Science.gov

Sample records for affect fatigue life

  1. How surface damage removal affects fatigue life

    NASA Technical Reports Server (NTRS)

    Jeelani, S.; Scott, M. A.

    1988-01-01

    The effect of the removal of work hardened surface layers from specimens of 2024-T4 aluminum alloy and AISI-4130 steel on their fatigue lives has been investigated. Specimens were fatigued at selected stress levels for a given number of cycles, and the surface layer was removed followed by subsequent fatigue cycling. Results confirm that when a material is subjected to fatigue loading, damage accumulates in the surface layers in the form of work hardening. Removal of the surface layer brings the specimen back to its pre-fatigued condition.

  2. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-07-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  3. Fatigue as it Affects Nursing.

    PubMed

    2016-08-01

    : Editor's note: From its first issue in 1900 through to the present day, AJN has unparalleled archives detailing nurses' work and lives over more than a century. These articles not only chronicle nursing's growth as a profession within the context of the events of the day, but they also reveal prevailing societal attitudes about women, health care, and human rights. Today's nursing school curricula rarely include nursing's history, but it's a history worth knowing. To this end, From the AJN Archives highlights articles selected to fit today's topics and times.In this month's article from the January 1935 issue, Lillian M. Gilbreth, a highly respected psychologist and industrial engineer, examines the problem of fatigue in nursing. A nonnurse expert, Gilbreth notes the negative effects of fatigue on skills, a problem "enormously more serious when the product of the work is human comfort and sometimes even human life, as it often is with the work of the nurse." In their article in this issue, "Health Care Worker Fatigue," Lea Anne Gardner and Deborah Dubeck of the Pennsylvania Patient Safety Authority share examples of fatigue-related adverse events and discuss the need for both personal and institutional fatigue risk management strategies. PMID:27466935

  4. Fatigue life of laser cut metals

    NASA Technical Reports Server (NTRS)

    Martin, M. R.

    1986-01-01

    Fatigue tests were conducted to determine the actual reduction in fatigue life due to weight removal for balancing by: hand grinding, low power (20 watt) Nd:glass laser, and high power (400 watt) Nd:YAG laser.

  5. Nitinol Fatigue Life for Variable Strain Amplitude Fatigue

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Pike, K.; Schlun, M.; Zipse, A.; Draper, J.

    2012-12-01

    Nitinol fatigue testing results are presented for variable strain amplitude cycling. The results indicate that cycles smaller than the constant amplitude fatigue limit may contribute to significant fatigue damage when they occur in a repeating sequence of large and small amplitude cycles. The testing utilized two specimen types: stent-like diamond specimens and Z-shaped wire specimens. The diamond specimens were made from nitinol tubing with stent-like manufacturing processes and the Z-shaped wire specimens were made from heat set nitinol wire. The study explored the hypothesis that duty cycling can have an effect on nitinol fatigue life. Stent-like structures were subjected to different in vivo loadings in order to create more complex strain amplitudes. The main focus in this study was to determine whether a combination of small and large amplitudes causes additional damage that alters the fatigue life of a component.

  6. Fatigue life prediction in bending from axial fatigue information

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.

    1982-01-01

    Bending fatigue in the low cyclic life range differs from axial fatigue due to the plastic flow which alters the linear stress-strain relation normally used to determine the nominal stresses. An approach is presented to take into account the plastic flow in calculating nominal bending stress (S sub bending) based on true surface stress. These functions are derived in closed form for rectangular and circular cross sections. The nominal bending stress and the axial fatigue stress are plotted as a function of life (N sub S) and these curves are shown for several materials of engineering interest.

  7. Does Ramadan Fasting Affect Fatigue in Nurses?

    PubMed

    Ovayolu, Özlem; Ovayolu, Nimet; Taşan, Emel

    2016-01-01

    The purpose of this study was to evaluate the effect of Ramadan fasting on fatigue in nurses. The study was conducted between June 19 and July 27, 2014, with a descriptive design. This study was completed with 99 nurses working in a public hospital in the city of Gaziantep located in the Southeastern Anatolia Region of Turkey. The data of the study were collected by using a questionnaire and the Piper Fatigue Scale. The Piper Fatigue Scale includes 4 subscale/dimensional scores and total fatigue scores. Higher scores indicate more fatigue. Statistical significance levels were set at P < .05. It was determined that the fatigue subscale and total mean scores of nurses increased in a statistically significant manner except for the affective subscale after the month of Ramadan (P < .05). In addition, it was found that the fatigue mean scores of those, who were working for 0 to 4 years, were employed in surgery units, and evaluated their health as bad, were higher (P > .05). The Ramadan fasting increased fatigue levels of nurses. Therefore, it is of vital importance to evaluate fatigue levels of nurses especially in the month of Ramadan and take the necessary precautions in terms of patient and personnel safety. PMID:27223619

  8. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  9. Considerations concerning fatigue life of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Bartolotta, Paul A.

    1993-01-01

    Since metal matrix composites (MMC) are composed from two very distinct materials each having their own physical and mechanical properties, it is feasible that the fatigue resistance depends on the strength of the weaker constituent. Based on this assumption, isothermal fatigue lives of several MMC's were analyzed utilizing a fatigue life diagram approach. For each MMC, the fatigue life diagram was quantified using the mechanical properties of its constituents. The fatigue life regions controlled by fiber fracture and matrix were also quantitatively defined.

  10. Predicting fatigue life of metal bellows

    NASA Technical Reports Server (NTRS)

    Daniels, C. M.

    1968-01-01

    Classical method of presenting fatigue data in plots of alternating stress vs number of deflection cycles is applied to bellows formed of various metals, including corrosion-resistant steel, nickel alloys, and aluminum alloys. The expected life of a new bellows design can then be determined before fabrication and testing.

  11. Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.

    2000-01-01

    The fatigue crack initiation resistance of an alloy is determined by conducting a series of tests over a range of values of stress amplitude or strain range. The observed number of cycles to failure is plotted against the stress amplitude or strain range to obtain a fatigue curve. The fatigue properties quoted for an alloy are typically the constants used in the equation(s) that describe the fatigue curve. Fatigue lives of interest may be as low as 10(exp 2) or higher than 10(exp 9) cycles. Because of the enormous scatter associated with fatigue, dozens of tests may be needed to confidently establish a fatigue curve, and the cost may run into several thousands of dollars. To further establish the effects on fatigue life of the test temperature, environment, alloy condition, mean stress effects, creep-fatigue effects, thermomechanical cycling, etc. requires an extraordinarily large and usually very costly test matrix. The total effort required to establish the fatigue resistance of an alloy should not be taken lightly. Fatigue crack initiation tests are conducted on relatively small and presumed to be initially crack-free, samples of an alloy that are intended to be representative of the alloy's metallurgical and physical condition. Generally, samples are smooth and have uniformly polished surfaces within the test section. Some may have intentionally machined notches of well-controlled geometry, but the surface at the root of the notch is usually not polished. The purpose of polishing is to attain a reproducible surface finish. This is to eliminate surface finish as an uncontrolled variable. Representative test specimen geometries will be discussed later. Test specimens are cyclically loaded until macroscopically observable cracks initiate and eventually grow to failure. Normally, the fatigue failure life of a specimen is defined as the number of cycles to separation of the specimen into two pieces. Alternative definitions are becoming more common, particularly for

  12. The analysis of fatigue crack growth mechanism and oxidation and fatigue life at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1988-01-01

    Two quantitative models based on experimentally observed fatigue damage processes have been made: (1) a model of low cycle fatigue life based on fatigue crack growth under general-yielding cyclic loading; and (2) a model of accelerated fatigue crack growth at elevated temperatures based on grain boundary oxidation. These two quantitative models agree very well with the experimental observations.

  13. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  14. The relationship between observed fatigue damage and life estimation models

    NASA Technical Reports Server (NTRS)

    Kurath, Peter; Socie, Darrell F.

    1988-01-01

    Observations of the surface of laboratory specimens subjected to axial and torsional fatigue loadings has resulted in the identification of three damage fatigue phenomena: crack nucleation, shear crack growth, and tensile crack growth. Material, microstructure, state of stress/strain, and loading amplitude all influence which of the three types of fatigue damage occurs during a dominant fatigue life fraction. Fatigue damage maps are employed to summarize the experimental observations. Appropriate bulk stress/strain damage parameters are suggested to model fatigue damage for the dominant fatigue life fraction. Extension of the damage map concept to more complex loadings is presented.

  15. Low Cycle Fatigue Behavior and Life Prediction of a Cast Cobalt-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Yang, Ho-Young; Kim, Jae-Hoon; Yoo, Keun-Bong

    Co-base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

  16. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, Richard A., Jr.

    1994-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (Delta K(sub eff)) under constant amplitude loading. Some modifications to the Delta K(sub eff)-rate relations were needed in the near threshold regime to fit small-crackgrowth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  17. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  18. Tension fatigue analysis and life prediction for composite laminates

    NASA Technical Reports Server (NTRS)

    O'Brien, T. K.; Rigamonti, M.; Zanotti, C.

    1989-01-01

    A methodology is presented for the tension fatigue analysis and life prediction of composite laminates subjected to tension fatigue loading. The methodology incorporates both the generic fracture mechanics characterization of delamination and the assessment of the infuence of damage on laminate fatigue life. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates, demonstrating good agreement between measured and predicted lives.

  19. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2001-01-01

    A methodology is presented for determining the fatigue life of composite structures based on fatigue characterization data and geometric nonlinear finite element (FE) analyses. To demonstrate the approach, predicted results were compared to fatigue tests performed on specimens which represented a tapered composite flange bonded onto a composite skin. In a first step, tension tests were performed to evaluate the debonding mechanisms between the flange and the skin. In a second step, a 2D FE model was developed to analyze the tests. To predict matrix cracking onset, the relationship between the tension load and the maximum principal stresses transverse to the fiber direction was determined through FE analysis. Transverse tension fatigue life data were used to -enerate an onset fatigue life P-N curve for matrix cracking. The resulting prediction was in good agreement with data from the fatigue tests. In a third step, a fracture mechanics approach based on FE analysis was used to determine the relationship between the tension load and the critical energy release rate. Mixed mode energy release rate fatigue life data were used to create a fatigue life onset G-N curve for delamination. The resulting prediction was in good agreement with data from the fatigue tests. Further, the prediction curve for cumulative life to failure was generated from the previous onset fatigue life curves. The results showed that the methodology offers a significant potential to Predict cumulative fatigue life of composite structures.

  20. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin

    2000-01-01

    A methodology is presented for determining the fatigue life of bonded composite skin/stringer structures based on delamination fatigue characterization data and geometric nonlinear finite element analyses. Results were compared to fatigue tests on stringer flange/skin specimens to verify the approach.

  1. Rolling-element fatigue life of AMS 5900 balls

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1983-01-01

    The rolling-element fatigue life of AMS 5900 12.7-mm (1/2-in.) dia was determined in five-ball fatigue testers. The 10% life with the warm headed AMS 5900 balls was equivalent to that of AMS 5749 and over eight times that of AISI M-50. The AMS balls fabricated by cold heading had small surface cracks which initiated fatigue spalls where these cracks were crossed by running tracks. The cold-headed AMS 5900 balls had a 10% fatigue life an order of magnitude less than that of the warm headed balls even when failures on the cold headed balls at visible surface cracks were omitted.

  2. Effect of surface irregularities on bellows fatigue life

    NASA Technical Reports Server (NTRS)

    Schmidt, E. H.; Sheaffer, E. F.; Turner, J. D.; Zeimer, R. L.

    1968-01-01

    Report presents test data on the bending fatigue life of notched sheet specimens. The influence of a surface irregularity on the fatigue life of a metal bellows is evaluated, with emphasis on accidental defects in ducting bellows which are impossible to avoid short of completely eliminating human contact.

  3. Effect of spectral shape on acoustic fatigue life estimates

    NASA Technical Reports Server (NTRS)

    Miles, R. N.

    1992-01-01

    Methods for estimating fatigue life due to random loading are briefly reviewed. These methods include a probabilistic approach in which the expected value of the rate of damage accumulation is computed by integrating over the probability density of damaging events and a method which consists of analyzing the response time history to count damaging events. It is noted that it is necessary to employ a time domain approach to perform Rainflow counting, while simple peak counting may be accomplished using the probabilistic method. Data obtained indicate that Rainflow counting produces significantly different fatigue life predictions than other methods that are commonly used in acoustic fatigue predictions. When low-frequency oscillations are present in a signal along with high-frequency components, peak counting will produce substantially shorter fatigue lives than Rainflow counting. It is concluded that Rainflow counting is capable of providing reliable fatigue life predictions for acoustic fatigue studies.

  4. Lubricant and additive effects on spur gear fatigue life

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.; Scibbe, H. W.

    1985-01-01

    Spur gear endurance tests were conducted with six lubricants using a single lot of consumable-electrode vacuum melted (CVM) AISI 9310 spur gears. The sixth lubricant was divided into four batches each of which had a different additive content. Lubricants tested with a phosphorus-type load carrying additive showed a statistically significant improvement in life over lubricants without this type of additive. The presence of sulfur type antiwear additives in the lubricant did not appear to affect the surface fatigue life of the gears. No statistical difference in life was produced with those lubricants of different base stocks but with similar viscosity, pressure-viscosity coefficients and antiwear additives. Gears tested with a 0.1 wt % sulfur and 0.1 wt % phosphorus EP additives in the lubricant had reactive films that were 200 to 400 (0.8 to 1.6 microns) thick.

  5. Childhood Adversity and Cumulative Life Stress: Risk Factors for Cancer-Related Fatigue

    PubMed Central

    Bower, Julienne E.; Crosswell, Alexandra D.; Slavich, George M.

    2013-01-01

    Fatigue is a common symptom in healthy and clinical populations, including cancer survivors. However, risk factors for cancer-related fatigue have not been identified. On the basis of research linking stress with other fatigue-related disorders, we tested the hypothesis that stress exposure during childhood and throughout the life span would be associated with fatigue in breast cancer survivors. Stress exposure was assessed using the Stress and Adversity Inventory, a novel computer-based instrument that assesses for 96 types of acute and chronic stressors that may affect health. Results showed that breast cancer survivors with persistent fatigue reported significantly higher levels of cumulative lifetime stress exposure, including more stressful experiences in childhood and in adulthood, compared to a control group of nonfatigued survivors. These findings identify a novel risk factor for fatigue in the growing population of cancer survivors and suggest targets for treatment. PMID:24377083

  6. The Effect of Hole Quality on the Fatigue Life of 2024-T3 Aluminum Alloy Sheet

    NASA Technical Reports Server (NTRS)

    Everett, Richard A., Jr.

    2004-01-01

    This paper presents the results of a study whose main objective was to determine which type of fabrication process would least affect the fatigue life of an open-hole structural detail. Since the open-hole detail is often the fundamental building block for determining the stress concentration of built-up structural parts, it is important to understand any factor that can affect the fatigue life of an open hole. A test program of constant-amplitude fatigue tests was conducted on five different sets of test specimens each made using a different hole fabrication process. Three of the sets used different mechanical drilling procedures while a fourth and fifth set were mechanically drilled and then chemically polished. Two sets of specimens were also tested under spectrum loading to aid in understanding the effects of residual compressive stresses on fatigue life. Three conclusions were made from this study. One, the residual compressive stresses caused by the hole-drilling process increased the fatigue life by two to three times over specimens that were chemically polished after the holes were drilled. Second, the chemical polishing process does not appear to adversely affect the fatigue life. Third, the chemical polishing process will produce a stress-state adjacent to the hole that has insignificant machining residual stresses.

  7. Development of an improved method of consolidating fatigue life data

    NASA Technical Reports Server (NTRS)

    Leis, B. N.; Sampath, S. G.

    1978-01-01

    A fatigue data consolidation model that incorporates recent advances in life prediction methodology was developed. A combined analytic and experimental study of fatigue of notched 2024-T3 aluminum alloy under constant amplitude loading was carried out. Because few systematic and complete data sets for 2024-T3 were available in the program generated data for fatigue crack initiation and separation failure for both zero and nonzero mean stresses. Consolidations of these data are presented.

  8. Modeling the effects of control systems of wind turbine fatigue life

    SciTech Connect

    Pierce, K.G.; Laino, D.J.

    1996-12-31

    In this study we look at the effect on fatigue life of two types of control systems. First, we investigate the Micon 65, an upwind, three bladed turbine with a simple yaw control system. Results indicate that increased fatigue damage to the blade root can be attributed to continuous operation at significant yaw error allowed by the control system. Next, we model a two-bladed teetered rotor turbine using three different control systems to adjust flap deflections. The first two limit peak power output, the third limits peak power and cyclic power output over the entire range of operation. Results for simulations conducted both with and without active control are compared to determine how active control affects fatigue life. Improvement in fatigue lifetimes were seen for all control schemes, with increasing fatigue lifetime corresponding to increased flap deflection activity. 13 refs., 6 figs., 2 tabs.

  9. Fatigue Life Estimation under Cumulative Cyclic Loading Conditions

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; McGaw, Michael A; Halford, Gary R.

    1999-01-01

    The cumulative fatigue behavior of a cobalt-base superalloy, Haynes 188 was investigated at 760 C in air. Initially strain-controlled tests were conducted on solid cylindrical gauge section specimens of Haynes 188 under fully-reversed, tensile and compressive mean strain-controlled fatigue tests. Fatigue data from these tests were used to establish the baseline fatigue behavior of the alloy with 1) a total strain range type fatigue life relation and 2) the Smith-Wastson-Topper (SWT) parameter. Subsequently, two load-level multi-block fatigue tests were conducted on similar specimens of Haynes 188 at the same temperature. Fatigue lives of the multi-block tests were estimated with 1) the Linear Damage Rule (LDR) and 2) the nonlinear Damage Curve Approach (DCA) both with and without the consideration of mean stresses generated during the cumulative fatigue tests. Fatigue life predictions by the nonlinear DCA were much closer to the experimentally observed lives than those obtained by the LDR. In the presence of mean stresses, the SWT parameter estimated the fatigue lives more accurately under tensile conditions than under compressive conditions.

  10. Fatigue Life of Superalloy Haynes 188 in Hydrogen

    NASA Astrophysics Data System (ADS)

    Gabb, T. P.; Webster, H.; Ribeiro, G.; Gorman, T.; Gayda, J.

    2012-08-01

    The effects of hydrogen and surface finish on the mean low cycle fatigue life of Haynes 188 were studied. Specimens were prepared and fatigue tested with gage sections having low stress ground (LSG) and electro-discharge machined (EDM) surfaces. Fatigue tests were performed at temperatures of 25 to 650 °C with varied strain conditions, in hydrogen and helium environments. Fatigue life decreased with increasing strain range, strain ratio, temperature, and with hydrogen atmosphere. A Smith-Watson-Topper stress parameter could be used to account for variations in strain range and strain ratio, and most strongly influenced life. Hydrogen reduced fatigue life by about 5× (80%) at 25 °C, but was much less harmful at 650 °C. Standard EDM finish did not consistently reduce mean fatigue life from that of LSG finish specimens. Additional tests indicated fatigue life in hydrogen was maintained for varied EDM conditions, provided specimen roughness and maximum recast layer thickness were not excessive.

  11. Carbide factor predicts rolling-element bearing fatigue life

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Zaretsky, E. V.

    1973-01-01

    Analysis was made to determine correlation between number and size of carbide particles and rolling-element fatigue. Correlation was established, and carbide factor was derived that can be used to predict fatigue life more effectively than such variables as heat treatment, chemical composition, and hardening mechanism.

  12. Factors that affect the fatigue strength of power transmission shafting

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1984-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  13. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    NASA Technical Reports Server (NTRS)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  14. Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit

    NASA Astrophysics Data System (ADS)

    Zhao, Lihui; Zheng, Songlin; Feng, Jinzhi

    2014-11-01

    Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are -3.78% and -1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.

  15. Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit

    NASA Astrophysics Data System (ADS)

    Zhao, Lihui; Zheng, Songlin; Feng, Jinzhi

    2014-09-01

    Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are -3.78% and -1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.

  16. Prestraining and Its Influence on Subsequent Fatigue Life

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Mcgaw, Michael A.; Kalluri, Sreeramesh

    1995-01-01

    An experimental program was conducted to study the damaging effects of tensile and compressive prestrains on the fatigue life of nickel-base, Inconel 718 superalloy at room temperature. To establish baseline fatigue behavior, virgin specimens with a solid uniform gage section were fatigued to failure under fully-reversed strain-control. Additional specimens were prestrained to 2 percent, 5 percent, and 10 percent (engineering strains) in the tensile direction and to 2 percent (engineering strain) in the compressive direction under stroke-control, and were subsequently fatigued to failure under fully-reversed strain-control. Experimental results are compared with estimates of remaining fatigue lives (after prestraining) using three life prediction approaches: (1) the Linear Damage Rule; (2) the Linear Strain and Life Fraction Rule; and (3) the nonlinear Damage Curve Approach. The Smith-Watson-Topper parameter was used to estimate fatigue lives in the presence of mean stresses. Among the cumulative damage rules investigated, best remaining fatigue life predictions were obtained with the nonlinear Damage Curve Approach.

  17. A comparison of fatigue life prediction methodologies for rotorcraft

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1990-01-01

    Because of the current U.S. Army requirement that all new rotorcraft be designed to a 'six nines' reliability on fatigue life, this study was undertaken to assess the accuracy of the current safe life philosophy using the nominal stress Palmgrem-Miner linear cumulative damage rule to predict the fatigue life of rotorcraft dynamic components. It has been shown that this methodology can predict fatigue lives that differ from test lives by more than two orders of magnitude. A further objective of this work was to compare the accuracy of this methodology to another safe life method called the local strain approach as well as to a method which predicts fatigue life based solely on crack growth data. Spectrum fatigue tests were run on notched (k(sub t) = 3.2) specimens made of 4340 steel using the Felix/28 tests fairly well, being slightly on the unconservative side of the test data. The crack growth method, which is based on 'small crack' crack growth data and a crack-closure model, also predicted the fatigue lives very well with the predicted lives being slightly longer that the mean test lives but within the experimental scatter band. The crack growth model was also able to predict the change in test lives produced by the rainflow reconstructed spectra.

  18. Dramatic increase in fatigue life in hierarchical graphene composites.

    PubMed

    Yavari, F; Rafiee, M A; Rafiee, J; Yu, Z-Z; Koratkar, N

    2010-10-01

    We report the synthesis and fatigue characterization of fiberglass/epoxy composites with various weight fractions of graphene platelets infiltrated into the epoxy resin as well as directly spray-coated on to the glass microfibers. Remarkably only ∼0.2% (with respect to the epoxy resin weight and ∼0.02% with respect to the entire laminate weight) of graphene additives enhanced the fatigue life of the composite in the flexural bending mode by up to 1200-fold. By contrast, under uniaxial tensile fatigue conditions, the graphene fillers resulted in ∼3-5-fold increase in fatigue life. The fatigue life increase (in the flexural bending mode) with graphene additives was ∼1-2 orders of magnitude superior to those obtained using carbon nanotubes. In situ ultrasound analysis of the nanocomposite during the cyclic fatigue test suggests that the graphene network toughens the fiberglass/epoxy-matrix interface and prevents the delamination/buckling of the glass microfibers under compressive stress. Such fatigue-resistant hierarchical materials show potential to improve the safety, reliability, and cost effectiveness of fiber-reinforced composites that are increasingly the material of choice in the aerospace, automotive, marine, sports, biomedical, and wind energy industries. PMID:20863061

  19. Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1986-01-01

    How dynamic load affects the surface pitting fatigue life of external spur gears was predicted by using the NASA computer program TELSGE. Parametric studies were performed over a range of various gear parameters modeling low-contact-ratio involute spur gears. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact. Gear mesh operating speed strongly affected predicted dynamic load and life. Meshes operating at a resonant speed or one-half the resonant speed had significantly shorter lives. Dynamic life factors for gear surface pitting fatigue were developed on the basis of the parametric studies. In general, meshes with higher contact ratios had higher dynamic life factors than meshes with lower contact ratios. A design chart was developed for hand calculations of dynamic life factors.

  20. Surface Fatigue Life of High Temperature Gear Materials

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1994-01-01

    Three high temperature gear materials were evaluated using spur gear surface fatigue tests. These materials were, VASCO max 350, VASCO matrix 2, and nitralloy N and were evaluated for possible use in high temperature gear applications. The fatigue life of the three high temperature gear materials were compared with the life of the standard AISI 9310 aircraft gear material. Surface fatigue tests were conducted at a lubricant inlet temperature of 321 K (120 F), a lubricant outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), a speed of 10,000 rpm, and with a synthetic paraffinic lubricant. The life of the nitralloy N was approximately the same as the AISI 9310, the life of the VASCO max 350 was much less than the AISI 9310 while the life of the VASCO matrix 2 was several times the life of the AISI 9310. The VASCO max 350 also showed very low fracture toughness with approximately half of the gears failed by tooth fracture through the fatigue spall. The VASCO matrix 2 had approximately 10-percent fracture failure through the fatigue spalls indicating moderate to good fracture toughness.

  1. Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction

    NASA Astrophysics Data System (ADS)

    Neu, R. W.; Sehitoglu, Huseyin

    1989-09-01

    A life prediction model is developed for crack nucleation and early crack growth based on fatigue, environment (oxidation), and creep damage. The model handles different strain-temperature phasings (i.e., in-phase and out-of-phase thermomechanical fatigue, isothermal fatigue, and others, including nonproportional phasings). Fatigue life predictions compare favorably with experiments in 1070 steel for a wide range of test conditions and strain-temperature phasings. An oxide growth (oxide damage) model is based on the repeated microrupture process of oxide observed from microscopic measurements. A creep damage expression, which is stress-based, is coupled with a unified constitutive equation. A set of interrupted tests was performed to provide valuable damage progression information. Tests were performed in air and in helium atmospheres to isolate creep damage from oxidation damage.

  2. X-43A Rudder Spindle Fatigue Life Estimate and Testing

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Dawicke, David S.; Johnston, William M.; James, Mark A.; Simonsen, Micah; Mason, Brian H.

    2005-01-01

    Fatigue life analyses were performed using a standard strain-life approach and a linear cumulative damage parameter to assess the effect of a single accidental overload on the fatigue life of the Haynes 230 nickel-base superalloy X-43A rudder spindle. Because of a limited amount of information available about the Haynes 230 material, a series of tests were conducted to replicate the overload and in-service conditions for the spindle and corroborate the analysis. Both the analytical and experimental results suggest that the spindle will survive the anticipated flight loads.

  3. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    2002-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  4. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1988-01-01

    A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  5. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1989-01-01

    A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  6. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  7. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, Vito; Nissley, David; Lin, Li-Sen Jim

    1985-01-01

    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.

  8. A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions

    NASA Astrophysics Data System (ADS)

    Pejkowski, Łukasz; Skibicki, Dariusz

    2016-08-01

    This paper presents a criterion for high-cycle fatigue life and fatigue strength estimation under periodic proportional and non-proportional cyclic loading. The criterion is based on the mean and maximum values of the second invariant of the stress deviator. Important elements of the criterion are: function of the non-proportionality of fatigue loading and the materials parameter that expresses the materials sensitivity to non-proportional loading. The methods for the materials parameters determination uses three S-N curves: tension-compression, torsion, and any non-proportional loading proposed. The criterion has been verified using experimental data, and the results are included in the paper. These results should be considered as promising. The paper also includes a proposal for multiaxial fatigue models classification due to the approach for the non-proportionality of loading.

  9. Fatigue life estimates for helicopter loading spectra

    NASA Technical Reports Server (NTRS)

    Khosrovaneh, A. K.; Dowling, N. E.; Berens, A. P.; Gallagher, J. P.

    1990-01-01

    Helicopter loading histories applied to notch metal samples are used as examples, and their fatigue lives are calculated by using a simplified version of the local strain approach. This simplified method has the advantage that it requires knowing the loading history in only the reduced form of ranges and means and number of cycles from the rain-flow cycle counting method. The calculated lives compare favorably with test data.

  10. Fatigue life estimates for helicopter loading spectra

    NASA Technical Reports Server (NTRS)

    Khosrovaneh, A. K.; Dowling, N. E.; Berens, A. P.; Gallagher, J. P.

    1989-01-01

    Helicopter loading histories applied to notch metal samples are used as examples, and their fatigue lives are calculated by using a simplified version of the local strain approach. This simplified method has the advantage that it requires knowing the loading history in only the reduced form of ranges and means and number of cycles from the rain-flow cycle counting method. The calculated lives compare favorably with test data.

  11. Silicon nitride hybrid bearing fatigue life comparisons. Technical report

    SciTech Connect

    Robinson, E.

    1999-01-15

    Research to improve high-speed ball bearings for spacecraft applications has led to development of ceramic materials for bearing components, and the need to acquire sufficient fatigue life data to show the merits of various ceramic materials and fabrication processes, in comparison with the vast amount of steel bearing fatigue data acquired over many decades. In order to eliminate bias from such evaluations it is best to conduct comparative fatigue tests with steel bearings that are geometrically similar and in the same type of test rig. This report addresses some recent fatigue tests of hybrid bearings with silicon nitride (Si{sub 3}N{sub 4}) balls and Crucible Steel Company M62 steel raceways and a comparison set of all 52100 steel bearings. Results indicate that the bearings with ceramic (silicon nitride) balls are superior to the steel bearings.

  12. A real time neural net estimator of fatigue life

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1990-01-01

    A neural net architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the Intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopump blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines. This neural net estimator of fatigue life is seen as the enabling technology to achieve component life prognosis, and therefore would be an important part of life extending control for reusable rocket engines.

  13. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    NASA Technical Reports Server (NTRS)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the two more pairs of stress strain parameters must be ascertained.

  14. Life prediction for bridged fatigue cracks

    SciTech Connect

    Cox, B.N.

    1994-08-01

    One of the more promising classes of composites touted for high temperature applications, and certainly the most available, is that of relatively brittle matrices, either ceramic or intermetallic, reinforced by strong, aligned, continuous fibers. Under cyclic loading in the fiber direction, these materials develop matrix cracks that often run perpendicular to the fibers, while the fibers remain intact in the crack wake, supplying bridging tractions across the fracture surfaces. The bridging tractions shield the crack tip from the applied load, dramatically reducing the crack velocity from that expected in an unreinforced material subjected to the same value, {Delta}K{sub a}, of the cyclic applied stress intensity factor. An important issue in reliability is the prediction of the growth rates of the bridged cracks. The growth rates of matrix fatigue cracks bridged by sliding fibers are now commonly predicted by models based on the micromechanics of frictional interfaces. However, there exist many reasons, both theoretical and experimental, for suspecting that the most popular micromechanical models are probably wrong in detail in the context of fatigue cracks. Furthermore, a review of crack growth data reveals that the validity of the micromechanics-based predictive model has never been tested and may never be tested. In this paper, two alternative approaches are suggested to the engineering problem of predicting the growth rates of bridged cracks without explicit recourse to micromechanics. Instead, it is shown that the material properties required to analyze bridging effects can be deduced directly from crack growth data. Some experiments are proposed to test the validity of the proposals.

  15. Fatigue life analysis of a turboprop reduction gearbox

    NASA Technical Reports Server (NTRS)

    Lewicki, D. G.; Black, J. D.; Savage, M.; Coy, J. J.

    1985-01-01

    A fatigue life analysis of the Allison T56/501 turboprop reduction gearbox was developed. The life and reliability of the gearbox was based on the lives and reliabilities of the main power train bearings and gears. The bearing and gear lives were determined using the Lundberg-Palmgren theory and a mission profile. The five planet bearing set had the shortest calculated life among the various gearbox components, which agreed with field experience where the planet bearing had the greatest incidences of failure. The analytical predictions of relative lives among the various bearings were in reasonable agreement with field experience. The predicted gearbox life was in excellent agreement with field data when the material life adjustment factors alone were used. The gearbox had a lower predicted life in comparison with field data when no life adjustment factors were used or when lubrication life adjustment factors were used either alone or in combination with the material factors.

  16. Fatigue life analysis of a turboprop reduction gearbox

    NASA Technical Reports Server (NTRS)

    Lewicki, D. G.; Coy, J. J.; Black, J. D.; Savage, M.

    1986-01-01

    A fatigue life analysis of the Allison T56/501 turboprop reduction gearbox was developed. The life and reliability of the gearbox was based on the lives and reliabilities of the main power train bearings and gears. The bearing and gear lives were determined using the Lundberg-Palmgren theory and a mission profile. The five planet bearing set had the shortest calculated life among the various gearbox components, which agreed with field experience where the planet bearing had the greatest incidences of failure. The analytical predictions of relative lives among the various bearings were in reasonable agreement with field experience. The predicted gearbox life was in excellent agreement with field data when the material life adjustment factors alone were used. The gearbox had a lower predicted life in comparison with field data when no life adjustment factors were used or when lubrication life adjustment factors were used either alone or in combination with the material factors.

  17. Fatigue life analysis and experimental verification of coronary stent.

    PubMed

    Li, Jianjun; Luo, Qiyi; Xie, Zhiyong; Li, Yu; Zeng, Yanjun

    2010-07-01

    A computational and experimental method on biomechanics of stent is presented to analyze the stress distribution of different phases and evaluate the fatigue life according to Goodman criteria. As a result, the maximum stress and alternating stress were always located at the curvature area of rings, the fatigue bands in the experiment also verified the computation rationality. Matching between the numerical simulation and experimental results was satisfactory, which proved that the finite element analysis could provide theoretical evidence and help design and optimize the stent structure. PMID:20676843

  18. Fatigue Life of Postbuckled Structures with Indentation Damages

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  19. Fatigue Life of Postbuckled Structures with Indentation Damage

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  20. Non-deterministic fatigue life analysis using convex set models

    NASA Astrophysics Data System (ADS)

    Sun, WenCai; Yang, ZiChun; Li, KunFeng

    2013-04-01

    The non-probabilistic approach to fatigue life analysis was studied using the convex models—interval, ellipsoidal and multi-convex models. The lower and upper bounds of the fatigue life were obtained by using the second-order Taylor series and Lagrange multiplier method. The solving process for derivatives of the implicit life function was presented. Moreover, a median ellipsoidal model was proposed which can take into account the sample blind zone and almost impossibility of concurrence of some small probability events. The Monte Carlo method for multi-convex model was presented, an important alternative when the analytical method does not work. A project example was given. The feasibility and rationality of the presented approach were verified. It is also revealed that the proposed method is conservative compared to the traditional probabilistic method, but it is a useful complement when it is difficult to obtain the accurate probability densities of parameters.

  1. Tension fatigue analysis and life prediction for composite laminates

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.; Rigamonti, M.; Zanotti, C.

    1988-01-01

    A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delamination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behavior in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth.

  2. Simplified fatigue life analysis for traction drive contacts

    NASA Technical Reports Server (NTRS)

    Rohn, D. A.; Loewenthal, S. H.; Coy, J. J.

    1980-01-01

    A simplified fatigue life analysis for traction drive contacts of arbitrary geometry is presented. The analysis is based on the Lundberg-Palmgren theory used for rolling-element bearings. The effects of torque, element size, speed, contact ellipse ratio, and the influence of traction coefficient are shown. The analysis shows that within the limits of the available traction coefficient, traction contacts exhibit longest life at high speeds. Multiple, load-sharing roller arrangements have an advantageous effect on system life, torque capacity, power-to-weight ratio and size.

  3. Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Liu, Xiaoyang; Sloss, Clayton

    2015-06-01

    Thermomechanical fatigue (TMF) behaviors of ductile cast iron (DCI) were investigated under out-of-phase (OP), in-phase (IP), and constrained strain-control conditions with temperature hold in various temperature ranges: 573 K to 1073 K, 723 K to 1073 K, and 433 K to 873 K (300 °C to 800 °C, 450 °C to 800 °C, and 160 °C to 600 °C). The integrated creep-fatigue theory (ICFT) model was incorporated into the finite element method to simulate the hysteresis behavior and predict the TMF life of DCI under those test conditions. With the consideration of four deformation/damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement, (iii) creep, and (iv) oxidation, as revealed from the previous study on low cycle fatigue of the material, the model delineates the contributions of these physical mechanisms in the asymmetrical hysteresis behavior and the damage accumulation process leading to final TMF failure. This study shows that the ICFT model can simulate the stress-strain response and life of DCI under complex TMF loading profiles (OP and IP, and constrained with temperature hold).

  4. Deformation history and load sequence effects on cumulative fatigue damage and life predictions

    NASA Astrophysics Data System (ADS)

    Colin, Julie

    Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in

  5. Advances in fatigue life prediction methodology for metallic materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    The capabilities of a plasticity-induced crack-closure model to predict small- and large-crack growth rates, and in some cases total fatigue life, for four aluminum alloys and three titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading are described. Equations to calculate a cyclic-plastic-zone corrected effective stress-intensity factor range from a cyclic J-integral and crack-closure analysis of large cracks were reviewed. The effective stress-intensity factor range against crack growth rate relations were used in the closure model to predict small- and large-crack growth under variable-amplitude and spectrum loading. Using the closure model and microstructural features, a total fatigue life prediction method is demonstrated for three aluminum alloys under various load histories.

  6. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1983-01-01

    The Hot Section Technology (HOST) program, creep fatigue life prediction for engine hot section materials (isotropic), is reviewed. The program is aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components. Significant results include: (1) cast B1900 and wrought IN 718 selected as the base and alternative materials respectively; (2) fatigue test specimens indicated that measurable surface cracks appear early in the specimen lives, i.e., 15% of total life at 871 C and 50% of life at 538 c; (3) observed crack initiation sites are all surface initiated and are associated with either grain boundary carbides or local porosity, transgrannular cracking is observed at the initiation site for all conditions tested; and (4) an initial evaluation of two life prediction models, representative of macroscopic (Coffin-Mason) and more microscopic (damage rate) approaches, was conducted using limited data generated at 871 C and 538 C. It is found that the microscopic approach provides a more accurate regression of the data used to determine crack initiation model constants, but overpredicts the effect of strain rate on crack initiation life for the conditions tested.

  7. The LIFE computer code: Fatigue life prediction for vertical axis wind turbine components

    SciTech Connect

    Sutherland, H.J.; Ashwill, T.D.; Slack, N.

    1987-08-01

    The LIFE computer code was originally written by Veers to analyze the fatigue life of a vertical axis wind turbine (VAWT) blade. The basic assumptions built into this analysis tool are: the fatigue life of a blade component is independent of the mean stress; the frequency distribution of the vibratory stresses may be described adequately by a Rayleigh probability density function; and damage accumulates linearly (Miner's Rule). Further, the yearly distribution of wind is assumed to follow a Rayleigh distribution. The original program has been updated to run in an interactive mode on a personal computer with a BASIC interpreter and 256K RAM. Additional capabilities included in this update include: the generalization of the Rayleigh function for the wind speed distribution to a Weibull function; the addition of two constitutive rules for the evaluation of the effects of mean stress on fatigue life; interactive data input; and the inclusion of a stress concentration factor into the analysis.

  8. A comparison of two total fatigue life prediction methods

    SciTech Connect

    Chen, N.; Lawrence, F.V.

    1999-07-01

    A 2-D analytical model which is termed the PICC-RICC model combines the effects of plasticity-induced crack closure (PICC) and roughness-induced crack closure (RICC). The PICC-RICC model handles naturally the gradual transition from RICC to PICC dominated crack growth. In this study, the PICC-RICC model is combined with a crack nucleation model to predict the total fatigue life of a notched component. This modified PICC-RICC model will be used to examine several controversial aspects of an earlier, computationally simpler total-life model known as the IP model.

  9. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    NASA Technical Reports Server (NTRS)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the elastic modulus. For plasticity/creep interaction conditions (PC and CP) two more pairs of stress strain parameters must be ascertained.

  10. A real time neural net estimator of fatigue life

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1990-01-01

    A neural network architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopumps blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high-frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines.

  11. Cancer Related Fatigue and Quality of Life in Patients with Advanced Prostate Cancer Undergoing Chemotherapy

    PubMed Central

    Charalambous, Andreas; Kouta, Christiana

    2016-01-01

    Cancer related fatigue (CRF) is a common and debilitating symptom that can influence quality of life (QoL) in cancer patients. The increase in survival times stresses for a better understanding of how CRF affects patients' QoL. This was a cross-sectional descriptive study with 148 randomly recruited prostate cancer patients aiming to explore CRF and its impact on QoL. Assessments included the Cancer Fatigue Scale, EORTC QLQ-C30, and EORTC QLQ-PR25. Additionally, 15 in-depth structured interviews were performed. Quantitative data were analyzed with simple and multiple regression analysis and independent samples t-test. Qualitative data were analyzed with the use of thematic content analysis. The 66.9% of the patients experienced CRF with higher levels being recorded for the affective subscale. Statistically significant differences were found between the patients reporting CRF and lower levels of QoL (mean = 49.1) and those that did not report fatigue and had higher levels of QoL (mean = 72.1). The interviews emphasized CRF's profound impact on the patients' lives that was reflected on the following themes: “dependency on others,” “loss of power over decision making,” and “daily living disruption.” Cancer related fatigue is a significant problem for patients with advanced prostate cancer and one that affects their QoL in various ways. PMID:26981530

  12. Effect on interference fits on roller bearing fatigue life

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Zaretsky, E. V.

    1986-01-01

    An analysis was performed to determine the effects of inner-ring speed and press fits on roller bearing fatigue life. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner-ring speed and load, and were applied to a conventional roller bearing life analysis. The effect of mean stress was determined using Goodman diagram approach. Hoop stresses caused by press fits and centrifugal force can reduce bearing life by as much as 90 percent. Use of a Goodman diagram predicts life reductions of 20 to 30 percent. The depth of the maximum shear stress remains virtually unchanged.

  13. Effect of interference fits on roller bearing fatigue life

    NASA Technical Reports Server (NTRS)

    Coe, Harold H.; Zaretsky, Erwin V.

    1987-01-01

    An analysis was performed to determine the effects of inner-ring speed and press fits on roller bearing fatigue life. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner-ring speed and load, and were applied to a conventional roller bearing life analysis. The effect of mean stress was determined using Goodman diagram approach. Hoop stresses caused by press fits and centrifugal force can reduce bearing life by as much as 90 percent. Use of a Goodman diagram predicts life reduction of 20 to 30 percent. The depth of the maximum shear stress remains virtually unchanged.

  14. Corrosion fatigue behavior and life prediction method under changing temperature condition

    SciTech Connect

    Kanasaki, Hiroshi; Hirano, Akihiko; Iida, Kunihiro; Asada, Yasuhide

    1997-12-01

    Axially strain controlled low cycle fatigue tests of a carbon steel in oxygenated high temperature water were carried out under changing temperature conditions. Two patterns of triangular wave were selected for temperature cycling. One was in-phase pattern synchronizing with strain cycling and the other was an out-of-phase pattern in which temperature was changed in anti-phase to the strain cycling. The fatigue life under changing temperature condition was in the range of the fatigue life under various constant temperature within the range of the changing temperature. The fatigue life of in-phase pattern was equivalent to that of out-of-phase pattern. The corrosion fatigue life prediction method was proposed for changing temperature condition, and was based on the assumption that the fatigue damage increased in linear proportion to increment of strain during cycling. The fatigue life predicted by this method was in good agreement with the test results.

  15. Fatigue, Sleep Quality, and Disability in Relation to Quality of Life in Multiple Sclerosis

    PubMed Central

    Radfar, Moloud

    2015-01-01

    Background: Quality of life (QOL) is impaired in multiple sclerosis (MS) in part due to physical disability. MS-associated fatigue and poor sleep are common and treatable features of MS that affect QOL. We assessed the association between fatigue, sleep quality, and QOL in people with MS. Methods: Cross-sectional data were collected from 217 patients with MS. Health-related QOL (MS Quality of Life-54), fatigue (Fatigue Severity Scale [FSS]), and sleep quality (Pittsburgh Sleep Quality Inventory [PSQI]) were assessed. Expanded Disability Status Scale scores were also provided by a qualified neurologist. Results: The mean ± SD age of the 217 patients was 32.6 ± 8.6 years, and 79% were female. One hundred fifty-two patients (70.0%) were classified as poor sleepers based on PSQI scores; 122 (56.2%) had significant fatigue based on FSS results. The mean ± SE physical (PCS) and mental (MCS) health composite scores of the MSQOL-54 were 40.12 ± 1.27 and 43.81 ± 1.61, respectively. There was a strong statistically significant positive correlation between PCS scores and MCS (r = 0.58), FSS (r = 0.49), and PSQI (r = 0.52) scores. MCS scores were strongly correlated with FSS (r = 0.53) and PSQI (r = 0.35) scores. Age exhibited statistically significant negative correlations with PCS (r = −0.21) and MCS (r = −0.58) scores, and was statistically significantly correlated with FSS (r = 0.23) and PSQI (r = 0.21) scores. Expanded Disability Status Scale scores were strongly correlated with FSS scores. Conclusions: These findings support screening of fatigue severity and sleep quality and their effects on QOL. PMID:26664332

  16. A review of the effects of coolant environments on the fatigue life of LWR structural materials.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.

    2009-04-01

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code specifies design curves for the fatigue life of structural materials in nuclear power plants. However, the effects of light water reactor (LWR) coolant environments were not explicitly considered in the development of the design curves. The existing fatigue-strain-versus-life ({var_epsilon}-N) data indicate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives in water relative to those in air can be a factor of 15 lower for austenitic stainless steels and a factor of {approx}30 lower for carbon and low-alloy steels. This paper reviews the current technical basis for the understanding of the fatigue of piping and pressure vessel steels in LWR environments. The existing fatigue {var_epsilon}-N data have been evaluated to identify the various material, environmental, and loading parameters that influence fatigue crack initiation and to establish the effects of key parameters on the fatigue life of these steels. Statistical models are presented for estimating fatigue life as a function of material, loading, and environmental conditions. An environmental fatigue correction factor for incorporating the effects of LWR environments into ASME Code fatigue evaluations is described. This paper also presents a critical review of the ASME Code fatigue design margins of 2 on stress (or strain) and 20 on life and assesses the possible conservatism in the current choice of design margins.

  17. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-01-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  18. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Astrophysics Data System (ADS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-07-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  19. Adaptive active vibration control to improve the fatigue life of a carbon-epoxy smart structure

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Cazzulani, Gabriele; Cinquemani, Simone; Resta, Ferruccio; Torti, Alessandro

    2015-04-01

    Active vibration controls are helpful in improving fatigue life of structures through limitation of absolute displacements. However, control algorithms are usually designed without explicitly taking into account the fatigue phenomenon. In this paper, an adaptive vibration controller is proposed to increase the fatigue life of a smart structure made of composite material and actuated with piezoelectric patches. The main innovation with respect to the most common solutions is that the control laws are directly linked to a damage driving force, which is correlated to a fatigue damage model for the specific material. The control logic is different depending on the damage state of the structure. If no significant damage affects the structure, the controller decreases the crack nucleation probability by limiting the driving forces in the overall structure. On the contrary, if initiated cracks are present, their further propagation is prevented by controlling the damage driving forces in the already damaged areas. The structural diagnostics is performed through a vibration-based health monitoring technique, while periodical adaptation of the controller is adopted to consider damage-induced changes on the structure state-space model and to give emphasis to the most excited modes. The control algorithm has been numerically validated on the finite element model of a cantilever plate.

  20. Development of a Generic Creep-Fatigue Life Prediction Model

    NASA Technical Reports Server (NTRS)

    Goswami, Tarun

    2002-01-01

    The objective of this research proposal is to further compile creep-fatigue data of steel alloys and superalloys used in military aircraft engines and/or rocket engines and to develop a statistical multivariate equation. The newly derived model will be a probabilistic fit to all the data compiled from various sources. Attempts will be made to procure the creep-fatigue data from NASA Glenn Research Center and other sources to further develop life prediction models for specific alloy groups. In a previous effort [1-3], a bank of creep-fatigue data has been compiled and tabulated under a range of known test parameters. These test parameters are called independent variables, namely; total strain range, strain rate, hold time, and temperature. The present research attempts to use these variables to develop a multivariate equation, which will be a probabilistic equation fitting a large database. The data predicted by the new model will be analyzed using the normal distribution fits, the closer the predicted lives are with the experimental lives (normal line 1 to 1 fit) the better the prediction. This will be evaluated in terms of a coefficient of correlation, R 2 as well. A multivariate equation developed earlier [3] has the following form, where S, R, T, and H have specific meaning discussed later.

  1. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  2. Fatigue Life Methodology for Tapered Composite Flexbeam Laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; OBrien, T. Kevin; Rousseau, Carl Q.

    1997-01-01

    The viability of a method for determining the fatigue life of composite rotor hub flexbeam laminates using delamination fatigue characterization data and a geometric non-linear finite element (FE) analysis was studied. Combined tension and bending loading was applied to non-linear tapered flexbeam laminates with internal ply drops. These laminates, consisting of coupon specimens cut from a full-size S2/E7T1 glass-epoxy flexbeam were tested in a hydraulic load frame under combined axial-tension and transverse cyclic bending. The magnitude of the axial load remained constant and the direction of the load rotated with the specimen as the cyclic bending load was applied. The first delamination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group. Subsequently, unstable delamination occurred by complete delamination along the length of the specimen. Continued cycling resulted in multiple delaminations. A 2D finite element model of the flexbeam was developed and a geometrically non-linear analysis was performed. The global responses of the model and test specimens agreed very well in terms of the transverse displacement. The FE model was used to calculate strain energy release rates (G) for delaminations initiating at the tip of the outer ply-drop area and growing toward the thick or thin regions of the flexbeam, as was observed in the specimens. The delamination growth toward the thick region was primarily mode 2, whereas delamination growth toward the thin region was almost completely mode 1. Material characterization data from cyclic double-cantilevered beam tests was used with the peak calculated G values to generate a curve predicting fatigue failure by unstable delamination as a function of the number of loading cycles. The calculated fatigue lives compared well with the test data.

  3. Fatigue Life Methodology for Tapered Composite Flexbeam Laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; O''Brien, T. Kevin; Rousseau, Carl Q.

    1997-01-01

    The viability of a method for determining the fatigue life of composite rotor hub flexbeam laminates using delamination fatigue characterization data and a geometric non-linear finite element (FE) analysis was studied. Combined tension and bending loading was applied to nonlinear tapered flexbeam laminates with internal ply drops. These laminates, consisting of coupon specimens cut from a full-size S2/E7T1 glass-epoxy flexbeam were tested in a hydraulic load frame under combined axial-tension and transverse cyclic bending loads. The magnitude of the axial load remained constant and the direction of the load rotated with the specimen as the cyclic bending load was applied. The first delamination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group. Subsequently, unstable delamination occurred by complete delamination along the length of the specimen. Continued cycling resulted in multiple delaminations. A 2D finite element model of the flexbeam was developed and a geometrically non-linear analysis was performed. The global responses of the model and test specimens agreed very well in terms of the transverse flexbeam tip-displacement and flapping angle. The FE model was used to calculate strain energy release rates (G) for delaminations initiating at the tip of the outer ply-drop area and growing toward the thick or thin regions of the flexbeam, as was observed in the specimens. The delamination growth toward the thick region was primarily mode 2, whereas delamination growth toward the thin region was almost completely mode 1. Material characterization data from cyclic double-cantilevered beam tests was used with the peak calculated G values to generate a curve predicting fatigue failure by unstable delamination as a function of the number of loading cycles. The calculated fatigue lives compared well with the test data.

  4. Rolling-element fatigue life of AMS 5749 corrosion resistant, high temperature bearing steel

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Hodder, R. S.

    1977-01-01

    The rolling element fatigue lives of AMS 5749 and AISI M-50 were compared in tests run in the five ball fatigue tester and the rolling contact fatigue tester. The effects of double vacuum melting and retained austenite on the life of AMS 5749 were determined in five ball fatigue tests. The double vacuum melting process consisted of induction vacuum melting followed by vacuum arc remelting (VIM-VAR). In the five ball tests, VIM-VAR AMS 5749 gave lives at least six times that of VIM-VAR AISI M-50. Similar tests in the rolling contact fatigue tester showed no significant difference in the lives of the two materials. The rolling element fatigue life of VIM-VAR AMS 5749 was at least 14 times that of vacuum induction melted AMS 5749. A trend toward increased rolling element fatigue life with decreased retained austenite is apparent, but the confidence that all experimental differences are significant is not great.

