Science.gov

Sample records for affect fetal growth

  1. Magnesium and fetal growth

    SciTech Connect

    Weaver, K.

    1988-01-01

    Fetal growth retardation and premature labor are major problems in perinatal medicine today and account for a great deal of the observed fetal morbidity. While the neonatal death rate has steadily declined over the past decade, there has been a lack of concommitant decrease in these two leading problems. Magnesium (Mg/sup ++/) plays a major role in both of these areas of concern. The fact that it is used as a treatment for premature labor has led investigators to look at low Mg/sup ++/ as a possible cause of this poorly understood phenomenon. The second major cause of small for gestational age infants is intrauterine growth retardation, a condition which may be of either fetal or maternal origin. In either case, Mg/sup ++/ may be implicated since it exerts a strong influence on the underlying pathophysiology of placental failure and maternal hypertension. Both of these conditions are mediated by vascular and platelet hyperactivity as well as by and increase in the ration of thromboxane to prostacyclin. Studies in both the human and animal species are beginning to show how Mg/sup ++/ interacts in these conditions to produce such a damaging fetal outcome. The recent use of Doppler velocimetry of the developing fetus has shown reduced fetal vascular and maternal uterine vascular compliance as early as 14 weeks of gestation in those who would be so affected.

  2. Chinese herbal medicine for miscarriage affects decidual micro-environment and fetal growth

    PubMed Central

    Piao, L.; Chen, C.-P.; Yeh, C.-C.; Basar, M.; Masch, R.; Cheng, Y.-C.; Lockwood, C. J.; Schatz, F.; Huang, S. J.

    2015-01-01

    Introduction Intrauterine growth restriction complicates 5 - 10% of pregnancies. This study aims to test the hypothesis that Chinese herbal formula, JLFC01, affects pregnancy and fetal development by modulating the pro-inflammatory decidual micro-environment. Methods Human decidua from gestational age-matched elective terminations or incomplete/missed abortion was immunostained using anti-CD68 + anti-CD86 or anti-CD163 antibodies. qRT-PCR and Luminex assay measured the effects of JLFC01 on IL-1β- or TNF-α-induced cytokine expression in first trimester decidual cells and on an established spontaneous abortion/intrauterine growth restriction (SA/IUGR)-prone mouse placentae. The effect of JLFC01 on human endometrial endothelial cell angiogenesis was evaluated by average area, length and numbers of branching points of tube formation. Food intake, litter size, fetal weight, placental weight and resorption rate were recorded in SA/IUGR-prone mouse treated with JLFC01. qRT-PCR, Western blot and immunohistochemistry assessed the expression of mouse placental IGF-I and IGF-IR. Results In spontaneous abortion, numbers of decidual macrophages expressing CD86 and CD163 are increased and decreased, respectively. JLFC01 reduces IL-1β- or TNF-α-induced GM-CSF, M-CSF, C-C motif ligand 2 (CCL2), interferon-γ-inducible protein-10 (IP-10), CCL5 and IL-8 production in first trimester decidual cells. JLFC01 suppresses the activity of IL-1β- or TNF-α-treated first trimester decidual cells in enhancing macrophage-inhibited angiogenesis. In SA/IUGR-prone mice, JLFC01 increases maternal food intake, litter size, fetal and placental weight, and reduces fetal resorption rate. JLFC01 induces IGF-I and IGF-IR expression and inhibits M-CSF, CCL2, CCL5, CCL11, CCL3 and G-CSF expression in the placentae. Discussion JLFC01 improves gestation by inhibiting decidual inflammation, enhancing angiogenesis and promoting fetal growth. PMID:25771406

  3. Role of the Placental Vitamin D Receptor in Modulating Feto-Placental Growth in Fetal Growth Restriction and Preeclampsia-Affected Pregnancies

    PubMed Central

    Murthi, Padma; Yong, Hannah E. J.; Ngyuen, Thy P. H.; Ellery, Stacey; Singh, Harmeet; Rahman, Rahana; Dickinson, Hayley; Walker, David W.; Davies-Tuck, Miranda; Wallace, Euan M.; Ebeling, Peter R.

    2016-01-01

    Fetal growth restriction (FGR) is a common pregnancy complication that affects up to 5% of pregnancies worldwide. Recent studies demonstrate that Vitamin D deficiency is implicated in reduced fetal growth, which may be rescued by supplementation of Vitamin D. Despite this, the pathway(s) by which Vitamin D modulate fetal growth remains to be investigated. Our own studies demonstrate that the Vitamin D receptor (VDR) is significantly decreased in placentae from human pregnancies complicated by FGR and contributes to abnormal placental trophoblast apoptosis and differentiation and regulation of cell-cycle genes in vitro. Thus, Vitamin D signaling is important for normal placental function and fetal growth. This review discusses the association of Vitamin D with fetal growth, the function of Vitamin D and its receptor in pregnancy, as well as the functional significance of a placental source of Vitamin D in FGR. Additionally, we propose that for Vitamin D to be clinically effective to prevent and manage FGR, the molecular mechanisms of Vitamin D and its receptor in modulating fetal growth requires further investigation. PMID:26924988

  4. Role of the Placental Vitamin D Receptor in Modulating Feto-Placental Growth in Fetal Growth Restriction and Preeclampsia-Affected Pregnancies.

    PubMed

    Murthi, Padma; Yong, Hannah E J; Ngyuen, Thy P H; Ellery, Stacey; Singh, Harmeet; Rahman, Rahana; Dickinson, Hayley; Walker, David W; Davies-Tuck, Miranda; Wallace, Euan M; Ebeling, Peter R

    2016-01-01

    Fetal growth restriction (FGR) is a common pregnancy complication that affects up to 5% of pregnancies worldwide. Recent studies demonstrate that Vitamin D deficiency is implicated in reduced fetal growth, which may be rescued by supplementation of Vitamin D. Despite this, the pathway(s) by which Vitamin D modulate fetal growth remains to be investigated. Our own studies demonstrate that the Vitamin D receptor (VDR) is significantly decreased in placentae from human pregnancies complicated by FGR and contributes to abnormal placental trophoblast apoptosis and differentiation and regulation of cell-cycle genes in vitro. Thus, Vitamin D signaling is important for normal placental function and fetal growth. This review discusses the association of Vitamin D with fetal growth, the function of Vitamin D and its receptor in pregnancy, as well as the functional significance of a placental source of Vitamin D in FGR. Additionally, we propose that for Vitamin D to be clinically effective to prevent and manage FGR, the molecular mechanisms of Vitamin D and its receptor in modulating fetal growth requires further investigation. PMID:26924988

  5. Neonatal and fetal exposure to trans-fatty acid retards early growth and adiposity while adversely affecting glucose in mice

    PubMed Central

    Kavanagh, Kylie; Sajadian, Soraya; Jenkins, Kurt A.; Wilson, Martha D.; Carr, J. Jeffery; Wagner, Janice D.; Rudel, Lawrence L.

    2010-01-01

    Industrially produced trans fatty acids (TFAs) consumed in western diets are incorporated into maternal and fetal tissues, and are passed linearly to offspring via breast milk. We hypothesized that TFA exposure in utero and during lactation in infants would promote obesity and poor glycemic control as compared to unmodified fatty acids. We further hypothesized that in utero exposure alone may program for these outcomes in adulthood. To test this hypothesis we fed female C57/BL6 mice identical western diets that differed only in cis- or trans-isomers of C18:1 and then aimed to determine whether maternal transfer of TFAs through pregnancy and lactation alters growth, body composition and glucose metabolism. Mice were unexposed, exposed during pregnancy, during lactation, or throughout pregnancy and lactation to TFA. Body weight and composition (by computed tomography), and glucose metabolism we assessed at weaning and adulthood. TFA exposure through breast milk caused significant early growth retardation (p<0.001) and higher fasting glucose (p=0.01) but insulin sensitivity was not different. Elevated plasma insulin-like growth factor-1 in mice consuming TFA-enriched milk (p=0.02) may contribute to later catch-up growth, leanness and preserved peripheral insulin sensitivity observed in these mice. Mice exposed to TFA in utero underwent rapid early neonatal growth with TFA-free breast milk and had significantly impaired insulin sensitivity (p<0.05) and greater abdominal fat (p=0.01). We conclude that very early catch-up growth resulted in impaired peripheral insulin sensitivity in this model of diet-related fetal and neonatal programming. TFA surprisingly retarded growth and adiposity while still adversely affecting glucose metabolism. PMID:20650350

  6. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  7. Prenatal Depression Restricts Fetal Growth

    PubMed Central

    Diego, Miguel A.; Field, Tiffany; Hernandez-Reif, Maria; Schanberg, Saul; Kuhn, Cynthia; Gonzalez-Quintero, Victor Hugo

    2009-01-01

    Objective To identify whether prenatal depression is a risk factor for fetal growth restriction. Methods Midgestation (18-20 weeks GA) estimated fetal weight and urine cortisol and birth weight and gestational age at birth data were collected on a sample of 40 depressed and 40 non-depressed women. Estimated fetal weight and birthweight data were then used to compute fetal growth rates. Results Depressed women had a 13% greater incidence of premature delivery (Odds Ratio (OR) = 2.61) and 15% greater incidence of low birthweight (OR = 4.75) than non-depressed women. Depressed women also had elevated prenatal cortisol levels (p = .006) and fetuses who were smaller (p = .001) and who showed slower fetal growth rates (p = .011) and lower birthweights (p = .008). Mediation analyses further revealed that prenatal maternal cortisol levels were a potential mediator for the relationship between maternal symptoms of depression and both gestational age at birth and the rate of fetal growth. After controlling for maternal demographic variables, prenatal maternal cortisol levels were associated with 30% of the variance in gestational age at birth and 14% of the variance in the rate of fetal growth. Conclusion Prenatal depression was associated with adverse perinatal outcomes, including premature delivery and slower fetal growth rates. Prenatal maternal cortisol levels appear to play a role in mediating these outcomes. PMID:18723301

  8. Intrauterine Cannabis Exposure Affects Fetal Growth Trajectories: The Generation R Study

    ERIC Educational Resources Information Center

    El Marroun, Hanan; Tiemeier, Henning; Steegers, Eric A. P.; Jaddoe, Vincent W. V.; Hofman, Albert; Verhulst, Frank C.; van den Brink, Wim; Huizink, Anja C.

    2009-01-01

    Objective: Cannabis is the most commonly consumed illicit drug among pregnant women. Intrauterine exposure to cannabis may result in risks for the developing fetus. The importance of intrauterine growth on subsequent psychological and behavioral child development has been demonstrated. This study examined the relation between maternal cannabis use…

  9. Uterine artery blood flow, fetal hypoxia and fetal growth

    PubMed Central

    Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  10. Uterine artery blood flow, fetal hypoxia and fetal growth.

    PubMed

    Browne, Vaughn A; Julian, Colleen G; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G

    2015-03-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100-4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  11. Fetal sex and race modify the predictors of fetal growth.

    PubMed

    Reynolds, Simone A; Roberts, James M; Bodnar, Lisa M; Haggerty, Catherine L; Youk, Ada O; Catov, Janet M

    2015-04-01

    The objective of this study is unknown if fetal sex and race modify the impact of maternal pre-pregnancy body mass index (BMI), and smoking on fetal growth. The authors studied markers of fetal growth in singleton offspring of 8,801 primiparous, normotensive women, enrolled in the Collaborative Perinatal Project. The authors tested for departures from additivity between sex/race and each predictor. The head-to-chest circumference ratio (HCC) decreased more, while birthweight and ponderal index (PI) increased more for each 1 kg/m(2) increase in pre-pregnancy BMI among term females versus males (P = 0.07, P < 0.01 and P = 0.08, interaction respectively). For term offspring of White compared with Black women, smoking independent of "dose" was associated with larger reductions in growth (165 g vs. 68 g reduction in birthweight, P < 0.01, interaction), greater reduction in fetal placental ratio (P < 0.01, interaction), PI (P < 0.01, interaction), and greater increase in HCC (P = 0.02), respectively. The association of BMI and smoking with fetal size appeared to be reversed in term versus preterm infants. Our study provides evidence that the associations of pre-pregnancy BMI and smoking are not constant across sex and race. This finding may be relevant to sex and race differences in neonatal and long term health outcomes. PMID:25030701

  12. Maternal HCV infection is associated with intrauterine fetal growth disturbance

    PubMed Central

    Huang, Qi-tao; Hang, Li-lin; Zhong, Mei; Gao, Yun-fei; Luo, Man-ling; Yu, Yan-hong

    2016-01-01

    Abstract Since the evidence regarding the association between maternal hepatitis C virus (HCV) infection and impaired intrauterine fetal growth had not been conclusive, the aim of the present study was to evaluate the risk of maternal HCV infection in association with intrauterine fetal growth restriction (IUGR) and/or low birth weight infants (LBW). We performed an extensive literature search of PubMed, MEDLINE, and EMBASE through December 1, 2015. The odds ratios (ORs) of HCV infection and IUGR/LBW were calculated and reported with 95% confidence intervals (95% CIs). Statistical analysis was performed using RevMen 5.3 and Stata 10.0. Seven studies involving 4,185,414 participants and 5094 HCV infection cases were included. Significant associations between HCV infection and IUGR (OR = 1.53, 95% CI: 1.40–1.68, fixed effect model) as well as LBW were observed (OR = 1.97, 95% CI: 1.43–2.71, random effect model). The results still indicated consistencies after adjusting for multiple risk factors which could affect fetal growth, including maternal age, parity, maternal smoking, alcohol abuse, drugs abuse, coinfected with HBV/HIV and preeclampsia. Our findings suggested that maternal HCV infection was significantly associated with an increased risk of impaired intrauterine fetal growth. In clinical practice, a closer monitoring of intrauterine fetal growth by a series of ultrasound might be necessary for HCV-infected pregnant population. PMID:27583932

  13. Humans at high altitude: hypoxia and fetal growth

    PubMed Central

    Moore, Lorna G.; Charles, Shelton M.; Julian, Colleen G.

    2011-01-01

    High-altitude studies offer insight into the evolutionary processes and physiological mechanisms affecting the early phases of the human lifespan. Chronic hypoxia slows fetal growth and reduces the pregnancy-associated rise in uterine artery (UA) blood flow. Multigenerational vs. shorter-term high-altitude residents are protected from the altitude-associated reductions in UA flow and fetal growth. Presently unknown is whether this fetal-growth protection is due to the greater delivery or metabolism of oxygen, glucose or other substrates or to other considerations such as mechanical factors protecting fragile fetal villi, the creation of a reserve protecting against ischemia/reperfusion injury, or improved placental O2 transfer as the result of narrowing the A-V O2 difference and raising uterine PvO2. Placental growth and development appear to be normal or modified at high altitude in ways likely to benefit diffusion. Much remains to be learned concerning the effects of chronic hypoxia on embryonic development. Further research is required for identifying the fetoplacental and maternal mechanisms responsible for transforming the maternal vasculature and regulating UA blood flow and fetal growth. Genomic as well as epigenetic studies are opening new avenues of investigation that can yield insights into the basic pathways and evolutionary processes involved. PMID:21536153

  14. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth.

    PubMed

    Winterbottom, Emily F; Fei, Dennis L; Koestler, Devin C; Giambelli, Camilla; Wika, Eric; Capobianco, Anthony J; Lee, Ethan; Marsit, Carmen J; Karagas, Margaret R; Robbins, David J

    2015-06-01

    Although considerable evidence suggests that in utero arsenic exposure affects children's health, these data are mainly from areas of the world where groundwater arsenic levels far exceed the World Health Organization limit of 10 μg/L. We, and others, have found that more common levels of in utero arsenic exposure may also impact children's health. However, the underlying molecular mechanisms are poorly understood. To address this issue, we analyzed the expression of key developmental genes in fetal placenta in a birth cohort of women using unregulated water supplies in a US region with elevated groundwater arsenic. We identified several genes whose expression associated with maternal arsenic exposure in a fetal sex-specific manner. In particular, expression of the HEDGEHOG pathway component, GLI3, in female placentae was both negatively associated with arsenic exposure and positively associated with infant birth weight. This suggests that modulation of GLI3 in the fetal placenta, and perhaps in other fetal tissues, contributes to arsenic's detrimental effects on fetal growth. We showed previously that arsenic-exposed NIH3T3 cells have reduced GLI3 repressor protein. Together, these studies identify GLI3 as a key signaling node that is affected by arsenic, mediating a subset of its effects on developmental signaling and fetal health. PMID:26288817

  15. Update: consequences of abnormal fetal growth.

    PubMed

    Chernausek, Steven D

    2012-03-01

    Intrauterine growth restriction (IUGR) is prevalent worldwide and affects children and adults in multiple ways. These include predisposition to type 2 diabetes mellitus, the metabolic syndrome, cardiovascular disease, persistent reduction in stature, and possibly changes in the pattern of puberty. A review of recent literature confirms that the metabolic effects of being born small for gestational age are evident in the very young, persist with age, and are amplified by adiposity. Furthermore, the pattern of growth in the first few years of life has a significant bearing on a person's later health, with those that show increasing weight gain being at the greatest risk for future metabolic dysfunction. Treatment with exogenous human GH is used to improve height in children who remain short after being small for gestational age at birth, but the response of individuals remains variable and difficult to predict. The mechanisms involved in the metabolic programming of IUGR children are just beginning to be explored. It appears that IUGR leads to widespread changes in DNA methylation and that specific "epigenetic signatures" for IUGR are likely to be found in various fetal tissues. The challenge is to link such alterations with modifications in gene expression and ultimately the metabolic abnormalities of adulthood, and it represents one of the frontiers for research in the field. PMID:22238390

  16. WHO multicentre study for the development of growth standards from fetal life to childhood: the fetal component

    PubMed Central

    2014-01-01

    Background In 2006 WHO presented the infant and child growth charts suggested for universal application. However, major determinants for perinatal outcomes and postnatal growth are laid down during antenatal development. Accordingly, monitoring fetal growth in utero by ultrasonography is important both for clinical and scientific reasons. The currently used fetal growth references are derived mainly from North American and European population and may be inappropriate for international use, given possible variances in the growth rates of fetuses from different ethnic population groups. WHO has, therefore, made it a high priority to establish charts of optimal fetal growth that can be recommended worldwide. Methods This is a multi-national study for the development of fetal growth standards for international application by assessing fetal growth in populations of different ethnic and geographic backgrounds. The study will select pregnant women of high-middle socioeconomic status with no obvious environmental constraints on growth (adequate nutritional status, non-smoking), and normal pregnancy history with no complications likely to affect fetal growth. The study will be conducted in centres from ten developing and industrialized countries: Argentina, Brazil, Democratic Republic of Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand. At each centre, 140 pregnant women will be recruited between 8 + 0 and 12 + 6 weeks of gestation. Subsequently, visits for fetal biometry will be scheduled at 14, 18, 24, 28, 32, 36, and 40 weeks (+/− 1 week) to be performed by trained ultrasonographers. The main outcome of the proposed study will be the development of fetal growth standards (either global or population specific) for international applications. Discussion The data from this study will be incorporated into obstetric practice and national health policies at country level in coordination with the activities presently conducted by WHO to implement the use

  17. Sexual dimorphism in epigenomicresponses of stem cells to extreme fetal growth

    PubMed Central

    Delahaye, Fabien; Wijetunga, N. Ari; Heo, Hye J.; Tozour, Jessica N.; Zhao, Yong Mei; Greally, John M.; Einstein, Francine H.

