareno; Cortassa, Sonia; Aon, Miguel A

    2015-10-01

    In Type I diabetic (T1DM) patients, both peaks of hyperglycaemia and increased sympathetic tone probably contribute to impair systolic and diastolic function. However, how these stressors eventually alter cardiac function during T1DM is not fully understood. In the present study, we hypothesized that impaired mitochondrial energy supply and excess reactive oxygen species (ROS) emission is centrally involved in T1DM cardiac dysfunction due to metabolic/redox stress and aimed to determine the mitochondrial sites implicated in these alterations. To this end, we used isolated myocytes and mitochondria from Sham and streptozotocin (STZ)-induced T1DM guinea pigs (GPs), untreated or treated with insulin. Relative to controls, T1DM myocytes exhibited higher oxidative stress when challenged with high glucose (HG) combined with β-adrenergic stimulation [via isoprenaline (isoproterenol) (ISO)], leading to contraction/relaxation deficits. T1DM mitochondria had decreased respiration with complex II and IV substrates and markedly lower ADP phosphorylation rates and higher H2O2 emission when challenged with oxidants to mimic the more oxidized redox milieu present in HG + ISO-treated cardiomyocytes. Since in T1DM hearts insulin-sensitivity is preserved and a glucose-to-fatty acid (FA) shift occurs, we next tested whether insulin therapy or acute palmitate (Palm) infusion prevents HG + ISO-induced cardiac dysfunction. We found that insulin rescued proper cardiac redox balance, but not mitochondrial respiration or contractile performance. Conversely, Palm restored redox balance and preserved myocyte function. Thus, stressors such as peaks of HG and adrenergic hyperactivity impair mitochondrial respiration, hampering energy supply while exacerbating ROS emission. Our study suggests that an ideal therapeutic measure to treat metabolically/redox-challenged T1DM hearts should concomitantly correct energetic and redox abnormalities to fully maintain cardiac function.

  18. Leading trends in environmental regulation that affect energy development. Final report

    SciTech Connect

    Steele, R V; Attaway, L D; Christerson, J A; Kikel, D A; Kuebler, J D; Lupatkin, B M; Liu, C S; Meyer, R; Peyton, T O; Sussin, M H

    1980-01-01

    Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive survey of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.

  19. Energy-effective method for low-temperature deaeration of make-up water on the heating supply system of heat power plants

    NASA Astrophysics Data System (ADS)

    Sharapov, V. I.; Pazushkina, O. V.; Kudryavtseva, E. V.

    2016-01-01

    The technology for low-temperature deaeration of make-up water of heating supply systems is developed that makes it possible to substantially enhance the energy efficiency of heat power plants (HPPs). As a desorbing agent for deaeration of make-up water of heating supply systems, it is proposed to use not steam or superheated water but a gas supplied to boiler burners. Natural gas supplied to steam boilers of HPPs has very low or often negative temperature after reducing devices. At the same time, it is virtually corrosive gas-free (oxygen and carbon dioxide) and, therefore, can be successfully used as the desorbing agent for water deaeration. These factors make it possible to perform deaeration of make-up water of heating supply systems at relatively low temperatures (10-30°C). Mixing of the cold deaerated make-up water with the return delivery water results in a significant decrease in the temperature the return delivery water before a lower delivery heater of a dual-purpose turbine plant, increase in the power output with the heat consumption, and, consequently, enhancement in the operation efficiency of the HPP. The article presents the calculation of the consumption of gas theoretically required for deaeration and reveals the evaluation of the energy efficiency of the technology for a typical energy unit of thermal power station. The mass transfer efficiency of the deaeration of the make-up water of heating supply systems is estimated for the case of using natural gas as the desorbing agent for which the specific gas consumption required theoretically for deaeration is calculated. It is shown that the consumption of natural gas used as fuel in boilers of HPPs is sufficient for the deaeration of any volumes of the make-up water of heating supply systems. The energy efficiency of the developed technology is evaluated for a typical heat power-generating unit of the HPP with a T-100-12.8 turbine. The calculation showed that the application of the new technology

  20. Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth.

    PubMed

    Tsunoda, Tomonori; Kachi, Naoki; Suzuki, Jun-Ichirou

    2014-01-01

    We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae). The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment). Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment) under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment). Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.

  1. Factors affecting energy and nitrogen efficiency of dairy cows: a meta-analysis.

    PubMed

    Phuong, H N; Friggens, N C; de Boer, I J M; Schmidely, P

    2013-01-01

    A meta-analysis was performed to explore the correlation between energy and nitrogen efficiency of dairy cows, and to study nutritional and animal factors that influence these efficiencies, as well as their relationship. Treatment mean values were extracted from 68 peer-reviewed studies, including 306 feeding trials. The main criterion for inclusion of a study in the meta-analysis was that it reported, or permitted calculation of, energy efficiency (Eeff; energy in milk/digestible energy intake) and nitrogen efficiency (Neff; nitrogen in milk/digestible nitrogen intake) at the digestible level (digestible energy or digestible protein). The effect of nutritional and animal variables, including neutral detergent fiber, acid detergent fiber (ADF), digestible energy, digestible protein, proportion of concentrate (PCO), dry matter intake, milk yield, days in milk, and body weight, on Eeff, Neff, and the Neff:Eeff ratio was analyzed using mixed models. The interstudy correlation between Eeff and Neff was 0.62, whereas the intrastudy correlation was 0.30. The higher interstudy correlation was partly due to milk yield and dry matter intake being present in both Eeff and Neff. We, therefore, also explored the Neff:Eeff ratio. Energy efficiency was negatively associated with ADF and PCO, whereas Neff was negatively associated with ADF and digestible energy. The Neff:Eeff ratio was affected by ADF and PCO only. In conclusion, the results indicate a possibility to maximize feed efficiency in terms of both energy and nitrogen at the same time. In other words, an improvement in Eeff would also mean an improvement in Neff. The current study also shows that these types of transverse data are not sufficient to study the effect of animal factors, such as days in milk, on feed efficiency. Longitudinal measurements per animal would probably be more appropriate.

  2. Does the DFT Self-Interaction Error Affect Energies Calculated in Proteins with Large QM Systems?

    PubMed

    Fouda, Adam; Ryde, Ulf

    2016-11-08

    We have examined how the self-interaction error in density-functional theory (DFT) calculations affects energies calculated on large systems (600-1000 atoms) involving several charged groups. We employ 18 different quantum mechanical (QM) methods, including Hartree-Fock, as well as pure, hybrid, and range-separated DFT methods. They are used to calculate reaction and activation energies for three different protein models in vacuum, in a point-charge surrounding, or with a continuum-solvent model. We show that pure DFT functionals give rise to a significant delocalization of the charges in charged groups in the protein, typically by ∼0.1 e, as evidenced from the Mulliken charges. This has a clear effect on how the surroundings affect calculated reaction and activation energies, indicating that these methods should be avoided for DFT calculations on large systems. Fortunately, methods such as CAM-B3LYP, BHLYP, and M06-2X give results that agree within a few kilojoules per mole, especially when the calculations are performed in a point-charge surrounding. Therefore, we recommend these methods to estimate the effect of the surroundings with large QM systems (but other QM methods may be used to study the intrinsic reaction and activation energies).

  3. A simple model for the energy supply of a stand-alone house using a hybrid wind-solar power system

    NASA Astrophysics Data System (ADS)

    Beke, Tamas

    2016-01-01

    A research project for secondary school students involving both physical measurements and modelling is presented. The problem to be solved is whether and how a typical house can be supplied with energy off-grid, based entirely on renewable energy sources, more specifically, on solar and wind energy, while using relatively simple devices, namely, photovoltaic modules, wind turbines and accumulators. To this end our students carried out a long term measurement series in order to assess the typical energy consumption of houses. Further, the number of solar modules and wind turbines, and the necessary accumulator capacity, was estimated.

  4. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards & Labeling Programs for Copy Machines, External Power Supplies, LED Displays, Residential Gas Cooktops and Televisions

    SciTech Connect

    Zheng, Nina; Zhou, Nan; Fridley, David

    2012-03-01

    This report presents a technical review of international minimum energy performance standards (MEPS), voluntary and mandatory energy efficiency labels and test procedures for five products being considered for new or revised MEPS in China: copy machines, external power supply, LED displays, residential gas cooktops and flat-screen televisions. For each product, an overview of the scope of existing international standards and labeling programs, energy values and energy performance metrics and description and detailed summary table of criteria and procedures in major test standards are presented.

  5. Overview of the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market - The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market

    SciTech Connect

    Mock, John E.; Budraja, Vikram; Jaros, Richard; Yamaguchi, Tsutomu; Hinrichs, Thomas C.

    1992-01-01

    This overview at the Geothermal Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market'' by John E. Mock; ''Geothermal Energy Market in Southern California: Past, Present and Future'' by Vikram Budraja; ''Taking the High Ground: Geothermal's Place in the Revolving Energy Market'' by Richard Jaros; ''Recent Developments in Japan's Hot Dry Rock Program'' by Tsutomu Yamaguchi; and ''Options in the Eleventh Year for Interim Standard Offer Number Four Contracts'' by Thomas C. Hinrichs.

  6. AGE-RELATED FACTORS AFFECTING THE POST-YIELD ENERGY DISSIPATION OF HUMAN CORTICAL BONE

    PubMed Central

    Nyman, Jeffry S.; Roy, Anuradha; Tyler, Jerrod H.; Acuna, Rae L.; Gayle, Heather J.; Wang, Xiaodu

    2007-01-01

    The risk of bone fracture depends in part on the quality of the tissue, not just the size and mass. This study assessed the post-yield energy dissipation of cortical bone in tension as a function of age and composition. Tensile specimens were prepared from tibiae of human cadavers in which male and female donors were divided into two age groups: middle aged (51 to 56 years old, n = 9) and elderly (72 to 90 years old, n = 8). By loading, unloading, and reloading a specimen with rest period inserted in between, tensile properties at incremental strain levels were assessed. In addition, the post-yield toughness was estimated and partitioned as follows: plastic strain energy related to permanent deformation, released elastic strain energy related to stiffness loss, and hysteresis energy related to viscous behavior. Porosity, mineral and collagen content, and collagen crosslinks of each specimen were also measured to determine the micro and ultrastructural properties of the tissue. It was found that age affected all the energy terms plus strength but not elastic stiffness. The post-yield energy terms were correlated with porosity, pentosidine (a marker of non-enzymatic crosslinks), and collagen content, all of which significantly varied with age. General linear models with the highest possible R2 value suggested that the pentosidine concentration and collagen content provided the best explanation of the age-related decrease in the post-yield energy dissipation of bone. Among them, pentosidine concentration had the greatest contribution to plastic strain energy and was the best explanatory variable of damage accumulation. PMID:17266142

  7. Dietary lipid and gross energy affect protein utilization in the rare minnow Gobiocypris rarus

    NASA Astrophysics Data System (ADS)

    Wu, Benli; Xiong, Xiaoqin; Xie, Shouqi; Wang, Jianwei

    2016-07-01

    An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the effects of protein to energy ratio on growth, for the rare minnow ( Gobiocypris rarus), which are critical to nutrition standardization for model fish. Twenty-four diets were formulated to contain three gross energy (10, 12.5, 15 kJ/g), four protein (20%, 25%, 30%, 35%), and two lipid levels (3%, 6%). The results showed that optimal dietary E/P was 41.7-50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specific growth rate (SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ/g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing effect. Optimal protein decreased from 35% to 25%-30% with an increase in dietary lipid from 3% to 6% without adversely effecting growth. Dietary lipid level affects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%-35% and 10-12.5 kJ/g, respectively.

  8. Designing Energy Supply Chains with the P-Graph Framework under Cost Constraints andSustainability Considerations

    EPA Science Inventory

    A computer-aided methodology for designing sustainable supply chains is presented using the P-graph framework to develop supply chain structures which are analyzed using cost, the cost of producing electricity, and two sustainability metrics: ecological footprint and emergy. They...

  9. Energy-water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California.

    PubMed

    Mo, Weiwei; Wang, Ranran; Zimmerman, Julie B

    2014-05-20

    Increased water demand and scarce freshwater resources have forced communities to seek nontraditional water sources. These challenges are exacerbated in coastal communities, where population growth rates and densities in the United States are the highest. To understand the current management dilemma between constrained surface and groundwater sources and potential new water sources, Tampa Bay, Florida (TB), and San Diego, California (SD), were studied through 2030 accounting for changes in population, water demand, and electricity grid mix. These locations were chosen on the basis of their similar populations, land areas, economies, and water consumption characters as well as their coastal locations and rising contradictions between water demand and supply. Three scenarios were evaluated for each study area: (1) maximization of traditional supplies; (2) maximization of seawater desalination; and (3) maximization of nonpotable water reclamation. Three types of impacts were assessed: embodied energy, greenhouse gas (GHG) emission, and energy cost. SD was found to have higher embodied energy and energy cost but lower GHG emission than TB in most of its water infrastructure systems because of the differences between the electricity grid mixes and water resources of the two regions. Maximizing water reclamation was found to be better than increasing either traditional supplies or seawater desalination in both regions in terms of the three impact categories. The results further imply the importance of assessing the energy-water nexus when pursuing demand-side control targets or goals as well to ensure that the potentially most economical options are considered.

  10. Analysis of Diurnal Variations in Energy Footprint and Its Associated Carbon Emission for Water Supply and Reuse in Arid and Semi-Arid Areas

    NASA Astrophysics Data System (ADS)

    Sobhani, Reza

    Arid and semi-arid regions throughout the world face water scarcity. Conventional water supply portfolio of these regions encompassed limited surface water, groundwater, and imported water. Current technological innovations technically and economically supplemented new water sources i.e., reclaimed water, desalted water and the groundwater sources that were not potable. The need for more efficient and alternative sources of drinking water supply necessitates studying the impediments e.g., intensive energy required, and emerging concern of the carbon emission. This dissertation discusses the challenges of energy footprint and its carbon emission among the processes involved in water supplies in the aforementioned regions. The conducted studies present time-dependent energy footprint analyses of different water reclamation and reuse processes. This study discusses the energy consumption in four main energy intensive processes inclusive of: activated sludge, microfiltration, reverse osmosis, and advanced oxidation with UV/ H2O2. The results indicate how the diurnal variations of different environmental parameters (e.g. flow and pollutant concentration) amplify the energy footprint variation among these processes. Meanwhile, the results show, due to the different power sources diurnally employed to provide electrical energy, the energy-associated carbon emission has more drastic variation in diurnal period compared to the energy footprint variation. In addition, this study presents the energy footprint of a modular process for treating local brackish groundwater by employing a combination of pellet reactor for radium and hardness minimization, reverse osmosis with intermediate precipitation, and concentrated brine crystallization to achieve high recovery with zero liquid discharge. Also it compares the energy footprint of the aforementioned process with the alternative option (i.e. desalted seawater conveyance with substantial lift). Finally, in coastal regions

  11. TOPICAL REVIEW: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Cook-Chennault, K. A.; Thambi, N.; Sastry, A. M.

    2008-08-01

    Power consumption is forecast by the International Technology Roadmap of Semiconductors (ITRS) to pose long-term technical challenges for the semiconductor industry. The purpose of this paper is threefold: (1) to provide an overview of strategies for powering MEMS via non-regenerative and regenerative power supplies; (2) to review the fundamentals of piezoelectric energy harvesting, along with recent advancements, and (3) to discuss future trends and applications for piezoelectric energy harvesting technology. The paper concludes with a discussion of research needs that are critical for the enhancement of piezoelectric energy harvesting devices.

  12. Strategic Supply

    DTIC Science & Technology

    2005-01-01

    the potential to capitalize on more efficient and effective management of their respective supply chains . Supply Chain Management (SCM) is the...transformation efforts have the potential to create a more agile, flexible and resilient supply chain that is responsive to Commanders and sensitive to...optimizing their supply chain to remain viable and create competitive advantage. Supply Chain Management (SCM) is grounded in the field of logistics

  13. Olanzapine and aripiprazole differentially affect glucose uptake and energy metabolism in human mononuclear blood cells.

    PubMed

    Stapel, Britta; Kotsiari, Alexandra; Scherr, Michaela; Hilfiker-Kleiner, Denise; Bleich, Stefan; Frieling, Helge; Kahl, Kai G

    2017-05-01

    The use of antipsychotics carries the risk of metabolic side effects, such as weight gain and new onset type-2 diabetes mellitus. The mechanisms of the observed metabolic alterations are not fully understood. We compared the effects of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (aripiprazole), on glucose metabolism. Primary human peripheral blood mononuclear cells (PBMC) were isolated and stimulated with olanzapine or aripiprazole for 72 h. Cellular glucose uptake was analyzed in vitro by 18F-FDG uptake. Further measurements comprised mRNA expression of glucose transporter (GLUT) 1 and 3, GLUT1 protein expression, DNA methylation of GLUT1 promoter region, and proteins involved in downstream glucometabolic processes. We observed a 2-fold increase in glucose uptake after stimulation with aripiprazole. In contrast, olanzapine stimulation decreased glucose uptake by 40%, accompanied by downregulation of the cellular energy sensor AMP activated protein kinase (AMPK). GLUT1 protein expression increased, GLUT1 mRNA expression decreased, and GLUT1 promoter was hypermethylated with both antipsychotics. Pyruvat-dehydrogenase (PDH) complex activity decreased with olanzapine only. Our findings suggest that the atypical antipsychotics olanzapine and aripiprazole differentially affect energy metabolism in PBMC. The observed decrease in glucose uptake in olanzapine stimulated PBMC, accompanied by decreased PDH point to a worsening in cellular energy metabolism not compensated by AMKP upregulation. In contrast, aripiprazole stimulation lead to increased glucose uptake, while not affecting PDH complex expression. The observed differences may be involved in the different metabolic profiles observed in aripiprazole and olanzapine treated patients.

  14. Climate change vulnerability in the food, energy, and water nexus: concerns for agricultural production in Arizona and its urban export supply

    NASA Astrophysics Data System (ADS)

    Berardy, Andrew; Chester, Mikhail V.

    2017-03-01

    Interdependent systems providing water and energy services are necessary for agriculture. Climate change and increased resource demands are expected to cause frequent and severe strains on these systems. Arizona is especially vulnerable to such strains due to its hot and arid climate. However, its climate enables year-round agricultural production, allowing Arizona to supply most of the country’s winter lettuce and vegetables. In addition to Phoenix and Tucson, cities including El Paso, Las Vegas, Los Angeles, and San Diego rely on Arizona for several types of agricultural products such as animal feed and livestock, meaning that disruptions to Arizona’s agriculture also disrupt food supply chains to at least six major cities. Arizona’s predominately irrigated agriculture relies on water imported through an energy intensive process from water-stressed regions. Most irrigation in Arizona is electricity powered, so failures in energy or water systems can cascade to the food system, creating a food-energy-water (FEW) nexus of vulnerability. We construct a dynamic simulation model of the FEW nexus in Arizona to assess the potential impacts of increasing temperatures and disruptions to energy and water supplies on crop irrigation requirements, on-farm energy use, and yield. We use this model to identify critical points of intersection between energy, water, and agricultural systems and quantify expected increases in resource use and yield loss. Our model is based on threshold temperatures of crops, USDA and US Geological Survey data, Arizona crop budgets, and region-specific literature. We predict that temperature increase above the baseline could decrease yields by up to 12.2% per 1 °C for major Arizona crops and require increased irrigation of about 2.6% per 1 °C. Response to drought varies widely based on crop and phenophase, so we estimate irrigation interruption effects through scenario analysis. We provide an overview of potential adaptation measures

  15. Factors that affect public-supply water use in Florida, with a section on projected water use to the year 2020

    USGS Publications Warehouse

    Marella, R.L.

    1992-01-01

    Public-supply water use in Florida increased 242 percent between 1960 and 1987 from 530 Mgal/d (million gallons per day) to 1,811 Mgal/d. This change is primarily a result of increases in population and tourism since 1960. Public-supply utilities provide water to a variety of users. In 1985, 71 percent of the water used for public supply was delivered for residential uses, 15 percent for commercial uses, 9 percent for industrial uses, and the remaining 5 percent for public use or other uses. Residential use of public-supply water in Florida has increased nearly 280 Mgal/d, but has decreased in the proportion of total deliveries from 80 to 71 percent between 1975 and 1985. This trend resulted from increased tourism and related commercial services associated with population and visitors. One of several factors that influences public-supply water use in Florida is the increase in resident population, which increased from 4.95 million in 1960 to more than 12.0 million in 1987. Additionally, Florida's nonresident population increased from 18.8 million visitors in 1977, to 34.1 million visitors in 1987, and the part of Florida?s population that relies on public-supply water increased from 68 percent in 1960, to 86 percent in 1987. The public supply per capita use was multiplied by the projected populations for each county for the years 2000, 2010, and 2020 to forecast public-supply water use. Using medium projections, Florida?s population is expected to increase to nearly 16 million in the year 2000, to 18 million in the year 2010, and to almost 20 million in the year 2020, of which an estimated 13.5 million people will be supplied water from public-supply water systems in the year 2000, 15 million in 2010, and nearly 17 million by the year 2020. Public-supply water use is expected to increase to a projected (medium) 2,310 Mgal/d in the year 2000, 2,610 Mgal/d in the year 2010, and 2,890 Mgal/d in the year 2020. If the population exceeds the medium projections for the

  16. Sustainable Energy Solutions Task 5.1:Expand the Number of Faculty Working in Wind Energy: Wind Energy Supply Chain and Logistics

    SciTech Connect

    Twomey, Janet M.

    2010-04-30

    Wind as a source of energy has gained a significant amount of attention because it is free and green. Construction of a wind farm involves considerable investment, which includes the cost of turbines, nacelles, and towers as well as logistical costs such as transportation of oversized parts and installation costs such as crane-rental costs. The terrain effects at the project site exert considerable influence on the turbine assembly rate and the project duration, which increases the overall installation cost. For higher capacity wind turbines (>3MW), the rental cost of the cranes is significant. In this study, the impact of interest rate, sales price of electricity, terrain effects and availability of cranes on the duration of installation and payback period for the project is analyzed. Optimization of the logistic activities involved during the construction phase of a wind farm contributes to the reduction of the project duration and also increases electricity generation during the construction phase.

  17. Afghanistan Energy Supply Has Increased but An Updated Master Plan Is Needed and Delays and Sustainability Concerns Remain

    DTIC Science & Technology

    2010-01-15

    clean energy . In addition, USAID funds small- 2 The Afghan Energy Information System is a...provide power to an estimated 800,000 people in Helmand and Kandahar provinces; (2) the Afghanistan Clean Energy Program, awarded September 2009...designed to provide clean energy solutions for approximately 300 communities in South and East Afghanistan; (3) the Afghanistan Energy Capacity Building

  18. 10 CFR 218.11 - Supply orders.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Supply orders. 218.11 Section 218.11 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION Supply Orders § 218.11 Supply orders. (a) A...) The DOE shall serve a copy of the supply order on the firm directed to act as stated therein. (c)...