  5. How life affects the atmosphere

    NASA Technical Reports Server (NTRS)

    Walker, J. C.

    1984-01-01

    The impact of life on the atmosphere is examined through a discussion of the budgets of important atmospheric constituents and the processes that control their concentrations. Life profoundly influences oxygen and a number of minor atmospheric constituents, but many important gases, including those with the greatest effect on global climate, appear to be little altered by biological processes, at least in the steady state.

  6. A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints

    NASA Astrophysics Data System (ADS)

    Wei, Helin; Wang, Kuisheng

    2011-11-01

    Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.

  7. The Effects of Laser Marking and Symbol Etching on the Fatigue Life of Medical Devices

    PubMed Central

    Ogrodnik, P. J.; Moorcroft, C. I.; Wardle, P.

    2013-01-01

    This paper examines the question;“ does permanent laser marking affect the mechanical performance of a metallic medical component?” The literature review revealed the surprising fact that very little has been presented or studied even though intuition suggests that its effect could be detrimental to a component's fatigue life. A brief investigation of laser marking suggests that defects greater than 25 μm are possible. A theoretical investigation further suggests that this is unlikely to cause issues with relation to fast fracture but is highly likely to cause fatigue life issues. An experimental investigation confirmed that laser marking reduced the fatigue life of a component. This combination of lines of evidence suggests, strongly, that positioning of laser marking is highly critical and should not be left to chance. It is further suggested that medical device designers, especially those related to orthopaedic implants, should consider the position of laser marking in the design process. They should ensure that it is in an area of low stress amplitude. They should also ensure that they investigate worst-case scenarios when considering the stress environment; this, however, may not be straightforward. PMID:27006919

  8. Fatigue Life Assessment of 65Si7 Leaf Springs: A Comparative Study

    PubMed Central

    Arora, Vinkel Kumar; Bhushan, Gian; Aggarwal, M. L.

    2014-01-01

    The experimental fatigue life prediction of leaf springs is a time consuming process. The engineers working in the field of leaf springs always face a challenge to formulate alternate methods of fatigue life assessment. The work presented in this paper provides alternate methods for fatigue life assessment of leaf springs. A 65Si7 light commercial vehicle leaf spring is chosen for this study. The experimental fatigue life and load rate are determined on a full scale leaf spring testing machine. Four alternate methods of fatigue life assessment have been depicted. Firstly by SAE spring design manual approach the fatigue test stroke is established and by the intersection of maximum and initial stress the fatigue life is predicted. The second method constitutes a graphical method based on modified Goodman's criteria. In the third method codes are written in FORTRAN for fatigue life assessment based on analytical technique. The fourth method consists of computer aided engineering tools. The CAD model of the leaf spring has been prepared in solid works and analyzed using ANSYS. Using CAE tools, ideal type of contact and meshing elements have been proposed. The method which provides fatigue life closer to experimental value and consumes less time is suggested. PMID:27379327

  9. Fatigue Life Assessment of 65Si7 Leaf Springs: A Comparative Study.

    PubMed

    Arora, Vinkel Kumar; Bhushan, Gian; Aggarwal, M L

    2014-01-01

    The experimental fatigue life prediction of leaf springs is a time consuming process. The engineers working in the field of leaf springs always face a challenge to formulate alternate methods of fatigue life assessment. The work presented in this paper provides alternate methods for fatigue life assessment of leaf springs. A 65Si7 light commercial vehicle leaf spring is chosen for this study. The experimental fatigue life and load rate are determined on a full scale leaf spring testing machine. Four alternate methods of fatigue life assessment have been depicted. Firstly by SAE spring design manual approach the fatigue test stroke is established and by the intersection of maximum and initial stress the fatigue life is predicted. The second method constitutes a graphical method based on modified Goodman's criteria. In the third method codes are written in FORTRAN for fatigue life assessment based on analytical technique. The fourth method consists of computer aided engineering tools. The CAD model of the leaf spring has been prepared in solid works and analyzed using ANSYS. Using CAE tools, ideal type of contact and meshing elements have been proposed. The method which provides fatigue life closer to experimental value and consumes less time is suggested. PMID:27379327

  10. Structural health monitoring of wind towers: residual fatigue life estimation

    NASA Astrophysics Data System (ADS)

    Benedetti, M.; Fontanari, V.; Battisti, L.

    2013-04-01

    In a recent paper (Benedetti et al 2011 Smart Mater. Struct. 20 055009), the authors investigated the possibility of detecting cracks in critical sites of onshore wind towers using a radial arrangement of strain sensors around the tower periphery in the vicinity of the base welded joint. Specifically, the strain difference between adjacent strain sensors is used as a damage indicator. The number of sensors to be installed is determined by the minimum crack size to be detected, which in turn depends on the expected extreme wind conditions and programmed inspection/repair schedule. In this companion paper, we address these issues by investigating possible strategies for residual fatigue life assessment and management of onshore wind towers once the crack has been detected. For this purpose, fracture mechanics tests are carried out using welded samples to quantify the resistance to fatigue crack growth as well as the elastic-plastic fracture toughness of the welded joint at the tower base. These material strength characteristics are used to estimate (i) the critical crack size for structural integrity on the basis of fracture toughness tests, elastoplastic finite element analyses and loading spectra under extreme wind conditions, (ii) the residual life before structural collapse, applying a frequency-domain method to typical in-service wind actions and wind directionality.

  11. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  12. Determination of Turboprop Reduction Gearbox System Fatigue Life and Reliability

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Lewicki, David G.; Savage, Michael; Vlcek, Brian L.

    2007-01-01

    Two computational models to determine the fatigue life and reliability of a commercial turboprop gearbox are compared with each other and with field data. These models are (1) Monte Carlo simulation of randomly selected lives of individual bearings and gears comprising the system and (2) two-parameter Weibull distribution function for bearings and gears comprising the system using strict-series system reliability to combine the calculated individual component lives in the gearbox. The Monte Carlo simulation included the virtual testing of 744,450 gearboxes. Two sets of field data were obtained from 64 gearboxes that were first-run to removal for cause, were refurbished and placed back in service, and then were second-run until removal for cause. A series of equations were empirically developed from the Monte Carlo simulation to determine the statistical variation in predicted life and Weibull slope as a function of the number of gearboxes failed. The resultant L(sub 10) life from the field data was 5,627 hr. From strict-series system reliability, the predicted L(sub 10) life was 774 hr. From the Monte Carlo simulation, the median value for the L(sub 10) gearbox lives equaled 757 hr. Half of the gearbox L(sub 10) lives will be less than this value and the other half more. The resultant L(sub 10) life of the second-run (refurbished) gearboxes was 1,334 hr. The apparent load-life exponent p for the roller bearings is 5.2. Were the bearing lives to be recalculated with a load-life exponent p equal to 5.2, the predicted L(sub 10) life of the gearbox would be equal to the actual life obtained in the field. The component failure distribution of the gearbox from the Monte Carlo simulation was nearly identical to that using the strict-series system reliability analysis, proving the compatibility of these methods.

  13. An Energy Based Fatigue Life Prediction Framework for In-Service Structural Components

    SciTech Connect

    H. Ozaltun; M. H.H. Shen; T. George; C. Cross

    2011-06-01

    An energy based fatigue life prediction framework has been developed for calculation of remaining fatigue life of in service gas turbine materials. The purpose of the life prediction framework is to account aging effect caused by cyclic loadings on fatigue strength of gas turbine engines structural components which are usually designed for very long life. Previous studies indicate the total strain energy dissipated during a monotonic fracture process and a cyclic process is a material property that can be determined by measuring the area underneath the monotonic true stress-strain curve and the sum of the area within each hysteresis loop in the cyclic process, respectively. The energy-based fatigue life prediction framework consists of the following entities: (1) development of a testing procedure to achieve plastic energy dissipation per life cycle and (2) incorporation of an energy-based fatigue life calculation scheme to determine the remaining fatigue life of in-service gas turbine materials. The accuracy of the remaining fatigue life prediction method was verified by comparison between model approximation and experimental results of Aluminum 6061-T6. The comparison shows promising agreement, thus validating the capability of the framework to produce accurate fatigue life prediction.

  14. Influence of the Inclusion Shape on the Rolling Contact Fatigue Life of Carburized Steels

    NASA Astrophysics Data System (ADS)

    Neishi, Yutaka; Makino, Taizo; Matsui, Naoki; Matsumoto, Hitoshi; Higashida, Masashi; Ambai, Hidetaka

    2013-05-01

    It has been well known that the flaking failure in rolling contact fatigue (RCF) originates from nonmetallic inclusions in steels, and their apparent size is one of the important factors affecting RCF life. However, the influence of inclusion shape on the RCF life has not been fully clarified. In this study, attention was paid to the influence of the inclusion shape on the RCF life. This was evaluated by using carburized JIS-SCM420 (SAE4320) steels that contained two different shapes of MnS—stringer type and spheroidized type—as inclusions. Sectional observations were made to investigate the relation between the occurrence of shear crack in the subsurface and the shape of MnS. It was found that the RCF life was well correlated with the length of MnS projected to the load axis, and the initiation of shear crack in subsurface was accelerated as the length of MnS increased.

  15. Possible influence of defenses and negative life events on patients with chronic fatigue syndrome: a pilot study.

    PubMed

    Sundbom, Elisabet; Henningsson, Mikael; Holm, Ulla; Söderbergh, Stina; Evengård, Birgitta

    2002-12-01

    13 patients with a diagnosis of chronic fatigue syndrome and two contrast groups of conversion disorder patients (n = 19) and healthy controls (n = 13) were assessed using the projective perceptual Defense Mechanism Test to investigate if specific defense patterns are associated with chronic fatigue syndrome. Another objective was to assess the possible influence of perceived negative life events prior the onset of the illness. The overall results showed significant differences in defensive strategies among groups represented by two significant dimensions in a Partial Least Squares analysis. Compared to the contrast groups the patients with chronic fatigue syndrome were distinguished by a defense pattern of different distortions of aggressive affect, induced by an interpersonal anxiety-provoking stimulus picture with short exposures. Their responses suggested the conversion group was characterized by a nonemotionally adapted pattern and specific constellations of defenses, associated with interior reality orientation compared to the patients with chronic fatigue syndrome and the healthy controls. Rated retrospectively, the group with chronic fatigue syndrome reported significantly more negative life events prior to the onset of their illness than healthy controls. For instance, 5 of the 13 patients reported sexual assault or physical battery as children or teenagers compared to none of the healthy controls. A significant association was found between defense pattern and frequency of reported negative life events. However, these retrospective reports might be confounded to some extent by the experience of the patients' illness; for example, the reports may be interpreted in terms of present negative affect. PMID:12530752

  16. Estimation of fatigue strain-life curves for austenitic stainless steels in light water reactor environments.

    SciTech Connect

    Chopra, O. K.; Smith, J. L.

    1998-02-12

    The ASME Boiler and Pressure Vessel Code design fatigue curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue lives of austenitic stainless steels (SSs) in light water reactor (LWR) environments. Unlike those of carbon and low-alloy steels, environmental effects on fatigue lives of SSs are more pronounced in low-dissolved-oxygen (low-DO) water than in high-DO water, This paper summarizes available fatigue strain vs. life data on the effects of various material and loading variables such as steel type, DO level, strain range, and strain rate on the fatigue lives of wrought and cast austenitic SSs. Statistical models for estimating the fatigue lives of these steels in LWR environments have been updated with a larger data base. The significance of the effect of environment on the current Code design curve has been evaluated.

  17. Calculation of thermomechanical fatigue life based on isothermal behavior

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.

    1987-01-01

    The isothermal and thermomechanical fatigue (TMF) crack initiation response of a hypothetical material was analyzed. Expected thermomechanical behavior was evaluated numerically based on simple, isothermal, cyclic stress-strain - time characteristics and on strainrange versus cyclic life relations that have been assigned to the material. The attempt was made to establish basic minimum requirements for the development of a physically accurate TMF life-prediction model. A worthy method must be able to deal with the simplest of conditions: that is, those for which thermal cycling, per se, introduces no damage mechanisms other than those found in isothermal behavior. Under these assumed conditions, the TMF life should be obtained uniquely from known isothermal behavior. The ramifications of making more complex assumptions will be dealt with in future studies. Although analyses are only in their early stages, considerable insight has been gained in understanding the characteristics of several existing high-temperature life-prediction methods. The present work indicates that the most viable damage parameter is based on the inelastic strainrange.

  18. Probabilistic fatigue life prediction model for alloys with defects: applied to A206

    SciTech Connect

    Kapoor, Rajeev; Sree Hari Rao, V.; Mishra, Rajiv S.; Baumann, John A.; Grant, Glenn J.

    2011-05-31

    Presented here is a model for the prediction of fatigue life based on the statistical distribution of pores, intermetallic particles and grains. This has been applied to a cast Al alloy A206, before and after friction stir processing (FSP). The model computes the probability to initiate a small crack based on the probability of finding combinations of defects and grains on the surface. The crack initiation and propagation life of small cracks due to these defect and grain combinations are computed and summed to obtain the total fatigue life. The defect and grain combinations are ranked according to total fatigue life and the failure probability computed. Bending fatigue experiments were carried out on A206 before and after FSP. FSP eliminated the porosity, broke down the particles and refined the microstructure. The model predicted the fatigue life of A206 before and after FSP well. The cumulative probability distribution vs. fatigue life was fitted to a three parameter Weibull distribution function. The scatter reduced after FSP and the threshold of fatigue life increased. The potential improvement in the fatigue life of A206 for a microstructure consisting of a finer distribution of particle sizes after FSP was predicted using the model.

  19. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Nelson, R. S.; Levan, G. W.; Harvey, P. R.

    1992-01-01

    This Final Report covers the activities completed under the optional program of the NASA HOST Contract, NAS3-23288. The initial effort of the optional program was report-in NASA CR189221, which consisted of high temperature strain controlled fatigue tests to study the effects of thermomechanical fatigue, multiaxial loading, reactive environments, and imposed stresses. The baseline alloy used in the tests included B1900+Hf (with or without coating) and wrought INCO 718. Tests conducted on B1900+Hf included environmental tests using various atmospheres (75 psig oxygen, purified argon, or block exposures) and specimen tests of wrought INCO 718 included tensile, creep, stress rupture, TMF, multiaxial, and mean stress tests. Results of these testings were used to calibrate a CDA model for INCO 718 alloy and to develop modifications or corrections to the CDA model to handle additional failure mechanisms. The Socie parameter was found to provide the best correlation for INCO multiaxial loading. Microstructural evaluations consisting of optical, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) techniques, and surface replication techniques to determine crack initiation lives provided data which were used to develop life prediction models.

  20. The influence of trait-negative affect and compassion satisfaction on compassion fatigue in Australian nurses.

    PubMed

    Craigie, Mark; Osseiran-Moisson, Rebecca; Hemsworth, David; Aoun, Samar; Francis, Karen; Brown, Janie; Hegney, Desley; Rees, Clare

    2016-01-01

    For this study, we examined the nature of the unique relationships trait-negative affect and compassion satisfaction had with compassion fatigue and its components of secondary traumatic stress and burnout in 273 nurses from 1 metropolitan tertiary acute hospital in Western Australia. Participants completed the Professional Quality of Life Scale (Stamm, 2010), Depression Anxiety Stress Scale (Lovibond & Lovibond, 2004), and the State-Trait Anxiety Inventory (Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983). Bivariate correlation and hierarchical regression analyses were performed to examine and investigate 4 hypotheses. The results demonstrate a clear differential pattern of relationships with secondary traumatic stress and burnout for both trait-negative affect and compassion satisfaction. Trait-negative affect was clearly the more important factor in terms of its contribution to overall compassion fatigue and secondary traumatic stress. In contrast, compassion satisfaction's unique protective relationship only related to burnout, and not secondary traumatic stress. The results are therefore consistent with the view that compassion satisfaction may be an important internal resource that protects against burnout, but is not directly influential in protecting against secondary traumatic stress for nurses working in an acute-care hospital environment. With the projected nursing workforce shortages in Australia, it is apparent that a further understanding is warranted of how such personal variables may work as protective and risk factors. PMID:25961866

  1. Experimental fatigue life investigation of cylindrical thrust chambers

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1977-01-01

    The thrust chambers studied in the investigation have been designed for a possible use in the Space Shuttle main engine. An annular combustion chamber configuration was used, consisting of an annular injector, a liquid hydrogen cooled outer cylinder, which served as the test section, and a contoured water cooled centerbody which formed the throat. Twenty-two cylinders were fabricated by milling cooling channels into liners fabricated from the material to be evaluated. The three materials chosen for the liners include OFHC copper, Amzirc, and NARloy-Z. The cylinders were cyclically tested until failure occurred due to fatigue cracks in the hot-gas-side wall. It was found that cylinders with liners fabricated from NARloy-Z and aged Amzirc had the best cyclic life characteristics.

  2. Development of a Composite Delamination Fatigue Life Prediction Methodology

    NASA Technical Reports Server (NTRS)

    OBrien, Thomas K.

    2009-01-01

    Delamination is one of the most significant and unique failure modes in composite structures. Because of a lack of understanding of the consequences of delamination and the inability to predict delamination onset and growth, many composite parts are unnecessarily rejected upon inspection, both immediately after manufacture and while in service. NASA Langley is leading the efforts in the U.S. to develop a fatigue life prediction methodology for composite delamination using fracture mechanics. Research being performed to this end will be reviewed. Emphasis will be placed on the development of test standards for delamination characterization, incorporation of approaches for modeling delamination in commercial finite element codes, and efforts to mature the technology for use in design handbooks and certification documents.

  3. The application of strain field intensity method in the steel bridge fatigue life evaluation

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Wang, Yanhong; Cui, Yanjun; Cao, Kaisheng

    2012-04-01

    Asce's survey shows that 80%--90% bridge damage were associated with fatigue and fracture problems. With the operation of vehicle weight and traffic volume increases constantly, the fatigue of welded steel bridge is becoming more and more serious in recent years. A large number of studies show that most prone to fatigue damage of steel bridge is part of the welding position. Thus, it's important to find a more precise method to assess the fatigue life of steel bridge. Three kinds of fatigue analysis method is commonly used in engineering practice, such as nominal stress method, the local stress strain method and field intensity method. The first two methods frequently used for fatigue life assessment of steel bridge, but field intensity method uses less ,and it widely used in fatigue life assessment of aerospace and mechanical. Nominal stress method and the local stress strain method in engineering has been widely applied, but not considering stress gradient and multiaxial stress effects, the accuracy of calculation stability is relatively poor, so it's difficult to fully explain the fatigue damage mechanism. Therefore, it used strain field intensity method to evaluate the fatigue life of steel bridge. The fatigue life research of the steel bridge based on the strain field method and the fatigue life of the I-section plate girder was analyzed. Using Ansys on the elastoplastic finite element analysis determined the dangerous part of the structure and got the stress-strain history of the dangerous point. At the same time, in order to divide the unit more elaborate introduced the sub-structure technology. Finally, it applies K.N. Smith damage equation to calculate the fatigue life of the dangerous point. In order to better simulating the actual welding defects, it dug a small hole in the welding parts. It dug different holds from different view in the welding parts and plused the same load to calculate its fatigue life. Comparing the results found that the welding

  4. Life stages affect method use.

    PubMed

    Barnett, B

    1995-03-01

    When it comes to family planning, women want choice. They want different types of methods, both permanent and temporary, available upon demand at the clinic of their choosing. The availability of a broad selection of methods is so important because age, marital status, desired family size, frequency of sexual intercourse, health concerns, and exposure to sexually transmitted diseases (STD) all can influence a woman's contraceptive use and choice of methods. Family planning programs often target their services to young married women in the midst of their childbearing years who want to space births. A woman's reproductive life, however, lasts almost four decades. Family planning programs therefore need to consider adolescents, unmarried women, and women over age 40 since they may also be at high risk for unwanted pregnancy. Family planning programs should offer a variety of safe, effective, acceptable, affordable contraceptive methods to help women prevent unwanted pregnancies and STDs, and to help them achieve their childbearing goals. PMID:12288748

  5. Effect of lubricant extreme pressure additives on rolling element fatigue life

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1973-01-01

    The effects of surface active additives on rolling-element fatigue life were investigated with the five-ball fatigue tester at conditions where classical subsurface initiated rolling-element fatigue is the sole mode of failure. Test balls of AISI 52100, AISI M-50, and AISI 1018 were run with an acid-treated white oil containing either 2.5 percent sulfurized terpene, 1 percent didodecyl phosphite, or 5 percent chlorinated wax. In general, it was found that the influence of surface active additives was detrimental to rolling-element fatigue life. The chlorinated-wax additive significantly reduced fatigue life by a factor of 7. The base oil with the 2.5 percent sulfurized-terpene additive can reduce fatigue life by as much as 50 percent. No statistical change in fatigue life occurred with the base oil having the 1 percent didodecyl-phosphite additive. The additives used with the base oil did not change the ranking of the bearing steels where rolling-element fatigue life was of subsurface origin.

  6. Influence of Asymmetrical Waveform on Low-Cycle Fatigue Life of Micro Solder Joint

    NASA Astrophysics Data System (ADS)

    Kanda, Yoshihiko; Kariya, Yoshiharu

    2010-02-01

    The effects of waveform symmetry on the low-cycle fatigue life of the Sn-3.0Ag-0.5Cu alloy have been investigated, using micro solder joint specimens with approximately the same volume of solder as is used in actual products. Focusing on crack initiation life, fatigue tests on Sn-Ag-Cu micro solder joints using asymmetrical triangular waveforms revealed no significant reduction in fatigue life. A slight reduction in fatigue life at low strain ranges caused by an increase in the fatigue ductility exponent, which is the result of a weakening microstructure due to loads applied at high temperature for long testing time, was observed. This was due to the fact that grain boundary damage, which has been reported in large-size specimens subjected to asymmetrical triangular waveforms, does not occur in Sn-Ag-Cu micro size solder joints with only a small number of crystal grain boundaries.

  7. Uncertainty Analysis in Fatigue Life Prediction of Gas Turbine Blades Using Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Li, Yan-Feng; Zhu, Shun-Peng; Li, Jing; Peng, Weiwen; Huang, Hong-Zhong

    2015-12-01

    This paper investigates Bayesian model selection for fatigue life estimation of gas turbine blades considering model uncertainty and parameter uncertainty. Fatigue life estimation of gas turbine blades is a critical issue for the operation and health management of modern aircraft engines. Since lots of life prediction models have been presented to predict the fatigue life of gas turbine blades, model uncertainty and model selection among these models have consequently become an important issue in the lifecycle management of turbine blades. In this paper, fatigue life estimation is carried out by considering model uncertainty and parameter uncertainty simultaneously. It is formulated as the joint posterior distribution of a fatigue life prediction model and its model parameters using Bayesian inference method. Bayes factor is incorporated to implement the model selection with the quantified model uncertainty. Markov Chain Monte Carlo method is used to facilitate the calculation. A pictorial framework and a step-by-step procedure of the Bayesian inference method for fatigue life estimation considering model uncertainty are presented. Fatigue life estimation of a gas turbine blade is implemented to demonstrate the proposed method.

  8. Evaluation of Creep-Fatigue Life by Fraction of Cavity Area

    NASA Astrophysics Data System (ADS)

    Kim, Bumjoon; Lim, Byeongsoo

    The components of power plant such as main steam pipe and gas turbines are operated under static and cyclic load conditions. As the period of static load increases, the service life of these components decreases. Generally, the increase of cyclic load results in fatigue damage and the increase of static load period results in the metallurgical degradation by the effect of creep. Under the creep-fatigue interaction, cavities cause rapid degradation of material and decreases the creep-fatigue life of high temperature components. In this paper, creep-fatigue tests were performed to investigate the relationship between the cavity and creep-fatigue life under various tensile hold times. Test materials were HAZ and base metal of P122 (12Cr-2W) alloy weldment. The effect of hold times on the cavity damage was examined and the fraction of cavity area was analyzed. From the linear relationship of Fca (fraction of cavity area) and experimental life, a new parameter for life evaluation, Fca, was introduced and the creep-fatigue life was predicted by Fca. Good agreement was found between experimental and predicted life. Under the same hold time condition, the Fca of HAZ was greater than that of base metal while the creep-fatigue life of HAZ was shorter than that of base metal.

  9. Transverse Tension Fatigue Life Characterization Through Flexure Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Chawan, Arun D.; Krueger, Ronald; Paris, Isabelle

    2001-01-01

    The transverse tension fatigue life of S2/8552 glass-epoxy and IM7/8552 carbon-epoxy was characterized using flexure tests of 90-degree laminates loaded in 3-point and 4-point bending. The influence of specimen polishing and specimen configuration on transverse tension fatigue life was examined using the glass-epoxy laminates. Results showed that 90-degree bend specimens with polished machined edges and polished tension-side surfaces, where bending failures where observed, had lower fatigue lives than unpolished specimens when cyclically loaded at equal stress levels. The influence of specimen thickness and the utility of a Weibull scaling law was examined using the carbon-epoxy laminates. The influence of test frequency on fatigue results was also documented for the 4-point bending configuration. A Weibull scaling law was used to predict the 4-point bending fatigue lives from the 3-point bending curve fit and vice-versa. Scaling was performed based on maximum cyclic stress level as well as fatigue life. The scaling laws based on stress level shifted the curve fit S-N characterizations in the desired direction, however, the magnitude of the shift was not adequate to accurately predict the fatigue lives. Furthermore, the scaling law based on fatigue life shifted the curve fit S-N characterizations in the opposite direction from measured values. Therefore, these scaling laws were not adequate for obtaining accurate predictions of the transverse tension fatigue lives.

  10. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2008-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  11. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2012-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  12. Fatigue

    MedlinePlus

    ... sleep. Fatigue is a lack of energy and motivation. Drowsiness and apathy (a feeling of not caring ... fatigue symptoms, and your lifestyle, habits, and feelings. Tests that may be ordered include the following: Blood ...

  13. Grain boundary oxidation and its effects on high temperature fatigue life

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Yoshiki

    1986-01-01

    Fatigue lives at elevated temperatures are often shortened by creep and/or oxidation. Creep causes grain boundary void nucleation and grain boundary cavitation. Grain boundary voids and cavities will accelerate fatigue crack nucleation and propagation, and thereby shorten fatigue life. The functional relationships between the damage rate of fatigue crack nucleation and propagation and the kinetic process of oxygen diffusion depend on the detailed physical processes. The kinetics of grain boundary oxidation penetration was investigated. The statistical distribution of grain boundary penetration depth was analyzed. Its effect on high temperature fatigue life are discussed. A model of intermittent micro-ruptures of grain boundary oxide was proposed for high temperature fatigue crack growth. The details of these studies are reported.

  14. Evaluation of Pressurization Fatigue Life of 1441 Al-li Fuselage Panel

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Dicus, Dennis I.; Fridlyander, Joseph; Davydov, Valentin

    1999-01-01

    A study was conducted to evaluate the pressurization fatigue life of fuselage panels with skins fabricated from 1441 Al-Li, an attractive new Russian alloy. The study indicated that 1441 Al-Li has several advantages over conventional aluminum fuselage skin alloy with respect to fatigue behavior. Smooth 1441 Al-Li sheet specimens exhibited a fatigue endurance limit similar to that for 1163 Al (Russian version of 2024 Al) sheet. Notched 1441 Al-Li sheet specimens exhibited greater fatigue strength and longer fatigue life than 1163 Al. In addition, Tu-204 fuselage panels fabricated by Tupolev Design Bureau using Al-Li skin and ring frames with riveted 7000-series aluminum stiffeners had longer pressurization fatigue lives than did panels constructed from conventional aluminum alloys. Taking into account the lower density of this alloy, the results suggest that 1441 Al-Li has the potential to improve fuselage performance while decreasing structural weight.

  15. Effect of carbide distribution on rolling-element fatigue life of AMS 5749

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Bamberger, E. N.

    1983-01-01

    Endurance tests with ball bearings made of corrosion resistant bearing steel which resulted in fatigue lives much lower than were predicted are discussed. Metallurgical analysis revealed an undesirable carbide distribution in the races. It was shown in accelerated fatigue tests in the RC rig that large, banded carbides can reduce rolling element fatigue life by a factor of approximately four. The early spalling failures on the bearing raceways are attributed to the large carbide size and banded distribution.

  16. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants

    NASA Astrophysics Data System (ADS)

    Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru

    2013-02-01

    Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.

  17. Evaluation of Fatigue Life of CRM-Reinforced SMA and Its Relationship to Dynamic Stiffness

    PubMed Central

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture. PMID:25050406

  18. Evaluation of fatigue life of CRM-reinforced SMA and its relationship to dynamic stiffness.

    PubMed

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati; Koting, Suhana

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture. PMID:25050406

  19. Prediction of fatigue crack propagation life in notched members under variable amplitude loading

    NASA Astrophysics Data System (ADS)

    Khan, Z.; Rauf, A.; Younas, M.

    1997-06-01

    One of the interesting phenomenon in the study of fatigue crack propagation under variable amplitude load cycling is the crack growth retardation that normally occurs due to the application of a periodic overload. Fatigue crack growth rate under simple variable amplitude loading sequence incorporating period overloads is studied using single edge notched specimens of AISI304 stainless steel. Load interaction effects due to single and multiple overload have been addressed. Substantial retardation of fatigue crack growth rate is observed due to the introduction of periodic tensile overloads. Estimates of fatigue life have been obtained employing Wheeler model (using Paris and modified Paris equations) and Elber’s model. Analytical predictions are compared with experimental results. Results of these analytical fatigue life predictions show good agreement with the experimental fatigue life data. Fatigue crack propagation rates also have been evaluated from the fractographic study of fatigue striations seen on the fracture surface. Good agreement was found between the experimentally observed crack growth rates and the fatigue crack growth rates determined by the fractographic studies.

  20. Statistical analysis of fatigue strain-life data for carbon and low-alloy steels

    SciTech Connect

    Keisler, J.; Chopra, O.K.

    1995-03-01

    The existing fatigue strain vs life (S-N) data, foreign and domestic, for carbon and low-alloy steels used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. A statistical model has been developed for estimating the effects of the various test conditions on fatigue life. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by applying design margins for size, geometry, and surface finish to crack initiation curves estimated from the model.

  1. Effect of Progressive Muscle Relaxation on the Fatigue and Quality of Life Among Iranian Aging Persons.

    PubMed

    Hassanpour-Dehkordi, Ali; Jalali, Amir

    2016-07-01

    Since the elderly population is increasing rapidly in developing countries which may decrease the physical activity and exercise and in turn could affect the elderly's quality of life, this study aimed to investigate the effect of progressive muscle relaxation on the elderly's quality of life in Iran. In a randomized clinical trial, participants were randomly divided into intervention and control groups. For the intervention group, muscular progressive relaxation was run three days per week for three months (totally 36 sessions). In relaxation, a patient contract a group of his/her muscles in each step and relaxes them after five seconds and finally loosens all muscles and takes five deep breaths. Each session lasts for 45 minutes. The instrument of data gathering consisted of questionnaires on individual's demographic data and quality of life SF-36. After intervention, quality of life increased significantly in the patients undergoing muscular progressive relaxation and fatigue severity decreased significantly in the intervention group compared to prior to intervention. In addition, there was a statistically significant difference in mean score of physical performance, restricted activity after physical problem, energy, socially function, physical pain, overall hygiene, and quality of life between intervention and control groups. By implementing regular and continuous progressive muscle relaxation, quality of life could be increased in different dimensions in the elderly and the context could be provided to age healthily and enjoy higher health and autonomy. Therefore, all of the therapeutic staffs are recommended to implement this plan to promote the elderly's quality of life. PMID:27424013

  2. Strain Energy Approach for Axial and Torsional Fatigue Life Prediction in Aged NiCrMoV Steels

    NASA Astrophysics Data System (ADS)

    Song, Gee Wook; Hyun, Jung Seob; Ha, Jeong Soo

    Axial and torsional low cycle fatigue tests were performed for NiCrMoV steels serviced low-pressure turbine rotor of nuclear power plant. The results were used to evaluate multiaxial fatigue life models including Tresca, von Mises and Brown and Miller's critical plane. The fatigue life predicted by the multiaxial fatigue models didn't correspond with the experimental results in small strain range. We proposed the total strain energy density model to predict torsional fatigue life from axial fatigue data. The total strain energy density model was found to best correlate the experimental data with predictions being within a factor of 2.

  3. Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes

    NASA Technical Reports Server (NTRS)

    Miles, R. N.

    1992-01-01

    This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.

  4. Effects of LWR environments on fatigue life of carbon and low-alloy steels

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1995-03-01

    SME Boiler and Pressure Vessel Code provides construction of nuclear power plant components. Figure I-90 Appendix I to Section III of the Code specifies fatigue design curves for structural materials. While effects of environments are not explicitly addressed by the design curves, test data suggest that the Code fatigue curves may not always be adequate in coolant environments. This paper reports the results of recent fatigue tests that examine the effects of steel type, strain rate, dissolved oxygen level, strain range, loading waveform, and surface morphology on the fatigue life of A 106-Gr B carbon steel and A533-Gr B low-alloy steel in water.

  5. Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    urri, Gretchen B.; Schaff, Jeffery R.

    2006-01-01

    Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.

  6. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  7. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1983-01-01

    The activities performed during the first year of the NASA HOST Program, Creep Fatigue Life Prediction for Engine Hot Section Materials (Isotropic), being conducted by Pratt & Whitney Aircraft are summarized. The program is a 5 year, two part effort aimed at improving the high temperature crack initiation prediction technology for gas turbine hot section components. Significant results of the program produced thus far are discussed. Cast B1900 + Hf and wrought IN 718 were selected as the base and alternate materials, respectively. A single heat of B1900 + Hf was obtained and test specimens fabricated. The material was characterized with respect to grain size, gamma prime size, carbide distribution, and dislocation density. Monotonic tensile and creep testing has shown engineering properties within anticipated scatter for this material. Examination of the tensile tests has shown a transition from inhomogeneous planar slip within the grains at lower temperatures to more homogeneous matrix deformation. Examination of the creep tests has shown a transgranular failure mode at 1400 F and an intergranular failure mode at 1600 F and 1800 F.

  8. Factors that affect the fatigue strength of power transmission shafting and their impact on design

    NASA Technical Reports Server (NTRS)

    Leowenthal, S. H.

    1986-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  9. Rolling-element fatigue life with two synthetic cycloaliphatic traction fluids

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1976-01-01

    The life potential of two synthetic cycloaliphatic hydrocarbon traction fluids in rolling element fatigue was evaluated in a five ball fatigue tester. Life comparisons with a MIL-L-23699 qualified tetraester oil showed that the traction test oils had good fatigue life performance, comparable to that of the tetraester oil. No statistically significant life differences between the traction fluids and the tetraester oil were exhibited under the accelerated fatigue test conditions. Erratic operating behavior was occasionally encountered during tests with the antiwear additive containing traction fluid for reasons thought to be related to excessive chemical activity under high contact pressure. This behavior occasionally resulted in premature test termination due to excessive surface distress and overheating.

  10. The relationship between cough-specific quality of life and abdominal muscle endurance, fatigue, and depression in patients with COPD

    PubMed Central

    Arikan, Hulya; Savci, Sema; Calik-Kutukcu, Ebru; Vardar-Yagli, Naciye; Saglam, Melda; Inal-Ince, Deniz; Coplu, Lutfi

    2015-01-01

    Background Cough is a prevalent symptom that impacts quality of life in COPD. The aim of this study was to assess the relationship between cough-specific quality of life, abdominal muscle endurance, fatigue, and depression in stable patients with COPD. Methods Twenty-eight patients with COPD (mean age 60.6±8.7 years) referred for pulmonary rehabilitation participated in this cross-sectional study. Sit-ups test was used for assessing abdominal muscle endurance. Leicester Cough Questionnare (LCQ) was used to evaluate symptom-specific quality of life. Fatigue perception was evaluated with Fatigue Impact Scale (FIS). Beck Depression Inventory (BDI) was used for assessing depression level. Results The LCQ total score was significantly associated with number of sit-ups; BDI score; FIS total; physical, cognitive, and psychosocial scores (P<0.05). Scores of the LCQ physical, social, and psychological domains were also significantly related with number of sit-ups, FIS total score, and BDI score (P<0.05). FIS total score and number of sit-ups explained 58% of the variance in LCQ total score (r=0.76, r2=0.577, F(2–20)=12.296, P<0.001). Conclusion Chronic cough may adversely affect performance in daily life due to its negative effect on fatigue and decrease abdominal muscle endurance in patients with COPD. Decreased cough-related quality of life is related with increased level of depression in COPD patients. Effects of increased abdominal muscle endurance and decreased fatigue in COPD patients with chronic cough need further investigation. PMID:26379433

  11. Fatigue life prediction of dentin-adhesive interface using micromechanical stress analysis

    PubMed Central

    Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L; Spencer, Paulette

    2011-01-01

    Objectives The objective of this work was to develop a methodology for the prediction of fatigue life of the dentin-adhesive (d-a) interface. Methods At the micro-scale, the d-a interface is composed of dissimilar material components. Under global loading, these components experience different local stress amplitudes. The overall fatigue life of the d-a interface is, therefore, determined by the material component that has the shortest fatigue life under local stresses. Multiple 3d finite element (FE) models were developed to determine the stress distribution within the d-a interface by considering variations in micro-scale geometry, material composition and boundary conditions. The results from these models were analyzed to obtain the local stress concentrations within each d-a interface component. By combining the local stress concentrations and experimentally determined stress versus number of cycle to failure (S-N) curves for the different material components, the overall fatigue life of the d-a interface was predicted. Results The fatigue life was found to be a function of the applied loading amplitude, boundary conditions, microstructure and the mechanical properties of the material components of the d-a interface. In addition, it was found that the overall fatigue life of the d-a interface is not determined by the weakest material component. In many cases, the overall fatigue life was determined by the adhesive although exposed collagen was the weakest material component. Comparison of the predicted results with experimental data from the literature showed both qualitative and quantitative agreement. Significance The methodology developed for fatigue life prediction can provide insight into the mechanisms that control degradation of the bond formed at the d-a interface. PMID:21700326

  12. Joint design for improved fatigue life of diffusion-bonded box-stiffened panels

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Moses, P. L.; Kanenko, R. S.

    1985-01-01

    Simple photoelastic models were used to identify a cross-section geometry that would eliminate the severe stress concentrations at the bond line between box stiffeners diffusion bonded to a panel skin. Experimental fatigue-test data from titanium test specimens quantified the allowable stress in terms of cycle life for various joint geometries. It is shown that the effect of stress concentration is reduced and an acceptable fatigue life is achieved.

  13. Factors influencing quality of life in cancer patients: anemia and fatigue.

    PubMed

    Cella, D

    1998-06-01

    Anemia is a multi-symptom syndrome involving both physical and emotional problems that can be evaluated for their impact on quality of life. Fatigue is the cardinal symptom of anemia, reported by three of four cancer patients using the general version of the Functional Assessment of Cancer Therapy (FACT-G) questionnaire. A subscale of the FACT-G, consisting of the FACT-Fatigue (FACT-F) and the FACT-Anemia (FACT-An), has been developed to specifically address this problem. The FACT-F is comprised of the FACT-G plus 13 questions related to fatigue, while the FACT-An is comprised of the FACT-F plus an additional set of seven miscellaneous (non-fatigue) questions relevant to anemia in cancer patients. The FACT-An subscale was initially validated in a cohort of 50 cancer patients. Tests of internal consistency and stability confirmed the reliability of the fatigue component, as well as that of the FACT-G (27 items), the FACT-F (FACT-G plus 13 fatigue items), and the FACT-An (FACT-G plus 20 anemia subscale items) measurement systems. Quality of life scores on these FACT scales significantly decline as patient performance status worsens, and the scales correlate well with other questionnaires (Profile of Mood States and Piper Fatigue Scale) purported to measure the same thing. The scores on the FACT-An subscale also clearly differentiate between patients with low and high hemoglobin levels. Low hemoglobin levels are associated with greater fatigue, poorer overall quality of life, and decreased ability to work (beyond that related directly to fatigue). Interventions that reverse fatigue and other anemia-related symptoms should have a positive effect on quality of life. PMID:9671330

  14. Life prediction of thermal-mechanical fatigue using strain-range partitioning

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Manson, S. S.

    1975-01-01

    The applicability is described of the method of Strainrange Partitioning to the life prediction of thermal-mechanical strain-cycling fatigue. An in-phase test on 316 stainless steel is analyzed as an illustrative example. The observed life is in excellent agreement with the life predicted by the method using the recently proposed Step-Stress Method of experimental partitioning, the Interation Damage Rule, and the life relationships determined at an isothermal temperature of 705 C. Implications of the study are discussed relative to the general thermal fatigue problem.

  15. Effect of Frequency, Environment, and Temperature on Fatigue Behavior of E319 Cast Aluminum Alloy: Stress-Controlled Fatigue Life Response

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Jones, J. W.; Allison, J. E.

    2008-11-01

    The fatigue stress-life (S-N) behavior of E319 cast aluminum alloy was studied by using both ultrasonic and conventional fatigue techniques in order to understand the potential effect of frequency on fatigue behavior of cast aluminum alloys. It was observed that, at the investigated temperature (20 °C, 150 °C, and 250 °C), fatigue life in air at 20 kHz is 5 to 10 times longer than that at 75 Hz. The difference in fatigue life between 20 kHz and 75 Hz is attributable to an environmental effect on fatigue crack growth rate. The effect of frequency, environment, and temperature on S-N behavior of E319 cast aluminum alloy can be predicted by use of a general version of a modified environmental superposition model. Environmental effects need to be considered when ultrasonic fatigue is used for estimating fatigue lives of aluminum alloys that are under cyclic loading at lower frequencies in service. It is possible to extrapolate ultrasonic fatigue data to conventional fatigue behavior for an E319 cast aluminum alloy based on the environmental superposition model.

  16. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).

    PubMed

    Simsiriwong, Jutima; Shrestha, Rakish; Shamsaei, Nima; Lugo, Marcos; Moser, Robert D

    2015-11-01

    In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK. PMID:26301567

  17. Affect, Meaning and Quality of Life

    ERIC Educational Resources Information Center

    Hughes, Michael

    2006-01-01

    Research on quality of life in sociology is largely focused on a narrow range of dimensions including affect, happiness and satisfaction. It largely avoids a concern with the meanings that provide people with the purpose, significance, validity and coherence that are a basis of social relationships and social integration. Evidence is presented…

  18. Empirical modeling of environment-enhanced fatigue crack propagation in structural alloys for component life prediction

    NASA Technical Reports Server (NTRS)

    Richey, Edward, III

    1995-01-01

    This research aims to develop the methods and understanding needed to incorporate time and loading variable dependent environmental effects on fatigue crack propagation (FCP) into computerized fatigue life prediction codes such as NASA FLAGRO (NASGRO). In particular, the effect of loading frequency on FCP rates in alpha + beta titanium alloys exposed to an aqueous chloride solution is investigated. The approach couples empirical modeling of environmental FCP with corrosion fatigue experiments. Three different computer models have been developed and incorporated in the DOS executable program. UVAFAS. A multiple power law model is available, and can fit a set of fatigue data to a multiple power law equation. A model has also been developed which implements the Wei and Landes linear superposition model, as well as an interpolative model which can be utilized to interpolate trends in fatigue behavior based on changes in loading characteristics (stress ratio, frequency, and hold times).

  19. Application of an Energy-Based Life Prediction Model to Bithermal and Thermomechanical Fatigue

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Kalluri, Sreeramesh; Halford, Gary R.

    1994-01-01

    The inelastic hysteresis energy applied to the material in a cycle is used as the basis for predicting nonisothermal fatigue life of a wrought cobalt-base superalloy, Haynes 188, from isothermal fatigue data. Damage functions that account for hold-time effects and time-dependent environmental phenomena such as oxidation and hot corrosion are proposed in terms of the inelastic hysteresis energy per cycle. The proposed damage functions are used to predict the bithermal and thermomechanical fatigue lives of Haynes 188 between 316 and 760 C from isothermal fatigue data. Predicted fatigue lives of all but two of the nonisothermal tests are within a factor of 1.5 of the experimentally observed lives.

  20. Monitoring fatigue life in concrete bridge deck slabs

    NASA Astrophysics Data System (ADS)

    Newhook, J.; Limaye, V.

    2007-04-01

    Concrete bridge deck slabs are the most common form of bridge deck construction in short and medium span bridge structures in North America. Understanding and monitoring the condition of these bridge decks is an important component of a bridge management strategy. Progressive deterioration due to fatigue occurs in concrete decks due to the large number of cycles of heavy wheels loads and normally manifests itself as the progressive growth of cracks in the top and underside of the deck slab. While some laboratory fatigue testing programs have been reported in the literature, there is very little information on proposed techniques to monitor this phenomenon. This paper discusses the issue of how fatigue monitoring may be included as part of a structural health monitoring system for bridges. The paper draws upon previously published experimental results to identify the main characteristics of fatigue damage and structural response for concrete bridge deck slabs. Several means of monitoring this response are then evaluated and monitoring methods are proposed. A specific field structure monitoring program is used to illustrate the application of the concept. The cases study examines several sensor systems and discusses the various limitations and needs in this area. The results are of interest to both the general area of structural health monitoring as well as fatigue monitoring specifically.

  1. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  2. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter.

    PubMed

    Amura, Mikael; Meo, Michele; Amerini, F

    2011-10-01

    Prediction of crack growth and fatigue life estimation of metals using linear/nonlinear acousto-ultrasound methods is an ongoing issue. It is known that by measuring nonlinear parameters, the relative accumulated fatigue damage can be evaluated. However, there is still a need to measure two crack propagation states to assess the absolute residual fatigue life. A procedure based on the measurement of a third-order acoustic nonlinear parameter is presented to assess the residual fatigue life of a metallic component without the need of a baseline. The analytical evaluation of how the cubic nonlinear-parameter evolves during crack propagation is presented by combining the Paris law to the Nazarov-Sutin crack equation. Unlike other developed models, the proposed model assumes a crack surface topology with variable geometrical parameters. Measurements of the cubic nonlinearity parameter on AA2024-T351 specimens demonstrated high sensitivity to crack propagation and excellent agreement with the predicted theoretical behavior. The advantages of using the cubic nonlinearity parameter for fatigue cracks on metals are discussed by comparing the relevant results of a quadratic nonlinear parameter. Then the methodology to estimate crack size and residual fatigue life without the need of a baseline is presented, and advantages and limitations are discussed. PMID:21973336

  3. Fatigue

    MedlinePlus

    ... chemotherapy and radiation Recovering from major surgery Anxiety, stress, or depression Staying up too late Drinking too much alcohol or too many caffeinated drinks Pregnancy One disorder that causes extreme fatigue is chronic ...

  4. Effect of Assembly Stresses on Fatigue Life of Symmetrical 65Si7 Leaf Springs

    PubMed Central

    Arora, Vinkel Kumar; Bhushan, Gian; Aggarwal, M. L.

    2014-01-01

    The maximum stress induced plays vital role in fatigue life improvement of leaf springs. To reduce this maximum stress, leaves with different unassembled cambers are assembled by pulling against each other and a common curvature is established. This causes stress concentration or sets assembly stress in the assembled leaf springs which is subtractive from load stress in master leaf while it is additive to load stress for short leaves. By suitable combination of assembly stresses and stepping, it is possible to distribute the stress and improve the fatigue life of the leaf spring. The effect of assembly stresses on fatigue life of the leaf spring of a light commercial vehicle (LCV) has been studied. A proper combination of stepping and camber has been proposed by taking the design parameters into consideration, so that the stress in the leaves does not exceed maximum design stress. The theoretical fatigue life of the leaf springs with and without considering the assembly stresses is determined and compared with experimental life. The numbers of specimens are manufactured with proposed parameters and tested for load rate, fatigue life on a full scale leaf springs testing machine. The effect of stress range, maximum stress, and initial stress is also discussed. PMID:27433537

  5. The Relationships Between Microstructure, Tensile Properties and Fatigue Life in Ti-5Al-5V-5Mo-3Cr-0.4Fe (Ti-5553)

    NASA Astrophysics Data System (ADS)

    Foltz, John W., IV

    beta-titanium alloys are being increasingly used in airframes as a way to decrease the weight of the aircraft. As a result of this movement, Ti-5Al-5V-5Mo-3Cr-0.4Fe (Timetal 555), a high-strength beta titanium alloy, is being used on the current generation of landing gear. This alloy features good combinations of strength, ductility, toughness and fatigue life in alpha+beta processed conditions, but little is known about beta-processed conditions. Recent work by the Center for the Accelerated Maturation of Materials (CAMM) research group at The Ohio State University has improved the tensile property knowledge base for beta-processed conditions in this alloy, and this thesis augments the aforementioned development with description of how microstructure affects fatigue life. In this work, beta-processed microstructures have been produced in a Gleeble(TM) thermomechanical simulator and subsequently characterized with a combination of electron and optical microscopy techniques. Four-point bending fatigue tests have been carried out on the material to characterize fatigue life. All the microstructural conditions have been fatigue tested with the maximum test stress equal to 90% of the measured yield strength. The subsequent results from tensile tests, fatigue tests, and microstructural quantification have been analyzed using Bayesian neural networks in an attempt to predict fatigue life using microstructural and tensile inputs. Good correlation has been developed between lifetime predictions and experimental results using microstructure and tensile inputs. Trained Bayesian neural networks have also been used in a predictive fashion to explore functional dependencies between these inputs and fatigue life. In this work, one section discusses the thermal treatments that led to the observed microstructures, and the possible sequence of precipitation that led to these microstructures. The thesis then describes the implications of microstructure on fatigue life and

  6. A comparison of reliability and conventional estimation of safe fatigue life and safe inspection intervals

    NASA Technical Reports Server (NTRS)

    Hooke, F. H.

    1972-01-01

    Both the conventional and reliability analyses for determining safe fatigue life are predicted on a population having a specified (usually log normal) distribution of life to collapse under a fatigue test load. Under a random service load spectrum, random occurrences of load larger than the fatigue test load may confront and cause collapse of structures which are weakened, though not yet to the fatigue test load. These collapses are included in reliability but excluded in conventional analysis. The theory of risk determination by each method is given, and several reasonably typical examples have been worked out, in which it transpires that if one excludes collapse through exceedance of the uncracked strength, the reliability and conventional analyses gave virtually identical probabilities of failure or survival.

  7. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the Universal Slopes method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio, number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  8. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, P. A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the 'Universal Slopes' method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio (Vf), number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  9. Fatigue Life Analysis of Turbine Disks Based on Load Spectra of Aero-engines

    NASA Astrophysics Data System (ADS)

    Li, Yan-Feng; Lv, Zhiqiang; Cai, Wei; Zhu, Shun-Peng; Huang, Hong-Zhong

    2016-04-01

    Load spectra of aero-engines reflect the process of operating aircrafts as well as the changes of parameters of aircrafts. According to flight hours and speed cycle numbers of the aero-engines, the relationship between load spectra and the fatigue life of main components of the aero-engines is obtained. Based on distribution function and a generalized stress-strength interference model, the cumulative fatigue damage of aero-engines is then calculated. After applying the analysis of load spectra and the cumulative fatigue damage theory, the fatigue life of the first-stage turbine disks of the aero-engines is evaluated by using the S-N curve and Miner's rule in this paper.

  10. Pain affects depression through anxiety, fatigue and sleep in Multiple Sclerosis

    PubMed Central

    Amtmann, Dagmar; Askew, Robert L.; Kim, Jiseon; Chung, Hyewon; Ehde, Dawn M.; Bombardier, Charles H.; Kraft, George H.; Jones, Salene M.; Johnson, Kurt L.