    2014-01-01

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34+ hematopoietic stem/progenitor cells (HSPCs) showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction (IUGR) is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age (LGA) growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular aging and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life. PMID:25300954

  18. A review of contemporary modalities for identifying abnormal fetal growth.

    PubMed

    O'Connor, C; Stuart, B; Fitzpatrick, C; Turner, M J; Kennelly, M M

    2013-04-01

    Detecting aberrant fetal growth has long been an important goal of modern obstetrics. Failure to diagnose abnormal fetal growth results in perinatal morbidity or mortality. However, the erroneous diagnosis of abnormal growth may lead to increased maternal anxiety and unnecessary obstetric interventions. We review the aetiology of deviant fetal growth and its implications both for the neonatal period and later in adult life. We examine maternal factors that may influence fetal growth such as obesity, glycaemic control and body composition. We discuss novel ways to improve our detection of abnormal fetal growth with a view to optimising antenatal care and clinical outcomes. These include using customised centiles or individualised growth assessment methods to improve accuracy. The role of fetal subcutaneous measurements as a surrogate marker of the nutritional status of the baby is also discussed. Finally, we investigate the role of Doppler measurements in identifying growth-restricted babies. PMID:23550849

  19. Fetal growth: a review of terms, concepts and issues relevant to obstetrics.

    PubMed

    Mayer, C; Joseph, K S

    2013-02-01

    The perinatal literature includes several potentially confusing and controversial terms and concepts related to fetal size and growth. This article discusses fetal growth from an obstetric perspective and addresses various issues including the physiologic mechanisms that determine fetal growth trajectories, known risk factors for abnormal fetal growth, diagnostic and prognostic issues related to restricted and excessive growth and temporal trends in fetal growth. Also addressed are distinctions between fetal growth 'standards' and fetal growth 'references', and between fetal growth charts based on estimated fetal weight vs those based on birth weight. Other concepts discussed include the incidence of fetal growth restriction in pregnancy (does the frequency of fetal growth restriction increase or decrease with increasing gestation?), the obstetric implications of studies showing associations between fetal growth and adult chronic illnesses (such as coronary heart disease) and the need for customizing fetal growth standards. PMID:22648955

  20. Human fetal and adult chondrocytes. Effect of insulinlike growth factors I and II, insulin, and growth hormone on clonal growth.

    PubMed Central

    Vetter, U; Zapf, J; Heit, W; Helbing, G; Heinze, E; Froesch, E R; Teller, W M

    1986-01-01

    Clonal proliferation of freshly isolated human fetal chondrocytes and adult chondrocytes in response to human insulinlike growth factors I and II (IGF I, IGF II), human biosynthetic insulin, and human growth hormone (GH) was assessed. IGF I (25 ng/ml) stimulated clonal growth of fetal chondrocytes (54 +/- 12 colonies/1,000 inserted cells, mean +/- 1 SD), but IGF II (25 ng/ml) was significantly more effective (106 +/- 12 colonies/1,000 inserted cells, P less than 0.05, unstimulated control: 14 +/- 4 colonies/1,000 inserted cells). In contrast, IGF I (25 ng/ml) was more effective in adult chondrocytes (42 +/- 6 colonies/1,000 inserted cells) than IGF II (25 ng/ml) (21 +/- 6 colonies/1,000 inserted cells; P less than 0.05, unstimulated control: 6 +/- 3 colonies/1,000 inserted cells). GH and human biosynthetic insulin did not affect clonal growth of fetal or adult chondrocytes. The clonal growth pattern of IGF-stimulated fetal and adult chondrocytes was not significantly changed when chondrocytes were first grown in monolayer culture, harvested, and then inserted in the clonal culture system. However, the adult chondrocytes showed a time-dependent decrease of stimulation of clonal growth by IGF I and II. This was not true for fetal chondrocytes. The results are compatible with the concept that IGF II is a more potent stimulant of clonal growth of chondrocytes during fetal life, whereas IGF I is more effective in stimulating clonal growth of chondrocytes during postnatal life. Images PMID:3519682

  1. Activation of Nod1 Signaling Induces Fetal Growth Restriction and Death through Fetal and Maternal Vasculopathy

    PubMed Central

    Nishio, Hisanori; Takada, Hidetoshi; Sakai, Yasunari; Nanishi, Etsuro; Ochiai, Masayuki; Onimaru, Mitsuho; Chen, Si Jing; Matsui, Toshiro; Hara, Toshiro

    2016-01-01

    Intrauterine fetal growth restriction (IUGR) and death (IUFD) are both serious problems in the perinatal medicine. Fetal vasculopathy is currently considered to account for a pathogenic mechanism of IUGR and IUFD. We previously demonstrated that an innate immune receptor, the nucleotide-binding oligomerization domain-1 (Nod1), contributed to the development of vascular inflammations in mice at postnatal stages. However, little is known about the deleterious effects of activated Nod1 signaling on embryonic growth and development. We report that administration of FK565, one of the Nod1 ligands, to pregnant C57BL/6 mice induced IUGR and IUFD. Mass spectrometry analysis revealed that maternally injected FK565 was distributed to the fetal tissues across placenta. In addition, maternal injection of FK565 induced robust increases in the amounts of CCL2, IL-6, and TNF proteins as well as NO in maternal, placental and fetal tissues. Nod1 was highly expressed in fetal vascular tissues, where significantly higher levels of CCL2 and IL-6 mRNAs were induced with maternal injection of FK565 than those in other tissues. Using Nod1-knockout mice, we verified that both maternal and fetal tissues were involved in the development of IUGR and IUFD. Furthermore, FK565 induced upregulation of genes associated with immune response, inflammation, and apoptosis in fetal vascular tissues. Our data thus provided new evidence for the pathogenic role of Nod1 in the development of IUGR and IUFD at the maternal-fetal interface. PMID:26880761

  2. Maternal Stress and Affect Influence Fetal Neurobehavioral Development.

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; Hilton, Sterling C.; Hawkins, Melissa; Costigan, Kathleen A.; Pressman, Eva K.

    2002-01-01

    Investigated associations between maternal psychological and fetal neurobehavioral functioning with data provided at 24, 30, and 36 weeks gestation. Found that fetuses of women who were more affectively intense, appraised their lives as more stressful, and reported more pregnancy-specific hassles were more active across gestation. Fetuses of women…

  3. [Possibility of predicting intrauterine fetal growth retardation by a single ultrasonic examination (using varying standards)].

    PubMed

    Fedorova, M V; Kotov, Iu B; Lukashenko, S Iu; Alekseevskiĭ, A V; Dub, N V; Sichinava, L G; Novikova, S V; Klimenko, P A

    1991-05-01

    The paper deals with early prediction of fetal growth retardation and its severity in a newborn from single ultrasound fetal biometric findings (biparietal head size, chest and belly diameters) at week 20 of pregnancy. The prediction was made by employing the developed varying standards for these parameters as percentile curves and tables. A stepwise prediction of fetal growth retardation was proposed for obstetric in- and outpatient settings, which was presented as an IBM personal computer dialogue program. The positive diagnostic value of fetal growth retardation prediction was found to be 69.7%, its negative value was 86.9%. The paper discusses whether therapeutic measures and pregnancy length affect the efficiency of its prediction and stresses that the prediction is valuable for individual well-grounded tactics for pregnancy management. PMID:1897665

  4. Placental Responses to Changes in the Maternal Environment Determine Fetal Growth

    PubMed Central

    Dimasuay, Kris Genelyn; Boeuf, Philippe; Powell, Theresa L.; Jansson, Thomas

    2016-01-01

    Placental responses to maternal perturbations are complex and remain poorly understood. Altered maternal environment during pregnancy such as hypoxia, stress, obesity, diabetes, toxins, altered nutrition, inflammation, and reduced utero-placental blood flow may influence fetal development, which can predispose to diseases later in life. The placenta being a metabolically active tissue responds to these perturbations by regulating the fetal supply of nutrients and oxygen and secretion of hormones into the maternal and fetal circulation. We have proposed that placental nutrient sensing integrates maternal and fetal nutritional cues with information from intrinsic nutrient sensing signaling pathways to balance fetal demand with the ability of the mother to support pregnancy by regulating maternal physiology, placental growth, and placental nutrient transport. Emerging evidence suggests that the nutrient-sensing signaling pathway mechanistic target of rapamycin (mTOR) plays a central role in this process. Thus, placental nutrient sensing plays a critical role in modulating maternal–fetal resource allocation, thereby affecting fetal growth and the life-long health of the fetus. PMID:26858656

  5. Fetal growth and risk of childhood asthma and allergic disease

    PubMed Central

    Tedner, S G; Örtqvist, A K; Almqvist, C

    2012-01-01

    Introduction Early genetic and environmental factors have been discussed as potential causes for the high prevalence of asthma and allergic disease in the western world, and knowledge on fetal growth and its consequence on future health and disease development is emerging. Objective This review article is an attempt to summarize research on fetal growth and risk of asthma and allergic disease. Current knowledge and novel findings will be reviewed and open research questions identified, to give basic scientists, immunologists and clinicians an overview of an emerging research field. Methods PubMed-search on pre-defined terms and cross-references. Results Several studies have shown a correlation between low birth weight and/or gestational age and asthma and high birth weight and/or gestational age and atopy. The exact mechanism is not yet clear but both environmental and genetic factors seem to contribute to fetal growth. Some of these factors are confounders that can be adjusted for, and twin studies have been very helpful in this context. Suggested mechanisms behind fetal growth are often linked to the feto-maternal circulation, including the development of placenta and umbilical cord. However, the causal link between fetal growth restriction and subsequent asthma and allergic disease remains unexplained. New research regarding the catch-up growth following growth restriction has posited an alternative theory that diseases later on in life result from rapid catch-up growth rather than intrauterine growth restriction per se. Several studies have found a correlation between a rapid weight gain after birth and development of asthma or wheezing in childhood. Conclusion and clinical relevance Asthma and allergic disease are multifactorial. Several mechanisms seem to influence their development. Additional studies are needed before we fully understand the causal links between fetal growth and development of asthma and allergic diseases. PMID:22994341

  6. Prenatal diagnosis of a placental infarction hematoma associated with fetal growth restriction, preeclampsia and fetal death: clinicopathological correlation

    PubMed Central

    Aurioles-Garibay, Alma; Hernandez-Andrade, Edgar; Romero, Roberto; Qureshi, Faisal; Ahn, Hyunyoung; Jacques, Suzanne M.; Garcia, Maynor; Yeo, Lami; Hassan, Sonia S.

    2014-01-01

    The lesion termed “placental infarction hematoma” is associated with fetal death and adverse perinatal outcome. Such lesion has been associated with a high risk of fetal death and abruption placentae. The fetal and placental hemodynamic changes associated with placental infarction hematoma have not been reported. This communication describes a case of early and severe growth restriction with preeclampsia, and progressive deterioration of the fetal and placental Doppler parameters in the presence of a placental infarction hematoma. PMID:24852332

  7. Hypoxic acidemia, hyperviscosity, and maternal hypertension do not affect the umbilical arterial velocity waveform in fetal sheep.

    PubMed

    Morrow, R J; Adamson, S L; Bull, S B; Ritchie, J W

    1990-10-01

    The effect of hypoxic acidemia, hyperviscosity, and maternal hypertension on the umbilical arterial velocity waveform was studied in 23 chronically catheterized fetal sheep. Fetal hypoxic acidemia induced by lowering the maternal inspired oxygen concentration (n = 7) caused no change in the ratio of systolic/diastolic blood velocity even when fetal arterial pH was as low as 6.8. Fetal blood hyperviscosity (n = 7) induced by exchange transfusion with packed maternal blood cells increased placental vascular resistance by greater than or equal to 50% but had no significant effect on the systolic/diastolic ratio. Similarly, maternal hypertension induced by intravenous infusion of angiotensin II to the ewe (n = 9) did not affect the systolic/diastolic ratio despite a 50% increase in maternal arterial blood pressure. We conclude that umbilical arterial velocity waveform abnormalities observed in growth-restricted human fetuses are probably not a direct result of fetal hypoxemia or hyperviscosity or maternal hypertension. PMID:2220943

  8. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans

    PubMed Central

    Luo, Zhong-Cheng; Bilodeau, Jean-François; Monique Nuyt, Anne; Fraser, William D.; Julien, Pierre; Audibert, Francois; Xiao, Lin; Garofalo, Carole; Levy, Emile

    2015-01-01

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24–28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin concentrations. Strong positive correlations were observed between maternal and cord plasma biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently negatively correlated to oxidative stress biomarkers in maternal (r = −0.32, p < 0.0001 for MDA; r = −0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = −0.13, p = 0.04 for MDA; r = −0.32, p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect fetal ghrelin levels in humans. The implications in developmental “programming” the vulnerability to metabolic syndrome related disorders remain to be elucidated. PMID:26643495

  9. The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth

    PubMed Central

    Sferruzzi-Perri, A N; Owens, J A; Pringle, K G; Roberts, C T

    2011-01-01

    Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming. PMID:20921199

  10. Heme oxygenase-1 modulates fetal growth in the rat.

    PubMed

    Kreiser, Doron; Nguyen, Xuandai; Wong, Ron; Seidman, Daniel; Stevenson, David; Quan, Shou; Abraham, Nader; Dennery, Phyllis A

    2002-06-01

    Intrauterine growth restriction is associated with increased perinatal morbidity and mortality as well as with lifelong cardiovascular and metabolic complications. Deficiency of heme oxygenase 1 (HO-1) is associated with growth restriction in mice and in humans, suggesting a role for HO-1 in fetal growth and maintenance of pregnancy. We hypothesized that modulation of HO-1 in the pregnant rat would alter fetal growth. In pregnant dams, placental HO activity was significantly inhibited with zinc deuteroporphyrin IX 2,4 bis glycol, and HO-1 protein was increased by transducing adenoviral human HO-1. Inhibition of HO-1 by zinc deuteroporphyrin IX 2,4 bis glycol resulted in a significant decrease in pup size, whereas transfection with hHO-1 resulted in increased pup size. Furthermore, the expression of IGF binding protein-1 and its receptor paralleled the expression of HO-1 in the placenta and were significantly modulated by modification of HO-1 along with the expression of vascular endothelial growth factor. These observations demonstrate that HO-1 modulates fetal growth by its effects on placental growth factors. PMID:12065678

  11. Fetal Genotype for the Xenobiotic Metabolizing Enzyme "NQO1" Influences Intrauterine Growth among Infants Whose Mothers Smoked during Pregnancy

    ERIC Educational Resources Information Center

    Price, Thomas S.; Grosser, Tilo; Plomin, Robert; Jaffee, Sara R.

    2010-01-01

    Maternal smoking during pregnancy retards fetal growth and depresses infant birth weight. The magnitude of these effects may be moderated by fetal genotype. The current study investigated maternal smoking, fetal genotype, and fetal growth in a large population sample of dizygotic twins. Maternal smoking retarded fetal growth in a dose-dependent…

  12. Growth curve analysis of placental and fetal growth influenced by adjacent fetal sex status under crowded uterine conditions in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intrauterine position and sex of adjacent fetuses in litter bearing species have been implicated in physiological and behavioral differences in males and females. Our objective was to establish growth curves for fetal and placental weight gain as influenced by sex status of flanking fetuses under cr...

  13. Increased fetal myocardial sensitivity to insulin-stimulated glucose metabolism during ovine fetal growth restriction.

    PubMed

    Barry, James S; Rozance, Paul J; Brown, Laura D; Anthony, Russell V; Thornburg, Kent L; Hay, William W

    2016-04-01

    Unlike other visceral organs, myocardial weight is maintained in relation to fetal body weight in intrauterine growth restriction (IUGR) fetal sheep despite hypoinsulinemia and global nutrient restriction. We designed experiments in fetal sheep with placental insufficiency and restricted growth to determine basal and insulin-stimulated myocardial glucose and oxygen metabolism and test the hypothesis that myocardial insulin sensitivity would be increased in the IUGR heart. IUGR was induced by maternal hyperthermia during gestation. Control (C) and IUGR fetal myocardial metabolism were measured at baseline and under acute hyperinsulinemic/euglycemic clamp conditions at 128-132 days gestation using fluorescent microspheres to determine myocardial blood flow. Fetal body and heart weights were reduced by 33% (P = 0.008) and 30% (P = 0.027), respectively. Heart weight to body weight ratios were not different. Basal left ventricular (LV) myocardial blood flow per gram of LV tissue was maintained in IUGR fetuses compared to controls. Insulin increased LV myocardial blood flow by ∼38% (P < 0.01), but insulin-stimulated LV myocardial blood flow in IUGR fetuses was 73% greater than controls. Similar to previous reports testing acute hypoxia, LV blood flow was inversely related to arterial oxygen concentration (r(2 )= 0.71) in both control and IUGR animals. Basal LV myocardial glucose delivery and uptake rates were not different between IUGR and control fetuses. Insulin increased LV myocardial glucose delivery (by 40%) and uptake (by 78%) (P < 0.01), but to a greater extent in the IUGR fetuses compared to controls. During basal and hyperinsulinemic-euglycemic clamp conditions LV myocardial oxygen delivery, oxygen uptake, and oxygen extraction efficiency were not different between groups. These novel results demonstrate that the fetal heart exposed to nutrient and oxygen deprivation from placental insufficiency appears to maintain myocardial energy supply

  14. Extrinsic Factors Influencing Fetal Deformations and Intrauterine Growth Restriction

    PubMed Central

    Moh, Wendy; Graham, John M.; Wadhawan, Isha; Sanchez-Lara, Pedro A.