  19. 10 CFR 218.11 - Supply orders.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Supply orders. 218.11 Section 218.11 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION Supply Orders § 218.11 Supply orders. (a) A...) The DOE shall serve a copy of the supply order on the firm directed to act as stated therein. (c)...

  20. Factors Affecting Firm Yield and the Estimation of Firm Yield for Selected Streamflow-Dominated Drinking-Water-Supply Reservoirs in Massachusetts

    USGS Publications Warehouse

    Waldron, Marcus C.; Archfield, Stacey A.

    2006-01-01

    Factors affecting reservoir firm yield, as determined by application of the Massachusetts Department of Environmental Protection's Firm Yield Estimator (FYE) model, were evaluated, modified, and tested on 46 streamflow-dominated reservoirs representing 15 Massachusetts drinking-water supplies. The model uses a mass-balance approach to determine the maximum average daily withdrawal rate that can be sustained during a period of record that includes the 1960s drought-of-record. The FYE methodology to estimate streamflow to the reservoir at an ungaged site was tested by simulating streamflow at two streamflow-gaging stations in Massachusetts and comparing the simulated streamflow to the observed streamflow. In general, the FYE-simulated flows agreed well with observed flows. There were substantial deviations from the measured values for extreme high and low flows. A sensitivity analysis determined that the model's streamflow estimates are most sensitive to input values for average annual precipitation, reservoir drainage area, and the soil-retention number-a term that describes the amount of precipitation retained by the soil in the basin. The FYE model currently provides the option of using a 1,000-year synthetic record constructed by randomly sampling 2-year blocks of concurrent streamflow and precipitation records 500 times; however, the synthetic record has the potential to generate records of precipitation and streamflow that do not reflect the worst historical drought in Massachusetts. For reservoirs that do not have periods of drawdown greater than 2 years, the bootstrap does not offer any additional information about the firm yield of a reservoir than the historical record does. For some reservoirs, the use of a synthetic record to determine firm yield resulted in as much as a 30-percent difference between firm-yield values from one simulation to the next. Furthermore, the assumption that the synthetic traces of streamflow are statistically equivalent to the

  1. A novel flattop current regulated energy discharge type pulsed power supply and magnet yielding 4. 4 kGauss-meter for 6 milliseconds

    SciTech Connect

    Visser, A.T.

    1989-07-01

    Most energy discharge power supplies obtain their bursts of power from the energy stored in charged capacitors when it is suddenly released into a load. This note describes the design of a similar small 800 Joules energy discharge type power supply and magnet. The magnet gap is 2 in.{times}2 in.{times}25-1/2 in. long and produces about 4.4 kGauss-meters at a rate of 12 pulses per minute. Each pulse is current regulated at the top for a duration of 6 msec. and varies less than 0.6% of set value. Current regulation at flattop is obtained by switching a resistor in and out of the discharge circuit with an IGBT at a rate of about 5 kHz. Most energy discharge systems produce half sine wave pulses, and current regulation is obtained by controlling the charge voltage at the energy storage capacitor, resulting only in a controlled peak current value of the half sine wave pulse. The current value at the top changes substantially during 6 msec. depending on the operating frequency.

  2. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows.

    PubMed

    O'Doherty, Alan M; O'Gorman, Aoife; al Naib, Abdullah; Brennan, Lorraine; Daly, Edward; Duffy, Pat; Fair, Trudee

    2014-09-01

    Ovarian follicle development in post-partum, high-producing dairy cows, occurs in a compromised endogenous metabolic environment (referred to as negative energy balance, NEB). Key events that occur during oocyte/follicle growth, such as the vital process of genomic imprinting, may be detrimentally affected by this altered ovarian environment. Imprinting is crucial for placental function and regulation of fetal growth, therefore failure to establish and maintain imprints during oocyte growth may contribute to early embryonic loss. Using ovum pick-up (OPU), oocytes and follicular fluid samples were recovered from cows between days 20 and 115 post-calving, encompassing the NEB period. In a complimentary study, cumulus oocyte complexes were in vitro matured under high non-esterified fatty acid (NEFA) concentrations and in the presence of the methyl-donor S-adenosylmethionine (SAM). Pyrosequencing revealed the loss of methylation at several imprinted loci in the OPU derived oocytes. The loss of DNA methylation was observed at the PLAGL1 locus in oocytes, following in vitro maturation (IVM) in the presence of elevated NEFAs and SAM. Finally, metabolomic analysis of postpartum follicular fluid samples revealed significant differences in several branched chain amino acids, with fatty acid profiles bearing similarities to those characteristic of lactating dairy cows. These results provide the first evidence that (1) the postpartum ovarian environment may affect maternal imprint acquisition and (2) elevated NEFAs during IVM can lead to the loss of imprinted gene methylation in bovine oocytes.

  3. Pathophysiological changes that affect drug disposition in protein-energy malnourished children

    PubMed Central

    2009-01-01

    Protein-energy malnutrition (PEM) is a major public health problem affecting a high proportion of infants and older children world-wide and accounts for a high childhood morbidity and mortality in the developing countries. The epidemiology of PEM has been extensively studied globally and management guidelines formulated by the World Health Organization (WHO). A wide spectrum of infections such as measles, malaria, acute respiratory tract infection, intestinal parasitosis, tuberculosis and HIV/AIDS may complicate PEM with two or more infections co-existing. Thus, numerous drugs may be required to treat the patients. In-spite of abundant literature on the epidemiology and management of PEM, focus on metabolism and therapeutic drug monitoring is lacking. A sound knowledge of pathophysiology of PEM and pharmacology of the drugs frequently used for their treatment is required for safe and rational treatment. In this review, we discuss the pathophysiological changes in children with PEM that may affect the disposition of drugs frequently used for their treatment. This review has established abnormal disposition of drugs in children with PEM that may require dosage modification. However, the relevance of these abnormalities to the clinical management of PEM remains inconclusive. At present, there are no good indications for drug dosage modification in PEM; but for drug safety purposes, further studies are required to accurately determine dosages of drugs frequently used for children with PEM. PMID:19951418

  4. 10 CFR Appendix Z to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of External Power Supplies

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... it. (Reference for guidance only, see IEEE Standard 1515-2000, 4.3.1.1, § 430.4.) c. Active power... IEEE Standard 100. (Reference for guidance only, see § 430.4.) a. Active mode means the mode of... multiple-voltage external power supply). b. Active mode efficiency is the ratio, expressed as a...

  5. Strategic Supply

    DTIC Science & Technology

    2006-01-01

    context of Supply Chain Management ( SCM ), it is quite apparent that Strategic Supply cannot be classified as a particular industry; but rather, as an...Management ( SCM ), it is quite apparent that Strategic Supply cannot be classified as a particular industry; but rather, as an enabler across all...advantage in the global marketplace. The Council of Supply Chain Management Professionals (CSCMP) has defined SCM as, “…encompassing the planning

  6. Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor.

    PubMed

    Geiser, F; Drury, R L

    2003-02-01

    The high expenditure of energy required for endogenous rewarming is one of the widely perceived disadvantages of torpor. However, recent evidence demonstrates that passive rewarming either by the increase of ambient temperature or by basking in the sun appears to be common in heterothermic birds and mammals. As it is presently unknown how radiant heat affects energy expenditure during rewarming from torpor and little is known about how it affects normothermic thermoregulation, we quantified the effects of radiant heat on body temperature and metabolic rate of the small (body mass 25 g) marsupial Sminthopsis macroura in the laboratory. Normothermic resting individuals exposed to radiant heat were able to maintain metabolic rates near basal levels (at 0.91 ml O(2) g(-1) h(-1)) and a constant body temperature down to an ambient temperature of 12 degrees C. In contrast, metabolic rates of individuals without access to radiant heat were 4.5-times higher at an ambient temperature of 12 degrees C and body temperature fell with ambient temperature. During radiant heat-assisted passive rewarming from torpor, animals did not employ shivering but appeared to maximise uptake of radiant heat. Their metabolic rate increased only 3.2-times with a 15- degrees C rise of body temperature (Q(10)=2.2), as predicted by Q(10) effects. In contrast, during active rewarming shivering was intensive and metabolic rates showed an 11.6-times increase. Although body temperature showed a similar absolute change between the beginning and the end of the rewarming process, the overall energetic cost during active rewarming was 6.3-times greater than that during passive, radiant heat-assisted rewarming. Our study demonstrates that energetic models assuming active rewarming from torpor at low ambient temperatures can substantially over-estimate energetic costs. The low energy expenditure during passive arousal provides an alternative explanation as to why daily torpor is common in sunny regions and

  7. Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss) The cost and scarcity of key ingredients for aquaculture feed formulation call for a wise use of resources, especially dietary proteins and energy. For years t...

  8. Decomposition and control of complex systems - Application to the analysis and control of industrial and economic systems /energy production/ with limited supplies

    NASA Astrophysics Data System (ADS)

    de Coligny, M.

    Optimized control strategies are developed for industrial installations where many variables of energy supply and storage are involved, with a particular focus on characteristics of a solar central tower power plant. It is shown that optimal regulation resides in controlling all disturbances which occur in a limited domain of the entire system, using robust control schemes. Choosing a command is then dependent on defining precise operational limits as constraints on the machines' performances. Attention is given to the development of variational principles used for the elements of the command logic. Particular consideration is given to a limited supply in storage in spatial and temporal terms. Commands for alterations in functions are then available on-line, and discontinuities are not a feature of the control system. The strategy is applied to the case of a field of heliostats and a central tower themal receiver showing that management is possible on the basis of a sliding horizon.

  9. Diet/Energy Balance Affect Sleep and Wakefulness Independent of Body Weight

    PubMed Central

    Perron, Isaac J.; Pack, Allan I.; Veasey, Sigrid

    2015-01-01

    Study Objectives: Excessive daytime sleepiness commonly affects obese people, even in those without sleep apnea, yet its causes remain uncertain. We sought to determine whether acute dietary changes could induce or rescue wake impairments independent of body weight. Design: We implemented a novel feeding paradigm that generates two groups of mice with equal body weight but opposing energetic balance. Two subsets of mice consuming either regular chow (RC) or high-fat diet (HFD) for 8 w were switched to the opposite diet for 1 w. Sleep recordings were conducted at Week 0 (baseline), Week 8 (pre-diet switch), and Week 9 (post-diet switch) for all groups. Sleep homeostasis was measured at Week 8 and Week 9. Participants: Young adult, male C57BL/6J mice. Measurements and Results: Differences in total wake, nonrapid eye movement (NREM), and rapid eye movement (REM) time were quantified, in addition to changes in bout fragmentation/consolidation. At Week 9, the two diet switch groups had similar body weight. However, animals switched to HFD (and thus gaining weight) had decreased wake time, increased NREM sleep time, and worsened sleep/wake fragmentation compared to mice switched to RC (which were in weight loss). These effects were driven by significant sleep/wake changes induced by acute dietary manipulations (Week 8 → Week 9). Sleep homeostasis, as measured by delta power increase following sleep deprivation, was unaffected by our feeding paradigm. Conclusions: Acute dietary manipulations are sufficient to alter sleep and wakefulness independent of body weight and without effects on sleep homeostasis. Citation: Perron IJ, Pack AI, Veasey S. Diet/energy balance affect sleep and wakefulness independent of body weight. SLEEP 2015;38(12):1893–1903. PMID:26158893

  10. Energy Supply Act (Title VIII). Hearings before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, Ninety-Sixth Congress, First Session on S. 750 and S. 1308

    SciTech Connect

    Not Available

    1980-01-01

    Testimony was heard on July 2, 12, and 19, 1979 to consider Title VIII of S. 1308 and S. 750, both bills mandating that all gasoline sold by 1990 should contain 10 percent gasohol. The proposals go beyond the President's request for a 600-million-gallon production goal by 1985. The advantages of gasohol as an automotive fuel, as a viable crop for farmers, and the fact that it is ready for commercialization were the basis for the mobilization program proposed by its advocates who want institutional and economic barriers removed. Testimony was heard from 47 witnesses, who discussed the potential for alcohol fuels to increase the nation's energy supplies, ethanol fuels for vehicles, and methanol for gas turbines. (DCK)

  11. Bowman-Birk inhibitor affects pathways associated with energy metabolism in Drosophila melanogaster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bowman-Birk inhibitor (BBI) is toxic when fed to certain insects, including the fruit fly, Drosophila melanogaster. Dietary BBI has been demonstrated to slow growth and increase insect mortality by inhibiting the digestive enzymes trypsin and chymotrypsin, resulting in a reduced supply of amino acid...

  12. Do the noncaffeine ingredients of energy drinks affect metabolic responses to heavy exercise?

    PubMed

    Pettitt, Robert W; Niemeyer, JoLynne D; Sexton, Patrick J; Lipetzky, Amanda; Murray, Steven R

    2013-07-01

    Energy drinks (EDs) such as Red Bull (RB) are marketed to enhance metabolism. Secondary ingredients of EDs (e.g., taurine) have been purported to improve time trial performance; however, little research exists on how such secondary ingredients affect aerobic metabolism during heavy exercise. The purpose of this study was to investigate the effect of the secondary ingredients of RB on aerobic metabolism during and subsequent to heavy exercise. In double-blind, counterbalanced, and crossover fashion, 8 recreationally trained individuals completed a graded exercise test to determine the gas exchange threshold (GET). Subjects returned on 2 separate occasions and ingested either a 245 ml serving of RB or a control (CTRL) drink with the equivalent caffeine before engaging in two 10-minute constant-load cycling bouts, at an intensity equivalent to GET, with 3 minutes of rest between bouts. Accumulated liters of O2 (10 minutes) were higher for the first bout (17.1 ± 3.5 L) vs. the second bout (16.7 ± 3.5 L) but did not differ between drinks. Similarly, excess postexercise oxygen consumption was higher after the initial bout (RB mean, 2.6 ± 0.85 L; CTRL mean, 2.9 ± 0.90 L) vs. the second bout (RB mean, 1.5 ± 0.85 L; CTRL mean, 1.9 ± 0.87 L) but did not differ between drinks. No differences occurred between drinks for measures of heart rate or rating of perceived exertion. These results indicate that the secondary ingredients contained in a single serving of RB do not augment aerobic metabolism during or subsequent to heavy exercise.

  13. Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro.

    PubMed

    Ben-Dov, N; Shefer, G; Irintchev, A; Wernig, A; Oron, U; Halevy, O; Irinitchev, A

    1999-01-11

    Low-energy laser (He-Ne) irradiation was found to promote skeletal muscle regeneration in vivo. In this study, its effect on the proliferation and differentiation of satellite cells in vitro was evaluated. Primary rat satellite cells were irradiated for various time periods immediately after preparation, and thymidine incorporation was determined after 2 days in culture. Laser irradiation affected thymidine incorporation in a bell-shaped manner, with a peak at 3 s of irradiation. Three seconds of irradiation caused an induction of cell-cycle regulatory proteins: cyclin D1, cyclin E and cyclin A in an established line of mouse satellite cells, pmi28, and proliferating cell nuclear antigen (PCNA) in primary rat satellite cells. The induction of cyclins by laser irradiation was compatible with their induction by serum refeeding of the cells. Laser irradiation effect on cell proliferation was dependent on the rat's age. At 3 weeks of age, thymidine incorporation in the irradiated cells was more than twofold higher than that in the controls, while at 6 weeks of age this difference had almost disappeared. Myosin heavy chain (MHC) protein levels were twofold lower in the irradiated than in the control cells, whereas the proliferation of the irradiated cells was twofold higher. Fusion percentage was lower in the irradiated compared to non-irradiated cells. In light of these data, the promoting effect of laser irradiation on skeletal muscle regeneration in vivo may be due to its effect on the activation of early cell-cycle regulatory genes in satellite cells, leading to increased proliferation and to a delay in cell differentiation.

  14. Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface.

    PubMed

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Medina-Castillo, Antonio Luis; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2017-04-01

    The aim of this study was to evaluate changes in the mechanical and chemical behavior, and bonding ability at dentin interfaces infiltrated with polymeric nanoparticlesstandard deviations and modes of failure are (NPs) prior to resin application. Dentin surfaces were treated with 37% phosphoric acid followed by application of an ethanol suspension of NPs, Zn-NPs or Ca-NPs followed by the application of an adhesive, Single Bond (SB). Bonded interfaces were stored for 24h, submitted to microtensile bond strength test, and evaluated by scanning electron microscopy. After 24h and 21 d of storage, the whole resin-dentin interface adhesive was evaluated using a Nano-DMA. Complex modulus, storage modulus and tan delta (δ) were assessed. AFM imaging and Raman analysis were performed. Bond strength was not affected by NPs infiltration. After 21 d of storage, tan δ generally decreased at Zn-NPs/resin-dentin interface, and augmented when Ca-NPs or non-doped NPs were used. When both Zn-NPs and Ca-NPs were employed, the storage modulus and complex modulus decreased, though both moduli increased at the adhesive and at peritubular dentin after Zn-NPs infiltration. The phosphate and the carbonate peaks, and carbonate substitution, augmented more at interfaces promoted with Ca-NPs than with Zn-NPs after 21 d of storage, but crystallinity did not differ at created interfaces with both ions-doped NPs. Crosslinking of collagen and the secondary structure of collagen improved with Zn-NPs resin-dentin infiltration. Ca-NPs-resin dentin infiltration produced a favorable dissipation of energy with minimal stress concentration trough the crystalline remineralized resin-dentin interface, causing minor damage at this structure.

  15. Disaggregating regional energy supply/demand and flow data to 173 BEAs in support of export coal analysis. Final report

    SciTech Connect

    Not Available

    1981-06-01

    This report documents the procedures and results of a study sponsored jointly by the US Department of Transportation and the US Department of Energy. The study was conducted to provide, Bureau of Economic Analysis (BEA)-level production/consumption data for energy materials for 1985 and 1990 in support of an analysis of transportation requirements for export coal. Base data for energy forecasts at the regional level were obtained from the Department of Energy, Energy Information Administration. The forecasts selected for this study are described in DOE/EIA's 1980 Annual Report to Congress, and are: 1985 Series, B, medium oil import price ($37.00/barrel); and 1990 Series B, medium oil import price ($41.00/barrel). Each forecast period is extensively described by approximately forty-three statistical tables prepared by EIA and made available to TERA for this study. This report provides sufficient information to enable the transportation analyst to appreciate the procedures employed by TERA to produce the BEA-level energy production/consumption data. The report presents the results of the procedures, abstracts of data tabulations, and various assumptions used for the preparation of the BEA-level data. The end-product of this effort was the BEA to BEA energy commodity flow data by more which serve as direct input to DOT's transportation network model being used for a detailed analysis of export coal transportation.

  16. Future US energy demands based upon traditional consumption patterns lead to requirements which significantly exceed domestic supply

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Energy consumption in the United States has risen in response to both increasing population and to increasing levels of affluence. Depletion of domestic energy reserves requires consumption modulation, production of fossil fuels, more efficient conversion techniques, and large scale transitions to non-fossile fuel energy sources. Widening disparity between the wealthy and poor nations of the world contributes to trends that increase the likelihood of group action by the lesser developed countries to achieve political and economic goals. The formation of anticartel cartels is envisioned.

  17. Hydrogeology, Water Chemistry, and Factors Affecting the Transport of Contaminants in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Jurgens, Bryant C.; Burow, Karen R.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Ground-water chemistry in the zone of contribution of a public-supply well in Modesto, California, was studied by the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program's topical team for Transport of Anthropogenic and Natural Contaminants (TANC) to supply wells. Twenty-three monitoring wells were installed in Modesto to record baseline hydraulic information and to collect water-quality samples. The monitoring wells were divided into four categories that represent the chemistry of different depths and volumes of the aquifer: (1) water-table wells were screened between 8.5 and 11.7 m (meter) (28 and 38.5 ft [foot]) below land surface (bls) and were within 5 m (16 ft) of the water table; (2) shallow wells were screened between 29 and 35 m (95 and 115 ft) bls; (3) intermediate wells were screened between 50.6 and 65.5 m (166 and 215 ft) bls; and (4) deep wells are screened between 100 to 106 m (328 and 348 ft) bls. Inorganic, organic, isotope, and age-dating tracers were used to characterize the geochemical conditions in the aquifer and understand the mechanisms of mobilization and movement of selected constituents from source areas to a public-supply well. The ground-water system within the study area has been significantly altered by human activities. Water levels in monitoring wells indicated that horizontal movement of ground water was generally from the agricultural areas in the northeast towards a regional water-level depression within the city in the southwest. However, intensive pumping and irrigation recharge in the study area has caused large quantities of ground water to move vertically downward within the regional and local flow systems. Analysis of age tracers indicated that ground-water age varied from recent recharge at the water table to more than 1,000 years in the deep part of the aquifer. The mean age of shallow ground water was determined to be between 30 and 40 years. Intermediate ground water was determined to be a mixture

  18. Electrochemical treatment of tannery effluent using a battery integrated DC-DC converter and solar PV power supply--an approach towards environment and energy management.

    PubMed

    Iyappan, K; Basha, C Ahmed; Saravanathamizhan, R; Vedaraman, N; Tahiyah Nou Shene, C A; Begum, S Nathira

    2014-01-01

    Electrochemical oxidation of tannery effluent was carried out in batch, batch recirculation and continuous reactor configurations under different conditions using a battery-integrated DC-DC converter and solar PV power supply. The effect of current density, electrolysis time and fluid flow rate on chemical oxygen demand (COD) removal and energy consumption has been evaluated. The results of batch reactor show that a COD reduction of 80.85% to 96.67% could be obtained. The results showed that after 7 h of operation at a current density of 2.5 A dm(-2) and flow rate of 100 L h(-1) in batch recirculation reactor, the removal of COD is 82.14% and the specific energy consumption was found to be 5.871 kWh (kg COD)(-1) for tannery effluent. In addition, the performance of single pass flow reactors (single and multiple reactors) system of various configurations are analyzed.

  19. Development of Electrolysis System Powered by Solar-Cell Array to Supply Hydrogen Gas for Fuel-Cell Energy Resource Systems

    NASA Astrophysics Data System (ADS)

    Priambodo, Purnomo Sidi; Yusivar, Feri; Subiantoro, Aries; Gunawan, Ridwan

    2009-09-01

    The huge demand of energy worldwide and the depletion of fossil based energy, is a strong reason to rapidly develop any kind of renewable energy resources, which has economical advantages and zero pollution effect. One of the renewable energy technologies aimed in this paper is the generation of electric-energy based on fuel-cell technology, where the input hydrogen (H2) gas is supplied by electrolysis system powered by renewable energy system based on solar cell. In this paper, the authors explain the development of electrolysis system which is powered by solar cell array to supply hydrogen for fuel-cell system. The authors explain in detail how to design an efficient electrolysis system to obtain high ratio conversion of electric energy to hydrogen gas volume. It includes the explanation of the usage of multiple anodes with a single cathode for many solar cell inputs in a single electrolysis system. Hereinafter this is referred as multiple anode electrolysis system. This multiple anode electrolysis system makes the management of hydrogen gas becomes more efficient and effective by using only a single hydrogen gas storage system. This paper also explain the careful design of the resistance value of the electrolysis system to protect or avoid the solar cell panel to deliver excessive current to the electrolysis system which can cause damage on the solar cell panel. Moreover, the electrolyte volume detector is applied on the system as a tool to measure the electrolyte concentration to assure the system resistance is still in the allowed range. Further, the hydrogen gas produced by electrolysis system is stored into the gas storage which consists of silica-gel purifier, first stage low pressure gas bottle, vacuum pump, and second stage high pressure gas bottle. In the first step, the pump will vacuum the first bottle. The first bottle will collect the hydrogen from the electrolysis system through the silica gel to get rid of water vapor. When the first bottle

  20. Pesticide distributions in surface water: The distribution of pesticide concentrations at two study sites points to herbicides that may affect management of public water supplies

    USGS Publications Warehouse

    Stamer, J.K.; Wieczorek, M.E.