    2015-01-01

    Objective Over a quarter million individuals in the US have Multiple Sclerosis (MS). Chronic pain and depression are disproportionately high in this population. The purpose of this study was to examine the relationship between chronic pain and depression in MS and to examine potentially meditational effects of anxiety, fatigue and sleep. Methods Cross-sectional data from self-reported instruments measuring multiple symptoms and quality of life indicators were used in this study. Structural equation modeling (SEM) was utilized to model direct and indirect effects of pain on depression in a sample of 1245 community dwelling individuals with MS. Pain interference, depression, fatigue and sleep disturbance were modeled as latent variables with 2 to 3 indicators each. The model controlled for age, sex, disability status (EDSS) and social support. Results A model with indirect effects of pain on depression had adequate fit and accounted for nearly 80% of the variance in depression. The effects of chronic pain on depression were almost completely mediated by fatigue, anxiety, and sleep disturbance. Higher pain was associated with greater fatigue, anxiety, and sleep disturbance, which in turn were associated with higher levels of depression. The largest mediating effect was through fatigue. Additional analyses excluded items with common content and suggested that the meditational effects observed were not attributable to content overlap across scales. Conclusions Individuals living with MS who report high levels of chronic pain and depressive symptoms may benefit from treatment approaches that can address sleep, fatigue, and anxiety. PMID:25602361

  11. Fatigue life of high-speed ball bearings with silicon nitride balls

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    Evaluation of hot-pressed silicon nitride as a rolling-element bearing material. Two grades of hot-pressed silicon nitride balls were tested under rolling contact conditions in a five-ball fatigue tester. A digital computer program was used to predict the dynamic performance characteristics and fatigue life of high-speed ball bearings with silicon nitride balls relative to that with bearings containing steel balls. The results obtained include the finding that fatigue spalls on silicon nitride balls are similar in appearance to those obtained with typical bearing steels.

  12. Roller-burnishing to improve fatigue life in beta-titanium alloys

    SciTech Connect

    Berg, A.; Drechsler, A.; Wagner, L.

    1999-07-01

    The possibilities for using roller-burnishing to improve fatigue behavior in the beta titanium alloys Ti-3Al-8V-6Cr-4Mo-4Zr (Beta C) and Ti-10V-2Fe-3Al (10-2-3) are examined. While roller burnishing does not significantly increase the endurance limit in Beta C, fatigue lifetimes at high cyclic stresses can be increased by up to one order of magnitude. In 10-2-3, the endurance limit can be increased by roughly 100 MPa, while fatigue life at high cyclic stresses is only marginally improved.

  13. Evaluation of the EHL Film Thickness and Extreme Pressure Additives on Gear Surface Fatigue Life

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Shimski, John

    1994-01-01

    Surface pitting fatigue life tests were conducted with seven lubricants, using AISI 9310 spur gears. The test lubricants can be classified as synthetic polyol-esters with various viscosities and additive packages. The lubricant with a viscosity that provided a specific film thickness greater than one and with an additive package produced gear surface fatigue lives that were 8.6 times that for lubricants with a viscosity that provided specific film thickness less than one. Lubricants with the same viscosity and similar additive packages gave equivalent gear surface fatigue lives.

  14. Effect of viscosity on rolling-element fatigue life at cryogenic temperature with fluorinated ether lubricants

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Zaretsky, E. V.

    1975-01-01

    Rolling-element fatigue tests were conducted with 12.7-mm-(1/2-in.-) diameter AISI 52100 steel balls in the NASA five-ball fatigue tester, with a maximum hertz stress of 5500 mN/m2 (800 000 psi), a shaft speed of 4750 rpm, lubricant temperature of 200 K (360 R), a contact angle of 20 deg, using four fluorinated ether lubricants of varying viscosities. No statistically significant differences in rolling-element fatigue life occurred using the four viscosity levels. Elastohydrodynamic calculations indicate that values of the lubricant film parameter were approximately 2 or greater.

  15. High compressive pre-strains reduce the bending fatigue life of nitinol wire.

    PubMed

    Gupta, Shikha; Pelton, Alan R; Weaver, Jason D; Gong, Xiao-Yan; Nagaraja, Srinidhi

    2015-04-01

    Prior to implantation, Nitinol-based transcatheter endovascular devices are subject to a complex thermo-mechanical pre-strain associated with constraint onto a delivery catheter, device sterilization, and final deployment. Though such large thermo-mechanical excursions are known to impact the microstructural and mechanical properties of Nitinol, their effect on fatigue properties is still not well understood. The present study investigated the effects of large thermo-mechanical pre-strains on the fatigue of pseudoelastic Nitinol wire using fully reversed rotary bend fatigue (RBF) experiments. Electropolished Nitinol wires were subjected to a 0%, 8% or 10% bending pre-strain and RBF testing at 0.3-1.5% strain amplitudes for up to 10(8) cycles. The imposition of 8% or 10% bending pre-strain resulted in residual set in the wire. Large pre-strains also significantly reduced the fatigue life of Nitinol wires below 0.8% strain amplitude. While 0% and 8% pre-strain wires exhibited distinct low-cycle and high-cycle fatigue regions, reaching run out at 10(8) cycles at 0.6% and 0.4% strain amplitude, respectively, 10% pre-strain wires continued to fracture at less than 10(5) cycles, even at 0.3% strain amplitude. Furthermore, over 70% fatigue cracks were found to initiate on the compressive pre-strain surface in pre-strained wires. In light of the texture-dependent tension-compression asymmetry in Nitinol, this reduction in fatigue life and preferential crack initiation in pre-strained wires is thought to be attributed to compressive pre-strain-induced plasticity and tensile residual stresses as well as the formation of martensite variants. Despite differences in fatigue life, SEM revealed that the size, shape and morphology of the fatigue fracture surfaces were comparable across the pre-strain levels. Further, the mechanisms underlying fatigue were found to be similar; despite large differences in cycles to failure across strain amplitudes and pre-strain levels, cracks

  16. Use of strainrange partitioning to predict high temperature low-cycle fatigue life. [of metallic materials

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Halford, G. R.

    1976-01-01

    The fundamental concepts of the strainrange partitioning approach to high temperature, low low-cycle fatigue are reviewed. Procedures are presented by which the partitioned strainrange versus life relationships for any material can be generated. Laboratory tests are suggested for further verifying the ability of the method of strainrange partitioning to predict life.

  17. A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar

    2011-01-01

    A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.

  18. Fatigue life estimation for different notched specimens based on the volumetric approach

    NASA Astrophysics Data System (ADS)

    Zehsaz, M.; Hassanifard, S.; Esmaeili, F.

    2010-06-01

    In this paper, the effects of notch radius for different notched specimens has been studied on the values of stress concentration factor, notch strength reduction factor, and fatigue life duration of the specimens. The material which has been selected for this investigation is Al 2024T3 . Volumetric approach has been applied to obtain the values of notch strength reduction factor and results have been compared with those obtained from the Neuber and Peterson methods. Load controlled fatigue tests of mentioned specimens have been conducted on the 250kN servo-hydraulic Zwick/Amsler fatigue testing machine with the frequency of 10Hz. The fatigue lives of the specimens have also been predicted based on the available smooth S-N curve of Al2024-T3 and also the amounts of notch strength reduction factor which have been obtained from volumetric, Neuber and Peterson methods. The values of stress and strain around the notch roots are required to predict the fatigue life of notched specimens, so Ansys finite element code has been used and non-linear analyses have been performed to obtain the stress and strain distributions around the notches. The plastic deformations of the material have been simulated using multi-linear kinematic hardening and cyclic stress-strain relation. The work here shows that the volumetric approach does a very good job for predicting the fatigue life of the notched specimens.

  19. Probabilistic Fatigue Life Analysis of High Density Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Kolawa, E. A.; Sutharshana, S.; Newlin, L. E.; Creager, M.

    1996-01-01

    The fatigue of thin film metal interconnections in high density electronics packaging subjected to thermal cycling has been evaluated using a probabilistic fracture mechanics methodology. This probabilistic methodology includes characterization of thin film stress using an experimentally calibrated finite element model and simulation of flaw growth in the thin films using a stochastic crack growth model.

  20. Effect of grinding conditions on the fatigue life of titanium 5Al-2.5Sn alloy

    NASA Technical Reports Server (NTRS)

    Rangaswamy, P.; Terutung, H.; Jeelani, S.

    1991-01-01

    An investigation into the effect of grinding conditions on the fatigue life of titanium 5Al-2.5Sn is presented. Damage to surface integrity and changes in the residual stresses distribution are studied to assess changes in fatigue life. A surface grinding machine, operating at speeds ranging from 2000 to 6000 fpm and using SiC wheels of grit sizes 60 and 120, was used to grind flat subsize specimens of 0.1-in. thickness. After grinding, the specimens were fatigued at a chosen stress and compared with the unadulterated material. A standard profilometer, a microhardness tester, and a scanning electron microscope were utilized to examine surface characteristics and measure roughness and hardness. Increased grinding speed in both wet and dry applications tended to decrease the fatigue life of the specimens. Fatigue life increased markedly at 2000 fpm under wet conditions, but then decreased at higher speeds. Grit size had no effect on the fatigue life.

  1. Fatigue criterion to system design, life and reliability: A primer

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1992-01-01

    A method for estimating a component's design survivability by incorporating finite element analysis and probabilistic material properties was developed. The method evaluates design parameters through direct comparisons of component survivability expressed in terms of Weibull parameters. The analysis was applied to a rotating disk with mounting bolt holes. The highest probability of failure occurred at, or near, the maximum shear stress region of the bolt holes. Distribution of material failure as a function of Weibull slope affects the probability of survival. Where Weibull parameters are unknown for a rotating disk, it may be permissible to assume Weibull parameters, as well as the stress-life exponent, in order to determine the qualitative effect of disk speed on the probability of survival.

  2. Major Effects of Nonmetallic Inclusions on the Fatigue Life of Disk Superalloy Demonstrated

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Bonacuse, Peter J.; Barrie, Robert L.

    2002-01-01

    The fatigue properties of modern powder metallurgy disk alloys can vary because of the different steps of materials and component processing and machining. Among these variables, the effects of nonmetallic inclusions introduced during the powder atomization and handling processes have been shown to significantly degrade low-cycle fatigue life. The levels of inclusion contamination have, therefore, been reduced to less than 1 part per million in state-of-the-art nickel disk powder-processing facilities. Yet the large quantities of compressor and turbine disks weighing from 100 to over 1000 lb have enough total volume and surface area for these rare inclusions to still be present and limit fatigue life. The objective of this study was to investigate the effects on fatigue life of these inclusions, as part of the Crack Resistant Disk Materials task within the Ultra Safe Propulsion Project. Inclusions were carefully introduced at elevated levels in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were then performed on extracted test specimens at 650 C. Analyses were performed to compare the low-cycle fatigue lives and failure initiation sites as functions of inclusion content and fatigue conditions. Powder of the nickel-base superalloy U720 was atomized in argon at Special Metals Corporation, Inc., using production-scale high-cleanliness powder-processing facilities and handling practices. The powder was then passed through a 270-mesh screen. One portion of this powder was set aside for subsequent consolidation without introduced inclusions. Two other portions of this powder were seeded with alumina inclusions. Small, polycrystalline soft (Type 2) inclusions of about 50 mm diameter were carefully prepared and blended into one powder lot, and larger hard (Type 1) inclusions of about 150 mm mean diameter were introduced into the other seeded portion of powder. All three portions of powder were

  3. Early Adolescent Affect Predicts Later Life Outcomes

    PubMed Central

    Kansky, Jessica; Allen, Joseph P.; Diener, Ed

    2016-01-01

    Background Subjective well-being as a predictor for later behavior and health has highlighted its relationship to health, work performance, and social relationships. However, the majority of such studies neglect the developmental nature of well-being in contributing to important changes across the transition to adulthood. Methods To examine the potential role of subjective well-being as a long-term predictor of critical life outcomes, we examined indicators of positive and negative affect at age 14 as a predictor of relationship, adjustment, self worth, and career outcomes a decade later at ages 23 to 25, controlling for family income and gender. We utilized multi-informant methods including reports from the target participant, close friends, and romantic partners in a demographically diverse community sample of 184 participants. Results Early adolescent positive affect predicted less relationship problems (less self-reported and partner-reported conflict, greater friendship attachment as rated by close peers), healthy adjustment to adulthood (lower levels of depression, anxiety, and loneliness). It also predicted positive work functioning (higher levels of career satisfaction and job competence) and increased self-worth. Negative affect did not significantly predict any of these important life outcomes. In addition to predicting desirable mean levels of later outcomes, early positive affect predicted beneficial changes across time in many outcomes. Conclusions The findings extend early research on the beneficial outcomes of subjective well-being by having an earlier assessment of well-being, including informant reports in measuring a large variety of outcome variables, and by extending the findings to a lower socioeconomic group of a diverse and younger sample. The results highlight the importance of considering positive affect as an important component of subjective well-being distinct from negative affect. PMID:27075545

  4. Self-Regulatory Fatigue, Quality of Life, Health Behaviors, and Coping in Patients with Hematologic Malignancies

    PubMed Central

    Ehlers, Shawna L.; Patten, Christi A.; Gastineau, Dennis A.

    2015-01-01

    Background Self-regulatory fatigue may play an important role in a complex medical illness. Purpose Examine associations between self-regulatory fatigue, quality of life, and health behaviors in patients pre- (N=213) and 1-year post-hematopoietic stem cell transplantation (HSCT; N=140). Associations between self-regulatory fatigue and coping strategies pre-HSCT were also examined. Method Pre- and 1-year post-HSCT data collection. Hierarchical linear regression modeling. Results Higher self-regulatory fatigue pre-HSCT associated with lower overall, physical, social, emotional, and functional quality of life pre- (p’s<.001) and 1-year post-HSCT (p’s<.01); lower physical activity pre-HSCT (p<.02) and post-HSCT (p<.03) and less healthy nutritional intake post-HSCT (p<.01); changes (i.e., decrease) in quality of life and healthy nutrition over the follow-up year; and use of avoidance coping strategies pre-HSCT (p’s<.001). Conclusion This is the first study to show self-regulatory fatigue pre-HSCT relating to decreased quality of life and health behaviors, and predicting changes in these variables 1-year post-HSCT. PMID:24802991

  5. A study of stiffness, residual strength and fatigue life relationships for composite laminates

    NASA Technical Reports Server (NTRS)

    Ryder, J. T.; Crossman, F. W.

    1983-01-01

    Qualitative and quantitative exploration of the relationship between stiffness, strength, fatigue life, residual strength, and damage of unnotched, graphite/epoxy laminates subjected to tension loading. Clarification of the mechanics of the tension loading is intended to explain previous contradictory observations and hypotheses; to develop a simple procedure to anticipate strength, fatigue life, and stiffness changes; and to provide reasons for the study of more complex cases of compression, notches, and spectrum fatigue loading. Mathematical models are developed based upon analysis of the damage states. Mathematical models were based on laminate analysis, free body type modeling or a strain energy release rate. Enough understanding of the tension loaded case is developed to allow development of a proposed, simple procedure for calculating strain to failure, stiffness, strength, data scatter, and shape of the stress-life curve for unnotched laminates subjected to tension load.

  6. An Experimental Investigation of the Effects of Vacuum Environment on the Fatigue Life, Fatigue-Crack-Growth Behavior, and Fracture Toughness of 7075-T6 Aluminum Alloy. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.

    1972-01-01

    Axial load fatigue life, fatigue-crack propagation, and fracture toughness tests were conducted on 0.090-inch thick specimens made of 7075-T6 aluminum alloy. The fatigue life and fatigue-crack propagation experiments were conducted at a stress ratio of 0.02. Maximum stresses ranged from 33 to 60 ksi in the fatigue life experiments, and from 10 to 40 ksi in the fatigue-crack propagation experiments, and fatigue life experiments were conducted at gas pressures of 760, 0.5, 0.05, and 0.00000005 torr. Fatigue-crack-growth and fracture toughness experiments were conducted at gas pressures of 760 and 5 x 10 to the minus 8th power torr. Residual stress measurements were made on selected fatigue life specimens to determine the effect of such stresses on fatigue life. Analysis of the results from the fatigue life experiments indicated that fatigue life progressively increased as the gas pressure decreased. Analysis of the results from the fatigue-crack-growth experiments indicates that at low values of stress-intensity range, the fatigue crack growth rates were approximately twice as high in air as in vacuum. Fracture toughness data showed there was essentially no difference in the fracture toughness of 7075-T6 in vacuum and in air.

  7. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Nelson, R. S.; Levan, G. W.; Schoendorf, J. F.

    1992-01-01

    A series of high temperature strain controlled fatigue tests have been completed to study the effects of thermomechanical fatigue, multiaxial loading, reactive environments, and imposed mean stresses. The baseline alloy used in these tests was cast B1900+Hf (with and without coatings); a small number of tests of wrought INCO 718 are also included. A strong path dependence was demonstrated during the thermomechanical fatigue testing, using in-phase, out-phase, and non-proportional (elliptical and 'dogleg') strain-temperature cycles. The multiaxial tests also demonstrated cycle path to be a significant variable, using both proportional and non-proportional tension-torsion loading. Environmental screening tests were conducted in moderate pressure oxygen and purified argon; the oxygen reduced the specimen lives by two, while the argon testing produced ambiguous data. Both NiCoCrAlY overlay and diffusion aluminide coatings were evaluated under isothermal and TMF conditions; in general, the lives of the coated specimens were higher that those of uncoated specimens. Controlled mean stress TMF tests showed that small mean stress changes could change initiation lives by orders of magnitude; these results are not conservatively predicted using traditional linear damage summation rules. Microstructures were evaluated using optical, SEM and TEM methods.

  8. Effect of electric discharge machining on the fatigue life of Inconel 718

    NASA Technical Reports Server (NTRS)

    Jeelani, S.; Collins, M. R.

    1988-01-01

    The effect of electric discharge machining on the fatigue life of Inconel 718 alloy at room temperature was investigated. Data were generated in the uniaxial tension fatigue mode at ambient temperature using flat 3.175 mm thick specimens. The specimens were machined on a wire-cut electric discharge machine at cutting speeds ranging from 0.5 to 2 mm per minute. The specimens were fatigued at a selected stress, and the resulting fatigue lives compared with that of the virgin material. The surfaces of the fatigued specimens were examined under optical and scanning electron microscopes, and the roughness of the surfaces was measured using a standard profilometer. From the results of the investigation, it was concluded that the fatigue life of the specimens machined using EDM decreased slightly as compared with that of the virgin material, but remained unchanged as the cutting speed was changed. The results are explained using data produced employing microhardness measurements, profilometry, and optical and scanning microscopy.

  9. Fatigue

    MedlinePlus

    ... Fatigue can be a symptom of anemia, particularly iron-deficiency anemia . Your body needs iron to make hemoglobin, the substance in red blood ... tissues and to your baby. Your need for iron increases during pregnancy because of the needs of ...

  10. Structural integrity and fatigue crack propagation life assessment of welded and weld-repaired structures

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Shah

    2005-11-01

    Structural integrity is the science and technology of the margin between safety and disaster. Proper evaluation of the structural integrity and fatigue life of any structure (aircraft, ship, railways, bridges, gas and oil transmission pipelines, etc.) is important to ensure the public safety, environmental protection, and economical consideration. Catastrophic failure of any structure can be avoided if structural integrity is assessed and necessary precaution is taken appropriately. Structural integrity includes tasks in many areas, such as structural analysis, failure analysis, nondestructive testing, corrosion, fatigue and creep analysis, metallurgy and materials, fracture mechanics, fatigue life assessment, welding metallurgy, development of repairing technologies, structural monitoring and instrumentation etc. In this research fatigue life assessment of welded and weld-repaired joints is studied both in numerically and experimentally. A new approach for the simulation of fatigue crack growth in two elastic materials has been developed and specifically, the concept has been applied to butt-welded joint in a straight plate and in tubular joints. In the proposed method, the formation of new surface is represented by an interface element based on the interface potential energy. This method overcomes the limitation of crack growth at an artificial rate of one element length per cycle. In this method the crack propagates only when the applied load reaches the critical bonding strength. The predicted results compares well with experimental results. The Gas Metal Arc welding processes has been simulated to predict post-weld distortion, residual stresses and development of restraining forces in a butt-welded joint. The effect of welding defects and bi-axial interaction of a circular porosity and a solidification crack on fatigue crack propagation life of butt-welded joints has also been investigated. After a weld has been repaired, the specimen was tested in a universal

  11. Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Prevey, Paul S.; Shepard, Michael; Ravindranath, Ravi A.; Gabb, Timothy

    2003-01-01

    Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine

  12. The Effect of Intravenous Vitamin C on Cancer- and Chemotherapy-Related Fatigue and Quality of Life

    PubMed Central

    Carr, Anitra C.; Vissers, Margreet C. M.; Cook, John S.

    2014-01-01

    Cancer patients commonly experience a number of symptoms of disease progression and the side-effects of radiation therapy and adjuvant chemotherapy, which adversely impact on their quality of life (QOL). Fatigue is one of the most common and debilitating symptom reported by cancer patients and can affect QOL more than pain. Several recent studies have indicated that intravenous (IV) vitamin C alleviates a number of cancer- and chemotherapy-related symptoms, such as fatigue, insomnia, loss of appetite, nausea, and pain. Improvements in physical, role, cognitive, emotional, and social functioning, as well as an improvement in overall health, were also observed. In this mini review, we briefly cover the methods commonly used to assess health-related QOL in cancer patients, and describe the few recent studies examining the effects of IV vitamin C on cancer- and chemotherapy-related QOL. We discuss potential mechanisms that might explain an improvement in QOL and also considerations for future studies. PMID:25360419

  13. Fatigue life improvement of an autofrettage thick-walled pressure vessel with an external groove

    NASA Astrophysics Data System (ADS)

    Koh, Seung K.; Stephens, Ralph I.

    1992-01-01

    This report presents an investigation into a fatigue life improvement of an autofrettaged thick-walled pressure vessel with an external groove subjected to pulsating internal pressure, along with mean strain and mean stress effects on strain-controlled low cycle fatigue behavior. Linear elastic stress analysis of an autofrettaged thick-walled pressure vessel with an external groove is done using a finite element method. Autofrettage loading is performed using a thermal loading analogy. Change of external groove geometry is made using a quasi-optimization technique and finite element method to achieve longer fatigue life by relieving the stress concentration at the groove root. Surface treatment using shot peening is employed to produce compressive residual stresses at the vulnerable surface of the groove root to counteract the high tensile stresses. An evaluation of the fatigue life of an autofrettaged thick-walled pressure vessel with an external groove is done through a series of simulation fatigue tests using C-shaped specimens taken from the thick-walled pressure vessel.

  14. Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Wang, Xiaosong; Wang, Zhongren; Yuan, Shijian

    2015-03-01

    Cylinder-crown integrated hydraulic press (CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown, which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. As a result, the material strength capacity is better utilized. During the engineering design of cylinder-crown integrated structure, in order to increase the fatigue life, structural optimization on the basis of the adaptive macro genetic algorithms (AMGA) is first conducted to both reduce weight and decrease peak stress. It is shown that the magnitude of the maximum principal stress is decreased by 28.6%, and simultaneously the total weight is reduced by 4.4%. Subsequently, strain-controlled fatigue test is carried out, and the stress-strain hysteresis loops and cyclic hardening curve are obtained. Based on linear fit, the fatigue properties are calculated and used for the fatigue life prediction. It is shown that the predicted fatigue life is significantly increased from 157000 to 1070000 cycles after structural optimization. Finally, according to the optimization design, a 6300 kN CCIHP has been manufactured, and priority application has been also suggested.

  15. Fatigue Life of Cast Titanium Alloys Under Simulated Denture Framework Displacements

    NASA Astrophysics Data System (ADS)

    Koike, Mari; Chan, Kwai S.; Hummel, Susan K.; Mason, Robert L.; Okabe, Toru

    2013-02-01

    The objective of the study was to evaluate the hypothesis that the mechanical properties and fatigue behavior of removable partial dentures (RPD) made from cast titanium alloys can be improved by alloying with low-cost, low-melting elements such as Cu, Al, and Fe using commercially pure Ti (CP-Ti) and Ti-6Al-4V as controls. RPD specimens in the form of rest-shaped, clasp, rectangular-shaped specimens and round-bar tensile specimens were cast using an experimental Ti-5Al-5Cu alloy, Ti-5Al-1Fe, and Ti-1Fe in an Al2O3-based investment with a centrifugal-casting machine. The mechanical properties of the alloys were determined by performing tensile tests under a controlled displacement rate. The fatigue life of the RPD specimens was tested by the three-point bending in an MTS testing machine under a cyclic displacement of 0.5 mm. Fatigue tests were performed at 10 Hz at ambient temperature until the specimens failed into two pieces. The tensile data were statistically analyzed using one-way ANOVA (α = 0.05) and the fatigue life data were analyzed using the Kaplan-Meier survival analysis (α = 0.05). The experimental Ti-5Al-5Cu alloy showed a significantly higher average fatigue life than that of either CP-Ti or Ti-5Al-1Fe alloy ( p < 0.05). SEM fractography showed that the fatigue cracks initiated from surface grains, surface pores, or hard particles in surface grains instead of the internal casting pores. Among the alloys tested, the Ti-5Al-5Cu alloy exhibited favorable results in fabricating dental appliances with an excellent fatigue behavior compared with other commercial alloys.

  16. Experimental and modeling results of creep-fatigue life of Inconel 617 and Haynes 230 at 850 °C

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L., III; Busby, Jeremy T.; Mo, Kun; Stubbins, James F.

    2013-01-01

    Creep-fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 °C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep-fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep-fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep-fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep-fatigue life. The linear damage summation could predict the creep-fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep-fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep-fatigue life prediction results for both materials.

  17. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    SciTech Connect

    Chen, Xiang; Sokolov, Mikhail A; Sham, Sam; ERDMAN III, DONALD L; Busby, Jeremy T; Mo, Kun; Stubbins, James

    2013-01-01

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.

  18. A Study on the Effects of Ball Defects on the Fatigue Life in Hybrid Bearings

    NASA Technical Reports Server (NTRS)

    Tang, Ching-Yao; Foerster, Chad E.; O'Brien, Michael J.; Hardy, Brian S.; Goyal, Vinay K.; Nelson, Benjamin A.; Robinson, Ernest Y.; Ward, Peter C.; Hilton, Michael R.

    2014-01-01

    Hybrid ball bearings using silicon nitride ceramic balls with steel rings are increasingly being used in space mechanism applications due to their high wear resistance and long rolling contact fatigue life. However, qualitative and quantitative reports of the effects of ball defects that cause early fatigue failure are rare. We report on our approach to study these effects. Our strategy includes characterization of defects encountered in use, generation of similar defects in a laboratory setting, execution of full-scale bearing tests to obtain lifetimes, post-test characterization, and related finite-element modeling to understand the stress concentration of these defects. We have confirmed that at least one type of defect of appropriate size can significantly reduce fatigue life. Our method can be used to evaluate other defects as they occur or are encountered.

  19. The fatigue life of a cobalt-chromium alloy after laser welding.

    PubMed

    Al-Bayaa, Nabil Jalal Ahmad; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2011-03-01

    The aim of this study was to investigate the fatigue life of laser welded joints in a commercially available cast cobalt-chromium alloy. Twenty rod shaped specimens (40 mm x 1.5 mm) were cast and sand blasted. Ten specimens were used as controls and the remaining ten were sectioned and repaired using a pulsed Nd: YAG laser welder. All specimens were subjected to fatigue testing (30N - 2Hz) in a controlled environment. A statistically significant difference in median fatigue life was found between as-cast and laser welded specimens (p < 0.001). Consequently, the technique may not be appropriate for repairing cobalt chromium clasps on removable partial dentures. Scanning electron microscopy indicated the presence of cracks, pores and constriction of the outer surface in the welded specimens despite 70% penetration of the weld. PMID:21528682

  20. Fatigue, fracture, and life prediction criteria for composite materials in magnets

    SciTech Connect

    Wong, F.M.G.

    1990-06-01

    An explosively-bonded copper/Inconel 718/copper laminate conductor was proposed to withstand the severe face compression stresses in the central core of the Alcator C-MOD tokamak toroidal field (TF) magnet. Due to the severe duty of the TF magnet, it is critical that an accurate estimate of useful life be determined. As part of the effort to formulate an appropriate life prediction, fatigue crack growth experiments were performed on the laminate as well as its components. Metallographic evaluation of the laminate interface revealed many shear bands in the Inconel 718. Shear bands and shear band cracks were produced in the Inconel 718 as a result of the explosion bonding process. These shear bands were shown to have a detrimental effect on the crack growth behavior of the laminate, by significantly reducing the load carrying capability of the reinforcement layer and providing for easy crack propagation paths. Fatigue crack growth rate was found not only to be dependent on temperature but also on orientation. Fatigue cracks grew faster in directions which contained shear bands in the plane of the propagating crack. Fractography showed crack advancement by fatigue cracking in the Inconel 718 and ductile tearing of the copper at the interface. However, further away from the interfaces, the copper exhibited fatigue striations indicating that cracks were now propagating by fatigue. Laminate life prediction results showed a strong dependence on shear band orientation, and exhibited little variation between room temperature and 77{degree}K. Predicted life of this laminate was lower when the crack propagation was along a shear band than when crack propagation was across the shear bands. Shear bands appear to have a dominating effect on crack growth behavior.

  1. Fatigue Life of Haynes 188 Superalloy in Direct Connect Combustor Durability Rig

    NASA Technical Reports Server (NTRS)

    Gabb, TIm; Gayda, John; Webster, Henry; Ribeiro, Greg

    2007-01-01

    The Direct Connect Combustor Durability Rig (DCR) will provide NASA a flexible and efficient test bed to demonstrate the durability of actively cooled scramjet engine structure, static and dynamic sealing technologies, and thermal management techniques. The DCR shall be hydrogen fueled and cooled, and test hydrogen coolded structural panels at Mach 5 and 7. Actively cooled Haynes 188 superalloy DCR structural panels exposed to the combustion environment shall have electrodischarge machined (EDM) internal cooling holes with flowing liquid hydrogen. Hydrogen combustion could therefore produce severe thermal conditions that could challenge low cycle fatigue durability of this material. The objective of this study was to assess low cycle fatigue capability of Haynes 188 for DCR application. Tests were performed at 25 and 650 C, in hydrogen and helium environments, using specimens with low stress ground (LSG) and electro-discharge machined (EDM) surface finish. Initial fatigue tests in helium and hydrogen indicate the low cycle fatigue life capability of Haynes 188 in hydrogen appears quite satisfactory for the DCR application. Fatigue capability did not decrease with increasing test temperature. Fatigue capability also did not decrease with EDM surface finish. Failure evaluations indicate retention of ductility in all conditions. Additional tests are planned to reconfirm these positive trends.

  2. A Statistical Simulation Approach to Safe Life Fatigue Analysis of Redundant Metallic Components

    NASA Technical Reports Server (NTRS)

    Matthews, William T.; Neal, Donald M.

    1997-01-01

    This paper introduces a dual active load path fail-safe fatigue design concept analyzed by Monte Carlo simulation. The concept utilizes the inherent fatigue life differences between selected pairs of components for an active dual path system, enhanced by a stress level bias in one component. The design is applied to a baseline design; a safe life fatigue problem studied in an American Helicopter Society (AHS) round robin. The dual active path design is compared with a two-element standby fail-safe system and the baseline design for life at specified reliability levels and weight. The sensitivity of life estimates for both the baseline and fail-safe designs was examined by considering normal and Weibull distribution laws and coefficient of variation levels. Results showed that the biased dual path system lifetimes, for both the first element failure and residual life, were much greater than for standby systems. The sensitivity of the residual life-weight relationship was not excessive at reliability levels up to R = 0.9999 and the weight penalty was small. The sensitivity of life estimates increases dramatically at higher reliability levels.

  3. Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2014-01-01

    Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatigue tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.

  4. Finite element analysis of sucker rod couplings with guidelines for improving fatigue life

    SciTech Connect

    Hoffman, E.L.

    1997-09-01

    The response of a variety of sucker rod couplings to an applied axial load was simulated using axisymmetric finite element models. The calculations investigated three sucker rod sizes and various combinations of the slimhole, Spiralock, and Flexbar modifications to the coupling. In addition, the effect of various make-ups (assembly tightness) on the performance of coupling was investigated. An axial load was applied to the sucker rod ranging from {minus}5 ksi to 40 ksi, encompassing three load cycles identified on a modified Goodman diagram as acceptable for indefinite service life of the sucker rods. The simulations of the various coupling geometries and make-ups were evaluated with respect to how well they accomplish the two primary objectives of preloading threaded couplings: (1) to lock the threaded coupling together so that it will not loosen and eventually uncouple, and (2) to improve the fatigue resistance of the threaded connection by reducing the stress amplitude in the coupling when subjected to cyclic loading. Perhaps the most significant finding in this study was the characterization of the coupling parameters which affect two stress measures. The mean hydrostatic stress, which determines the permissible effective alternating stress, is a function of the coupling make-up. Whereas, the alternating effective stress is a function of the relative stiffnesses of the pin and box sections of the coupling and, as long as the coupling does not separate, is unaffected by the amount of circumferential displacement applied during make-up. The results of this study suggest approaches for improving the fatigue resistance of sucker rod couplings.

  5. Effect of Application of Short and Long Holds on Fatigue Life of Modified 9Cr-1Mo Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Shankar, Vani; Mariappan, K.; Sandhya, R.; Mathew, M. D.; Jayakumar, T.

    2013-11-01

    Modified 9Cr-1Mo steel is a heat-treatable steel and hence the microstructure is temperature sensitive. During welding, the weld joint (WJ) is exposed to various temperatures resulting in a complex heterogeneous microstructure across the weld joint, such as the weld metal, heat-affected zone (HAZ) (consisting of coarse-grained HAZ, fine-grained HAZ, and intercritical HAZ), and the unaffected base metal of varying mechanical properties. The overall creep-fatigue interaction (CFI) response of the WJ is hence due to a complex interplay between various factors such as surface oxides and stress relaxation (SR) occurring in each microstructural zone. It has been demonstrated that SR occurring during application of hold in a CFI cycle is an important parameter that controls fatigue life. Creep-fatigue damage in a cavitation-resistant material such as modified 9Cr-1Mo steel base metal is accommodated in the form of microstructural degradation. However, due to the complex heterogeneous microstructure across the weld joint, SR will be different in different microstructural zones. Hence, the damage is accommodated in the form of preferential coarsening of the substructure, cavity formation around the coarsened carbides, and new surface formation such as cracks in the soft heat-affected zone.

  6. Surface pitting fatigue life of noninvolute, low-contact-ratio gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1990-01-01

    Spur gear endurance tests were conducted to investigate the surface pitting fatigue life of noninvolute gears with low numbers of teeth and low contact ratios for use in advanced applications. The results were compared with those for a standard involute design with a low number of teeth. The gear pitch diameter was 8.89 cm (3.50 in.) with 12 teeth on both gear designs. Test conditions were an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.49 GPa (216 ksi), and a speed of 10 000 rpm. The following results were obtained: the noninvolute gear had a surface pitting fatigue life approximately 1.6 times that of the standard involute gear of a similar design; and the surface pitting fatigue life of the 3.43-pitch AISI 8620 noninvolute gear was approximately equal to the surface pitting fatigue life of an 8-pitch, 28-tooth AISI 9310 gear at the same load but at a considerably higher maximum Hertz stress.

  7. Compassion Fatigue, Compassion Satisfaction, and Burnout: Factors Impacting a Professional's Quality of Life

    ERIC Educational Resources Information Center

    Sprang, Ginny; Whitt-Woosley, Adrienne; Clark, James J.

    2007-01-01

    This study examined the relationship between three variables, compassion fatigue (CF), compassion satisfaction (CS), and burnout, and provider and setting characteristics in a sample of 1,121 mental health providers in a rural southern state. Respondents completed the Professional Quality of Life Scale as part of a larger survey of provider…

  8. Quality of Life in Patients with Multiple Sclerosis: The Impact of Depression, Fatigue, and Disability

    ERIC Educational Resources Information Center

    Goksel Karatepe, Altlnay; Kaya, Taciser; Gunaydn, Rezzan; Demirhan, Aylin; Ce, Plnar; Gedizlioglu, Muhtesem

    2011-01-01

    Aim: The aim of this study was to assess the quality of life (QoL) in patients with multiple sclerosis (MS), and to evaluate its association with disability and psychosocial factors especially depression and fatigue. Methods: Demographic characteristics, education level, disease severity, and disease duration were documented for each patient. QoL,…

  9. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating.

    PubMed

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  10. Effect of lubricant extreme-pressure additives on surface fatigue life of AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Townsend, D. P.; Aron, P. R.

    1984-01-01

    Surface fatigue tests were conducted with AISI 9310 spur gears using a formulated synthetic tetraester oil (conforming to MIL-L-23699 specifications) as the lubricant containing either sulfur or phosphorus as the EP additive. Four groups of gears were tested. One group of gears tested without an additive in the lubricant acted as the reference oil. In the other three groups either a 0.1 wt % sulfur or phosphorus additive was added to the tetraester oil to enhance gear surface fatigue life. Test conditions included a gear temperature of 334 K (160 F), a maximum Hertz stress of 1.71 GPa (248 000 psi), and a speed of 10,000 rpm. The gears tested with a 0.1 wt % phosphorus additive showed pitting fatigue life 2.6 times the life of gears tested with the reference tetraester based oil. Although fatigue lives of two groups of gears tested with the sulfur additive in the oil showed improvement over the control group gear life, the results, unlike those obtained with the phosphorus oil, were not considered to be statistically significant.

  11. A method of calculating the safe fatigue life of compact, highly-stressed components

    NASA Technical Reports Server (NTRS)

    Cardick, Arthur W.; Pike, Vera J.

    1994-01-01

    This paper describes a method which has been developed for estimating the safe fatigue life of compact, highly-stressed and inaccessible components for aeroplanes and helicopters of the Royal Air Force. It is explained why the Design Requirements for British Military Aircraft do not favor the use of a damage-tolerance approach in these circumstances.

  12. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating

    PubMed Central

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  13. Effects of High-Temperature Exposures on the Fatigue Life of Disk Superalloys Examined

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Pete T.; Smith, James W.

    2005-01-01

    Tests used to characterize the low-cycle-fatigue resistance of disk superalloys are usually performed at cyclic frequencies of 0.33 Hz or faster. However, service conditions for disks in some aerospace and land-based gas turbine engines can produce major cycle periods extending from minutes to hours and days. Over a service life, this can produce total service times near the maximum temperature that exceed 100 hr for aerospace applications and 100,000 hr for land-based applications. Such time-dependent effects of realistic mission cycles on fatigue resistance can be significant in superalloy disks, and need to be considered for accurate disk life prediction. The purpose of this study at the NASA Glenn Research Center was to examine the effects of extended exposures and extended cycle periods on the fatigue resistance of two disk superalloys. Current alloy Udimet 720 (Special Metals Corporation, Huntington, WV) disk material was provided by Solar Turbines/Caterpillar Co., and advanced alloy ME3 was provided by the NASA Ultra-Efficient Engine Technologies (UEET) Project, in powder-metallurgy-processed, supersolvus heat-treated form. Fatigue specimens were fully machined and exposed in air at temperatures of 650 to 704 C for extended times. Then, they were tested using conventional fatigue tests with a total strain range of 0.70 percent and a minimum-to-maximum strain ratio of zero to determine the effects of prior exposure on fatigue resistance. Subsequent tests with extended dwells at minimum strain in each fatigue cycle were performed to determine cyclic exposure effects.

  14. Cyclic fatigue damage characteristics observed for simple loadings extended to multiaxial life prediction

    NASA Technical Reports Server (NTRS)

    Jones, David J.; Kurath, Peter

    1988-01-01

    Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.

  15. Fatigue and depression in disease-free breast cancer survivors: prevalence, correlates, and association with quality of life.

    PubMed

    Kim, Soo Hyun; Son, Byung Ho; Hwang, Sook Yeon; Han, Wonshik; Yang, Jung-Hyun; Lee, Seeyoun; Yun, Young Ho

    2008-06-01

    We performed this study to examine the prevalence and correlates of fatigue and depression, and their relevance to health-related quality of life in disease-free breast cancer survivors. A total of 1,933 breast cancer survivors recruited from five large hospitals in Korea completed a mailed survey, which included the Brief Fatigue Inventory, Beck Depression Inventory, European Organization for Research and Treatment of Cancer QLQ-C30, and QLQ-BR23. With a framework that included sociodemographic, clinical, and symptom characteristics, multivariate logistic regression models were used to identify factors associated with fatigue and depression. Among breast cancer survivors, 66.1% reported moderate to severe fatigue and 24.9% reported moderate to severe depression. Risk factors common to both fatigue and depression were lower income, dyspnea, insomnia, appetite loss, constipation, and arm symptoms. Risk factors for fatigue only included younger age, employment, presence of gastrointestinal disease, and pain. Having a musculoskeletal disease was identified as a risk factor for depression only. Both fatigue and depression were influenced by sociodemographic factors, comorbidity and symptom characteristics rather than cancer or treatment-related factors. Both fatigue and depression were negatively associated with survivors' health-related quality of life. However, the patterns of differences in health-related quality of life according to severity of fatigue or depression were similar. This concurrent examination of risk factors for fatigue and depression may be helpful in the development of clinical management strategies in disease-free breast cancer survivors. PMID:18358687

  16. Fatigue life performance comparisons of tapered roller bearings with debris-damaged raceways{copyright}

    SciTech Connect

    Nixon, H.P.; Zantopulos, H.

    1995-09-01

    Debris-contaminated lubrication environments is inherent in many equipment applications and requires mechanical components that, as much as possible, are resistant to the potential effects of debris particles. Bearing fatigue life performance comparisons were made for various bearing materials and manufacturer origin, in order to assess the variability in performance of debris-damaged raceways. The evaluation was conducted using a repeatable debris-damaging process prior to fatigue testing of each group of bearings. The performance results reveal wide variations in the impact that debris damage can have on various bearing products and materials. 11 refs., 4 figs., 4 tabs.

  17. Stress-life relation of the rolling-contact fatigue spin rig

    NASA Technical Reports Server (NTRS)

    Butler, Robert H; Carter, Thomas L

    1957-01-01

    The rolling-contact fatigue spin rig was used to test groups of SAE 52100 9.16-inch-diameter balls lubricated with a mineral oil at 600,000-, 675,000-, and 750,000-psi maximum Hertz stress. Cylinders of AISI M-1 vacuum and commercial melts and MV-1 (AISI M-50) were used as race specimens. Stress-life exponents produced agree closely with values accepted in industry. The type of failure obtained in the spin rig was similar to the subsurface fatigue spells found in bearings.

  18. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    SciTech Connect

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impacts on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.

  19. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    DOE PAGESBeta

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less

  20. Split mandrel versus split sleeve coldworking: Dual methods for extending the fatigue life of metal structures

    NASA Astrophysics Data System (ADS)

    Rodman, Geoffrey A.; Creager, Matthew

    1994-09-01

    It is common practice to use split sleeve coldworking of fastener holes as a means of extending the fatigue life of metal structures. In search of lower manufacturing costs, the aerospace industry is examining the split mandrel (sleeveless) coldworking process as an alternative method of coldworking fastener holes in metal structures. The split mandrel process (SpM) significantly extends the fatigue life of metal structures through the introduction of a residual compressive stress in a manner that is very similar to the split sleeve system (SpSl). Since the split mandrel process is significantly less expensive than the split sleeve process and more adaptable to robotic automation, it will have a notable influence upon other new manufacture of metal structures which require coldworking a significant number of holes, provided the aerospace community recognizes that the resulting residual stress distributions and fatigue life improvement are the same for both processes. Considerable testing has validated the correctness of that conclusion. The findings presented in this paper represent the results of an extensive research and development program, comprising data collected from over 400 specimens fabricated from 2024-T3 and 7075-T651 aluminum alloys in varied configurations, which quantify the benefits (fatigue enhancement and cost savings) of automating a sleeveless coldworking system.

  1. Split mandrel versus split sleeve coldworking: Dual methods for extending the fatigue life of metal structures

    NASA Technical Reports Server (NTRS)

    Rodman, Geoffrey A.; Creager, Matthew

    1994-01-01

    It is common practice to use split sleeve coldworking of fastener holes as a means of extending the fatigue life of metal structures. In search of lower manufacturing costs, the aerospace industry is examining the split mandrel (sleeveless) coldworking process as an alternative method of coldworking fastener holes in metal structures. The split mandrel process (SpM) significantly extends the fatigue life of metal structures through the introduction of a residual compressive stress in a manner that is very similar to the split sleeve system (SpSl). Since the split mandrel process is significantly less expensive than the split sleeve process and more adaptable to robotic automation, it will have a notable influence upon other new manufacture of metal structures which require coldworking a significant number of holes, provided the aerospace community recognizes that the resulting residual stress distributions and fatigue life improvement are the same for both processes. Considerable testing has validated the correctness of that conclusion. The findings presented in this paper represent the results of an extensive research and development program, comprising data collected from over 400 specimens fabricated from 2024-T3 and 7075-T651 aluminum alloys in varied configurations, which quantify the benefits (fatigue enhancement and cost savings) of automating a sleeveless coldworking system.

  2. Grain boundary oxidation and an analysis of the effects of oxidation on fatigue crack nucleation life

    NASA Technical Reports Server (NTRS)

    Oshida, Y.; Liu, H. W.

    1988-01-01

    The effects of preoxidation on subsequent fatigue life were studied. Surface oxidation and grain boundary oxidation of a nickel-base superalloy (TAZ-8A) were studied at 600 to 1000 C for 10 to 1000 hours in air. Surface oxides were identified and the kinetics of surface oxidation was discussed. Grain boundary oxide penetration and morphology were studied. Pancake type grain boundary oxide penetrates deeper and its size is larger, therefore, it is more detrimental to fatigue life than cone-type grain boundary oxide. Oxide penetration depth, a (sub m), is related to oxidation temperature, T, and exposure time, t, by an empirical relation of the Arrhenius type. Effects of T and t on statistical variation of a (sub m) were analyzed according to the Weibull distribution function. Once the oxide is cracked, it serves as a fatigue crack nucleus. Statistical variation of the remaining fatigue life, after the formation of an oxide crack of a critical length, is related directly to the statistical variation of grain boundary oxide penetration depth.

  3. Fatigue Life Prediction of Steel Bridges for Extreme Loading Using a New Damage Indicator

    NASA Astrophysics Data System (ADS)

    Karunananda, Pallaha Athawudagedara Kamal; Ohga, Mitao; Dissanayake, Punchi Bandage Ranjith; Siriwardane, Siriwardane Arachchilage Sudath Chaminda

    High cycle fatigue (HCF) damage caused by normal traffic loading is one of the major modes of failures in steel bridges. During bridge service life, there are extreme loading situations such as typhoons, earthquakes which cause higher amplitude loading than normal traffic loading. Due to this reason, critical members could undergo overstress cycles in the plastic range. Therefore, such members are subjected to low cycle fatigue (LCF) during these situations while subjecting to HCF in serviceable condition. Bridges, which are not seriously damaged, generally continue to be functioned after these extreme loading situations and fatigue life estimation is required to ensure their safety. Therefore, this paper presents a new damage indicator based fatigue model to predict life of steel bridges due to combined effect of extreme and normal traffic loadings. It consists of a modified strain life curve and a strain based damage indicator. Both the strain life curve and the damage indicator are newly proposed in the study. Modified strain life curve consists of Coffin Manson relation in the LCF regime and a new strain life curve in the HCF regime. Damage variable is based on von Mises equivalent strain and modified by factors to consider effects of loading non proportionality and loading path in multiaxial stress state. The new damage indicator can capture the loading sequence effect. The proposed model is verified with experimental test results of combined HCF and LCF of three materials; S304L stainless steel, Haynes 188 (a Cobolt superalloy) and S45C steel obtained from the literature. The verification of experimental results confirms the validity of the proposed model.

  4. Profiled Roller Stress/Fatigue Life Analysis Methodology and Establishment of an Appropriate Stress/Life Exponent

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of this work was to determine the three dimensional volumetric stress field, surface pressure distribution and actual contact area between a 0.50" square roller with different crown profiles and a flat raceway surface using Finite Element Analysis. The 3-dimensional stress field data was used in conjunction with several bearing fatigue life theories to extract appropriate values for stress-life exponents. Also, results of the FEA runs were used to evaluate the laminated roller model presently used for stress and life prediction.

  5. Effect of grinding on the fatigue life of titanium alloy (5 Al-2.5 Sn) under dry and wet conditions

    NASA Technical Reports Server (NTRS)

    Rangaswamy, Partha; Terutung, Hendra; Jeelani, Shaik

    1989-01-01

    The principal factors in the performance of aerospace materials are strength-to-weight ratio, fatigue life, fracture toughness, survivability and, of course, reliability. Machining processes and, in particular, grinding under adverse conditions have been found to cause damage to surface integrity and affect the residual stress distribution in the surface and subsurface region. These effects have a direct bearing on the fatigue life. In this investigation the effects of grinding conditions on the fatigue life of Titanium 5 Al-2.5Sn were studied. This alloy is used in ground form in the manufacturing of some critical components in the space shuttle's main engine. It is essential that materials for such applications be properly characterized for use in severe service conditions. Flat sub-size specimens 0.1 inch thick were ground on a surface grinding machine equipped with a variable speed motor at speeds of 2000 to 6000 rpm using SiC wheels of grit sizes 60 and 120. The grinding parameters used in this investigation were chosen from a separate study. The ground specimens were then fatigued at a selected stress and the resulting lives were compared with that of the virgin material. The surfaces of the specimens were examined under a scanning electron microscope, and the roughness and hardness were measured using a standard profilometer and microhardness tester, respectively. The fatigue life of the ground specimens was found to decrease with the increase in speed for both dry and wet conditions. The fatigue life of specimens ground under wet conditions showed a significant increase at the wheel speed of 2000 rpm for both the grit sizes and thereafter decreased with increase profilometry, microhardness measurements and scanning electron microscopic examination.

  6. Fatigue life prediction for wind turbines: A case study on loading spectra and parameter sensitivity

    SciTech Connect

    Sutherland, H.J.; Veers, P.S.; Ashwill, T.D.

    1992-01-01

    Wind turbines are fatigue-critical machines used to produce electrical energy from the wind. These rotating machines are subjected to environmental loadings that are highly irregular in nature. Historical examples of fatigue problems in both research and commercial wind turbine development are presented. Some example data on wind turbine environments, loadings and material properties are also shown. Before a description of how the authors have chosen to attack the cumulative damage assessment, questions are presented for the reader's reflection. The solution technique used by the authors is then presented, followed by a case study applying the procedures to an actual wind turbine blade joint. The wind turbine is the 34-meter diameter vertical axis wind turbine (VAWT) erected by Sandia National Laboratories near Bushland, Texas. The case study examines parameter sensitivities for realistic uncertainties in inputs defining the turbine environment, stress response and material properties. The fatigue lifetimes are calculated using a fatigue analysis program, called LIFE2, which was developed at Sandia. The LIFE2 code, described in some detail in an appendix, is a PC-based, menu-driven package that leads the user through the steps required to characterize the loading and material properties, then uses Miner's rule or a linear crack propagation rule to numerically calculate the time to failure. Only S-n based cumulative damage applications are illustrated here. The LIFE2 code is available to educational institutions for use as a case study in describing complicated loading histories and for use by students in examining, hands on, parameter sensitivity of fatigue life analysis.

  7. Fatigue life prediction for wind turbines: A case study on loading spectra and parameter sensitivity

    NASA Astrophysics Data System (ADS)

    Sutherland, H. J.; Veers, P. S.; Ashwill, T. D.