    2012-01-01

    The causes of intrauterine growth restriction (IUGR) are multifactorial with both intrinsic and extrinsic influences. While many studies focus on the intrinsic pathological causes, the possible long-term consequences resulting from extrinsic intrauterine physiological constraints merit additional consideration and further investigation. Infants with IUGR can exhibit early symmetric or late asymmetric growth abnormality patterns depending on the fetal stage of development, of which the latter is most common occurring in 70–80% of growth-restricted infants. Deformation is the consequence of extrinsic biomechanical factors interfering with normal growth, functioning, or positioning of the fetus in utero, typically arising during late gestation. Biomechanical forces play a critical role in the normal morphogenesis of most tissues. The magnitude and direction of force impact the form of the developing fetus, with a specific tissue response depending on its pliability and stage of development. Major uterine constraining factors include primigravida, small maternal size, uterine malformation, uterine fibromata, early pelvic engagement of the fetal head, aberrant fetal position, oligohydramnios, and multifetal gestation. Corrective mechanical forces similar to those that gave rise to the deformation to reshape the deformed structures are often used and should take advantage of the rapid postnatal growth to correct form. PMID:22888434

  15. Maternal parity, fetal and childhood growth, and cardiometabolic risk factors.

    PubMed

    Gaillard, Romy; Rurangirwa, Akashi A; Williams, Michelle A; Hofman, Albert; Mackenbach, Johan P; Franco, Oscar H; Steegers, Eric A P; Jaddoe, Vincent W V

    2014-08-01

    We examined the associations of maternal parity with fetal and childhood growth characteristics and childhood cardiometabolic risk factors in a population-based prospective cohort study among 9031 mothers and their children. Fetal and childhood growth were repeatedly measured. We measured childhood anthropometrics, body fat distribution, left ventricular mass, blood pressure, blood lipids, and insulin levels at the age of 6 years. Compared with nulliparous mothers, multiparous mothers had children with higher third trimester fetal head circumference, length and weight growth, and lower risks of preterm birth and small-size-for-gestational-age at birth but a higher risk of large-size-for-gestational-age at birth (P<0.05). Children from multiparous mothers had lower rates of accelerated infant growth and lower levels of childhood body mass index, total fat mass percentage, and total and low-density lipoprotein cholesterol than children of nulliparous mothers (P<0.05). They also had a lower risk of childhood overweight (odds ratio, 0.75 [95% confidence interval, 0.63–0.88]). The risk of childhood clustering of cardiometabolic risk factors was not statistically significantly different (odds ratio, 0.82; 95% confidence interval, 0.64–1.05). Among children from multiparous mothers only, we observed consistent trends toward a lower risk of childhood overweight and lower cholesterol levels with increasing parity (P<0.05). In conclusion, offspring from nulliparous mothers have lower fetal but higher infant growth rates and higher risks of childhood overweight and adverse metabolic profile. Maternal nulliparity may have persistent cardiometabolic consequences for the offspring. PMID:24866145

  16. Biopsychosocial determinants of pregnancy length and fetal growth.

    PubMed

    St-Laurent, Jennifer; De Wals, Philippe; Moutquin, Jean-Marie; Niyonsenga, Theophile; Noiseux, Manon; Czernis, Loretta

    2008-05-01

    The causes and mechanisms related to preterm delivery and intrauterine growth restriction are poorly understood. Our objective was to assess the direct and indirect effects of psychosocial and biomedical factors on the duration of pregnancy and fetal growth. A self-administered questionnaire was distributed to pregnant women attending prenatal ultrasound clinics in nine hospitals in the Montérégie region in the province of Quebec, Canada, from November 1997 to May 1998. Prenatal questionnaires were linked with birth certificates. Theoretical models explaining pregnancy length and fetal growth were developed and tested, using path analysis. In order to reduce the number of variables from the questionnaire, a principal component analysis was performed, and the three most important new dimensions were retained as explanatory variables in the final models. Data were available for 1602 singleton pregnancies. The biophysical score, covering both maternal age and the pre-pregnancy body mass index, was the only variable statistically associated with pregnancy length. Smoking, obstetric history, maternal health and biophysical indices were direct predictors of fetal growth. Perceived stress, social support and self-esteem were not directly related to pregnancy outcomes, but were determinants of smoking and the above-mentioned biomedical variables. More studies are needed to identify the mechanisms by which adverse psychosocial factors are translated into adverse biological effects. PMID:18426519

  17. Fetal cell-free DNA fraction in maternal plasma is affected by fetal trisomy.

    PubMed

    Suzumori, Nobuhiro; Ebara, Takeshi; Yamada, Takahiro; Samura, Osamu; Yotsumoto, Junko; Nishiyama, Miyuki; Miura, Kiyonori; Sawai, Hideaki; Murotsuki, Jun; Kitagawa, Michihiro; Kamei, Yoshimasa; Masuzaki, Hideaki; Hirahara, Fumiki; Saldivar, Juan-Sebastian; Dharajiya, Nilesh; Sago, Haruhiko; Sekizawa, Akihiko

    2016-07-01

    The purpose of this noninvasive prenatal testing (NIPT) study was to compare the fetal fraction of singleton gestations by gestational age, maternal characteristics and chromosome-specific aneuploidies as indicated by z-scores. This study was a multicenter prospective cohort study. Test data were collected from women who underwent NIPT by the massively parallel sequencing method. We used sequencing-based fetal fraction calculations in which we estimated fetal DNA fraction by simply counting the number of reads aligned within specific autosomal regions and applying a weighting scheme derived from a multivariate model. Relationships between fetal fractions and gestational age, maternal weight and height, and z-scores for chromosomes 21, 18 and 13 were assessed. A total of 7740 pregnant women enrolled in the study, of which 6993 met the study criteria. As expected, fetal fraction was inversely correlated with maternal weight (P<0.001). The median fetal fraction of samples with euploid result (n=6850) and trisomy 21 (n=70) were 13.7% and 13.6%, respectively. In contrast, the median fetal fraction values for samples with trisomies 18 (n=35) and 13 (n=9) were 11.0% and 8.0%, respectively. The fetal fraction of samples with trisomy 21 NIPT result is comparable to that of samples with euploid result. However, the fetal fractions of samples with trisomies 13 and 18 are significantly lower compared with that of euploid result. We conclude that it may make detecting these two trisomies more challenging. PMID:26984559

  18. NOTE: Trends of discordant fetal growth in monochorionic twin pregnancies

    NASA Astrophysics Data System (ADS)

    van Gemert, Martin J. C.; Umur, Asli

    2000-08-01

    We derived simple analytical relations representing trends of discordant fetal growth in monochorionic twins developing the twin-twin transfusion syndrome from an approximation of previously developed model equations. In severe twin-twin transfusion syndrome cases, the difference between the estimated fetal weights of both twins increases proportional to (t-5)5 (t denotes gestational age in weeks) and the sum of both weights increases proportional to t3. Hence, the ratio between the difference of estimated fetal weights and the average of the two weights (difference average ratio) increases in proportion to (t-5)5/t3. In mild cases, the difference between estimated fetal weights as well as the sum of the two weights increases proportional to t3. Therefore, the difference average ratio becomes a constant. Comparison with clinical data of severe and mild cases showed surprisingly good agreement except after laser coagulation of placental anastomoses. These relations may therefore enable us to distinguish between severe and mild developing twin-twin transfusion syndrome cases.

  19. IGF2 DNA methylation is a modulator of newborn’s fetal growth and development

    PubMed Central

    St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi

    2012-01-01

    The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity. PMID:22907587

  20. Comparative Analysis of Normal versus Fetal Growth Restriction in Pregnancy: The Significance of Maternal Body Mass Index, Nutritional Status, Anemia, and Ultrasonography Screening

    PubMed Central

    Sawant, Laxmichaya D.; Venkat, Shirin

    2013-01-01

    Fetal growth restriction or intrauterine growth restriction is one of the leading causes of perinatal mortality and morbidity in newborns. Fetal growth restriction is a complex multifactorial condition resulting from several fetal and maternal disorders. The objective of this study was twofold: first to examine the correlation between maternal parameters such as body mass index (BMI), nutritional status, anemia, and placental weight and diameter, and their effects on fetal growth and then to evaluate the effect of early screening by ultrasonography (USG) on the outcome of growth restricted pregnancies. In this study, 53 cases of fetal growth restriction were compared to 53 normal fetuses delivered in consecutive sequence. Growth restricted fetuses were delivered earlier in gestation, when compared with normal growth fetuses. Maternal anemia and malnutrition have significant association with the fetal growth restriction. Maternal anthropometry, such as low BMI, had effects on placental diameter and weight, which, in turn, adversely affected fetal weight. Thus, early USG screening along with robust screening for maternal BMI, nutritional status, and anemia can assist the obstetric team in providing early diagnosis, prompt intervention, and better outcome in pregnancy with fetal growth restriction. PMID:25763389

  1. Early rapid growth, early birth: Accelerated fetal growth and spontaneous late preterm birth

    PubMed Central

    Kusanovic, Juan Pedro; Erez, Offer; Espinoza, Jimmy; Gotsch, Francesca; Goncalves, Luis; Hassan, Sonia; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A.; Romero, Roberto

    2011-01-01

    The past two decades in the United States have seen a 24 % rise in spontaneous late preterm delivery (34 to 36 weeks) of unknown etiology. This study tested the hypothesis that fetal growth was identical prior to spontaneous preterm (n=221, median gestational age at birth 35.6 weeks) and term (n=3706) birth among pregnancies followed longitudinally in Santiago, Chile. The hypothesis was not supported: Preterm-delivered fetuses were significantly larger than their term-delivered peers by mid-second trimester in estimated fetal weight, head, limb and abdominal dimensions, and they followed different growth trajectories. Piecewise regression assessed time-specific differences in growth rates at 4-week intervals from 16 weeks. Estimated fetal weight and abdominal circumference growth rates faltered at 20 weeks among the preterm-delivered, only to match and/or exceed their term-delivered peers at 24–28 weeks. After an abrupt decline at 28 weeks attenuating growth rates in all dimensions, fetuses delivered preterm did so at greater population-specific sex and age-adjusted weight than their peers from uncomplicated pregnancies (p<0.01). Growth rates predicted birth timing: one standard score of estimated fetal weight increased the odds ratio for preterm birth from 2.8 prior to 23 weeks, to 3.6 (95% confidence interval, 1.82–7.11, p<0.05) between 23 and 27 weeks. After 27 weeks, increasing size was protective (OR: 0.56, 95% confidence interval, 0.38–0.82, p=0.003). These data document, for the first time, a distinctive fetal growth pattern across gestation preceding spontaneous late preterm birth, identify the importance of mid-gestation for alterations in fetal growth, and add perspective on human fetal biological variability. PMID:18988282

  2. Normative biometrics for fetal ocular growth using volumetric MRI reconstruction

    PubMed Central

    Velasco-Annis, Clemente; Gholipour, Ali; Afacan, Onur; Prabhu, Sanjay P.; Estroff, Judy A.; Warfield, Simon K.

    2015-01-01

    Objective To determine normative ranges for fetal ocular biometrics between 19 and 38 weeks gestational age (GA) using volumetric MRI reconstruction. Method 3D images of 114 healthy fetuses between 19 and 38 weeks GA were created using super-resolution volume reconstructions from MRI slice acquisitions. These 3D images were semi-automatically segmented to measure fetal orbit volume, binocular distance (BOD), interocular distance (IOD), and ocular diameter (OD). Results All biometry correlated with GA (Volume, CC = 0.9680; BOD, CC = 0.9552; OD, CC = 0.9445; and IOD, CC = 0.8429), and growth curves were plotted against linear and quadratic growth models. Regression analysis showed quadratic models to best fit BOD, IOD and OD, and a linear model to best fit volume. Conclusion Orbital volume had the greatest correlation with GA, though BOD and OD also showed strong correlation. The normative data found in this study may be helpful for the detection of congenital fetal anomalies with more consistent measurements than are currently available. PMID:25601041

  3. Chronic Protein Restriction in Mice Impacts Placental Function and Maternal Body Weight before Fetal Growth

    PubMed Central

    Barbeito-Andrés, Jimena; Klenin, Natasha; Cross, James C.; Hallgrímsson, Benedikt

    2016-01-01

    Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth. PMID:27018791

  4. Chronic Protein Restriction in Mice Impacts Placental Function and Maternal Body Weight before Fetal Growth.

    PubMed

    Gonzalez, Paula N; Gasperowicz, Malgorzata; Barbeito-Andrés, Jimena; Klenin, Natasha; Cross, James C; Hallgrímsson, Benedikt

    2016-01-01

    Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth. PMID:27018791

  5. Fetal growth and the ethnic origins of type 2 diabetes.

    PubMed

    Skilton, Michael R

    2015-03-01

    Birthweight is known to differ by ethnicity, with South Asian, black African and Caribbean, and Hispanic ethnic groups having lower birthweight on average, when compared with people of white European ethnicity. Birthweight is the most frequently used proxy of fetal growth, and represents the net effect of a host of genetic, physiological and pathophysiological factors. These same ethnic groups that have lower average birthweight also tend to have a higher prevalence of type 2 diabetes in adulthood. It is not unreasonable to propose that the well-established inverse association between birthweight and risk of type 2 diabetes may at least partially contribute to these differences in prevalence of type 2 diabetes between ethnic groups. This hypothesis would rely on the mechanisms that drive the ethnic differences in birthweight aligning with those that modify the risk of type 2 diabetes. In this issue of Diabetologia (DOI: 10.1007/s00125-014-3474-7), Nightingale et al have furthered this field by determining whether ethnic differences in markers of cardio-metabolic risk are consistent with the differences in birthweight in an ethnically diverse cohort of children. The likely contribution of fetal growth to ethnic differences in risk of type 2 diabetes and cardiovascular disease is discussed, particularly in light of the magnitude of the birthweight differences, as are implications for the prevention of type 2 diabetes. PMID:25567103

  6. Maternal HCV infection is associated with intrauterine fetal growth disturbance: A meta-analysis of observational studies.

    PubMed

    Huang, Qi-Tao; Hang, Li-Lin; Zhong, Mei; Gao, Yun-Fei; Luo, Man-Ling; Yu, Yan-Hong

    2016-08-01

    Since the evidence regarding the association between maternal hepatitis C virus (HCV) infection and impaired intrauterine fetal growth had not been conclusive, the aim of the present study was to evaluate the risk of maternal HCV infection in association with intrauterine fetal growth restriction (IUGR) and/or low birth weight infants (LBW). We performed an extensive literature search of PubMed, MEDLINE, and EMBASE through December 1, 2015. The odds ratios (ORs) of HCV infection and IUGR/LBW were calculated and reported with 95% confidence intervals (95% CIs). Statistical analysis was performed using RevMen 5.3 and Stata 10.0. Seven studies involving 4,185,414 participants and 5094 HCV infection cases were included. Significant associations between HCV infection and IUGR (OR = 1.53, 95% CI: 1.40-1.68, fixed effect model) as well as LBW were observed (OR = 1.97, 95% CI: 1.43-2.71, random effect model). The results still indicated consistencies after adjusting for multiple risk factors which could affect fetal growth, including maternal age, parity, maternal smoking, alcohol abuse, drugs abuse, coinfected with HBV/HIV and preeclampsia. Our findings suggested that maternal HCV infection was significantly associated with an increased risk of impaired intrauterine fetal growth. In clinical practice, a closer monitoring of intrauterine fetal growth by a series of ultrasound might be necessary for HCV-infected pregnant population. PMID:27583932

  7. Fetal growth in early pregnancy and risk of delivering low birth weight infant: prospective cohort study

    PubMed Central

    Smith, Gordon C S; Malone, Fergal D; Ball, Robert H; Nyberg, David A; Comstock, Christine H; Hankins, Gary D V; Berkowitz, Richard L; Gross, Susan J; Dugoff, Lorraine; Craigo, Sabrina D; Timor-Tritsch, Ilan E; Carr, Stephen R; Wolfe, Honor M; D'Alton, Mary E

    2007-01-01

    Objective To determine if first trimester fetal growth is associated with birth weight, duration of pregnancy, and the risk of delivering a small for gestational age infant. Design Prospective cohort study of 38 033 pregnancies between 1999 and 2003. Setting 15 centres representing major regions of the United States. Participants 976 women from the original cohort who conceived as the result of assisted reproductive technology, had a first trimester ultrasound measurement of fetal crown-rump length, and delivered live singleton infants without evidence of chromosomal or congenital abnormalities. First trimester growth was expressed as the difference between the observed and expected size of the fetus, expressed as equivalence to days of gestational age. Main outcome measures Birth weight, duration of pregnancy, and risk of delivering a small for gestational age infant. Results For each one day increase in the observed size of the fetus, birth weight increased by 28.2 (95% confidence interval 14.6 to 41.2) g. The association was substantially attenuated by adjustment for duration of pregnancy (adjusted coefficient 17.1 (6.6 to 27.5) g). Further adjustments for maternal characteristics and complications of pregnancy did not have a significant effect. The risk of delivering a small for gestational age infant decreased with increasing size in the first trimester (odds ratio for a one day increase 0.87, 0.81 to 0.94). The association was not materially affected by adjustment for maternal characteristics or complications of pregnancy. Conclusion Variation in birth weight may be determined, at least in part, by fetal growth in the first 12 weeks after conception through effects on timing of delivery and fetal growth velocity. PMID:17355993

  8. Birth Weight, Birth Length, and Gestational Age as Indicators of Favorable Fetal Growth Conditions in a US Sample

    PubMed Central

    Bollen, Kenneth A.