    1996-01-01

    Distributions of concentrations of 46 pesticides were documented from May 1992 through March 1994 for Maple Creek near Nickerson, Neb., and Platte River at Louisville, Neb. As their source of public water supplies, Lincoln and the western part of Omaha withdraw groundwater from the adjacent alluvium near the Platte River site, which is hydraulically connected to the Platte River. Organonitrogen herbicides dominated the pesticide distributions at each site. Variations in the distributions of pesticides at the two sites partly reflect differences in land use and land management practices. Diazinon, an insecticide used in urban areas, was commonly detected at the Platte River site but not at the Maple Creek site. Of the 46 pesticides analyzed at the Platte River site, the herbicides atrazine and alachlor were more likely to exceed their respective maximum contaminant levels of 3.0 and 2.0 pg/L; cyanazine was more likely to exceed the health advisory level of 1.0 ??g/L.

  1. Nitrogen Stress Affects the Turnover and Size of Nitrogen Pools Supplying Leaf Growth in a Grass1[C][W][OPEN

    PubMed Central

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-01-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic 15N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with 15NO3−/14NO3− from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r2 > 0.99). This consisted of a “substrate pool,” which received N from current uptake and supplied the growth zone, and a recycling/mobilizing “store,” which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks. PMID:23757403

  2. Nursing Supplies

    MedlinePlus

    ... Stages Listen Español Text Size Email Print Share Nursing Supplies Page Content Article Body Throughout most of ... budget. (Nursing equipment also makes wonderful baby gifts.) Nursing Bras A well-made nursing bra that comfortably ...

  3. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2009 for the United States

    SciTech Connect

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2009-06-01

    This report outlines the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  4. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2010 for the United States

    SciTech Connect

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2011-12-01

    This report updates the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  5. Influence of energy supply on expression of genes encoding for lipogenic enzymes and regulatory proteins in growing beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty crossbred beef steers were used to determine the effects metabolizable energy (ME) intake and of site and complexity of carbohydrate (CHO) infusion on expression of genes encoding lipogenic enzymes and regulatory proteins in subcutaneous (SC), mesenteric (MES) and omental (OM) adipose. Treatm...

  6. Longer-term domestic supply problems for nonrenewable materials with special emphasis on energy-related applications

    SciTech Connect

    Goeller, H E

    1980-01-01

    An examination is made on how materials are used in present and future energy production and use. Problem areas which are discussed include by-products production, import limitations, substitution and recycle, accelerated use, synthesis, and the adequacy of the data bases availability. (FS)

  7. The conversion of biomass to ethanol using geothermal energy derived from hot dry rock to supply both the thermal and electrical power requirements

    SciTech Connect

    Brown, D.W.

    1997-10-01

    The potential synergism between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources to produce transportation fuel has very positive environmental implications. One of the distinct advantages of wedding an HDR geothermal power source to a biomass conversion process is flexibility, both in plant location and in operating process is flexibility, both in plant location and in operating conditions. The latter obtains since an HDR system is an injection conditions of flow rate, pressure, temperature, and water chemistry are under the control of the operator. The former obtains since, unlike a naturally occurring geothermal resource, the HDR resource is very widespread, particularly in the western US, and can be developed near transportation and plentiful supplies of biomass. Conceptually, the pressurized geofluid from the HDR reservoir would be produced at a temperature in the range of 200{degrees} to 220{degrees}c. The higher enthalpy portion of the geofluid thermal energy would be used to produce a lower-temperature steam supply in a countercurrent feedwater-heater/boiler. The steam, following a superheating stage fueled by the noncellulosic waste fraction of the biomass, would be expanded through a turbine to produce electrical power. Depending on the lignin fraction of the biomass, there would probably be excess electrical power generated over and above plant requirements (for slurry pumping, stirring, solids separation, etc.) which would be available for sale to the local power grid. In fact, if the hybrid HDR/biomass system were creatively configured, the power plant could be designed to produce daytime peaking power as well as a lower level of baseload power during off-peak hours.

  8. Carbon-Neutral Energy Supply and Energy Demand-Reduction Technology Needed for Continued Economic Growth Without Dangerous Interference in the Climate System

    NASA Astrophysics Data System (ADS)

    Hoffert, M. I.; Caldeira, K.

    2007-12-01

    Stabilization of atmospheric CO2 at levels likely to avoid unacceptable climate risk will require a major transformation in the ways we produce and use energy. Most of our energy will need to come from sources that do not emit carbon dioxide to the atmosphere and that energy will need to be used efficiently. The required reduction of carbon dioxide emissions as global energy consumption and GDP grow imposes quantitative requirements on some combination of carbon-neutral primary power and energy demand reduction. (Emission reductions are expressed relative to an implicit or explicit baseline; explicit being better for policy-making. Energy demand reduction involves both efficiency improvements and lifestyle changes.) These requirements can be expressed as CO2 emission reductions needed, or as carbon-neutral primary power production needed combined with power not used by virtue of increased energy end use efficiency or lifestyle changes ("negawatts"), always subject to some reasonably well-characterized uncertainty limits. Climatic changes thus far have been closer to the more extreme zone of the climatic uncertainty envelope of global warming indicating the potential for disastrous impacts by mid-century and beyond for business-as-usual. Emission reductions needed to avoid "dangerous interference in the climate system" imply a revolutionary change in the global energy system beginning now; particularly ominous are massive conventional coal-fired electric power energy infrastructures under construction by the US, China & India. Strong arguments, based on physical science considerations, exist for prompt measures such as (1) an immediate moratorium on coal-fired plants that don't sequester CO2, (2) a gradually increasing price on carbon emissions and (3) regulatory standards, for example, that would encourage utilities and car manufacturers to improve efficiency, and (4) Apollo-scale R & D projects beginning now to develop sustainable carbon-neutral power that can be

  9. Factors Affecting Energy Barriers for Pyramidal Inversion in Amines and Phosphines: A Computational Chemistry Lab Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2013-01-01

    An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…

  10. How the Reorganization Free Energy Affects the Reduction Potential of Structurally Homologous Cytochromes.

    PubMed

    Daidone, Isabella; Amadei, Andrea; Zaccanti, Francesco; Borsari, Marco; Bortolotti, Carlo Augusto

    2014-05-01

    Differences in the reduction potential E(0) among structurally similar metalloproteins cannot always be fully explained on the basis of their 3-D structures. We investigate the molecular determinants to E(0) using the mixed quantum mechanics/molecular mechanics approach named perturbed matrix method (PMM); after comparison with experimental values to assess the reliability of our calculations, we investigate the relationship between the change in free energy upon reduction ΔA(0) and the reorganization energy. We find that the reduction potential of cytochromes can be regarded as the result of the sum of two terms, one being mostly dependent on the energy fluctuations within a limited range around the mean transition energy and the second being mostly dependent linearly on the difference Δλ = λred - λox of the reorganization free energies for the ox → red (λred) and for the red → ox (λox) relaxations.

  11. Evaluation of normalized energy recovery (NER) in microbial fuel cells affected by reactor dimensions and substrates.

    PubMed

    Xiao, Li; Ge, Zheng; Kelly, Patrick; Zhang, Fei; He, Zhen

    2014-04-01

    The objective of this study is to provide an initial evaluation of normalized energy recovery (NER - a new parameter for presenting energy performance) in microbial fuel cells (MFCs) through investigation of the effects of reactor dimensions and anode substrates. Although the larger-size MFCs generally have lower maximum power densities, their maximum NER is comparable to that of the smaller MFCs at the same anolyte flow rate. The mixed messages obtained from the MFC size tests suggest that MFCs can be further scaled up without decreasing energy recovery under certain conditions. The low-strength substrates seem to be more suitable for MFC treatment of wastewater, in terms of both energy recovery and organic removal. However, because the MFCs could not achieve the maximum NER and the maximum organic removal efficiency at the same time, one must determine a major goal for MFCs treating wastewater between energy recovery and contaminant removal.

  12. Coherent Structure Patterns Affect Energy Balance Closure: Evidence from Virtual Measurements for a Field Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, S.; De Roo, F.; Heinze, R.; Eder, F.; Huq, S.; Schmidt, M.; Kalthoff, N.; Mauder, M.

    2015-12-01

    The energy balance closure problem is a well-known issue of eddy-covariance measurements. However, the underlying mechanisms are still under debate. Recent evidence suggests that organized low-frequency motion contributes significantly to the energy balance residual, because the associated transport cannot be captured by a point measurement. In this study, we carry out virtual measurements using a PArallelized Large-Eddy Simulation Model (PALM). In order to represent specific measurement days of the field campaign "High definition clouds and precipitation for advancing climate prediction" (HD(CP)²), which was part of the project "High Definition Clouds and Precipitation for Advancing Climate Prediction"(HOPE) in 2013, the simulations were driven by synoptic-scale COSMO-DE reanalysis data. Planet boundary layer height, the vertical profiles of variance and skewness of vertical wind were analyzed and a comparison with Doppler-lidar observations shows good agreement. Furthermore, simulated energy imbalances were compared with real-world imbalances from two eddy-covariance stations in the model domain. Particularly poor energy balance closure was found for a day with cellular organized structures in the surface layer, while the energy balance closure was better on other days with roll-like structures. This finding might be one explanation why the energy balance closure generally tends to improve with increasing friction velocity, since roll-like structures are typically associated with higher wind speeds. In order to gain insight into the partitioning of the energy balance residual between the sensible and latent heat fluxes, we further employed a control volume method within the numerical simulation. Hence, advection and storage terms were identified as the most important causes for the lack of energy balance closure by the eddy-covariance method. The results of the virtual measurements indicate that the "missing" part of the surface energy mainly comes from the

  13. Coordinated regulation of nitrogen supply mode and initial cell density for energy storage compounds production with economized nitrogen utilization in a marine microalga Isochrysis zhangjiangensis.

    PubMed

    Chi, Lei; Yao, Changhong; Cao, Xupeng; Xue, Song

    2016-01-01

    Lipids and carbohydrates are main energy storage compounds (ESC) of microalgae under stressed conditions and they are potential feedstock for biofuel production. Yet, the sustainable and commercially successful production of ESC in microalgae needs to consider nitrogen utilization efficiency. Here the impact of different initial cell densities (ICDs) on ESC accumulation in Isochrysis zhangjiangensis under two nitrogen supply modes (an initially equal concentration of nitrogen per-cell in the medium (N1) and an equal total concentration of nitrogen in the culture system (N2)) were investigated. The results demonstrated that the highest ESC yield (1.36gL(-1)) at N1, which included a maximal nitrogen supply in the cultivation system, and the highest ESC content (66.5%) and ESC productivity per mass of nitrogen (3.28gg(-1) (N) day(-1)) at N2, were all obtained under a high ICD of 8.0×10(6)cellsmL(-1). Therefore I. zhangjiangensis qualifies for ESC-enriched biomass production with economized nitrogen utilization.

  14. Energy and Resources: A plan is outlined according to which solar and wind energy would supply Denmark's needs by the year 2050.

    PubMed

    Sørensen, B

    1975-07-25

    Two possible futures for the industrial world may be distinguished: (i) Large amounts of low-cost energy become available and the more energy-intensive methods for extracting resources from lowergrade deposits continue to sustain industrial expansion until either the environmental impact becomes unacceptable or ultimate limits, such as climate disruptions, put an end to such growth. (ii) The cost of nonrenewable energy resources continue to rise, but a fixed amount of energy from continuous sources may be utilized at constant cost. In this case a lower production level may be set by the amount of energy that is available from renewable sources, and society may thus have to be reshaped with energy economization in focus. If it is possible to choose between these two alternatives, the choice should be based on a discussion of the pros and cons of each one, and in particular on the desirability of having to process an increasing fraction of the earth's crust in search of raw materials in order to maintain growth as long as possible. However, the availability, of the first option is far from certain and it thus seems reasonable to plan for the second alternative. I have tried to propose such a plan for a small, homogeneous geographical region, namely Denmark. The ceiling on the consumption of energy from continuous sources is chosen in accordance with the criterion of not having to convert a major part of the land area to energy-collecting systems. The proposed annual average energy consumption of 19 gigawatts by the year 2050 corresponds to solar energy collecting panels (in use only 50 percent of the time) with an area of roughly 180 square kilometers and a windmill swept area of about 150 square kilometers. These (vertical) areas constitute less than 1 percent of the total land area. The selection of solar or wind energy for different applications has been based on known technology and may be subject to adjustments. The project has been shown to be economically

  15. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    PubMed

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data.

  16. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets

    PubMed Central

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players’ behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents’ behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data. PMID:26335705

  17. Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area

    PubMed Central

    Peng, Chi; Cai, Yimin; Wang, Tieyu; Xiao, Rongbo; Chen, Weiping

    2016-01-01

    In this study, we proposed a Regional Probabilistic Risk Assessment (RPRA) to estimate the health risks of exposing residents to heavy metals in different environmental media and land uses. The mean and ranges of heavy metal concentrations were measured in water, sediments, soil profiles and surface soils under four land uses along the Shunde Waterway, a drinking water supply area in China. Hazard quotients (HQs) were estimated for various exposure routes and heavy metal species. Riverbank vegetable plots and private vegetable plots had 95th percentiles of total HQs greater than 3 and 1, respectively, indicating high risks of cultivation on the flooded riverbank. Vegetable uptake and leaching to groundwater were the two transfer routes of soil metals causing high health risks. Exposure risks during outdoor recreation, farming and swimming along the Shunde Waterway are theoretically safe. Arsenic and cadmium were identified as the priority pollutants that contribute the most risk among the heavy metals. Sensitivity analysis showed that the exposure route, variations in exposure parameters, mobility of heavy metals in soil, and metal concentrations all influenced the risk estimates. PMID:27845404

  18. Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area.

    PubMed

    Peng, Chi; Cai, Yimin; Wang, Tieyu; Xiao, Rongbo; Chen, Weiping

    2016-11-15

    In this study, we proposed a Regional Probabilistic Risk Assessment (RPRA) to estimate the health risks of exposing residents to heavy metals in different environmental media and land uses. The mean and ranges of heavy metal concentrations were measured in water, sediments, soil profiles and surface soils under four land uses along the Shunde Waterway, a drinking water supply area in China. Hazard quotients (HQs) were estimated for various exposure routes and heavy metal species. Riverbank vegetable plots and private vegetable plots had 95(th) percentiles of total HQs greater than 3 and 1, respectively, indicating high risks of cultivation on the flooded riverbank. Vegetable uptake and leaching to groundwater were the two transfer routes of soil metals causing high health risks. Exposure risks during outdoor recreation, farming and swimming along the Shunde Waterway are theoretically safe. Arsenic and cadmium were identified as the priority pollutants that contribute the most risk among the heavy metals. Sensitivity analysis showed that the exposure route, variations in exposure parameters, mobility of heavy metals in soil, and metal concentrations all influenced the risk estimates.

  19. Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area

    NASA Astrophysics Data System (ADS)

    Peng, Chi; Cai, Yimin; Wang, Tieyu; Xiao, Rongbo; Chen, Weiping

    2016-11-01

    In this study, we proposed a Regional Probabilistic Risk Assessment (RPRA) to estimate the health risks of exposing residents to heavy metals in different environmental media and land uses. The mean and ranges of heavy metal concentrations were measured in water, sediments, soil profiles and surface soils under four land uses along the Shunde Waterway, a drinking water supply area in China. Hazard quotients (HQs) were estimated for various exposure routes and heavy metal species. Riverbank vegetable plots and private vegetable plots had 95th percentiles of total HQs greater than 3 and 1, respectively, indicating high risks of cultivation on the flooded riverbank. Vegetable uptake and leaching to groundwater were the two transfer routes of soil metals causing high health risks. Exposure risks during outdoor recreation, farming and swimming along the Shunde Waterway are theoretically safe. Arsenic and cadmium were identified as the priority pollutants that contribute the most risk among the heavy metals. Sensitivity analysis showed that the exposure route, variations in exposure parameters, mobility of heavy metals in soil, and metal concentrations all influenced the risk estimates.

  20. Effect of georesource–consumer process flows on coal loss in energy supply of the Polar regions in Yakutia

    NASA Astrophysics Data System (ADS)

    Tkach, SM; Gavrilov, VL

    2017-02-01

    It is shown that the process flows of mining, haulage and utilization of coal in the Polar regions in Yakutia feature high quantitative and qualitative loss. In case the process flows are considered as integrated systems aimed at the overall performance efficiency, it is possible to reduce the loss per each individual chain loop. The authors formulate approaches intended to lower total loss of coal in process flows. The geotechnical and organizational solutions are put forward to improve and stabilize quality of fuel used by local fuel and energy industry.

  1. Urinary fluoride as a monitoring tool for assessing successful intervention in the provision of safe drinking water supply in five fluoride-affected villages in Dhar district, Madhya Pradesh, India.

    PubMed

    Srikanth, R; Gautam, Anil; Jaiswal, Suresh Chandra; Singh, Pavitra

    2013-03-01

    Endemic fluorosis was detected in 31 villages in the Dhar district of Madhya Pradesh, Central India. Out of the 109 drinking water sources that were analyzed, about 67 % were found to contain high concentration of fluoride above the permissible level of 1.0 mg/l. Dental fluorosis among the primary school children in the age between 8 and 15 served as primary indicator for fluoride intoxication among the children. Urinary fluoride levels among the adults were found to be correlated with drinking water fluoride in 10 villages affected by fluoride. Intervention in the form of alternate safe water supply in five villages showed significant reduction in the urinary fluoride concentration when compared to the control village. Urinary fluoride serves as an excellent marker for assessing the effectiveness of intervention program in the fluoride-affected villages.

  2. How the Energy Independence and Security Act of 2007 Affects Light Bulbs

    EPA Pesticide Factsheets

    Inefficient light bulbs are being phased out under the New Light Bulb Law. It does not sweepingly ban incandescent bulbs, just those not energy efficient (with some exemptions). It also includes many provisions not pertaining to lighting.

  3. Do specific dietary constituents and supplements affect mental energy? Review of the evidence.

    PubMed

    Gorby, Heather E; Brownawell, Amy M; Falk, Michael C

    2010-12-01

    The numbers of marketing claims and food, beverage, and drug products claiming to increase mental energy have risen rapidly, thus increasing the need for scientific specificity in marketing and food label claims. Mental energy is a three-dimensional construct consisting of mood (transient feelings about the presence of fatigue or energy), motivation (determination and enthusiasm), and cognition (sustained attention and vigilance). The present review focuses on four dietary constituents/supplements (Ginkgo biloba, ginseng, glucose, and omega-3 polyunsaturated fatty acids) to illustrate the current state of the literature on dietary constituents and mental energy. The strongest evidence suggests effects of Ginkgo biloba on certain aspects of mood and on attention in healthy subjects, as well as associations between omega-3 polyunsaturated fatty acids and reduced risk of age-related cognitive decline. Limitations of the current data and challenges for future research are discussed.

  4. HOME ENERGY SUPPLY-DEMAND ANALYSIS FOR COMBINED SYSTEM OF SOLAR HEAT COLLECTOR AND HEAT PUMP WATER HEATER

    NASA Astrophysics Data System (ADS)

    Ikegami, Takashi; Kataoka, Kazuto; Iwafune, Yumiko; Ogimoto, Kazuhiko

    In order to evaluate effectiveness of a combined system of solar heat collecctor (SHC) and heat pump water heater (HPWH), optimum operation scheduling moldel of domestic electric appliances using the mixed integer linear programming was enhanced. Applying this model with one house data in Tokyo, it was found that the combined system of the SHC and the HPWH has the enough energy-saving and CO2 emission reduction potential under the existing electricity late and the operation method of the HPWH. Furthermore, the calculation results under the future system show that the combined system of the SHC and the HPWH has also the reduction effect of reverse power flow from residential photovoltaic system.

  5. The Water - Energy Nexus Of Hydropower. Are The Trade-Offs Between Electricity Generation And Water Supply Negligible?

    NASA Astrophysics Data System (ADS)

    Scherer, L.; Pfister, S.

    2015-12-01

    Hydropower ranks first among renewable sources of power production and provides globally about 16% of electricity. While it is praised for its low greenhouse gas emissions, it is accused of its large water consumption which surpasses that of all conventional and most renewable energy sources (except for bioenergy) by far. Previous studies mostly applied a gross evaporation approach where all the current evaporation from the plant's reservoir is allocated to hydropower. In contrast, we only considered net evaporation as the difference between current evaporation and actual evapotranspiration before the construction of the reservoir. In addition, we take into account local water stress, its monthly fluctuations and storage effects of the reservoir in order to assess the impacts on water availability for other users. We apply the method to a large dataset of almost 1500 globally distributed hydropower plants (HPPs), covering ~43% of global annual electricity generation, by combining reservoir information from the Global Reservoir and Dam (GRanD) database with information on electricity generation from the CARMA database. While we can confirm that the gross water consumption of hydropower is generally large (production-weighted average of 97 m3/GJ), other users are not necessarily deprived of water. In contrast, they also benefit in many cases from the reservoir because water is rather stored in the wet season and released in the dry season, thereby alleviating water stress. The production-weighted water scarcity footprint of the analyzed HPPs amounts to -41 m3 H2Oe/GJ. It has to be noted that the impacts among individual plants vary a lot. Larger HPPs generally consume less water per unit of electricity generated, but also the benefits related to alleviating water scarcity are lower. Overall, reservoirs promote both, energy and water security. Other environmental impacts such as flow alterations and social impacts should, however, also be considered, as they can be

  6. Study of the impacts of regulations affecting the acceptance of integrated community energy systems. Final report

    SciTech Connect

    Feurer, Duane A.; Weaver, Clifford L.; Rielley, Kevin J.; Gallagher, Kevin C.; Harmon, Susan B.; Hejna, David T.; Kitch, Edmund W.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of North Carolina governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Epigenetic mechanisms affecting regulation of energy balance: many questions, few answers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive human and animal model data show that nutrition and other environmental influences during critical periods of embryonic, fetal, and early postnatal life can affect the development of body weight regulatory pathways, with permanent consequences for risk of obesity. Epigenetic processes are ...