    Wind turbines are fatigue-critical machines used to produce electrical energy from the wind. These rotating machines are subjected to environmental loadings that are highly irregular in nature. Historical examples of fatigue problems in both research and commercial wind turbine development are presented. Some example data on wind turbine environments, loadings and material properties are also shown. Before a description of how the authors have chosen to attack the cumulative damage assessment, questions are presented for the reader's reflection. The solution technique used by the authors is then presented, followed by a case study applying the procedures to an actual wind turbine blade joint. The wind turbine is the 34-meter diameter vertical axis wind turbine (VAWT) erected by Sandia National Laboratories near Bushland, Texas. The case study examines parameter sensitivities for realistic uncertainties in inputs defining the turbine environment, stress response and material properties. The fatigue lifetimes are calculated using a fatigue analysis program, called LIFE2, which was developed at Sandia. The LIFE2 code, described in some detail in an appendix, is a PC-based, menu-driven package that leads the user through the steps required to characterize the loading and material properties, then uses Miner's rule or a linear crack propagation rule to numerically calculate the time to failure. Only S-n based cumulative damage applications are illustrated here. The LIFE2 code is available to educational institutions for use as a case study in describing complicated loading histories and for use by students in examining, hands on, parameter sensitivity of fatigue life analysis.

  8. Isothermal Fatigue, Damage Accumulation, and Life Prediction of a Woven PMC

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.

    1998-01-01

    This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The residual elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment composing the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.

  9. Rolling-element fatigue life of AISI M-50 and 18-4-1 balls

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1978-01-01

    Rolling element fatigue studies were conducted with AISI M-50, EFR 18-4-1, and VAR 18-4-1. Groups of 12.7 mm (1/2-in) diameter balls of each material were tested in the five ball fatigue tester. Test conditions included a load of 1540 N (347 lbf) giving a maximum Hertz stress of 5520 MPa (800 000 psi), a shaft speed of 10,700 rpm, and a contact angle of 30 deg. Tests were run at a race temperature of 339 K (150 F) with a type 2 ester lubricant. The rolling element fatigue life of AISI M-50 was not significantly different from that of EFR 18-4-1 or VAR 18-4-1 based on a statistical comparison of the test results.

  10. Excitation, response, and fatigue life estimation methods for the structural design of externally blown flaps

    NASA Technical Reports Server (NTRS)

    Ungar, E. E.; Chandiramani, K. L.; Barger, J. E.

    1972-01-01

    Means for predicting the fluctuating pressures acting on externally blown flap surfaces are developed on the basis of generalizations derived from non-dimensionalized empirical data. Approaches for estimation of the fatigue lives of skin-stringer and honeycomb-core sandwich flap structures are derived from vibration response analyses and panel fatigue data. Approximate expressions for fluctuating pressures, structural response, and fatigue life are combined to reveal the important parametric dependences. The two-dimensional equations of motion of multi-element flap systems are derived in general form, so that they can be specialized readily for any particular system. An introduction is presented of an approach to characterizing the excitation pressures and structural responses which makes use of space-time spectral concepts and promises to provide useful insights, as well as experimental and analytical savings.

  11. Rolling-element fatigue life of silicon nitride balls: Preliminary test results

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    Hot pressed silicon nitride was evaluated as a rolling element bearing material. The five-ball fatigue tester was used to test 12.7 mm (0.500 in.) diameter balls at a maximum Hertz stress of 800,000 psi at a race temperature of 130 F. The fatigue spalls in the silicon nitride resembled those in typical bearing steels. The ten-percent fatigue life of the silicon nitride balls was approximately one-eighth to one-fifth that of typical bearing steels (52100 and M-50). The load capacity of the silicon nitride was approximately one-third that of typical bearing steels. The load capacity of the silicon nitride was significantly higher than previously tested ceramic materials for rolling element bearings.

  12. Experimental and theoretical investigation of fatigue life in reusable rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Kasper, H. J.; Pavli, A. J.

    1976-01-01

    During a test program to investigate low-cycle thermal fatigue, 13 rocket combustion chambers were fabricated and cyclically test fired to failure. Six oxygen-free, high-conductivity (OFHC) copper and seven Amzirc chambers were tested. The failures in the OFHC copper chambers were not typical fatigue failures but are described as creep rupture enhanced by ratcheting. The coolant channels bulged toward the chamber centerline, resulting in progressive thinning of the wall during each cycle. The failures in the Amzirc alloy chambers were caused by low-cycle thermal fatigue. The zirconium in this alloy was not evenly distributed in the chamber materials. The life that was achieved was nominally the same as would have been predicted from OFHC copper isothermal test data.

  13. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  14. Primary Sjögren's syndrome in Moroccan patients: characteristics, fatigue and quality of life.

    PubMed

    Ibn Yacoub, Yousra; Rostom, Samira; Laatiris, Assia; Hajjaj-Hassouni, Najia

    2012-09-01

    Our aim was to evaluate fatigue and quality of life (QoL) in Moroccan patients with primary Sjögren's syndrome (PSS) and determine their correlates with disease-related parameters. Fifty-seven consecutive patients with PSS according to the American-European Consensus group (AEGG) criteria were included. Demographic, clinical, biological and immunological characteristics for all patients were collected. Xerostomia was demonstrated by histological grading of lower lip glandular biopsy. A Schirmer test was performed to measure lachrymal flow. Oral, ocular, skin, vaginal and tracheal dryness were evaluated by using a visual analogue scale (VAS). Fatigue was assessed by the Multidimensional assessment of fatigue (MAF) and the QoL by using the generic instrument: SF-36. 90% of our patients were women. The mean age of patients was 53.73 ± 7.69 years, and the mean disease duration was 5.38 ± 4.11 years. The mean oral dryness was 68.38 ± 20.29, and the mean ocular dryness was 51.91 ± 14.03. The mean total score of the MAF was 26.73 ± 8.33, and 87.5% of our patients experienced severe fatigue. Also, physical and mental domains of QoL were altered in a significant way, and the severity of fatigue had a negative impact on SF-36 scores. MAF and SF-36 scores were correlated with the delay of diagnosis, the intensity of xerostomia and the activity of joint involvement. A low socioeconomic and educational level had a negative impact on fatigue scores and QoL. Histological grading of lower lip glandular biopsy, immunological status and the severity of systemic involvement had no correlations with fatigue scores or the alteration of QoL. Patients receiving antidepressant have lesser fatigue and those receiving Methotrexate have better SF-36 scores. In our data, there was a high prevalence of fatigue in Moroccan patients with PSS associated with altered QoL. Severe fatigue and reduced QoL seem to be related to the severity of joint involvement, xerostomia and both educational

  15. Fatigue in Children With Sickle Cell Disease: Association With Neurocognitive and Social-Emotional Functioning and Quality of Life.

    PubMed

    Anderson, Lindsay M; Allen, Taryn M; Thornburg, Courtney D; Bonner, Melanie J

    2015-11-01

    Children with sickle cell disease (SCD) report fatigue in addition to acute and chronic pain, which can decrease overall health-related quality of life (HRQL). The primary objective of the current study was to investigate the relationship between fatigue and HRQL. Given limited prior research, secondary objectives included investigation of associations between fatigue and functional outcomes, including child neurocognitive and social-emotional functioning. Children aged 8 to 16 years (N=32) and a caregiver completed measures of fatigue, HRQL, pain, and neurocognitive and social-emotional functioning. Controlling for pain and number of SCD-related hospitalizations, hierarchical linear regression models were used to determine the impact of child-reported and parent-reported fatigue on child HRQL. Correlational analyses were used to explore the relationship between fatigue and additional child outcomes. Data indicated that children with SCD experience clinically relevant levels of fatigue, which independently predicts lower HRQL. Fatigue was also associated with lower working memory, executive functioning, and higher levels of internalizing symptoms. Given its observed impact on HRQL and relationship to functional outcomes, fatigue may be an important target of clinical, home, or school interventions. This practice may attenuate the burden of fatigue in these patients, and in turn, help improve the quality of life of children living with SCD. PMID:26479993

  16. Inclusions Size-based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Urbano, Marco Fabrizio; Cadelli, Andrea; Sczerzenie, Frank; Luccarelli, Pietro; Beretta, Stefano; Coda, Alberto

    2015-06-01

    Current standards consider the size and distribution of inclusions in semi-finished material, but do not place requirements on final biomedical devices made of NiTi shape memory alloys. In this paper, we analyze this by comparing the fatigue performances of NiTi superelastic wires obtained by different processes through a simple bilinear model of fatigue response in terms of strain life. The fracture surfaces of failed wires are analyzed through SEM microscopy and data regarding the presence of particles, and their morphology is recorded and analyzed using Type-I extreme value distribution. The results show a strong correlation between the fatigue limit of wires (in terms of strain) and the predicted extreme values of inclusions at fracture origin. Then, following the concept of treating the inclusions as `small cracks,' a simple relationship between fatigue limit strain range and inclusion size is proposed based on ΔKth data from the literature. The model is compared with the fatigue data obtained from the tested wires.

  17. Rolling contact fatigue life of chromium ion plated 440C bearing steel

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.; Davis, J. H.

    1985-01-01

    Rolling contact fatigue (RCF) test specimens of heat treated 440C bearing steel were chromium ion plated in thicknesses from 0.1 to 8.0 micron and tested in RCF tester using 700 ksi maximum Hertzian stress. Heavy coatings, greater than about 5 micron in thickness, peeled off or spalled readily, whereas thin coatings, less than 3 micron thick, were tenacious and did not come off. Furthermore, significant improvement in RCF life was obtained with thin chromium ion plated test specimens. The average increase in B10 life was 75% compared with unplated 440C. These preliminary results indicate that ion plating is a promising way to improve bearing life.

  18. Optimal Shot Peening Treatments to Maximize the Fatigue Life of Quenched and Tempered Steels

    NASA Astrophysics Data System (ADS)

    Llaneza, V.; Belzunce, F. J.

    2015-07-01

    The search for the optimal Almen intensity to use in shot peening treatments to maximize the fatigue life of industrial steel components involves many different variables and physical phenomena. In this paper, the optimal peening intensity of different steel grades obtained from an AISI 4340 steel through heat treatments has been determined. Six different steel grades were subjected to shot peening treatments, which were performed under full coverage, but employing diverse Almen intensities, shot sizes and air pressures. The role of the mechanical properties of the treated steel and the applied Almen intensity on the shot peening effects were studied to understand the results obtained by means of rotating bending fatigue tests. Each steel has a specific Almen intensity value able to optimize its fatigue life, thereby allowing an optimal balance between the positive and negative effects induced by shot peening. This value, or range of values, is dependent on the mechanical properties of the treated steel, increasing with increasing steel properties up to a certain point and then decreasing for stronger steels. In these cases, over peening treatments produce sufficiently large surface defects to induce relaxation of the surface residual stress and facilitate the initiation of surface fatigue cracks.

  19. Substrate Creep on The Fatigue Life of A Model Dental Multilayer Structure

    SciTech Connect

    Zhou, J; Huang, M; Niu, X; soboyejo, W

    2006-10-09

    In this paper, we investigated the effects of substrate creep on the fatigue behavior of a model dental multilayer structure, in which a top glass layer was bonded to a polycarbonate substrate through a dental adhesive. The top glass layers were ground using 120 grit or 600 grit sand papers before bonding to create different sub-surface crack sizes and morphologies. The multilayer structures were tested under cyclic Hertzian contact loading to study crack growth and obtain fatigue life curves. The experiment results showed that the fatigue lives of the multilayer structures were impaired by increasing crack sizes in the sub-surfaces. They were also significantly reduced by the substrate creep when tested at relatively low load levels i.e. P{sub m} < 60 N (Pm is the maximum magnitude of cyclic load). But at relatively high load levels i.e. P{sub m} > 65 N, slow crack growth (SCG) was the major failure mechanisms. A modeling study was then carried out to explore the possible failure mechanisms over a range of load levels. It is found that fatigue life at relatively low load levels can be better estimated by considering the substrate creep effect (SCE).

  20. A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects

    PubMed Central

    Huang, Hong-Zhong; Yuan, Rong

    2014-01-01

    Many structures are subjected to variable amplitude loading in engineering practice. The foundation of fatigue life prediction under variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more possibly in accordance with experimental data than that by primary model and Miner's rule. Comparison between the predicted cumulative damage by the proposed model and an existing model shows that the proposed model predictions can meet the accuracy requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric Multiple Units (EMU); meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple computing process and less material parameters calling for extensive testing than the existing model. PMID:24574866

  1. Fatigue and quality of life in women treated for various types of gynaecological cancers: a cross-sectional study

    PubMed Central

    Sekse, Ragnhild Johanne Tveit; Hufthammer, Karl Ove; Vika, Margrethe Elin

    2015-01-01

    Aims and objectives To examine the prevalence of cancer-related fatigue in women treated for various types of gynaecological cancers and, for these cancers, to assess fatigue in relation to distress, health-related quality of life, demography and treatment characteristics. Background Advances in treatment of cancer have improved the likelihood of survival. Consequently, there are a growing number of patients who become survivors after cancer and who face side effects even years after treatment. One of the most frequently reported side effects across all types and stages of the disease is cancer-related fatigue. Design A descriptive cross-sectional study. Methods One hundred and twenty women treated for gynaecological cancers who were participants in an intervention study were included. Fatigue, psychological distress, health-related QoL and demographics were assessed by questionnaires. Disease and treatment characteristics were extracted from medical records. Results Cancer-related fatigue was reported in 53% of the women treated for gynaecological cancers, with a higher proportion in the group of cervical cancer, followed by ovarian cancer. Younger participants reported fatigue more frequently than older participants. When adjusting for age, the type of cancer a woman experiences was shown to have little impact on her risk of experiencing fatigue. The participants with fatigue reported higher levels of anxiety and depression than participants without fatigue. There was a relationship between fatigue and quality of life as measured by SF-36 domains. Conclusion The findings underscore the importance of screening for fatigue, patient education and symptom management. This should be included in a standard procedure during treatment and follow-up. Both somatic and psychological aspects of fatigue should be emphasised. Relevance to clinical practice The findings imply the need for health personnel to have focus on fatigue during the entire cancer trajectory of women

  2. A crystal plasticity based methodology for modeling fatigue crack initiation and estimating material coefficients to predict fatigue crack initiation life at micro, nano and macro scales

    NASA Astrophysics Data System (ADS)

    Voothaluru, Rohit

    Fatigue failure is a dominant mechanism that governs the failure of components and structures in many engineering applications. In conventional engineering applications due to the design specifications, a significant proportion of the fatigue life is spent in the crack initiation phase. In spite of the large number of works addressing fatigue life modeling, the problem of modeling crack initiation life still remains a major challenge. In this work, a novel computational methodology based upon crystal plasticity formulations has been developed to predict crack initiation life at macro, micro and nano length scales. The crystal plasticity based constitutive model has been employed to model the micromechanical deformation and damage accumulation under cyclic loading in polycrystalline metals. This work provides a first of its kind, fundamental basis for employing crystal plasticity formulations for evaluating a quantifiable estimate of fatigue crack initiation life. A semi-empirical energy based fatigue crack initiation criterion s employed to allow for accurate modeling of the underlying microstructural phenomenon leading to the initiation of cracks at different material length scales. The results of the fatigue crack initiation life prediction in case of polycrystalline metals such as Copper and Nickel demonstrated that the crack initiation life prediction using the proposed methodology yielded an improvement of more than 30% in comparison to the existing continuum methodologies for fatigue crack initiation prediction and more than 80% improvement compared to the existing analytical models. The computational methodology developed in this work also provides a first of its kind technique to evaluate the fatigue crack initiation coefficient in the form of energy dissipation coefficient that can be used at varying length scales. The methodology and the computational framework proposed in this work, are developed such that experimental inputs are used to improve

  3. Experimental and Numerical Verification of Fatigue Life Estimation for Solder Bumps

    NASA Astrophysics Data System (ADS)

    Mukai, Minoru; Takahashi, Hiroyuki; Kawakami, Takashi; Takahashi, Kuniaki; Iwasaki, Ken; Kishimoto, Kikuo; Shibuya, Toshikazu

    Fatigue life estimation of solder bumps is one of the most critical technologies for the development of ball grid array packages. In this study, mechanical fatigue tests were carried out using Sn63-Pb37 solder bump specimens. The cracks were initiated along the entire circumference in the vicinity of the interface. The fatigue life estimation of the solder bumps was performed based on the elastic-creep finite element method (FEM) analysis. It was clear that the strain concentration region coincides with the crack initiation site. The estimation result for the crack initiation was in good agreement with the experimental results. The results reconfirmed that it was desirable to employ the equivalent creep strain range occurring at a distance of 50 μm from the singularity point. The life ratio, which provides the quantitative correlation between the crack initiation and the ultimate fracture, was determined from the experimental results. The number of cycles to the fatal failure can be roughly estimated by multiplying the analytical estimation results for the crack initiation by this life ratio. This simple estimation of fatal failure may well be of practical use in actual ball grid array (BGA) design for thermal load conditions.

  4. Effects of prolonged fasting on fatigue and quality of life in patients with multiple sclerosis.

    PubMed

    Etemadifar, Masoud; Sayahi, Farnaz; Alroughani, Raed; Toghianifar, Nafiseh; Akbari, Mojtaba; Nasr, Zahra

    2016-06-01

    Fasting is one of the recommended worships of several great religions in the world. During the month of Ramadan, circadian rhythm and pattern of eating changes result in physiological, biochemical and hormonal changes in the body. Many Muslims with medical conditions ask their physicians about the feasibility and safety of fasting during Ramadan. In this study, we aim to assess the effect of Ramadan fasting on the quality of life and fatigue in multiple sclerosis (MS) patients. Relapsing-remitting MS (RRMS) patients according to McDonald's criteria who had mild disability (EDSS score ≤3) were included in this study. Fatigue and quality of life were were assessed using the validated Persian versions of modified fatigue impact scale (MFIS) and multiple sclerosis quality of life-54 (MSQOL-54) questionnaires, respectively. 218 patients (150 females and 68 males) were enrolled in our study. There was no statistically significant difference between the mean total score of MSIF before and after fasting (25.50 ± 13.81 versus 26.94 ± 16.65; p = 0.58). The mean physical health and mental health composites of quality of life increased significantly after fasting (p = 0.008 and p = 0.003 respectively). Despite the observed lack of favorable effects on fatigue, our results showed increased quality of life of MS patients once Ramadan has ended. Whether this is specifically related to Ramadan-related fasting deserves further testing in appropriately designed larger prospective clinical studies. PMID:26994616

  5. Experimental fatigue life investigation of cylindrical thrust chambers

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1977-01-01

    Twenty-two cylindrical test sections of a cylindrical rocket thrust chamber were fabricated and 21 of them were cycled to failure to explore the failure mechanisms, determine the effects of wall temperature on cyclic life, and to rank the material life characteristics for comparison with results from isothermal tests of 12 alloys at 538 C. Cylinder liners were fabricated from OFHC copper, Amzirc, and NAR1loy-Z. Tests were conducted at a chamber pressure of 4.14 MW/sq m using hydrogen-oxygen propellants at an oxidant-fuel ratio of 6.0, which resulted in an average throat heat flux of 54 MW/sq m. The cylinders were cooled with liquid hydrogen at an average rate of 0.91 Kg/sec. All failures were characterized by a thinning of the cooling channel wall at the centerline and eventual failure by tensile rupture. Cyclic life rankings of the materials based on temperature do not agree with published rankings based on uniaxial, isothermal strain tests.

  6. On the fatigue life of M50 NiL rolling bearings

    NASA Astrophysics Data System (ADS)

    Harris, T. A.; Skiller, John; Spitzer, Ronald F.

    1992-10-01

    The fatigue life of rolling bearings made of M50 NiL (a nickel-low carbon variant of M50 tool steel) was investigated using data from a battery of 15 R2 endurance test rigs specially modified to accommodate the aircraft application test conditions. Results indicate that bearings manufactured from case-hardened M50 NiL steel can provide significantly greater rolling contact fatigue life than bearings made from through-hardened M50 steel. In addition, it was found that M50 NiL bearings endurance-tested under conditions of heavy tensile hoop stresses showed no tendency toward raceway spalling or cracking through, unlike M50 bearings, which exhibited both tendencies.

  7. The Effect of Drive Signal Limiting on High Cycle Fatigue Life Analysis

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.

    2014-01-01

    It is common practice to assume a Gaussian distribution of both the input acceleration and the response when modeling random vibration tests. In the laboratory, however, shaker controllers often limit the drive signal to prevent high amplitude peaks. The high amplitudes may either be truncated at a given level (socalled brick wall limiting or abrupt clipping), or compressed (soft limiting), resulting in drive signals which are no longer Gaussian. The paper first introduces several methods for limiting a drive signal, including brick wall limiting and compression. The limited signal is then passed through a linear time-invariant system representing a device under test. High cycle fatigue life predictions are subsequently made using spectral fatigue and rainflow cycle counting schemes. The life predictions are compared with those obtained from unclipped input signals. Some guidelines are provided to help the test engineer decide how clipping should be applied under different test scenarios.

  8. Comparison of Fatigue Life Estimation Using Equivalent Linearization and Time Domain Simulation Methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Dhainaut, Jean-Michel

    2000-01-01

    The Monte Carlo simulation method in conjunction with the finite element large deflection modal formulation are used to estimate fatigue life of aircraft panels subjected to stationary Gaussian band-limited white-noise excitations. Ten loading cases varying from 106 dB to 160 dB OASPL with bandwidth 1024 Hz are considered. For each load case, response statistics are obtained from an ensemble of 10 response time histories. The finite element nonlinear modal procedure yields time histories, probability density functions (PDF), power spectral densities and higher statistical moments of the maximum deflection and stress/strain. The method of moments of PSD with Dirlik's approach is employed to estimate the panel fatigue life.

  9. Finite element nonlinear flutter and fatigue life of 2-D panels with temperature effects

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Xue, David Y.

    1991-01-01

    A frequency domain method for two-dimensional nonlinear panel flutter with thermal effects obtained from a consistent finite element formulation is presented. The von Karman nonlinear strain-displacement relation is used to account for large deflections, and the quasi-steady first-order piston theory is employed for aerodynamic loading. The finite element frequency domain results are compared with analytical time domain solutions. In a limit-cycle motion, the panel frequency and stress can be determined, thus fatigue life can be predicted. The influence of temperature and dynamic pressure on panel fatigue life is presented. An endurance dynamic pressure can be established at a given temperature from the present method.

  10. Fatigue life prediction of rotor blade composites: Validation of constant amplitude formulations with variable amplitude experiments

    NASA Astrophysics Data System (ADS)

    Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.

  11. Effects of various parameters on the fatigue life of Alloy 718

    SciTech Connect

    Korth, G.E.

    1991-01-01

    A data bank from over 700 tests on several heats of Alloy 718 with various test parameters is used to show the effects of temperature, strain rate, hold time, grain size, mean stress, surface roughness, and thermal aging on fatigue life. Both strain controlled and stress controlled tests were conducted providing data from 10{sup 2} to 10{sup 9} cycles to failure. Empirical curve fitting of the data was performed using a multiple regression analysis performance. 9 refs., 13 figs.

  12. Strainrange partitioning life predictions of the long time metal properties council creep-fatigue tests

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1979-01-01

    The method of strainrange partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interspersion tests of several steel alloys. Comparisons are made with predictions based upon the time- and cycle-fraction approach. The method of strainrange partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the time- and cycle-fraction approach.

  13. Space Shuttle Rudder Speed Brake Actuator-A Case Study Probabilistic Fatigue Life and Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Savage, Michael; Zaretsky, Erwin V.

    2015-01-01

    The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection. The first space shuttle flight was that of the Space Shuttle Columbia (OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch. In order to minimize risk of losing another Space Shuttle, a probabilistic life and reliability analysis was conducted for the Space Shuttle rudder/speed brake actuators to determine the number of flights the actuators could sustain. A life and reliability assessment of the actuator gears was performed in two stages: a contact stress fatigue model and a gear tooth bending fatigue model. For the contact stress analysis, the Lundberg-Palmgren bearing life theory was expanded to include gear-surface pitting for the actuator as a system. The mission spectrum of the Space Shuttle rudder/speed brake actuator was combined into equivalent effective hinge moment loads including an actuator input preload for the contact stress fatigue and tooth bending fatigue models. Gear system reliabilities are reported for both models and their combination. Reliability of the actuator bearings was analyzed separately, based on data provided by the actuator manufacturer. As a result of the analysis, the reliability of one half of a single actuator was calculated to be 98.6 percent for 12 flights. Accordingly, each actuator was subsequently limited to 12 flights before removal from service in the Space Shuttle.

  14. A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction of Homogeneous and Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Wei, Haoyang

    A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are used and the out-of-phase hardening cannot be considered. The energy-based model using the critical plane concept is proposed with help of the Mroz-Garud hardening rule to explicitly include the effect of non-proportional hardening under fatigue cyclic loadings. Thus, the empirical calibration for non-proportional loading is not needed since the out-of-phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature and it is shown the proposed model can work for both proportional and non-proportional loadings without the empirical calibration. Next, the model is extended for the fatigue analysis of heterogeneous materials integrating with finite element method. Fatigue crack initiation of representative volume of heterogeneous materials is analyzed using the developed critical plane-energy model and special focus is on the microstructure effect on the multiaxial fatigue life predictions. Several conclusions and future work is drawn based on the proposed study.

  15. Prediction of Contact Fatigue Life of Alloy Cast Steel Rolls Using Back-Propagation Neural Network

    NASA Astrophysics Data System (ADS)

    Jin, Huijin; Wu, Sujun; Peng, Yuncheng

    2013-12-01

    In this study, an artificial neural network (ANN) was employed to predict the contact fatigue life of alloy cast steel rolls (ACSRs) as a function of alloy composition, heat treatment parameters, and contact stress by utilizing the back-propagation algorithm. The ANN was trained and tested using experimental data and a very good performance of the neural network was achieved. The well-trained neural network was then adopted to predict the contact fatigue life of chromium alloyed cast steel rolls with different alloy compositions and heat treatment processes. The prediction results showed that the maximum value of contact fatigue life was obtained with quenching at 960 °C, tempering at 520 °C, and under the contact stress of 2355 MPa. The optimal alloy composition was C-0.54, Si-0.66, Mn-0.67, Cr-4.74, Mo-0.46, V-0.13, Ni-0.34, and Fe-balance (wt.%). Some explanations of the predicted results from the metallurgical viewpoints are given. A convenient and powerful method of optimizing alloy composition and heat treatment parameters of ACSRs has been developed.

  16. Fatigue life until small cracks in aircraft structures: Durability and damage tolerance

    NASA Technical Reports Server (NTRS)

    Schijve, J.

    1994-01-01

    Crack initiation in notched elements occurs very early in the fatigue life. This is also true for riveted lap joints, an important fatigue critical element of a pressurized fuselage structure. Crack nucleation in a riveted lap joint can occur at different locations, depending on the riveting operation. It can occur at the edge of the rivet hole, at a small distance away from the hole, but still with subsequent crack growth through the hole, and ahead of the hole with a crack no longer passing through the hole. Moreover, crack nucleation can occur in the top row at the countersunk holes (outer sheet) or in the bottom row at the non-countersunk holes. Fractographic evidence is shown. The initial growth of the small cracks occurs as an (invisible) part through crack. As a consequence, predictions on the crack initiation life are problematic. After a though crack is present, the major part of the fatigue life has been consumed. There is still an apparent lack of empirical data on crack growth and residual strength of riveted lap joints, five years after the Aloha accident. Such data are very much necessary for further developments of prediction models. Some test results are presented.

  17. Effect of shot peening on surface fatigue life of carburized and hardened AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.

    1982-01-01

    Surface fatigue tests were conducted on two groups of AISI 9310 spur gears. Both groups were manufactured with standard ground tooth surfaces, with the second group subjected to an additional shot peening process on the gear tooth flanks. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a gear temperature of 350 K (170 F), a maximum Hertz stress of 1.71 billion N/sq m (248,000 psi), and a speed of 10,000 rpm. The shot peened gears exhibited pitting fatigue lives 1.6 times the life of standard gears without shot peening. Residual stress measurements and analysis indicate that the longer fatigue life is the result of the higher compressive stress produced by the shot peening. The life for the shot peened gear was calculated to be 1.5 times that for the plain gear by using the measured residual stress difference for the standard and shot peened gears. The measured residual stress for the shot peened gears was much higher than that for the standard gears.

  18. Relationship between Defect Size and Fatigue Life Distributions in Al-7 Pct Si-Mg Alloy Castings

    NASA Astrophysics Data System (ADS)

    Tiryakioğlu, Murat

    2009-07-01

    A new method for predicting the variability in fatigue life of castings was developed by combining the size distribution for the fatigue-initiating defects and a fatigue life model based on the Paris-Erdoğan law for crack propagation. Two datasets for the fatigue-initiating defects in Al-7 pct Si-Mg alloy castings, reported previously in the literature, were used to demonstrate that (1) the size of fatigue-initiating defects follow the Gumbel distribution; (2) the crack propagation model developed previously provides respectable fits to experimental data; and (3) the method developed in the present study expresses the variability in both datasets, almost as well as the lognormal distribution and better than the Weibull distribution.

  19. Fatigue life analysis for traction drives with application to a toroidal type geometry

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Loewenthal, S. H.; Zaretsky, E. V.

    1976-01-01

    A contact fatigue life analysis for traction drives was developed which was based on a modified Lundberg-Palmgren theory. The analysis was used to predict life for a cone-roller toroidal traction drive. A 90-percent probability of survival was assumed for the calculated life. Parametric results were presented for life and Hertz contact stress as a function of load, drive ratio, and size. A design study was also performed. The results were compared to previously published work for the dual cavity toroidal drive as applied to a typical compact passenger vehicle drive train. For a representative duty cycle condition wherein the engine delivers 29 horsepower at 2000 rpm with the vehicle moving at 48.3 km/hr (30 mph) the drive life was calculated to be 19,200 km (11 900 miles).

  20. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    NASA Astrophysics Data System (ADS)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  1. Laser Peening and Shot Peening Effects on Fatigue Life and Surface Roughness of Friction Stir Welded 7075-T7351 Aluminum

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Lyons, Jed; Forman, Royce

    2006-01-01

    The effects of laser peening, shot peening, and a combination of both on the fatigue life of Friction Stir Welds (FSW) was investigated. The fatigue samples consisted of dog bone specimens and the loading was applied in a direction perpendicular to the weld direction. Several laser peening conditions with different intensities, durations, and peening order were tested to obtain the optimum peening parameters. The surface roughness resulting from various peening techniques was assessed and characterized. The results indicate a significant increase in fatigue life using laser peening compared to shot peened versus their native welded specimens.

  2. Fatigue life of high-speed ball bearings with silicon nitride balls

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    Hot-pressed silicon nitride was evaluated as a rolling-element bearing material. The five-ball fatigue tester was used to test 12.7-mm- diameter silicon nitride balls at maximum Hertz stresses ranging from 4.27 x 10 to the 9th power n/sq m to 6.21 x 10 to the 9th power n/sq m at a race temperature of 328K. The fatigue life of NC-132 hot-pressed silicon nitride was found to be equal to typical bearing steels and much greater than other ceramic or cermet materials at the same stress levels. A digital computer program was used to predict the fatigue life of 120-mm- bore angular-contact ball bearings containing either steel or silicon nitride balls. The analysis indicates that there is no improvement in the lives of bearings of the same geometry operating at DN values from 2 to 4 million where silicon nitride balls are used in place of steel balls.

  3. A generalized fitting technique for the LIFE2 fatigue analysis code

    SciTech Connect

    Sutherland, H.J.; Wilson, T.

    1996-08-01

    The analysis of component fatigue lifetime for a wind energy conversion system (WECS) requires that the component load spectrum be formulated in terms of stress cycles. Typically, these stress cycles are obtained from time series data using a cycle identification scheme. As discussed by many authors, the matrix or matrices of cycle counts that describe the stresses on a turbine are constructed from relatively short, representative samples of time series data. The ability to correctly represent the long-term behavior of the distribution of stress cycles from these representative samples is critical to the analysis of service lifetimes. Several techniques are currently used to convert representative samples to the lifetime cyclic loads on the turbine. There has been recently developed a set of fitting algorithms that is particularly useful for matching the body of the distribution of fatigue stress cycles on a turbine component. Fitting techniques are now incorporated into the LIFE2 fatigue/fracture analysis code for wind turbines. In this paper, the authors provide an overview of the fitting algorithms and describe the pre- and post-count algorithms developed to permit their use in the LIFE2 code. Typical case studies are used to illustrate the use of the technique.

  4. The Surface Fatigue Life of Contour Induction Hardened AISI 1552 Gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Turza, Alan; Chaplin, Mike

    1995-01-01

    Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.

  5. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    NASA Astrophysics Data System (ADS)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P. K.; Paradowska, A.

    2014-11-01

    Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  6. An investigation of cyclic transient behavior and implications on fatigue life estimates

    SciTech Connect

    Jiang, Y.; Kurath, P.

    1997-04-01

    Current research focuses on proportional cyclic hardening and non-Massing behaviors. The interaction of these two hardenings can result in the traditionally observed overall softening, hardening or mixed behavior exhibited for fully reversed strain controlled fatigue tests. Proportional experiments were conducted with five materials 304 stainless steel, normalized 1070 and 1045 steels, and 7075-T6 and 6061-T6 aluminum alloys. All the materials display similar trends, but the 304 stainless steel shows the most pronounced transient behavior and will be discussed in detail. Existing algorithms for this behavior are evaluated in light of the recent experiments, and refinements to the Armstrong-Frederick class of incremental plasticity models are proposed. Modifications implemented are more extensive than the traditional variation of yield stress, and a traditional strain based memory surface is utilized to track deformation history. Implications of the deformation characteristics with regard to fatigue life estimation, especially variable amplitude loading, will be examined. The high-low step loading is utilized to illustrate the effect of transient deformation on fatigue life estimation procedures, and their relationship to the observed and modeled deformation.

  7. Effect of double vacuum melting and retained austenite on rolling-element fatigue life of AMS 5749 bearing steel

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Hodder, R. S.

    1977-01-01

    AMS 5749 steel combines the tempering, hot hardness, and hardness retention characteristics of AISI M-50 steel with the corrosion and oxidation resistance of AISI 440C stainless steel. The five-ball fatigue tester was used to evaluate the rolling-element fatigue life of AMS 5749. Double vacuum melting (vacuum induction melting plus vacuum arc remelting, VIM-VAR) produced AMS 5749 material with a rolling-element fatigue life at least 14 times that of vacuum induction melting alone. The VIM-VAR AMS 5749 steel balls gave lives from 6 to 12 times greater than VIM-VAR AISI M-50 steel balls. The highest level of retained austenite, 14.6 percent, was significantly detrimental to rolling-element fatigue life relative to the intermediate level of 11.1 percent.

  8. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Liu, Xiaolong; Hong, Youshi

    2015-06-01

    In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.

  9. One-Year Longitudinal Study of Fatigue, Cognitive Functions, and Quality of Life After Adjuvant Radiotherapy for Breast Cancer

    SciTech Connect

    Noal, Sabine; Levy, Christelle; Hardouin, Agnes; Rieux, Chantal; Heutte, Natacha; Segura, Carine; Collet, Fabienne; Allouache, Djelila; Switsers, Odile; Delcambre, Corinne; Delozier, Thierry; Henry-Amar, Michel; Joly, Florence

    2011-11-01

    Purpose: Most patients with localized breast cancer (LBC) who take adjuvant chemotherapy (CT) complain of fatigue and a decrease in quality of life during or after radiotherapy (RT). The aim of this longitudinal study was to compare the impact of RT alone with that occurring after previous CT on quality of life. Methods and Materials: Fatigue (the main endpoint) and cognitive impairment were assessed in 161 CT-RT and 141 RT patients during RT and 1 year later. Fatigue was assessed with Functional Assessment of Cancer Therapy-General questionnaires, including breast and fatigue modules. Results: At baseline, 60% of the CT-RT patients expressed fatigue vs. 33% of the RT patients (p <0.001). Corresponding values at the end of RT were statistically similar (61% and 53%), and fatigue was still reported at 1 year by more than 40% of patients in both groups. Risk factors for long-term fatigue included depression (odds ratio [OR] = 6), which was less frequent in the RT group at baseline (16% vs. 28 %, respectively, p = 0.01) but reached a similar value at the end of RT (25% in both groups). Initial mild cognitive impairments were reported by RT (34 %) patients and CT-RT (24 %) patients and were persistent at 1 year for half of them. No biological disorders were associated with fatigue or cognitive impairment. Conclusions: Fatigue was the main symptom in LBC patients treated with RT, whether they received CT previously or not. The correlation of persistent fatigue with initial depressive status favors administering medical and psychological programs for LBC patients treated with CT and/or RT, to identify and manage this main quality-of-life-related symptom.

  10. A combined approach to buffet response analyses and fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Jacobs, J. H.; Perez, R.

    1994-03-01

    Experimental measurement and neural network based prediction of wind tunnel model empennage random pressures are discussed. Artificially generated neural network power spectral densities of surface pressures are used to augment existing data and then load an elastic finite element model to obtain response spectra. Details on the use of actual response spectra from flight test data are also discussed. A random spectra fatigue method is described which effectively combines buffet and maneuver loads into a time series based on aircraft usage data. A peak-valley damage analysis procedure is employed to compute the aggregate fatigue life of the structure based on five combined load time series information. Applications of the method as a continual learning tool for buffet response spectra is elaborated.

  11. High-temperature fatigue life of type 316 stainless steel containing irradiation induced helium

    SciTech Connect

    Grossbeck, M.L.; Liu, K.C.

    1981-01-01

    Specimens of 20%-cold-worked AISI type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at 550/sup 0/C to a maximum damage level of 15 dpa and a transmutation produced helium level of 820 at. ppM. Fully reversed strain controlled fatigue tests were performed in a vacuum at 550/sup 0/C. No significant effect of the irradiation on low-cycle fatigue life was observed; however, the strain range of the 10/sup 7/ cycle endurance limit decreased from 0.35 to 0.30%. The relation between total strain range and number of cycles to failure was found to be ..delta..epsilon/sub T/ = 0.02N/sub f//sup -0/ /sup 12/ + N/sub f//sup -0/ /sup 6/ for N/sub f/ < 10/sup 7/ cycles.

  12. Cryogenic Tensile Strength and Fatigue Life of Carbon Nanotube Multi-Yarn.

    PubMed

    Misak, H E; Mall, S

    2016-03-01

    Carbon nanotube (CNT) multi-yarns, consisting of 30 yarns, were tested under monotonic tensile load and fatigue at the room temperature (298 K) and two cryogenic temperatures (232 and 123 K). Tensile stiffness increased with the decrease of temperature. The average ultimate tensile strength was higher at 123 K when compared to the higher temperatures (232 and 298 K). Failure mechanism changed from a combination of classical variant and independent fiber breakage at the two higher temperatures to mostly classical variant failure mechanism at the lower temperature. The CNT-yarn's fatigue life also increased with decreasing temperature. CNT-yarns have been shown to function well at lower temperatures making them usable for applications requiring operation at cryogenic temperatures, such as in satellites and high altitude aircraft. PMID:27455753

  13. Effect of Buckling Modes on the Fatigue Life and Damage Tolerance of Stiffened Structures

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara; Rose, Cheryl A.

    2015-01-01

    The postbuckling response and the collapse of composite specimens with a co-cured hat stringer are investigated experimentally and numerically. These specimens are designed to evaluate the postbuckling response and the effect of an embedded defect on the collapse load and the mode of failure. Tests performed using controlled conditions and detailed instrumentation demonstrate that the damage tolerance, fatigue life, and collapse loads are closely tied with the mode of the postbuckling deformation, which can be different between two nominally identical specimens. Modes that tend to open skin/stringer defects are the most damaging to the structure. However, skin/stringer bond defects can also propagate under shearing modes. In the proposed paper, the effects of initial shape imperfections on the postbuckling modes and the interaction between different postbuckling deformations and the propagation of skin/stringer bond defects under quasi-static or fatigue loads will be examined.

  14. Effect of residual stresses induced by prestressing on rolling element fatigue life

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  15. Life sciences issues affecting space exploration.

    PubMed

    White, R J; Leonard, J I; Leveton, L; Gaiser, K; Teeter, R

    1990-12-01

    The U.S. space program is undertaking a serious examination of new initiatives in human space exploration involving permanent colonies on the Moon and an outpost on Mars. Life scientists have major responsibilities to the crew, to assure their health, productivity, and safety throughout the mission and the postflight rehabilitation period; to the mission, to provide a productive working environment; and to the scientific community, to advance knowledge and understanding of human adaptation to the space environment. Critical areas essential to the support of human exploration include protection from the radiation hazards of the space environment, reduced gravity countermeasures, artificial gravity, medical care, life support systems, and behavior, performance, and human factors in an extraterrestrial environment. Developing solutions to these concerns is at the heart of the NASA Life Sciences ground-based and flight research programs. Facilities analogous to planetary outposts are being considered in Antarctica and other remote settings. Closed ecological life support systems will be tested on Earth and Space Station. For short-duration simulations and tests, the Space Shuttle and Spacelab will be used. Space Station Freedom will provide the essential scientific and technological research in areas that require long exposures to reduced gravity conditions. In preparation for Mars missions, research on the Moon will be vital. As the challenges of sustaining humans on space are resolved, advances in fundamental science, medicine and technology will follow. PMID:11541483

  16. Prediction of low-cycle fatigue-life by acoustic emission—2: 7075-T6 aluminum alloy

    SciTech Connect

    Baram, J.; Rosen, M.

    1981-01-01

    Low-cycle fatigue tests were conducted by tension-compression until rupture, on a 2024-T3 aluminum alloy sheet. Initial crack sizes and orientations in the fatigue specimens were found to be randomly distributed. Acoustic emission was continuously monitored during the tests. Every few hundred cycles, the acoustic signal having the highest peak-amplitude, was recorded as an extremal event for the elapsed period. This high peak-amplitude is related to a fast crack propagation rate through a phenomenological relationship. The extremal peakamplitudes are shown by an ordered statistics treatment, to be extremally distributed. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performed a-posteriori based on results gained early in each fatigue test are in good agreement with actual fatigue lives. The amplitude distribution analysis of the acoustic signals emitted during cyclic stress appears to be a promising nondestructive method of predicting fatigue life.

  17. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  18. Effects of resistance exercise on fatigue and quality of life in breast cancer patients undergoing adjuvant chemotherapy: A randomized controlled trial.

    PubMed

    Schmidt, Martina E; Wiskemann, Joachim; Armbrust, Petra; Schneeweiss, Andreas; Ulrich, Cornelia M; Steindorf, Karen

    2015-07-15

    Multiple exercise interventions have shown beneficial effects on fatigue and quality of life (QoL) in cancer patients, but various psychosocial interventions as well. It is unclear to what extent the observed effects of exercise interventions are based on physical adaptations or rather on psychosocial factors associated with supervised, group-based programs. It needs to be determined which aspects of exercise programs are truly effective. Therefore, we aimed to investigate whether resistance exercise during chemotherapy provides benefits on fatigue and QoL beyond potential psychosocial effects of group-based interventions. One-hundred-one breast cancer patients starting chemotherapy were randomly assigned to resistance exercise (EX) or a relaxation control (RC) group. Both interventions were supervised, group-based, 2/week over 12 weeks. The primary endpoint fatigue was assessed with a 20-item multidimensional questionnaire, QoL with the EORTC QLQ-C30/BR23. Analyses of covariance for individual changes from baseline to Week 13 were calculated. In RC, total and physical fatigue worsened during chemotherapy, whereas EX showed no such impairments (between-group p = 0.098 and 0.052 overall, and p = 0.038 and 0.034 among patients without severe baseline depression). Differences regarding affective or cognitive fatigue were not significant. Benefits of EX were also seen to affect role and social function. Effect sizes were between 0.43 and 0.48. Explorative analyses indicated significant effect modification by thyroxin use (p-interaction = 0.044). In conclusion, resistance exercise appeared to mitigate physical fatigue and maintain QoL during chemotherapy beyond psychosocial effects inherent to supervised group-based settings. Thus, resistance exercise could be an integral part of supportive care for breast cancer patients undergoing chemotherapy. PMID:25484317

  19. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles

    PubMed Central

    Neyroud, Daria; Cheng, Arthur J.; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on–1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on–3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased “voluntary activation.” In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  20. Dynamic Capacity and Surface Fatigue Life for Spur and Helical Gears

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Townsend, D. P.; Zaretsky, E. V.

    1975-01-01

    A mathematical model for surface fatigue life of gear, pinion, or entire meshing gear train is given. The theory is based on a previous statistical approach for rolling-element bearings. Equations are presented which give the dynamic capacity of the gear set. The dynamic capacity is the transmitted tangential load which gives a 90 percent probability of survival of the gear set for one million pinion revolutions. The analytical results are compared with test data for a set of AISI 9310 spur gears operating at a maximum Hertz stress of 1.71 billion N/sq m and 10,000 rpm. The theoretical life predictions are shown to be good when material constants obtained from rolling-element bearing tests were used in the gear life model.

  1. Dynamic capacity and surface fatigue life for spur and helical gears

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Townsend, D. P.; Zaretsky, E. V.

    1975-01-01

    A mathematical model for surface fatigue life of gear, pinion, or entire meshing gear train is given. The theory is based on the statistical approach used by Lundberg and Palmgren for rolling-element bearings. Also equations are presented which give the dynamic capacity of the gear set. The dynamic capacity is the transmitted tangential load which gives a 90 percent probability of survival of the gear set for one million pinion revolutions. The analytical results were compared with test data for a set of AISI 9310 spur gears operating at a maximum Hertz stress of 1.71 billion N per sq m (248,000 psi) and 10,000 rpm. The theoretical life predictions were very good when material constants obtained from rolling-element bearing tests were used in the gear life model.

  2. CARES/Life Ceramics Durability Evaluation Software Enhanced for Cyclic Fatigue

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.

    1999-01-01

    The CARES/Life computer program predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs--which resolve a component's temperature and stress distribution--to reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. The capability, flexibility, and uniqueness of CARES/Life have attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer. Recent work with CARES/Life was directed at enhancing the program s capabilities with regards to cyclic fatigue. Only in the last few years have ceramics been recognized to be susceptible to enhanced degradation from cyclic loading. To account for cyclic loads, researchers at the NASA Lewis Research Center developed a crack growth model that combines the Power Law (time-dependent) and the Walker Law (cycle-dependent) crack growth models. This combined model has the characteristics of Power Law behavior (decreased damage) at high R ratios (minimum load/maximum load) and of Walker law behavior (increased damage) at low R ratios. In addition, a parameter estimation methodology for constant-amplitude, steady-state cyclic fatigue experiments was developed using nonlinear least squares and a modified Levenberg-Marquardt algorithm. This methodology is used to give best estimates of parameter values from cyclic fatigue specimen rupture data (usually tensile or flexure bar specimens) for a relatively small number of specimens. Methodology to account for runout data (unfailed specimens over the duration of the experiment) was also included.

  3. Effect of Environmental Exposures on Fatigue Life of P/M Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Draper, Susan

    2011-01-01

    As the temperature capability of Ni-base superalloy powder metallurgy disks is steadily increased, environmental resistance and protection of advanced nickel-based turbine disk components are becoming increasingly important. Localized surface hot corrosion attack and damage from oxidation have been shown to impair disk fatigue life and may eventually limit disk operating temperatures. NASA Research Announcement (NRA) contracts have been awarded to GE Aviation and Honeywell Aerospace to separately develop fatigue resistant metallic and ceramic coatings for corrosion resistance and the corrosion/fatigue results of selected coatings will be presented. The microstructural response of a bare ME3 disk superalloy has been evaluated for moderate (704 C) and aggressive (760-816 C) oxidizing exposures up to 2,020 hours. Cross section analysis reveals sub-surface damage (significant for aggressive exposures) that consists of Al2O3 "fingers", interfacial voids, a recrystallized precipitate-free layer and GB carbide dissolution. The effects of a Nichrome corrosion coating on this microstructural response will also be presented.

  4. Strength and fatigue life evaluation of composite laminate with embedded sensors

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Hiremath, S. R.; Roy Mahapatra, D.

    2014-04-01

    Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and noninvasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.

  5. Fatigue life prediction of liquid rocket engine combustor with subscale test verification

    NASA Astrophysics Data System (ADS)

    Sung, In-Kyung

    Reusable rocket systems such as the Space Shuttle introduced a new era in propulsion system design for economic feasibility. Practical reusable systems require an order of magnitude increase in life. To achieve this improved methods are needed to assess failure mechanisms and to predict life cycles of rocket combustor. A general goal of the research was to demonstrate the use of subscale rocket combustor prototype in a cost-effective test program. Life limiting factors and metal behaviors under repeated loads were surveyed and reviewed. The life prediction theories are presented, with an emphasis on studies that used subscale test hardware for model validation. From this review, low cycle fatigue (LCF) and creep-fatigue interaction (ratcheting) were identified as the main life limiting factors of the combustor. Several life prediction methods such as conventional and advanced viscoplastic models were used to predict life cycle due to low cycle thermal stress, transient effects, and creep rupture damage. Creep-fatigue interaction and cyclic hardening were also investigated. A prediction method based on 2D beam theory was modified using 3D plate deformation theory to provide an extended prediction method. For experimental validation two small scale annular plug nozzle thrusters were designed, built and tested. The test article was composed of a water-cooled liner, plug annular nozzle and 200 psia precombustor that used decomposed hydrogen peroxide as the oxidizer and JP-8 as the fuel. The first combustor was tested cyclically at the Advanced Propellants and Combustion Laboratory at Purdue University. Testing was stopped after 140 cycles due to an unpredicted failure mechanism due to an increasing hot spot in the location where failure was predicted. A second combustor was designed to avoid the previous failure, however, it was over pressurized and deformed beyond repair during cold-flow test. The test results are discussed and compared to the analytical and numerical

  6. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    SciTech Connect

    Okafor, A. C.; Natarajan, S.

    2007-03-21

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  7. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    NASA Astrophysics Data System (ADS)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  8. Fatigue Life Prediction Based on Local Strain Energy for Healed Copper Film by Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Feng-Zhu; Shang, De-Guang; Ren, Chong-Gang; Sun, Yu-Juan

    2016-04-01

    Changes of total cyclic strain energy at the notch for copper film specimen were analyzed before and after laser irradiation treatment. The results showed that laser irradiation can increase total cyclic strain energy and the effect of increase is more evident for the damaged copper specimen. Based on the damage-healing mechanism, an enhancement parameter and a healing parameter were defined by the local cyclic strain energy. A new model based on local strain energy was proposed to predict residual fatigue life for the damaged copper film specimen after laser irradiation. The predicted results by the proposed model agree well with the experimental lives.

  9. Interference fits and stress-corrosion failure. [aircraft parts fatigue life analysis

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Carter, A. E.

    1976-01-01

    It is pointed out that any proper design of interference fit fastener, interference fit bushings, or stress coining processes should consider both the stress-corrosion susceptibility and fatigue-life improvement together. Investigations leading to such a methodology are discussed. A service failure analysis of actual aircraft parts is considered along with the stress-corrosion susceptibility of cold-working interference fit bushings. The optimum design of the amount of interference is considered, giving attention to stress formulas and aspects of design methodology.

  10. Creep fatigue life prediction for engine hot section materials (isotropic): Fourth year progress review

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.; Schoendorf, John F.

    1986-01-01

    As gas turbine technology continues to advance, the need for advanced life prediction methods for hot section components is becoming more and more evident. The complex local strain and temperature histories at critical locations must be accurately interpreted to account for the effects of various damage mechanisms (such as fatigue, creep, and oxidation) and their possible interactions. As part of the overall NASA HOST effort, this program is designed to investigate these fundamental damage processes, identify modeling strategies, and develop practical models which can be used to guide the early design and development of new engines and to increase the durability of existing engines.

  11. Effect of speed and press fit on fatigue life of roller-bearing inner-race contact

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Zaretsky, E. V.