    2016-01-01

    The “fetal origins” hypothesis suggests that fetal conditions not only affect birth characteristics such as birth weight and gestational age, but also have lifelong health implications. Despite widespread interest in this hypothesis, few methodological advances have been proposed to improve the measurement and modeling of fetal conditions. A Statistics in Medicine paper by Bollen, Noble, and Adair examined favorable fetal growth conditions (FFGC) as a latent variable. Their study of Filipino children from Cebu provided evidence consistent with treating FFGC as a latent variable that largely mediates the effects of mother’s characteristics on birth weight, birth length, and gestational age. This innovative method may have widespread utility, but only if the model applies equally well across diverse settings. Our study assesses whether the FFGC model of Cebu replicates and generalizes to a very different population of children from North Carolina (N = 705) and Pennsylvania (N = 494). Using a series of structural equation models, we find that key features of the Cebu analysis replicate and generalize while we also highlight differences between these studies. Our results support treating fetal conditions as a latent variable when researchers test the fetal origins hypothesis. In addition to contributing to the substantive literature on measuring fetal conditions, we also discuss the meaning and challenges involved in replicating prior research. PMID:27097023

  9. Fetal growth patterns in Beckwith-Wiedemann syndrome.

    PubMed

    Mussa, A; Russo, S; de Crescenzo, A; Freschi, A; Calzari, L; Maitz, S; Macchiaiolo, M; Molinatto, C; Baldassarre, G; Mariani, M; Tarani, L; Bedeschi, M F; Milani, D; Melis, D; Bartuli, A; Cubellis, M V; Selicorni, A; Silengo, M C; Larizza, L; Riccio, A; Ferrero, G B

    2016-07-01

    We provide data on fetal growth pattern on the molecular subtypes of Beckwith-Wiedemann syndrome (BWS): IC1 gain of methylation (IC1-GoM), IC2 loss of methylation (IC2-LoM), 11p15.5 paternal uniparental disomy (UPD), and CDKN1C mutation. In this observational study, gestational ages and neonatal growth parameters of 247 BWS patients were compared by calculating gestational age-corrected standard deviation scores (SDS) and proportionality indexes to search for differences among IC1-GoM (n = 21), UPD (n = 87), IC2-LoM (n = 147), and CDKN1C mutation (n = 11) patients. In IC1-GoM subgroup, weight and length are higher than in other subgroups. Body proportionality indexes display the following pattern: highest in IC1-GoM patients, lowest in IC2-LoM/CDKN1C patients, intermediate in UPD ones. Prematurity was significantly more prevalent in the CDKN1C (64%) and IC2-LoM subgroups (37%). Fetal growth patterns are different in the four molecular subtypes of BWS and remarkably consistent with altered gene expression primed by the respective molecular mechanisms. IC1-GoM cases show extreme macrosomia and severe disproportion between weight and length excess. In IC2-LoM/CDKN1C patients, macrosomia is less common and associated with more proportionate weight/length ratios with excess of preterm birth. UPD patients show growth patterns closer to those of IC2-LoM, but manifest a body mass disproportion rather similar to that seen in IC1-GoM cases. PMID:26857110

  10. Brief Report: A Preliminary Study of Fetal Head Circumference Growth in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Whitehouse, Andrew J. O.; Hickey, Martha; Stanley, Fiona J.; Newnham, John P.; Pennell, Craig E.

    2011-01-01

    Fetal head circumference (HC) growth was examined prospectively in children with autism spectrum disorder (ASD). ASD participants (N = 14) were each matched with four control participants (N = 56) on a range of parameters known to influence fetal growth. HC was measured using ultrasonography at approximately 18 weeks gestation and again at birth…

  11. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth.

    PubMed

    Aye, Irving L M H; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-10-13

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity. PMID:26417088

  12. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth

    PubMed Central

    Aye, Irving L. M. H.; Rosario, Fredrick J.; Powell, Theresa L.; Jansson, Thomas

    2015-01-01

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity. PMID:26417088

  13. Growth in Inuit children exposed to polychlorinated biphenyls and lead during fetal development and childhood

    PubMed Central

    Dallaire, Renée; Dewailly, Éric; Ayotte, Pierre; Forget-Dubois, Nadine; Jacobson, Sandra W.; Jacobson, Joseph L.; Muckle, Gina

    2014-01-01

    Background Because of their geographical location and traditional lifestyle, Canadian Inuit children are highly exposed to polychlorinated biphenyls (PCBs) and lead (Pb), environmental contaminants that are thought to affect fetal and child growth. We examined the associations of these exposures with the fetal and postnatal growth of Inuit children. Methods We conducted a prospective cohort study among Inuit from Nunavik (Arctic Québec). Mothers were recruited at their first prenatal visit; children (n = 290) were evaluated at birth and at 8–14 years of age. Concentrations of PCB 153 and Pb were determined in umbilical cord and child blood. Weight, height and head circumference were measured at birth and during childhood. Results Cord blood PCB 153 concentrations were not associated with anthropometric measurements at birth or school age, but child blood PCB 153 concentrations were associated with reduced weight, height and head circumference during childhood. There was no association between cord Pb levels and anthropometric outcomes at birth, but cord blood Pb was related to smaller height and a tendency to a smaller head circumference during childhood. Interpretation Our results suggest that chronic exposure to PCBs during childhood is negatively associated with skeletal growth and weight, while prenatal Pb exposure is related to reduce growth during childhood. This study is the first to link prenatal Pb exposure to poorer growth in school-age children. PMID:25042032

  14. Structural equation modeling and nested ANOVA: Effects of lead exposure on maternal and fetal growth in rats

    SciTech Connect

    Hamilton, J.D. ); O'Flaherty, E.J.; Shukla, R.; Gartside, P.S. ); Ross, R. )

    1994-01-01

    This study provided an assessment of the effects of lead on early growth in rats based on structural equation modeling and nested analysis of variance (ANOVA). Structural equation modeling showed that lead in drinking water (250, 500, or 1000 ppm) had a direct negative effect on body weight and tail length (i.e., growth) in female rats during the first week of exposure. During the following 2 weeks of exposure, high correlation between growth measurements taken over time resulted in reduced early postnatal growth. By the fourth week of exposure, reduced growth was not evident. Mating began after 8 weeks of exposure, and exposure continued during gestation. Decreased fetal body weight was detected when the effects of litter size, intrauterine position, and sex were controlled in a nested ANOVA. Lead exposure did not appear to affect fetal skeletal development, possibly because lead did not alter maternal serum calcium and phosphorus levels. The effect of lead on individual fetal body weight suggests that additional studies are needed to examine the effect of maternal lead exposure on fetal development and early postnatal growth. 24 refs., 4 figs., 6 tabs.

  15. Alcohol use in pregnancy, craniofacial features, and fetal growth.

    PubMed Central

    Rostand, A; Kaminski, M; Lelong, N; Dehaene, P; Delestret, I; Klein-Bertrand, C; Querleu, D; Crepin, G

    1990-01-01

    STUDY OBJECTIVE--The aim was to study the relationship between the level of alcohol consumption in pregnancy and craniofacial characteristics of the neonate. DESIGN--This was a prospective survey of a sample of pregnant women, stratified on prepregnancy level of alcohol consumption. SETTING--The study was carried out at the public antenatal clinic of Roubaix maternity hospital. PARTICIPANTS--During an eight month period, 684 women (89% of those eligible) were interviewed in a standardised way at their first antenatal clinic visit. Of these, all who were suspected of being alcoholic or heavy drinkers (at least 21 drinks per week) were selected for follow up, as was a subsample of light (0-6 drinks per week) and moderate (7-20 drinks per week) drinkers. Of 347 women selected in this way, 202 had their infants assessed by a standardised morphological examination. MEASUREMENTS AND AND MAIN RESULTS--Suggestive craniofacial characteristics of the infants, present either in isolation or in association with growth retardation ("fetal alcohol effects"), were compared in relation to maternal alcohol consumption (alcoholic 12%; heavy drinking 24%; moderate drinking 28%; light drinking 36%). No differences were found between light and moderate drinkers. Infants born to alcoholics had a greater number of craniofacial characteristics and the proportion with features compatible with fetal alcohol effects was higher. There was a similar trend for infants of heavy drinkers. Infants of heavy drinkers who had decreased their alcohol consumption during pregnancy had fewer craniofacial features. Infants of heavy smokers were also found to have increased numbers of craniofacial characteristics. CONCLUSIONS--Craniofacial morphology could be a sensitive indicator of alcohol exposure in utero. Altered morphology is usually considered specific for alcohol exposure, but the relation observed with smoking needs further exploration. PMID:2277252

  16. Sildenafil citrate for the management of fetal growth restriction and oligohydramnios

    PubMed Central

    Choudhary, Rana; Desai, Kavita; Parekh, Hetal; Ganla, Kedar

    2016-01-01

    Fetal growth restriction (FGR) and preeclampsia are the major causes of neonatal morbidity and mortality, which affect up to 8% of all pregnancies. The pathogenesis in FGR is an abnormal trophoblastic invasion leading to compromised uteroplacental circulation. However, in spite of this understanding and identification of high-risk patients, the management options are limited. There are some new studies which have demonstrated the role of sildenafil citrate in improving vasodilatation of small myometrial vessels and therefore improvement in amniotic fluid index, fetal weight, and even uterine and umbilical artery Doppler patterns. We report here the case of a 31-year-old female with infertility and preconceptional thin endometrium responding well to sildenafil citrate, followed by conception. However, she presented with an early-onset FGR at 26 weeks of gestation, and again after treatment with sildenafil citrate, showed improvement in amniotic fluid index and fetal weight, finally resulting in delivery of a full-term healthy baby with uneventful neonatal course. PMID:27563258

  17. Sildenafil citrate for the management of fetal growth restriction and oligohydramnios.

    PubMed

    Choudhary, Rana; Desai, Kavita; Parekh, Hetal; Ganla, Kedar

    2016-01-01

    Fetal growth restriction (FGR) and preeclampsia are the major causes of neonatal morbidity and mortality, which affect up to 8% of all pregnancies. The pathogenesis in FGR is an abnormal trophoblastic invasion leading to compromised uteroplacental circulation. However, in spite of this understanding and identification of high-risk patients, the management options are limited. There are some new studies which have demonstrated the role of sildenafil citrate in improving vasodilatation of small myometrial vessels and therefore improvement in amniotic fluid index, fetal weight, and even uterine and umbilical artery Doppler patterns. We report here the case of a 31-year-old female with infertility and preconceptional thin endometrium responding well to sildenafil citrate, followed by conception. However, she presented with an early-onset FGR at 26 weeks of gestation, and again after treatment with sildenafil citrate, showed improvement in amniotic fluid index and fetal weight, finally resulting in delivery of a full-term healthy baby with uneventful neonatal course. PMID:27563258

  18. The impact of a human IGF-II analog ([Leu27]IGF-II) on fetal growth in a mouse model of fetal growth restriction

    PubMed Central

    Charnock, Jayne C.; Dilworth, Mark R.; Aplin, John D.; Sibley, Colin P.; Westwood, Melissa

    2015-01-01

    Enhancing placental insulin-like growth factor (IGF) availability appears to be an attractive strategy for improving outcomes in fetal growth restriction (FGR). Our approach was the novel use of [Leu27]IGF-II, a human IGF-II analog that binds the IGF-II clearance receptor IGF-IIR in fetal growth-restricted (FGR) mice. We hypothesized that the impact of [Leu27]IGF-II infusion in C57BL/6J (wild-type) and endothelial nitric oxide synthase knockout (eNOS−/−; FGR) mice would be to enhance fetal growth and investigated this from mid- to late gestation; 1 mg·kg−1·day−1 [Leu27]IGF-II was delivered via a subcutaneous miniosmotic pump from E12.5 to E18.5. Fetal and placental weights recorded at E18.5 were used to generate frequency distribution curves; fetuses <5th centile were deemed growth restricted. Placentas were harvested for immunohistochemical analysis of the IGF system, and maternal serum was collected for measurement of exogenously administered IGF-II. In WT pregnancies, [Leu27]IGF-II treatment halved the number of FGR fetuses, reduced fetal(P = 0.028) and placental weight variations (P = 0.0032), and increased the numbers of pups close to the mean fetal weight (131 vs. 112 pups within 1 SD). Mixed-model analysis confirmed litter size to be negatively correlated with fetal and placental weight and showed that [Leu27]IGF-II preferentially improved fetal weight in the largest litters, as defined by number. Unidirectional 14CMeAIB transfer per gram placenta (System A amino acid transporter activity) was inversely correlated with fetal weight in [Leu27]IGF-II-treated WT animals (P < 0.01). In eNOS−/− mice, [Leu27]IGF-II reduced the number of FGR fetuses(1 vs. 5 in the untreated group). The observed reduction in FGR pup numbers in both C57 and eNOS−/− litters suggests the use of this analog as a means of standardizing and rescuing fetal growth, preferentially in the smallest offspring. PMID:26530156

  19. The impact of a human IGF-II analog ([Leu27]IGF-II) on fetal growth in a mouse model of fetal growth restriction.

    PubMed

    Charnock, Jayne C; Dilworth, Mark R; Aplin, John D; Sibley, Colin P; Westwood, Melissa; Crocker, Ian P

    2016-01-01

    Enhancing placental insulin-like growth factor (IGF) availability appears to be an attractive strategy for improving outcomes in fetal growth restriction (FGR). Our approach was the novel use of [Leu(27)]IGF-II, a human IGF-II analog that binds the IGF-II clearance receptor IGF-IIR in fetal growth-restricted (FGR) mice. We hypothesized that the impact of [Leu(27)]IGF-II infusion in C57BL/6J (wild-type) and endothelial nitric oxide synthase knockout (eNOS(-/-); FGR) mice would be to enhance fetal growth and investigated this from mid- to late gestation; 1 mg·kg(-1)·day(-1) [Leu(27)]IGF-II was delivered via a subcutaneous miniosmotic pump from E12.5 to E18.5. Fetal and placental weights recorded at E18.5 were used to generate frequency distribution curves; fetuses <5th centile were deemed growth restricted. Placentas were harvested for immunohistochemical analysis of the IGF system, and maternal serum was collected for measurement of exogenously administered IGF-II. In WT pregnancies, [Leu(27)]IGF-II treatment halved the number of FGR fetuses, reduced fetal(P = 0.028) and placental weight variations (P = 0.0032), and increased the numbers of pups close to the mean fetal weight (131 vs. 112 pups within 1 SD). Mixed-model analysis confirmed litter size to be negatively correlated with fetal and placental weight and showed that [Leu(27)]IGF-II preferentially improved fetal weight in the largest litters, as defined by number. Unidirectional (14C)MeAIB transfer per gram placenta (System A amino acid transporter activity) was inversely correlated with fetal weight in [Leu(27)]IGF-II-treated WT animals (P < 0.01). In eNOS(-/-) mice, [Leu(27)]IGF-II reduced the number of FGR fetuses(1 vs. 5 in the untreated group). The observed reduction in FGR pup numbers in both C57 and eNOS(-/-) litters suggests the use of this analog as a means of standardizing and rescuing fetal growth, preferentially in the smallest offspring. PMID:26530156

  20. Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation

    PubMed Central

    Solano, María Emilia; Kowal, Mirka Katharina; O’Rourke, Greta Eugenia; Horst, Andrea Kristina; Modest, Kathrin; Plösch, Torsten; Barikbin, Roja; Remus, Chressen Catharina; Berger, Robert G.; Jago, Caitlin; Ho, Hoang; Sass, Gabriele; Parker, Victoria J.; Lydon, John P.; DeMayo, Francesco J.; Hecher, Kurt; Karimi, Khalil; Arck, Petra Clara

    2015-01-01

    Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies in Western societies. IUGR is a strong predictor of reduced short-term neonatal survival and impairs long-term health in children. Placental insufficiency is often associated with IUGR; however, the molecular mechanisms involved in the pathogenesis of placental insufficiency and IUGR are largely unknown. Here, we developed a mouse model of fetal-growth restriction and placental insufficiency that is induced by a midgestational stress challenge. Compared with control animals, pregnant dams subjected to gestational stress exhibited reduced progesterone levels and placental heme oxygenase 1 (Hmox1) expression and increased methylation at distinct regions of the placental Hmox1 promoter. These stress-triggered changes were accompanied by an altered CD8+ T cell response, as evidenced by a reduction of tolerogenic CD8+CD122+ T cells and an increase of cytotoxic CD8+ T cells. Using progesterone receptor– or Hmox1-deficient mice, we identified progesterone as an upstream modulator of placental Hmox1 expression. Supplementation of progesterone or depletion of CD8+ T cells revealed that progesterone suppresses CD8+ T cell cytotoxicity, whereas the generation of CD8+CD122+ T cells is supported by Hmox1 and ameliorates fetal-growth restriction in Hmox1 deficiency. These observations in mice could promote the identification of pregnancies at risk for IUGR and the generation of clinical interventional strategies. PMID:25774501

  1. Phthalate levels in cord blood are associated with preterm delivery and fetal growth parameters in Chinese women.

    PubMed

    Huang, Yujing; Li, Junnan; Garcia, Jose M; Lin, Hui; Wang, Yanzhou; Yan, Ping; Wang, Lingqiao; Tan, Yao; Luo, Jiaohua; Qiu, Zhiqun; Chen, Ji-an; Shu, Weiqun

    2014-01-01

    Data concerning the effects of phthalate exposure on preterm delivery and fetal growth are limited in humans. In this paper, we assessed the relationship between 15 phthalate levels in cord blood and preterm delivery and fetal growth parameters in 207 Chinese women going into labor. Exposure to phthalates except DCHP was associated with gestational age reduction and preterm delivery (p<0.05). There were associations between phthalates and fetal growth parameters, many of which disappeared when analyses were adjusted for gestational age, especially in male infants (Only DEEP was associated with birth weight; DEP, DNHP, BBP, DNP with abdominal circumference; DEP, DBP, DCHP, DEHP with femur length in female infants. And DPP, DBEP was associated with birth length in male infants. p<0.05). This study indicates that prenatal exposure to phthalates is associated with younger gestational age and preterm delivery. Also, phthalate exposure may adversely affect fetal growth parameters via gestational age reduction and preterm delivery with a significant gender effect. PMID:24503621

  2. Perinatal programming of childhood asthma: early fetal size, growth trajectory during infancy, and childhood asthma outcomes.