  8. Dietary energy availability affects primary and metastatic breast cancer and metformin efficacy.

    PubMed

    Phoenix, Kathryn N; Vumbaca, Frank; Fox, Melissa M; Evans, Rebecca; Claffey, Kevin P

    2010-09-01

    Dietary energy restriction has been shown to repress both mammary tumorigenesis and aggressive mammary tumor growth in animal studies. Metformin, a caloric restriction mimetic, has a long history of safe use as an insulin sensitizer in diabetics and has been shown to reduce cancer incidence and cancer-related mortality in humans. To determine the potential impact of dietary energy availability and metformin therapy on aggressive breast tumor growth and metastasis, an orthotopic syngeneic model using triple negative 66cl4 tumor cells in Balb/c mice was employed. The effect of dietary restriction, a standard maintenance diet or a diet with high levels of free sugar, were tested for their effects on tumor growth and secondary metastases to the lung. Metformin therapy with the various diets indicated that metformin can be highly effective at suppressing systemic metabolic biomarkers such as IGF-1, insulin and glucose, especially in the high energy diet treated animals. Long-term metformin treatment demonstrated moderate yet significant effects on primary tumor growth, most significantly in conjunction with the high energy diet. When compared to the control diet, the high energy diet promoted tumor growth, expression of the inflammatory adipokines leptin and resistin, induced lung priming by bone marrow-derived myeloid cells and promoted metastatic potential. Metformin had no effect on adipokine expression or the development of lung metastases with the standard or the high energy diet. These data indicate that metformin may have tumor suppressing activity where a metabolic phenotype of high fuel intake, metabolic syndrome, and diabetes exist, but may have little or no effect on events controlling the metastatic niche driven by proinflammatory events.

  9. Analysing biomass torrefaction supply chain costs.

    PubMed

    Svanberg, Martin; Olofsson, Ingemar; Flodén, Jonas; Nordin, Anders

    2013-08-01

    The objective of the present work was to develop a techno-economic system model to evaluate how logistics and production parameters affect the torrefaction supply chain costs under Swedish conditions. The model consists of four sub-models: (1) supply system, (2) a complete energy and mass balance of drying, torrefaction and densification, (3) investment and operating costs of a green field, stand-alone torrefaction pellet plant, and (4) distribution system to the gate of an end user. The results show that the torrefaction supply chain reaps significant economies of scale up to a plant size of about 150-200 kiloton dry substance per year (ktonDS/year), for which the total supply chain costs accounts to 31.8 euro per megawatt hour based on lower heating value (€/MWhLHV). Important parameters affecting total cost are amount of available biomass, biomass premium, logistics equipment, biomass moisture content, drying technology, torrefaction mass yield and torrefaction plant capital expenditures (CAPEX).

  10. Power supply

    DOEpatents

    Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  11. Coal supply for California

    NASA Technical Reports Server (NTRS)

    Yancik, J. J.

    1978-01-01

    The potential sources and qualities of coals available for major utility and industrial consumers in California are examined and analyzed with respect to those factors that would affect the reliability of supplies. Other considerations, such as the requirements and assurances needed by the coal producers to enter into long-term contracts and dedicate large reserves of coal to these contracts are also discussed. Present and potential future mining contraints on coal mine operators are identified and analyzed with respect to their effect on availability of supply.

  12. Structural properties and interaction energies affecting drug design. An approach combining molecular simulations, statistics, interaction energies and neural networks.

    PubMed

    Ioannidis, Dimitris; Papadopoulos, Georgios E; Anastassopoulos, Georgios; Kortsaris, Alexandros; Anagnostopoulos, Konstantinos

    2015-06-01

    In order to elucidate some basic principles for protein-ligand interactions, a subset of 87 structures of human proteins with their ligands was obtained from the PDB databank. After a short molecular dynamics simulation (to ensure structure stability), a variety of interaction energies and structural parameters were extracted. Linear regression was performed to determine which of these parameters have a potentially significant contribution to the protein-ligand interaction. The parameters exhibiting relatively high correlation coefficients were selected. Important factors seem to be the number of ligand atoms, the ratio of N, O and S atoms to total ligand atoms, the hydrophobic/polar aminoacid ratio and the ratio of cavity size to the sum of ligand plus water atoms in the cavity. An important factor also seems to be the immobile water molecules in the cavity. Nine of these parameters were used as known inputs to train a neural network in the prediction of seven other. Eight structures were left out of the training to test the quality of the predictions. After optimization of the neural network, the predictions were fairly accurate given the relatively small number of structures, especially in the prediction of the number of nitrogen and sulfur atoms of the ligand.

  13. Models for evaluation of energy technology and policy options to maximize low carbon source penetration in the United States energy supply.

    SciTech Connect

    Pickard, Paul S.; Kataoka, Dawn; Reno, Marissa Devan; Malczynski, Leonard A.; Peplinski, William J.; Roach, Jesse D.; Brainard, James Robert; West, Todd H.; Schoenwald, David Alan

    2009-12-01

    An initial version of a Systems Dynamics (SD) modeling framework was developed for the analysis of a broad range of energy technology and policy questions. The specific question selected to demonstrate this process was 'what would be the carbon and import implications of expanding nuclear electric capacity to provide power for plug in hybrid vehicles?' Fifteen SNL SD energy models were reviewed and the US Energy and Greenhouse gas model (USEGM) and the Global Nuclear Futures model (GEFM) were identified as the basis for an initial modeling framework. A basic U.S. Transportation model was created to model U.S. fleet changes. The results of the rapid adoption scenario result in almost 40% of light duty vehicles being PHEV by 2040 which requires about 37 GWy/y of additional electricity demand, equivalent to about 25 new 1.4 GWe nuclear plants. The adoption rate of PHEVs would likely be the controlling factor in achieving the associated reduction in carbon emissions and imports.

  14. Concentration of dietary calcium supplied by calcium carbonate does not affect the apparent total tract digestibility of calcium, but decreases digestibility of phosphorus by growing pigs.

    PubMed

    Stein, H H; Adeola, O; Cromwell, G L; Kim, S W; Mahan, D C; Miller, P S

    2011-07-01

    A regional experiment was conducted to test the hypothesis that the concentration of dietary Ca does not affect the digestibility of Ca or P in diets fed to growing pigs. Six diets based on corn, potato protein isolate, cornstarch, and soybean oil were formulated. All diets also contained monosodium phosphate, crystalline AA, salt, and a vitamin-micromineral premix. The only difference among the diets was that varying concentrations of calcium carbonate were used to create diets containing 0.33, 0.46, 0.51, 0.67, 0.92, and 1.04% Ca. All diets contained between 0.40 and 0.43% P. Six universities participated in the experiment and each university contributed 2 replicates to the experiment for a total of 12 replicates (initial BW: 23.1 ± 4.4 kg). Pigs were placed in metabolism cages that allowed total, but separate, collection of feces and urine from the pigs. Pigs within each replicate were randomly allotted to the 6 diets and fed experimental diets for 14 d with urine and feces being collected over a 5-d period. Diets, feces, and urine samples were analyzed for Ca and P, and the daily balance, the apparent total tract digestibility (ATTD), and the retention of Ca and P were calculated. Results indicated that intake, fecal excretion, and urinary excretion of Ca increased (linear, P<0.05) as dietary Ca concentration increased. The daily intake of P was not affected by the dietary concentration of Ca, but fecal excretion of P increased (linear, P<0.05) as dietary Ca concentrations increased. In contrast, urinary P output was decreased (linear, P<0.05) as dietary Ca increased. The retention of Ca increased (linear, P<0.05) from 1.73 to 4.60 g/d, whereas the retention of P decreased (linear, P<0.05) from 1.98 to 1.77 g/d as dietary Ca concentrations increased. However, if calculated as a percentage of intake, both Ca and P retention were decreased (linear, P<0.05) as dietary Ca concentration increased (from 55.4 to 46.1% and from 48.4 to 43.5%, respectively). The ATTD

  15. Status of development of the Small Secure Transportable Autonomous Reactor (SSTAR) for worldwide sustainable nuclear energy supply.

    SciTech Connect

    Sienicki, J. J.; Moisseytsev, A.; Wade, D. C.; Nikiforova, A.; Nuclear Engineering Division; Massachusetts Institute of Tech.

    2008-01-01

    Significant progress and improvements have been made on development of a pre-conceptual design of the Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) concept since it was last reported on at ICAPP 05. SSTAR is a small, 20 MWe (45 MWt), exportable, natural circulation, fast reactor plant concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety. Customers of SSTAR include: (1) clients looking for energy security at small capital outlay; (2) cities in developing nations; and (3) deregulated independent power producers in developed nations. The SSTAR pre-conceptual design integrates three major features: primary coolant natural circulation heat transport; lead (Pb) coolant; and transuranic nitride fuel in a pool vessel configuration. The Pb coolant flows upward through the core which is an open-lattice of large-diameter (2.5 centimeter) fuel pins containing transuranic nitride pellets clad bonded with liquid Pb to silicon-enhanced ferritic/martensitic (F/M) stainless steel arranged on a triangular pitch with spacing maintained by grid spacers; the core does not incorporate removable fuel assemblies as one means of restricting access to the fuel. The whole core is a single removable assembly with a long lifetime (30 years) at which time refueling equipment is brought onsite. Conversion of the core thermal energy to electricity is accomplished using a supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converter providing higher plant efficiencies and lower balance of plant costs than the traditional Rankine steam cycle operating at the same reactor core outlet temperature. A control strategy has been developed for automatic control of the S-CO{sub 2} Brayton cycle in principle

  16. FTO knockdown in rat ventromedial hypothalamus does not affect energy balance.

    PubMed

    van Gestel, Margriet A; Sanders, Loek E; de Jong, Johannes W; Luijendijk, Mieneke C M; Adan, Roger A H

    2014-12-01

    Single nucleotide polymorphisms (SNPs) clustered in the first intron of the fat mass and obesity-associated (FTO) gene has been associated with obesity. FTO expression is ubiquitous, with particularly high levels in the hypothalamic area of the brain. To investigate the region-specific role of FTO, AAV technology was applied to knockdown FTO in the ventromedial hypothalamus (VMH). No effect of FTO knockdown was observed on bodyweight or parameters of energy balance. Animals were exposed twice to an overnight fast, followed by a high-fat high-sucrose (HFHS) diet for 1 week. FTO knockdown did not result in a different response to the diets. A region-specific role for FTO in the VMH in the regulation of energy balance could not be found.

  17. How does India’s Energy Security Affect her National Security?

    DTIC Science & Technology

    2008-12-01

    these are referred to as biogases . Sources of biogas include swamps, marshes, and landfills  as well as sewage sludge and manure by way of anaerobic...along with the acquisition of equity shares in oil and gas reserves overseas.6 The two most attractive sources of energy for India are Iran and the...jointly bidding for oil exploration rights in some regions like Africa and Siberia. On the other hand, the same two companies have bid against each

  18. Protein modifications affecting triplet energy transfer in bacterial photosynthetic reaction centers.

    PubMed Central

    Laible, P D; Chynwat, V; Thurnauer, M C; Schiffer, M; Hanson, D K; Frank, H A

    1998-01-01

    The efficiency of triplet energy transfer from the special pair (P) to the carotenoid (C) in photosynthetic reaction centers (RCs) from a large family of mutant strains has been investigated. The mutants carry substitutions at positions L181 and/or M208 near chlorophyll-based cofactors on the inactive and active sides of the complex, respectively. Light-modulated electron paramagnetic resonance at 10 K, where triplet energy transfer is thermally prohibited, reveals that the mutations do not perturb the electronic distribution of P. At temperatures > or = 70 K, we observe reduced signals from the carotenoid in most of the RCs with L181 substitutions. In particular, triplet transfer efficiency is reduced in all RCs in which a lysine at L181 donates a sixth ligand to the monomeric bacteriochlorophyll B(B). Replacement of the native Tyr at M208 on the active side of the complex with several polar residues increased transfer efficiency. The difference in the efficiencies of transfer in the RCs demonstrates the ability of the protein environment to influence the electronic overlap of the chromophores and thus the thermal barrier for triplet energy transfer. PMID:9591686

  19. Does non-ionizing radiant energy affect determination of the evaporation rate by the gradient method?

    PubMed

    Kjartansson, S; Hammarlund, K; Oberg, P A; Sedin, G

    1991-01-01

    A study was performed to investigate whether measurements of the evaporation rate from the skin of newborn infants by the gradient method are affected by the presence of non-ionizing radiation from phototherapy equipment or a radiant heater. The evaporation rate was measured experimentally with the measuring sensors either exposed to or protected from non-ionizing radiation. Either blue light (phototherapy) or infrared light (radiant heater) was used; in the former case the evaporation rate was measured from a beaker of water covered with a semipermeable membrane, and in the latter case from the hand of an adult subject, aluminium foil or with the measuring probe in the air. No adverse effect on the determinations of the evaporation rate was found in the presence of blue light. Infrared radiation caused an error of 0.8 g/m2h when the radiant heater was set at its highest effect level or when the ambient humidity was high. At low and moderate levels the observed evaporation rate was not affected. It is concluded that when clinical measurements are made from the skin of newborn infants nursed under a radiant heater, the evaporation rate can appropriately be determined by the gradient method.

  20. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis

    PubMed Central

    Cota, Daniela; Marsicano, Giovanni; Tschöp, Matthias; Grübler, Yvonne; Flachskamm, Cornelia; Schubert, Mirjam; Auer, Dorothee; Yassouridis, Alexander; Thöne-Reineke, Christa; Ortmann, Sylvia; Tomassoni, Federica; Cervino, Cristina; Nisoli, Enzo; Linthorst, Astrid C.E.; Pasquali, Renato; Lutz, Beat; Stalla, Günter K.; Pagotto, Uberto

    2003-01-01

    The cannabinoid receptor type 1 (CB1) and its endogenous ligands, the endocannabinoids, are involved in the regulation of food intake. Here we show that the lack of CB1 in mice with a disrupted CB1 gene causes hypophagia and leanness. As compared with WT (CB1+/+) littermates, mice lacking CB1 (CB1–/–) exhibited reduced spontaneous caloric intake and, as a consequence of reduced total fat mass, decreased body weight. In young CB1–/– mice, the lean phenotype is predominantly caused by decreased caloric intake, whereas in adult CB1–/– mice, metabolic factors appear to contribute to the lean phenotype. No significant differences between genotypes were detected regarding locomotor activity, body temperature, or energy expenditure. Hypothalamic CB1 mRNA was found to be coexpressed with neuropeptides known to modulate food intake, such as corticotropin-releasing hormone (CRH), cocaine-amphetamine–regulated transcript (CART), melanin-concentrating hormone (MCH), and prepro-orexin, indicating a possible role for endocannabinoid receptors within central networks governing appetite. CB1–/– mice showed significantly increased CRH mRNA levels in the paraventricular nucleus and reduced CART mRNA levels in the dorsomedial and lateral hypothalamic areas. CB1 was also detected in epidydimal mouse adipocytes, and CB1-specific activation enhanced lipogenesis in primary adipocyte cultures. Our results indicate that the cannabinoid system is an essential endogenous regulator of energy homeostasis via central orexigenic as well as peripheral lipogenic mechanisms and might therefore represent a promising target to treat diseases characterized by impaired energy balance. PMID:12897210

  1. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera).

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2017-03-07

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera, detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.

  2. Mitofusin 2 Deficiency Affects Energy Metabolism and Mitochondrial Biogenesis in MEF Cells.

    PubMed

    Kawalec, Maria; Boratyńska-Jasińska, Anna; Beręsewicz, Małgorzata; Dymkowska, Dorota; Zabłocki, Krzysztof; Zabłocka, Barbara

    2015-01-01

    Mitofusin 2 (Mfn2), mitochondrial outer membrane protein which is involved in rearrangement of these organelles, was first described in pathology of hypertension and diabetes, and more recently much attention is paid to its functions in Charcot-Marie-Tooth type 2A neuropathy (CMT2A). Here, cellular energy metabolism was investigated in mouse embryonic fibroblasts (MEF) differing in the presence of the Mfn2 gene; control (MEFwt) and with Mfn2 gene depleted MEFMfn2-/-. These two cell lines were compared in terms of various parameters characterizing mitochondrial bioenergetics. Here, we have shown that relative rate of proliferation of MEFMfn2-/- cells versus control fibroblasts depend on serum supplementation of the growth media. Moreover, MEFMfn2-/- cells exhibited significantly increased respiration rate in comparison to MEFwt, regardless of serum supplementation of the medium. This effect was correlated with increased level of mitochondrial markers (TOM20 and NAO) as well as mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) protein levels and unchanged total ATP content. Interestingly, mitochondrial DNA content in MEFMfn2-/- cells was not reduced. Fundamentally, these results are in contrast to a commonly accepted belief that mitofusin 2 deficiency inevitably results in debilitation of mitochondrial energy metabolism. However, we suggest a balance between negative metabolic consequences of mitofusin 2 deficiency and adaptive processes exemplified by increased level of PGC-1α and TFAM transcription factor which prevent an excessive depletion of mtDNA and severe impairment of cell metabolism.

  3. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome

    PubMed Central

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca2+]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials. PMID:27146429

  4. EC treatment for reuse of tissue paper wastewater: aspects that affect energy consumption.

    PubMed

    Terrazas, Eduardo; Vázquez, Armando; Briones, Roberto; Lázaro, Isabel; Rodríguez, Israel

    2010-09-15

    The need for more rational use of water also calls for more efficient usage. An example is the production of tissue paper, where large amounts of water are discharged into the drain because its turbidity does not allow for recirculation. While this is a serious problem, even worse is the fact that the quality of such wastewater makes it difficult not only to recirculate but also to discharge due to environmental law restrictions. In this paper, electrocoagulation is proposed as a suitable technology to meet standards of water discharge, and even better, as a treatment option for removal of turbidity. Since energy consumption has been a drawback for EC applications, relevant aspects that contribute to increase it such as cell voltage and current density have been reviewed. For this purpose a systematic micro-electrolysis study combined with macro-electrolysis experiments have provided evidence that shows it is possible to achieve a turbidity removal of 92% with an energy consumption of 0.68 kWh/m(3). Thus, the results presented in this paper support the use of EC to obtain water of acceptable quality for reuse in the tissue paper industry.

  5. Neuropeptide Y influences acute food intake and energy status affects NPY immunoreactivity in the female musk shrew (Suncus murinus).

    PubMed

    Bojkowska, Karolina; Hamczyk, Magdalena M; Tsai, Houng-Wei; Riggan, Anna; Rissman, Emilie F

    2008-02-01

    Neuropeptide Y (NPY) stimulates feeding, depresses sexual behavior, and its expression in the brain is modulated by energetic status. We examined the role of NPY in female musk shrews, a species with high energetic and reproductive demands; they store little fat, and small changes in energy can rapidly diminish or enhance sexual receptivity. Intracerebroventricular infusion of NPY enhanced acute food intake in shrews; however, NPY had little affect on sexual receptivity. The distribution of NPY immunoreactivity in the female musk shrew brain was unremarkable, but energy status differentially affected NPY immunoreactivity in several regions. Similar to what has been noted in other species, NPY immunoreactivity was less dense in brains of ad libitum shrews and greater in shrews subjected to food restriction. In two midbrain regions, both of which contain high levels of gonadotropin releasing hormone II (GnRH II), which has anorexigenic actions in shrews, NPY immunoreactivity was more sensitive to changes in food intake. In these regions, acute re-feeding (90-180 min) after food restriction reduced NPY immunoreactivity to levels noted in ad libitum shrews. We hypothesize that interactions between NPY and GnRH II maintain energy homeostasis and reproduction in the musk shrew.

  6. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar).

    PubMed

    Andersen, Synne M; Holen, Elisabeth; Aksnes, Anders; Rønnestad, Ivar; Zerrahn, Jens-Erik; Espe, Marit

    2013-12-14

    In the present study, quadruplicate groups of juvenile Atlantic salmon (Salmo salar) were fed plant protein-based diets with increasing arginine inclusions (range 28·8-37·4 g/kg DM) to investigate whether arginine supplementation affects growth and lipid accumulation through an elevated polyamine turnover. Dietary lysine was held at a constant concentration, just below the requirement. All other amino acids were balanced and equal in the diets. Arginine supplementation increased protein and fat accretion, without affecting the hepatosomatic or visceralsomatic indices. Dietary arginine correlated with putrescine in the liver (R 0·78, P= 0·01) and with ornithine in the muscle, liver and plasma (P= 0·0002, 0·003 and 0·0002, respectively). The mRNA of ornithine decarboxylase, the enzyme producing putrescine, was up-regulated in the white adipose tissue of fish fed the high-arginine inclusion compared with those fed the low-arginine diet. Concomitantly, spermidine/spermine-(N1)-acetyltransferase, the rate-limiting enzyme for polyamine turnover that consumes acetyl-CoA, showed an increased activity in the liver of fish fed the arginine-supplemented diets. In addition, lower acetyl-CoA concentrations were observed in the liver of fish fed the high-arginine diet, while ATP, which is used in the process of synthesising spermidine and spermine, did not show a similar trend. Gene expression of the rate-limiting enzyme for β-oxidation of long-chain fatty acids, carnitine palmitoyl transferase-1, was up-regulated in the liver of fish fed the high-arginine diet. Taken together, the data support that increased dietary arginine activates polyamine turnover and β-oxidation in the liver of juvenile Atlantic salmon and may act to improve the metabolic status of the fish.

  7. Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability.

    PubMed

    Dubousset, L; Abdallah, M; Desfeux, A S; Etienne, P; Meuriot, F; Hawkesford, M J; Gombert, J; Ségura, R; Bataillé, M-P; Rezé, S; Bonnefoy, J; Ameline, A F; Ourry, A; Le Dily, F; Avice, J C

    2009-01-01

    The impact of sulphur limitation on the remobilization of endogenous S compounds during the rosette stage of oilseed rape, and the interactions with N availability on these processes, were examined using a long-term (34)SO(4)(2-) labelling method combined with a study of leaf senescence progression (using SAG12/Cab as a molecular indicator) and gene expression of the transporters, BnSultr4;1 and BnSultr4;2, involved in vacuolar sulphate efflux. After 51 d on hydroponic culture at 0.3 mM (34)SO(4)(2-) (1 atom% excess), the labelling was stopped and plants were subject for 28 d to High S-High N (HS-HN, control), Low S-High N (LS-HN) or Low S-Low N (LS-LN) conditions. Compared with the control, LS-HN plants showed delayed leaf senescence and, whilst the shoot growth and the foliar soluble protein amounts were not affected, S, (34)S, and SO(4)(2-) amounts in the old leaves declined rapidly and were associated with the up-regulation of BnSultr4;1. In LS-LN plants, shoot growth was reduced, leaf senescence was accelerated, and the rapid S mobilization in old leaves was accompanied by decreased (34)S and SO(4)(2-), higher protein mobilization, and up-regulation of BnSultr4;2, but without any change of expression of BnSultr4;1. The data suggest that to sustain the S demand for growth under S restriction (i) vacuolar SO(4)(2-) is specifically remobilized in LS-HN conditions without any acceleration of leaf senescence, (ii) SO(4)(2-) mobilization is related to an up-regulation of BnSultr4;1 and/or BnSultr4;2 expression, and (iii) the relationship between sulphate mobilization and up-regulation of expression of BnSultr4 genes is specifically dependent on the N availability.