    1985-01-01

    An analysis was performed to determine the effects of inner ring speed and press fit on the rolling element fatigue life of a roller bearing inner race contact. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner ring speed, load, and geometry and were applied to a conventional ring life analysis. The race contact fatigue life was reduced by more than 90 percent for some conditions when speed and press fit were considered. The depth of the maximum shear stress remained virtually unchanged.

  12. Chronic fatigue syndrome and seasonal affective disorder: comorbidity, diagnostic overlap, and implications for treatment.

    PubMed

    Terman, M; Levine, S M; Terman, J S; Doherty, S

    1998-09-28

    This study aimed to determine symptom patterns in patients with chronic fatigue syndrome (CFS), in summer and winter. Comparison data for patients with seasonal affective disorder (SAD) were used to evaluate seasonal variation in mood and behavior, atypical neurovegetative symptoms characteristic of SAD, and somatic symptoms characteristic of CFS. Rating scale questionnaires were mailed to patients previously diagnosed with CFS. Instruments included the Personal Inventory for Depression and SAD (PIDS) and the Systematic Assessment for Treatment Emergent Effects (SAFTEE), which catalogs the current severity of a wide range of somatic, behavioral, and affective symptoms. Data sets from 110 CFS patients matched across seasons were entered into the analysis. Symptoms that conform with the Centers for Disease Control and Prevention (CDC) case definition of CFS were rated as moderate to very severe during the winter months by varying proportions of patients (from 43% for lymph node pain or enlargement, to 79% for muscle, joint, or bone pain). Fatigue was reported by 92%. Prominent affective symptoms included irritability (55%), depressed mood (52%), and anxiety (51%). Retrospective monthly ratings of mood, social activity, energy, sleep duration, amount eaten, and weight change showed a coherent pattern of winter worsening. Of patients with consistent summer and winter ratings (n = 73), 37% showed high global seasonality scores (GSS) > or = 10. About half this group reported symptoms indicative of major depressive disorder, which was strongly associated with high seasonality. Hierarchical cluster analysis of wintertime symptoms revealed 2 distinct clinical profiles among CFS patients: (a) those with high seasonality, for whom depressed mood clustered with atypical neurovegetative symptoms of hypersomnia and hyperphagia, as is seen in SAD; and (b) those with low seasonality, who showed a primary clustering of classic CFS symptoms (fatigue, aches, cognitive disturbance

  13. Surface fatigue life and failure characteristics of EX-53, CBS 1000M, and AISI 9310 gear materials

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and ASISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310.

  14. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes ( ±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin-Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.

  15. The effect of plasma electrolytic oxidation on the mean stress sensitivity of the fatigue life of the 6082 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Winter, L.; Morgenstern, R.; Hockauf, K.; Lampke, T.

    2016-03-01

    In this work the mean stress influence on the high cycle fatigue behavior of the plasma electrolytic oxidized (PEO) 6082 aluminum alloy (AlSi1MgMn) is investigated. The present study is focused on the fatigue life time and the susceptibility of fatigue-induced cracking of the oxide coating and their dependence on the applied mean stress. Systematic work is done comparing conditions with and without PEO treatment, which have been tested using three different load ratios. For the uncoated substrate the cycles to failure show a significant dependence on the mean stress, which is typical for aluminum alloys. With increased load ratio and therefore increased mean stress, the fatigue strength decreases. The investigation confirms the well-known effect of PEO treatment on the fatigue life: The fatigue strength is significantly reduced by the PEO process, compared to the uncoated substrate. However, also the mean stress sensitivity of the fatigue performance is reduced. The fatigue limit is not influenced by an increasing mean stress for the PEO treated conditions. This effect is firstly shown in these findings and no explanation for this effect can be found in literature. Supposedly the internal compressive stresses and the micro-cracks in the oxide film have a direct influence on the crack initiation and growth from the oxide film through the interface and in the substrate. Contrary to these findings, the susceptibility of fatigue-induced cracking of the oxide coating is influenced by the load ratio. At tension-tension loading a large number of cracks, which grow partially just in the aluminum substrate, are present. With decreasing load ratio to alternating tension-compression stresses, the crack number and length increases and shattering of the oxide film is more pronounced due to the additional effective compressive part of the load cycle.

  16. Oxidation and the Effects of High Temperature Exposures on Notched Fatigue Life of an Advanced Powder Metallurgy Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.

    2012-01-01

    Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a

  17. Life prediction of thermomechanical fatigue using total strain version of strainrange partitioning (SRP): A proposal

    NASA Technical Reports Server (NTRS)

    Saltsman, James F.; Halford, Gary R.

    1988-01-01

    A method is proposed (without experimental verification) for extending the total strain version of Strainrange Partitioning (TS-SRP) to predict the lives of thermomechanical fatigue (TMF) cycles. The principal feature of TS SRP is the determination of the time-temperature-waveshape dependent elastic strainrange versus life lines that are added subsequently to the classical inelastic strainrange versus life lines to form the total strainrange versus life relations. The procedure is based on a derived relation between failure and flow behavior. Failure behavior is represented by conventional SRP inelastic strainrange versus cyclic life relations, while flow behavior is captured in terms of the cyclic stress-strain response characteristics. Stress-strain response is calculated from simple equations developed from approximations to more complex cyclic constitutive models. For applications to TMF life prediction, a new testing technique, bithermal cycling, is proposed as a means for generating the inelastic strainrange versus life relations. Flow relations for use in predicting TMF lives would normally be obtained from approximations to complex thermomechanical constitutive models. Bithermal flow testing is also proposed as an alternative to thermomechanical flow testing at low strainranges where the hysteresis loop is difficult to analyze.

  18. Overview of the fatigue/fracture/life working group program at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1989-01-01

    Constitutive and life prediction models are developed and verified for materials typically used in hot gas path components of reusable space propulsion systems over the range of relevant operating environments. The efforts were centered on the development of crack initiation life prediction methods, while the efforts of a counterpart group were centered on the development of cyclic crack propagation life prediction methods. The complexion of the active tasks are presented. A significant new task started this year will incorporate the various material constitutive and life prediction models developed in this program into a comprehensive creep-fatigue damage analysis and life assessment computer code. The program will function as a postprocessor to general structural analysis programs (such as finite element or boundary element codes) using the output of such analyses (stress, strain, and temperature fields as functions of time) as the input to the damage analysis and life assessment code. The code will be designed to execute on engineering/scientific workstations and will feature a windowing, mouse-driven user interface. Current plans call for the code to be finished and made available for use in mid 1991.

  19. Prediction of fatigue life of high-heat-load components made of oxygen-free copper by comparing with Glidcop.

    PubMed

    Takahashi, Sunao; Sano, Mutsumi; Watanabe, Atsuo; Kitamura, Hideo

    2013-01-01

    Following a successful study on the prediction of fatigue life of high-heat-load components made of Glidcop, the thermal limitation of oxygen-free copper (OFC), which is used more commonly than Glidcop, has been studied. In addition to its general mechanical properties, the low-cycle-fatigue (LCF) and creep properties of OFC were investigated in detail and compared with those of Glidcop. The breaking mode of OFC, which was observed to be completely different from that of Glidcop in a fatigue fracture experiment, clarified the importance of considering the creep-fatigue interaction. An additional LCF test with compressive strain holding was conducted so that the creep-fatigue life diagram for out-of-phase thermal fatigue could be obtained on the basis of the strain-range partitioning method. The life predicted from elasto-plastic creep analysis agreed well with that determined from the void ratio estimated in the fatigue fracture experiment. PMID:23254657

  20. Prediction of fatigue life of high-heat-load components made of oxygen-free copper by comparing with Glidcop

    PubMed Central

    Takahashi, Sunao; Sano, Mutsumi; Watanabe, Atsuo; Kitamura, Hideo

    2013-01-01

    Following a successful study on the prediction of fatigue life of high-heat-load components made of Glidcop, the thermal limitation of oxygen-free copper (OFC), which is used more commonly than Glidcop, has been studied. In addition to its general mechanical properties, the low-cycle-fatigue (LCF) and creep properties of OFC were investigated in detail and compared with those of Glidcop. The breaking mode of OFC, which was observed to be completely different from that of Glidcop in a fatigue fracture experiment, clarified the importance of considering the creep–fatigue interaction. An additional LCF test with compressive strain holding was conducted so that the creep–fatigue life diagram for out-of-phase thermal fatigue could be obtained on the basis of the strain-range partitioning method. The life predicted from elasto-plastic creep analysis agreed well with that determined from the void ratio estimated in the fatigue fracture experiment. PMID:23254657

  1. Residual fatigue life of metallic materials with a long service life

    SciTech Connect

    Koupak, V.I.

    1986-01-01

    The concept of residual life is discussed as most widely used in assessing the additional resource of materials of power station structural elements after they have exceeded their calculated life. No methods have been developed which provide a highly reliable solution of numerical problems involved in determining the residual life of materials damaged in operation of steam-piping straight sections or their bends. Stuctural state of a material can not be predicted in time. The possibility of the use of the equation of linear summation for the evaluation of residual life is considered and presented.

  2. The occupational and quality of life consequences of chronic fatigue syndrome/myalgic encephalomyelitis in young people.

    PubMed

    Taylor, Renee R; O'Brien, Jane; Kielhofner, Gary; Lee, Sun-Wook; Katz, Ben; Mears, Cynthia

    2010-11-01

    INTRODUCTION: Chronic fatigue syndrome, termed myalgic encephalomyelitis in the United Kingdom (CFS/ME), is a debilitating condition involving severe exhaustion, cognitive difficulties, educational and vocational losses, and disruption of social activities and relationships. CFS/ME may affect volition (that is, value, interest and sense of competence). PURPOSE: To test Model of Human Occupation (MOHO) concepts by comparing young people with and without CFS/ME in terms of occupational participation, volition and health-related quality of life during infection and over time. METHOD: Three hundred and one people (12-18 years old) diagnosed with glandular fever were evaluated at the time of acute infection (baseline). Six months following diagnosis, 39 of them met the criteria for CFS/ME. A further 39 who recovered were randomly selected and matched to CFS/ME participants. Both groups were re-evaluated at 12 months and 24 months. The Occupational Self Assessment and the Child General Health Questionnaire were used to compare occupational participation. RESULTS: Those with CFS/ME reported lower levels of perceived competency, more difficulties with physical functioning and poorer general health status than those who recovered. CONCLUSION: Those with CFS/ME report lower perceived competency, and compromises in physical functioning, school performance, social activities, emotional functioning and general health. This supports the MOHO assertion that impairments affect volition and quality of life. PMID:22102767

  3. Method of improving fatigue life of cast nickel based superalloys and composition

    DOEpatents

    Denzine, Allen F.; Kolakowski, Thomas A.; Wallace, John F.

    1978-03-14

    The invention consists of a method of producing a fine equiaxed grain structure (ASTM 2-4) in cast nickel-base superalloys which increases low cycle fatigue lives without detrimental effects on stress rupture properties to temperatures as high as 1800.degree. F. These superalloys are variations of the basic nickel-chromium matrix, hardened by gamma prime [Ni.sub.3 (Al, Ti)] but with optional additions of cobalt, tungsten, molybdenum, vanadium, columbium, tantalum, boron, zirconium, carbon and hafnium. The invention grain refines these alloys to ASTM 2 to 4 increasing low cycle fatigue life by a factor of 2 to 5 (i.e. life of 700 hours would be increased to 1400 to 3500 hours for a given stress) as a result of the addition of 0.01% to 0.2% of a member of the group consisting of boron, zirconium and mixtures thereof to aid heterogeneous nucleation. The alloy is vacuum melted and heated to 250.degree.-400.degree. F. above the melting temperature, cooled to partial solidification, thus resulting in said heterogeneous nucleation and fine grains, then reheated and cast at about 50.degree.-100.degree. F. of superheat. Additions of 0.1% boron and 0.1% zirconium (optional) are the preferred nucleating agents.

  4. Verification of recursive probabilistic integration (RPI) method for fatigue life management using non-destructive inspections

    NASA Astrophysics Data System (ADS)

    Chen, Tzikang J.; Shiao, Michael

    2016-04-01

    This paper verified a generic and efficient assessment concept for probabilistic fatigue life management. The concept is developed based on an integration of damage tolerance methodology, simulations methods1, 2, and a probabilistic algorithm RPI (recursive probability integration)3-9 considering maintenance for damage tolerance and risk-based fatigue life management. RPI is an efficient semi-analytical probabilistic method for risk assessment subjected to various uncertainties such as the variability in material properties including crack growth rate, initial flaw size, repair quality, random process modeling of flight loads for failure analysis, and inspection reliability represented by probability of detection (POD). In addition, unlike traditional Monte Carlo simulations (MCS) which requires a rerun of MCS when maintenance plan is changed, RPI can repeatedly use a small set of baseline random crack growth histories excluding maintenance related parameters from a single MCS for various maintenance plans. In order to fully appreciate the RPI method, a verification procedure was performed. In this study, MC simulations in the orders of several hundred billions were conducted for various flight conditions, material properties, and inspection scheduling, POD and repair/replacement strategies. Since the MC simulations are time-consuming methods, the simulations were conducted parallelly on DoD High Performance Computers (HPC) using a specialized random number generator for parallel computing. The study has shown that RPI method is several orders of magnitude more efficient than traditional Monte Carlo simulations.

  5. Effects of weld metal profile on the fatigue life of integrally reinforced weld-on fittings

    SciTech Connect

    Woods, G.E. ); Rodabaugh, E.C. , Dublin, OH )

    1994-06-01

    The cyclic fatigue life of fabricated tee intersections, including integrally reinforced weld-on fittings, has been a topic of discussion in the recent past. The discussion has centered around questions concerning the accuracy of the ASME B31.3 Code equations in calculating the stress intensification factors, (SIFs), for these types of intersection geometries. The SIF of an intersection is an indicator of the fatigue life of the intersection when it is subjected to bending moments caused by thermal, flow, or mechanically induced cyclical displacements. Schneider, Rodabaugh, and Woods concur that inaccuracies in the Code SIF equations do exist and that these equations should be revised. This report presents new Markl type SIF data on the B.W.Pipet (BWP), an integrally reinforced weld-on branch fitting, manufactured by WFI International, Inc., in Houston, Texas. The scope of this research project was to determine the influence of the installation weld metal profile of the Pipet to the run pipe on the SIF. The SIF data were then compared to calculated SIF values using equations from the American Society of Mechanical engineers (ASME) B31.1, ASME B31.3, and ASME Section 3, Subsection NC, for the purpose of determining which Code equation may be the most appropriate for calculating the SIF for these particular fittings.

  6. Fatigue and life prediction for cobalt-chromium stents: A fracture mechanics analysis.

    PubMed

    Marrey, Ramesh V; Burgermeister, Robert; Grishaber, Randy B; Ritchie, R O

    2006-03-01

    To design against premature mechanical failure, most implant devices such as coronary and endovascular stents are assessed on the basis of survival, i.e., if a fatigue life of 10(8) cycles is required, testing is performed to ascertain whether the device will survive 10(8) cycles under accelerated in vitro loading conditions. This is a far from satisfactory approach as the safety factors, which essentially tell you how close you are to failure, remain unknown; rather, the probability of fatigue failure should instead be assessed on the basis of testing to failure. In this work, a new damage-tolerant analysis of a cardiovascular stent is presented, where the design life is conservatively evaluated using a fracture mechanics methodology. In addition to enabling estimates of safe in vivo lifetimes to be made, this approach serves to quantify the effect of flaws in terms of their potential effect on device failure, and as such provides a rational basis for quality control. PMID:16260033

  7. A review of probabilistic fatigue life analyses for welded plate and tubular joints

    NASA Astrophysics Data System (ADS)

    Reddy, D. V.; Mu, R.

    1991-05-01

    The purpose of this review is to emphasize the need for validation of probability based analysis with measured values of crack propagation and fatigue life of welded T- and tubular joints. Although there is considerable variability in test values, collections of specimen curves indicate geometric and statistical regularity. Therefore, probabilistic analyses can provide a setting for processing the data in a manner suitable for design applications. Also, there is an increasing shift to fracture mechanics-based fatigue life prediction, in comparison with the current S-N cycle approach. The review identified a major shortcoming of the data bases for probabilistic analyses. Although extensive experimental research has been and is still being carried out all over the world, there are still very few data bases of replicate testing, which makes it very difficult to validate probabilistic analysis. Unfortunately, costly and time consuming investigations do not seem to address this deficiency. It is, therefore, hoped that future investigations will correct this problem. Also, there is a need to establish the equivalence of the Markov Chain-based cumulative damage and the fracture mechanics-based methods.

  8. Investigation of Bearing Fatigue Damage Life Prediction Using Oil Debris Monitoring

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Bolander, Nathan; Haynes, Chris; Toms, Allison M.

    2011-01-01

    Research was performed to determine if a diagnostic tool for detecting fatigue damage of helicopter tapered roller bearings can be used to determine remaining useful life (RUL). The taper roller bearings under study were installed on the tail gearbox (TGB) output shaft of UH- 60M helicopters, removed from the helicopters and subsequently installed in a bearing spall propagation test rig. The diagnostic tool was developed and evaluated experimentally by collecting oil debris data during spall progression tests on four bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of pitting damage. Results from the four bearings tested indicate that measuring the debris generated when a bearing outer race begins to spall can be used to indicate bearing damage progression and remaining bearing life.

  9. Fatigue mechanics - An assessment of a unified approach to life prediction

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Swain, M. H.; Everett, R. A., Jr.

    1992-01-01

    Consideration is given to the development of a total-life prediction methodology for aerospace structures based solely on crack propagation from a microstructural defect at stress concentrations. Crack-growth lives were calculated for a given loading condition by integrating the crack-growth-rate-against-delta K relationships for crack growth from a microstructural defect size to failure. Both small- and large-crack growth rate data were used. The assessment was based on data on 2024-T3 aluminum alloy, 2090-T8E41 aluminum-lithium alloy, annealed Ti-6Al-4V titanium alloy, and high-strength 4340 steel under either constant-amplitude or spectrum loading. Good agreement was found between fatigue lives measured on notched specimens with those computed from the total-life analysis.

  10. Low strain, long life creep fatigue of AF2-1DA and INCO 718

    SciTech Connect

    Thakker, A.B.; Cowles, B.A.

    1983-04-01

    Two aircraft turbine disk alloys, GATORIZED AF2-DA and INCO 718 were evaluated for their low strain long life creep-fatigue behavior. Static (tensile and creep rupture) and cyclic properties of both alloys were characterized. The cntrolled strain LCF tests were conducted at 760 C (1400 F) and 649 C (1200 F) for AF2-1DA and INCO 718, respectively. Hold times were varied for tensile, compressive and tensile/compressive strain dwell (relaxation) tests. Stress (creep) hold behavior of AF2-1DA was also evaluated. Generally, INCO 718 exhibited more pronounced reduction in cyclic life due to hold than AF2-1DA. The percent reduction in life for both alloys for strain dwell tests was greater at low strain ranges (longer life regime). Changing hold time from 0 to 0.5, 2.0 and 15.0 min. resulted in corresponding reductions in life. The continuous cycle and cyclic/dwell initiation failure mechanism was predominantly transgranular for AF2-1DA and intergranular for INCO 718.

  11. Low strain, long life creep fatigue of AF2-1DA and INCO 718

    NASA Technical Reports Server (NTRS)

    Thakker, A. B.; Cowles, B. A.

    1983-01-01

    Two aircraft turbine disk alloys, GATORIZED AF2-DA and INCO 718 were evaluated for their low strain long life creep-fatigue behavior. Static (tensile and creep rupture) and cyclic properties of both alloys were characterized. The cntrolled strain LCF tests were conducted at 760 C (1400 F) and 649 C (1200 F) for AF2-1DA and INCO 718, respectively. Hold times were varied for tensile, compressive and tensile/compressive strain dwell (relaxation) tests. Stress (creep) hold behavior of AF2-1DA was also evaluated. Generally, INCO 718 exhibited more pronounced reduction in cyclic life due to hold than AF2-1DA. The percent reduction in life for both alloys for strain dwell tests was greater at low strain ranges (longer life regime). Changing hold time from 0 to 0.5, 2.0 and 15.0 min. resulted in corresponding reductions in life. The continuous cycle and cyclic/dwell initiation failure mechanism was predominantly transgranular for AF2-1DA and intergranular for INCO 718.

  12. Identifying sexual differentiation genes that affect Drosophila life span

    PubMed Central

    2009-01-01

    Background Sexual differentiation often has significant effects on life span and aging phenotypes. For example, males and females of several species have different life spans, and genetic and environmental manipulations that affect life span often have different magnitude of effect in males versus females. Moreover, the presence of a differentiated germ-line has been shown to affect life span in several species, including Drosophila and C. elegans. Methods Experiments were conducted to determine how alterations in sexual differentiation gene activity might affect the life span of Drosophila melanogaster. Drosophila females heterozygous for the tudor[1] mutation produce normal offspring, while their homozygous sisters produce offspring that lack a germ line. To identify additional sexual differentiation genes that might affect life span, the conditional transgenic system Geneswitch was employed, whereby feeding adult flies or developing larvae the drug RU486 causes the over-expression of selected UAS-transgenes. Results In this study germ-line ablation caused by the maternal tudor[1] mutation was examined in a long-lived genetic background, and was found to increase life span in males but not in females, consistent with previous reports. Fitting the data to a Gompertz-Makeham model indicated that the maternal tudor[1] mutation increases the life span of male progeny by decreasing age-independent mortality. The Geneswitch system was used to screen through several UAS-type and EP-type P element mutations in genes that regulate sexual differentiation, to determine if additional sex-specific effects on life span would be obtained. Conditional over-expression of transformer female isoform (traF) during development produced male adults with inhibited sexual differentiation, however this caused no significant change in life span. Over-expression of doublesex female isoform (dsxF) during development was lethal to males, and produced a limited number of female escapers

  13. Application of fracture mechanics and half-cycle method to the prediction of fatigue life of B-52 aircraft pylon components

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Carter, A. L.; Totton, W. W.; Ficke, J. M.

    1989-01-01

    Stress intensity levels at various parts of the NASA B-52 carrier aircraft pylon were examined for the case when the pylon store was the space shuttle solid rocket booster drop test vehicle. Eight critical stress points were selected for the pylon fatigue analysis. Using fracture mechanics and the half-cycle theory (directly or indirectly) for the calculations of fatigue-crack growth ,the remaining fatigue life (number of flights left) was estimated for each critical part. It was found that the two rear hooks had relatively short fatigue life and that the front hook had the shortest fatigue life of all the parts analyzed. The rest of the pylon parts were found to be noncritical because of their extremely long fatigue life associated with the low operational stress levels.

  14. A New Ductility Exhaustion Model for High Temperature Low Cycle Fatigue Life Prediction of Turbine Disk Alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.

    2011-06-01

    Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.

  15. A high temperature fatigue life prediction computer code based on the total strain version of StrainRange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1993-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  16. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  17. Survivorship: Fatigue, Version 1.2014

    PubMed Central

    Denlinger, Crystal S.; Ligibel, Jennifer A.; Are, Madhuri; Baker, K. Scott; Demark-Wahnefried, Wendy; Friedman, Debra L.; Goldman, Mindy; Jones, Lee; King, Allison; Ku, Grace H.; Kvale, Elizabeth; Langbaum, Terry S.; Leonardi-Warren, Kristin; McCabe, Mary S.; Melisko, Michelle; Montoya, Jose G.; Mooney, Kathi; Morgan, Mary Ann; Moslehi, Javid J.; O’Connor, Tracey; Overholser, Linda; Paskett, Electra D.; Raza, Muhammad; Syrjala, Karen L.; Urba, Susan G.; Wakabayashi, Mark T.; Zee, Phyllis; McMillian, Nicole; Freedman-Cass, Deborah

    2015-01-01

    Many cancer survivors report that fatigue is a disruptive symptom even after treatment ends. Persistent cancer-related fatigue affects quality of life, because individuals become too tired to fully participate in the roles and activities that make life meaningful. Identification and management of fatigue remains an unmet need for many cancer survivors. This section of the NCCN Guidelines for Survivorship provides screening, evaluation, and management recommendations for fatigue in survivors. Management includes education and counseling, physical activity, psychosocial interventions, and pharmacologic treatments. PMID:24925198

  18. Survivorship: fatigue, version 1.2014.

    PubMed

    Denlinger, Crystal S; Ligibel, Jennifer A; Are, Madhuri; Baker, K Scott; Demark-Wahnefried, Wendy; Friedman, Debra L; Goldman, Mindy; Jones, Lee; King, Allison; Ku, Grace H; Kvale, Elizabeth; Langbaum, Terry S; Leonardi-Warren, Kristin; McCabe, Mary S; Melisko, Michelle; Montoya, Jose G; Mooney, Kathi; Morgan, Mary Ann; Moslehi, Javid J; O'Connor, Tracey; Overholser, Linda; Paskett, Electra D; Raza, Muhammad; Syrjala, Karen L; Urba, Susan G; Wakabayashi, Mark T; Zee, Phyllis; McMillian, Nicole; Freedman-Cass, Deborah

    2014-06-01

    Many cancer survivors report that fatigue is a disruptive symptom even after treatment ends. Persistent cancer-related fatigue affects quality of life, because individuals become too tired to fully participate in the roles and activities that make life meaningful. Identification and management of fatigue remains an unmet need for many cancer survivors. This section of the NCCN Guidelines for Survivorship provides screening, evaluation, and management recommendations for fatigue in survivors. Management includes education and counseling, physical activity, psychosocial interventions, and pharmacologic treatments. PMID:24925198

  19. Physical and Cognitive-Affective Factors Associated with Fatigue in Individuals with Fibromyalgia: A Multiple Regression Analysis

    ERIC Educational Resources Information Center

    Muller, Veronica; Brooks, Jessica; Tu, Wei-Mo; Moser, Erin; Lo, Chu-Ling; Chan, Fong

    2015-01-01

    Purpose: The main objective of this study was to determine the extent to which physical and cognitive-affective factors are associated with fibromyalgia (FM) fatigue. Method: A quantitative descriptive design using correlation techniques and multiple regression analysis. The participants consisted of 302 members of the National Fibromyalgia &…

  20. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue.

    PubMed

    Millet, Guillaume Y; Muthalib, Makii; Jubeau, Marc; Laursen, Paul B; Nosaka, Kazunori

    2012-04-01

    To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ∼75%) compared with ModHyp (SpO(2) = ∼90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation. PMID:22323647

  1. Microstructural Influence on Deformation and Fatigue Life of Composites Using the Generalized Method of Cells

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Murthy, P.; Bednarcyk, B. A.; Pineda, E. J.

    2015-01-01

    A fully coupled deformation and damage approach to modeling the response of composite materials and composite laminates is presented. It is based on the semi-­-analytical generalized method of cells (GMC) micromechanics model as well as its higher fidelity counterpart, HFGMC, both of which provide closed-form constitutive equations for composite materials as well as the micro scale stress and strain fields in the composite phases. The provided constitutive equations allow GMC and HFGMC to function within a higher scale structural analysis (e.g., finite element analysis or lamination theory) to represent a composite material point, while the availability of the micro fields allow the incorporation of lower scale sub­-models to represent local phenomena in the fiber and matrix. Further, GMC's formulation performs averaging when applying certain governing equations such that some degree of microscale field accuracy is surrendered in favor of extreme computational efficiency, rendering the method quite attractive as the centerpiece in a integrated computational material engineering (ICME) structural analysis; whereas HFGMC retains this microscale field accuracy, but at the price of significantly slower computational speed. Herein, the sensitivity of deformation and the fatigue life of graphite/epoxy PMC composites, with both ordered and disordered microstructures, has been investigated using this coupled deformation and damage micromechanics based approach. The local effects of fiber breakage and fatigue damage are included as sub-models that operate on the microscale for the individual composite phases. For analysis of laminates, classical lamination theory is employed as the global or structural scale model, while GMC/HFGMC is embedded to operate on the microscale to simulate the behavior of the composite material within each laminate layer. A key outcome of this study is the statistical influence of microstructure and micromechanics idealization (GMC or HFGMC) on

  2. Evaluation of effects of LWR coolant environments on fatigue life of carbon and low-alloy steels

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1996-02-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figure I-90 of Appendix I to Section III of the Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Recent test data indicate a significant decrease in fatigue life of carbon and low-alloy steels in LWR environments when five conditions are satisfied simultaneously, viz., applied strain range, temperature, dissolved oxygen in the water, and sulfur content of the steel are above a minimum threshold level, and the loading strain rate is below a threshold value. Only a moderate decrease in fatigue life is observed when any one of these conditions is not satisfied. This paper summarizes available data on the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, and sulfur content on the fatigue life of carbon and low-alloy steels. The data have been analyzed to define the threshold values of the five critical parameters. Methods for estimating fatigue lives under actual loading histories are discussed.

  3. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    NASA Technical Reports Server (NTRS)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  4. Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part I: Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-04-01

    This paper presents an experimental analysis on the fatigue behavior in C/SiC ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply and 2.5D woven, at room and elevated temperatures in air atmosphere. The experimental fatigue life S - N curves of C/SiC composites corresponding to different stress levels and test conditions have been obtained. The damage evolution processes under fatigue loading have been analyzed using fatigue hysteresis modulus and fatigue hysteresis loss energy. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different peak stress, fiber preforms and test conditions have been estimated. It was found that the degradation of interface shear stress and fibres strength caused by oxidation markedly decreases the fatigue life of C/SiC composites at elevated temperature.

  5. The characteristics of fatigue symptoms and their association with the life style and the health status in school children.

    PubMed

    Okamoto, M; Tan, F; Suyama, A; Okada, H; Miyamoto, T; Kishimoto, T

    2000-07-01

    In order to evaluate the characteristics of fatigue symptoms and their association with the life style and the health status, we examined using data accumulated by the longitudinal surveys from 1992 to 1998, in 118 six-year primary school children and 129 second-year junior high school children. The complaints of "drowsiness and dullness", such as "become drowsy" (71%), "give a yawn" (59%) and "want to lie down" (51%), respectively, were most frequently observed. The proportion of these complaints was high before the first morning class, but decreased when the children leave school. Notably, the complaints of "difficulty in concentration" annually have increased. Children with undesirable eating habits, particularly those who often eat salty foods, or poor life style, such as staying up late at night tended to have more complaints of fatigue symptoms. By correlation analysis, these complaints were significantly related to the obesity degree, blood pressure, HDL cholesterol and atherogenic index. These results support the hypothesis that fatigue symptoms increase or are associated with life style and health status. Consequently, it is necessary to improve the life style such as dietary habits and rhythm of life for the reduction of fatigue symptom. PMID:10959606

  6. Improvement in surface fatigue life of hardened gears by high-intensity shot peening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1992-01-01

    Two groups of carburized, hardened, and ground spur gears that were manufactured from the same heat vacuum induction melted vacuum arc melted (VIM VAR) AISI 9310 steel were endurance tested for surface fatigue. Both groups were manufactured with a standard ground 16 rms surface finish. One group was subjected to a shot peening (SP) intensity of 7 to 9A, and the second group was subjected to a SP intensity of 15 to 17A. All gears were honed after SP to a surface finish of 16 rms. The gear pitch diameter was 8.89 cm. Test conditions were a maximum Hertz stress of 1.71 GPa, a gear temperature of 350 K, and a speed of 10000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The following results were obtained: The 10 pct. surface fatigue (pitting) life of the high intensity (15 to 17A) SPed gears was 2.15 times that of the medium intensity (7 to 9A) SPed gears, the same as that calculated from measured residual stress at a depth of 127 microns. The measured residual stress for the high intensity SPed gears was 57 pct. higher than that for the medium intensity SPed gears at a depth of 127 microns and 540 pct. higher at a depth of 51 microns.

  7. Fatigue life calculation of desuperheater for solving pipe cracking issue using finite element method (FEM) software

    NASA Astrophysics Data System (ADS)

    Kumar, Aravinda; Singh, Jeetendra Kumar; Mohan, K.

    2012-06-01

    Desuperheater assembly experiences thermal cycling in operation by design. During power plant's start up, load change and shut down, thermal gradient is highest. Desuperheater should be able to handle rapid ramp up or ramp down of temperature in these operations. With "hump style" two nozzle desuperheater, cracks were appearing in the pipe after only few cycles of operation. From the field data, it was clear that desuperheater is not able to handle disproportionate thermal expansion happening in the assembly during temperature ramp up and ramp down in operation and leading to cracks appearing in the piping. Growth of thermal fatigue crack is influenced by several factors including geometry, severity of thermal stress and applied mechanical load. This paper seeks to determine cause of failure of two nozzle "hump style" desuperheater using Finite Element Method (FEM) simulation technique. Thermal stress simulation and fatigue life calculation were performed using commercial FEA software "ANSYS" [from Ansys Inc, USA]. Simulation result showed that very high thermal stress is developing in the region where cracks are seen in the field. From simulation results, it is also clear that variable thermal expansion of two nozzle studs is creating high stress at the water manifold junction. A simple and viable solution is suggested by increasing the length of the manifold which solved the cracking issues in the pipe.

  8. Probabilistic fatigue methodology for six nines reliability

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.; Bartlett, F. D., Jr.; Elber, Wolf

    1990-01-01

    Fleet readiness and flight safety strongly depend on the degree of reliability that can be designed into rotorcraft flight critical components. The current U.S. Army fatigue life specification for new rotorcraft is the so-called six nines reliability, or a probability of failure of one in a million. The progress of a round robin which was established by the American Helicopter Society (AHS) Subcommittee for Fatigue and Damage Tolerance is reviewed to investigate reliability-based fatigue methodology. The participants in this cooperative effort are in the U.S. Army Aviation Systems Command (AVSCOM) and the rotorcraft industry. One phase of the joint activity examined fatigue reliability under uniquely defined conditions for which only one answer was correct. The other phases were set up to learn how the different industry methods in defining fatigue strength affected the mean fatigue life and reliability calculations. Hence, constant amplitude and spectrum fatigue test data were provided so that each participant could perform their standard fatigue life analysis. As a result of this round robin, the probabilistic logic which includes both fatigue strength and spectrum loading variability in developing a consistant reliability analysis was established. In this first study, the reliability analysis was limited to the linear cumulative damage approach. However, it is expected that superior fatigue life prediction methods will ultimately be developed through this open AHS forum. To that end, these preliminary results were useful in identifying some topics for additional study.

  9. Creep-Fatigue Life Prediction and Reliability Analysis of P91 Steel Based on Applied Mechanical Work Density

    NASA Astrophysics Data System (ADS)

    Ji, D. M.; Shen, M.-H. H.; Wang, D. X.; Ren, J. X.

    2015-01-01

    A creep-fatigue (CF) life prediction model and its simplified expression were developed based on the applied mechanical work density (AMWD). The foundation of this model was an integration of N- S curve. Comparisons of the model predicted fatigue lifetimes with the experimental data of load-controlled CF tests on P91 base metal and welded metal at 848 K from the reference were made and apparently illustrated that the model predictions were in a good agreement with the experimental fatigue lifetimes. In addition, the curve of the numbers of cycles to failure versus AMWD at the associated probability was deduced. A reliability model was constructed by combining the curve and the simplified life prediction model.

  10. The Effects of Shot and Laser Peening on Fatigue Life and Crack Growth in 2024 Aluminum Alloy and 4340 Steel

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.; Matthews, W. T.; Prabhakaran, R.; Newman, J. C., Jr.; Dubberly, M. J.

    2001-01-01

    Fatigue and crack growth tests have been conducted on 4340 steel and 2024-T3 aluminum alloy, respectively, to assess the effects of shot peening on fatigue life and the effects of shot and laser peening on crack growth. Two current programs involving fixed and rotary-wing aircraft will not be using shot peened structures. Since the shot peening compressive residual stress depth is usually less than the 0.05-inch initial damage tolerance crack size, it is believed by some that shot peening should have no beneficial effects toward retarding crack growth. In this study cracks were initiated from an electronic-discharged machining flaw which was cycled to produce a fatigue crack of approximately 0.05-inches in length and then the specimens were peened. Test results showed that after peening the crack growth rates were noticeably slower when the cracks were fairly short for both the shot and laser peened specimens resulting in a crack growth life that was a factor of 2 to 4 times greater than the results of the average unpeened test. Once the cracks reached a length of approximately 0.1-inches the growth rates were about the same for the peened and unpeened specimens. Fatigue tests on 4340 steel showed that the endurance limit of a test specimen with a 0.002-inch-deep machining-like scratch was reduced by approximately 40 percent. However, if the "scratched" specimen was shot peened after inserting the scratch, the fatigue life returned to almost 100 percent of the unflawed specimens original fatigue life.

  11. Initial Assessment of the Effects of Nonmetallic Inclusions on Fatigue Life of Powder-Metallurgy-Processed Udimet(TM) 720

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Kantzos, P. T.; Bonacuse, P. J.; Barrie, R. L.

    2002-01-01

    The fatigue lives of modern powder metallurgy (PM) disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary due to the different steps of materials/component processing and machining. One of these variables, the presence of nonmetallic inclusions, has been shown to significantly degrade low-cycle fatigue (LCF) life. Nonmetallic inclusions are inherent defects in powder alloys that are a by-product of powder-processing techniques. Contamination of the powder can occur in the melt, during powder atomization, or during any of the various handling processes through consolidation. In modern nickel disk powder processing facilities, the levels of inclusion contamination have been reduced to less than 1 part per million by weight. Despite the efforts of manufacturers to ensure the cleanliness of their powder production processes, the presence of inclusions remains a source of great concern for the designer. the objective of this study was to investigate the effects on fatigue life of these inclusions. Since natural inclusions occur so infrequently, elevated levels of inclusions were carefully introduced in a nickel-based disk superalloy, Udimet 720 (registered trademark of Special Metals Corporation), produced using PM processing. Multiple strain-controlled fatigue tests were then performed on this material at 650 C. Analyses were performed to compare the LCF lives and failure initiation sites as functions of inclusion content and fatigue conditions. A large majority of the failures in specimens with introduced inclusions occurred at cracks initiating from inclusions at the specimen surface. The inclusions could reduce fatigue life by up to 100 times. These effects were found to be dependent on strain range and strain ratio. Tests at lower strain ranges and higher strain ratios produced larger effects of inclusions on life.

  12. Fatigue life of anti-friction bearings subjected to cyclic loading

    SciTech Connect

    Dominik, W.K.

    1986-01-01

    Cyclic loading is defined as external loading that varies within the revolution of a bearing and is repeated for every revolution. The cyclicly varying loads may consist of a series of discrete loads that occur in a repeating pattern or a continuously varying force or a combination of these. A simple example of cyclic loading is a single cylinder, double acting piston pump in which the force on the bearings reverse every 180/sup 0/ of a revolution; as a result, the same half of the rotating bearing race passes under the load twice in a single revolution. More complex patterns of cyclic loads occur in rotary engines, fuel injection pumps, nutating engines, etc. The paper presents the theoretical relationships and methods that predict the effect of cyclic loading on the fatigue life of anti-friction bearings. An example problem solved with the aid of a special analysis program illustrates the results from these methods.

  13. User`s guide for the frequency domain algorithms in the LIFE2 fatigue analysis code

    SciTech Connect

    Sutherland, H.J.; Linker, R.L.

    1993-10-01

    The LIFE2 computer code is a fatigue/fracture analysis code that is specialized to the analysis of wind turbine components. The numerical formulation of the code uses a series of cycle count matrices to describe the cyclic stress states imposed upon the turbine. However, many structural analysis techniques yield frequency-domain stress spectra and a large body of experimental loads (stress) data is reported in the frequency domain. To permit the analysis of this class of data, a Fourier analysis is used to transform a frequency-domain spectrum to an equivalent time series suitable for rainflow counting by other modules in the code. This paper describes the algorithms incorporated into the code and their numerical implementation. Example problems are used to illustrate typical inputs and outputs.

  14. Development of a device to study fatigue life of fixed partial dentures

    NASA Astrophysics Data System (ADS)

    Gutierrez, S. C.; Meseguer, M. D.; Estal, R.; Folguera, F.; Vidal, V.

    2012-04-01

    Fixed partial dentures can be fabricated by means of different materials and with different manufacturing processes. In order to establish possible differences among them, their behaviour, as fatigue life or cement shear bond strength, have to be evaluated. This article presents a modular, economic and robust device to evaluate fixed partial dentures and dental crowns. A base to support the fixed partial dentures and a device to simulate masticatory loads have been developed. The device has got a simple design. It is based on a pneumatic piston, with a pressure regulator to control masticatory loads. On a first stage, only vertical forces have been taking into account. However, the device will allow simulating tangential masticatory loads on the other axis, studying the behaviour of the fixed partial dentures submerged in a solution similar to saliva, changing masticatory load application, etc. with little modifications.

  15. A model for predicting damage induced fatigue life of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lo, David C.; Georgiou, Ioannis T.; Harris, Charles E.

    1990-01-01

    This paper presents a model for predicting the life of laminated composite structural components subjected to fatigue induced microstructural damage. The model uses the concept of continuum damage mechanics, wherein the effects of microcracks are incorporated into a damage dependent lamination theory instead of treating each crack as an internal boundary. Internal variables are formulated to account for the effects of both matrix cracks and internal delaminations. Evolution laws for determining the damage variables as functions of ply stresses are proposed, and comparisons of predicted damage evolution are made to experiment. In addition, predicted stiffness losses, as well as ply stresses are shown as functions of damage state for a variety of stacking sequences.

  16. Random Vibration Tests for Prediction of Fatigue Life of Diffuser Structure for Gas Dynamic Laser

    NASA Astrophysics Data System (ADS)

    Maurer, O. F.; Banaszak, D. L.

    1980-01-01

    Static and dynamic strain measurements which were taken during test stand operations of the gas dynamic laser (GDL) for the AF Airborne Laser Laboratory indicated that higher than expected vibrational stress levels may possibly limit the fatigue life of the laser structure. Particularly the diffuser sidewall structure exhibited large amplitude random vibrations which were excited by the internal gas flow. The diffuser structure consists of two layers of brazed stainless steel, AISI-347, panels. Cooling ducts were milled into the outer face sheet. These in turn are backed by the inner face sheet. So called T-rail stiffeners silver-brazed to the outer face sheets add the required stiffness and divide the sidewall into smaller rectangular plate sections.

  17. Fatigue life estimation program for Part 23 airplanes, `AFS.FOR`

    SciTech Connect

    Kaul, S.K.

    1993-12-31

    The purpose of this paper is to introduce to the general aviation industry a computer program which estimates the safe fatigue life of any Federal Aviation Regulation (FAR) Part 23 airplane. The algorithm uses the methodology (Miner`s Linear Cumulative Damage Theory) and the various data presented in the Federal Aviation Administration (FAA) Report No. AFS-120-73-2, dated May 1973. The program is written in FORTRAN 77 language and is executable on a desk top personal computer. The program prompts the user for the input data needed and provides a variety of options for its intended use. The program is envisaged to be released through issuance of a FAA report, which will contain the appropriate comments, instructions, warnings and limitations.

  18. Surface fatigue life of CBN and vitreous ground carburized and hardened AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Patel, P. R.

    1988-01-01

    Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9310 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temeprature of 320 K (116 F), an outlet oil temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

  19. Frequency-domain stress prediction algorithm for the LIFE2 fatigue analysis code

    SciTech Connect

    Sutherland, H.J.

    1992-01-01

    The LIFE2 computer code is a fatigue/fracture analysis code that is specialized to the analysis of wind turbine components. The numerical formulation of the code uses a series of cycle mount matrices to describe the cyclic stress states imposed upon the turbine. However, many structural analysis techniques yield frequency-domain stress spectra and a large body of experimental loads (stress) data is reported in the frequency domain. To permit the analysis of this class of data, a Fourier analysis module has been added to the code. The module transforms the frequency spectrum to an equivalent time series suitable for rainflow counting by other modules in the code. This paper describes the algorithms incorporated into the code and uses experimental data to illustrate their use. 10 refs., 11 figs.

  20. The effect of corrosion on the fatigue life of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Dalla, P. T.; Tragazikis, I. K.; Exarchos, D. A.; Matikas, T. E.

    2016-04-01

    The corrosion behavior of metallic structures is an important factor of material performance. In case of aluminum matrix composites corrosion occurs via electrochemical reactions at the interface between the metallic matrix and the reinforcement. The corrosion rate is determined by equilibrium between two opposing electrochemical reactions, the anodic and the cathodic. When these two reactions are in equilibrium, the flow of electrons from each reaction type is balanced, and no net electron flow occurs. In the present study, aluminum alloy tensile-shape samples are immersed in NaCl solution with an objective to study the effect of the controlled pitting corrosion in a specific area. The rest of the material is completely sealed. In order to investigate the effect of pitting corrosion on the material performance, the specimens were subjected to cyclic loading. The effect of corrosion on the fatigue life was assessed using two complimentary nondestructive methods, infrared thermography and acoustic emission.

  1. Reliability approach to rotating-component design. [fatigue life and stress concentration

    NASA Technical Reports Server (NTRS)

    Kececioglu, D. B.; Lalli, V. R.

    1975-01-01

    A probabilistic methodology for designing rotating mechanical components using reliability to relate stress to strength is explained. The experimental test machines and data obtained for steel to verify this methodology are described. A sample mechanical rotating component design problem is solved by comparing a deterministic design method with the new design-by reliability approach. The new method shows that a smaller size and weight can be obtained for specified rotating shaft life and reliability, and uses the statistical distortion-energy theory with statistical fatigue diagrams for optimum shaft design. Statistical methods are presented for (1) determining strength distributions for steel experimentally, (2) determining a failure theory for stress variations in a rotating shaft subjected to reversed bending and steady torque, and (3) relating strength to stress by reliability.

  2. A Study on Fretting Fatigue Life in Elevated Temperature for Incoloy 800

    NASA Astrophysics Data System (ADS)

    Kwon, Jae Do; Woo, Seung Wan; Chung, Il Sup; Yoon, Dong Hwan; Park, Dae Kyu

    Incoloy 800, which is used within steam generator tubes, is a heat resistant material since it is an iron-nickel-chromium alloy. However, construction of a systematic database is needed to receive integrity data defecting insurance of specific data about room and elevated temperature fretting fatigue behavior for Incoloy 800. Accordingly, this study investigates the specific change in fatigue limitations under the condition of the fretting fatigue as compared to that under the condition of the plain fatigue by performing plain and fretting fatigue tests on Incoloy 800 at 320°C, real operating temperature and at room-temperature, respectively. The change in the frictional force is measured during the fretting fatigue testing against the repeated cycle, and the mechanism of fretting fatigue is investigated through the observation of the fatigue-fracture surface.

  3. Impact of Poststroke Fatigue on Health-Related Quality of Life of Nigerian Stroke Survivors

    PubMed Central

    Adamu, Abdulbaqi

    2014-01-01

    Background and Purpose A stroke event is often characterized by a number of debilitating consequences that may impact negatively on the health-related quality of life (HRQL) of survivors. This study examined the impact of poststroke fatigue (PSF), a persistent and prevalent stroke consequence, on HRQL of Nigerian stroke survivors. Methods One hundred stroke survivors were recruited from the physiotherapy outpatient departments of two tertiary hospitals in Northern Nigeria. The Fatigue Severity Scale and Health-Related Quality of Life in Stroke Patients-26 were respectively used to assess PSF and HRQL. The independent impact of PSF on overall and domain-specific HRQL was examined using hierarchical regression analyses. Results Mean age of the stroke survivors was 55.32 years (SD 13.9 years). The majority were males (66%), had suffered ischemic stroke (70%) and presented with moderately severe disability (42%). After controlling for demographic and stroke-related variables, PSF was found to be significantly and independently associated with all the domains of HRQL albeit at varying degrees. While the influence of PSF on the emotional domain was the most pronounced and uniquely contributed to 15% of the variance in the domain, its influence on the cognitive domain was the least prominent. PSF also solely accounted for 9% of the variation in overall HRQL with higher levels of PSF related with lower HRQL. Conclusions Being a potentially treatable condition, PSF's significant impact on HRQL has implications for successful stroke care and rehabilitation. For instance, addressing PSF through appropriate interventions may assist in enhancing HRQL of stroke survivors. PMID:25328879

  4. Vortex-induced vibration effect on fatigue life estimate of turbine blades

    NASA Astrophysics Data System (ADS)

    Lau, Y. L.; Leung, R. C. K.; So, R. M. C.

    2007-11-01

    An analysis of a turbine blade fatigue life that includes the physics of fluid-structure interaction on the high cycle fatigue (HCF) life estimate of turbine blades is carried out. The rotor wake excitation is modeled by rows of Karman vortices superimposed on an inviscid uniform flow. The vortex-induced vibration problem is modeled by a linear cascade composed of five turbine blades and the coupled Euler and structural dynamics equations are numerically solved using a time-marching boundary element technique. The analysis can be applied to any blade geometries; it is not limited to the blade geometry considered here. Two major design parameters have been identified; the ratio of blade spacing to blade chord length s/ c of the stator, and the normalized frequency parameter c/ d which is related to the wake passing frequency of the rotor. For a rigid cascade, it is found that aerodynamic resonance prevails at the resonant c/ d values corresponding to an isolated blade while s/ c is responsible for the level of the aerodynamic response. If the central blades were elastic, the parameter s/ c plays a different role in the fluid-structure interaction problem. With a c/ d that could lead to structural resonance for an isolated blade, changing s/ c would stabilize the aerodynamic and structural response of the elastic blade in a cascade. On the contrary, an improper choice of s/ c might turn the elastic blade response into structural resonance even though the oncoming c/ d is non-resonant. The results of the nonlinear effects of c/ d and s/ c could be used together with the Campbell diagram to obtain an improved HCF design of rotor-stator pair.

  5. Materialism, affective states, and life satisfaction: case of Croatia.

    PubMed

    Lipovčan, Ljiljana Kaliterna; Prizmić-Larsen, Zvjezdana; Brkljačić, Tihana

    2015-01-01

    In recent years, a number of studies have used Material Values Scale (MVS) to assess beliefs about importance to own material things. The aims of this study were to validate the MVS scale and to explore the relationships between materialistic values and well-being of Croatian citizens. The study was carried out on a representative sample of N = 1129 Croatian citizens. We used the short 9-item version of the MVS, life satisfaction rating, ratings of two positive (Positive affect) and four negative emotions (Negative affect) over the past month, and demographic variables (age, gender, income). The original dimensionality of the MVS was not confirmed; confirmatory factor analyses yielded two instead of three factors, Happiness and Centrality/Success. When controlled for income, gender and age, the Happiness dimension predicted Life satisfaction and both Positive and Negative affect, indicating that people who believed that the material goods in ones life leads to happiness reported to have lower life satisfaction, lower level of positive affect and higher level of negative affect over the past month. The Centrality/Success dimension was positively related to Positive affect, indicating that the belief that possessions play a central role in enjoyment leads to more frequent experiences of happiness and satisfaction over the past month. PMID:26587367

  6. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  7. Effects of Temperature, Oxidation and Fiber Preforms on Fatigue Life of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-08-01

    In this paper, the effects of temperature, oxidation and fiber preforms on the fatigue life of carbon fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) have been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of unidirectional, cross-ply, 2D, 2.5D and 3D C/SiC composites at room temperature, 800 °C in air, 1100, 1300 and 1500 °C in vacuum conditions have been predicted.

  8. Effects of Temperature, Oxidation and Fiber Preforms on Fatigue Life of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-04-01

    In this paper, the effects of temperature, oxidation and fiber preforms on the fatigue life of carbon fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) have been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of unidirectional, cross-ply, 2D, 2.5D and 3D C/SiC composites at room temperature, 800 °C in air, 1100, 1300 and 1500 °C in vacuum conditions have been predicted.

  9. Fatigue in adolescents and young adults with sickle cell disease: biological and behavioral correlates and health-related quality of life.