    PubMed

    Turner, Steve

    2012-01-01

    The "fetal origins hypothesis" or concept of "developmental programming" suggests that faltering fetal growth and subsequent catch-up growth are implicated in the aetiology of cardiovascular disease. Associations between reduced birth weight, rapid postnatal weight gain, and asthma suggest that there are fetal origins to respiratory disease. The present paper first summarises the literature relating birth weight and post natal growth trajectories to asthma outcomes. Second, issues regarding the interpretation of antenatal fetal ultrasound measurements are discussed. Finally, recent reports linking antenatal measurement and growth trajectory to early childhood asthma outcomes are discussed. Understanding the nature and timing of factors which influence antenatal growth may give important insight into the antecedents of early-onset asthma with implications for interventions. PMID:22400043

  3. Growth and development symposium: Fetal programming in animal agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fetal programming is the ability to improve animal production and well-being by altering the maternal environment and holds enormous challenges and great opportunities for researchers and the animal industry. A symposium was held to provide an overview of current knowledge of fetal programming in re...

  4. Altered cytokine network in gestational diabetes mellitus affects maternal insulin and placental-fetal development.

    PubMed

    Wedekind, Lauren; Belkacemi, Louiza

    2016-01-01

    Pregnancy is characterized by an altered inflammatory profile, compared to the non-pregnant state with an adequate balance between pro-and anti-inflammatory cytokines needed for normal development. Cytokines are small secreted proteins expressed mainly in immunocompetent cells in the reproductive system. From early developmental stages onward, the secretory activity of placenta cells clearly contributes to increase local as well as systemic levels of cytokines. The placental production of cytokines may affect mother and fetus independently. In turn because of this unique position at the maternal fetal interface, the placenta is also exposed to the regulatory influence of cytokines from maternal and fetal circulations, and hence, may be affected by changes in any of these. Gestational diabetes mellitus (GDM) is associated with an overall alteration of the cytokine network. This review discusses the changes that occur in cytokines post GDM and their negative effects on maternal insulin and placental-fetal development. PMID:27230834

  5. Fetal Hemodynamics and Fetal Growth Indices by Ultrasound in Late Pregnancy and Birth Weight in Gestational Diabetes Mellitus

    PubMed Central

    Liu, Fang; Liu, Yong; Lai, Ya-Ping; Gu, Xiao-Ning; Liu, Dong-Mei; Yang, Min

    2016-01-01

    Background: The offspring of women with gestational diabetes mellitus (GDM) are prone to macrosomia. However, birth weight is difficult to be correctly estimated by ultrasound because of fetal asymmetric growth characteristics. This study aimed to investigate the correlations between fetal hemodynamics, fetal growth indices in late pregnancy, and birth weight in GDM. Methods: A total of 147 women with GDM and 124 normal controls (NC) were enrolled in this study. Fetal hemodynamic indices, including the systolic/diastolic ratio (S/D), resistance index (RI), pulsatility index (PI) of umbilical artery (UA), middle cerebral artery (MCA), and renal artery (RA), were collected. Fetal growth indices, including biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length, were also measured by ultrasound. Birth weight, newborn gender, and maternal clinical data were collected. Results: The independent samples t-test showed that BPD, HC, and AC were larger in GDM than in NC (P < 0.05). Fetal hemodynamic indices of the UA and MCA were lower (P < 0.05), but those of the RA were higher (P < 0.001) in GDM than in NC. Birth weight was higher in GDM than in NC (P < 0.001). Pearson's correlation analysis showed that hemodynamic indices of the UA were negatively correlated with birth weight, BPD, HC, and AC in both groups (P < 0.05). MCA (S/D, PI, and RI) was negatively correlated with birth weight, HC, and AC in GDM (r = −0.164, −0.206, −0.200, −0.226, −0.189, −0.179, −0.196, −0.177, and − 0.172, respectively, P < 0.05), but there were no correlations in NC (P > 0.05). RA (S/D, PI, and RI) was positively correlated with birth weight in GDM (r = 0.168, 0.207, and 0.184, respectively, P < 0.05), but there were no correlations in NC (P > 0.05). Conclusion: Fetal hemodynamic indices in late pregnancy might be helpful for estimating newborn birth weight in women with GDM. PMID:27569240

  6. Exposure to Bisphenol A and Phthalates during Pregnancy and Ultrasound Measures of Fetal Growth in the INMA-Sabadell Cohort

    PubMed Central

    Casas, Maribel; Valvi, Damaskini; Ballesteros-Gomez, Ana; Gascon, Mireia; Fernández, Mariana F.; Garcia-Esteban, Raquel; Iñiguez, Carmen; Martínez, David; Murcia, Mario; Monfort, Nuria; Luque, Noelia; Rubio, Soledad; Ventura, Rosa; Sunyer, Jordi; Vrijheid, Martine

    2015-01-01

    Background: Prenatal exposure to bisphenol A (BPA) and phthalates may affect fetal growth; however, previous findings are inconsistent and based on few studies. Objectives: We assessed whether prenatal exposure to BPA and phthalates was associated with fetal growth in a Spanish birth cohort of 488 mother–child pairs. Methods: We measured BPA and eight phthalates [four di(2-ethylhexyl) phthalate metabolites (DEHPm), mono-benzyl phthalate (MBzP), and three low-molecular-weight phthalate metabolites (LMWPm)] in two spot-urine samples collected during the first and third trimester of pregnancy. We estimated growth curves for femur length (FL), head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD), and estimated fetal weight (EFW) during pregnancy (weeks 12–20 and 20–34), and for birth weight, birth length, head circumference at birth, and placental weight. Results: Overall, results did not support associations of exposure to BPA or DEHPm during pregnancy with fetal growth parameters. Prenatal MBzP exposure was positively associated with FL at 20–34 weeks, resulting in an increase of 3.70% of the average FL (95% CI: 0.75, 6.63%) per doubling of MBzP concentration. MBzP was positively associated with birth weight among boys (48 g; 95% CI: 6, 90) but not in girls (–27 g; 95% CI: –79, 25) (interaction p-value = 0.04). The LMWPm mono-n-butyl phthalate (MnBP) was negatively associated with HC at 12–20 pregnancy weeks [–4.88% of HC average (95% CI: –8.36, –1.36%)]. Conclusions: This study, one of the first to combine repeat exposure biomarker measurements and multiple growth measures during pregnancy, finds little evidence of associations of BPA or phthalate exposures with fetal growth. Phthalate metabolites MBzP and MnBP were associated with some fetal growth parameters, but these findings require replication. Citation: Casas M, Valvi D, Ballesteros-Gomez A, Gascon M, Fernández MF, Garcia-Esteban R, Iñiguez C, Martínez D

  7. Relation of FTO gene variants to fetal growth trajectories: Findings from the Southampton Women's survey

    PubMed Central

    Barton, S.J.; Mosquera, M.; Cleal, J.K.; Fuller, A.S.; Crozier, S.R.; Cooper, C.; Inskip, H.M.; Holloway, J.W.; Lewis, R.M.; Godfrey, K.M.

    2016-01-01

    Introduction Placental function is an important determinant of fetal growth, and fetal growth influences obesity risk in childhood and adult life. Here we investigated how FTO and MC4R gene variants linked with obesity relate to patterns of fetal growth and to placental FTO expression. Methods Southampton Women's Survey children (n = 1990) with measurements of fetal growth from 11 to 34 weeks gestation were genotyped for common gene variants in FTO (rs9939609, rs1421085) and MC4R (rs17782313). Linear mixed-effect models were used to analyse relations of gene variants with fetal growth. Results Fetuses with the rs9939609 A:A FTO genotype had faster biparietal diameter and head circumference growth velocities between 11 and 34 weeks gestation (by 0.012 (95% CI 0.005 to 0.019) and 0.008 (0.002–0.015) standard deviations per week, respectively) compared to fetuses with the T:T FTO genotype; abdominal circumference growth velocity did not differ between genotypes. FTO genotype was not associated with placental FTO expression, but higher placental FTO expression was independently associated with larger fetal size and higher placental ASCT2, EAAT2 and y + LAT2 amino acid transporter expression. Findings were similar for FTO rs1421085, and the MC4R gene variant was associated with the fetal growth velocity of head circumference. Discussion FTO gene variants are known to associate with obesity but this is the first time that the risk alleles and placental FTO expression have been linked with fetal growth trajectories. The lack of an association between FTO genotype and placental FTO expression adds to emerging evidence of complex biology underlying the association between FTO genotype and obesity. PMID:26907388

  8. Uteroplacental Adenovirus Vascular Endothelial Growth Factor Gene Therapy Increases Fetal Growth Velocity in Growth-Restricted Sheep Pregnancies

    PubMed Central

    Wallace, Jacqueline M.; Aitken, Raymond P.; Milne, John S.; Mehta, Vedanta; Martin, John F.; Zachary, Ian C.; Peebles, Donald M.; David, Anna L.

    2014-01-01

    Abstract Fetal growth restriction (FGR) occurs in ∼8% of pregnancies and is a major cause of perinatal mortality and morbidity. There is no effective treatment. FGR is characterized by reduced uterine blood flow (UBF). In normal sheep pregnancies, local uterine artery (UtA) adenovirus (Ad)-mediated overexpression of vascular endothelial growth factor (VEGF) increases UBF. Herein we evaluated Ad.VEGF therapy in the overnourished adolescent ewe, an experimental paradigm in which reduced UBF from midgestation correlates with reduced lamb birthweight near term. Singleton pregnancies were established using embryo transfer in adolescent ewes subsequently offered a high intake (n=45) or control intake (n=12) of a complete diet to generate FGR or normal fetoplacental growth, respectively. High-intake ewes were randomized midgestation to receive bilateral UtA injections of 5×1011 particles Ad.VEGF-A165 (n=18), control vector Ad.LacZ (n=14), or control saline (n=13). Fetal growth/well-being were evaluated using serial ultrasound. UBF was monitored using indwelling flowprobes until necropsy at 0.9 gestation. Vasorelaxation, neovascularization within the perivascular adventitia, and placental mRNA expression of angiogenic factors/receptors were examined using organ bath analysis, anti-vWF immunohistochemistry, and qRT-PCR, respectively. Ad.VEGF significantly increased ultrasonographic fetal growth velocity at 3–4 weeks postinjection (p=0.016–0.047). At 0.9 gestation fewer fetuses were markedly growth-restricted (birthweight >2SD below contemporaneous control-intake mean) after Ad.VEGF therapy. There was also evidence of mitigated fetal brain sparing (lower biparietal diameter-to-abdominal circumference and brain-to-liver weight ratios). No effects were observed on UBF or neovascularization; however, Ad.VEGF-transduced vessels demonstrated strikingly enhanced vasorelaxation. Placental efficiency (fetal-to-placental weight ratio) and FLT1/KDR mRNA expression were

  9. FETAL DEXAMETHASONE EXPOSURE ACCELERATES DEVELOPMENT OF RENAL FUNCTION: RELATIONSHIP TO DOSE, CELL DIFFERENTIATION AND GROWTH INHIBITION

    EPA Science Inventory

    Fetal exposure to high doses of glucocorticoids slows cellular development and impairs organ performance, in association with growth retardation. evertheless, low doses of glucocorticoids may enhance cell differentiation and accelerate specific functions. he current study examine...

  10. Fetal urinoma and prenatal hydronephrosis: how is renal function affected?

    PubMed Central

    Oktar, Tayfun; Salabaş, Emre; Kalelioğlu, İbrahim; Atar, Arda; Ander, Haluk; Ziylan, Orhan; Has, Recep; Yüksel, Atıl

    2013-01-01

    Objective: In our study, the functional prognosis of kidneys with prenatal urinomas were investigated. Material and methods: Between 2006 and 2010, fetal urinomas were detected in 19 fetuses using prenatal ultrasonography (US), and the medical records were reviewed retrospectively. Of the 19 cases, the follow-up data were available for 10 fetuses. The gestational age at diagnosis, prognosis of urinomas, clinical course and renal functions were recorded. Postnatal renal functions were assessed with renal scintigraphy. Results: Unilateral urinomas and increased parenchyma echogenicity in the ipsilateral kidney were detected in all of the fetuses. Of the 10 fetuses with follow-up data, the option of termination was offered in 6 cases of anhydramnios, including 3 cases with signs of infravesical obstruction (a possible posterior urethral valve (PUV) and poor prognostic factors and 3 cases with unilateral hydronephrosis and increased echogenicity in the contralateral kidney. Only one family agreed the termination. The other 5 fetuses died during the early postnatal period. The average postnatal follow-up period in the 4 surviving fetuses was 22.5 months (8–38 months). One patient with a PUV underwent ablation surgery during the early postnatal period. In the postnatal period, none of the 4 kidneys that were ipsilateral to the urinoma were functional on scintigraphic evaluation. The urinomas disappeared in 3 cases. Nephrectomy was performed in one case due to recurrent urinary tract infections. Conclusion: In our study, no function was detected in the ipsilateral kidney of surviving patients with urinomas. Upper urinary tract dilatation accompanied by a urinoma is a poor prognostic factor for renal function. PMID:26328088

  11. Fetal growth and maternal exposure to particulate matter during pregnancy.

    PubMed Central

    Dejmek, J; Selevan, S G; Benes, I; Solanský, I; Srám, R J

    1999-01-01

    Prior studies reported an association between ambient air concentrations of total suspended particles and SO2 during pregnancy and adverse pregnancy outcomes. We examined the possible impact of particulate matter up to 10 microm (PM10) and up to 2.5 microm (PM2. 5) in size on intrauterine growth retardation (IUGR) risk in a highly polluted area of Northern Bohemia (Teplice District). The study group includes all singleton full-term births of European origin over a 2-year period in the Teplice District. Information on reproductive history, health, and lifestyle was obtained from maternal questionnaires. The mean concentrations of pollutants for each month of gestation were calculated using continuous monitoring data. Three intervals (low, medium, and high) were constructed for each pollutant (tertiles). Odds ratios (ORs) for IUGR for PM10 and PM2.5 levels were generated using logistic regression for each month of gestation after adjustment for potential confounding factors. Adjusted ORs for IUGR related to ambient PM10 levels in the first gestational month increased along the concentration intervals: medium 1.62 [95% confidence interval (CI), 1.07-2.46], high 2.64 (CI, 1.48-4.71). ORs for PM2.5 were 1.26 (CI, 0.81-1.95) and 2.11 (CI, 1. 20-3.70), respectively. No other associations of IUGR risk with particulate matter were found. Influence of particles or other associated air pollutants on fetal growth in early gestation is one of several possible explanations of these results. Timing of this effect is compatible with a current hypothesis of IUGR pathogenesis. Seasonal factors, one of the other possible explanations, is less probable. More investigation is required to examine these findings and alternative explanations. Images Figure 1 PMID:10339448

  12. Maternal constraint on fetal growth patterns in the rhesus monkey (Macaca mulatta): the intergenerational link between mothers and daughters.

    PubMed

    Price, K C; Coe, C L

    2000-02-01

    The gestational experience of a mother can influence the intrauterine environment she provides her own offspring, allowing prenatal events to affect pregnancy outcomes across several generations. Using a multigenerational database, we determined the reproductive consequences for rhesus monkeys descended from small-for-date and large-for-date birth weight matrilines. Both the maternal half-brothers and -sisters of large-for-date infants exhibited enhanced fetal growth, but for small-for-date probands, only the maternal half-sisters experienced significant intrauterine growth constraint. In addition, the growth-restricted females were at higher risk of poor reproductive outcomes in adulthood, and they perpetuated the matrilineal birth weight pattern by selectively constraining the fetal development of their daughters. Collectively, these findings suggest a mechanism for the intergenerational persistence of suboptimal pregnancy outcomes. PMID:10655322

  13. Elevated maternal serum folate in the third trimester and reduced fetal growth: a longitudinal study.

    PubMed

    Takimoto, Hidemi; Hayashi, Fumi; Kusama, Kaoru; Kato, Noriko; Yoshiike, Nobuo; Toba, Mikayo; Ishibashi, Tomoko; Miyasaka, Naoyuki; Kubota, Toshiro

    2011-01-01

    This study aimed to examine the association of fetal growth and elevated third trimester maternal serum folate due to folic acid (FA) supplement intake. Dietary intake, use of FA supplements, weight, and blood biomarkers of B-vitamins (serum folate, pyridoxal, vitamin B(12), and plasma total homocysteine) were observed in 33 healthy pregnant women at the third trimester (average gestational age 35 wk). Birth outcomes were assessed through hospital birth records. Infant anthropometry and maternal blood biomarkers were followed up at 1 mo postpartum. Fourteen women were taking FA supplements at the third trimester. Dietary intake was similar among FA users and non-users, but serum folate and pyridoxal were significantly higher in users (11.6±6.7 vs. 6.1±3.2 ng/mL, and 13.8±21.7 vs. 3.2±1.4 ng/mL, respectively). Plasma total homocystein (tHcy) was higher in non-users compared to users, but not significantly. Nine FA users and eight non-users had low serum vitamin B(12) values (<203 pg/mL). Nine FA users and all non-users had low serum pyridoxal values (<7.0 ng/mL). Infant birthweight was significantly lower in users compared to non-users (2,894±318 vs. 3,154±230 g). At 1 mo postpartum, infant weight and length were similar between FA users and non-users, but infant weight gain was larger in users. Higher serum folate values due to FA use in the third trimester was related to reduced fetal size. Excess FA under low vitamin B(6) and B(12) status may affect fetal growth. PMID:21697631

  14. Third trimester fetal growth and umbilical venous blood concentrations of IGF-1, IGFBP-1, and growth hormone at term.

    PubMed Central

    Spencer, J. A.; Chang, T. C.; Jones, J.; Robson, S. C.; Preece, M. A.

    1995-01-01

    Insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-1 (IGFBP-1) and growth hormone (GH) concentrations were measured in umbilical venous blood after delivery of 78 term newborn infants. Three groups of pregnancies were prospectively identified during the third trimester, according to fetal size and subsequent fetal growth, assessed by repeated ultrasound scans. Fetal size was considered either appropriate for gestational age (AGA) or small for gestational age (SGA), according to whether the first ultrasound measurement of abdominal circumference was equal to or above, or below the tenth centile for gestational age, respectively. Subsequent fetal growth was quantified by the change in the standard deviation score of abdominal circumference measurements between the first and last scans before delivery. Fetal growth retardation (FGR) was defined as a (negative) change in SD score of greater than -1.5. Eighteen SGA fetuses with evidence of FGR had significantly lower IGF-1 (median 0.05 (range 0.0-0.24) U/ml) at delivery than 35 SGA fetuses with normal growth (median 0.13 (range 0.0-0.94) U/ml; P < 0.05) and 25 AGA fetuses with normal growth (median 0.31 (range 0.0-0.84) U/ml; P < 0.05). The median concentration in the SGA group with normal growth was also significantly lower than that of the AGA group with normal growth. There were no significant differences in IGFBP-1 or GH concentrations between the three groups. These observations indicate that umbilical blood concentrations at birth of IGF-1, but not IGFBP-1 or GH, relate to both fetal size and fetal growth during the third trimester of pregnancies reaching term. PMID:7583612

  15. Cadmium-induced fetal growth retardation: protective effect of excess dietary zinc

    SciTech Connect

    Ahokas, R.A.; Dilts, P.V. Jr.; LaHaye, E.B.