  8. Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability

    PubMed Central

    Dubousset, L.; Abdallah, M.; Desfeux, A. S.; Etienne, P.; Meuriot, F.; Hawkesford, M. J.; Gombert, J.; Ségura, R.; Bataillé, M-P.; Rezé, S.; Bonnefoy, J.; Ameline, A. F.; Ourry, A.; Dily, F. Le; Avice, J. C.

    2009-01-01

    The impact of sulphur limitation on the remobilization of endogenous S compounds during the rosette stage of oilseed rape, and the interactions with N availability on these processes, were examined using a long-term 34SO42− labelling method combined with a study of leaf senescence progression (using SAG12/Cab as a molecular indicator) and gene expression of the transporters, BnSultr4;1 and BnSultr4;2, involved in vacuolar sulphate efflux. After 51 d on hydroponic culture at 0.3 mM 34SO42− (1 atom% excess), the labelling was stopped and plants were subject for 28 d to High S-High N (HS-HN, control), Low S-High N (LS-HN) or Low S-Low N (LS-LN) conditions. Compared with the control, LS-HN plants showed delayed leaf senescence and, whilst the shoot growth and the foliar soluble protein amounts were not affected, S, 34S, and SO42− amounts in the old leaves declined rapidly and were associated with the up-regulation of BnSultr4;1. In LS-LN plants, shoot growth was reduced, leaf senescence was accelerated, and the rapid S mobilization in old leaves was accompanied by decreased 34S and SO42−, higher protein mobilization, and up-regulation of BnSultr4;2, but without any change of expression of BnSultr4;1. The data suggest that to sustain the S demand for growth under S restriction (i) vacuolar SO42− is specifically remobilized in LS-HN conditions without any acceleration of leaf senescence, (ii) SO42− mobilization is related to an up-regulation of BnSultr4;1 and/or BnSultr4;2 expression, and (iii) the relationship between sulphate mobilization and up-regulation of expression of BnSultr4 genes is specifically dependent on the N availability. PMID:19553370

  9. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    PubMed

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

  10. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals

    PubMed Central

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106–109 dB re. 1 μPa in the range 125–250 Hz, 1–2 dB above ambient noise levels (statistically significant). Outside the range 125–250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121–125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment. PMID:26148299

  11. How Seasonal Drought Affect Carbon and Water Fluxes of Alternative Energy Crops in the US?

    NASA Astrophysics Data System (ADS)

    Joo, E.; Hussain, M. Z.; Zeri, M.; Masters, M.; Gomez-Casanovas, N.; DeLucia, E. H.; Bernacchi, C.

    2014-12-01

    The cellulosic biomass of Switchgrass (Panicum virgatum L.), Miscanthus (Miscanthus giganteus) and native prairie are considered candidate second-generation biofuels, potentially resulting in partial replacement annual row crops within the Midwestern US. There is an increasing focus to study the environmental impact of agricultural crops, however not much is known on the influence on the energy, carbon and water cycles of energy crops, especially under drought conditions. This study compares the impact of drought episodes (in 2011 and 2012) on evapotranspiration (ET), net ecosystem productivity (NEP) and water use efficiency (WUE; equals to NEP/ET) for Switchgrass (SW), Miscanthus (MXG), Maize (MZ) and native prairie (NP) grown in Central Illinois using the eddy covariance technique. Due to the prolonged drought and the rapid growth development with increasing ET of MXG in 2012, large water deficit (precipitation-ET) was observed for each species up to the highest deficit of -360 mm for this species. The gross primary production (GPP) of MZ was radically decreased by the drought in 2011 and 2012, while SW and NP were not influenced. MXG increased NEP throughout the typically wet and drought years, mainly due to the decrease in respiration and by the largest GPP upon the drought in 2012. Despite having the largest water deficit, MXG showed an enhanced WUE of 12.8 and 11.4 Kg C ha-1mm-1 in 2011 and 2012, respectively, in comparison to years typical to the region with WUE of 3.7-7.3 Kg C ha-1mm-1. Other species did not show a significant enhancement of WUE. Therefore we conclude that out of the studied species, MXG has more access to water, and uses this water the most efficiently to store carbon, under drought conditions.

  12. Do Fleas Affect Energy Expenditure of Their Free-Living Hosts?

    PubMed Central

    Kam, Michael; Degen, A. Allan; Khokhlova, Irina S.; Krasnov, Boris R.; Geffen, Eli

    2010-01-01

    Background Parasites can cause energetically costly behavioural and immunological responses which potentially can reduce host fitness. However, although most laboratory studies indicate that the metabolic rate of the host increases with parasite infestation, this has never been shown in free-living host populations. In fact, studies thus far have shown no effect of parasitism on field metabolic rate (FMR). Methodology and Results We tested the effect of parasites on the energy expenditure of a host by measuring FMR using doubly-labelled water in free-living Baluchistan gerbils (Gerbillus nanus) infested by naturally occurring fleas during winter, spring and summer. We showed for the first time that FMR of free-living G. nanus was significantly and positively correlated with parasite load in spring when parasite load was highest; this relationship approached significance in summer when parasite load was lowest but was insignificant in winter. Among seasons, winter FMRs were highest and summer FMRs were lowest in G. nanus. Discussion The lack of parasite effect on FMR in winter could be related to the fact that FMR rates were highest among seasons. In this season, thermoregulatory costs are high which may indicate that less energy could be allocated to defend against parasites or to compensate for other costly activities. The question about the cost of parasitism in nature is now one of the major themes in ecological physiology. Our study supports the hypothesis that parasites can elevate FMR of their hosts, at least under certain conditions. However, the effect is complex and factors such as season and parasite load are involved. PMID:21060688

  13. Petroleum Supply Monthly

    SciTech Connect

    1996-02-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  14. Petroleum supply monthly

    SciTech Connect

    1995-10-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blends, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

  15. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    PubMed

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  16. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    NASA Astrophysics Data System (ADS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-05-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation.

  17. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas

    2014-05-01

    injected in the scope of the scheduled EGR operation. Our techno-economic modeling results considering EGR reservoir simulations demonstrate that an economic and carbon neutral operation of UCG combined with fertilizer production and CCS is feasible. The suggested approach may provide a bridging technology to tackle fertilizer and power supply shortages in Bangladesh, and in addition support further production from depleting natural gas deposits. References Kempka, T., Plötz, M.L., Hamann, J., Deowan, S.A., Azzam, R. (2010) Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 4: 2200-2205. Nakaten, N., Schlüter, R., Azzam, R., Kempka, T. (2014) Development of a techno-economic model for dynamic calculation of COE, energy demand and CO2 emissions of an integrated UCG-CCS process. Energy (in print). Doi 10.1016/j.energy.2014.01.014

  18. Enhancement in current density and energy conversion efficiency of 3-dimensional MFC anodes using pre-enriched consortium and continuous supply of electron donors

    SciTech Connect

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A

    2011-01-01

    Using a pre-enriched microbial consortium as the inoculum and continuous supply of carbon source, improvement in performance of a three-dimensional, flow-through MFC anode utilizing ferricyanide cathode was investigated. The power density increased from 170 W/m3 (1800 mW/m2) to 580 W/m3 (6130 mW/m2), when the carbon loading increased from 2.5 g/l-day to 50 g/l-day. The coulombic efficiency (CE) decreased from 90% to 23% with increasing carbon loading. The CEs are among the highest reported for glucose and lactate as the substrate with the maximum current density reaching 15.1 A/m2. This suggests establishment of a very high performance exoelectrogenic microbial consortium at the anode. A maximum energy conversion efficiency of 54% was observed at a loading of 2.5 g/l-day. Biological characterization of the consortium showed presence of Burkholderiales and Rhodocyclales as the dominant members. Imaging of the biofilms revealed thinner biofilms compared to the inoculum MFC, but a 1.9-fold higher power density.

  19. Photoelectrocatalytic degradation of acid dye using Ni-TiO2 with the energy supplied by solar cell: mechanism and economical studies.

    PubMed

    Olya, Mohammad Ebrahim; Pirkarami, Azam; Soleimani, Majid; Bahmaei, Manochehr

    2013-05-30

    This paper reports an investigation into the effect of a number of operating factors on the removal of Acid Red 88 from an aqueous solution through photoelectrocatalysis: photocatalyst dose, dye concentration, pH, bias potential, and electrolyte concentration. The photocatalyst was Ni-TiO2 applied in suspension to the solution to achieve a larger catalyst surface area. The optimum values for photocatalyst dose, dye concentration, and electrolyte concentration turned out to be 0.6 mg L(-1), 50 mg L(-1), and 5 mg L(-1), respectively. Also, the best pH was found to be 7, and bias potential proved to be best at 1.6 V. The aqueous solution was characterized for its COD and TOC. Photocatalyst efficiency was evaluated using SEM and XRD techniques. The characterization of the post-treatment product using FT-IR, HPLC, and GC-MS studies revealed intermediate compounds. A pathway was proposed for the degradation of the dye. The energy required by the experiment was supplied by solar cells, meaning the money that would have otherwise been spent on electricity was saved. Cost analysis was also done for the treatment process.

  20. Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs.

    PubMed

    Yang, Shu-lin; Xia, Ji-han; Zhang, Yuan-yuan; Fan, Jian-gao; Wang, Hua; Yuan, Jing; Zhao, Zhan-zhao; Pan, Qin; Mu, Yu-lian; Xin, Lei-lei; Chen, Yao-xing; Li, Kui

    2015-09-11

    The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage, and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by de novo synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies, and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage.

  1. Subchronic exposure to chlorpyrifos affects energy expenditure and detoxification capacity in juvenile Japanese quails.

    PubMed

    Narváez, Cristóbal; Ríos, Juan Manuel; Píriz, Gabriela; Sanchez-Hernandez, Juan C; Sabat, Pablo

    2016-02-01

    Effects of pesticides on non-target organisms have been studied in several taxa at different levels of biological organization, from enzymatic to behavioral responses. Although the physiological responses may be associated with higher energy costs, little is known about metabolic costs of pesticide detoxification in birds. To fill this gap, we exposed orally (diet) 15-d old Coturnix coturnix japonica individuals to sublethal doses of chlorpyrifos (10 and 20 mg active ingredient/kg dry food) for four weeks. Carboxylesterase (CbE), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) activities were periodically measured in multiple tissues along with measurements of resting (RMR) and maximum metabolic rates (M(sum)). Furthermore, glucuronic acid in bird excreta was also assessed at the end of the trial. While CbE and BChE activities were inhibited by chlorpyrifos in all tissues during the third and fourth weeks following pesticide treatment, AChE activity was unaffected. At this sampling times, both M(sum) and RMR expansibility decreased. These results suggest that the exposure to chlorpyrifos caused a negative effect on aerobic performance. Additionally, excretion rate of glucuronic acid was up to 2-fold higher in the 20-mg/kg group than in the control and 10-mg/kg chlorpyrifos groups. The inhibition of CbE and BChE activities corroborated that these enzymes are fulfilling their role as bioscavengers for organophosphate pesticides, decreasing its concentration and thus protecting AChE activity against inhibition by chlorpyrifos.

  2. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna.

    PubMed

    Coyle, David R; Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H

    2011-10-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.

  3. Fluctuations in Electronic Energy Affecting Singlet Fission Dynamics and Mixing with Charge-Transfer State: Quantum Dynamics Study.

    PubMed

    Fujihashi, Yuta; Ishizaki, Akihito

    2016-02-04

    Singlet fission is a spin-allowed process by which a singlet excited state is converted to two triplet states. To understand mechanisms of the ultrafast fission via a charge transfer (CT) state, one has investigated the dynamics through quantum-dynamical calculations with the uncorrelated fluctuation model; however, the electronic states are expected to experience the same fluctuations induced by the surrounding molecules because the electronic structure of the triplet pair state is similar to that of the singlet state except for the spin configuration. Therefore, the fluctuations in the electronic energies could be correlated, and the 1D reaction coordinate model may adequately describe the fission dynamics. In this work we develop a model for describing the fission dynamics to explain the experimentally observed behaviors. We also explore impacts of fluctuations in the energy of the CT state on the fission dynamics and the mixing with the CT state. The overall behavior of the dynamics is insensitive to values of the reorganization energy associated with the transition from the singlet state to the CT state, although the coherent oscillation is affected by the fluctuations. This result indicates that the mixing with the CT state is rather robust under the fluctuations in the energy of the CT state as well as the high-lying CT state.

  4. Competing Uses of Underground Systems Related to Energy Supply: Applying Single- and Multiphase Simulations for Site Characterization and Risk-Analysis

    NASA Astrophysics Data System (ADS)

    Kissinger, A.; Walter, L.; Darcis, M.; Flemisch, B.; Class, H.

    2012-04-01

    Global climate change, shortage of resources and the resulting turn towards renewable sources of energy lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, "renewable" methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas, and coal. Besides competing among themselves, these technologies may also create conflicts with essential public interests like water supply. For example, the injection of CO2 into the underground causes an increase in pressure reaching far beyond the actual radius of influence of the CO2 plume, potentially leading to large amounts of displaced salt water. Finding suitable sites is a demanding task for several reasons. Natural systems as opposed to technical systems are always characterized by heterogeneity. Therefore, parameter uncertainty impedes reliable predictions towards capacity and safety of a site. State of the art numerical simulations combined with stochastic approaches need to be used to obtain a more reliable assessment of the involved risks and the radii of influence of the different processes. These simulations may include the modeling of single- and multiphase non-isothermal flow, geo-chemical and geo-mechanical processes in order to describe all relevant physical processes adequately. Stochastic approaches have the aim to estimate a bandwidth of the key output parameters based on uncertain input parameters. Risks for these different underground uses can then be made comparable with each other. Along with the importance and the urgency of the competing processes this may lead to a more profound basis for a decision. Communicating risks to stake holders and a concerned public is crucial for the success of finding a suitable site for CCS (or other subsurface utilization). We present and discuss first steps towards an approach for addressing the issue of competitive

  5. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    PubMed

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M; Esguerra, Camila V; Blust, Ronny; Darras, Veerle M; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  6. Supply Chain Management in Humanitarian Relief Logistics

    DTIC Science & Technology

    2004-03-01

    Hundreds of millions of people are affected by disasters each year. This thesis explores the use of supply chain management techniques to overcome...academic, organizational, and contemporary literature. Possible solutions to these barriers were selected from available supply chain management...literature. This work is different from others in that it marries supply chain principles from different disciplines (including private, nonprofit, and

  7. Supplementing chicken broth with monosodium glutamate reduces hunger and desire to snack but does not affect energy intake in women.

    PubMed

    Carter, Brett E; Monsivais, Pablo; Perrigue, Martine M; Drewnowski, Adam

    2011-11-01

    The effect of monosodium glutamate (MSG) supplementation in soup or broth on satiety is not well understood. In the present study, the relative effects of four chicken broths with or without added MSG on motivational ratings and energy intakes at the next meal were compared using a double-blinded, within-subject design. A total of thirty-five normal-weight women, aged 20-40 years, took part in four study sessions. The four broths were base chicken broth (63 kJ), broth with added MSG (1.19 g) and nucleotides (0.03 g), broth with added MSG (1.22 g), and broth with added fat (BAF; 681 kJ). The preloads were presented twice at 09.00 and 11.15 hours for a maximum cumulative dose of 2.44 g MSG. Motivational ratings were collected before and at 15 min intervals post-ingestion for a total of 210 min. A test lunch meal was served at 12.00 hours, and plate waste was measured. The addition of MSG to chicken broth did not increase energy intakes at lunch or affect motivational ratings over the entire testing session. Both hunger and desire to snack between the second preload exposure and the test meal were significantly reduced in the MSG condition relative to the base broth condition (both, P = 0.03). However, only the BAF significantly suppressed energy intakes at lunch compared with the base broth control condition. Supplementing chicken broth with MSG can increase subjective ratings for satiety but does not alter energy intake at the next meal relative to an equal energy broth without added MSG.

  8. The Urban Fabric of the City as Its Affects Thermal Energy Responses Derived from Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    2000-01-01

    The physical geography of the city affects numerous aspects of its interlinked biophysical, social, and land-atmosphere characteristics - those attributes that come together to form the total urban environment. One approach to studying the multitude of interactions that occur as a result of urbanization is to view the city from a systems ecology perspective, where energy and material cycle into and out of the urban milieu. Thus, the urban ecosystem is synergistic in linking land, air, water, and living organisms in a vast network of interrelated physical, human, and biological process. Given the number and the shear complexity of the exchanges and, ultimately, their effects, that occur within the urban environment, we are focusing our research on looking at how the morphology or urban fabric of the city, drives thermal energy exchanges across the urban landscape. The study of thermal energy attributes for different cities provides insight into how thermal fluxes and characteristics are partitioned across the city landscape in response to each city's morphology. We are using thermal infrared remote sensing data obtained at a high spatial resolution from aircraft, along with satellite data, to identify and quantify thermal energy characteristics for 4 U.S. cities: Atlanta, GA, Baton Rouge, LA, Salt Lake City, UT, and Sacramento, CA. Analysis of how thermal energy is spatially distributed across the urban landscapes for these cities provides a unique perspective for understanding how the differing morphology of cities forces land-atmosphere exchanges, such as the urban heat island effect, as well as related meteorological and air quality interactions. Keyword: urban ecosystems, remote sensing, urban heat island

  9. Energy and macronutrient composition of breakfast affect gastric emptying of lunch and subsequent food intake, satiety and satiation.

    PubMed

    Clegg, Miriam; Shafat, Amir

    2010-06-01

    Satiety and food intake are closely related to gastrointestinal transit and specifically gastric emptying. High-fat (HF) meals empty more slowly from the stomach yet are less satiating than isoenergetic low-fat (LF) meals. The current study examines how gastric emptying and satiety at lunch are affected by energy and macronutrient content of breakfast. Nine male volunteers consumed either (1) a HF breakfast, (2) a LF breakfast isoenergetic to HF (LFE) or (3) a LF breakfast of equal mass to HF (LFM). Gastric emptying half time measured using the sodium [(13)C] acetate breath test was delayed after HF compared to LF meals (HF: 102 + or - 11, LFE: 96 + or - 13, LFM: 95 + or - 13 min, mean + or - SD). Fullness increased and desire to eat decreased following the LFE breakfast measured using visual analogue scales. Eating a HF breakfast increased the energy, fat and protein from an ad libitum buffet meal given 4h after lunch. In conclusion, eating a HF breakfast delayed gastric emptying of lunch and increased food intake 7 h later compared to a LFM breakfast. These data suggest both mass and energy content of food regulate subsequent appetite and feeding and demonstrate the hyperphagic effect of a single HF meal.

  10. Factors Affecting Teaching the Concept of Renewable Energy in Technology Assisted Environments and Designing Processes in the Distance Education Model

    ERIC Educational Resources Information Center

    Yucel, A. Seda

    2007-01-01

    The energy policies of today focus mainly on sustainable energy systems and renewable energy resources. Chemistry is closely related to energy recycling, energy types, renewable energy, and nature-energy interaction; therefore, it is now an obligation to enrich chemistry classes with renewable energy concepts and related awareness. Before creating…

  11. Teleconnected food supply shocks

    NASA Astrophysics Data System (ADS)

    Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix

    2016-03-01

    The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.

  12. Does trans-10, cis-12 conjugated linoleic acid affect the intermediary glucose and energy expenditure of dairy cows due to repartitioning of milk component synthesis?

    PubMed

    Benninghoff, Jens; Metzger-Petersen, Katrin; Tröscher, Arnulf H A; Südekum, Karl-Heinz

    2015-11-01

    The overall goal of this study was to evaluate if intermediary energy metabolism of cows fed with trans-10, cis-12 conjugated linoleic acid (CLA) was modified such that milk-energy compounds were produced with less intermediary energy expenditure as compared to control cows. Published data on supplemented CLA were assembled. The extent was calculated to which the trans-10, cis-12 CLA isomer has an impact on glucose and energy conversion in the mammary gland by modifying glucose equivalent supply and energy required for fatty acid (FA) and fat synthesis, and if this will eventually lead to an improved glucose and energy status of CLA-supplemented high-yielding dairy cows. A possible relationship between CLA supplementation level and milk energy yield response was also studied. Calculations were conducted separately for orally and abomasally administered CLA and based on energy required for supply of glucose equivalents, i.e. lactose, glycerol and NADPH2. Further, modifications of milk FA profile due to CLA supplementation were considered when energy expenditures for FA and fat synthesis were quantified. Differences in yields between control and CLA groups were transformed into glucose energy equivalents. Only abomasal infusion (r(2) = 0.31) but not oral CLA administration (r(2) = 0.11) supplementation to dairy cow diets resulted in less glucose equivalent energy. Modifications of milk FA profiles also saved energy but the relationship with CLA supplementation was weaker for abomasal infusion (r(2) = 0.06) than oral administration (r(2) = 0.38). On average, 10 g/d of abomasally infused trans-10, cis-12 CLA saved 1.1 to 2.3 MJ net energy expressed as glucose equivalents, whereas both positive and negative values were observed when the trans-10, cis-12 CLA was fed to the cows. This study revealed a weak to moderate dose-dependent relationship between the amount of trans-10, cis-12 CLA administered and the amount of energy in glucose equivalents and energy for the

  13. Petroleum supply monthly, August 1993

    SciTech Connect

    Not Available

    1993-09-01

    This publication the Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report, (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data presented are divided into Summary Statistics and Detailed Statistics.

  14. Processes Affecting Phosphorus and Copper Concentrations and Their Relation to Algal Growth in Two Supply Reservoirs in the Lower Coastal Plain of Virginia, 2002-2003, and Implications for Alternative Management Strategies

    USGS Publications Warehouse

    Speiran, Gary K.; Simon, Nancy S.; Mood-Brown, Maria L.

    2007-01-01

    because these factors affect phosphorus availability to algae. Results indicate that (1) water flows through both reservoirs in a 'plug-flow' manner; (2) little water in the lower part of Lee Hall Reservoir, into which pumped water enters, flows into the upper part of the reservoir and mixes with that water; (3) Lee Hall Reservoir generally does not stratify; and (4) Harwoods Mill Reservoir stratifies from April to June through September or October into an upper epilimnion that does not mix with water in the lower hypolimnion. The ratio of dissolved nitrogen to phosphorus concentrations (N:P) for sites in both reservoirs generally was greater than 20:1, indicating that phosphorus likely is the growth-limiting nutrient in both reservoirs. Phosphorus was present predominantly as suspended, rather than dissolved, species except in the hypolimnion of Harwoods Mill Reservoir and the natural inflow represented by Baptist Run. Because Harwoods Mill Reservoir stratified, field-measured physical and chemical characteristics and concentrations of nitrogen and phosphorus species changed sharply over short depth intervals in this reservoir. Dissolved phosphorus concentration increased from 0.015 to 0.057 milligrams per liter between a depth of 15 feet (ft) and the bottom (depth of 18 ft), indicating the release of phosphorus by the decomposition of organic material and(or) the reduction of iron oxides in bed sediment and the lower water column. Because the mixing boundary between the epilimnion and the hypolimnion likely was between depths of 6 and 10 ft, such sources in the hypolimnion would not contribute phosphorus to the growth of algae in the epilimnion from which water is withdrawn for supply until the breakdown of stratification in the fall. Furthermore, laboratory studies of samples from both reservoirs indicated that dissolved phosphorus was released from suspended particles at rates of 0.0007 to 0.0019 milligrams per liter per day. At these rates of release, particl

  15. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency.