    PubMed

    Ameringer, Suzanne; Elswick, R K; Smith, Wally

    2014-01-01

    This descriptive, correlational study examined fatigue and potential biological and behavioral correlates in adolescents and young adults with sickle cell disease. Sixty adolescents and young adults with sickle cell disease completed the Brief Fatigue Inventory, Multidimensional Fatigue Symptom Inventory-Short Form, Patient Reported Outcomes Measurement Information System (PROMIS) fatigue short form and measures of pain, sleep quality, anxiety, depressive mood, stress, disease severity, and quality of life. Blood samples were obtained for hemoglobin and cytokines. Fatigue scores were mostly moderate in severity. Fatigue interfered to a moderate degree with daily activities and correlated significantly with pain, sleep quality, state and trait anxiety, depressive mood, stress, and quality of life. Fatigue was correlated with hemoglobin on the PROMIS measure. Fatigue was not correlated with cytokines or age, nor differed by disease severity. Fatigue was common in these adolescents and young adults, interfered with daily activities such as school, work and exercise, and significantly correlated with several potentially modifiable factors. As life expectancy increases in sickle cell disease, research is needed to test interventions to reduce fatigue. PMID:24378816

  10. Surface fatigue life of M50NiL and AISI 9310 spur gears and R C bars

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Bamberger, Eric N.

    1991-01-01

    Spur gear endurance tests and rolling element surface fatigue tests were conducted to study vacuum induction melted, vacuum arc remelted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm. Gear test conditions were an inlet oil temperature of 320 K, and outlet oil temperature of 350 K, a maximum Hertz stress of 1.71 GPa, and a speed of 10000 rpm. Bench rolling element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa. The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and superior fatigue life to both other gears.

  11. Repetitive arm motion-induced fatigue affects shoulder but not endpoint position sense.

    PubMed

    Emery, Kim; Côté, Julie N

    2012-02-01

    Neck/shoulder pain has previously been linked to repetitive work and muscle fatigue. We have shown that asymptomatic people performing repetitive upper limb tasks display signs of shoulder fatigue and of whole-body compensatory strategies. However, the role played by the proprioceptive system in the production of these compensatory strategies has not been studied. A group of asymptomatic adults (n = 18) performed a repetitive pointing task at shoulder height to fatigue. Before and after fatigue, they performed two position sense tasks, eyes closed: a single-joint task where they abducted their shoulder to the perceived horizontal and a multi-joint task, where they stood and placed their finger at the perceived location of a target in front of them at shoulder height. After fatigue, subjects made larger shoulder errors by raising their elbow higher above the horizontal (~ +1.3 cm) than before fatigue; however, their finger position accuracy was not changed, despite all subjects performing the movement in less time (~ -0.18 s) while fatigued. There were no gender differences in shoulder or finger position accuracy before or after fatigue; however, there were gender differences in the perceived finger-target location and in the temporal characteristics of the finger movement toward the target. Results suggest that healthy individuals are able to develop strategies to compensate for fatigue-induced deficits at one joint to maintain the endpoint accuracy of a multi-joint task constant. Gender differences in movement strategies and perception of endpoint location may play parts in the previously reported gender differences in work-related neck/shoulder symptoms. PMID:22124803

  12. Emotions, affects and the production of social life.

    PubMed

    Fox, Nick J

    2015-06-01

    While many aspects of social life possess an emotional component, sociology needs to explore explicitly the part emotions play in producing the social world and human history. This paper turns away from individualistic and anthropocentric emphases upon the experience of feelings and emotions, attending instead to an exploration of flows of 'affect' (meaning simply a capacity to affect or be affected) between bodies, things, social institutions and abstractions. It establishes a materialist sociology of affects that acknowledges emotions as a part, but only a part, of a more generalized affective flow that produces bodies and the social world. From this perspective, emotions are not a peculiarly remarkable outcome of the confluence of biology and culture, but part of a continuum of affectivity that links human bodies to their physical and social environment. This enhances sociological understanding of the part emotions play in shaping actions and capacities in many settings of sociological concern. PMID:25788237

  13. How Do Volcanoes Affect Human Life? Integrated Unit.

    ERIC Educational Resources Information Center

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  14. NASALife-Component Fatigue and Creep Life Prediction Program and Illustrative Examples

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.

    2005-01-01

    NASALife is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although, the primary focus was for CMC components the underlying methodologies are equally applicable to other material systems as well. The program references data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method. Lastly, damage due to cyclic loading (Miner s rule) and creep are combined to determine the total damage per mission and the number of missions the component can survive before failure are calculated. Illustration of code usage is provided through example problem of a CMC turbine stator vane made of melt-infiltrated, silicon carbide fiber-reinforced, silicon carbide matrix composite (MI SiC/SiC)

  15. Creep-fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1982-01-01

    The objectives of this program are the investigation of fundamental approaches to high temperature crack initiation life prediction, identification of specific modeling strategies and the development of specific models for component relevant loading conditions. A survey of the hot section material/coating systems used throughout the gas turbine industry is included. Two material/coating systems will be identified for the program. The material/coating system designated as the base system shall be used throughout Tasks 1-12. The alternate material/coating system will be used only in Task 12 for further evaluation of the models developed on the base material. In Task II, candidate life prediction approaches will be screened based on a set of criteria that includes experience of the approaches within the literature, correlation with isothermal data generated on the base material, and judgements relative to the applicability of the approach for the complex cycles to be considered in the option program. The two most promising approaches will be identified. Task 3 further evaluates the best approach using additional base material fatigue testing including verification tests. Task 4 consists of technical, schedular, financial and all other reporting requirements in accordance with the Reports of Work clause.

  16. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  17. Review of time-dependent fatigue behavior and life prediction for 2 1/4 Cr-1 Mo steel. [LMFBR

    SciTech Connect

    Booker, M.K.; Majumdar, S.

    1982-01-01

    Available data on creep-fatigue life and fracture behavior of 2 1/4 Cr-1 Mo steel are reviewed. Whereas creep-fatigue interaction is important for Type 304 stainless steel, oxidation effects appear to dominate the time-dependent fatigue behavior of 2 1/4 Cr-1 Mo steel. Four of the currently available predictive methods - the Linear Damage Rule, Frequency Separation Equation, Strain Range Partitioning Equation, and Damage Rate Equation - are evaluated for their predictive capability. Variations in the parameters for the various predictive methods with temperature, heat of material, heat treatment, and environment are investigated. Relative trends in the lives predicted by the various methods as functions of test duration, waveshape, etc., are discussed. The predictive methods will need modification in order to account for oxidation and aging effects in the 2 1/4 Cr-1 Mo steel. Future tests that will emphasize the difference between the various predictive methods are proposed.

  18. A comparison of muscle strength and endurance, exercise capacity, fatigue perception and quality of life in patients with chronic obstructive pulmonary disease and healthy subjects: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Chronic obstructive pulmonary disease (COPD) has significant systemic effects that substantially impact quality of life and survival. The purpose of this study was to assess and compare peripheral muscle strength and endurance, exercise capacity, fatigue perception and quality of life between patients with COPD and healthy subjects. Methods Twenty COPD patients (mean FEV1 49.3 ± 19.2%) and 20 healthy subjects were included in the study. Pulmonary function testing and six-minute walk test (6MWT) were performed. Peripheral muscle strength was measured with a hand-held dynamometer, peripheral muscle endurance was evaluated with sit-ups, squats and modified push-ups tests. Fatigue perception was assessed using the Fatigue Impact Scale (FIS) and Fatigue Severity Scale (FSS). General quality of life was determined with the Nottingham Health Profile (NHP), and cough-specific quality of life was evaluated with the Leicester Cough Questionnaire (LCQ). Results Pulmonary functions, strength of shoulder abductor and flexor muscles, numbers of sit-ups and squats, 6MWT distance and 6MWT% were significantly lower in COPD patients than in healthy subjects (p < 0.05). FIS psychosocial sub-dimension and total scores, NHP scores for all sub-dimensions except pain sub-dimension of the COPD group were significantly higher than those of healthy subjects (p < 0.05). The LCQ physical, psychological and social sub-dimensions and total scores were significantly lower in COPD patients than in healthy subjects (p < 0.05). Conclusions Pulmonary functions, peripheral muscle strength and endurance, exercise capacity and quality of life were adversely affected in patients with COPD. There are greater effect of fatigue on psychosocial functioning and general daily life activities and effect of cough on the quality of life in patients with COPD. This study supports the idea that COPD patients must be evaluated in a comprehensive manner for planning pulmonary

  19. Resistance training improves fatigue and quality of life in previously sedentary breast cancer survivors: a randomised controlled trial.

    PubMed

    Hagstrom, A D; Marshall, P W M; Lonsdale, C; Cheema, B S; Fiatarone Singh, M A; Green, S

    2016-09-01

    The primary aim of this study was to evaluate the benefits of resistance training (RT) on quality of life (QOL) and fatigue in breast cancer survivors as an adjunct to usual care. We recruited 39 women who had survived breast cancer [mean age (y) 51.9 ± 8.8; time since diagnosis (m) 11.6 ± 13.2]. Primary outcomes were fatigue as assessed by the Functional Assessment of Chronic Illness Therapy - Fatigue (FACIT) scale and QOL as assessed by the Functional Assessment of Cancer Therapy - General (FACT-G) scale. ANCOVA was used to assess the change in the primary outcomes while controlling for baseline values, with effect sizes (ES) displayed as partial Eta squared. The experimental group received supervised RT 3 days per week in a university clinic for 16 weeks. Perceptions of fatigue improved significantly in the RT group compared to controls [mean (SD) 6.7 (7.5) points vs. 1.5 (3.7) points], (P = 0.006, ES = 0.20) as did QOL [6.9 (8.5) points vs. 1.6 (4.4) points], (P = 0.015, ES = 0.16). We demonstrated both statistically and clinically important improvements in fatigue and QOL in response to RT in breast cancer survivors. PMID:26593858

  20. The fatigue life of contoured cobalt chrome posterior spinal fusion rods.

    PubMed

    Nguyen, T-Q; Buckley, J M; Ames, C; Deviren, V

    2011-02-01

    Intraoperative contouring of posterior rods in lumbar arthrodesis constructs introduces stress concentrations that can substantially reduce fatigue life. The sensitivity of titanium (Ti) and stainless steel (SS) to intraoperative contouring has been established in the literature; however, notch sensitivity has yet to be quantified for cobalt chrome (CoCr), which is now being advocated for use in posterior arthrodesis constructs. The goal of this study is to evaluate the sensitivity of CoCr rods to intraoperative contouring for posterior lumbar screwrod arthrodesis constructs. In this paper lumbar bilateral vertebrectomy models are constructed based on ASTM F1717-01 with curved rods (26-30 degrees total curvature) and poly-axial pedicle screws. Three types of constructs are assembled: first, 5.5 mm SS rods with SS screws (6.5 x 35 mm), second, 6.0 mm Ti rods with Ti screws (7.5 x 35 mm), and third, 6.0 mm CoCr rods with Ti screws (7.5 x 35 mm). All specimens are tested at 4 Hz in dynamic axial compression-bending with a load ratio of ten and maximum load levels of 250, 400, and 700 N until run-out at 2 000 000 cycles. Results are presented that show that the fatigue life of CoCr constructs tend to be greater than Ti constructs at all levels. At the 400 N maximum loading, CoCr lasts an average of 350 000 cycles longer than the Ti constructs. The CoCr constructs are able to sustain the 250 N load until run-out at 2 000 000 cycles but they fail at high load levels (maximum 700 N). The CoCr constructs fail at the neck of the Ti screw at high loads whereas Ti screws fail at the notch induced by contouring. Since CoCr is compatible with magnetic resonance imaging and has high static strength characteristics, the results of this study suggest that it may be an appropriate substitute for Ti. PMID:21428153

  1. FLAPS (Fatigue Life Analysis Programs): Computer Programs to Predict Cyclic Life Using the Total Strain Version of Strainrange Partitioning and Other Life Prediction Methods. Users' Manual and Example Problems, Version 1.0

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R. (Technical Monitor)

    2003-01-01

    This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.

  2. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  3. Variations in gear fatigue life for different wind turbine braking strategies

    SciTech Connect

    McNiff, B.P. ); Musial, W.D. ); Errichello, R. )

    1991-06-01

    A large number of gearbox failures have occurred in the wind industry in a relatively short period, many because service loads were underestimated. High-torque transients that occur during starting and stopping are difficult to predict and may be overlooked in specifying gearbox design. Although these events comprise a small portion of total load cycles, they can be the most damaging. The severity of these loads varies dramatically with the specific configuration of the wind turbine. The large number of failures in Danish-designed Micon 65 wind turbines prompted this investigation. The high-speed and low-speed shaft torques were measured on a two-stage helical gearbox of a single Micon 65 turbine. Transient events and normal running loads were combined statistically to obtain a typical annual load spectrum. The pitting and bending fatigue lives of the gear teeth were calculated by using Miner's rule for four different high-speed shaft brake configurations. Each breaking scenario was run for both a high- and a low-turbulence normal operating load spectrum. The analysis showed increases in gear life by up to a factor of 25 when the standard high-speed shaft brake is replaced with a dynamic brake or modified with a damper. 9 refs., 9 figs., 3 tabs.

  4. Fatigue: an overview.

    PubMed

    Rosenthal, Thomas C; Majeroni, Barbara A; Pretorius, Richard; Malik, Khalid

    2008-11-15

    Fatigue, a common presenting symptom in primary care, negatively impacts work performance, family life, and social relationships. The differential diagnosis of fatigue includes lifestyle issues, physical conditions, mental disorders, and treatment side effects. Fatigue can be classified as secondary to other medical conditions, physiologic, or chronic. The history and physical examination should focus on identifying common secondary causes (e.g., medications, anemia, pregnancy) and life-threatening problems, such as cancer. Results of laboratory studies affect management in only 5 percent of patients, and if initial results are normal, repeat testing is generally not indicated. Treatment of all types of fatigue should include a structured plan for regular physical activity that consists of stretching and aerobic exercise, such as walking. Caffeine and modafinil may be useful for episodic situations requiring alertness. Short naps are proven performance enhancers. Selective serotonin reuptake inhibitors, such as fluoxetine, paroxetine, or sertraline, may improve energy in patients with depression. Patients with chronic fatigue may respond to cognitive behavior therapy. Scheduling regular follow-up visits, rather than sporadic urgent appointments, is recommended for effective long-term management. PMID:19035066

  5. Demonstrating the Effect of Particle Impact Dampers on the Random Vibration Response and Fatigue Life of Printed Wiring Assemblies

    NASA Technical Reports Server (NTRS)

    Knight, Brent; Montgomery, Randall; Geist, David; Hunt, Ron; LaVerde, Bruce; Towner, Robert

    2013-01-01

    In a recent experimental study, small Particle Impact Dampers (PID) were bonded directly to the surface of printed circuit board (PCB) or printed wiring assemblies (PWA), reducing the random vibration response and increasing the fatigue life. This study provides data verifying practicality of this approach. The measured peak strain and acceleration response of the fundamental out of plane bending mode was significantly attenuated by adding a PID device. Attenuation of this mode is most relevant to the fatigue life of a PWA because the local relative displacements between the board and the supported components, which ultimately cause fatigue failures of the electrical leads of the board-mounted components are dominated by this mode. Applying PID damping at the board-level of assembly provides mitigation with a very small mass impact, especially as compared to isolation at an avionics box or shelf level of assembly. When compared with other mitigation techniques at the PWA level (board thickness, stiffeners, constrained layer damping), a compact PID device has the additional advantage of not needing to be an integral part of the design. A PID can simply be bonded to heritage or commercial off the shelf (COTS) hardware to facilitate its use in environments beyond which it was originally qualified. Finite element analysis and test results show that the beneficial effect is not localized and that the attenuation is not due to the simple addition of mass. No significant, detrimental reduction in frequency was observed. Side-by-side life testing of damped and un-damped boards at two different thicknesses (0.070" and 0.090") has shown that the addition of a PID was much more significant to the fatigue life than increasing the thickness. High speed video, accelerometer, and strain measurements have been collected to correlate with analytical results.

  6. Interim fatigue design curves for carbon, low-alloy, and austenitic stainless steels in LWR environments

    SciTech Connect

    Majumdar, S.; Chopra, O.K.; Shack, W.J.

    1993-01-01

    Both temperature and oxygen affect fatigue life; at the very low dissolved-oxygen levels in PWRs and BWRs with hydrogen water chemistry, environmental effects on fatigue life are modest at all temperatures (T) and strain rates. Between 0.1 and 0.2 ppM, the effect of dissolved-oxygen increases rapidly. In oxygenated environments, fatigue life depends strongly on strain rate and T. A fracture mechanics model is developed for predicting fatigue lives, and interim environmentally assisted cracking (EAC)-adjusted fatigue curves are proposed for carbon steels, low-alloy steels, and austenitic stainless steels.

  7. Strainrange partitioning - A total strain range version. [for creep fatigue life prediction by summing inelastic and elastic strain-range-life relations for two Ni base superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1983-01-01

    Procedures are presented for expressing the Strainrange Partitioning (SRP) method for creep fatigue life prediction in terms of total strain range. Inelastic and elastic strain-range - life relations are summed to give total strain-range - life relations. The life components due to inelastic strains are dealt with using conventional SRP procedures while the life components due to elastic strains are expressed as families of time-dependent terms for each type of SRP cycle. Cyclic constitutive material behavior plays an important role in establishing the elastic strain-range life relations as well as the partitioning of the inelastic strains. To apply the approach, however, it is not necessary to have to determine the magnitude of the inelastic strain range. The total strain SRP approach is evaluated and verified using two nickel base superalloys, AF2-1DA and Rene 95. Excellent agreement is demonstrated between observed and predicted cyclic lifetimes with 70 to 80 percent of the predicted lives falling within factors of two of the observed lives. The total strain-range SRP approach should be of considerable practical value to designers who are faced with creep-fatigue problems for which the inelastic strains cannot be calculated with sufficient accuracy to make reliable life predictions by the conventional inelastic strain range SRP approach.

  8. Temporal scaling in fatigue life of materials and incorporation of temporal events in Paris's law

    NASA Astrophysics Data System (ADS)

    Frantziskonis, George N.

    2013-04-01

    Temporal scaling in mechanical strength of materials is vital for long-term effects such as fatigue. The fatigue crack length α is related to the change in the stress intensity factor ΔK by the omnipresent Paris's law, which works well for cyclic fatigue of specific frequency and amplitude. The paper considers time scaling in fatigue and through it incorporates the effects of temporal events such as unexpected or accidental loads, impact loads, and rare events such as earthquake loads. This is achieved by theoretically incorporating the effects of delta-function type loads into fatigue. Since the time-scale decomposition of such a load contains information at all scales, the theoretical framework is easily extended to include general types of loads.

  9. Sleep, Fatigue and Quality of Life: A Comparative Analysis among Night Shift Workers with and without Children

    PubMed Central

    Fernandes-Junior, Silvio Araújo; Ruiz, Francieli Silva; Antonietti, Leandro Stetner; Tufik, Sergio; Túlio de Mello, Marco

    2016-01-01

    Introduction The reversal of the natural cycle of wakefulness and sleep may cause damage to the health of workers. However, there are few studies evaluating sleep, fatigue and quality of life of night shift workers considering the influence of small children on these variables. Aims Evaluate the sleep time, fatigue and quality of life of night shift workers and verify the relationship between these variables with the presence or absence of children in different age groups. Methods Were evaluated 78 mens shiftworkers, with or without children. Group 1, workers without children (G1-NC), group 2, workers with children pré-school age (G2-PS) and group 3, workers with children school age (G3-S). The sleep time (ST), sleep efficiency (SE), sleep latency (SL) and maximum time awake (MTA) were recorded by actigraphy. The risk of being fatigued at work was estimated by risk index for fatigue (RIF). Results The G1-NC showed a longer ST on working days and when evaluated only the first nights shift, after day off (p<0,005). This sample, the age of the children did not influence the sleep time these workers. The MTA on day off was lower in the workers from G2-PS. The RIF was lower on G1-NC in the first nights shift compared to the other groups. Conclusion In this research, workers without children had higher sleep time during the working days. These workers also were less likely to feel fatigued during night work than workers with children, regardless of age these children. PMID:27391478

  10. The effect of allergic rhinitis on the degree of stress, fatigue and quality of life in OSA patients.

    PubMed

    Park, Cheol Eon; Shin, Seung Youp; Lee, Kun Hee; Cho, Joong Saeng; Kim, Sung Wan

    2012-09-01

    Both allergic rhinitis (AR) and obstructive sleep apnea (OSA) are known to increase stress and fatigue, but the result of their coexistence has not been studied. The objective of this study was to evaluate the amount of stress and fatigue when AR is combined with OSA. One hundred and twelve patients diagnosed with OSA by polysomnography were enrolled. Among them, 37 patients were diagnosed with AR by a skin prick test and symptoms (OSA-AR group) and 75 patients were classified into the OSA group since they tested negative for allergies. We evaluated the Epworth sleepiness scale (ESS), stress score, fatigue score, ability to cope with stress, and rhinosinusitis quality of life questionnaire (RQLQ) with questionnaires and statistically compared the scores of both groups. There were no significant differences in BMI and sleep parameters such as LSAT, AHI, and RERA between the two groups. However, the OSA-AR group showed a significantly higher ESS score compared to the OSA group (13.7 ± 4.7 vs. 9.3 ± 4.8). Fatigue scores were also significantly higher in the OSA-AR group than in the OSA group (39.8 ± 11.0 vs. 30.6 ± 5.4). The OSA-AR group had a significantly higher stress score (60.4 ± 18.6 vs. 51.2 ± 10.4). The ability to cope with stress was higher in the OSA group, although this difference was not statistically significant. RQLQ scores were higher in the OSA-AR group (60.2 ± 16.7 compared to 25.1 ± 13.9). In conclusion, management of allergic rhinitis is very important in treating OSA patients in order to eliminate stress and fatigue and to minimize daytime sleepiness and quality of life. PMID:22207526

  11. Fatigue is highly associated with poor health-related quality of life, disability and depression in newly-diagnosed patients with inflammatory bowel disease, independent of disease activity

    PubMed Central

    Cohen, B L; Zoëga, H; Shah, S A; LeLeiko, N; Lidofsky, S; Bright, R; Flowers, N; Law, M; Moniz, H; Merrick, M; Sands, B E

    2014-01-01

    Background Fatigue is common in Crohn's disease (CD) and ulcerative colitis (UC). Data on fatigue in newly diagnosed patients are unavailable. Aim To report prevalence of fatigue in newly diagnosed CD and UC patients and examine its association with health-related quality of life (HRQOL), depression and disability. Methods The Ocean State Crohn's and Colitis Area Registry (OSCCAR) is a statewide cohort of newly diagnosed inflammatory bowel disease patients in Rhode Island. Fatigue was assessed using the Functional Assessment of Chronic Illness Therapy-Fatigue Scale. Patients were administered instruments measuring HRQOL, overall disability and work impairment, and depression. Results Fatigue was prevalent in 26.4% of 220 subjects. Cohen's d effect sizes for fatigue were large: Short-Form 36 Health Survey mental health component (CD 1.5, UC 1.4) and physical health component (CD 1.4, UC 1.4), EuroQol-5D valuation of current health state (CD 1.2, UC 1.0), Inflammatory Bowel Disease Questionnaire (CD 1.9, UC 1.6) and Patient Health Questionnaire depression scale (CD 1.8, UC 1.7). Fatigued patients reported more work impairment (Score difference: CD 29.5%, UC 23.8%) and activity impairment (score difference: CD 32.3%, UC 25.7%) on the Work Productivity and Activity Impairment Questionnaire. Fatigue's association with all scores remained highly significant despite controlling for disease activity. Conclusions Fatigue is strongly associated with poor HRQOL, disability and depression similarly in CD and UC even when controlling for disease activity. Fatigue's association with a wide range of patient-reported outcome measures suggests that monitoring fatigue is a simple way to screen for overall disruption in patient life. PMID:24612278

  12. Compassion Fatigue and School Personnel: Remaining Open to the Affective Needs of Students.

    ERIC Educational Resources Information Center

    Kees, Nathalie L.; Lashwood, Patricia A.

    1996-01-01

    Compassion fatigue, or secondary traumatic stress response, describes the reaction of counselors, teachers, and others who work with trauma survivors. They may experience stress or restimulation of their own traumatic experiences. Cognitive and behavioral techniques focused on prevention and intervention can help them cope. (SK)

  13. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  14. On the Use of Equivalent Linearization for High-Cycle Fatigue Analysis of Geometrically Nonlinear Structures

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2003-01-01

    The use of stress predictions from equivalent linearization analyses in the computation of high-cycle fatigue life is examined. Stresses so obtained differ in behavior from the fully nonlinear analysis in both spectral shape and amplitude. Consequently, fatigue life predictions made using this data will be affected. Comparisons of fatigue life predictions based upon the stress response obtained from equivalent linear and numerical simulation analyses are made to determine the range over which the equivalent linear analysis is applicable.

  15. High-temperature fatigue in metals - A brief review of life prediction methods developed at the Lewis Research Center of NASA

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1983-01-01

    The presentation focuses primarily on the progress we at NASA Lewis Research Center have made. The understanding of the phenomenological processes of high temperature fatigue of metals for the purpose of calculating lives of turbine engine hot section components is discussed. Improved understanding resulted in the development of accurate and physically correct life prediction methods such as Strain-Range partitioning for calculating creep fatigue interactions and the Double Linear Damage Rule for predicting potentially severe interactions between high and low cycle fatigue. Examples of other life prediction methods are also discussed. Previously announced in STAR as A83-12159

  16. Effects of a 4-Week Multimodal Rehabilitation Program on Quality of Life, Cardiopulmonary Function, and Fatigue in Breast Cancer Patients

    PubMed Central

    Do, Junghwa; Cho, Youngki

    2015-01-01

    Purpose This study examines the effects of a rehabilitation program on quality of life (QoL), cardiopulmonary function, and fatigue in breast cancer patients. The program included aerobic exercises as well as stretching and strengthening exercises. Methods Breast cancer patients (n=62) who had completed chemotherapy were randomly assigned to an early exercise group (EEG; n=32) or a delayed exercise group (DEG; n=30). The EEG underwent 4 weeks of a multimodal rehabilitation program for 80 min/day, 5 times/wk for 4 weeks. The DEG completed the same program during the next 4 weeks. The European Organization for Research and Treatment of Cancer-Core Quality of Life Questionnaire (EORTC QLQ-C30), EORTC Breast Cancer-Specific Quality of Life Questionnaire (EORTC QLQ-BR23), predicted maximal volume of oxygen consumption (VO2max), and fatigue severity scale (FSS) were used for assessment at baseline, and at 2, 4, 6, and 8 weeks. Results After 8 weeks, statistically significant differences were apparent in global health, physical, role, and emotional functions, and cancer-related symptoms such as fatigue and pain, nausea, and dyspnea on the EORTC QLQ-C30; cancer-related symptoms involving the arm and breast on the EORTC QLQ-BR23; the predicted VO2max; muscular strength; and FSS (p<0.050), according to time, between the two groups. Conclusion The results of our study suggest that a supervised multimodal rehabilitation program may improve the physical symptoms, QoL, and fatigue in patients with breast cancer. PMID:25834616

  17. Brief summary of the evolution of high-temperature creep-fatigue life prediction models for crack initiation

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1993-01-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element

  18. Brief summary of the evolution of high-temperature creep-fatigue life prediction models for crack initiation

    NASA Astrophysics Data System (ADS)

    Halford, Gary R.

    1993-10-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element

  19. Rolling Contact Fatigue Life of Steel Rollers Treated by Cavitation Peening and Shot Peening

    NASA Astrophysics Data System (ADS)

    Seki, Masanori; Soyama, Hitoshi; Kobayashi, Yuji; Gowa, Daisuke; Fujii, Masahiro

    The purpose of this study is to investigate the influence of peening on the rolling contact fatigue (RCF) life of steel rollers. First, steel rollers were treated by three types of peenings to ensure the same surface roughness of peened rollers. One is the cavitation peening (CP) used a cavitating jet in water with an injection pressure of 30 MPa, and the others are the fine particle peening (FPP) with a shot diameter of 0.1 mm and the normal shot peening (NSP) with a shot diameter of 0.3 mm. The surface hardness and the surface compressive residual stress of the steel rollers were increased by all the peenings. In particular, they were most increased by the FPP. On the other hand, the work-hardened depth due to the CP and the NSP was larger than that due to the FPP. As a result of the RCF tests, the RCF lives of the steel rollers were improved by all the peenings, and they were most improved by the NSP. Judging from the pmax - N curves and the [A(σy/√3 HV)]max - N curves, the improvement in RCF lives due to the FPP depended heavily on the increase in surface hardness due to that, and the effects of the CP and the NSP on the RCF were equivalent under the same surface roughness and the same surface hardness. It follows from these that the surface treatment condition should be selected according to the rolling contact conditions and the failure modes of machine elements.

  20. Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part II: Experimental Comparisons

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    This paper follows on from the earlier study (Part I) which investigated the fatigue behavior of unidirectional, cross-ply and 2.5D C/SiC composites at room and elevated temperatures. In this paper, a micromechanics approach to predict the fatigue life S-N curves of fiber-reinforced CMCs has been developed considering the fatigue damage mechanism of interface wear or interface oxidation. Upon first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. The two-parameter Weibull model is used to describe fibers strength distribution. The stress carried by broken and intact fibres on the matrix crack plane under fatigue loading is determined based on the Global Load Sharing (GLS) criterion. The fibres failure probabilities under fatigue loading considering the degradation of interface shear stress and fibres strength have been obtained. When the broken fibres fraction approaches critical value, the composite would fatigue fail. The fatigue life S-N curves of unidirectional, cross-ply and 2.5D C/SiC composites at room and elevated temperatures have been predicted. The predicted results agreed with experimental data.

  1. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  2. Subjective quality of life in war-affected populations

    PubMed Central

    2013-01-01

    Background Exposure to traumatic war events may lead to a reduction in quality of life for many years. Research suggests that these impairments may be associated with posttraumatic stress symptoms; however, wars also have a profound impact on social conditions. Systematic studies utilising subjective quality of life (SQOL) measures are particularly rare and research in post-conflict settings is scarce. Whether social factors independently affect SQOL after war in addition to symptoms has not been explored in large scale studies. Method War-affected community samples were recruited through a random-walk technique in five Balkan countries and through registers and networking in three Western European countries. The interviews were carried out on average 8 years after the war in the Balkans. SQOL was assessed on Manchester Short Assessment of Quality of Life - MANSA. We explored the impact of war events, posttraumatic stress symptoms and post-war environment on SQOL. Results We interviewed 3313 Balkan residents and 854 refugees in Western Europe. The MANSA mean score was 4.8 (SD = 0.9) for the Balkan sample and 4.7 (SD = 0.9) for refugees. In both samples participants were explicitly dissatisfied with their employment and financial situation. Posttraumatic stress symptoms had a strong negative impact on SQOL. Traumatic war events were directly linked with lower SQOL in Balkan residents. The post-war environment influenced SQOL in both groups: unemployment was associated with lower SQOL and recent contacts with friends with higher SQOL. Experiencing more migration-related stressors was linked to poorer SQOL in refugees. Conclusion Both posttraumatic stress symptoms and aspects of the post-war environment independently influence SQOL in war-affected populations. Aid programmes to improve wellbeing following the traumatic war events should include both treatment of posttraumatic symptoms and social interventions. PMID:23819629

  3. A crystal plasticity-based study of the relationship between microstructure and ultra-high-cycle fatigue life in nickel titanium alloys

    DOE PAGESBeta

    Moore, John A.; Frankel, Dana; Prasannavenkatesan, Rajesh; Domel, August G.; Olson, Gregory B.; Liu, Wing Kam

    2016-06-06

    Nickel Titanium (NiTi) alloys are often used in biomedical devices where failure due to mechanical fatigue is common. For other alloy systems, computational models have proven an effective means of determining the relationship between microstructural features and fatigue life. This work will extend the subset of those models which were based on crystal plasticity to examine the relationship between microstructure and fatigue life in NiTi alloys. It will explore the interaction between a spherical inclusion and the material’s free surface along with several NiTi microstructures reconstructed from 3D imaging. This work will determine the distance at which the free surfacemore » interacts with an inclusion and the effect of applied strain of surface-inclusion interaction. The effects of inclusion-inclusion interaction, matrix voiding, and matrix strengthening are explored and ranked with regards to their influence on fatigue life.« less

  4. Mismatch Negativity Affects Muscle Fatigue during Repeated Contraction Trials of Different Durations

    PubMed Central

    Aleksandrov, Aleksander A.; Knyazeva, Veronika M.; Stankevich, Ludmila N.; Dmitrieva, Elena S.; Shestakova, Anna N.

    2016-01-01

    We examined the effect of involuntary attention switching (related to mismatch negativity generation in the oddball paradigm) on fatigue development during trials of different durations. The experiment consisted of two trials, long (40 min) and short (15 min), and two experimental conditions in each trial: the simple reaction task (deviants-only paradigm) and the stimuli recognition task (oddball paradigm). In each condition, a participant responded to each target acoustic stimulus by squeezing a handgrip dynamometer. We found the significantly lower rates of fatigue development in the short-trial deviants-only paradigm compared to the long trial. The short- and the long-trial oddball paradigms differed significantly from both the short- and the long-trial deviants-only paradigms. The results demonstrated that the fatigue developed differently depending on the expected trial duration. The involuntary activation of attention broke this subconscious regulative mechanism leading to increase of the compression force during the long trial and its decrease during the short. PMID:26869932

  5. Cognitive, affective and eudemonic well-being in later life

    PubMed Central

    Vanhoutte, Bram; Nazroo, James

    2016-01-01

    The hedonic view on well-being, consisting of both cognitive and affective aspects, assumes that through maximizing pleasurable experiences, and minimizing suffering, the highest levels of well-being can be achieved. The eudemonic approach departs from the concept of a good life that is not just about pleasure and happiness, but involves developing one-self, being autonomous and realizing one’s potential. While these approaches are often positioned against each other on theoretical grounds, this paper investigates the empirical plausibility of this two dimensional view on subjective well-being. The interrelations between common measures such as the General Health Questionnaire, the CES-D inventory of depressive symptoms, the satisfaction with life scale and the eudemonic CASP scale are examined in a confirmatory factor analysis framework using the third wave of the English Longitudinal Study of Ageing (ELSA). A multidimensional structure of well-being, distinguishing cognitive, affective and eudemonic well-being, is shown to be the best fitting empirical solution. This three dimensional second order structure is neutral to gender in its measurement. A lower influence of feeling energetic on self-actualisation, and of somatic symptoms of depression on affective well-being was noted for respondents in the fourth age in comparison to respondents in the third age. These small measurement artefacts underline that somatic symptoms of later life depression should be distinguished from mood symptoms. Two main social facts are confirmed when we compare the different forms of well-being over gender and life stage: men tend to have a higher level of well-being than women, and well-being is lower in the fourth age than in the third age. Although the three measures are very closely related, with high correlations between .74 and .88, they each have their specific meaning. While affective and cognitive well-being emphasize the use of an internal yardstick to measure well

  6. Associations of fatigue from mid to late life with physical performance and strength in early old age: Results from a British prospective cohort study

    PubMed Central

    Mänty, Minna; Kuh, Diana; Cooper, Rachel

    2015-01-01

    OBJECTIVE To examine associations of fatigue in mid and later life with physical performance and strength in early old age. METHODS Data on approximately 1800 men and women from the UK Medical Research Council National Survey of Health and Development with data on fatigue at ages 43 and 60-64 years were used. Fatigue was defined as perceived tiredness and was assessed prospectively at ages 43 and 60-64. At both ages, participants were categorized as having no, occasional or frequent fatigue. Physical performance and strength were measured at age 60-64 using four objective measures: grip strength, standing balance, chair rising, and timed get-up-and-go (TUG) tests. RESULTS There were associations between reports of frequent fatigue at both ages and poorer grip strength, chair rise and TUG performance at 60-64 years. Furthermore, individuals reporting frequent fatigue at both ages had weaker grip strength (β -4.09 kg, 95% CI -6.71, -1.48), and slower chair rise (β -4.65 rep./min, 95% CI -6.65, -2.64) and TUG (β -4.22 cm/s, 95% CI -12.16, -2.28) speeds when compared to those who reported no fatigue at both time points. These associations were robust and were maintained after adjustment for a range of covariates including physical activity and health status. CONCLUSIONS Reports of frequent fatigue were associated with poorer physical performance in early old age, especially if sustained from mid to later life. These findings indicate that it is not just fatigue but fatigue sustained across adulthood that has implications for later life functioning. PMID:26176776

  7. Inversion of the strain-life and strain-stress relationships for use in metal fatigue analysis

    NASA Technical Reports Server (NTRS)

    Manson, S. S.

    1979-01-01

    The paper presents closed-form solutions (collocation method and spline-function method) for the constants of the cyclic fatigue life equation so that they can be easily incorporated into cumulative damage analysis. The collocation method involves conformity with the experimental curve at specific life values. The spline-function method is such that the basic life relation is expressed as a two-part function, one applicable at strains above the transition strain (strain at intersection of elastic and plastic lines), the other below. An illustrative example is treated by both methods. It is shown that while the collocation representation has the advantage of simplicity of form, the spline-function representation can be made more accurate over a wider life range, and is simpler to use.

  8. How life affects the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Walker, James C. G.

    1992-01-01

    Developing a quantitative understanding of the biogeochemical cycles of carbon as they have worked throughout Earth history on various time scales, how they have been affected by biological evolution, and how changes in the carbon content of ocean and atmosphere may have affected climate and the evolution of life are the goals of the research. Theoretical simulations were developed that can be tuned to reproduce such data as exist and, once tuned, can be used to predict properties that have not yet been observed. This is an ongoing process, in which models and results are refined as new data and interpretations become available and as understanding of the global system improves. Results of the research are described in several papers which were published or submitted for publication. These papers are summarized. Future research plans are presented.

  9. Application of fracture mechanics and half-cycle theory to the prediction of fatigue life of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1989-01-01

    The service life of aircraft structural components undergoing random stress cycling was analyzed by the application of fracture mechanics. The initial crack sizes at the critical stress points for the fatigue crack growth analysis were established through proof load tests. The fatigue crack growth rates for random stress cycles were calculated using the half-cycle method. A new equation was developed for calculating the number of remaining flights for the structural components. The number of remaining flights predicted by the new equation is much lower than that predicted by the conventional equation. This report describes the application of fracture mechanics and the half-cycle method to calculate the number of remaining flights for aircraft structural components.

  10. Influence of test specimen fabrication method and cross-section configuration on tension-tension fatigue life of PMMA bone cement.

    PubMed

    Sheafi, E M; Tanner, K E

    2015-11-01

    Different cyclic loading modes have been used in in vitro fatigue studies of PMMA bone cement. It is unclear which loading mode is most appropriate from the perspective of the in vivo loading experienced by the cement in a cemented arthroplasty. Also, in different in vitro fatigue studies, different test specimen configurations have been used. The present work considers the influence of test specimen fabrication method (direct moulding vs moulding followed by machining) and cross-section shape (rectangular vs circular) on the tension-tension fatigue performance of two bone cement brands (SmartSet GHV and CMW1), under force control conditions. Two trends were consistent: 1) for each of the cements, for moulded specimens, a longer fatigue life was obtained with circular cross-sectioned specimens and, 2) for either rectangular or circular CMW1 specimens, a longer fatigue life was obtained using machined specimens. A comparison of the present results to those reported in our previous work on fully-reversed tension-compression loading under force control showed that, regardless of the test specimen fabrication method or cross-section configuration used, the fatigue life was considerably shorter under tension-compression than tension-tension loading. This finding highlights the fact that the presence of the compression portion in the loading cycle accelerates fatigue failure. PMID:26295451

  11. Do early life factors affect the development of knee osteoarthritis in later life: a narrative review.

    PubMed

    Antony, Benny; Jones, Graeme; Jin, Xingzhong; Ding, Changhai

    2016-01-01

    Osteoarthritis (OA) mainly affects older populations; however, it is possible that early life factors contribute to the development of OA in later life. The aim of this review is to describe the association between childhood or early adulthood risk factors and knee pain, structural imaging markers and development of knee OA in later life. A narrative overview of the literature synthesising the findings of literature retrieved from searches of computerised databases and manual searches was conducted. We found that only a few studies have explored the long-term effect of childhood or early adulthood risk factors on the markers of joint health that predispose people to OA or joint symptoms. High body mass index (BMI) and/or overweight status from childhood to adulthood were independently related to knee pain and OA in later life. The findings regarding the association between strenuous physical activity and knee structures in young adults are still conflicting. However, a favourable effect of moderate physical activity and fitness on knee structures is reported. Childhood physical activity and performance measures had independent beneficial effects on knee structures including knee cartilage in children and young adults. Anterior knee pain syndrome in adolescence could lead to the development of patellofemoral knee OA in the late 40s. Furthermore, weak evidence suggests that childhood malalignment, socioeconomic status and physical abuse are associated with OA in later life. The available evidence suggests that early life intervention may prevent OA in later life. PMID:27623622

  12. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  13. Early Life Triclocarban Exposure During Lactation Affects Neonate Rat Survival

    PubMed Central

    Kennedy, Rebekah C. M.; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A.; Hu, Pan; Bae, Jiyoung; Gee, Nancy A.; Lasley, Bill L.; Zhao, Ling

    2015-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure. PMID:24803507

  14. Early life triclocarban exposure during lactation affects neonate rat survival.

    PubMed

    Kennedy, Rebekah C M; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A; Hu, Pan; Bae, Jiyoung; Gee, Nancy A; Lasley, Bill L; Zhao, Ling; Chen, Jiangang

    2015-01-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure. PMID:24803507

  15. Inspiratory muscle fatigue affects latissimus dorsi but not pectoralis major activity during arms only front crawl sprinting.

    PubMed

    Lomax, Mitch; Tasker, Louise; Bostanci, Ozgur

    2014-08-01

    The purpose of this study was to determine whether inspiratory muscle fatigue (IMF) affects the muscle activity of the latissimus dorsi and pectoralis major during maximal arms only front crawl swimming. Eight collegiate swimmers were recruited to perform 2 maximal 20-second arms only front crawl sprints in a swimming flume. Both sprints were performed on the same day, and IMF was induced 30 minutes after the first (control) sprint. Maximal inspiratory and expiratory mouth pressures (PImax and PEmax, respectively) were measured before and after each sprint. The median frequency (MDF) of the electromyographic signal burst was recorded from the latissimus dorsi and pectoralis major during each 20-second sprint along with stroke rate and breathing frequency. Median frequency was assessed in absolute units (Hz) and then referenced to the start of the control sprint for normalization. After IMF inducement, stroke rate increased from 56 ± 4 to 59 ± 5 cycles per minute, and latissimus dorsi MDF fell from 67 ± 11 Hz at the start of the sprint to 61 ± 9 Hz at the end. No change was observed in the MDF of the latissimus dorsi during the control sprint. Conversely, the MDF of the pectoralis major shifted to lower frequencies during both sprints but was unaffected by IMF. As the latter induced fatigue in the latissimus dorsi, which was not otherwise apparent during maximal arms only control sprinting, the presence of IMF affects the activity of the latissimus dorsi during front crawl sprinting. PMID:24402450

  16. Comparison of Fatigue Life Between C/SiC and SiC/SiC Ceramic-Matrix Composites at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-04-01

    In this paper, the comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites (CMCs) at room and elevated temperatures has been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of cross-ply, 2D and 3D C/SiC and SiC/SiC composites at room temperature, 550 °C in air, 750 °C in dry and humid condition, 800 °C in air, 1000 °C in argon and air, 1100 °C, 1300 °C and 1500 °C in vacuum, have been predicted. At room temperature, the fatigue limit of 2D C/SiC composite with ECFL of 20 % lies between 0.78 and 0.8 tensile strength; and the fatigue limit of 2D SiC/SiC composite with ECFL of 20 % lies between 0.75 and 0.85 tensile strength. The fatigue limit of 2D C/SiC composite increases to 0.83 tensile strength with ECFL increasing from 20 to 22.5 %, and the fatigue limit of 3D C/SiC composite is 0.85 tensile strength with ECFL of 37 %. The fatigue performance of 2D SiC/SiC composite is better than that of 2D C/SiC composite at elevated temperatures in oxidative environment.

  17. Effects of geometry and materials on low cycle fatigue life of turbine blades in LOX/hydrogen rocket engines

    NASA Technical Reports Server (NTRS)

    Ryan, R. M.; Gross, L. A.

    1986-01-01

    This paper presents the results of an advanced turbine blade test program aimed at improving turbine blade low cycle fatigue (LCF) life. A total of 21 blades were tested in a blade thermal tester. The blades were made of MAR-M-246(Hf)DS and PWA-1480SC in six different geometries. The test results show that the PWA-1480SC material improved life by a factor of 1.7 to 3.0 over the current MAR-M-246(Hf)DS. The geometry changes yielded life improvements as high as 20 times the baseline blade made of PWA-1480SC and 34 times the baseline MAR-M-246DS blade.

  18. Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations.

    PubMed

    Villa, Tomaso; Migliavacca, Francesco; Gastaldi, Dario; Colombo, Maurizio; Pietrabissa, Riccardo

    2004-01-01

    The evaluation of contact areas and pressures in total knee prosthesis is a key issue to prevent early failure. The first part of this study is based on the hypothesis that the patterns of contact stresses on the tibial insert of a knee prosthesis at different stages of the gait cycle could be an indicator of the wear performances of a knee prosthesis. Contact stresses were calculated for a mobile bearing knee prosthesis by means of finite element method (FEM). Contact areas and stresses were also measured through in vitro tests using Fuji Prescale film in order to support the FEM findings. The second part of this study addresses the long-term structural integrity of metal tibial components in terms of fatigue life by means of experimental tests and FEM simulations. Fatigue experimental evaluations were performed on Cr-Co alloy tibial tray, based on ISO standards. FEM models were used to calculate the stress patterns. The failure risk was estimated with a standard fatigue criterion on the basis of the results obtained from the FEM calculations. Experimental and computational results showed a positive matching. PMID:14672567

  19. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2016-08-01

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.

  20. Development of a fatigue-life methodology for composite structures subjected to out-of-plane load components

    NASA Technical Reports Server (NTRS)

    Sumich, Mark; Kedward, Keith T.

    1991-01-01

    The efforts to identify and implement a fatigue life methodology applicable to demonstrate delamination failures for use in certifying composite rotor blades are presented. The RSRA/X-Wing vehicle was a proof-of-concept stopped rotor aircraft configuration which used rotor blades primarily constructed of laminated carbon fiber. Delamination of the main spar during ground testing demonstrated that significant interlaminar stresses were produced. Analysis confirmed the presence of out-of-plane load components. The wear out (residual strength) methodology and the requirements for its implementation are discussed.

  1. Rolling-element fatigue life with traction fluids and automatic transmission fluid in a high-speed rolling-contact rig

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Nahm, A. H.; Loewenthal, S. H.

    1982-01-01

    Rolling-element fatigue tests were run in standard and high-speed rolling-contact rigs at bar speeds from 5000 to 50,000 rpm to determine the effects of speed and lubricant film parameter on rolling-element fatigue life. AISI 52100 test bars were tested at a maximum Hertz stress of 4.83 GPa (700,000 psi) with three traction fluids and an automatic transmission fluid. Rolling-element fatigue life increased with speed, with the greatest increases occurring from 10,000 to 50,000 rpm. The life data tended to follow published life-versus-lubricant-film-parameter data up to a film parameter of approximately 3.

  2. The Effect of Porosity on Fatigue of Die Cast AM60

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2016-07-01

    AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.

  3. The Effect of Porosity on Fatigue of Die Cast AM60

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2016-04-01

    AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.

  4. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models. Final report

    SciTech Connect

    Gangloff, R.P.; Kim, S.

    1993-09-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  5. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Kim, Sang-Shik

    1993-01-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on 'stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  6. Contemporary Quality of Life Issues Affecting Gynecologic Cancer Survivors

    PubMed Central

    Carter, Jeanne; Penson, Richard; Barakat, Richard; Wenzel, Lari

    2015-01-01

    Gynecologic cancers account for approximately 11% of the newly diagnosed cancers in women in the United States and 18% in the world.1 The most common gynecologic malignancies occur in the uterus and endometrium (53%), ovary (25%), and cervix (14%).2 Cervical cancer is most prevalent in premenopausal women, during their childbearing years, whereas uterine and ovarian cancers tend to present in the perimenopausal or menopausal period. Vaginal and vulvar cancers and malignancies arising from gestation, or gestational trophoblastic neoplasms, occur to a lesser extent. Regardless of cancer origin or age of onset, the disease and its treatment can produce short- and long-term sequelae (ie, sexual dysfunction, infertility, or lymphedema) that adversely affect quality of life (QOL). This article outlines the primary contemporary issues or concerns that may affect QOL and offers strategies to offset or mitigate QOL disruption. These contemporary issues are identified within the domains of sexual functioning, reproductive issues, lymphedema, and the contribution of health-related QOL (HRQOL) in influential gynecologic cancer clinical trials. PMID:22244668

  7. Effects on fatigue life of gate valves due to higher torque switch settings during operability testing

    SciTech Connect

    Richins, W.D.; Snow, S.D.; Miller, G.K.; Russell, M.J.; Ware, A.G.

    1995-12-01

    Some motor operated valves now have higher torque switch settings due to regulatory requirements to ensure valve operability with appropriate margins at design basis conditions. Verifying operability with these settings imposes higher stem loads during periodic inservice testing. These higher test loads increase stresses in the various valve internal parts which may in turn increase the fatigue usage factors. This increased fatigue is judged to be a concern primarily in the valve disks, seats, yokes, stems, and stem nuts. Although the motor operators may also have significantly increased loading, they are being evaluated by the manufacturers and are beyond the scope of this study. Two gate valves representative of both relatively weak and strong valves commonly used in commercial nuclear applications were selected for fatigue analyses. Detailed dimensional and test data were available for both valves from previous studies at the Idaho National Engineering Laboratory. Finite element models were developed to estimate maximum stresses in the internal parts of the valves and to identity the critical areas within the valves where fatigue may be a concern. Loads were estimated using industry standard equations for calculating torque switch settings prior and subsequent to the testing requirements of USNRC Generic Letter 89--10. Test data were used to determine both; (1) the overshoot load between torque switch trip and final seating of the disk during valve closing and (2) the stem thrust required to open the valves. The ranges of peak stresses thus determined were then used to estimate the increase in the fatigue usage factors due to the higher stem thrust loads. The usages that would be accumulated by 100 base cycles plus one or eight test cycles per year over 40 and 60 years of operation were calculated.

  8. Clinical factors affecting quality of life of patients with asthma

    PubMed Central

    Uchmanowicz, Bartosz; Panaszek, Bernard; Uchmanowicz, Izabella; Rosińczuk, Joanna

    2016-01-01

    Background In recent years, there has been increased interest in the subjective quality of life (QoL) of patients with bronchial asthma. QoL is a significant indicator guiding the efforts of professionals caring for patients, especially chronically ill ones. The identification of factors affecting the QoL reported by patients, despite their existing condition, is important and useful to provide multidisciplinary care for these patients. Aim To investigate the clinical factors affecting asthma patients’ QoL. Methods The study comprised 100 patients (73 female, 27 male) aged 18–84 years (mean age was 45.7) treated in the Allergy Clinic of the Wroclaw Medical University Department and Clinic of Internal Diseases, Geriatrics and Allergology. All asthma patients meeting the inclusion criteria were invited to participate. Data on sociodemographic and clinical variables were collected. In this study, we used medical record analysis and two questionnaires: the Asthma Quality of Life Questionnaire (AQLQ) to assess the QoL of patients with asthma and the Asthma Control Test to measure asthma control. Results Active smokers were shown to have a significantly lower QoL in the “Symptoms” domain than nonsmokers (P=0.006). QoL was also demonstrated to decrease significantly as the frequency of asthma exacerbations increased (R=−0.231, P=0.022). QoL in the domain “Activity limitation” was shown to increase significantly along with the number of years of smoking (R=0.404; P=0.004). Time from onset and the dominant symptom of asthma significantly negatively affected QoL in the “Activity limitation” domain of the AQLQ (R=−0.316, P=0.001; P=0.029, respectively). QoL scores in the “Emotional function” and “Environmental stimuli” subscale of the AQLQ decreased significantly as time from onset increased (R=−0.200, P=0.046; R=−0.328, P=0.001, respectively). Conclusion Patients exhibiting better symptom control have higher QoL scores. Asthma patients’ Qo

  9. Fatigue Behavior of Inconel 718 TIG Welds

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  10. A fatigue study of electrical discharge machine (EDM) strain-gage balance materials

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    1989-01-01

    A fatigue study was undertaken to determine how much electrical-discharge-machine (EDM) processing affected the fatigue life of balance materials: EDM and regular milling-machine (MM) samples were compared. Simulation of a typical balance stress configuration was devised for the fatigue testing in order to obtain results more closely related to balance situations. The fatigue testing of the EDM and MM specimens has indicated that the EDM technique does indeed reduce the fatigue life of 15-5PH steel, the first balance material tested. This conclusion was based on comparisons of the specimen fatigue lives with theoretical and manufacturer's data. Hence the EDM surface effects are detrimental to the fatigue life of this balance material.