    1980-01-15

    Reproductive performance and fetal cellular growth and development were investigated in laboratory rats chronically fed low drinking water levels (0, 1.0, 10.0, and 100 ..mu..g/ml) of cadmium (Cd), a known embryotoxic trace element, through gestation. Maternal daily food and water consumption, total weight gain, maternal weight gain, and feed efficiency all decreased with increasing Cd consumption. Term fetal weight was significantly less than that of control subjects only in the group fed 100 ..mu..g Cd/ml drinking water. Total litter weight, however, gradually decreased with increasing Cd concentration due to reduced litter size. Fetal growth retardation was a result of decreased cell division (DNA) and cell growth (protein/DNA ratio). When dams were pair-fed the average daily amount of food consumed by those fed 100 ..mu..g Cd/ml drinking water, maternal weight gain and fetal weight, DNA, and protein/DNA ratio were increased, but not to control levels. Dietary zinc (Zn) supplementation (5.0 ..mu..g/ml drinking water) of Cd-fed dams increased maternal food consumption and fetal weight, DNA, and protein/DNA ratio to control levels. Fetal levels of Cd were extremely low (0.038 to 0.095 ..mu..g/gm fetus) and did not increase with increasing Cd consumption, while placental Cd increased more than 10-fold. Fetal Zn was decreased in Cd-fed dams, and Zn supplementation increased fetal Zn levels, but not to control levels.These results suggest that Cd-induced fetal growth retardation is an indirect rather than a direct effect, resulting from reduced maternal food consumption and metabolism. Since dietary Zn blocks these effects, Cd may be a result of induced Zn deficiency.

  16. Urinary phthalate metabolite and bisphenol A associations with ultrasound and delivery indices of fetal growth.

    PubMed

    Ferguson, Kelly K; Meeker, John D; Cantonwine, David E; Chen, Yin-Hsiu; Mukherjee, Bhramar; McElrath, Thomas F

    2016-09-01

    Growth of the fetus is highly sensitive to environmental perturbations, and disruption can lead to problems in pregnancy as well as later in life. This study investigates the relationship between maternal exposure to common plasticizers in pregnancy and fetal growth. Participants from a longitudinal birth cohort in Boston were recruited early in gestation and followed until delivery. Urine samples were collected at up to four time points and analyzed for concentrations of phthalate metabolites and bisphenol A (BPA). Ultrasound scans were performed at four time points during pregnancy for estimation of growth parameters, and birthweight was recorded at delivery. Growth measures were standardized to a larger population. For the present analysis we examined cross-sectional and repeated measures associations between exposure biomarkers and growth estimates in 482 non-anomalous singleton pregnancies. Cross-sectional associations between urinary phthalate metabolites or BPA and growth indices were imprecise. However, in repeated measures models, we observed significant inverse associations between di-2-ethylhexyl phthalate (DEHP) metabolites and estimated or actual fetal weight. An interquartile range increase in summed DEHP metabolites was associated with a 0.13 standard deviation decrease in estimated or actual fetal weight (95% confidence interval=-0.23, -0.03). Associations were consistent across different growth parameters (e.g., head circumference, femur length), and by fetal sex. No consistent associations were observed for other phthalate metabolites or BPA. Maternal exposure to DEHP during pregnancy was associated with decreased fetal growth, which could have repercussive effects. PMID:27320326

  17. Clustering and classical analysis of clinical and placental phenotypes in fetal growth restriction and constitutional fetal smallness.

    PubMed

    Stanek, Jerzy; Biesiada, Jacek

    2016-06-01

    This study aims to determine whether placental examination can be used to distinguish between pathologic fetal growth restriction (FGR) and constitutional fetal smallness. Data were extracted from a clinicoplacental database of high risk pregnancies during the period 1994-2013. These data were used to compare the 590 consecutive cases having birth weights below the 10th percentile with the 5201 remaining cases having gestational ages ≥20 weeks. The authors analyzed 20 clinical and 46 placental phenotypes using classical statistics, clustering analysis, and multidimensional scaling. Of the low-birth-weight babies, the following types of cases were compared: Four categories of placental phenotypes (those with features of poor uteroplacental perfusion, postuterine placental pathology, chronic inflammation, and a mixed category) better defined the presumably true FGR than did the clinical phenotypes. Maternal smoking and oligohydramnios were associated with fewer abnormal placental phenotypes than were maternal hypertensive diseases and abnormal Dopplers. Early-onset cases of fetal smallness clustered with placental features of poor uteroplacental perfusion, whereas late onset cases did not. Placental examination helps to retrospectively distinguish constitutionally small fetuses from those that are pathologically growth restricted. The latter correlate best with the clinical risk for FGR and with early-onset FGR. This correlation may have prognostic significance for the child and for future pregnancies, since hypoxic placental lesions can occur without clinical risk factors but with a tendency to recur in future pregnancies. PMID:27238719

  18. Birth weight- and fetal weight-growth restriction: impact on neurodevelopment

    PubMed Central

    Streimish, Iris G.; Ehrenkranz, Richard A.; Allred, Elizabeth N.; O’Shea, T. Michael; Kuban, Karl C.K.; Paneth, Nigel; Leviton, Alan

    2013-01-01

    Background The newborn classified as growth-restricted on birth weight curves, but not on fetal weight curves, is classified prenatally as small for gestational age (SGA), but postnatally as appropriate for gestational age (AGA). Aims To see (1) to what extent the neurodevelopmental outcomes at 24 months corrected age differed among three groups of infants (those identified as SGA based on birth weight curves (B-SGA), those identified as SGA based on fetal weight curves only (F-SGA), and the referent group of infants considered AGA, (2) if girls and boys were equally affected by growth restriction, and (3) to what extent neurosensory limitations influenced what we found. Study design Observational cohort of births before the 28 week of gestation. Outcome measures: Mental Development Index (MDI) and Psychomotor Development Index (PDI) of the Bayley Scales of Infant Development II. Results B-SGA, but not F-SGA girls were at an increased risk of a PDI < 70 (OR=2.8; 95% CI: 1.5, 5.3) compared to AGA girls. B-SGA and F-SGA boys were not at greater risk of low developmental indices than AGA boys. Neurosensory limitations diminished associations among girls of B-SGA with low MDI, and among boys B-SGA and F-SGA with PDI < 70. Conclusions Only girls with the most severe growth restriction were at increased risk of neurodevelopmental impairment at 24 months corrected age in the total sample. Neurosensory limitations appear to interfere with assessing growth restriction effects in both girls and boys born preterm. PMID:22732241

  19. Parenteral Administration of l-Arginine Enhances Fetal Survival and Growth in Sheep Carrying Multiple Fetuses123

    PubMed Central

    Lassala, Arantzatzu; Bazer, Fuller W.; Cudd, Timothy A.; Datta, Sujay; Keisler, Duane H.; Satterfield, M. Carey; Spencer, Thomas E.; Wu, Guoyao

    2011-01-01

    The frequency of multiple fetuses has increased in human pregnancies due to assisted reproductive technologies. This translates into a greater proportion of premature and low-birth weight infants in the United States and worldwide. In addition, improvements in sheep breeding have resulted in new breeds with increased litter size but reduced fetal survival and birth weight. Currently, there are no treatments for preventing fetal growth restriction in humans or sheep (an established model for studying human fetal physiology) carrying multiple fetuses. In this work, Booroola Rambouillet ewes (FecB+/−) with 2–4 fetuses were fed a diet providing 100% of NRC-recommended nutrient requirements. Between d 100 and 121 of gestation, ewes received an i.v. bolus injection of either saline solution or 345 μmol arginine-HCl/kg body weight 3 times daily. The arginine treatment reduced (P < 0.05) the percentage of lambs born dead by 23% while increasing (P = 0.05) the percentage of lambs born alive by 59%. The i.v. administration of arginine enhanced (P < 0.05) the birth weights of quadruplets by 23% without affecting maternal body weight. The improved pregnancy outcome was associated with an increase in maternal plasma concentrations of arginine, ornithine, cysteine, and proline, as well as a decrease in circulating levels of ammonia and β-hydroxybutyrate. These novel results indicate that parenteral administration of arginine to prolific ewes ameliorated fetal mortality and growth retardation. Our findings provide support for experiments to assess the clinical use of arginine to enhance fetal growth and survival in women gestating multiple fetuses. PMID:21430253

  20. Prenatal maternal mental health and fetal growth restriction: a systematic review.

    PubMed

    Lewis, A J; Austin, E; Galbally, M

    2016-08-01

    Maternal mental disorders during pregnancy are associated with a range of adverse health outcomes for offspring. This systematic review examines studies reporting on the relationship between maternal depression, anxiety or stress during pregnancy and fetal growth measured during pregnancy using ultrasound biometry. A systematic search of PsycINFO, Medline, Scopus, Web of Science and Embase was conducted and 1575 records were identified, with nine studies meeting inclusion criteria gathering data from over 7000 participants. All studies measured depression, six examined anxiety and depression, and five examined all three exposures. The majority measured symptoms rather than clinically diagnosable disorder. Studies consistently reported significant associations between maternal mental health, particularly anxiety symptoms, and reduced fetal head growth. Other fetal growth parameters showed inconsistent findings. A number of studies suggest that cortisol dysregulation associated with maternal mental health may play a role in fetal growth restriction. However, heterogeneity in the timing of growth measurement, assessment measures used for mental health and inconsistencies in adjustment for confounders, limits the synthesis and interpretation of findings. Future studies should consider differences in the timing, intensity and duration of mental health symptoms over pregnancy and should employ diagnostic assessment of mental disorders. Fetal growth should be repeatedly measured and further work is needed to establish the biological mechanisms involved. PMID:26983652

  1. Fetal development

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002398.htm Fetal development To use the sharing features on this page, ... Cunningham FG, Leveno KJ, Bloom SL, et al. Fetal growth and development. In: Cunningham FG, Leveno KL, Bloom SL, et ...

  2. The role and interaction of imprinted genes in human fetal growth

    PubMed Central

    Moore, Gudrun E.; Ishida, Miho; Demetriou, Charalambos; Al-Olabi, Lara; Leon, Lydia J.; Thomas, Anna C.; Abu-Amero, Sayeda; Frost, Jennifer M.; Stafford, Jaime L.; Chaoqun, Yao; Duncan, Andrew J.; Baigel, Rachel; Brimioulle, Marina; Iglesias-Platas, Isabel; Apostolidou, Sophia; Aggarwal, Reena; Whittaker, John C.; Syngelaki, Argyro; Nicolaides, Kypros H.; Regan, Lesley; Monk, David; Stanier, Philip

    2015-01-01

    Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses

  3. Effects of Vivax Malaria Acquired Before 20 Weeks of Pregnancy on Subsequent Changes in Fetal Growth

    PubMed Central

    Machado Filho, Amantino C.; da Costa, Elenice P.; da Costa, Emely P.; Reis, Iracema S.; Fernandes, Emanoela A. C.; Paim, Bernardo V.; Martinez-Espinosa, Flor E.

    2014-01-01

    The resistance index (RI), pulsatility index (PI), fetal biometry, fetal heart rate (FHR), placental thickness, and hemoglobin levels were compared in 30 Plasmodium vivax-infected women between 14 and 20 weeks of pregnancy and a control group. Evaluations were performed at the moment of the malaria diagnosis and 26 weeks of pregnancy. The malaria group had lower levels of hemoglobin and greater placental thickness in both assessments, higher FHR in the first evaluation, and lower values on fetal biometry in the second assessment. There were no differences when comparing RI and PI on umbilical arteries between the two groups. Birth weight and height were lower in newborns in the malaria group than the control group. The results suggest that P. vivax infections at an earlier gestational age do not affect umbilical arteries blood flow but do affect fetal biometry in the second trimester of pregnancy and at birth. PMID:24420773

  4. Syncytiotrophoblast Functions and Fetal Growth Restriction during Placental Malaria: Updates and Implication for Future Interventions

    PubMed Central

    Kidima, Winifrida B.

    2015-01-01

    Syncytiotrophoblast lines the intervillous space of the placenta and plays important roles in fetus growth throughout gestation. However, perturbations at the maternal-fetal interface during placental malaria may possibly alter the physiological functions of syncytiotrophoblast and therefore growth and development of the embryo in utero. An understanding of the influence of placental malaria on syncytiotrophoblast function is paramount in developing novel interventions for the control of placental pathology associated with placental malaria. In this review, we discuss how malaria changes syncytiotrophoblast function as evidenced from human, animal, and in vitro studies and, further, how dysregulation of syncytiotrophoblast function may impact fetal growth in utero. We also formulate a hypothesis, stemming from epidemiological observations, that nutrition may override pathogenesis of placental malaria-associated-fetal growth restriction. We therefore recommend studies on nutrition-based-interventional approaches for high placental malaria-risk women in endemic areas. More investigations on the role of nutrition on placental malaria pathogenesis are needed. PMID:26587536

  5. Thyroid hormone is required for growth adaptation to pressure load in the ovine fetal heart.

    PubMed

    Segar, Jeffrey L; Volk, Ken A; Lipman, Michael H B; Scholz, Thomas D

    2013-03-01

    Thyroid hormone exerts broad effects on the adult heart, but little is known regarding the role of thyroid hormone in the regulation of cardiac growth early in development and in response to pathophysiological conditions. To address this issue, we determined the effects of fetal thyroidectomy on cardiac growth and growth-related gene expression in control and pulmonary-artery-banded fetal sheep. Fetal thyroidectomy (THX) and/or placement of a restrictive pulmonary artery band (PAB) were performed at 126 ± 1 days of gestation (term, 145 days). Four groups of animals [n = 5-6 in each group; (i) control; (ii) fetal THX; (iii) fetal PAB; and (iv) fetal PAB + THX] were monitored for 1 week prior to being killed. Fetal heart rate was significantly lower in the two THX groups compared with the non-THX groups, while mean arterial blood pressure was similar among groups. Combined left and right ventricle free wall + septum weight, expressed per kilogram of fetal weight, was significantly increased in PAB (6.27 ± 0.85 g kg(-1)) compared with control animals (4.72 ± 0.12 g kg(-1)). Thyroidectomy significantly attenuated the increase in cardiac mass associated with PAB (4.94 ± 0.13 g kg(-1)), while THX alone had no detectable effect on heart mass (4.95 ± 0.27 g kg(-1)). The percentage of binucleated cardiomyocytes was significantly decreased in THX and PAB +THX groups (∼16%) compared with the non-THX groups (∼27%). No differences in levels of activated Akt, extracellular signal-regulated kinase or c-Jun N-terminal kinase were detected among the groups. Markers of cellular proliferation but not apoptosis or expression of growth-related genes were lower in the THX and THX+ PAB groups relative to thyroid-intact animals. These findings suggest that in the late-gestation fetal heart, thyroid hormone has important cellular growth functions in both physiological and pathophysiological states. Specifically, thyroid hormone is required for adaptive fetal cardiac growth in

  6. Effects of Atypical Patterns of Fetal Growth on Newborn (NBAS) Behavior.

    ERIC Educational Resources Information Center

    Lester, Barry M.; And Others

    1986-01-01

    Newborn infants showing anthropometric signs of atypical patterns of fetal growth were compared with infants of appropriate growth on the Neonatal Behavioral Assessment Scale and on recently developed supplementary items. The sample consisted of lower-socioeconomic-status families in San Juan, Puerto Rico, and included teenage and older mothers.…

  7. In utero glucocorticoid (GLC) exposure reduces fetal skeletal muscle growth in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal undernutrition and stress expose the fetus to above normal levels of GLC and predispose to intrauterine growth restriction. The aim of this study was to determine if fetal GLC exposure impairs skeletal muscle growth independently of maternal undernutrition. Three groups (n=7/group) of timed...

  8. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences

    PubMed Central

    Dean, Afshan; van den Driesche, Sander; Wang, Yili; McKinnell, Chris; Macpherson, Sheila; Eddie, Sharon L.; Kinnell, Hazel; Hurtado-Gonzalez, Pablo; Chambers, Tom J.; Stevenson, Kerrie; Wolfinger, Elke; Hrabalkova, Lenka; Calarrao, Ana; Bayne, Rosey AL; Hagen, Casper P.; Mitchell, Rod T.; Anderson, Richard A.; Sharpe, Richard M.