    PubMed

    Gondret, F; Louveau, I; Mourot, J; Duclos, M J; Lagarrigue, S; Gilbert, H; van Milgen, J

    2014-11-01

    The use and partition of feed energy are key elements in productive efficiency of pigs. This study aimed to determine whether dietary energy sources affect the partition of body lipids and tissue biochemical pathways of energy use between pigs differing in feed efficiency. Forty-eight barrows (pure Large White) from two divergent lines selected for residual feed intake (RFI), a measure of feed efficiency, were compared. From 74 d to 132 ± 0.5 d of age, pigs (n = 12 by line and by diet) were offered diets with equal protein and ME contents. A low fat, low fiber diet (LF) based on cereals and a high fat, high fiber diet (HF) where vegetal oils and wheat straw were used to partially substitute cereals, were compared. Irrespective of diet, gain to feed was 10% better (P < 0.001), and carcass yield was greater (+2.3%; P < 0.001) in the low RFI compared with the high RFI line; the most-efficient line was also leaner (+3.2% for loin proportion in the carcass, P < 0.001). In both lines, ADFI and ADG were lower when pigs were fed the HF diet (-12.3% and -15%, respectively, relatively to LF diet; P < 0.001). Feeding the HF diet reduced the perirenal fat weight and backfat proportion in the carcass to the same extent in both lines (-27% on average; P < 0.05). Lipid contents in backfat and LM also declined (-5% and -19%, respectively; P < 0.05) in pigs offered the HF diet. The proportion of saturated fatty acids (FA) was lower, but the percentage of PUFA, especially the EFA C18:2 and C18:3, was greater (P < 0.001) in backfat of HF-fed pigs. In both lines, these changes were associated with a marked decrease (P < 0.001) in the activities of two lipogenic enzymes, the fatty acid synthase (FASN) and the malic enzyme, in backfat. For the high RFI line, the hepatic lipid content was greater (P < 0.05) in pigs fed the HF diet than in pigs fed the LF diet, despite a reduced FASN activity (-32%; P < 0.001). In both lines, the HF diet also led to lower glycogen content (-70%) and

  16. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies.

    PubMed

    Rogers, P J; Hogenkamp, P S; de Graaf, C; Higgs, S; Lluch, A; Ness, A R; Penfold, C; Perry, R; Putz, P; Yeomans, M R; Mela, D J

    2016-03-01

    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific 'learning' paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and body mass index (-0.002 kg m(-)(2) per year, 95% confidence interval (CI) -0.009 to 0.005). Meta-analysis of short-term randomized controlled trials (129 comparisons) showed reduced total EI for LES versus sugar-sweetened food or beverage consumption before an ad libitum meal (-94 kcal, 95% CI -122 to -66), with no difference versus water (-2 kcal, 95% CI -30 to 26). This was consistent with EI results from sustained intervention randomized controlled trials (10 comparisons). Meta-analysis of sustained intervention randomized controlled trials (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; -1.35 kg, 95% CI -2.28 to -0.42), and a similar relative reduction in BW versus water (three comparisons; -1.24 kg, 95% CI -2.22 to -0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human randomized controlled trials indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (for example, water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also

  17. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies

    PubMed Central

    Rogers, P J; Hogenkamp, P S; de Graaf, C; Higgs, S; Lluch, A; Ness, A R; Penfold, C; Perry, R; Putz, P; Yeomans, M R; Mela, D J

    2016-01-01

    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific ‘learning' paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and body mass index (−0.002 kg m−2 per year, 95% confidence interval (CI) −0.009 to 0.005). Meta-analysis of short-term randomized controlled trials (129 comparisons) showed reduced total EI for LES versus sugar-sweetened food or beverage consumption before an ad libitum meal (−94 kcal, 95% CI −122 to −66), with no difference versus water (−2 kcal, 95% CI −30 to 26). This was consistent with EI results from sustained intervention randomized controlled trials (10 comparisons). Meta-analysis of sustained intervention randomized controlled trials (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; −1.35 kg, 95% CI –2.28 to −0.42), and a similar relative reduction in BW versus water (three comparisons; −1.24 kg, 95% CI –2.22 to −0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human randomized controlled trials indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (for example, water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI

  18. In Vitro Acute Exposure to DEHP Affects Oocyte Meiotic Maturation, Energy and Oxidative Stress Parameters in a Large Animal Model

    PubMed Central

    Sardanelli, Anna Maria; Pocar, Paola; Martino, Nicola Antonio; Paternoster, Maria Stefania; Amati, Francesca; Dell'Aquila, Maria Elena

    2011-01-01

    Phthalates are ubiquitous environmental contaminants because of their use in plastics and other common consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate and it impairs fertility by acting as an endocrine disruptor. The aim of the present study was to analyze the effects of in vitro acute exposure to DEHP on oocyte maturation, energy and oxidative status in the horse, a large animal model. Cumulus cell (CC) apoptosis and oxidative status were also investigated. Cumulus-oocyte complexes from the ovaries of slaughtered mares were cultured in vitro in presence of 0.12, 12 and 1200 µM DEHP. After in vitro maturation (IVM), CCs were removed and evaluated for apoptosis (cytological assessment and TUNEL) and intracellular reactive oxygen species (ROS) levels. Oocytes were evaluated for nuclear chromatin configuration. Matured (Metaphase II stage; MII) oocytes were further evaluated for cytoplasmic energy and oxidative parameters. DEHP significantly inhibited oocyte maturation when added at low doses (0.12 µM; P<0.05). This effect was related to increased CC apoptosis (P<0.001) and reduced ROS levels (P<0.0001). At higher doses (12 and 1200 µM), DEHP induced apoptosis (P<0.0001) and ROS increase (P<0.0001) in CCs without affecting oocyte maturation. In DEHP-exposed MII oocytes, mitochondrial distribution patterns, apparent energy status (MitoTracker fluorescence intensity), intracellular ROS localization and levels, mt/ROS colocalization and total SOD activity did not vary, whereas increased ATP content (P<0.05), possibly of glycolytic origin, was found. Co-treatment with N-Acetyl-Cysteine reversed apoptosis and efficiently scavenged excessive ROS in DEHP-treated CCs without enhancing oocyte maturation. In conclusion, acute in vitro exposure to DEHP inhibits equine oocyte maturation without altering ooplasmic energy and oxidative stress parameters in matured oocytes which retain the potential to be fertilized and develop into embryos

  19. Information flow in the pharmaceutical supply chain.

    PubMed

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead.

  20. Information flow in the pharmaceutical supply chain

    PubMed Central

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead. PMID:26664401

  1. Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method

    NASA Astrophysics Data System (ADS)

    Xiao, Jianbo; Wei, Xinlin; Wang, Yuanfeng; Liu, Chunxi

    2009-11-01

    The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants ( Ka) obtained by the double-logarithm curve for esculin-BSA and esculin-HSA were 1.02 × 10 7 and 2.07 × 10 4 L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S 0 → S 1 transition of esculin ( λexmax≈340 nm) appears, which is similar to the λemmax of BSA and HSA. The critical distance ( R0) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.

  2. Proposed Community Energy Efficiency Act. Hearings before the Subcommittee on Energy Conservation and Supply of the Committee on Energy and Natural Resources, United States Senate, Ninety-Sixth Congress, Second Session, March 7 and April 12, 1980

    SciTech Connect

    Not Available

    1981-01-01

    Two days of hearings were held in Boston, MA (on March 7, 1980) and in Durham, NH (on April 12, 1980) to examine a proposal that will implement national energy policy at the local level through block grants. The Community Energy Act will send monies and technical assistance to communities for locally planned energy projects. The bill increases state and local power by providing direct assistance and eliminating several levels of bureaucracy. The 31 witnesses were asked to suggest ways to improve the draft legislation to make it more effective. (DCK)

  3. Temperature Affects the Use of Storage Fatty Acids as Energy Source in a Benthic Copepod (Platychelipus littoralis, Harpacticoida)

    PubMed Central

    Werbrouck, Eva; Van Gansbeke, Dirk; Vanreusel, Ann; De Troch, Marleen

    2016-01-01

    The utilization of storage lipids and their associated fatty acids (FA) is an important means for organisms to cope with periods of food shortage, however, little is known about the dynamics and FA mobilization in benthic copepods (order Harpacticoida). Furthermore, lipid depletion and FA mobilization may depend on the ambient temperature. Therefore, we subjected the temperate copepod Platychelipus littoralis to several intervals (3, 6 and 14 days) of food deprivation, under two temperatures in the range of the normal habitat temperature (4, 15°C) and under an elevated temperature (24°C), and studied the changes in FA composition of storage and membrane lipids. Although bulk depletion of storage FA occurred after a few days of food deprivation under 4°C and 15°C, copepod survival remained high during the experiment, suggesting the catabolization of other energy sources. Ambient temperature affected both the degree of FA depletion and the FA mobilization. In particular, storage FA were more exhausted and FA mobilization was more selective under 15°C compared with 4°C. In contrast, depletion of storage FA was limited under an elevated temperature, potentially due to a switch to partial anaerobiosis. Food deprivation induced selective DHA retention in the copepod’s membrane, under all temperatures. However, prolonged exposure to heat and nutritional stress eventually depleted DHA in the membranes, and potentially induced high copepod mortality. Storage lipids clearly played an important role in the short-term response of the copepod P. littoralis to food deprivation. However, under elevated temperature, the use of storage FA as an energy source is compromised. PMID:26986852

  4. Temperature Affects the Use of Storage Fatty Acids as Energy Source in a Benthic Copepod (Platychelipus littoralis, Harpacticoida).

    PubMed

    Werbrouck, Eva; Van Gansbeke, Dirk; Vanreusel, Ann; De Troch, Marleen

    2016-01-01

    The utilization of storage lipids and their associated fatty acids (FA) is an important means for organisms to cope with periods of food shortage, however, little is known about the dynamics and FA mobilization in benthic copepods (order Harpacticoida). Furthermore, lipid depletion and FA mobilization may depend on the ambient temperature. Therefore, we subjected the temperate copepod Platychelipus littoralis to several intervals (3, 6 and 14 days) of food deprivation, under two temperatures in the range of the normal habitat temperature (4, 15 °C) and under an elevated temperature (24 °C), and studied the changes in FA composition of storage and membrane lipids. Although bulk depletion of storage FA occurred after a few days of food deprivation under 4 °C and 15 °C, copepod survival remained high during the experiment, suggesting the catabolization of other energy sources. Ambient temperature affected both the degree of FA depletion and the FA mobilization. In particular, storage FA were more exhausted and FA mobilization was more selective under 15 °C compared with 4 °C. In contrast, depletion of storage FA was limited under an elevated temperature, potentially due to a switch to partial anaerobiosis. Food deprivation induced selective DHA retention in the copepod's membrane, under all temperatures. However, prolonged exposure to heat and nutritional stress eventually depleted DHA in the membranes, and potentially induced high copepod mortality. Storage lipids clearly played an important role in the short-term response of the copepod P. littoralis to food deprivation. However, under elevated temperature, the use of storage FA as an energy source is compromised.

  5. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    PubMed

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities.

  6. Food and water supply

    NASA Technical Reports Server (NTRS)

    Popov, I. G.

    1975-01-01

    Supplying astronauts with adequate food and water on short and long-term space flights is discussed based on experiences gained in space flight. Food consumption, energy requirements, and suitability of the foodstuffs for space flight are among the factors considered. Physicochemical and biological methods of food production and regeneration of water from astronaut metabolic wastes, as well as wastes produced in a closed ecological system, or as a result of technical processes taking place in various spacecraft systems are suggested for long-term space flights.

  7. Cleaning supplies and equipment

    MedlinePlus

    ... gov/ency/patientinstructions/000443.htm Cleaning supplies and equipment To use the sharing features on this page, ... to clean supplies and equipment. Disinfecting Supplies and Equipment Start by wearing the right personal protective equipment ( ...

  8. Sustainable Biomass Supply Systems

    SciTech Connect

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  9. Energy and housing: consumer and builder perspectives

    SciTech Connect

    Burby, R.J.; Marsden, M.E.

    1980-01-01

    Data on the demand and supply aspects of energy conservation in the residential sector are analyzed and presented in a form useful to energy policymakers and program personnel. The data cover the energy-conservation requirements for both existing and new houses, focusing jointly on households (demand/consumer) and homebuilders (supply/producer). Five specific aspects are considered: (1) structural characteristics of the existing housing stock that affect energy use in the house; (2) energy conservation attitudes, knowledge, and behavior of households; (3) consumer demand for energy efficiency in new housing; (4) structural characteristics of the home-building industry that affect its ability to meet consumer demand for energy-efficient housing; and (5) current and emerging status of energy conservation practices of homebuilders. 3 figures, 57 tables.

  10. Health supply chain management.

    PubMed

    Zimmerman, Rolf; Gallagher, Pat

    2010-01-01

    This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors.

  11. How do energy stores and changes in these affect departure decisions by migratory birds? A critical view on stopover ecology studies and some future perspectives.

    PubMed

    Schmaljohann, Heiko; Eikenaar, Cas

    2017-03-22

    In birds, accumulating energy is far slower than spending energy during flight. During migration, birds spend, therefore, most of the time at stopover refueling energy used during the previous flight. This elucidates why current energy stores and actual rate of accumulating energy are likely crucial factors influencing bird's decision when to resume migration in addition to other intrinsic (sex, age) and extrinsic (predation, weather) factors modulating the decision within the innate migration program. After first summarizing how energy stores and stopover durations are generally determined, we critically review that high-energy stores and low rates of accumulating energy were significantly related to high departure probabilities in several bird groups. There are, however, also many studies showing no effect at all. Recent radio-tracking studies highlighted that migrants leave a site either to resume migration or to search for a better stopover location, so-called "landscape movements". Erroneously treating such movements as departures increases the likelihood of type II errors which might mistakenly suggest no effect of either trait on departure. Furthermore, we propose that energy loss during the previous migratory flight in relation to bird's current energy stores and migration strategy significantly affects its urge to refuel and hence its departure decision.

  12. Petroleum supply monthly, April 1990

    SciTech Connect

    1990-06-26

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the Petroleum Supply Monthly describe (PSM) the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply.'' Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: (1) the Summary Statistics and (2) the Detailed Statistics.

  13. Present and Future Supply of Registered Nurses.

    ERIC Educational Resources Information Center

    Altman, Stuart H.

    During the 1960's, nursing education shifted dramatically away from hospital-operated diploma schools toward associate degree and baccalaureate programs. This report examines the nature of this shift in training and its anticipated impact on future supply. Other important factors affecting the future supply of nurses are analyzed, including the…

  14. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    PubMed

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  15. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities.

    PubMed

    Grider, John F; Larsen, Angela L; Homyack, Jessica A; Kalcounis-Rueppell, Matina C

    2016-01-01

    Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the

  16. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities

    PubMed Central

    Larsen, Angela L.; Homyack, Jessica A.; Kalcounis-Rueppell, Matina C.

    2016-01-01

    Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the

  17. Motion of the center of mass in children with spastic hemiplegia: balance, energy transfer, and work performed by the affected leg vs. the unaffected leg.

    PubMed

    Feng, Jing; Pierce, Rosemary; Do, K Patrick; Aiona, Michael

    2014-01-01

    Asymmetry between limbs in people with spastic hemiplegic cerebral palsy (HEMI) adversely affects limb coordination and energy generation and consumption. This study compared how the affected leg and the unaffected leg of children with HEMI would differ based on which leg trails. Full-body gait analysis data and force-plate data were analyzed for 31 children (11.9 ± 3.8 years) with HEMI and 23 children (11.1 ± 3.1 years) with typical development (TD). Results showed that peak posterior center of mass-center of pressure (COM-COP) inclination angles of HEMI were smaller than TD when the affected leg trailed but not when the unaffected leg trailed. HEMI showed greater peak medial COM-COP inclination angles and wider step width than TD, no matter which leg trailed. More importantly, when the affected leg of HEMI trailed, it did not perform enough positive work during double support to propel COM motion. Consequently, the unaffected leg had to perform additional positive work during the early portion of single support, which costs more energy. When the unaffected leg trailed, the affected leg performed more negative work during double support; therefore, more positive work was still needed during early single support, but energy efficiency was closer to that of TD. Energy recovery factor was lower when the affected leg trailed than when the unaffected leg trailed; both were lower than TD. These findings suggest that the trailing leg plays a significant role in propelling COM motion during double support, and the 'unaffected' side of HEMI may not be completely unaffected. It is important to strengthen both legs.

  18. Amending the Federal power act: a key step toward an ''Energy Security and Supply Act of 2009'' for the new administration

    SciTech Connect

    Zipp, Joel F.

    2008-12-15

    The single most important action on energy that the next Congress should take is to create a pathway to get right the conversion and expansion of our electric infrastructure. It is time to place plenary authority over electric transmission facilities in the hands of the Federal Energy Regulatory Commission. The author offers draft legislation in this spirit. (author)

  19. Switching power supply

    DOEpatents

    Mihalka, A.M.

    1984-06-05

    The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

  20. World petroleum supplies

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A number of conclusions by political conservatives about the fate of world petroleum supplies have been emerging lately. Among the most recent of them arose from discussions, held at the 1983 spring meeting of the American Association for the Advancement of Science (AAAS), which focused on the environment and resource study entitled “The Global 2000 Report” (New Scientist, June 9, 1983). Fred Singer, representing the Heritage Foundation of Washington, D.C., criticized the report, which predicted shortages in the near future, saying that the current world-wide oil glut will continue beyond the year 2000. Alternatives to the use of petroleum are a part of the cause. Singer argued that conservation, nuclear energy, and other petroleum substitutes will continue to suppress the demand for petroleum. In addition, according to other evaluations, exploration for petroleum and natural gas has not really begun.

  1. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    NASA Astrophysics Data System (ADS)

    Gonzalez, Ronalds W.

    2011-12-01

    Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic

  2. Monthly energy review June 1996

    SciTech Connect

    1996-06-01

    This report presents data on energy consumption, fossil fuels imports, supply and disposition, energy prices, electricity, nuclear energy electricity production, and international energy production and consumption.

  3. Performance and energy metabolism in restrictively fed weanling pigs are not affected by feeding either fermented cereals or their end-products.

    PubMed

    Bruininx, E M A M; Binnendijk, G P; Zandstra, T; Heetkamp, M J W; Van Der Peet-Schwering, C M C; Gerrits, W J J

    2010-12-01

    To study the effects of feeding fermented cereals or just fermentation end-products on performance and energy metabolism, 18 restrictedly fed groups of eight pigs each were assigned to one of three dietary treatments: (i) a liquid control diet (C) containing 40% of a mixture of barley and wheat; or (ii) a liquid diet (F) containing 40% fermented barley and wheat; or (iii) a liquid diet as C with the addition of some important fermentation end-products (FP; organic acids and ethanol) in concentrations similar to those in the fermented F-diet. Energy and nitrogen balances, heat production, and performance traits were measured during two consecutive periods (days 1-5 and days 6-14). There was a considerable increase in average dry matter intake that tended (p = 0.06) to be higher in the FP-group than in the other groups. Apparent fecal digestibility of dry matter, ash, nitrogen and energy during period 2 were not affected (p > 0.1). Averaged over both periods, none of the energy metabolism parameters were affected by the diets (p > 0.1). However, there were diet × period interactions for metabolizable energy-intake (p = 0.07), energy retention (p < 0.05), the respiratory quotient (RQ; p < 0.01) and activity-related heat production (H(ACT,) p = 0.05). Additionally, there were some differences between the diets in the average hourly patterns in RQ and H(ACT). In conclusion, restricted feeding of either 40% fermented cereals nor their fermentation end-products affected performance and energy metabolism traits in weanling pigs. Nevertheless, lower postprandial activity-related heat production by pigs given the fermented cereals suggest a stimulating effect of fermented cereals on short term satiety that was not seen in pigs given fermentation end-products only.

  4. 41 CFR 109-28.306 - Customer supply center (CSC) accounts and related controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28-STORAGE AND DISTRIBUTION 28.3-Customer Supply Centers §...

  5. Application of solar energy to the supply of hot water for textile dyeing at LaFrance Industries. Operation and evaluation final report

    SciTech Connect

    Not Available

    1981-10-01

    The LaFrance solar process hot water system consists of 6800 square feet of evacuated tube collectors and is designed to supply solar heated water to a self-contained batch process textile dye beck. The batch drying system involves the heating of approximately 1100 gallons of 50 to 75/sup 0/F inlet water to process dye temperatures of 190/sup 0/F. System drawings are presented that reflect the as-built configuration, including modifications after installation. The design and modifications are summarized. System installation, start-up, safety, maintenance and operation are described. Industry investment requirements are discussed, and the LaFrance system performance and costs are assessed, providing cost projections for second generation systems based on potential economies of scale. Finally, sample test data are given, including a dump of raw sensor data, a typical reduction data printout which provides an hourly average of sensor data, and computer-generated plots of performance. (LEW)

  6. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  7. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  8. Bovine sire selection based on maintenance energy affects muscle fiber type and meat color of F1 progeny.

    PubMed

    Thornton, K J; Welch, C M; Davis, L C; Doumit, M E; Hill, R A; Murdoch, G K

    2012-05-01

    A total of 42 F(1) Red Angus progeny from sires divergent in maintenance energy (ME(M)) EPD were analyzed to determine whether selecting for sire ME(M) would alter end-product meat quality. Data from animals were grouped based on the divergence of the ME(M) EPD of their sire from the Red Angus Association-reported breed average and defined as either high or low, the assumption being that high-ME(M) cattle are less efficient because their maintenance requirements represent a larger proportion of their dietary intake. Steer progeny (n = 7) from the high group produced bottom round steaks with a greater a* (redness) color value (P = 0.02) after 5 d in a simulated retail display when compared with bottom round steaks from the low group (n = 18). Bottom round steaks from the high group had a greater b* (yellowness) color value at d 1 (P = 0.03) and d 5 (P = 0.01) of retail display. Samples from the biceps femoris were taken at 12 mo (from both steers and heifers) and 15 mo (from steers only) of age for fiber type proportion analysis. At 12 mo of age, steers from the low group had more type I fibers (P = 0.02), whereas steers from the high group had more type IIb fibers (P = 0.01). Furthermore, samples from steers in the low group at 15 mo had more type I fibers (P = 0.02), and steers from the high group maintained more type IIb fibers (P = 0.02). No changes in fiber type proportions were observed between the high- and low-ME(M) EPD heifers (n = 17). Relative mRNA abundance of genes involved in the synthesis, storage, and breakdown of glycogen were analyzed as a variable important for meat quality, but no statistical differences were observed. At 12 mo age, glycogenin (glyc) was negatively correlated with the proportion of type IIa fibers (r = -0.32 and P = 0.12) as well as with the proportion of type IIb fibers (r = -0.42 and P = 0.03) in the biceps femoris of the steers. In samples taken from the biceps femoris at 15 mo age, glyc was negatively correlated with the

  9. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  10. Temperature, but Not Available Energy, Affects the Expression of a Sexually Selected Ultraviolet (UV) Colour Trait in Male European Green Lizards

    PubMed Central

    Bajer, Katalin; Molnár, Orsolya; Török, János; Herczeg, Gábor

    2012-01-01

    Background Colour signals are widely used in intraspecific communication and often linked to individual fitness. The development of some pigment-based (e.g. carotenoids) colours is often environment-dependent and costly for the signaller, however, for structural colours (e.g. ultraviolet [UV]) this topic is poorly understood, especially in terrestrial ectothermic vertebrates. Methodology/Principal Findings In a factorial experiment, we studied how available energy and time at elevated body temperature affects the annual expression of the nuptial throat colour patch in male European green lizards (Lacerta viridis) after hibernation and before mating season. In this species, there is a female preference for males with high throat UV reflectance, and males with high UV reflectance are more likely to win fights. We found that (i) while food shortage decreased lizards' body condition, it did not affect colour development, and (ii) the available time for maintaining high body temperature affected the development of UV colour without affecting body condition or other colour traits. Conclusions/Significance Our results demonstrate that the expression of a sexually selected structural colour signal depends on the time at elevated body temperature affecting physiological performance but not on available energy gained from food per se in an ectothermic vertebrate. We suggest that the effect of high ambient temperature on UV colour in male L. viridis makes it an honest signal, because success in acquiring thermally favourable territories and/or effective behavioural thermoregulation can both be linked to individual quality. PMID:22479611

  11. Interest groups and the bureaucracy: the politics of energy

    SciTech Connect

    Chubb, J.E.