  11. Different Aspects of Fatigue Experienced by Patients Receiving Maintenance Dialysis in Hemodialysis Units

    PubMed Central

    Biniaz, Vajihe; Tayybi, Ali; Nemati, Eghlim; Sadeghi Shermeh, Mehdi; Ebadi, Abbas

    2013-01-01

    Background Fatigue, a common symptom reported by patients receiving dialysis, is a multidimensional and subjective experience which is readily understood by individuals but difficult to measure. Objectives This study was performed to identify the prevalence of differential aspects of fatigue among patients receiving maintenance dialysis. Patients and Methods The cross-sectional study was conducted in two hemodialysis wards in Tehran with a sample of 163 participants. In this study, the multidimensional fatigue inventory was used to determine the level of fatigue. Demographic data were also collected with self-report survey. To analyze data with SPSS statistical software, test Chi square, T-test, and ANOVA were used. P- Value less than 0.05 was considered significant. Results All the patients experienced degrees of fatigue and 50 (30.7%) of the participants experienced a high level of fatigue. Fatigue scores arrangement was founded for physical fatigue followed by reduced activity and general fatigue. Lower levels of fatigue were reported for mental fatigue and reduced motivation. There was no diversity in this study in the levels of fatigue in respects of gender and marital status and employment status. Participants with diabetic nephropathy were the most fatigued. Conclusions People with chronic kidney disease regardless of their age, gender, state of health, and duration of hemodialysis experience high levels of fatigue; it is particularly important for health providers to understand this level of fatigue which affects the daily life of patients. PMID:24350089

  12. The Health-Related Quality of Life for Patients with Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS)

    PubMed Central

    Falk Hvidberg, Michael

    2015-01-01

    Introduction Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) is a common, severe condition affecting 0.2 to 0.4 per cent of the population. Even so, no recent international EQ-5D based health-related quality of life (HRQoL) estimates exist for ME/CFS patients. The main purpose of this study was to estimate HRQoL scores using the EQ-5D-3L with Danish time trade-off tariffs. Secondary, the aims were to explore whether the results are not influenced by other conditions using regression, to compare the estimates to 20 other conditions and finally to present ME/CFS patient characteristics for use in clinical practice. Material and methods All members of the Danish ME/CFS Patient Association in 2013 (n=319) were asked to fill out a questionnaire including the EQ-5D-3L. From these, 105 ME/CFS patients were identified and gave valid responses. Unadjusted EQ-5D-3L means were calculated and compared to the population mean as well as to the mean of 20 other conditions. Furthermore, adjusted estimates were calculated using ordinary least squares (OLS) regression, adjusting for gender, age, education, and co-morbidity of 18 self-reported conditions. Data from the North Denmark Health Profile 2010 was used as population reference in the regression analysis (n=23,392). Results The unadjusted EQ-5D-3L mean of ME/CFS was 0.47 [0.41–0.53] compared to a population mean of 0.85 [0.84–0.86]. The OLS regression estimated a disutility of -0.29 [-0.21;-0.34] for ME/CFS patients in this study. The characteristics of ME/CFS patients are different from the population with respect to gender, relationship, employment etc. Conclusion The EQ-5D-3L-based HRQoL of ME/CFS is significantly lower than the population mean and the lowest of all the compared conditions. The adjusted analysis confirms that poor HRQoL of ME/CFS is distinctly different from and not a proxy of the other included conditions. However, further studies are needed to exclude the possible selection bias of the

  13. Indentation hardness: A simple test that correlates with the dissipated-energy predictor for fatigue-life in bovine pericardium membranes for bioprosthetic heart valves.

    PubMed

    Tobaruela, Almudena; Rojo, Francisco Javier; García Paez, José María; Bourges, Jean Yves; Herrero, Eduardo Jorge; Millán, Isabel; Alvarez, Lourdes; Cordon, Ángeles; Guinea, Gustavo V

    2016-08-01

    The aim of this study was to evaluate the variation of hardness with fatigue in calf pericardium, a biomaterial commonly used in bioprosthetic heart valves, and its relationship with the energy dissipated during the first fatigue cycle that has been shown to be a predictor of fatigue-life (García Páez et al., 2006, 2007; Rojo et al., 2010). Fatigue tests were performed in vitro on 24 pericardium specimens cut in a root-to-apex direction. The specimens were subjected to a maximum stress of 1MPa in blocks of 10, 25, 50, 100, 250, 500, 1000 and 1500 cycles. By means of a modified Shore A hardness test procedure, the hardness of the specimen was measured before and after fatigue tests. Results showed a significant correlation of such hardness with fatigue performance and with the energy dissipated in the first cycle of fatigue, a predictor of pericardium durability. The study showed indentation hardness as a simple and reliable indicator of mechanical performance, one which could be easily implemented in improving tissue selection. PMID:26849027

  14. Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Sun, X. J.; Wang, C. C.; Zhang, J.; Liu, G.; Zhang, G. J.; Ding, X. D.; Zhang, G. P.; Sun, J.

    2008-10-01

    For polymer-supported metal thin films used in flexible electronics, the definition of the fatigue lifetime at microcrack nucleation (FLMN) should be more physically meaningful than all the previous definitions at structural instability. In this paper, the FLMN of Cu films (with thickness from 100 nm to 3.75 µm) as well as Al thin films (from 80 to 800 nm) was experimentally characterized at different strain ranges and different thicknesses by using a simple electrical resistance measurement (ERM). A significant thickness dependence was revealed for the FLMN and a similar Coffin-Manson fatigue relationship observed commonly in bulk materials was found to be still operative in both the films. Microstructural analyses were carried out to verify the feasibility of ERM correspondingly.

  15. Damage repair in CMSX-4 alloy without fatigue life reduction penalty

    NASA Astrophysics Data System (ADS)

    Okazaki, Masakazu; Ohtera, Issei; Harada, Yoshio

    2004-02-01

    The microstructural changes in a single-crystal Ni-base superalloy, CMSX-4, that might occur during the processes of repair and recoating of hot section components for advanced gas turbines were studied. It is shown that the cellular γ/γ‧ microstructure is formed when the material is subjected to local plastic straining, followed by the reheat treatments during the course of damage recovery. The formation of cellular microstructure in the material led to the remarkably reduced fatigue strength. In order to reduce or prevent the preceding undesirable effect resulting from cellular microstructure, a new method based on applying overlay coating technique was developed. The method is based on an idea that the alloying elements that are depleted in base alloys could be supplemented via the overlay coating. An X alloy, which contains grain boundary strengthening elements, was selected and coated on the CMSX-4 with the cellular microstructure by low-pressure plasma spraying. The fatigue tests on the coated CMSX-4 specimens demonstrated the effectiveness of the method. The observations of the crack initiation site, the fatigue fracture mode, the crack density in the cellular transformed area, and the crack propagation morphologies near the prior interface strongly supported the validity of this approach. The method is expected to build a road to a so-called damage cure (or recovery) coating.

  16. Fatigue life of a Nd:YAG laser-welded metal ceramic alloy.

    PubMed

    Lee, W V; Nicholls, J I; Butson, T J; Daly, C H

    1997-01-01

    Fifteen laser-welded Olympia alloy samples were divided into three groups of five samples each, with different gap distances between the welded halves. The first group was welded with a 0.0-mm gap distance. The second and third groups had Olympia shims placed in 0.3- and 1.0-mm gaps, respectively, prior to laser welding. Each of the samples was tested to failure in load fatigue at 30 Hz in a fatigue testing device using an applied stress of 35,000 psi (241.4 MPa). The means and standard deviations for the number of cycles required to produce fatigue failure for each group was 494,618 +/- 118,311 cycles for the group welded with 0.0-mm gap distance, and 242,741 +/- 44,623 and 232,021 +/- 55,877 cycles for the 0.3- and 1.0-mm specimens, respectively. A one-way analysis of variance showed that the 0.0-mm gap specimens had the greatest number of cycles to failure (P < or = 0.05). There was no significant difference between the other two groups. With the exception of two specimens that failed at the weld center, all failures occurred at the edge of the weld. PMID:9495162

  17. The effects of decellularization and cross-linking techniques on the fatigue life and calcification of mitral valve chordae tendineae.

    PubMed

    Gunning, Gillian M; Murphy, Bruce P

    2016-04-01

    In cases of severely diseased mitral valves (MV), the required treatment is often valve replacement. Bioprosthetic and stentless replacement valves are usually either fully or partially composed of animal derived tissue treated with a decellularization process, a cross-linking process, or both. In this study, we analysed the effects of these treatments on the fatigue properties of porcine MV chordae tendineae (CT), as well as on the calcification of the CT using an in vitro technique. CT were tested in 4 groups; (1) native, (2) decellularized (DC), (3) decellularized and cross-linked with glutaraldehyde (DC-GTH), and (4) decellularized and cross-linked with 1-ehtyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)(DC-EDC). CT were tested in both uniaxial tension, and in fatigue at 10MPa peak stress (1Hz). The cycles to failure (mean±SD) for the four groups are as follows; Native- 53,397±55,798, DC- 28,013±30,634, DC-GTH- 97,665±133,556, DC-EDC- 318,601±322,358. DC-EDC CT were found to have a slightly longer fatigue life than the native and DC groups. The DC-EDC group also had a marginally lower dynamic creep rate, meaning those CT elongate more slowly. After in vitro calcification, X-ray microtomography was used to determine relative levels of calcification. The DC-EDC and DC-GTH groups had the lowest volume of calcific deposits. Under uniaxial testing, the ultimate tensile strength (UTS) of the DC-GTH CT was statistically significantly reduced after calcification, while the UTS was relatively unchanged for the DC-EDC group. Overall, these results indicate that a treatment of decellularization plus cross-linking with EDC may improve the fatigue life of porcine CT, reduce the rate of elongation, and help the CT resist the negative effects of calcification. This may be a preferable treatment in the preparation of porcine MVs for the replacement of diseased MVs. PMID:26875146

  18. Etude des effets du climat nordique sur la duree de vie en fatigue en tension des composites unidirectionnels de fibres de verre et d'epoxy

    NASA Astrophysics Data System (ADS)

    Brassard, David

    Northern regions of Canada present a huge potential for wind energy production. Unfortunately, it introduces new challenges regarding the operating conditions. This thesis presents a study on the effects of northern climate on the fatigue life of unidirectional glass fibre/epoxy composites. Following a review of previous researches in that field, we provide the results of the present study. Under controlled experimental conditions, we examined the individual and combined effects of low temperatures, moisture content, and freeze-thaw cycles on the fatigue life under tension load of composites. These results were compared to dry and room temperature conditions that served as a baseline. Statistical analysis suggests that thermal cycles between 40 °C and -40 °C do not affect the average fatigue life of unidirectional composites. Freeze-thaw cycles detrimentally affects the interface observed after failure of the specimens. At high stresses, moisture content decreases fatigue life while at low stresses, moisture content increases fatigue life probably due to an increase in ductility of the epoxy matrix. Low temperature did not affect the fatigue life of dry samples, but increased the fatigue life of specimens for moisture conditioned samples. In dry conditions, Northern climates do not negatively affect the fatigue life of unidirectional composites. Freeze-thaw cycles also did not affect fatigue life of unidirectionnal composites. Future research should test its effect on the interface in multidirectional composites.

  19. Emerging Biobehavioral Factors of Fatigue in Sickle Cell Disease

    PubMed Central

    Ameringer, Suzanne; Smith, Wally R.

    2010-01-01

    Purpose The symptom most frequently associated with sickle cell disease (SCD) is pain, but recent research is beginning to indicate that fatigue as an increasingly important symptom of this disease upon which to focus research efforts. This article explores biological and behavioral factors that can potentially contribute to fatigue in SCD. Organizing Framework A biobehavioral framework guides this discussion of factors that may contribute to SCD fatigue. Findings The pathophysiology of the disease process, such as the profound hemolytic anemia and unpredictable vasoocclusive crises, suggests that individuals with SCD are at risk for both acute and chronic fatigue. For example, hypoxemia can cause muscle weakness and produce oxidative stress, which, in turn, increases fatigue. Sickled erythrocytes disrupt the vascular endothelium and stimulate proinflammatory cytokines, which are linked to sleep disruptions. Pain, the most notorious symptom of SCD, has a complex and mechanistically poorly understood relationship with fatigue. Conclusions Little is known about the symptom of fatigue in SCD. Considering the biological and behavioral factors of SCD that could potentially contribute to fatigue, there is a great need for research on the nature and potential mechanisms of fatigue in SCD. Clinical Relevance Fatigue in SCD may negatively affect quality of life. Understanding factors that may contribute to fatigue aids the clinician in identifying causes and determining treatment. PMID:21342421

  20. TiNi-based films for elastocaloric microcooling— Fatigue life and device performance

    NASA Astrophysics Data System (ADS)

    Ossmer, H.; Chluba, C.; Kauffmann-Weiss, S.; Quandt, E.; Kohl, M.

    2016-06-01

    The global trend of miniaturization and concomitant increase of functionality in microelectronics, microoptics, and various other fields in microtechnology leads to an emerging demand for temperature control at small scales. In this realm, elastocaloric cooling is an interesting alternative to thermoelectrics due to the large latent heat and good down-scaling behavior. Here, we investigate the elastocaloric effect due to a stress-induced phase transformation in binary TiNi and quaternary TiNiCuCo films of 20 μm thickness produced by DC magnetron sputtering. The mesoscale mechanical and thermal performance, as well as the fatigue behavior are studied by uniaxial tensile tests combined with infrared thermography and digital image correlation measurements. Binary films exhibit strong features of fatigue, involving a transition from Lüders-like to homogeneous transformation behavior within three superelastic cycles. Quaternary films, in contrast, show stable Lüders-like transformation without any signs of degradation. The elastocaloric temperature change under adiabatic conditions is -15 K and -12 K for TiNi and TiNiCuCo films, respectively. First-of-its-kind heat pump demonstrators are developed that make use of out-of-plane deflection of film bridges. Owing to their large surface-to-volume ratio, the demonstrators reveal rapid heat transfer. The TiNiCuCo-based devices, for instance, generate a temperature difference of 3.5 K within 13 s. The coefficients of performance of the demonstrators are about 3.

  1. Influence of process parameters on rolling-contact-fatigue life of ion plated nickel-copper-silver lubrication

    SciTech Connect

    Danyluk, Mike; Dhingra, Anoop

    2012-05-15

    In this paper, we present a connection between argon ion flux, element-mixing, and rolling contact fatigue (RCF) life of a thin film nickel-copper-silver lubricant on ball bearings. The film is deposited on the balls using an ion plating process and tested for RCF in high vacuum. The ion flux is measured using a Langmuir probe and the plane stress within the film during deposition is calculated using a thin film model. Experiments reveal that there is an inverse relationship between ion flux and RCF life for most deposition voltage and pressure combinations tested, specifically, 15.5-18.5 mTorr and 1.5-3.5 kV. For voltages up to 2.5 kV, RCF life decreases as ion flux increases due to increased compressive stress within the film, reaching as high as 2.6 GPa. For voltages between 2.5 and 3.5 kV, interlayer mixing of nickel and copper with the silver layer reduces RCF life due to contamination, even as ion flux and corresponding film compressive stress are reduced. A Monte Carlo-based simulation tool, SRIM is used to track collision cascades of the argon ions and metal atoms within the coating layers. At process voltages above 2.5 kV we observe elemental mixing of copper and nickel with the silver layer using Auger electron spectroscopy of coated steel and Si{sub 3}N{sub 4} balls. The authors conclude that an ion flux greater than 5.0 x 10{sup 14} cm{sup -2} s{sup -1} leads to reduced RCF life due to high film stress. In addition, process voltages greater than 2.5 kV also reduce RCF life due to contamination and interlayer mixing of nickel and copper within the silver layer.

  2. Comparison of pitting fatigue life of ausforged and standard forged AISI M-50 and AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Bamberger, E. N.; Zaretsky, E. V.

    1975-01-01

    Standard forged and ausforged spur gears made of vacuum-induction-melted, consumable-electrode, vacuum-arc-remelted AISI M-50 steel were tested under conditions that produced fatigue pitting. The gears were 8.89 cm (3.5 in.) in pitch diameter and had tip relief. The M-50 standard forged and ausforged test results were compared with each other. They were then compared with results for machined vacuum-arc-remelted AISI 9310 gears tested under identical conditions. Both types of M-50 gears had lives approximately five times that of the 9310 gears. The life at which 10 percent of the M-50 ausforged gears failed was slightly less than that at which the M-50 standard forged gears failed. The ausforged gears had a slightly greater tendency to fail by tooth fracture than did the standard forged gears, most likely because of the better forging and grain flow pattern of standard forged gears.

  3. Statistical investigation of fatigue crack initiation and growth around chamfered rivet holes in Alclad 2024 T3 as affected by corrosion

    NASA Technical Reports Server (NTRS)

    Fadragas, M. I.; Fine, M. E.; Moran, B.

    1994-01-01

    In panel specimens with rivet holes cracks initiate in the blunted knife edge of the chamfered rivet hole and propagate inward as well as along the hole. The fatigue lifetime to dominant crack information was defined as the number of cycles, N500 micrometer, to formation of a 500 micrometer long crack. Statistical data on N500 micrometer and on crack propagation after N500 micrometer were obtained for a large number of uncorroded specimens and specimens corroded in an ASTM B 117 salt spray. Considerable variation in N500 micrometer and crack propagation behavior was observed from specimen to specimen of the same nominal geometry with chamfered rivet holes increased the probability for both early formation and later formation of a propagating 500 micrometer fatigue crack. The growth of fatigue cracks after 500 micrometer size was little affected by prior salt spray.

  4. Acts of kindness and acts of novelty affect life satisfaction.

    PubMed

    Buchanan, Kathryn E; Bardi, Anat

    2010-01-01

    The present experiment was designed to establish the effects of acts of kindness and acts of novelty on life satisfaction. Participants aged 18-60 took part on a voluntary basis. They were randomly assigned to perform either acts of kindness, acts of novelty, or no acts on a daily basis for 10 days. Their life satisfaction was measured before and after the 10-day experiment. As expected, performing acts of kindness or acts of novelty resulted in an increase in life satisfaction. PMID:20575332

  5. Developments in new aircraft tire tread materials. [fatigue life of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Mccarty, J. L.; Riccitiello, S. R.; Golub, M. A.

    1976-01-01

    Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock.

  6. Fatigue design procedure for the American SST prototype

    NASA Technical Reports Server (NTRS)

    Doty, R. J.

    1972-01-01

    For supersonic airline operations, significantly higher environmental temperature is the primary new factor affecting structural service life. Methods for incorporating the influence of temperature in detailed fatigue analyses are shown along with current test indications. Thermal effects investigated include real-time compared with short-time testing, long-time temperature exposure, and stress-temperature cycle phasing. A method is presented which allows designers and stress analyzers to check fatigue resistance of structural design details. A communicative rating system is presented which defines the relative fatigue quality of the detail so that the analyst can define cyclic-load capability of the design detail by entering constant-life charts for varying detail quality. If necessary then, this system allows the designer to determine ways to improve the fatigue quality for better life or to determine the operating stresses which will provide the required service life.

  7. Determination of Rolling-Element Fatigue Life From Computer Generated Bearing Tests

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.

    2003-01-01

    Two types of rolling-element bearings representing radial loaded and thrust loaded bearings were used for this study. Three hundred forty (340) virtual bearing sets totaling 31400 bearings were randomly assembled and tested by Monte Carlo (random) number generation. The Monte Carlo results were compared with endurance data from 51 bearing sets comprising 5321 bearings. A simple algebraic relation was established for the upper and lower L(sub 10) life limits as function of number of bearings failed for any bearing geometry. There is a fifty percent (50 percent) probability that the resultant bearing life will be less than that calculated. The maximum and minimum variation between the bearing resultant life and the calculated life correlate with the 90-percent confidence limits for a Weibull slope of 1.5. The calculated lives for bearings using a load-life exponent p of 4 for ball bearings and 5 for roller bearings correlated with the Monte Carlo generated bearing lives and the bearing data. STLE life factors for bearing steel and processing provide a reasonable accounting for differences between bearing life data and calculated life. Variations in Weibull slope from the Monte Carlo testing and bearing data correlated. There was excellent agreement between percent of individual components failed from Monte Carlo simulation and that predicted.

  8. Influence of electroless nickel-phosphorus deposits on the corrosion-fatigue life of notched and unnotched samples of an AISI 1045 steel

    SciTech Connect

    Chitty, J.A.; Pertuz, A.; Puchi, E.S.; Hintermann, H.

    1999-02-01

    Electroless nickel-phosphorus deposits of approximately 10% phosphorus and about 20 {micro}m thickness are shown either to have no effect or sometimes to increase the corrosion-fatigue properties of a quenched and tempered AISI 1045 steel in the stress amplitude range of 481 to 687 MPa, in the presence of an aqueous solution of 3% sodium chloride. Such an increase is produced when the stress amplitude is below 516 MPa. For the notched specimens, no substantial differences are found between the fatigue life of the coated and uncoated specimens.

  9. Fatigue Properties of Type 316 LN Stainless Steels as a Function of Frequency and Waveform

    SciTech Connect

    DiStefano, J.R.

    2001-01-30

    The low cycle fatigue behavior of type 316LN stainless steel was investigated in air and mercury at frequencies from 0.1 to 10 Hz. Cyclic stress ratios (R) of {minus}1 and 0.1 were used with sinusoidal, triangular and positive sawtooth wave forms. Mercury appears to reduce fatigue life at high stress amplitudes, but the endurance limit may be unaffected. Low frequency and mean stress decreased the fatigue endurance limit, but type of waveform did not appear to affect fatigue life under the conditions of these tests.

  10. Creep fatigue life prediction for engine hot section materials (isotropic): Two year update

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1984-01-01

    Requirements for increased durability of gas turbine hot section components have placed a greater degree of importance on accurate structural analysis and life prediction. Various life prediction approaches for high temperature applications were investigated. Basic models were selected and developed for simple-cycle, isothermal loading conditions. Models will be developed which address thermomechanical cycling, multiaxial conditions, cumulative loading, environmental effects, and cyclic mean stress. Verification tests of models will be conducted on an alternate material and coating system.

  11. Mind Invasion: Situated Affectivity and the Corporate Life Hack.

    PubMed

    Slaby, Jan

    2016-01-01

    In view of the philosophical problems that vex the debate on situated affectivity, it can seem wise to focus on simple cases. Accordingly, theorists often single out scenarios in which an individual employs a device in order to enhance their emotional experience, or to achieve new kinds of experience altogether, such as playing an instrument, going to the movies, or sporting a fancy handbag. I argue that this narrow focus on cases that fit a "user/resource model" tends to channel attention away from more complex and also more problematic instances of situated affectivity. Among these are scenarios in which a social domain draws individuals into certain modes of affective interaction, often by way of attunement and habituation to affective styles and interaction patterns that are normative in the domain in question. This can lead to a phenomenon that is not so much "mind extension" than "mind invasion": affectivity is dynamically framed and modulated from without, often contrary to the prior orientations of the individuals in question. As an example, I discuss affective patterns prevalent in today's corporate workplace. I claim that workplace affect sometimes contributes to what is effectively a "hack" of employees' subjectivity. PMID:26941705

  12. Mind Invasion: Situated Affectivity and the Corporate Life Hack

    PubMed Central

    Slaby, Jan

    2016-01-01

    In view of the philosophical problems that vex the debate on situated affectivity, it can seem wise to focus on simple cases. Accordingly, theorists often single out scenarios in which an individual employs a device in order to enhance their emotional experience, or to achieve new kinds of experience altogether, such as playing an instrument, going to the movies, or sporting a fancy handbag. I argue that this narrow focus on cases that fit a “user/resource model” tends to channel attention away from more complex and also more problematic instances of situated affectivity. Among these are scenarios in which a social domain draws individuals into certain modes of affective interaction, often by way of attunement and habituation to affective styles and interaction patterns that are normative in the domain in question. This can lead to a phenomenon that is not so much “mind extension” than “mind invasion”: affectivity is dynamically framed and modulated from without, often contrary to the prior orientations of the individuals in question. As an example, I discuss affective patterns prevalent in today's corporate workplace. I claim that workplace affect sometimes contributes to what is effectively a “hack” of employees' subjectivity. PMID:26941705

  13. Induction of engineered residual stresses fields and enhancement of fatigue life of high reliability metallic components by laser shock processing

    NASA Astrophysics Data System (ADS)

    Ocaña, J. L.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; Correa, C.; Gil-Santos, A.; Peral, D.

    2013-02-01

    Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional "shot peening" technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.

  14. Final report on low-cycle fatigue and creep-fatigue testing of salt-filled alloy 800 specimens

    SciTech Connect

    Kaae, J L

    1982-05-01

    Uniaxial low-cycle fatigue and creep-fatigue tests have been carried out on hollow alloy 800 specimens that were either filled with air or with a molten mixture of sodium nitrate, potassium nitrate and an oxidizer. Low-cycle fatigue tests were carried out at 1200/sup 0/F and 650/sup 0/F by cycling the strain continuously between equal mangitude of tensile and compressive values at a rate of 4 x 10/sup -3/sec/sup -1/ until failure. The creep-fatigue tests were carried out at 1200/sup 0/F. The loading cycle differed from that of low-cycle fatigue testing only in the imposition of a hold at the peak compressive strain in each cycle. Cracks always initiated on the inner surface of the hollow specimen, and therefore, corrosive effects on crack propagation and initiation were controlled by the environment within the specimen cavity. In common with tests carried out earlier on steam-filled alloy 800 specimens, at 1200/sup 0/F in the presence of molten salt the heat of alloy 800 with the lower carbon content had a higher fatigue strength than the heat with the higher carbon content even though different heats were used in the two testing programs. The fatigue strength of the two heats of material in the presence of molten salt at 650/sup 0/F were about the same. Tests with air-filled specimens indicated that the presence of the molten salt degraded the fatigue life at 1200/sup 0/F but did not affect the creep fatigue life, while the presence of steam enhanced both the fatigue life and the creep-fatigue life.

  15. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.

    PubMed

    Lipinski, P; Barbas, A; Bonnet, A-S

    2013-12-01

    Because of its biocompatibility and high mechanical properties, the commercially pure grade 2 titanium (CPG2Ti) is largely used for fabrication of patient specific implants or hard tissue substitutes with complex shape. To avoid the stress-shielding and help their colonization by bone, prostheses with a controlled porosity are designed. The selective laser melting (SLM) is well adapted to manufacture such geometrically complicated structures constituted by struts with rough surfaces and relatively small diameters. Few studies were dedicated to characterize the fatigue properties of SLM processed samples and bulk parts. They followed conventional or standard protocols. The fatigue behavior of standard samples is very different from the one of porous raw structures. In this study, the SLM made "as built" (AB) and "heat treated" (HT) tubular samples were tested in fatigue. Wöhler curves were determined in both cases. The obtained endurance limits were equal to σD(AB)=74.5MPa and σD(HT)=65.7MPa, respectively. The heat treatment worsened the endurance limit by relaxation of negative residual stresses measured on the external surface of the samples. Modified Goodman diagram was established for raw specimens. Porous samples, based on the pattern developed by Barbas et al. (2012), were manufactured by SLM. Fatigue tests and finite element simulations performed on these samples enabled the determination of a simple rule of fatigue assessment. The method based on the stress gradient appeared as the best approach to take into account the notch influence on the fatigue life of CPG2Ti structures with a controlled porosity. The direction dependent apparent fatigue strength was found. A criterion based on the effective, or global, nominal stress was proposed taking into account the anisotropy of the porous structures. Thanks to this criterion, the usual calculation methods can be used to design bone substitutes, without a precise modelling of their internal fine porosity. PMID

  16. Fatigue life prediction of mooring chains for a floating tidal current power station

    NASA Astrophysics Data System (ADS)

    Jing, Fengmei; Zhang, Liang; Yang, Zhong

    2012-06-01

    As a kind of clean and renewable energy, tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe. A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind, waves, and current, and even the extreme situation of a typhoon. Therefore, the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations. The power station examined in this paper was installed at a depth of 40 m. A 44 mm-diameter R4-RQ4 chain was chosen, with a 2 147 kN minimum break strength and 50 kN pretension. Common studless link chain was used in this paper. Based on the Miner fatigue cumulative damage rule, S-N curves of chains, and MOSES software, a highly reliable mooring system was designed and analyzed. The calculation results show that the mooring system designed is reliable throughout a 10-year period. It can completely meet the design requirements of American Petroleum institution (API). Therefore, the presented research is significant for advancing the design of this kind of power station.

  17. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-05-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through {˜ }{O}(N^{1.6}) and {˜ }{O}(N) , respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  18. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-08-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  19. Reciprocal relationship between acute stress and acute fatigue in everyday life in a sample of university students.

    PubMed

    Doerr, Johanna M; Ditzen, Beate; Strahler, Jana; Linnemann, Alexandra; Ziemek, Jannis; Skoluda, Nadine; Hoppmann, Christiane A; Nater, Urs M

    2015-09-01

    We investigated whether stress may influence fatigue, or vice versa, as well as factors mediating this relationship. Fifty healthy participants (31 females, 23.6±3.2 years) completed up to 5 momentary assessments of stress and fatigue during 5 days of preparation for their final examinations (exam condition) and 5 days of a regular semester week (control condition). Sleep quality was measured by self-report at awakening. A sub-group of participants (n=25) also collected saliva samples. Fatigue was associated with concurrent stress, stress reported at the previous measurement point, and previous-day stress. However, momentary stress was also predicted by concurrent fatigue, fatigue at the previous time point, and previous-day fatigue. Sleep quality mediated the association between stress and next-day fatigue. Cortisol and alpha-amylase did not mediate the stress-fatigue relationship. In conclusion, there is a reciprocal stress-fatigue relationship. Both prevention and intervention programs should comprehensively cover how stress and fatigue might influence one another. PMID:26143479

  20. Delayed-release prednisone improves fatigue and health-related quality of life: findings from the CAPRA-2 double-blind randomised study in rheumatoid arthritis

    PubMed Central

    Alten, Rieke; Grahn, Amy; Holt, Robert J; Rice, Patricia; Buttgereit, Frank

    2015-01-01

    Objectives Like morning stiffness, fatigue is a common, debilitating symptom of rheumatoid arthritis (RA). Delayed-release (DR) prednisone is designed for evening administration (approximately 22:00) and releases 4 h later to coincide with the rise of nocturnal inflammatory cytokines associated with development of morning stiffness. The impact of DR prednisone on fatigue and other related patient-reported outcomes was analysed with data obtained from the Circadian Administration of Prednisone in Rheumatoid Arthritis (CAPRA) 2 study. Methods Patients with symptomatic RA (n=350) despite treatment with a disease-modifying antirheumatic drug (DMARD) were randomised 2:1 to receive additional therapy with DR prednisone 5 mg or placebo once daily for 12 weeks. Fatigue was assessed using validated instruments: the fatigue scale of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) and the vitality domain of the Short Form-36 (SF-36). General quality of life was assessed using the general score and individual domains of Functional Assessment of Cancer Therapy-General (FACT-G) and SF-36. Results The change from baseline to week 12 in FACIT-F score was statistically significantly different with DR prednisone/DMARD (3.8) versus placebo/DMARD (1.6; difference 2.2, p=0.0032). Improvement in FACIT-F score correlated positively with clinical response. Compared with placebo/DMARD, DR prednisone/DMARD showed a significantly greater improvement in SF-36 vitality score (5.6, p=0.001), physical component of SF-36 (2.3, p=0.0003) and general score with FACT-G (2.6, p=0.0233). Conclusions DR prednisone in addition to a DMARD significantly improves fatigue and other aspects of health-related quality of life in patients with symptomatic RA compared with DMARD treatment alone. Trial registration number ClinicalTrials.gov NCT00650078. PMID:26535146

  1. Effect of Porosity on the Fatigue Life of Cast AC4C-T6 Alloy for Lcd Glass Transfer Robot

    NASA Astrophysics Data System (ADS)

    Shim, Hee-Jin; Kim, Jung-Kyu

    Aluminium has good corrosion properties and a high strength to weight reduction which makes it favourable in many applications. The increased use of aluminium casting in the automotive industry does also imply that the need for design data for aluminium increases. Especially for castings, the influences of casting defects are always an issue. For this reason fatigue properties for as-cast sand and permanent mould specimens with different contents of porosity have been studied. The cast aluminium specimens of two different porosities were fatigue tested in cyclic axial test at R=-1. Prior to fatigue test specimens were examined by CT-scan and sorted into two quality groups depending on the porosity level. The aim of this work was to investigate the fatigue life for cast AC4C-T6 alloy with different amounts of inherent porosity. An additional aim was to predict the durability for cast components with defect constrained in a specified volume of components, by using a commercial program MSC. Fatigue.

  2. Effect of outdoor exposure at ambient and elevated temperatures on fatigue life of Ti-6Al-4V titanium alloy sheet in the annealed and the solution treated and aged condition

    NASA Technical Reports Server (NTRS)

    Phillips, E. P.

    1974-01-01

    Specimens of Ti-6Al-4V titanium alloy sheet in the annealed and the solution-treated and aged heat-treatment condition were exposed outdoors at ambient and 560 K (550 F) temperatures to determine the effect of outdoor exposure on fatigue life. Effects of exposure were determined by comparing fatigue lives of exposed specimens to those of unexpected specimens. Two procedures for fatigue testing the exposed specimens were evaluated: (1) fatigue tests conducted outdoors by applying 1200 load cycles per week until failure occurred and (2) conventional fatigue tests (continuous cycling until failure occurred) conducted indoors after outdoor exposure under static load. The exposure period ranged from 9 to 28 months for the outdoor fatigue-test group and was 24 months for the static-load group. All fatigue tests were constant-amplitude bending of specimens containing a drilled hole (stress concentration factor of 1.6). The results of the tests indicate that the fatigue lives of solution-treated and aged specimens were significantly reduced by the outdoor exposure at 560 K but not by the exposure at ambient temperature. Fatigue lives of the annealed specimens were essentially unaffected by the outdoor exposure at either temperature. The two test procedures - outdoor fatigue test and indoor fatigue test after outdoor exposure - led to the same conclusions about exposure effects.

  3. Influence of Ply Waviness on Fatigue Life of Tapered Composite Flexbeam Laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    1999-01-01

    Nonlinear tapered flexbeam laminates, with significant ply waviness, were cut from a full-size composite rotor hub flexbeam. The specimens were tested under combined axial tension and cyclic bending loads. All of the specimens had wavy plies through the center and near the surfaces (termed marcelled areas), although for some of the specimens the surface marcels were very obvious, and for others they were much smaller. The specimens failed by first developing cracks through the marcels at the surfaces, and then delaminations grew from those cracks, in both directions. Delamination failure occurred in these specimens at significantly shorter fatigue lives than similar specimens without waviness, tested in ref. 2. A 2D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. In addition, the FE model duplicated the waviness observed in one of the test specimens. The model was analyzed using a geometrically nonlinear FE code. Modifications were made to the original model to reduce the amplitude of the marcels near the surfaces. The analysis was repeated for each modification. Comparisons of the interlaminar normal stresses, sigma(sub n), in the various models showed that under combined axial-tension and cyclic-bending loading, for marcels of the same aspect ratio, sigma(sub n) stresses increased as the distance along the taper, from thick to thin end, increased. For marcels of the same aspect ratio and at the same X-location along the taper, sigma(sub n) stresses decreased as the distance from the surface into the flexbeam interior increased. A technique was presented for determining the smallest acceptable marcel aspect ratio at various locations in the flexbeam.

  4. Quality of life, depression and fatigue among persons co-infected with HIV and hepatitis C: outcomes from a population-based cohort.

    PubMed

    Braitstein, P; Montessori, V; Chan, K; Montaner, J S G; Schechter, M T; O'Shaughnessy, M V; Hogg, R S

    2005-05-01

    The objective of the study was to describe the additional burden generated by hepatitis C (HCV) infection among HIV-infected individuals as measured by self-reported quality of life, depression and fatigue. The provincial HIV/AIDS Drug Treatment Program (DTP) distributes all antiretroviral medication in the province of British Columbia. Eligibility for accessing antiretrovirals is based on published guidelines commensurate with the International AIDS Society. Each participant is asked to complete a self-administered mailed questionnaire that includes patient sociodemographic information, quality of life measures (Medical Outcomes Study-Short Form (MOS-SF), mental health issues (Centre for Epidemiological Studies Depression scale (CESD) and fatigue information. HIV-HCV co-infected individuals were compared to HIV mono-infected individuals using parametric and nonparametric methods. Multivariate logistic regression was used to examine the impact of hepatitis C on quality of life, depression and fatigue, after controlling for sociodemographics and HIV-specific clinical characteristics. Of the 4,134 individuals who were sent a HIV/AIDS DTP survey in 1999, 2000 or 2001, 484 participants both returned one and had an HCV-antibody test result on file. Of the 484 participants eligible for this analysis, 105 (22%) were HCV-positive. In comparison to the 379 (78%) patients testing negative for HCV, a larger proportion of co-infected patients were female (18% versus 3%, p<0.001), aboriginal (20% versus 3%, p<0.001), had ever injected drugs (79% versus 5%, p<0.001), were unemployed (91% versus 49%, p<0.001) and lived in unstable housing (19% versus 1%, p<0.001) at the time they completed the survey. Co-infected patients reported more symptoms consistent with depression, increased fatigue and poorer quality of life. However, using multivariate modeling, it was determined that the impact of HCV on quality of life, depression and fatigue was better explained by the

  5. Low-cycle thermal fatigue

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1986-01-01

    A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

  6. Older age may offset genetic influence on affect: The COMT polymorphism and affective well-being across the life span.

    PubMed

    Turan, Bulent; Sims, Tamara; Best, Sasha E; Carstensen, Laura L

    2016-05-01

    The catechol-O-methyltransferase (COMT_Val158Met) genetic polymorphism has been linked to variation in affective well-being. Compared with Val carriers, Met carriers experience lower affective well-being. In parallel, research on aging and affective experience finds that younger adults experience poorer affective well-being than older adults. This study examined how COMT and age may interact to shape daily affective experience across the life span. Results suggest that Met (vs. Val) carriers experience lower levels of affective well-being in younger but not in older ages. These findings suggest that age-related improvements in emotional functioning may offset genetic vulnerabilities to negative affective experience. (PsycINFO Database Record PMID:27111524

  7. Fatigue Life and Short Crack Behavior in Ti-6Al-4V Alloy; Interactions of Foreign Object Damage, Stress, and Temperature

    NASA Astrophysics Data System (ADS)

    Majidi, Behzad

    2008-04-01

    High-cycle fatigue (HCF) failures associated with foreign object damage (FOD) in turbine engines of military aircrafts have been of major concern for the aeronautic industry in recent years. The present work is focused on characterizing the effects of FOD on crack initiation and small crack growth of a Ti-6Al-4V alloy at ambient and also elevated temperatures. Results show that the preferred crack initiation site depends on applied stress and temperature as maximum fractions of cracks emanating from the simulated damage site, and naturally initiated cracks are observed at 25 °C under the maximum stress of 700 MPa and at 300 °C under the maximum stress of 300 MPa. The fatigue crack growth rate is influenced by increasing temperature, and the FCG rate at 300 °C is higher than that at room temperature under the same Δ K, whereas this effect for FOD-site initiated cracks is not so remarkable. This observation seems to be due to the effect of stress relaxation at 300 °C. Results also indicate that fatigue crack initiation life ( N i ) and fatigue life ( N f ) are expressed by three-parameter Weibull distribution function.

  8. Surface fatigue life of carburized and hardened M50NiL and AISI 9310 spur gears and rolling-contact test bars

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Bamberger, Eric N.

    1989-01-01

    Spur gear endurance tests and rolling-element surface tests were conducted to investigate vacuum-induction-melted, vacuum-arc-melted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling-contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm (3.5 in.). Gear test conditions were an inlet oil temperature of 320 K (116 F), and outlet oil temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench rolling-element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPA (700 ksi). The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling-contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and to have fatigue life far superior to that of both VIM-VAR and VAR AISI 9310 gears and rolling-contact bars.

  9. Postdialysis Fatigue: A Frequent and Debilitating Symptom.

    PubMed

    Bossola, Maurizio; Tazza, Luigi

    2016-05-01

    Postdialysis fatigue (PDF) is a frequent and debilitating symptom of patients on chronic hemodialysis that affects their daily living and quality of life. Little is known about the mechanisms underlying this symptom and its severity. Only a few studies have investigated therapeutic interventions and with conflicting results. Given the major impact of PDF on the quality of life of hemodialysis patients, a larger effort is warranted to better understand, prevent, and treat PDF. PMID:26806879

  10. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  11. Effect of plate working length on plate stiffness and cyclic fatigue life in a cadaveric femoral fracture gap model stabilized with a 12-hole 2.4 mm locking compression plate

    PubMed Central

    2013-01-01

    Background There are several factors that can affect the fatigue life of a bone plate, including the mechanical properties of the plate and the complexity of the fracture. The position of the screws can influence construct stiffness, plate strain and cyclic fatigue of the implants. Studies have not investigated these variables in implants utilized for long bone fracture fixation in dogs and cats. The purpose of the present study was to evaluate the effect of plate working length on construct stiffness, gap motion and resistance to cyclic fatigue of dog femora with a simulated fracture gap stabilized using a 12-hole 2.4 mm locking compression plates (LCP). Femora were plated with 12-hole 2.4 mm LCP using 2 screws per fracture segment (long working length group) or with 12-hole 2.4 mm LCP using 5 screws per fracture segment (a short working length group). Results Construct stiffness did not differ significantly between stabilization techniques. Implant failure did not occur in any of the plated femora during cycling. Mean ± SD yield load at failure in the short plate working length group was significantly higher than in the long plate working length group. Conclusion In a femoral fracture gap model stabilized with a 2.4 mm LCP applied in contact with the bone, plate working length had no effect on stiffness, gap motion and resistance to fatigue. The short plate working length constructs failed at higher loads; however, yield loads for both the short and long plate working length constructs were within physiologic range. PMID:23800317

  12. Interferon-free regimens improve health-related quality of life and fatigue in HIV/HCV-coinfected patients with advanced liver disease: A retrospective study.

    PubMed

    Scheiner, Bernhard; Schwabl, Philipp; Steiner, Sebastian; Bucsics, Theresa; Chromy, David; Aichelburg, Maximilian C; Grabmeier-Pfistershammer, Katharina; Trauner, Michael; Peck-Radosavljevic, Markus; Reiberger, Thomas; Mandorfer, Mattias

    2016-07-01

    Health-related quality of life (HRQoL) is impaired in HIV/HCV-coinfected patients (HIV/HCV) and further decreased by interferon (IFN)-based therapies. We aimed to investigate the impact of IFN- and ribavirin (RBV)-free therapies on HRQoL and fatigue.Thirty-three HIV/HCV-coinfected patients who underwent HCV therapy with sofosbuvir in combination with daclatasvir or ledipasvir were retrospectively studied and compared to 17 patients who received boceprevir (BOC)/PEGIFN/RBV. HRQoL (mental [MCS] and physical [PCS] component score) and fatigue were assessed using the SF-36 (Short Form 36 Health Survey) and the FSS (Fatigue Severity Scale), respectively. HRQoL/fatigue was evaluated at baseline (BL), midway, and 12 weeks after the end of treatment (FU).At BL, both domains of HRQoL as well as the severity of fatigue were significantly impaired in HIV/HCV, when compared to a healthy population. Already during treatment, IFN/RBV-free therapy improved physical health (PCS: 41.4 ± 9.7 vs. 47.0 ± 11.2; P < 0.01) and reduced fatigue (37.8 ± 14.0 vs. 31.9 ± 15.2; P = 0.01), whereas we observed a substantial worsening of both factors in patients treated with BOC/PEGIFN/RBV. Since these improvements were maintained, patients treated with IFN/RBV-free therapy reported an improvement in physical health (PCS: 41.4 ± 9.7 vs. 45.8 ± 12.7; P < 0.01) and fatigue (37.8 ± 14.0 vs. 30.9 ± 14.8; P = 0.04) at FU. While AIDS-patients had a higher severity of fatigue at BL and showed a reduction of fatigue (42.5 ± 14.0 vs. 31.6 ± 15.7; P = 0.01), mental health only improved in patients without AIDS (MCS: 35.7 ± 5.3 vs.40.7 ± 6.4; P = 0.04). HIV/HCV with severe fatigue at BL (>median BL-FSS) showed most pronounced improvements in severity of fatigue (49.7 ± 7.0 vs. 32.0 ± 16.7; P < 0.01).In contrast to IFN-based regimens, highly effective and well-tolerated IFN-/RBV-free regimens improve HRQo

  13. Creep fatigue life prediction for engine hot section materials (isotropic): Third year progress review

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.; Schoendorf, John F.

    1985-01-01

    This program is designed to investigate fundamental damage processes, identify modeling strategies, and develop practical models which can be used to guide the early design and development of new engines and to increase the durability of existing engines. A review is given of the base program, completed in 1984, which included the comparison and evaluation of several popular high-temperature life prediction approaches as applied to continuously cycled isothermal specimen tests. The option program, of which one year is completed, is designed to develop models which can account for complex cycles and loadings, such as thermomechanical cycling, cumulative damage, multiaxial stress/strain rates, and environmental effects.

  14. Creep fatigue life prediction for engine hot section materials (ISOTROPIC) fifth year progress review

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.; Harvey, Peter R.

    1987-01-01

    The need for advanced life prediction methods for hot section components for gas turbine engines is becoming more and more evident. The complex local strain and temperature histories at critical locations must be accurately interpreted to account for the effects of various damage mechanisms and their possible interactions. This program is designed to investigate these fundamental damage processes, identify modeling strategies, and develop practical models which can be used to guide the early design and development of new engines and to increase the durability of existing engines.

  15. Contact Stress Analysis and Fatigue Life Prediction of a Turbine Fan Disc

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Zhu, Shun-Peng; Lv, Zhiqiang; Zuo, Fang-Jun; Huang, Hong-Zhong

    2016-06-01

    Fan discs are critical components of an aero engine. In this paper, contact stress and life prediction of a turbine fan disc were investigated. A simplified pin/disc model was conducted to simulate the practical working condition under applied loads using finite element (FE) analysis. This study is devoted to examining the effects of interface condition of pin/disc such as gap and coefficient upon the maximum stress. The FE model indicated that the maximum stress occurs at the top right corner in the second pin hole, and larger gap or friction coefficient has a significant effect on the maximum stress. In addition, FE analysis without considering friction is also conducted. The results show that the dangerous point is similar to the result which considers friction and the stress state is relatively larger than that of considering friction. Finally, based on FE analysis result, life prediction for the fan disc is conducted to combine the material S-N curve, mean stress effects and concentration stress factor obtained by means of FE method.

  16. Estrogenic botanical supplements, health-related quality of life, fatigue, and hormone-related symptoms in breast cancer survivors: a HEAL study report

    PubMed Central

    2011-01-01

    Background It remains unclear whether estrogenic botanical supplement (EBS) use influences breast cancer survivors' health-related outcomes. Methods We examined the associations of EBS use with health-related quality of life (HRQOL), with fatigue, and with 15 hormone-related symptoms such as hot flashes and night sweats among 767 breast cancer survivors participating in the Health, Eating, Activity, and Lifestyle (HEAL) Study. HRQOL was measured by the Medical Outcomes Study short form-36 physical and mental component scale summary score. Fatigue was measured by the Revised-Piper Fatigue Scale score. Results Neither overall EBS use nor the number of EBS types used was associated with HRQOL, fatigue, or hormone-related symptoms. However, comparisons of those using each specific type of EBS with non-EBS users revealed the following associations. Soy supplements users were more likely to have a better physical health summary score (odds ratio [OR] = 1.66, 95% confidence interval [CI] = 1.02-2.70). Flaxseed oil users were more likely to have a better mental health summary score (OR = 1.76, 95% CI = 1.05-2.94). Ginseng users were more likely to report severe fatigue and several hormone-related symptoms (all ORs ≥ 1.7 and all 95% CIs exclude 1). Red clover users were less likely to report weight gain, night sweats, and difficulty concentrating (all OR approximately 0.4 and all 95% CIs exclude 1). Alfalfa users were less likely to experience sleep interruption (OR = 0.28, 95% CI = 0.12-0.68). Dehydroepiandrosterone users were less likely to have hot flashes (OR = 0.33, 95% CI = 0.14-0.82). Conclusions Our findings indicate that several specific types of EBS might have important influences on a woman's various aspects of quality of life, but further verification is necessary. PMID:22067368

  17. Compassion fatigue in nurses.

    PubMed

    Yoder, Elizabeth A

    2010-11-01

    Compassion fatigue, trigger situations, and coping strategies were investigated in hospital and home care nurses. The Professional Quality of Life Scale measured compassion fatigue, compassion satisfaction, and burnout. Narrative questions elicited trigger situations and coping strategies. Compassion fatigue scores were significantly different between nurses who worked 8- or 12-hour shifts. Fifteen percent of the participants had scores indicating risk of the compassion fatigue. There were significant differences in compassion satisfaction, depending on the unit worked and time as a nurse. The most common category of trigger situations was caring for the patient. Work-related and personal coping strategies were identified. PMID:21035028

  18. Factors affecting burnout and compassion fatigue in psychotherapists treating torture survivors: is the therapist's attitude to working through trauma relevant?

    PubMed

    Deighton, Russell McKenzie; Gurris, Norbert; Traue, Harald

    2007-02-01

    In this study, a group of trauma therapists (N = 100) working with torture survivors was investigated with respect to the extent to which they advocated and practiced working through traumatic events as well as levels of symptomatology including compassion fatigue, burnout, and distress. Results showed that a combination of high advocacy and low degree of working through traumatic events was related to high symptomatology. Therapists with this combination showed more compassion fatigue, burnout, and distress than therapists who advocated and practiced working through traumatic events, as well as therapists who neither advocated nor practiced it. Results are discussed with respect to the pathogenic role of fear avoidance in therapists. PMID:17345651

  19. Fatigue behavior and life prediction of a SiC/Ti-24Al-11Nb composite under isothermal conditions. Ph. D. Thesis

    SciTech Connect

    Bartolotta, P.A.

    1991-08-01

    Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.

  20. Fatigue behavior and life prediction of a SiC/Ti-24Al-11Nb composite under isothermal conditions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.