    2016-01-01

    Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters. PMID:26813099

  9. Sex differences in fetal growth responses to maternal height and weight

    PubMed Central

    Gotsch, Francesca; Kusanovic, Juan Pedro; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A.; Romero, Roberto

    2012-01-01

    Sex differences in fetal growth have been reported, but how this happens remains to be described. It is unknown if fetal growth rates, a reflection of genetic and environmental factors, express sexually dimorphic sensitivity to the mother herself. This analysis investigated homogeneity of male and female growth responses to maternal height and weight. The study sample included 3495 uncomplicated singleton pregnancies followed longitudinally. Analytic models regressed fetal and neonatal weight on tertiles of maternal height and weight, and modification by sex was investigated (n=1814 males, n=1681 females) with birth gestational age, maternal parity and smoking as covariates. Sex modified the effects of maternal height and weight on fetal growth rates and birth weight. Among boys, tallest maternal height influenced fetal weight growth prior to 18 gestational weeks of age (p=0.006), pre-pregnancy maternal weight and BMI subsequently had influence (p<0.001); this was not found among girls. Additionally, interaction terms between sex, maternal height, and maternal weight identified that males were more sensitive to maternal weight among shorter mothers (p=0.003), and more responsive to maternal height among lighter mothers (p<=0.03), compared to females. Likewise, neonatal birth weight dimorphism varied by maternal phenotype. A male advantage of 60 grams occurred among neonates of the shortest and lightest mothers (p=0.08), compared to 150 and 191 grams among short and heavy mothers, and tall and light weight mothers, respectively (p=0.01). Sex differences in response to maternal size are underappreciated sources of variation in fetal growth studies and may reflect differential growth strategies. PMID:19950190

  10. Epidermal growth factor modulation of prostaglandins and nitrite biosynthesis in rat fetal membranes.

    PubMed

    Ribeiro, M L; Ogando, D; Farina, M; Franchi, A

    2004-01-01

    The production of prostaglandins (PGs) and nitric oxide (NO) by amnion tissue may play a significant role in parturition. It is thought that epidermal growth factor (EGF) may be one of the fetal signals that governs the initiation of labor. The aim of the present study was to investigate the effect of EGF in vivo on the PGs and nitrite production of rat fetal membranes. We have evaluated the regulation of PGs and nitrite production in rat fetal membranes ex vivo. The intra-uterine administration of EGF 500 ng in day 21 of pregnancy induced increases in PGE(2) (P<0.001) and PGF(2alpha) (P<0.01) compared to the control fetal membranes from pregnant rats on day 22. Also, this dose of EGF diminished nitrate production significantly (P<0.01). We found that fetal membranes at term (days 18-22 of gestation) expressed EGF-R. The NO donor, nitroprussiate 300 and 600 microM, elicited an inhibitory effect on the PGE(2) and PGF(2alpha) stimulated synthesis. On the other hand, indomethacin 10(-6) and 10(-7)M, a non-selective cyclooxygenase inhibitor, reverted the inhibitory effect exerted by EGF. Hence, rat fetal membranes were found to express epidermal growth factor receptors and, under the effect of EGF, PGs and nitrites production pathways interact probably to prevent a toxic effect caused by an exacerbated synthesis of these mediators. PMID:14643177

  11. The effects of maternal exercise on fetal oxygenation and feto-placental growth.

    PubMed

    Clapp, James F

    2003-09-22

    Sustained bouts of maternal exercise during pregnancy cause an acute reduction in oxygen and nutrient delivery to the placental site. The decreased flow also initiates a slight fall in intervillous and fetal pO2 which initiates a fetal sympathetic response. This, coupled with hemoconcentration and improved placental perfusion balance, maintains fetal tissue perfusion and oxygen uptake. Exercise training during pregnancy (regular bouts of sustained exercise) increases resting maternal (and perhaps fetal) plasma volume, intervillous space blood volume, cardiac output and placental function. These changes buffer the acute reductions in oxygen and nutrient delivery during exercise and probably increase 24 h nutrient delivery to the placental site. Thus, the effect of any given exercise regimen on fetal growth and size at birth is dependent on the type, frequency, intensity and duration of the exercise as well as the time point in the pregnancy when the exercise is performed. Maternal carbohydrate intake is yet another modifying factor. Beginning a moderate exercise regimen increases both anatomic markers of placental function and size at birth while maintaining a rigorous exercise regimen throughout pregnancy selectively reduces growth of the fetal fat organ and size at birth. Likewise, decreasing exercise performance in late-pregnancy increases size at birth while increasing exercise performance decreases it. Finally, the infants born of exercising women who eat carbohydrates which elevate 24 h blood glucose levels are large at birth irrespective of exercise performance. PMID:12965094

  12. Associations of Maternal Retinal Vasculature with Subsequent Fetal Growth and Birth Size

    PubMed Central

    Li, Ling-Jun; Aris, Izzuddin; Su, Lin Lin; Tint, Mya Thway; Cheung, Carol Yim-Lui; Ikram, M. Kamran; Gluckman, Peter; Godfrey, Keith M.; Tan, Kok Hian; Yeo, George; Yap, Fabian; Kwek, Kenneth; Saw, Seang-Mei; Chong, Yap-Seng; Wong, Tien-Yin; Lee, Yung Seng

    2015-01-01

    Objective We aimed to study the maternal retinal microvasculature at mid-trimester and its relationship with subsequent fetal growth and birth size. Methods We recruited 732 pregnant women aged 18-46 years in the first trimester with singleton pregnancies. All had retinal photography and fetal scan performed at 26-28 weeks gestation, and subsequent fetal scan at 32-34 weeks gestation. Infant anthropometric measurements were done at birth. Retinal microvasculature was measured using computer software from the retinal photographs. Results In multiple linear regression models, each 10 μm narrowing in maternal retinal arteriolar caliber was associated with decreases of 1.36 mm in fetal head circumference at 32-34 weeks gestation, as well as decreases of 1.50 mm and 2.30 mm in infant head circumference and birth length at delivery, respectively. Each standard deviation decrease in maternal retinal arteriolar fractal dimension was associated with decreases of 1.55 mm in fetal head circumference at 32-34 weeks gestation, as well as decreases of 1.08 mm and 46.42 g in infant head circumference and birth weight at delivery, respectively. Conclusions Narrower retinal arteriolar caliber and a sparser retinal vascular network in mothers, reflecting a suboptimal uteroplacental microvasculature during mid-pregnancy, were associated with poorer fetal growth and birth size. PMID:25909909

  13. Maternal testosterone and placental function: Effect of electroacupuncture on placental expression of angiogenic markers and fetal growth.

    PubMed

    Fornes, Romina; Hu, Min; Maliqueo, Manuel; Kokosar, Milana; Benrick, Anna; Carr, David; Billig, Håkan; Jansson, Thomas; Manni, Luigi; Stener-Victorin, Elisabet

    2016-09-15

    Women with polycystic ovary syndrome (PCOS) have elevated circulating androgens during pregnancy and are at an increased risk of adverse pregnancy outcomes. Here we tested the hypotheses that maternal androgen excess decrease placental and fetal growth, and placental expression of markers of steroidogenesis, angiogenesis and sympathetic activity, and that acupuncture with low-frequency electrical stimulation prevents these changes. Pregnant rats were exposed to vehicle or testosterone on gestational day (GD)15-19. Low-frequency electroacupuncture (EA) or handling, as a control for the EA procedure, was given to control or testosterone exposed dams on GD16-20. On GD21, blood pressure was measured and maternal blood, fetuses and placentas collected. Placental steroid receptor expression and proteins involved in angiogenic, neurotrophic and adrenergic signaling were analyzed. EA did not affect any variables in control rats except maternal serum corticosterone, which was reduced. EA in testosterone exposed dams compared with controls increased systolic pressure by 30%, decreased circulating norepinephrine and corticosterone, fetal and placental weight and placental VEGFR1 and proNGF protein expression, and increased the VEGFA/VEGFR1 ratio, mature NGF (mNGF) and the mNGF/proNGF ratio. In conclusion, low-frequency EA in control animals did not have any negative influence on any of the studied variables. In contrast, EA in pregnant dams exposed to testosterone increased blood pressure and impaired placental growth and function, leading to decreased fetal growth. PMID:27208621

  14. Compensatory Feto-Placental Upregulation of the Nitric Oxide System during Fetal Growth Restriction

    PubMed Central

    Pisaneschi, Silvia; Strigini, Francesca A. L.; Sanchez, Angel M.; Begliuomini, Silvia; Casarosa, Elena; Ripoli, Andrea; Ghirri, Paolo; Boldrini, Antonio; Fink, Bruno; Genazzani, Andrea R.; Coceani, Flavio; Simoncini, Tommaso

    2012-01-01

    Background Fetal Growth Restriction is often associated with a feto-placental vascular dysfunction conceivably involving endothelial cells. Our study aimed to verify this pathogenic role for feto-placental endothelial cells and, coincidentally, demonstrate any abnormality in the nitric oxide system. Methods Prenatal assessment of feto-placental vascular function was combined with measurement of nitric oxide (in the form of S-nitrosohemoglobin) and its nitrite byproduct, and of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. Umbilical vein endothelial cells were also harvested to determine their gene profile. The study comprised term pregnancies with normal (n = 40) or small-for-gestational-age (n = 20) newborns, small-for-gestational-age preterm pregnancies (n = 15), and bi-chorial, bi-amniotic twin pregnancies with discordant fetal growth (n = 12). Results Umbilical blood nitrite (p<0.001) and S-nitrosohemoglobin (p = 0.02) rose with fetal growth restriction while asymmetric dimethylarginine decreased (p = 0.003). Nitrite rise coincided with an abnormal Doppler profile from umbilical arteries. Fetal growth restriction umbilical vein endothelial cells produced more nitrite and also exhibited reciprocal changes in vasodilator (upwards) and vasoconstrictor (downwards) transcripts. Elevation in blood nitrite and S-nitrosohemoglobin persisted postnatally in the fetal growth restriction offspring. Conclusion Fetal growth restriction is typified by increased nitric oxide production during pregnancy and after birth. This response is viewed as an adaptative event to sustain placental blood flow. However, its occurrence may modify the endothelial phenotype and may ultimately represent an element of risk for cardiovascular disease in adult life. PMID:23028913

  15. Gestational Dietary Protein Is Associated with Sex Specific Decrease in Blood Flow, Fetal Heart Growth and Post-Natal Blood Pressure of Progeny

    PubMed Central

    2015-01-01

    Study Overview The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60d up to 23dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Conclusion and Significance Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system. PMID:25915506

  16. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess.

    PubMed

    Wyrwoll, Caitlin S; Noble, June; Thomson, Adrian; Tesic, Dijana; Miller, Mark R; Rog-Zielinska, Eva A; Moran, Carmel M; Seckl, Jonathan R; Chapman, Karen E; Holmes, Megan C

    2016-05-31

    Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a key role. We previously discovered that Hsd11b2(-/-) mice, lacking 11β-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2(+/+), Hsd11b2(+/-), and Hsd11b2(-/-) littermates from heterozygous (Hsd11b(+/-)) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2(-/-) fetuses did not undergo the normal gestational increase seen in Hsd11b2(+/+) littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11β-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2(-/-) fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2(-/-) fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2(-/-) fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction. PMID:27185937

  17. DOSE EFFECT OF GESTATIONAL ETHANOL EXPOSURE ON PLACENTATION AND FETAL GROWTH

    PubMed Central

    Gundogan, Fusun; Gilligan, Jeffrey; Qi, Wei; Chen, Eva; Naram, Rita; de la Monte, Suzanne M

    2015-01-01

    Introduction Prenatal ethanol exposure compromises fetal growth by impairing placentation. Invasive trophoblastic cells, which mediate placentation, express the insulin-IGF regulated gene, aspartyl-asparaginyl β-hydroxylase (ASPH), which has a critical role in cell motility and invasion. The aims of this study were to characterize effects of ethanol on trophoblastic cell motility, and assess ethanol dose -dependent impairments in placentation and fetal development. Methods Pregnant Long Evans dams were fed with isocaloric liquid diets containing 0%, 8%, 18% or 37% ethanol (caloric content) from gestation day (GD) 6 to GD18. Fetal development, placental morphology, density of invasive trophoblasts at the mesometrial triangle, as well as placental and mesometrial ASPH and Notch-1 protein expression were evaluated. Directional motility of control and ethanol-exposed HTR-8/SVneo cells was assessed by ATP Luminescence-Based assay. Results Severity of fetal growth impairment correlated with increasing doses of ethanol. Ethanol exposure produced dose-dependent alterations in branching morphogenesis at the labyrinthine zone, and inhibited physiological transformation of maternal arteries. ASPH and Notch-1 protein expression levels were reduced, corresponding with impairments in placentation. Discussion Prenatal ethanol exposure compromises fetal growth and placentation in a dose-responsive manner. Ethanol’s adverse effects on placental development are mediated by: 1) altered branching morphogenesis in labyrinthine zone; 2) suppression of invasive trophoblastic precursor cells; and 3) inhibition of trophoblastic cell adhesion and motility, corresponding with reduced ASPH and Notch-1 protein expression. PMID:25745824

  18. Implementing Prenatal Diagnosis Based on Cell-Free Fetal DNA: Accurate Identification of Factors Affecting Fetal DNA Yield

    PubMed Central

    Barrett, Angela N.; Zimmermann, Bernhard G.; Wang, Darrell; Holloway, Andrew; Chitty, Lyn S.

    2011-01-01

    Objective Cell-free fetal DNA is a source of fetal genetic material that can be used for non-invasive prenatal diagnosis. Usually constituting less than 10% of the total cell free DNA in maternal plasma, the majority is maternal in origin. Optimizing conditions for maximizing yield of cell-free fetal DNA will be crucial for effective implementation of testing. We explore factors influencing yield of fetal DNA from maternal blood samples, including assessment of collection tubes containing cell-stabilizing agents, storage temperature, interval to sample processing and DNA extraction method used. Methods Microfluidic digital PCR was performed to precisely quantify male (fetal) DNA, total DNA and long DNA fragments (indicative of maternal cellular DNA). Real-time qPCR was used to assay for the presence of male SRY signal in samples. Results Total cell-free DNA quantity increased significantly with time in samples stored in K3EDTA tubes, but only minimally in cell stabilizing tubes. This increase was solely due to the presence of additional long fragment DNA, with no change in quantity of fetal or short DNA, resulting in a significant decrease in proportion of cell-free fetal DNA over time. Storage at 4°C did not prevent these changes. Conclusion When samples can be processed within eight hours of blood draw, K3EDTA tubes can be used. Prolonged transfer times in K3EDTA tubes should be avoided as the proportion of fetal DNA present decreases significantly; in these situations the use of cell stabilising tubes is preferable. The DNA extraction kit used may influence success rate of diagnostic tests. PMID:21998643

  19. Organochlorine Compounds and Ultrasound Measurements of Fetal Growth in the INMA Cohort (Spain)

    PubMed Central

    Lopez-Espinosa, Maria-Jose; Murcia, Mario; Iñiguez, Carmen; Vizcaino, Esther; Costa, Olga; Fernández-Somoano, Ana; Basterrechea, Mikel; Lertxundi, Aitana; Guxens, Mònica; Gascon, Mireia; Goñi-Irigoyen, Fernando; Grimalt, Joan O.; Tardón, Adonina; Ballester, Ferran

    2015-01-01

    Background Several studies have reported decreases in birth size associated with exposure to organochlorine compounds (OCs), but uncertainties remain regarding the critical windows of prenatal exposure and the effects on fetal body segments. Objective We examined the relationship between prenatal OC concentrations and fetal anthropometry. Methods We measured 4,4´-dichlorodiphenyldichloroethylene (4,4´-DDE), hexachlorobenzene (HCB), and polychlorinated biphenyl (PCB) congeners (138, 153, and 180) in 2,369 maternal and 1,140 cord serum samples in four Spanish cohorts (2003–2008). We used linear mixed models to obtain longitudinal growth curves for estimated fetal weight (EFW), abdominal circumference (AC), biparietal diameter (BPD), and femur length (FL) adjusted by parental and fetal characteristics. We calculated standard deviation (SD) scores of growth at 0–12, 12–20, and 20–34 weeks of gestation as well as size at gestational week 34 for the four parameters. We studied the association between OCs and the fetal outcomes by cohort-specific linear models and subsequent meta-analyses. Results PCBs were associated with a reduction in AC up to mid-pregnancy, and BPD and FL from gestational week 20 onward. An inverse association was also found between HCB and AC growth in early pregnancy. The reduction of these parameters ranged from –4% to –2% for a doubling in the OC concentrations. No association between 4,4´-DDE and fetal growth was observed. Conclusions To our knowledge, this is the first study to report an association between prenatal exposure to some PCBs and HCB and fetal growth: AC during the first two trimesters of pregnancy, and BPD and FL later in pregnancy. Citation Lopez-Espinosa MJ, Murcia M, Iñiguez C, Vizcaino E, Costa O, Fernández-Somoano A, Basterrechea M, Lertxundi A, Guxens M, Gascon M, Goñi-Irigoyen F, Grimalt JO, Tardón A, Ballester F. 2016. Organochlorine compounds and ultrasound measurements of fetal growth in the INMA cohort

  20. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    SciTech Connect

    Ergaz, Zivanit; Shoshani-Dror, Dana; Guillemin, Claire; Neeman-azulay, Meytal; Fudim, Liza; Weksler-Zangen, Sarah; Stodgell, Christopher J.; Miller, Richard K.; Ornoy, Asher

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  1. ANG II modulation of cardiac growth and remodeling in immature fetal sheep.

    PubMed

    Sandgren, Jeremy; Scholz, Thomas D; Segar, Jeffrey L

    2015-06-01

    ANG II increases fetal blood pressure and stimulates fetal heart growth; however, little is known regarding its direct effects on cardiomyocytes in vivo. We sought to determine whether ANG II stimulates heart growth and cardiomyocyte hypertrophy and/or hyperplasia in utero in the immature fetal heart independent of the effects on cardiac afterload. In twin gestation, fetal sheep at ∼100 days gestation (term 145 days), one fetus received a chronic (6 days) infusion of ANG II alone (50 μg·kg(-1)·min(-1)) or ANG II plus nitroprusside (NTP) to attenuate the increase in blood pressure; noninstrumented twins served as controls. ANG II alone, but not ANG II + NTP resulted in a significant increase in heart mass (left and right ventricle + septum, corrected for body weight) compared with controls. ANG II, but not ANG II+NTP, also significantly increased cardiomyocyte area compared with control and increased the percentage of binucleated myocytes. ANG II with or without concomitant infusion of NTP increased cardiac PCNA expression, a marker of proliferation. Steady-state protein expression of terminal mitogen-activated protein kinases, cyclin B1, cyclin E1, and p21 were similar among groups. We conclude that in vivo, ANG II increases fetal cardiac mass via cardiomyocyte hypertrophy, differentiation, and to a lesser extent hyperplasia. The effects of ANG II on hypertrophy appear dependent upon the increase in blood pressure (mechanical load), whereas effects on proliferation are load-independent. PMID:25810382

  2. Spontaneous Preterm Delivery, Particularly with Reduced Fetal Growth, is Associated with DNA Hypomethylation of Tumor Related Genes

    PubMed Central

    Chen, Xinhua; Bai, Guang; Scholl, Theresa O

    2016-01-01

    Background Preterm delivery and sub-optimal fetal growth are associated with each other and affect both mother and infant. Our aim was to determine (i) whether there are detectable differences in DNA methylation between early and late gestation and (ii) whether changes in DNA methylation from entry are associated with spontaneous preterm delivery with and without reduced fetal growth. Methods We conducted a case-control study nested within a large prospective cohort. Gene specific methylation was measured by Methyl-Profiler PCR Array in a Human Breast Cancer Signature Panel of 24 genes from maternal peripheral leukocytes genomic DNA at entry and 3rd trimester (sampled at 16 and 30 weeks of gestation, respectively). Clonal bisulfite DNA sequencing was performed to confirm the changes in selected genes (CYP1B1, GADD45A and CXCL12). Multivariable analysis was used for data analysis. Results There was significantly decrease in DNA methylation in 15 of 24 genes during the 3rd trimester in cases of spontaneous preterm delivery (n=23) as compared to the controls (n=19) (p<0.05–p<0.01 for each gene). Similar results were observed by bisulfite sequencing for 3 genes. The change in DNA methylation between late and early gestation was significantly different in cases (overall decrease in methylation was −4.0 ± 1.5%) compared to the controls (overall increase in methylation was 12.6 ± 2.19%, p<0.0001). A graded pattern of DNA methylation was observed in 15 genes. Cases who delivered preterm with reduced fetal growth had the lowest level of methylation, cases delivering preterm without reduced fetal growth were next and term controls were highest in methylation (p for trend <0.05 to p<0.01 for each gene). Cases of preterm delivery also had significantly lower dietary choline intake. Conclusions These data suggest that epigenetic modification is associated with an increased risk of spontaneous preterm delivery, spontaneous preterm delivery with reduced fetal growth in

  3. MARKERS OF INDIVIDUAL SUSCEPTIBILITY AND OUTCOME RELATED TO FETAL AND INFANT GROWTH AND DEVELOPMENT

    EPA Science Inventory

    To evaluate whether exposures to environmental toxins and psychological stress were related to impaired fetal growth or other adverse pregnancy outcomes, we established a prospective epidemiologic study of 187 women who were pregnant and at or near the World Trade Center (...