    1983-01-01

    Chubb offers new perspectives on government policies that affect energy supply and demand. He uses organizational theory to determine policy outcomes and to uncover relationships between interest groups and federal energy agencies. This approach helps to explain recent bureaucratic reorganizations in federal energy agencies. Chubb carefully assesses the political difficulties of implementing a national energy plan. His views are relevant for both current and long-term bureaucratic strategies and interest-group initiatives in major energy areas, especially nuclear and oil.

  12. Offshore Renewable Energy Installations: Impact on Navigation and Marine Safety

    DTIC Science & Technology

    2011-01-01

    To reduce our dependence on foreign energy supplies, alternative or renewable energy sources are being pursued. These sources exploit a wide range of...technologies: solar photovoltaics or power plants; hydroelectricity (dams); ocean thermal energy conversion facilities; and offshore renewable energy installations...to affect marine navigation and safety, and although no offshore renewable energy installations presently exist in U.S. waters, several are

  13. Feedstock Supply System Logistics

    SciTech Connect

    2006-06-01

    Feedstock supply is a significant cost component in the production of biobased fuels, products, and power. The uncertainty of the biomass feedstock supply chain and associated risks are major barriers to procuring capital funding for start-up biorefineries.

  14. Petroleum supply monthly, May 1994

    SciTech Connect

    Not Available

    1994-05-27

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum supply annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  15. Petroleum supply monthly, January 1996

    SciTech Connect

    1996-02-15

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  16. Petroleum supply monthly, September 1991

    SciTech Connect

    Not Available

    1991-09-30

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administrations for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 states and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics. 65 tabs.

  17. Petroleum supply monthly, October 1993

    SciTech Connect

    Not Available

    1993-10-26

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  18. Petroleum supply monthly, June 1994

    SciTech Connect

    Not Available

    1994-06-28

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  19. Petroleum Supply Monthly, August 1990

    SciTech Connect

    Not Available

    1990-10-30

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) district movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics.

  20. Petroleum supply monthly, July 1994

    SciTech Connect

    Not Available

    1994-07-26

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  1. Pursuing supply chain gains.

    PubMed

    Long, Gene

    2005-09-01

    Five hallmarks of an effective supply chain are: A strong relationship is developed with a single GPO. Physicians are involved in supply standardization. Supply contracts are routinely reviewed at time of renewal. Freight costs are understood and negotiated effectively. Products are distributed through an in-house distribution center.

  2. Energy absorption during impact on the proximal femur is affected by body mass index and flooring surface.

    PubMed

    Bhan, Shivam; Levine, Iris C; Laing, Andrew C

    2014-07-18

    Impact mechanics theory suggests that peak loads should decrease with increase in system energy absorption. In light of the reduced hip fracture risk for persons with high body mass index (BMI) and for falls on soft surfaces, the purpose of this study was to characterize the effects of participant BMI, gender, and flooring surface on system energy absorption during lateral falls on the hip with human volunteers. Twenty university-aged participants completed the study with five men and five women in both low BMI (<22.5 kg/m(2)) and high BMI (>27.5 kg/m(2)) groups. Participants underwent lateral pelvis release experiments from a height of 5 cm onto two common floors and four safety floors mounted on a force plate. A motion-capture system measured pelvic deflection. The energy absorbed during the initial compressive phase of impact was calculated as the area under the force-deflection curve. System energy absorption was (on average) 3-fold greater for high compared to low BMI participants, but no effects of gender were observed. Even after normalizing for body mass, high BMI participants absorbed 1.8-fold more energy per unit mass. Additionally, three of four safety floors demonstrated significantly increased energy absorption compared to a baseline resilient-rolled-sheeting system (% increases ranging from 20.7 to 28.3). Peak system deflection was larger for high BMI persons and for impacts on several safety floors. This study indicates that energy absorption may be a common mechanism underlying the reduced risk of hip fracture for persons with high BMI and for those who fall on soft surfaces.

  3. Controlling supply expenses through capitated supply contracting.

    PubMed

    Kowalski, J C

    1997-07-01

    Some providers dealing with the financial challenges of managed care are attempting to control supply expenses through capitated supply contracting and similar risk/reward sharing arrangements. Under such arrangements, a supplier sells products and services to a provider for a fixed, prospective price in exchange for the provider's exclusive business. If expenses exceed the prospectively established amount, the supplier and provider share the loss. Conversely, if expenses are less than the fixed amount, they share the savings. For a capitated supply arrangement to be successful, providers must be able to identify and track supply expense drivers, such as clinical pathways, technology utilization, and product selection and utilization. Sophisticated information systems are needed to capture data, such as total and per-transaction product usage/volume; unit price per item; average and cost per item; average and total cost per transaction; and total cost per outcome. Providers also will need to establish mutually cooperative relationships with the suppliers with whom they contract.

  4. Technological Implementation of Renewable Energy in Rural-Isolated Areas and Small-Medium Islands in Indonesia: Problem Mapping And Preliminary Surveys of Total People Participation in a Local Wind Pump Water Supply

    NASA Astrophysics Data System (ADS)

    Taufik, Ahmad

    2007-10-01

    This article discusses a formulation of problem mapping and preliminary surveys of total people participation in a local wind pump (LWP) water supply in term of technological implementation of renewable energy (RE) in rural-isolated areas and small-medium islands in Indonesia. The formulation was constructed in order to enhance and to promote the local product of RE across Indonesia. It was also addressed to accommodate local potencies, barriers and opportunities into a priority map. Moreover, it was designed into five aspects such as (1) local technology of the RE: a case of pilot project of the LWP; (2) environmental-cultural aspects related to global issues of energy-renewable energy; (3) potencies and barriers corresponding to local, national, regional and international contents; (4) education and training and (5) gender participation. To focus the formulation, serial preliminary surveys were conducted in five major areas, namely: (1) survey on support and barrier factors of the aspects; (2) strategic planning model, a concept A-B-G which stands for Academician-Business people-Government; (3) survey on background based knowledge on energy conservation; (4) survey on gender participation in energy conservation and (5) survey on local stakeholder involvement. Throughout the surveys, it has been notified that the concept needs to be developed to any level of its component since its elements were identified in tolerance values such as high potency value of the LWP development (95%); a strong potency of rural area application (88%); a medium background of energy, energy conservation (EC) identified in a range of 56%-72%, sufficient support from local stakeholders and gender participation.

  5. Response analysis of the Iberian pig growing from birth to 150 kg body weight to changes in protein and energy supply.

    PubMed

    Nieto, R; Lara, L; Barea, R; García-Valverde, R; Aguinaga, M A; Conde-Aguilera, J A; Aguilera, J F

    2012-11-01

    A total of 251 growing-finishing Iberian (IB) pigs, 32 of which were suckling piglets, were used in 5 separate sets of trials. The comparative slaughter procedure was used to determine nutrient and energy retention at several stages of growth from birth to 150 kg BW. A factorial arrangement was used within each set of trials, involving several concentrations of ideal protein in the diets as 1 factor and 2 or 3 levels of feed intake as the other. The main objective of these studies was to derive the optimal protein-to-energy ratio in the diet to allow for the expression of maximum protein deposition rates. The effect of feed restriction on growth performance, protein deposition, and fat deposition was also assessed. According to allometric equations, empty BW (EBW) was related to whole body components or total chemical constituents of empty body mass (P < 0.001). For pigs receiving solid feed, highly statistically significant multiple regression equations were constructed, which derived nutrient (g/kg) or energy (MJ/kg) composition as a function of EBW, dietary protein-to-energy ratio, and level of feeding (P < 0.001). In pigs offered adequate protein-to-energy diets, ADG at each stage of production was predicted as a function of the average BW and feeding level (P < 0.001). It was observed that the estimates of ME required for maintenance and net efficiency of utilization of ME for growth change were within rather narrow ranges throughout the growth stages studied. Preferred values (413 kJ/kg BW(0.75) × d(-1) and 0.593 for ME(m) and k(g), respectively) were obtained by regressing total energy retention (kJ/kg BW(0.75) × d(-1)) against ME intake (kJ/kg BW(0.75) × d(-1)). A multiple-regression approach revealed that in the IB pig, ME costs for protein deposition and fat deposition reach 60 and 62 kJ/g, which is considerably greater than in conventional or lean pig genotypes. In the IB pig, the maximum daily rate of protein deposition (PD(max), g) seemed to follow

  6. Feed form and energy concentration of the diet affect growth performance and digestive tract traits of brown-egg laying pullets from hatching to 17 weeks of age.

    PubMed

    Saldaña, B; Guzmán, P; Cámara, L; García, J; Mateos, G G

    2015-08-01

    The influence of feed form and energy concentration of the diet on growth performance and the development of the gastrointestinal tract (GIT) was studied in brown-egg laying pullets. Diets formed a 2 x 5 factorial with 2 feed forms (mash vs. crumbles) and 5 levels of energy differing in 50 kcal AMEn/kg. For the entire study (0 to 17 wk of age) feeding crumbles increased ADFI (52.9 vs. 49.7 g; P < 0.001) and ADG (12.7 vs. 11.6 g; P < 0.001) and improved feed conversion ratio (FCR; 4.18 vs. 4.27; P < 0.001). An increase in the energy content of the diet decreased ADFI linearly (P < 0.001) and improved FCR quadratically (P < 0.01) but energy intake (kcal AMEn/d) was not affected. BW uniformity was higher (P < 0.05) in pullets fed crumbles than in those fed mash but was not affected (P > 0.05) by energy content of the diet. At 5, 10, and 17 wk of age, the relative weight (RW, % BW) of the GIT and the gizzard, and gizzard digesta content were lower (P < 0.05 to P < 0.001) and gizzard pH was higher (P < 0.05 to P < 0.001) in pullets fed crumbles than in pullets fed mash. Energy concentration of the diet did not affect any of the GIT variables studied. In summary, feeding crumbles improved pullet performance and reduced the RW of the GIT and gizzard, and increased gizzard pH at all ages. An increase in the energy content of the diet improved FCR from 0 to 17 wk of age. The use of crumbles and the increase in the AMEn content of the diet might be used adventageously when the objetive is to increase the BW of the pullets. However, crumbles affected the development and weight of the organs of the GIT, which might have negative effects on feed intake and egg production at the beginning of the egg laying cycle.

  7. Energy and protein supplementation does not affect protein and amino acid kinetics or pregnancy outcomes in underweight Indian women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In India, the prevalence of low birth weight is high in women with a low body mass index (BMI), suggesting that underweight women are not capable of providing adequate energy and protein for fetal growth. Furthermore, as pregnancy progresses, there is increased need to provide methyl groups for meth...

  8. Optically-powered Voltage-supply-device for Effective Utilization of Optical Energy in the Fiber-To-The-Home Network

    NASA Astrophysics Data System (ADS)

    Fukano, Hideki; Shinagawa, Takeshi; Tsuruta, Kenji

    An optically powered device with using InGaAs-Photodiode has been developed. This study aims to harvest light energy (2.8∼500μW) from the FTTH (Fiber To The Home) network and to utilize it for operating remote sensors without external energy sources. First, we designed and evaluated the characteristics of the booster circuit and confirmed that it could boost an input voltage of 0.3 V to 3.0 V. Next, we also evaluated the characteristics of InGaAs photodiode and confirmed that it can output a voltage over 0.3 V at 10-μW input light. We demonstrate that a ready-made sensor can be operated with an input optical power as low as 10 μW.

  9. Minimum daily core body temperature in western grey kangaroos decreases as summer advances: a seasonal pattern, or a direct response to water, heat or energy supply?

    PubMed

    Maloney, Shane K; Fuller, Andrea; Meyer, Leith C R; Kamerman, Peter R; Mitchell, Graham; Mitchell, Duncan

    2011-06-01

    Using implanted temperature loggers, we measured core body temperature in nine western grey kangaroos every 5 min for 24 to 98 days in spring and summer. Body temperature was highest at night and decreased rapidly early in the morning, reaching a nadir at 10:00 h, after ambient temperature and solar radiation had begun to increase. On hotter days, the minimum morning body temperature was lower than on cooler days, decreasing from a mean of 36.2°C in the spring to 34.0°C in the summer. This effect correlated better with the time of the year than with proximate thermal stressors, suggesting that either season itself or some factor correlated with season, such as food availability, caused the change. Water saving has been proposed as a selective advantage of heterothermy in other large mammals, but in kangaroos the water savings would have been small and not required in a reserve with permanent standing water. We calculate that the lower core temperature could provide energy savings of nearly 7%. It is likely that the heterothermy that we observed on hot days results either from decreased energy intake during the dry season or from a seasonal pattern entrained in the kangaroos that presumably has been selected for because of decreased energy availability during the dry season.

  10. Numerical study of how stable stratification affects turbulence instabilities above a forest cover: application to wind energy

    NASA Astrophysics Data System (ADS)

    Chaudhari, A.; Conan, B.; Aubrun, S.; Hellsten, A.

    2016-09-01

    Forest areas are of increasing interest for the wind energy industry. However, they induce complex flows with strong shear and high turbulence levels. Stably stratified atmospheric conditions, typical during nighttime and especially in winter, add to the challenge of accurately estimating wind resources. Such conditions typically imply strong wind shear and cause larger structural fatigue loads to wind turbines. In this work, large-eddy simulations are performed in neutral and stable conditions over a forest to analyze the influence of the combined effect of forest and thermal stabilities on the unsteady characteristics of the wind flow. Taking advantage of the unsteady resolution provided by the simulations, turbulent characteristics of each thermal stability including the organization of turbulent structures are presented. The resulting comparison between the two cases is put into perspective for wind energy applications.

  11. Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States

    SciTech Connect

    Conover, David R.

    2014-08-22

    This report acquaints stakeholders and interested parties involved in the development and/or deployment of energy storage systems (ESS) with the subject of safety-related codes, standards and regulations (CSRs). It is hoped that users of this document gain a more in depth and uniform understanding of safety-related CSR development and deployment that can foster improved communications among all ESS stakeholders and the collaboration needed to realize more timely acceptance and approval of safe ESS technology through appropriate CSR.

  12. How does the suppression of energy supplementation affect herbage intake, performance and parasitism in lactating saddle mares?

    PubMed

    Collas, C; Fleurance, G; Cabaret, J; Martin-Rosset, W; Wimel, L; Cortet, J; Dumont, B

    2014-08-01

    Agroecology opens up new perspectives for the design of sustainable farming systems by using the stimulation of natural processes to reduce the inputs needed for production. In horse farming systems, the challenge is to maximize the proportion of forages in the diet, and to develop alternatives to synthetic chemical drugs for controlling gastrointestinal nematodes. Lactating saddle mares, with high nutritional requirements, are commonly supplemented with concentrates at pasture, although the influence of energy supplementation on voluntary intake, performance and immune response against parasites has not yet been quantified. In a 4-month study, 16 lactating mares experimentally infected with cyathostome larvae either received a daily supplement of barley (60% of energy requirements for lactation) or were non-supplemented. The mares were rotationally grazed on permanent pastures over three vegetation cycles. All the mares met their energy requirements and maintained their body condition score higher than 3. In both treatments, they produced foals with a satisfying growth rate (cycle 1: 1293 g/day; cycle 2: 1029 g/day; cycle 3: 559 g/day) and conformation (according to measurements of height at withers and cannon bone width at 11 months). Parasite egg excretion by mares increased in both groups during the grazing season (from 150 to 2011 epg), independently of whether they were supplemented or not. This suggests that energy supplementation did not improve mare ability to regulate parasite burden. Under unlimited herbage conditions, grass dry matter intake by supplemented mares remained stable around 22.6 g DM/kg LW per day (i.e. 13.5 kg DM/al per day), whereas non-supplemented mares increased voluntary intake from 22.6 to 28.0 g DM/kg LW per day (13.5 to 17.2 kg DM/al per day) between mid-June and the end of August. Hence total digestible dry matter intake and net energy intake did not significantly differ between supplemented and non-supplemented mares during the

  13. Assessment of duration of the drive operation in the mode of kinetic energy recovery under power supply voltage sags in electrical grids of mechanical engineering enterprises

    NASA Astrophysics Data System (ADS)

    Shonin, O. B.; Novozhilov, N. G.

    2017-02-01

    Voltage sags in electric grids of mechanical engineering enterprises may lead to disconnection of important power consumers with variable frequency drives from the power grid and further interruption of the production process. The paper considers a sensorless V/f control system of еру induction motor drive under normal conditions and under voltage sags on the basis of a computer model of the drive and derivation of a formula for assessment of possible duration of the drive operation in the mode of controlled recovery of kinetic energy accumulated in rotating mass of the drive. Results of simulations have been used to validate results of calculations of the rotor velocity deceleration made in a closed form obtained from the equation reflecting the balance of torques. It is shown that results of calculations practically coincide with results of simulations in the range up to 5% of the velocity initial value. The proposed formula may be useful for estimation of the duration of the drive operation in the mode of recovery of kinetic energy depending on parameters of the motor and driven mechanisms.

  14. Energy supply for buildings with focus on solar power in the urban context - an interactive WebGIS implementation for citizens

    NASA Astrophysics Data System (ADS)

    Castellazzi, Bernhard; Biberacher, Markus

    2016-04-01

    Many European cities nowadays offer their citizens Web-GIS applications to access data about solar potentials for specific buildings. However, the actual benefit of such solar systems can only be investigated, if their generation is not considered singularly, but in combination with information about temporal appearance of energy demand (heat, electricity), type of primary heating system, hourly internal consumption of photovoltaic power, feed-in power and other important financial and ecological aspects. Hence, the presented application addresses citizens, who are interested in the integration of solar power in buildings and would like to have an extended view on related impacts. Based on user inputs on building parameters and energy use, as well as high spatial and temporal resolved solar data for individual roof areas, financial and ecological effects of solar thermal installations and PV are estimated. Also interactions between heat and power generation are considered in the implemented approach. The tool was developed within the Central Europe project „Cities on Power" and is being realized for the cities Torino, Warsaw, Dresden, Klagenfurt and Ravenna.

  15. Deep Reductions in Greenhouse Gas Emissions from the California Transportation Sector: Dynamics in Vehicle Fleet and Energy Supply Transitions to Achieve 80% Reduction in Emissions from 1990 Levels by 2050

    NASA Astrophysics Data System (ADS)

    Leighty, Wayne Waterman

    California's "80in50" target for reducing greenhouse gas emissions to 80 percent below 1990 levels by the year 2050 is based on climate science rather than technical feasibility of mitigation. As such, it raises four fundamental questions: is this magnitude of reduction in greenhouse gas emissions possible, what energy system transitions over the next 40 years are necessary, can intermediate policy goals be met on the pathway toward 2050, and does the path of transition matter for the objective of climate change mitigation? Scenarios for meeting the 80in50 goal in the transportation sector are modelled. Specifically, earlier work defining low carbon transport scenarios for the year 2050 is refined by incorporating new information about biofuel supply. Then transition paths for meeting 80in50 scenarios are modelled for the light-duty vehicle sub-sector, with important implications for the timing of action, rate of change, and cumulative greenhouse gas emissions. One aspect of these transitions -- development in the California wind industry to supply low-carbon electricity for plug-in electric vehicles -- is examined in detail. In general, the range of feasible scenarios for meeting the 80in50 target is narrow enough that several common themes are apparent: electrification of light-duty vehicles must occur; continued improvements in vehicle efficiency must be applied to improving fuel economy; and energy carriers must de-carbonize to less than half of the carbon intensity of gasoline and diesel. Reaching the 80in50 goal will require broad success in travel demand reduction, fuel economy improvements and low-carbon fuel supply, since there is little opportunity to increase emission reductions in one area if we experience failure in another. Although six scenarios for meeting the 80in50 target are defined, only one also meets the intermediate target of reducing greenhouse gas emissions to 1990 levels by the year 2020. Furthermore, the transition path taken to reach any

  16. [Review of the design of power supply in retinal implants].

    PubMed

    Zhang, Ying; Peng, Chenglin; Wang, Xing; Hu, Ning; Zhang, Sijie; Zheng, Erxin

    2008-08-01

    The energy supply for the stimulation arrays is the key component in retinal implants. Usually, the thin film solar cell is used to supply energy, but it can not supply enough stimulation power. One of the general idea of incident energy supply is radio frequency (RF) circuit. Another method is to convert near infrared (NIR) radiation and enable retina cell stimulation. In this paper, firstly, we aim at listing these two energy supply methods, and introduce the characteristics of RF circuit and NIR conversion method. Especially, we present the design procedure in detail. The next part is a discussion on the advantage and disadvantage of adopting these two methods. At last, we explicate the new research and application of the energy supply for the use as retinal implants, and we envisage the future.

  17. Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet.

    PubMed

    Foucault, Anne-Sophie; Even, Patrick; Lafont, René; Dioh, Waly; Veillet, Stanislas; Tomé, Daniel; Huneau, Jean-François; Hermier, Dominique; Quignard-Boulangé, Annie

    2014-04-10

    In a previous study, we have demonstrated that a supplementation of a high-fat diet with a quinoa extract enriched in 20-hydroxyecdysone (QE) or pure 20-hydroxyecdysone (20E) could prevent the development of obesity. In line with the anti-obesity effect of QE, we used indirect calorimetry to examine the effect of dietary QE and 20E in high-fat fed mice on different components of energy metabolism. Mice were fed a high-fat (HF) diet with or without supplementation by QE or pure 20E for 3 weeks. As compared to mice maintained on a low-fat diet, HF feeding resulted in a marked physiological shift in energy homeostasis, associating a decrease in global energy expenditure (EE) and an increase in lipid utilization as assessed by the lower respiratory quotient (RQ). Supplementation with 20E increased energy expenditure while food intake and activity were not affected. Furthermore QE and 20E promoted a higher rate of glucose oxidation leading to an increased RQ value. In QE and 20E-treated HFD fed mice, there was an increase in fecal lipid excretion without any change in stool amount. Our study indicates that anti-obesity effect of QE can be explained by a global increase in energy expenditure, a shift in glucose metabolism towards oxidation to the detriment of lipogenesis and a decrease in dietary lipid absorption leading to reduced dietary lipid storage in adipose tissue.