  1. The affective profiles in the USA: happiness, depression, life satisfaction, and happiness-increasing strategies

    PubMed Central

    Schütz, Erica; Sailer, Uta; Al Nima, Ali; Rosenberg, Patricia; Andersson Arntén, Ann-Christine; Archer, Trevor

    2013-01-01

    Background. The affective profiles model categorizes individuals as self-fulfilling (high positive affect, low negative affect), high affective (high positive affect, high negative affect), low affective (low positive affect, low negative affect), and self-destructive (low positive affect, high negative affect). The model has been used extensively among Swedes to discern differences between profiles regarding happiness, depression, and also life satisfaction. The aim of the present study was to investigate such differences in a sample of residents of the USA. The study also investigated differences between profiles with regard to happiness-increasing strategies. Methods. In Study I, 900 participants reported affect (Positive Affect Negative Affect Schedule; PANAS) and happiness (Happiness-Depression Scale). In Study II, 500 participants self-reported affect (PANAS), life satisfaction (Satisfaction With Life Scale), and how often they used specific strategies to increase their own happiness (Happiness-Increasing Strategies Scales). Results. The results showed that, compared to the other profiles, self-fulfilling individuals were less depressed, happier, and more satisfied with their lives. Nevertheless, self-destructive individuals were more depressed, unhappier, and less satisfied than all other profiles. The self-fulfilling individuals tended to use strategies related to agentic (e.g., instrumental goal-pursuit), communal (e.g., social affiliation), and spiritual (e.g., religion) values when pursuing happiness. Conclusion. These differences suggest that promoting positive emotions can positively influence a depressive-to-happy state as well as increasing life satisfaction. Moreover, the present study shows that pursuing happiness through strategies guided by agency, communion, and spirituality is related to a self-fulfilling experience described as high positive affect and low negative affect. PMID:24058884

  2. Fracture mechanics characterization of welds: Fatigue life analysis of notches at welds: J(sub Ic) fracture toughness tests for weld metal

    NASA Astrophysics Data System (ADS)

    Underwood, John H.

    1995-03-01

    In this report two methods of fracture analysis of welds will be emphasized, one addressing fatigue life testing and analysis of notches at welds, and the other addressing the final fracture of the welded component and the fracture toughness tests used to characterize final fracture. These fatigue and fracture methods will be described by referring to recent work from the technical literature and from the U.S. Army Armament Research, Development, and Engineering Center, primarily fracture case study and fracture test method development investigations. A brief general summary will be given of fatigue and fracture methods and concepts that have application to welded structures. Specific fatigue crack initiation tests and analysis methods will be presented, using example results from a welded stainless steel box beam of a cannon carriage. Recent improvements and simplifications in J.integral fracture toughness tests will be described, particularly those related to welds. Fracture toughness measurements for various stainless steel weld metals and heat treatments will also be described.

  3. New method of determination of spot welding-adhesive joint fatigue life using full field strain evolution

    NASA Astrophysics Data System (ADS)

    Sadowski, T.; Kneć, M.

    2016-04-01

    Fatigue tests were conducted since more than two hundred years ago. Despite this long period, as fatigue phenomena are very complex, assessment of fatigue response of standard materials or composites still requires a long time. Quite precise way to estimate fatigue parameters is to test at least 30 standardized specimens for the analysed material and further statistical post processing is required. In case of structural elements analysis like hybrid joints (Figure 1), the situation is much more complex as more factors influence the fatigue load capacity due to much more complicated structure of the joint in comparison to standard materials specimen, i.e. occurrence of: welded hot spots or rivets, adhesive layers, local notches creating the stress concentrations, etc. In order to shorten testing time some rapid methods are known: Locati's method [1] - step by step load increments up to failure, Prot's method [2] - constant increase of the load amplitude up to failure; Lehr's method [2] - seeking for the point during regular fatigue loading when an increase of temperature or strains become non-linear. The present article proposes new method of the fatigue response assessment - combination of the Locati's and Lehr's method.

  4. An analysis of the deformation approach to calculation of the life of hydrogen impregnated 1Kh16N4B steel in low-cycle fatigue

    SciTech Connect

    Litvin, V.V.; Anan'evskii, V.A.; Mints, A.I.

    1986-01-01

    This paper presents the results of experimental investigations and an analysis of the applicability of the deformation approach for calculation of the life of 1Kh16N4B steel in low-cycle fatigue. Hydrogen impregnation was done with use of cathodic polarization in a special cell with a polarization current density of 35 mA/cm/sup 2/ for 60 min. The test results are presented, and it can be seen that the influence of hydrogen absorption significantly changes the life of 1Kh16N4B steel, but the Coffin-Kavomoto criterion does not give satisfactory results.

  5. Fatigue and Multiple Sclerosis

    MedlinePlus

    Fatigue - National Multiple Sclerosis Society Skip to navigation Skip to content Menu Navigation National Multiple Sclerosis Society Sign In In Your Area ... help* daily life for: positive-mom* The National MS Society is Here to Help Need More Information? ...

  6. Fatigue life enhancement of high reliability metallic components by laser shock processing

    NASA Astrophysics Data System (ADS)

    Ocaña, J. L.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; Correa, C.; Peral, D.

    2015-03-01

    Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their mechanical behavior. As reported in the literature, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible "in-service" thermal conditions on the relaxation of the LSP effects being specifically characterized.

  7. Age-Related Changes in Dynamic Postural Control and Attentional Demands are Minimally Affected by Local Muscle Fatigue

    PubMed Central

    Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin

    2016-01-01

    Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks. PMID:26834626

  8. Personality Traits and Positive/Negative Affects: An Analysis of Meaning in Life among Adults

    ERIC Educational Resources Information Center

    Isik, Serife; Üzbe, Nazife

    2015-01-01

    This study examines the impact of positive and negative affects and personality traits on meaning in life in an adult population. The sample consisted of 335 subjects: 190 females and 145 males, and a Meaning in Life Questionnaire (MLQ), positive and negative schedule (PANAS), and adjective-based personality scale (ABPT) were used in the research.…

  9. Appreciation and Life Satisfaction: Does Appreciation Uniquely Predict Life Satisfaction above Gender, Coping Skills, Self-Esteem, and Positive Affectivity?

    ERIC Educational Resources Information Center

    Halle, Joshua Solomon

    2015-01-01

    The primary purpose of this research was to examine whether appreciation explains variance in life satisfaction after controlling for gender, positive affectivity, self-esteem, and coping skills. Two hundred ninety-eight undergraduates went to the informed consent page of the online survey composed of the Appreciation Scale, the Satisfaction With…

  10. Preliminary metallographic studies of ball fatigue under rolling-contact conditions

    NASA Technical Reports Server (NTRS)

    Bear, H Robert; Butler, Robert H

    1957-01-01

    The metallurgical results produced on balls tested in the rolling-contact fatigue spin rig were studied by metallographic examination. Origin and progression of fatigue failures were observed. These evaluations were made on SAE 52100 and AISI M-1 balls fatigue tested at room temperature (80 F) and 200 to 250 F. Most failures originated subsurface in shear; inclusions, structure changes, and directionalism adversely affected ball fatigue life. Structures in the maximum-shear-stress region of the balls of both materials were stable at room temperature and unstable at 200 to 250 F. Failures were of the same type as those found in full-scale bearings.

  11. The dual task-cost of standing balance affects quality of life in mildly disabled MS people.

    PubMed

    Castelli, Letizia; De Luca, Francesca; Marchetti, Maria Rita; Sellitto, Giovanni; Fanelli, Fulvia; Prosperini, Luca

    2016-05-01

    The aim of this study was to explore the correlations between the dual-task cost (DTC) of standing balance and quality of life (QoL) in mildly disabled patients with multiple sclerosis (MS). In this cross-sectional study, patients affected by MS with an expanded disability status scale (EDSS) score of 3.0 or less and without an overt balance impairment were tested by means of static posturography under eyes-opened (single-task condition) and while performing the Stroop word-color test (dual-task condition), to estimate the DTC of standing balance. The self-reported 54-item MS quality of life questionnaire (MSQoL-54) was also administered to obtain a MS-specific assessment of health-related QoL. Among the 120 screened patients, 75 (53 women, 22 men) were tested. Although there was no impact of the DTC of standing balance on the physical and mental composite scores of MSQoL-54, patients who had a greater DTC of standing balance scored worse on role limitations due to physical problems (p = 0.007) and social function (p < 0.001), irrespective of demographic and other clinical characteristics including walking performance and cognitive status. However, the EDSS step and fatigue also contributed to reduced scores in these two QoL domains (p-values < 0.01). In conclusion, the phenomenon of cognitive-motor interference, investigated as DTC of standing balance, may affect specific QoL domains even in mildly disabled patients with MS and in the absence of an overt balance dysfunction. PMID:26728268

  12. Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster

    NASA Astrophysics Data System (ADS)

    Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song

    2015-02-01

    The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.

  13. Discrete statistical model of fatigue crack growth in a Ni-base superalloy, capable of life prediction

    NASA Astrophysics Data System (ADS)

    Boyd-Lee, Ashley; King, Julia

    1992-07-01

    A discrete statistical model of fatigue crack growth in a nickel base superalloy Waspaloy, which is quantitative from the start of the short crack regime to failure, is presented. Instantaneous crack growth rate distributions and persistence of arrest distributions are used to compute fatigue lives and worst case scenarios without extrapolation. The basis of the model is non-material specific, it provides an improved method of analyzing crack growth rate data. For Waspaloy, the model shows the importance of good bulk fatigue crack growth resistance to resist early short fatigue crack growth and the importance of maximizing crack arrest both by the presence of a proportion of small grains and by maximizing grain boundary corrugation.

  14. An evaluation of the effects of stacking sequence and thickness on the fatigue life of quasi-isotropic graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Morris, D. H.

    1983-01-01

    Notched and unnotched geometries at 16, 32, and 64-ply thicknesses of a 90/45/0-45 (ns) laminate and a 45/0/-45/90 (ns) laminate were tested in compression-compression fatigue. The fatigue life and the initiation, type, and progression of damage were determined. Interlaminar stresses generated at straight, free edges of axially loaded laminates were used to interpret the test results. The fatigue lives of the notched specimens did not appear to be a strong function of laminate stacking sequence or specimen thickness. The stress concentration at the hole dominated over the interlaminar stresses at the straight free edge. The unnotched specimens of the 90/45/0/-45 (ns) laminate with tensile interlaminar normal stresses delaminated more readily than did the 45/0/-45/90 (ns) laminate with compressive interlaminar normal stress. The life of the 16-ply unnotched specimens was lower than the 32- and 64-ply specimens. Delaminations were located at the interface where the maximum shear stress occurred regardless of the sense or magnitude of the interlaminar normal stress. An antibuckling fixture was effective in preventing out-of-plane motion without overconstraining the specimen.

  15. Physical activity and quality of life in multiple sclerosis: Intermediary roles of disability, fatigue, mood, pain, self-efficacy and social support

    PubMed Central

    Motl, Robert W.; McAuley, Edward; Snook, Erin M.; Gliottoni, Rachael C.

    2009-01-01

    Physical activity has been associated with a small improvement in quality of life (QOL) among those with multiple sclerosis (MS). This relationship may be indirect and operate through factors such as disability, fatigue, mood, pain, self-efficacy and social support. The present study examined variables that might account for the relationship between physical activity and QOL in a sample (N = 292) of individuals with a definite diagnosis of MS. The participants wore an accelerometer for 7 days and then completed self-report measures of physical activity, QOL, disability, fatigue, mood, pain, self-efficacy and social support. The data were analysed using covariance modelling in Mplus 3.0. The model provided an excellent fit for the data (χ2 = 51.33, df = 18, p < 0.001, standardised root mean squared residual = 0.03, comparative fit index = 0.98). Those who were more physically active reported lower levels of disability (γ = -0.50), depression (γ = -0.31), fatigue (γ = -0.46) and pain (γ = -0.19) and higher levels of social support (γ = 0.20), self-efficacy for managing MS (γ = 0.41), and self-efficacy for regular physical activity (γ = 0.49). In turn, those who reported lower levels of depression (β = -0.37), anxiety (β = -0.15), fatigue (β = -0.16) and pain (β = -0.08) and higher levels of social support (β = 0.26) and self-efficacy for controlling MS (β = 0.17) reported higher levels of QOL. The observed pattern of relationships supports the possibility that physical activity is indirectly associated with improved QOL in individuals with MS via depression, fatigue, pain, social support and self-efficacy for managing MS. PMID:19085318

  16. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.

    PubMed

    Dauskardt, R H; Ritchie, R O; Takemoto, J K; Brendzel, A M

    1994-07-01

    A fracture-mechanics based study has performed to characterize the fracture toughness and rates of cyclic fatigue-crack growth of incipient flaws in prosthetic heart-valve components made of pyrolytic carbon-coated graphite. Such data are required to predict the safe structural lifetime of mechanical heart-valve prostheses using damage-tolerant analysis. Unlike previous studies where fatigue-crack propagation data were obtained using through-thickness, long cracks (approximately 2-20 mm long), growing in conventional (e.g., compact-tension) samples, experiments were performed on physically small cracks (approximately 100-600 microns long), initiated on the surface of the pyrolytic-carbon coating to simulate reality. Small-crack toughness results were found to agree closely with those measured conventionally with long cracks. However, similar to well-known observations in metal fatigue, it was found that based on the usual computations of the applied (far-field) driving force in terms of the maximum stress intensity, Kmax, small fatigue cracks grew at rates that exceeded those of long cracks at the same applied stress intensity, and displayed a negative dependency on Kmax; moreover, they grew at applied stress intensities less than the fatigue threshold value, below which long cracks are presumed dormant. To resolve this apparent discrepancy, it is shown that long and small crack results can be normalized, provided growth rates are characterized in terms of the total (near-tip) stress intensity (incorporating, for example, the effect of residual stress); with this achieved, in principle, either form of data can be used for life prediction of implant devices. Inspection of the long and small crack results reveals extensive scatter inherent in both forms of growth-rate data for the pyrolytic-carbon material. PMID:8083247

  17. The Child in the Process: Affecting His Human Potential through LIFE.

    ERIC Educational Resources Information Center

    Sheridan, Vivian A.; Spidal, David A.

    Language materials of the Language Improvement to Facilitate Education (LIFE) Project are described as carefully sequenced curriculum materials which use visuals to educate deaf children in the affective domain. The affective domain is defined as the area of human experiences related to interest, appreciation, attitudes, adjustments and values;…

  18. Current research on fatigue cracks

    SciTech Connect

    Tanaka, T.; Jono, M.; Komai, K.

    1987-01-01

    This first volume of CJMR (Current Japanese Materials Research), contains thirteen chapters concerning the above three themes of fatigue cracks. Each chapter is not a single paper as appearing in many academic journals and transactions, but a systematic review of the current achievement by each author with the emphasis on important points. The common feature is that the elaborated experimental techniques and theoretical approaches, some of which are quite unique, are introduced by respective authors to make clear the difficulty arising in the observation of small cracks and analysis of data. Theoretical models are proposed from the viewpoint of fracture mechanics to link the two thresholds of fatigue limit and crack growth, and intensive discussions are made for further development of the theory. Threshold stress intensity factors and the growth rate of medium and long sized cracks are also discussed, together with their opening behavior. The influencing factors are plastic zone size, the stress ratio and residual stress distribution occurring in welded joints. Mode II crack growth is of great significance since the initial fatigue cracks propagate mainly in shear mode. The problems of fatigue crack growth in corrosive environment is highly important since its retardation and enhancement take place in structural steels affected by the variety of factors. Life prediction in such environments poses another important problem. These are systematically discussed in this book.

  19. Subrupture Tendon Fatigue Damage

    PubMed Central

    Laudier, Damien M.; Shine, Jean H.; Basta-Pljakic, Jelena; Jepsen, Karl J.; Schaffler, Mitchell B.; Flatow, Evan L.

    2016-01-01

    The mechanical and microstructural bases of tendon fatigue, by which damage accumulates and contributes to degradation, are poorly understood. To investigate the tendon fatigue process, rat flexor digitorum longus tendons were cyclically loaded (1–16 N) until reaching one of three levels of fatigue damage, defined as peak clamp-to-clamp strain magnitudes representing key intervals in the fatigue life: i) Low (6.0%–7.0%); ii) Moderate (8.5%–9.5%); and iii) High (11.0%–12.0%). Stiffness, hysteresis, and clamp-to-clamp strain were assessed diagnostically (by cyclic loading at 1–8 N) before and after fatigue loading and following an unloaded recovery period to identify mechanical parameters as measures of damage. Results showed that tendon clamp-to-clamp strain increased from pre- to post-fatigue loading significantly and progressively with the fatigue damage level (p≤0.010). In contrast, changes in both stiffness and hysteresis were significant only at the High fatigue level (p≤0.043). Correlative microstructural analyses showed that Low level of fatigue was characterized by isolated, transverse patterns of kinked fiber deformations. At higher fatigue levels, tendons exhibited fiber dissociation and localized ruptures of the fibers. Histomorphometric analysis showed that damage area fraction increased significantly with fatigue level (p≤0.048). The current findings characterized the sequential, microstructural events that underlie the tendon fatigue process and indicate that tendon deformation can be used to accurately assess the progression of damage accumulation in tendons. PMID:18683881

  20. Preliminary Study on Fatigue Strengths of Fretted Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2002-01-01

    The fatigue behavior (stress-life curve) of gamma titanium aluminide (Ti-48Al-2Cr-2Nb, atomic percent) was examined by conducting two tests: first, a fretting wear test with a fatigue specimen in contact with a typical nickel-based superalloy contact pad in air at temperatures of 296 and 823 K and second, a high-cycle fatigue test of the prefretted Ti-48Al-2Cr-2Nb fatigue specimen at 923 K. Reference high-cycle fatigue tests were also conducted with unfretted Ti-48Al-2Cr-2Nb specimens at 923 K. All Ti-48Al-2Cr-2Nb fatigue specimens were machined from cast slabs. The results indicate that the stress-life results for the fretted Ti-48Al-2Cr-2Nb specimens exhibited a behavior similar to those of the unfretted Ti-48Al-2Cr-2Nb specimens. The values of maximum stress and life for the fretted specimens were almost the same as those for the unfretted specimens. The resultant stress-life curve for the unfretted fatigue specimens was very flat. The flat appearance in the stress-life curve of the unfretted specimens is attributed to the presence of a high density of casting pores. The fatigue strengths of both the fretted and unfretted specimens can be significantly affected by the presence of this porosity, which can decrease the fatigue life of Ti-48Al-2Cr-2Nb. The presence of the porosity made discerning the effect of fretting damage on fatigue strength and life of the specimens difficult.

  1. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    A three year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for non-proportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved undertanding were through several critical non-proportional loading experiments. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C.

  2. Effect of interstitial content on high- temperature fatigue crack propagation and low- cycle fatigue of alloy 720

    NASA Astrophysics Data System (ADS)

    Bashir, S.; Thomas, M. C.

    1993-08-01

    Alloy 720 is a high-strength cast and wrought turbine disc alloy currently in use for temperatures up to about 650 °C in Allison’s T800, T406, GMA 2100, and GMA 3007 engines. In the original composition in-tended for use as turbine blades, large carbide and boride stringers formed and acted as preferred crack initiators. Stringering was attributed to relatively higher boron and carbon levels. These interstitials are known to affect creep and ductility of superalloys, but the effects on low-cycle fatigue and fatigue crack propagation have not been studied. Recent emphasis on the total life approach in the design of turbine discs necessitates better understanding of the interactive fatigue crack propagation and low-cycle fatigue behavior at high temperatures. The objective of this study was to improve the damage tolerance of Alloy 720 by systematically modifying boron and carbon levels in the master melt, without altering the low-cy-cle fatigue and strength characteristics of the original composition. Improvement in strain-controlled low-cycle fatigue life was achieved by fragmenting the continuous stringers via composition modifica-tion. The fatigue crack propagation rate was reduced by a concurrent reduction of both carbon and bo-ron levels to optimally low levels at which the frequency of brittle second phases was minimal. The changes in composition have been incorporated for production disc forgings.

  3. Effect of interstitial content on high-temperature fatigue crack propagation and low-cycle fatigue of Alloy 720

    SciTech Connect

    Bashir, S. ); Thomas, M.C. . Allison Gas Turbine Div.)

    1993-08-01

    Alloy 720 is a high-strength cast and wrought turbine disc alloy currently in use for temperatures up to about 650 C in Allison's T800, T406, GMA 2100, and GMA 3007 engines. In the original composition intended for use as turbine blades, large carbide and borides stringers formed and acted as preferred crack initiators. Stringering was attributed to relatively higher boron and carbon levels. These interstitial are known to affect creep and ductility of superalloys, but the effects on low-cycle fatigue and fatigue crack propagation have not been studied. Recent emphasis on the total life approach in the design of turbine discs necessitates better understanding of the interactive fatigue crack propagation and low-cycle fatigue behavior at high temperatures. The objective of this study was to improve the damage tolerance of Alloy 720 by systematically modifying boron and carbon levels in the master melt, without altering the low-cycle fatigue and strength characteristics of the original composition. Improvement in strain-controlled low-cycle fatigue life was achieved by fragmenting the continuous stringers via composition modification. The fatigue crack propagation rate was reduced by a concurrent reduction of both carbon and boron levels to optimally low levels at which the frequency of brittle second phases was minimal. The changes in composition have been incorporated for production disc forgings.

  4. Probabilistic Fatigue Damage Program (FATIG)

    NASA Technical Reports Server (NTRS)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  5. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment. [for high-pressure oxidizer turbopump turbine nozzles

    NASA Technical Reports Server (NTRS)

    Cooper, R. A.

    1976-01-01

    Samples of two nickel-base casting alloys, Mar-M-246 (a Martin Company alloy) and 713LC (a low-carbon modification of the alloy 713C developed by International Nickel Company) were tested as candidate materials for the high-pressure fuel and high-pressure oxidizer turbopump turbine nozzles. The samples were subjected to tensile tests and to low cycle fatigue tests in high-pressure hydrogen to study the influence of the hydrogen environment. The Mar-M-246 material was found to have a three times higher cyclic life in hydrogen than the 713LC alloy, and was selected as the nozzle material.

  6. Personal factors related to compassion fatigue in health professionals.

    PubMed

    Zeidner, Moshe; Hadar, Dafna; Matthews, Gerald; Roberts, Richard D

    2013-01-01

    This study examines the role of some personal and professional factors in compassion fatigue among health-care professionals. Research participants included 182 (89 mental and 93 medical) health-care professionals who completed an assessment battery measuring compassion fatigue, emotion management, trait emotional intelligence, situation-specific coping strategies, and negative affect. Major findings indicate that both self-report "trait" emotional intelligence and ability-based emotion management are inversely associated with compassion fatigue; adaptive coping is inversely related to compassion fatigue; and differences exist between mental and medical professions in emotional intelligence, coping strategies, and negative affect. Furthermore, problem-focused coping appears to mediate the association between trait emotional intelligence and compassion fatigue. These findings shed light on the role of emotional factors in compassion fatigue among health-care professionals. Beyond enhancing our knowledge of practitioners' professional quality of life, the current study serves as a basis for the early identification of groups of practitioners at risk for compassion fatigue. PMID:23614527

  7. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    NASA Astrophysics Data System (ADS)

    Dyke, J. G.; Gans, F.; Kleidon, A.

    2011-06-01

    Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  8. Fatigue Properties of Modified 316LN Stainless Steel at 4 K for High Field Cable-In Applications

    NASA Astrophysics Data System (ADS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-04-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb3Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  9. Recognizing Family Dynamics in the Treatment of Chronic Fatigue Syndrome

    ERIC Educational Resources Information Center

    Sperry, Len

    2012-01-01

    Chronic fatigue syndrome (CFS) is an increasingly common chronic medical condition that affects not only patients but also their families. Because family dynamics, particularly the family life cycle, can and does influence the disease process, those providing counseling to CFS patients and their families would do well to recognize these dynamics.…

  10. Perceived Impact of a Self-Management Program for Fatigue in Multiple Sclerosis

    PubMed Central

    Wilkinson, Amanda; Snowdon, Jessie

    2016-01-01

    Background: Fatigue in multiple sclerosis (MS) is reported to be one of its most debilitating symptoms, affecting personal, family, and community participation. Despite a high incidence of MS in New Zealand, there was no cohesive approach to support people with MS to manage their fatigue. This prompted the development of Minimise Fatigue, Maximise Life: Creating Balance with Multiple Sclerosis (MFML), a group-based, 6-week fatigue self-management program. This study explored the perceived impact of MFML for participants who attended the program. Methods: We undertook semistructured individual telephone interviews 1 (n = 23) and 3 (n = 11) months after delivery of the program. Data were analyzed for themes. Results: Two themes emerged from the data: achieving behavior change to manage fatigue and whole of life effects. These themes represent participants' perceived benefits of the program. Conclusions: This study provides evidence that the MFML fatigue self-management program positively affected the lives of participants. The findings suggest that participants had begun to successfully develop and integrate self-management skills into their everyday lives. This affected the individual personally and also their participation in family and community life. This study adds to the current knowledge and understanding of the positive effect that delivery of a fatigue self-management intervention can have for people with MS. PMID:26917995

  11. The interplay between sleep behavior and affect in elementary school children's daily life.

    PubMed

    Könen, Tanja; Dirk, Judith; Leonhardt, Anja; Schmiedek, Florian

    2016-10-01

    Recent reviews raised the idea of a bidirectional relation between sleep behavior and affect in adults, but little is known about this interplay in general and especially regarding children. In this micro-longitudinal study, the interplay of sleep and affect was captured directly in children's daily life context in and out of school through ambulatory assessment. For 31 consecutive days, 110 elementary school children (8-11 years old) provided information about their last night's sleep and reported their current affect at four daily occasions in school and at home on smartphones. A multilevel approach was used to analyze the relation between sleep and affect the next day (morning, noon, and afternoon) and the relation between evening affect and subsequent sleep. At the within-person level, sleep quality was related to all observed facets of affect the next day and the strongest effects were found in the morning. The effect of sleep quality on positive affect was particularly pronounced for children who on average went to bed early and slept long. There were, however, no direct within-person effects of sleep quantity on affect. Furthermore, evening affect was related to subsequent sleep. The findings support the idea of a bidirectional relation between affect and sleep in children's daily life (including school). They suggest that good sleep provides a basis and resource for children's affective well-being the next day and demonstrate the importance of analyzing within-person variations of children's sleep. Micro-longitudinal findings can contribute to explain how macro-longitudinal relations between sleep and affect develop over time. PMID:27236036

  12. Improvement of fatigue life and prevention of internal crack initiation of chopped carbon fiber reinforced plastics modified with micro glass fibers

    NASA Astrophysics Data System (ADS)

    Fujitani, Ryohei; Okubo, Kazuya; Fujii, Toru

    2016-04-01

    The purpose of this study is to improve fatigue properties of chopped carbon fiber reinforced plastics fabricated by SMC (Sheet Molding Compound) method and to clarify the mechanism for improvement. To enhance the properties, micro glass fibers with 500nm in diameter were added directly into vinyl ester resin with 0.3wt% contents. The chopped carbon fiber reinforced plastics were fabricated and cured at room temperature for 1hour under 1MPa and then at 60degree-C for 3hours. After curing, the fabricated plate was cut into the dimension of specimen. Tensile and bending strength and fatigue life of chopped carbon fiber reinforced plastics were investigated by tensile and three point bending test and cyclic tension-tension test, respectively. The behavior of strain concentration around the tips of carbon fiber were discussed with model specimen on the observations with DIC (Digital Image Correlation) method and polarizing microscope under tensile loading, in which one chopped carbon fiber was embedded into the matrix. In conclusion, when toughened vinyl ester resin modified with micro glass fibers was used as matrix, tensile and bending strength and fatigue life of chopped carbon fiber reinforced plastics were increased 56.6%, 49.8% and 14 to 23 times compared with those of unmodified specimens. It should be explained that static and dynamic properties of chopped carbon fiber reinforced plastics were improved by that crack initiation and propagation were prevented according to the prevention of the locally increasing of strain around the tip of carbon fiber, when vinyl ester resin modified with micro glass fibers was used as matrix.

  13. Iyengar-Yoga Compared to Exercise as a Therapeutic Intervention during (Neo)adjuvant Therapy in Women with Stage I–III Breast Cancer: Health-Related Quality of Life, Mindfulness, Spirituality, Life Satisfaction, and Cancer-Related Fatigue

    PubMed Central

    Lötzke, Désirée; Wiedemann, Florian; Rodrigues Recchia, Daniela; Ostermann, Thomas; Sattler, Daniel; Ettl, Johannes; Kiechle, Marion; Büssing, Arndt

    2016-01-01

    This study aims to test the effects of yoga on health-related quality of life, life satisfaction, cancer-related fatigue, mindfulness, and spirituality compared to conventional therapeutic exercises during (neo)adjuvant cytotoxic and endocrine therapy in women with breast cancer. In a randomized controlled trial 92 women with breast cancer undergoing oncological treatment were randomly enrolled for a yoga intervention (YI) (n = 45) or for a physical exercise intervention (PEI) (n = 47). Measurements were obtained before (t0) and after the intervention (t1) as well as 3 months after finishing intervention (t2) using standardized questionnaires. Life satisfaction and fatigue improved under PEI (p < 0.05) but not under YI (t0 to t2). Regarding quality of life (EORTC QLQ-C30) a direct effect (t0 to t1; p < 0.001) of YI was found on role and emotional functioning, while under PEI only emotional functioning improved. Significant improvements (p < 0.001) were observed at both t1 and t2 also for symptom scales in both groups: dyspnea, appetite loss, constipation, and diarrhea. There was no significant difference between therapies for none of the analyzed variables neither for t1 nor for t2. During chemotherapy, yoga was not seen as more helpful than conventional therapeutic exercises. This does not argue against its use in the recovery phase. PMID:27019663

  14. Effect of Surface Integrity of Hard Turned AISI 52100 Steel on Fatigue Performance

    SciTech Connect

    Lara-Curzio, Edgar; Watkins, Thomas R; Allard Jr, Lawrence Frederick; Riester, Laura

    2007-01-01

    This paper addresses the relationship between surface integrity and fatigue life of hard turned AISI 52100 steel (60-62 HRC), with grinding as a benchmark. The impact of superfinishing on the fatigue performance of hard turned and ground surfaces is also discussed. Specifically, the surface integrity and fatigue life of the following five distinct surface conditions are examined: hard turned with continuous white layer, hard turned with no white layer, ground, and superfinished hard turned and ground specimens. Surface integrity of the specimens is characterized via surface topography measurement, metallography, residual stress measurements, transmission electron microscopy (TEM), and nano-indentation tests. High cycle tension-tension fatigue tests show that the presence of white layer does not adversely affect fatigue life and that, on average, the hard turned surface performs as well or better than the ground surface. The effect of superfinishing is to exaggerate these differences in performance. The results obtained from this study suggest that the effect of residual stress on fatigue life is more significant than the effect of white layer. For the hard turned surfaces, the fatigue life is found to be directly proportional to both the surface compressive residual stress and the maximum compressive residual stress. Possible explanations for the observed effects are discussed.

  15. Investigating the Relationship among Internet Addiction, Positive and Negative Affects, and Life Satisfaction in Turkish Adolescents

    ERIC Educational Resources Information Center

    Telef, Bülent Baki

    2016-01-01

    This study investigates the relationships between Internet addiction and the areas of life satisfaction and positive or negative affects in Turkish adolescents. The research sample comprised 358 students studying in the sixth, seventh and eighth grades at four different middle schools in Canakkale city centre during the 2012-2013 academic year, of…

  16. Deconstructing Positive Affect in Later Life: A Differential Functionalist Analysis of Joy and Interest

    ERIC Educational Resources Information Center

    Consedine, Nathan S.; Magai, Carol; King, Arlene R.

    2004-01-01

    Positive affect, an index of psychological well-being, is a known predictor of functionality and health in later life. Measures typically studied include joy, happiness, and subjective well-being, but less often interest--a positive emotion with functional properties that differ from joy or happiness. Following differential emotions theory, the…

  17. Social-Cognitive Factors Affecting Clients' Career and Life Satisfaction after Counseling

    ERIC Educational Resources Information Center

    Verbruggen, Marijke; Sels, Luc

    2010-01-01

    This study examines factors affecting clients' career and life satisfaction in the first 6 months after having participated in career counseling. In particular, we tested a large subset of the recent social-cognitive model of work satisfaction of Lent and Brown using a longitudinal data set of 195 former counseling clients. Our results showed that…

  18. Living with cancer-related fatigue: developing an effective management programme.

    PubMed

    Saarik, Julie; Hartley, Judith

    2010-01-01

    A fatigue management programme was developed for hospice day care patients. Following feedback, and using the survivorship agenda, the authors found that cancer-related fatigue was a major difficulty for many patients. Fatigue, which affects 'normal' functioning and quality of life, is often related to cancer treatments which continue even after the patient has completed active treatment. A palliative care occupational therapist and physiotherapist (the authors) created a 1-year charity-funded pilot project to develop, run and evaluate a programme for cancer patients at any stage of their illness. Patients were referred when fatigue was recognized by their clinical nurse specialists as still significantly affecting their lifestyle, even if other possible causative factors had been medically managed. Twenty-eight patients completed the 4-week courses and reported positive reductions in fatigue levels, and better functioning and ability to cope. PMID:20090658

  19. Casting dimensional control and fatigue life prediction for permanent mold casting dies. Technical progress report, September 29, 1993-- September 30, 1994

    SciTech Connect

    1994-11-01

    First year efforts as part of a three year program to address metal casting dimensional control and fatigue life prediction for permanent mold casting dies are described. Procedures have been developed and implemented to collect dimensional variability data from production steel castings. The influence of process variation and casting geometry variables on dimensional tolerances have been investigated. Preliminary results have shown that these factors have a significant influence on dimensional variability, although this variability is considerably less than the variability indicated in current tolerance standards. Gage repeatability and reproducibility testing must precede dimensional studies to insure that measurement system errors are acceptably small. Also initial efforts leading to the development and validation of a CAD/CAE model to predict the thermal fatigue life of permanent molds for aluminum castings are described. An appropriate thermomechanical property database for metal, mold and coating materials has been constructed. A finite element model has been developed to simulate the mold temperature distribution during repeated casting cycles. Initial validation trials have indicated the validity of the temperature distribution model developed.

  20. Fatigue analysis codes for WECS components

    SciTech Connect

    Sutherland, H.J.; Ashwill, T.D.; Naassan, K.A.

    1987-10-01

    This Manuscript discusses two numerical techniques, the LIFE and the LIFE2 codes, that analyze the fatigue life of WECS components. The LIFE code is a PC-compatible Basic code that analyzes the fatigue life of a VAWT component. The LIFE2 code is a PC-compatible Fortran code that relaxes the rather restrictive assumptions of the LIFE code and permits the analysis of the fatigue life of all WECS components. Also, the modular format of the LIFE2 code permits the code to be revised, with minimal effort, to include additional analysis while maintaining its integrity. To illustrate the use of the codes, an example problem is presented. 10 refs.

  1. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    SciTech Connect

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  2. Problems of the high-cycle fatigue of the materials intended for the parts of modern gas-turbine engines and power plants

    NASA Astrophysics Data System (ADS)

    Petukhov, A. N.

    2010-10-01

    The problems related to the determination of the life of the structural materials applied for important parts in gas-turbine engines and power plants from the results of high-cycle fatigue tests are discussed. Methods for increasing the reliability of the high-cycle fatigue characteristics and the factors affecting the operational reliability are considered.

  3. Unequally Distributed Psychological Assets: Are There Social Disparities in Optimism, Life Satisfaction, and Positive Affect?

    PubMed Central

    Boehm, Julia K.; Chen, Ying; Williams, David R.; Ryff, Carol; Kubzansky, Laura D.

    2015-01-01

    Socioeconomic status is associated with health disparities, but underlying psychosocial mechanisms have not been fully identified. Dispositional optimism may be a psychosocial process linking socioeconomic status with health. We hypothesized that lower optimism would be associated with greater social disadvantage and poorer social mobility. We also investigated whether life satisfaction and positive affect showed similar patterns. Participants from the Midlife in the United States study self-reported their optimism, satisfaction, positive affect, and socioeconomic status (gender, race/ethnicity, education, occupational class and prestige, income). Social disparities in optimism were evident. Optimistic individuals tended to be white and highly educated, had an educated parent, belonged to higher occupational classes with more prestige, and had higher incomes. Findings were generally similar for satisfaction, but not positive affect. Greater optimism and satisfaction were also associated with educational achievement across generations. Optimism and life satisfaction are consistently linked with socioeconomic advantage and may be one conduit by which social disparities influence health. PMID:25671665

  4. Fatigue of fiberglass beam substructures

    SciTech Connect

    Mandell, J.F.; Combs, D.W.; Samborsky, D.D.

    1995-09-01

    Composite material beams representative of wind turbine blade substructure have been designed, fabricated, and tested under constant amplitude flexural fatigue loading. Beam stiffness, strength, and fatigue life are predicted based on detailed finite element analysis and the materials fatigue database developed using standard test coupons and special high frequency minicoupons.Beam results are in good agreement with predictions when premature adhesive and delamination failures are avoided in the load transfer areas. The results show that fiberglass substructures can be designed and fabricated to withstand maximum strain levels on the order of 8,000 microstrain for about 10{sup 6} cycles with proper structural detail design and the use of fatigue resistant laminate constructions. The study also demonstrates that the materials fatigue database and accurate analysis can be used to predict the fatigue life of composite substructures typical of blades.

  5. The intersection of work and family life: the role of affect.

    PubMed

    Eby, Lillian T; Maher, Charleen P; Butts, Marcus M

    2010-01-01

    This review examines the role that trait-based and state-based affect plays in understanding the intersection of work and family life. We start with the definition of key terms and concepts. This is followed by a historical overview of the two bodies of scholarship that are the focus of this review, the work-family interface and affect. Next, we provide a review and synthesis of 79 empirical studies examining affect in relation to work-family interaction, organized around three perspectives: the dispositional perspective, the state-based specific affective reactions perspective, and the state-based global affective reactions perspective. A methodological critique of these studies follows, providing a springboard for the discussion of recommended methodologies and data analytic approaches, along with directions for future research. PMID:19572785

  6. Evaluation of flawed composite structural components under static and cyclic loading. [fatigue life of graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1979-01-01

    The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.

  7. Parameters influencing the fatigue life of a Cu-Al-Be single-crystal shape memory alloy under repeated bending

    NASA Astrophysics Data System (ADS)

    Siredey-Schwaller, N.; Eberhardt, A.; Bastie, P.

    2009-02-01

    One of the principal limitations in the use of shape memory alloys is certainly fatigue behaviour. Initially, the mechanical behaviour of polycrystals evolves during cycling and then rupture occurs after a relatively small number of cycles, in particular for deformation higher than a few per cent. If one replaces the polycrystal by a single crystal, one notices an important increase in the fatigue lifespan, mainly for high deformation (Siredey et al 2005 Mater. Sci. Eng. A 396 296-301). The aim of this study is to analyse the role of three parameters influencing the lifespan in mechanical fatigue. The first one relates to the atmosphere in which the test is carried out. No notable influence was found. However, for samples having spent 44 000 h in air, one notes a lifespan reduction for those tested in the presence of air, whereas it is normal for those tested under argon. In the second part, the effect of the surface state will be discussed. As already presented in Siredey et al (2005 Mater. Sci. Eng. A 396 296-301), surface roughness influences lifespan, especially for low imposed strain. However, for higher strain this effect is much less important. On the surface, striations due to martensitic transformations appear during cycling. However, the damage inside these striations seems not to be correlated to rupture. The third parameter relates to crystalline quality of the single crystal. It was studied with a hard x-ray diffractometer using a transposition at high energy of the Guinier-Tennevin method. Crystalline quality is found to play a crucial role in the lifespan in fatigue. The presence of sub-grains disoriented by about 1° and mosaicity can reduce the lifespan by a factor up to 10.

  8. Effects of Loading and Constraining Conditions on the Thermomechanical Fatigue Life of NiTi Shape Memory Wires

    NASA Astrophysics Data System (ADS)

    Scirè Mammano, G.; Dragoni, E.

    2014-07-01

    The availability of engineering strength data on shape memory alloys (SMAs) under cyclic thermal activation (thermomechanical fatigue) is central to the rational design of smart actuators based on these materials. Test results on SMAs under thermomechanical fatigue are scarce in the technical literature, and even the few data that are available are mainly limited to constant-stress loading. Since the SMA elements used within actuators are normally biased by elastic springs or by antagonist SMA elements, their stress states are far from being constant in operation. The mismatch between actual working conditions and laboratory settings leads to suboptimal designs and undermines the prediction of the actuator lifetime. This paper aims at bridging the gap between experiment and reality by completing an experimental campaign involving four fatigue test conditions, which cover most of the typical situations occurring in practice: constant stress, constant-strain, constant stress with limited maximum strain, and linear stress-strain variation with limited maximum strain. The results from the first three test settings, recovered from the previously published works, are critically reviewed and compared with the outcome of the newly performed tests under the fourth arrangement (linear stress-strain variation). General design recommendations emerging from the experimental data are put forward for engineering use.

  9. Fatigue and thermal fatigue of Pb-Sn solder joints

    SciTech Connect

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55/sup 0/C and 125/sup 0/C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb.

  10. Early-Life Environmental Variation Affects Intestinal Microbiota and Immune Development in New-Born Piglets

    PubMed Central

    Zhang, Ling-li; Vastenhouw, Stéphanie A.; Heilig, Hans G. H. J.; Smidt, Hauke; Rebel, Johanna M. J.; Smits, Mari A.

    2014-01-01

    Background Early-life environmental variation affects gut microbial colonization and immune competence development; however, the timing and additional specifics of these processes are unknown. The impact of early-life environmental variations, as experienced under real life circumstances, on gut microbial colonization and immune development has not been studied extensively so far. We designed a study to investigate environmental variation, experienced early after birth, to gut microbial colonization and intestinal immune development. Methodology/Principal Findings To investigate effects of early-life environmental changes, the piglets of 16 piglet litters were divided into 3 groups per litter and experimentally treated on day 4 after birth. During the course of the experiment, the piglets were kept with their mother sow. Group 1 was not treated, group 2 was treated with an antibiotic, and group 3 was treated with an antibiotic and simultaneously exposed to several routine, but stressful management procedures, including docking, clipping and weighing. Thereafter, treatment effects were measured at day 8 after birth in 16 piglets per treatment group by community-scale analysis of gut microbiota and genome-wide intestinal transcriptome profiling. We observed that the applied antibiotic treatment affected the composition and diversity of gut microbiota and reduced the expression of a large number of immune-related processes. The effect of management procedures on top of the use of an antibiotic was limited. Conclusions/Significance We provide direct evidence that different early-life conditions, specifically focusing on antibiotic treatment and exposure to stress, affect gut microbial colonization and intestinal immune development. This reinforces the notion that the early phase of life is critical for intestinal immune development, also under regular production circumstances. PMID:24941112

  11. Post-stroke fatigue: qualitative study of three focus groups.

    PubMed

    Flinn, Nancy A; Stube, Jan E

    2010-06-01

    Fatigue affects many persons after cerebrovascular accident, particularly those with mild stroke. A qualitative methodology using focus groups with 19 community-living post-stroke survivors was utilized to explore the occupational impact of fatigue as communicated by the participants. Although self-report of a small sample of the United States' post-stroke population will have limitations in generalizability, this study identifies specific health-related quality of life issues that can occur with post-stroke fatigue. The participants felt unprepared for the fatigue phenomenon and struggled to adapt, with fatigue having a debilitating influence upon daily occupational performance and roles, including social participation, return to work, driving, reading and sleeping. The participants indicated that exercise (such as walking and water aerobics) and use of assistive technology were helpful strategies in reducing fatigue. The occupational performance and role impact identified by participants in this study can inform the design of effective occupational therapy interventions and further quantitative study of persons with post-stroke fatigue. PMID:19787634

  12. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1985-01-01

    A 3 year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for nonproportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved understanding were through several critical nonproportional loading experiments. The direction of cracking observed on failed specimens was also recorded and used to guide the development of the theory. Cyclic deformation responses were permanently recorded digitally during each test. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C. In contrast to some other metals, loading path in nonproportional loading had little effect on fatigue lives. Strain rate had a small effect on fatigue lives at 649 C. Of the various correlating parameters the modified plastic work and octahedral shear stress were the most successful.

  13. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  14. Assessment of fatigue and its relationships with disease-related parameters in patients with systemic sclerosis.

    PubMed

    Ibn Yacoub, Yousra; Amine, Bouchra; Bensabbah, Rachida; Hajjaj-Hassouni, Najia

    2012-04-01

    We aimed to assess the prevalence and severity of fatigue in Moroccan patients with systemic sclerosis (SSc) and its relationship with disease-related parameters of activity and severity and quality of life (QoL). Patients with SSc according to the American College of Rheumatology criteria (diffuse disease) and/or the LeRoy and Medsger criteria (limited disease) for SSc were recruited. The multidimensional assessment of fatigue (MAF), a self-administered questionnaire developed to measure five dimensions of fatigue with a total score ranged from 0 (no fatigue) to 50 (severe fatigue), was used to assess fatigue. The activity of disease was assessed by evaluating the severity of skin involvement, vascular manifestations, pulmonary involvement, joint and/or muscle involvement, and the erythrocyte sedimentation rate. Functional disability was assessed by using the scleroderma health assessment questionnaire. QoL was assessed using the SF-36 generic instrument. Sixty-four patients (91% women) were included. The mean age of patients was 49.5 ± 12.4 years. Fifty-nine patients (92.1%) had diffuse SSc and 5 (7.8%) had limited disease. Among our patients, 89% experienced severe fatigue with a VAS fatigue ≥50 mm. The mean total score of the MAF was 28 ± 8.6 (10-44.8) and all domains of fatigue were affected. In univariate and multivariate analysis, fatigue was correlated with severe joint involvement, pain intensity, low vital capacity, high level of ESR, and with functional disability (for all p ≤ 0.01). There were statistically significant correlations between fatigue and the deterioration of all domains of SF-36. Fatigue is a disabling symptom in our SSc patients and is associated with poor QoL. Pain, joint involvement, functional impairment, and pulmonary involvement seem to be the most important factors that predict severe fatigue. Large studies are necessary in order to confirm those findings. PMID:22187224

  15. A literature review on fatigue and creep interaction

    NASA Technical Reports Server (NTRS)

    Chen, W. C.

    1978-01-01

    Life-time prediction methods, which are based on a number of empirical and phenomenological relationships, are presented. Three aspects are reviewed: effects of testing parameters on high temperature fatigue, life-time prediction, and high temperature fatigue crack growth.

  16. Dental caries affects body weight, growth and quality of life in pre-school children.

    PubMed

    Sheiham, A

    2006-11-25

    The effect of a relatively common chronic disease, severe dental caries, affects young childrens' growth and well-being. Treating dental caries in pre-school children would increase growth rates and the quality of life of millions of children. Severe untreated dental caries is common in pre-school children in many countries. Children with severe caries weighed less than controls, and after treatment of decayed teeth there was more rapid weight gain and improvements in their quality of life. This may be due to dietary intake improving because pain affected the quantity and variety of food eaten, and second, chronic inflammation from caries related pulpitis and abscesses is known to suppress growth through a metabolic pathway and to reduce haemoglobin as a result of depressed erythrocyte production. PMID:17128231

  17. Fatigue life prediction using multiaxial energy calculations with the mean stress effect to predict failure of linear and nonlinear elastic solids

    NASA Astrophysics Data System (ADS)

    Nagode, Marko; Šeruga, Domen

    An approach is presented that enables the calculation of elastic strain energy in linear and nonlinear elastic solids during arbitrary thermomechanical load cycles. The approach uses the simple fact that the variation of both strain and complementary energies always forms a rectangular shape in stress-strain space, hence integration is no longer required to calculate the energy. Furthermore, the approach considers the mean stress effect so that predictions of fatigue damage are more realistically representative of real-life experimental observations. By doing so, a parameter has been proposed to adjust the mean stress effect. This parameter α is based on the well-known Smith-Watson-Topper energy criterion, but allows consideration of other arbitrary mean stress effects, e.g. the Bergmann type criterion. The approach has then been incorporated into a numerical method which can be applied to uniaxial and multiaxial, proportional and non-proportional loadings to predict fatigue damage. The end result of the method is the cyclic evolution of accumulated damage. Numerical examples show how the method presented in this paper could be applied to a nonlinear elastic material.

  18. Factors that affect the quality of life of community-dwelling elderly women with musculoskeletal disorders

    PubMed Central

    Takemasa, Seiichi; Nakagoshi, Ryoma; Uesugi, Masayuki; Inoue, Yuri; Gotou, Makoto; Koeda, Hideki; Naruse, Susumu

    2015-01-01

    [Purpose] This study aimed to examine the quality of life (QOL) of community-dwelling elderly women with musculoskeletal disorders and factors that affect it. [Subjects] The subjects were 27 community-dwelling elderly women with musculoskeletal disorders (mean age: 76.3 ± 7.4 years). Their physical and psychological conditions, QOL, and other characteristics were researched. [Methods] The Japanese version of Life-Space Assessment was used to assess the subjects’ daily life activities; the Japanese version of Fall Efficacy Scale (FES), to assess their fear of falling; the Geriatric Depression Scale (GDS 15), to assess their depression status; and the Life Satisfaction Index K (LSIK), to assess their QOL. [Results] The results indicated that the number of family members living together, degree of pain, fear of falling, and depression affect the LSIK scores of the community-dwelling elderly women with musculoskeletal disorders. [Conclusion] The study results suggest that the LSIK scores of community-dwelling elderly women with musculoskeletal disorders can be improved by easing their pain, improving their physical abilities to prevent falls, and improving their mobility. The results also suggest that continuing rehabilitation treatment is required. PMID:26696713

  19. Fatigue crack initiation and damage evolution of unnotched titanium matrix composites

    NASA Astrophysics Data System (ADS)

    Her, Yung-Chiun

    Fatigue crack initiation, multiplication, matrix crack density evolution, and stiffness reduction of several unnotched SCS-6 silicon carbide fiber-reinforced titanium and titanium aluminide matrix composites have been investigated experimentally and analytically. The effects of the thickness of the interfacial reaction layer and fiber coating on fatigue crack initiation life, crack growth rate, and fatigue damage evolution of the composites were examined. Growth behavior of small fatigue cracks in TMCs was also studied carefully. It was found that fatigue crack initiation and multiplication of TMCs are strongly influenced by the thickness of the interfacial reaction layer. Fatigue crack will not develop from the micro-notches in the interfacial reaction layer until the thickness of the reaction layer exceeds a critical value. Matrix crack growth rate is affected by the applied stress level, however, it appears to be independent of the matrix material and heat treatment. The combined effects of fatigue crack multiplication and propagation result in stiffness degradation of the composites. The Ag/Ta duplex fiber coating significantly improves the transverse tensile and flexural creep resistance of the SCS-6/Ti-25-10 composite. However, the Ag/Ta-coated composite exhibits a shorter crack initiation life, higher number of matrix cracks, and higher crack growth rate than the uncoated composite. The embrittlement of the residual Ag/Ta layer suggests that Ag is not an effective diffusion barrier to prevent the interdiffusion of atomic species across the interface. The high interfacial cracking density and high interfacial bond strength in the Ag/Ta-coated SCS-6/Tisb3Al composite are believed to be responsible for its poor fatigue damage tolerance. For titanium alloys, the threshold intensity factor range, Delta Ksbth, for small fatigue cracks in the matrix alloys of TMCs has been determined to be between 0.9 ˜ 1.0 MPa*msp{1/2} which is much lower than that for long

  20. Solder fatigue reduction in point focus photovoltaic concentrator modules

    SciTech Connect

    Hund, T.D.; Burchett, S.N.

    1991-01-01

    Solder fatigue tests have been conducted on point focus photovoltaic concentration cell assemblies to identify a baseline fatigue life and to quantify the fatigue life improvements that result using a copper-molybdenum-copper low-expansion insert between the solar cell and copper heat spreader. Solder microstructural changes and fatigue crack growth were identified using cross sections and ultrasonic scans of the fatigue solder joints. The Coffin-Manson and Total Strain fatigue models for low-cycle fatigue were evaluated for use in fatigue life predictions. Since both of these models require strain calculations, two strain calculation methods were compared: hand-calculated shear strain and a finite element method shear strain. At present, the available theoretical models for low-cycle solder fatigue are limited in their ability to predict failure; consequently, extensive thermal cycling is continuing to define the fatigue life for point focus photovoltaic cell assemblies. 9 refs., 9 figs., 2 tabs.