  18. Stand by electrical supply source

    SciTech Connect

    Mucsy, E.; Hoos, K.

    1985-06-25

    A stand-by electrical energy source for equipment to be operated with substantially continuous current supply, comprising three components one of which is at least one electric rotary machine, another of which is a flywheel and the third of which is an auxiliary energy source. Planetary gearing is provided, comprising a central shaft on which is mounted a sun gear, a planet gear and a ring gear, each of the three components being connected with a respective one of these gears. Two of the three components are interconnected by a drive with an infinitely variable transmission. In one embodiment, the electric rotary machine is connected to the planet gear, the flywheel is connected to the sun gear and the auxiliary energy source is connected with the ring gear. In another embodiment, the electric rotary machine is connected to the sun gear, the flywheel is connected to the ring gear, and the auxiliary energy source is connected to the planet gear.

  19. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  20. Energy

    DTIC Science & Technology

    2001-01-01

    indicated that improvements in photovoltaics could lead to solar panels imbedded in building materials, thereby reducing peak load demands on the...transmission grid. Besides the impact that renewables can have on networked electricity, the industry has a significant niche in supplying small loads ...continue to play a dominant role in maintaining the free flow of oil throughout the world, particularly through the Straits of Hormuz. Second

  1. An Integrated Rare Earth Elements Supply Chain Strategy

    DTIC Science & Technology

    2011-02-24

    Disruption in the global supply of rare earths poses a significant concern for America‘s energy security and clean energy objectives, its future defense...World Trade Organization rules by limiting clean energy imports, while incentivizing clean energy exports.54 If accurate, this speculation supports...resource scarcity and secure our supply chains. The NSS further declares the U.S. ―has a window of opportunity to lead in the development of clean energy technology

  2. Energy dissipation channels affecting photoluminescence from resonantly excited Er3+ ions doped in epitaxial ZnO host films

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Shinojima, Hiroyuki

    2015-04-01

    We identified prerequisite conditions to obtain intense photoluminescence at 1.54 μm from Er3+ ions doped in ZnO host crystals. The epitaxial ZnO:Er films were grown on sapphire C-plane substrates by sputtering, and Er3+ ions were resonantly excited at a wavelength of 532 nm between energy levels of 4I15/2 and 2H11/2. There is a threshold deposition temperature between 500 and 550 °C, above which epitaxial ZnO films become free of miss-oriented domains. In this case, Er3+ ions are outside ZnO crystallites, having the same c-axis lattice parameters as those of undoped ZnO crystals. The improved crystallinity was correlated with enhanced emissions peaking at 1538 nm. Further elevating the deposition temperature up to 650 °C generated cracks in ZnO crystals to relax the lattice mismatch strains, and the emission intensities from cracked regions were three times as large as those from smooth regions. These results can be consistently explained if we assume that emission-active Er3+ ions are those existing at grain boundaries and bonded to single-crystalline ZnO crystallites. In contrast, ZnO:Er films deposited on a ZnO buffer layer exhibited very weak emissions because of their degraded crystallinity when most Er3+ ions were accommodated into ZnO crystals. Optimizing the degree of oxidization of ZnO crystals is another important factor because reduced films suffer from non-radiative decay of excited states. The optimum Er content to obtain intense emissions was between 2 and 4 at. %. When 4 at. % was exceeded, the emission intensity was severely attenuated because of concentration quenching as well as the degradation in crystallinity. Precipitation of Er2O3 crystals was clearly observed at 22 at. % for films deposited above 650 °C. Minimizing the number of defects and impurities in ZnO crystals prevents energy dissipation, thus exclusively utilizing the excitation energy to emissions from Er3+ ions.

  3. Tying supply chain costs to patient care.

    PubMed

    Parkinson, Rosalind C

    2014-05-01

    In September 2014, the FDA will establish a unique device identification (UDI) system to aid hospitals in better tracking and managing medical devices and analyzing their effectiveness. When these identifiers become part of patient medical records, the UDI system will provide a much-needed link between supply cost and patient outcomes. Hospitals should invest in technology and processes that can enable them to trace supply usage patterns directly to patients and analyze how these usage patterns affect cost and quality.

  4. Spatially Characterizing Effective Timber Supply

    NASA Technical Reports Server (NTRS)

    Berry, J. K.; Sailor, J.

    1982-01-01

    The structure of a computer-oriented cartographic model for assessing roundwood supply for generation of base load electricity is discussed. The model provides an analytical procedure for coupling spatial information of harvesting economics and owner willingness to sell stumpages. Supply is characterized in terms of standing timber; of accessibility considering various harvesting and hauling factors; and of availability as affected by ownership and residential patterns. Factors governing accessibility to timber include effective harvesting distance to haulic roads as modified by barriers and slopes. Haul distance is expressed in units that take into account the relative ease of travel along various road types to a central processing facility. Areas of accessible timber are grouped into spatial units, termed 'timbersheds', of common access to particular haul road segments that belong to unique 'transport zones'. Timber availability considerations include size of ownership parcels, housing density and excluded areas. The analysis techniques are demonstrated for a cartographic data base in western Massachusetts.

  5. Lysine partitioning in broiler breeders is not affected by energy or protein intake when fed at current industry levels.

    PubMed

    Ekmay, R D; Salas, C; England, J; Cerrate, S; Coon, C N

    2014-07-01

    A study was conducted to determine the effects of dietary energy and protein intake on the partitioning of lysine in broiler breeder hens. One hundred twenty-six broiler breeders were randomly assigned to 1 of 6 dietary treatments in a 2 (390, 450 kcal/d) × 3 (22, 24, 26 g of CP/d) fashion. Thirty-six hens were administered a daily oral dose of 15 mg of (15)N-Lys for a period of 2 wk or until first egg. After the 2-wk enrichment period, no isotopes were given for 2 d. After 2 d, a daily oral dose of 15 mg of (2)D4-Lys was administered until the 2nd, 3rd, and 4th egg (saved) after the initial (2)D4-Lys was given, at which point pectoralis muscle was sampled. Weeks 25, 29, and 45 were assessed. Isotopic enrichment of pectoralis muscle, egg yolk, and albumen was determined via gas chromatography-mass spectrometry. The (15)N-Lys was intended to represent endogenous lysine, whereas the (2)D4-Lys was intended to represent dietary lysine. Greater than 78% of all labeled lysine ((15)N and (2)D4-Lys) was found in breast muscle. Endogenous muscle was the main source of lysine for yolk formation at wk 25 and 45. Diet was the main source of lysine for albumen formation at wk 25 and 29. A consistent decrease in the (15)N-Lys in breast muscle from the 2nd to the 3rd egg was observed, while also seeing an increase in the (15)N-Lys in the egg from the 3rd to the 4th egg. No difference in the partitioning of lysine was determined by energy or protein intake at levels typical for the current poultry industry. Rather, age, and possibly rate of production, appear to be the main drivers of lysine partitioning in the broiler breeder hen.

  6. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    PubMed

    Wang, Ying; Brent, Colin S; Fennern, Erin; Amdam, Gro V

    2012-06-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  7. An acute decrease in TCA cycle intermediates does not affect aerobic energy delivery in contracting rat skeletal muscle.

    PubMed

    Dawson, Kristen D; Baker, David J; Greenhaff, Paul L; Gibala, Martin J

    2005-06-01

    We tested the hypothesis that an acute decrease in muscle TCA cycle intermediates during contraction would compromise aerobic energy delivery. Male Wistar rats were anaesthetized and the gastrocnemius-plantaris-soleus (GPS) muscle complex from one leg was isolated and perfused with a red cell medium containing either saline (Con) or cycloserine (Cyclo; 0.05 mg g-1), an inhibitor of alanine aminotransferase (AAT). After 1 h of perfusion, the GPS muscle was either snap frozen (Con-Rest, n=11; Cyclo-Rest, n=9) or stimulated to contract for 10 min (1 Hz, 0.3 ms, 2 V) with blood flow fixed at 30 ml min-1 (100 g)-1 and then snap frozen (Con-Stim, n=10; Cyclo-Stim, n=10). Maximal AAT activity was>80% lower (P<0.001) in both Cyclo-treated groups (Rest: 0.61+/-0.02; Stim: 0.63+/-0.01 mmol (kg wet wt)-1 min-1; mean+/-s.e.m.) compared to Con (Rest: 3.56+/-0.16; Stim: 3.92+/-0.29). The sum of five measured TCAI (SigmaTCAI) was reduced by 23% in Cyclo-Rest versus Con-Rest but this was not different (P=0.08). However, after 10 min of contraction, the SigmaTCAI was 25% lower (P=0.006) in Cyclo-Stim compared to Con-Stim (1.88+/-0.15 versus 2.48+/-0.11 mmol (kg dry wt)-1). Despite the acute decrease in TCAI after Cyclo treatment, the contraction-induced changes in markers of non-oxidative energy provision (phosphocreatine, ATP and lactate) and the decline in tension after 10 min of stimulation were similar compared to Con. These data do not support the hypothesis that the total muscle concentration of TCAI is causally linked to the rate of mitochondrial respiration during contraction.

  8. Supply chain challenges. building relationships.

    PubMed

    Beth, Scott; Burt, David N; Copacino, William; Gopal, Chris; Lee, Hau L; Lynch, Robert Porter; Morris, Sandra

    2003-07-01

    Supply chain management is all about software and systems, right? Put in the best technology, sit back, and watch as your processes run smoothly and the savings roll in? Apparently not. When HBR convened a panel of leading thinkers in the field of supply chain management, technology was not top of mind. People and relationships were the dominant issues of the day. The opportunities and problems created by globalization, for example, are requiring companies to establish relationships with new types of suppliers. The ever-present pressure for speed and cost containment is making it even more important to break down stubbornly high internal barriers and establish more effective cross-functional relationships. The costs of failure have never been higher. The leading supply chain performers are applying new technology, new innovations, and process thinking to far greater advantage than the laggards, reaping tremendous gains in all the variables that affect shareholder value: cost, customer service, asset productivity, and revenue generation. And the gap between the leaders and the losers is growing in almost every industry. This roundtable gathered many of the leading thinkers and doers in the field of supply chain management, including practitioners Scott Beth of Intuit, Sandra Morris of Intel, and Chris Gopal of Unisys. David Burt of the University of San Diego and Stanford's Hau Lee bring the latest research from academia. Accenture's William Copacino and the Warren Company's Robert Porter Lynch offer the consultant's perspectives. Together, they take a wide-ranging view of such topics as developing talent, the role of the chief executive, and the latest technologies, exploring both the tactical and the strategic in the current state of supply chain management.

  9. Discontinuous gas-exchange cycle characteristics are differentially affected by hydration state and energy metabolism in gregarious and solitary desert locusts.

    PubMed

    Talal, Stav; Ayali, Amir; Gefen, Eran

    2015-12-01

    The termination of discontinuous gas exchange cycles (DGCs) in severely dehydrated insects casts doubt on the generality of the hygric hypothesis, which posits that DGCs evolved as a water conservation mechanism. We followed DGC characteristics in the two density-dependent phases of the desert locust Schistocerca gregaria throughout exposure to an experimental treatment of combined dehydration and starvation stress, and subsequent rehydration. We hypothesized that, under stressful conditions, the more stress-resistant gregarious locusts would maintain DGCs longer than solitary locusts. However, we found no phase-specific variations in body water content, water loss rates (total and respiratory) or timing of stress-induced abolishment of DGCs. Likewise, locusts of both phases re-employed DGCs after ingesting comparable volumes of water when rehydrated. Despite comparable water management performances, the effect of exposure to stressful experimental conditions on DGC characteristics varied significantly between gregarious and solitary locusts. Interburst duration, which is affected by the ability to buffer CO2, was significantly reduced in dehydrated solitary locusts compared with gregarious locusts. Moreover, despite similar rehydration levels, only gregarious locusts recovered their initial CO2 accumulation capacity, indicating that cycle characteristics are affected by factors other than haemolymph volume. Haemolymph protein measurements and calculated respiratory exchange ratios suggest that catabolism of haemolymph proteins may contribute to a reduced haemolymph buffering capacity, and thus a compromised ability for CO2 accumulation, in solitary locusts. Nevertheless, DGC was lost at similar hydration states in the two phases, suggesting that DGCs are terminated as a result of inadequate oxygen supply to the tissues.

  10. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Arizona. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    This report is one of a series of preliminary reports describing the laws and regulatory programs of the United States and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. This report describes laws and regulatory programs in Arizona. The Arizona state constitution establishes the Arizona Corporation Commission to regulate public service corporations. Within the area of its jurisdiction, the Commission has exclusive power and may not be interfered with by the legislature except in one narrow instance as described in the case Corporation Commission v. Pacific Greyhound Lines.

  11. Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in Holstein cows.

    PubMed

    Douglas, G N; Overton, T R; Bateman, H G; Dann, H M; Drackley, J K

    2006-06-01

    Previous research in our laboratory showed that dietary fat supplementation during the dry period was associated with decreased peripartum hepatic lipid accumulation. However, fat supplementation decreased dry matter (DM) intake and thereby confounded results. Consequently, 47 Holstein cows with body condition scores (BCS) < or = 3.5 at dry-off were used to determine whether source or amount of energy fed to dry cows was responsible for the decreased hepatic lipid content. Moderate grain- or fat-supplemented diets [1.50 Mcal of net energy for lactation (NE(L))/kg] were fed from dry-off (60 d before expected parturition) to calving at either ad libitum (160% of NE(L) requirement) or restricted (80% of NE(L) requirement) intakes. Postpartum, cows were fed a single lactation diet for ad libitum intake and performance was measured for 105 d. Prepartum intakes of DM and NE(L) were significantly lower for feed-restricted cows as designed. During the first 21 d postpartum, previously restricted cows had higher intakes of DM and NE(L). Body weights and BCS were lower prepartum for restricted cows but groups converged to similar nadirs postpartum. Restricted-fed cows had lower concentrations of glucose and insulin and increased concentrations of NEFA in plasma during the dry period. Peripartum NEFA rose markedly for all treatments but were higher postpartum for cows previously fed ad libitum. Plasma concentrations of NEFA and BHBA remained lower in cows restricted-during the dry period. Postpartum concentrations of total lipid and triglyceride in liver were lower in cows previously feed-restricted. Across dietary treatments, activity of carnitine palmitoyltransferase (CPT) in hepatic mitochondria was lowest at - 21 d, highest at 1 d, and decreased at 21 and 65 d relative to parturition. The activity of CPT at d 1 tended to be higher for previously feed-restricted cows; thereafter, CPT activity declined more rapidly than in cows fed ad libitum. Nutrient intake during the dry

  12. Body composition changes affect energy cost of running during 12 months of specific diet and training in amateur athletes.

    PubMed

    Ghiani, Giovanna; Marongiu, Elisabetta; Melis, Franco; Angioni, Giuseppina; Sanna, Irene; Loi, Andrea; Pusceddu, Matteo; Pinna, Virginia; Crisafulli, Antonio; Tocco, Filippo

    2015-09-01

    Considering the relation between body weight composition and energy cost of running, we tested the hypothesis that by modifying body composition by means of a combined protocol of specific diet and training, the energy cost of motion (Cr) may be reduced. Forty-five healthy and normal-weight subjects were divided into 3 groups that performed a different treatment: the first group attended a dietary protocol (D), the second group participated in a running program (R), and the third group followed both the dietary and running protocols (R&D). Each subject underwent 3 anthropometric and exercise evaluation tests during 1 year (at entry (T0), month 6 (T6), and month 12 (T12)) to assess body composition and Cr adjustments. The mean fat mass (FM) values were reduced in R&D from 12.0 ± 4.0 to 10.4 ± 3.0 kg (p < 0.05 T0 vs. T12) and in the D group from 14.2 ± 5.8 to 11.6 ± 4.7 kg (p < 0.05 T0 vs. T12). Conversely, the mean fat free mass values increased in R&D (from 56.3 ± 8.8 to 58.3 ± 9.8 kg, p < 0.05 T0 vs. T12) and in the D group (from 50.6 ± 13.2 to 52.9 ± 13.6 kg, p < 0.05 T0 vs. T12). The mean Cr values of the 2 groups were significantly modified throughout the 1-year protocol (1.48 ± 0.16 and 1.40 ± 0.15 kcal·kg(-b)·km(-1) in the R&D group at T0 and T12, respectively; 1.83 ± 0.17 and 1.76 ± 0.23 kcal·kg(-b)·km(-1) in D group at T0 to T12, respectively). The R&D and D groups that underwent the diet protocol had a positive change in body composition during the year (FM/fat free mass ratio decline), which determined a Cr reduction.

  13. Source of metabolizable energy affects gene transcription in metabolic pathways in adipose and liver tissue of nonlactating, pregnant dairy cows.

    PubMed

    Crookenden, M A; Mandok, K S; Grala, T M; Phyn, C V C; Kay, J K; Greenwood, S L; Roche, J R

    2015-02-01

    The objective of this experiment was to determine if transcript abundance of genes involved in metabolic pathways in adipose and liver tissue could provide some explanation for the low efficiency with which ME in autumn pasture is used for BW gain. Nonlactating, pregnant (208 ± 19 d of gestation or approximately 75 d precalving) dairy cows (n = 90) were randomly allocated to either a control diet (i.e., offered fresh autumn pasture to maintenance requirements: 0.55 MJ ME/kg of measured metabolic BW [BW0.75] per day) or, in addition to the control diet, 1 of 2 supplement amounts (2.5 and 5.0 kg DM/d) of autumn pasture or 1 of 4 supplementary feeds (i.e., a control and 2 levels of feeding for each of 5 feeds: 11 groups of cows). Along with autumn pasture, evaluated feeds included spring pasture silage, maize silage, maize grain, and palm kernel expeller. Adipose and liver tissues were biopsied in wk 4 of the experiment and transcript abundance of genes involved in metabolic pathways associated with energy metabolism, lipolysis, and lipogenesis was determined. Additional feed, irrespective of type, increased BW gain (P < 0.01) and this effect was reflected in the expression of genes in adipose and liver tissue. However, autumn pasture had lower energy-use efficiency than the other feeds. Genes involved in both lipogenesis (ACACA, THRSP, GPAM, GPD1, and LPL) and lipolysis (PNPLA2) were upregulated (P < 0.05) in adipose tissue in response to increased ME intake/kilogram BW0.75. Hepatic expression of APOA1 decreased and that of APOB increased (P < 0.05) in cows offered maize grain and maize silage (i.e., starch-containing feeds). In comparison, pasture-fed cows demonstrated a degree of uncoupling of the somatotropic axis, with lower hepatic transcript abundance of both GHR1A and IGF-1 compared with cows offered any of the other 4 feeds. Changes to gene transcription indicate a possible molecular mechanism for the poor BW gain evident in ruminants consuming autumn

  14. Competing for supply.

    PubMed

    Stolle, B

    2001-02-01

    The Internet was supposed to make it possible for anybody anywhere to get anything anytime. Instead, it's magnified suppliers' miscalculations into global shortages. But if the Net caused these supply chain woes, it's also the solution, says the CEO of a supply-chain software manufacturer.

  15. 1992 Conversion Resources Supply Document

    SciTech Connect

    Not Available

    1992-03-01

    In recent years conservation of electric power has become an integral part of utility planning. The 1980 Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act) requires that the region consider conservation potential in planning acquisitions of resources to meet load growth. The Bonneville Power Administration (BPA) developed its first estimates of conservation potential in 1982. Since that time BPA has updated its conservation supply analyses as a part of its Resource Program and other planning efforts. Major updates were published in 1985 and in January 1990. This 1992 document presents updated supply curves, which are estimates of the savings potential over time (cumulative savings) at different cost levels of energy conservation measures (ECMs). ECMs are devices, pieces of equipment, or actions that increase the efficiency of electricity use and reduce the amount of electricity used by end-use equipment.

  16. A low glycemic index diet does not affect postprandial energy metabolism but decreases postprandial insulinemia and increases fullness ratings in healthy women.

    PubMed

    Krog-Mikkelsen, Inger; Sloth, Birgitte; Dimitrov, Dimiter; Tetens, Inge; Björck, Inger; Flint, Anne; Holst, Jens J; Astrup, Arne; Elmståhl, Helena; Raben, Anne

    2011-09-01

    At present, it is difficult to determine whether glycemic index (GI) is an important tool in the prevention of lifestyle diseases, and long-term studies investigating GI with diets matched in macronutrient composition, fiber content, energy content, and energy density are still scarce. We investigated the effects of 2 high-carbohydrate (55%) diets with low GI (LGI; 79) or high GI (HGI; 103) on postprandial blood profile, subjective appetite sensations, energy expenditure (EE), substrate oxidation rates, and ad libitum energy intake (EI) from a corresponding test meal (LGI or HGI) after consuming the diets ad libitum for 10 wk. Two groups of a total of 29 healthy, overweight women (age: 30.5 ± 6.6 y; BMI: 27.6 ± 1.5 kg/m(2)) participated in the 10-wk intervention and a subsequent 4-h meal test. The breakfast test meals differed in GI but were equal in total energy, macronutrient composition, fiber content, and energy density. The LGI meal resulted in lower plasma glucose, serum insulin, and plasma glucagon-like peptide (GLP)-1 and higher plasma glucose-dependent insulinotropic polypeptide concentrations than the HGI meal (P ≤ 0.05). Ratings of fullness were slightly higher and the desire to eat something fatty was lower after the test meal in the LGI group (P < 0.05). Postprandial plasma GLP-2, plasma glucagon, serum leptin, plasma ghrelin, EE, substrate oxidation rates, and ad libitum EI at lunch did not differ between groups. In conclusion, postprandial glycemia, insulinemia, and subjective appetite ratings after a test meal were better after 10-wk ad libitum intake of a LGI compared to a HGI diet. EE and substrate oxidation rates were, however, not affected. These findings give some support to recommendations to consume a LGI diet.

  17. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    PubMed

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy.

  18. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    PubMed

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  19. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R.

    1987-01-01

    A power supply conditioning circuit that can reduce Periodic and Random Deviations (PARD) on the output voltages of dc power supplies to -150 dBV from dc to several KHz with no measurable periodic deviations is described. The PARD for a typical commercial low noise power supply is -74 dBV for frequencies above 20 Hz and is often much worse at frequencies below 20 Hz. The power supply conditioning circuit described here relies on the large differences in the dynamic impedances of a constant current diode and a zener diode to establish a dc voltage with low PARD. Power supplies with low PARD are especially important in circuitry involving ultrastable frequencies for the Deep Space Network.

  20. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.