  4. Dietary -carbamylglutamate and rumen-protected -arginine supplementation ameliorate fetal growth restriction in undernourished ewes.

    PubMed

    Zhang, H; Sun, L W; Wang, Z Y; Deng, M T; Zhang, G M; Guo, R H; Ma, T W; Wang, F

    2016-05-01

    This study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary -carbamylglutamate (NCG) and rumen-protected -Arg (RP-Arg) supplementation are effective in ameliorating fetal growth restriction in undernourished ewes. Beginning on d 35 of gestation, ewes were fed a diet providing 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations (50% NRC), 50% of NRC recommendations supplemented with 20 g/d RP-Arg (providing 10 g/d of Arg), and 50% of NRC recommendations supplemented with 5 g/d NCG product (providing 2.5 g/d of NCG). On d 110, maternal, fetal, and placental tissues and fluids were collected and weighed. Ewe weights were lower ( < 0.05) in nutrient-restricted ewes compared with adequately fed ewes. Maternal RP-Arg or NCG supplementation did not alter ( = 0.26) maternal BW in nutrient-restricted ewes. Weights of most fetal organs were increased ( < 0.05) in RP-Arg-treated and NCG-treated underfed ewes compared with 50% NRC-fed ewes. Supplementation of RP-Arg or NCG reduced ( < 0.05) concentrations of β-hydroxybutyrate, triglycerides, and ammonia in serum of underfed ewes but had no effect on concentrations of lactate and GH. Maternal RP-Arg or NCG supplementation markedly improved ( < 0.05) concentrations of AA (particularly arginine-family AA and branched-chain AA) and polyamines in maternal and fetal plasma and in fetal allantoic and amniotic fluids within nutrient-restricted ewes. These novel results indicate that dietary NCG and RP-Arg supplementation to underfed ewes ameliorated fetal growth restriction, at least in part, by increasing the availability of AA in the conceptus and provide support for its clinical use to ameliorate IUGR in humans and sheep industry production. PMID:27285704

  5. Timing and trajectories of fetal growth related to cognitive development in childhood.

    PubMed

    von Ehrenstein, Ondine S; Mikolajczyk, Rafael T; Zhang, Jun

    2009-12-01

    The authors investigated timing and trajectories of fetal growth in relation to childhood development in the National Institute of Child Health and Human Development-Scandinavian Study of Successive Small-for-Gestational Age Births (1986-1988) (n = 1,059). Fetal size was assessed by ultrasound at 17, 25, and 33 gestational weeks and at birth. Bayley Scales of Infant Development and the Wechsler Preschool and Primary Scale of Intelligence-Revised tests were conducted at ages 1 and 5 years, respectively, producing mental and psychomotor development indexes and verbal and performance intelligence quotients. Relative fetal size was calculated as a standard deviation score at each data point; growth trajectories were explored with longitudinal mixture models. Fetal size at 17, 25, and 33 weeks was positively associated with mental development index; larger size at 33 weeks and at birth was associated with higher verbal intelligence quotient scores (2.61, 95% confidence interval: 1.06, 4.15 and 1.90, 95% confidence interval: 0.67, 3.13 increase per 1 standard deviation score, respectively); findings were similar for performance intelligence quotient. Seven trajectories were identified; scores were lower for "small" and "medium-to-small" trajectories than for "medium" and "big" (representing normal size) trajectories: mental development index (P < 0.01), performance intelligence quotient (P < 0.001), and verbal intelligence quotient (P < 0.001). Overall, larger fetal size in the second and third trimesters was positively associated with childhood development. Fetal growth trajectories may matter beyond birth. PMID:19889710

  6. Enhanced or Reduced Fetal Growth Induced by Embryo Transfer into Smaller or Larger Breeds Alters Post-Natal Growth and Metabolism in Pre-Weaning Horses

    PubMed Central

    Peugnet, Pauline; Wimel, Laurence; Duchamp, Guy; Sandersen, Charlotte; Camous, Sylvaine; Guillaume, Daniel; Dahirel, Michèle; Dubois, Cédric; Jouneau, Luc; Reigner, Fabrice; Berthelot, Valérie; Chaffaux, Stéphane; Tarrade, Anne; Serteyn, Didier; Chavatte-Palmer, Pascale

    2014-01-01

    In equids, placentation is diffuse and nutrient supply to the fetus is determined by uterine size. This correlates with maternal size and affects intra-uterine development and subsequent post-natal growth, as well as insulin sensitivity in the newborn. Long-term effects remain to be described. In this study, fetal growth was enhanced or restricted through ET using pony (P), saddlebred (S) and draft (D) horses. Control P-P (n = 21) and S-S (n = 28) pregnancies were obtained by AI. Enhanced and restricted pregnancies were obtained by transferring P or S embryos into D mares (P-D, n = 6 and S-D, n = 8) or S embryos into P mares (S-P, n = 6), respectively. Control and experimental foals were raised by their dams and recipient mothers, respectively. Weight gain, growth hormones and glucose homeostasis were investigated in the foals from birth to weaning. Fetal growth was enhanced in P-D and these foals remained consistently heavier, with reduced T3 concentrations until weaning compared to P-P. P-D had lower fasting glucose from days 30 to 200 and higher insulin secretion than P-P after IVGTT on day 3. Euglycemic clamps in the immediate post-weaning period revealed no difference in insulin sensitivity between P-D and P-P. Fetal growth was restricted in S-P and these foals remained consistently lighter until weaning compared to S-D, with elevated T3 concentrations in the newborn compared to S-S. S-P exhibited higher fasting glycemia than S-S and S-D from days 30 to 200. They had higher maximum increment in plasma glucose than S-D after IVGTT on day 3 and clamps on day 200 demonstrated higher insulin sensitivity compared to S-D. Neither the restricted nor the enhanced fetal environment affected IGF-1 concentrations. Thus, enhanced and restricted fetal and post-natal environments had combined effects that persisted until weaning. They induced different adaptive responses in post-natal glucose metabolism: an early insulin-resistance was induced in

  7. Maternal Serum Analytes as Predictors of Fetal Growth Restriction with Different Degrees of Placental Vascular Dysfunction.

    PubMed

    Blitz, Matthew J; Rochelson, Burton; Vohra, Nidhi

    2016-06-01

    Abnormal levels of maternal serum analytes have been associated with fetal growth restriction (FGR) and preeclampsia secondary to placental vascular dysfunction. Accurately identifying the FGR fetuses at highest risk for adverse outcomes remains challenging. Placental function can be assessed by Doppler analysis of the maternal and fetal circulation. Although the combination of multiple abnormal maternal serum analytes and abnormal Doppler findings is strongly associated with adverse outcomes, the predictive value remains too low to be used as a screening test in a low-risk population. Stratification of cases based on the severity of Doppler abnormalities may improve predictive models. PMID:27235917

  8. Maternal Administration of Sildenafil Citrate Alters Fetal and Placental Growth and Fetal-Placental Vascular Resistance in the Growth-Restricted Ovine Fetus.

    PubMed

    Oyston, Charlotte; Stanley, Joanna L; Oliver, Mark H; Bloomfield, Frank H; Baker, Philip N

    2016-09-01

    Intrauterine growth restriction (IUGR) causes short- and long-term morbidity. Reduced placental perfusion is an important pathogenic component of IUGR; substances that enhance vasodilation in the uterine circulation, such as sildenafil citrate (sildenafil), may improve placental blood flow and fetal growth. This study aimed to examine the effects of sildenafil in the growth-restricted ovine fetus. Ewes carrying singleton pregnancies underwent insertion of vascular catheters, and then, they were randomized to receive uterine artery embolization (IUGR) or to a control group. Ewes in the IUGR group received a daily infusion of sildenafil (IUGR+SC; n=10) or vehicle (IUGR+V; n=8) for 21 days. The control group received no treatment (n=9). Umbilical artery blood flow was measured using Doppler ultrasound and the resistive index (RI) calculated. Fetal weight, biometry, and placental weight were obtained at postmortem after treatment completion. Umbilical artery RI in IUGR+V fell less than in controls; the RI of IUGR+SC was intermediate to that of the other 2 groups (mean±SEM for control versus IUGR+V versus IUGR+SC: ∆RI, 0.09±0.03 versus -0.01±0.02 versus 0.03±0.02; F(2, 22)=4.21; P=0.03). Compared with controls, lamb and placental weights were reduced in IUGR+V but not in IUGR+SC (control versus IUGR+V versus IUGR+SC: fetal weight, 4381±247 versus 3447±235 versus 3687±129 g; F(2, 24)=5.49; P=0.01 and placental weight: 559.7±35.0 versus 376.2±32.5 versus 475.2±42.5 g; F(2, 24)=4.64; P=0.01). Sildenafil may be a useful adjunct in the management of IUGR. An increase in placental weight and fall in fetal-placental resistance suggests that changes to growth are at least partly mediated by changes to placental growth rather than alterations in placental efficiency. PMID:27432857

  9. Role of lung fluid volume in growth and maturation of the fetal sheep lung.

    PubMed Central

    Moessinger, A C; Harding, R; Adamson, T M; Singh, M; Kiu, G T

    1990-01-01

    We studied the effects of alterations in lung fluid volume on growth and maturation of the fetal lung. In a chronic fetal sheep preparation, right fetal lung volume was decreased by drainage of lung fluid while the volume of the left lung was expanded by mainstem bronchus ligation leading to lung fluid retention. After an experimental period of 25 d (from 105 to 129 d of gestation, term = 145 d), the right (deflated) lung was significantly hypoplastic and contained less DNA than the controls; 175.15 +/- 55.18 vs. 346.77 +/- 61.97 mg, respectively; P less than 0.001. In contrast, the left (expanded) lung was significantly hyperplastic and contained more DNA than the controls; 390.74 +/- 103.53 vs. 238.85 +/- 33.32 mg, respectively; P = 0.001. Biochemical indices of lung maturation, including total phospholipids, phosphatidylcholine, and disaturated phosphatidylcholine content expressed per unit of tissue DNA, were no different when comparing the hypoplastic, hyperplastic, and control lungs. These findings demonstrate that fetal lung cell multiplication is influenced by local distension with lung fluid, while the biochemical maturation of fetal lung surfactant is under systemic control. Images PMID:2212011

  10. Prenatal Exposure to NO2 and Ultrasound Measures of Fetal Growth in the Spanish INMA Cohort

    PubMed Central

    Iñiguez, Carmen; Esplugues, Ana; Sunyer, Jordi; Basterrechea, Mikel; Fernández-Somoano, Ana; Costa, Olga; Estarlich, Marisa; Aguilera, Inmaculada; Lertxundi, Aitana; Tardón, Adonina; Guxens, Mònica; Murcia, Mario; Lopez-Espinosa, Maria-Jose; Ballester, Ferran

    2015-01-01

    Background Air pollution exposure during pregnancy has been associated with impaired fetal growth. However, few studies have measured fetal biometry longitudinally, remaining unclear as to whether there are windows of special vulnerability. Objective The aim was to investigate the impact of nitrogen dioxide (NO2) exposure on fetal and neonatal biometry in the Spanish INMA study. Methods Biparietal diameter (BPD), femur length (FL), abdominal circumference (AC), and estimated fetal weight (EFW) were evaluated for up to 2,478 fetuses in each trimester of pregnancy. Size at 12, 20, and 34 weeks of gestation and growth between these points, as well as anthropometry at birth, were assessed by SD scores derived using cohort-specific growth curves. Temporally adjusted land-use regression was used to estimate exposure to NO2 at home addresses for up to 2,415 fetuses. Associations were investigated by linear regression in each cohort and subsequent meta-analysis. Results A 10-μg/m3 increase in average exposure to NO2 during weeks 0–12 was associated with reduced growth at weeks 0–12 in AC (–2.1%; 95% CI: –3.7, –0.6) and EFW (–1.6%; 95% CI: –3.0, –0.3). The same exposure was inversely associated with reduced growth at weeks 20–34 in BPD (–2.6%; 95% CI: –3.9, –1.2), AC (–1.8%; 95% CI: –3.3, –0.2), and EFW (–2.1%; 95% CI: –3.7, –0.2). A less consistent pattern of association was observed for FL. The negative association of this exposure with BPD and EFW was significantly stronger in smoking versus nonsmoking mothers. Conclusions Maternal exposure to NO2 in early pregnancy was associated with reduced fetal growth based on ultrasound measures of growth during pregnancy and measures of size at birth. Citation Iñiguez C, Esplugues A, Sunyer J, Basterrechea M, Fernández-Somoano A, Costa O, Estarlich M, Aguilera I, Lertxundi A, Tardón A, Guxens M, Murcia M, Lopez-Espinosa MJ, Ballester F, on behalf of the INMA Project. 2016. Prenatal exposure

  11. Fetal, neonatal, infant, and child international growth standards: an unprecedented opportunity for an integrated approach to assess growth and development.

    PubMed

    Garza, Cutberto

    2015-07-01

    The recent publication of fetal growth and gestational age-specific growth standards by the International Fetal and Newborn Growth Consortium for the 21st Century Project and the previous publication by the WHO of infant and young child growth standards based on the WHO Multicentre Growth Reference Study enable evaluations of growth from ∼9 wk gestation to 5 y. The most important features of these projects are the prescriptive approach used for subject selection and the rigorous testing of the assertion that growth is very similar among geographically and ethnically diverse nonisolated populations when health, nutrition, and other care needs are met and the environment imposes minimal constraints on growth. Both studies documented that with adequate controls, the principal source of variability in growth during gestation and early childhood resides among individuals. Study sites contributed much less to observed variability. The agreement between anthropometric measurements common to both studies also is noteworthy. Jointly, these studies provide for the first time, to my knowledge, a conceptually consistent basis for worldwide and localized assessments and comparisons of growth performance in early life. This is an important contribution to improving the health care of children across key periods of growth and development, especially given the appropriate interest in pursuing "optimal" health in the "first 1000 d," i.e., the period covering fertilization/implantation, gestation, and postnatal life to 2 y of age. PMID:26178022

  12. Effect of placental factors on growth and function of the human fetal adrenal in vitro

    SciTech Connect

    Riopel, L.; Branchaud, C.L.; Goodyer, C.G.; Zweig, M.; Lipowski, L.; Adkar, V.; Lefebvre, Y. )

    1989-11-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: (1) maximal response to PM was 2-5 times greater; (2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; (3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland.

  13. Birth Weight, Intrauterine Growth Retardation and Fetal Susceptibility to Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Ladinig, Andrea; Foxcroft, George; Ashley, Carolyn; Lunney, Joan K.; Plastow, Graham; Harding, John C. S.

    2014-01-01

    The severity of porcine reproductive and respiratory syndrome was compared in pregnant gilts originating from high and low birth weight litters. One-hundred and eleven pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus on gestation day 85 (±1) were necropsied along with their fetuses 21 days later. Ovulation rates and litter size did not differ between groups, but fetuses from low birth weight gilts were shorter, lighter and demonstrated evidence of asymmetric growth with large brain:organ weight ratios (i.e. brain sparing). The number of intrauterine growth retarded fetuses, defined by brain:organ weight ratios greater than 1 standard deviation from the mean, was significantly greater in low, compared to high, birth weight gilts. Although γδ T cells significantly decreased over time in high compared to low birth weight gilts, viral load in serum and tissues, gilt serum cytokine levels, and litter outcome, including the percent dead fetuses per litter, did not differ by birth weight group. Thus, this study provided no substantive evidence that the severity of porcine reproductive and respiratory syndrome is affected by dam birth weight. However, intrauterine growth retarded fetuses had lower viral loads in both fetal thymus and in endometrium adjacent to the umbilical stump. Crown rump length did not significantly differ between fetuses that survived and those that died at least one week prior to termination. Taken together, this study clearly demonstrates that birth weight is a transgenerational trait in pigs, and provides evidence that larger fetuses are more susceptible to transplacental PRRSv infection. PMID:25275491

  14. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease.

    PubMed

    Rush, E C; Katre, P; Yajnik, C S

    2014-01-01

    This review brings together human and animal studies and reviews that examine the possible role of maternal vitamin B12 (B12) on fetal growth and its programming for susceptibility to chronic disease. A selective literature review was undertaken to identify studies and reviews that investigate these issues, particularly in the context of a vegetarian diet that may be low in B12 and protein and high in carbohydrate. Evidence is accumulating that maternal B12 status influences fetal growth and development. Low maternal vitamin B12 status and protein intake are associated with increased risk of neural tube defect, low lean mass and excess adiposity, increased insulin resistance, impaired neurodevelopment and altered risk of cancer in the offspring. Vitamin B12 is a key nutrient associated with one carbon metabolic pathways related to substrate metabolism, synthesis and stability of nucleic acids and methylation of DNA which regulates gene expression. Understanding of factors regulating maternal-fetal one carbon metabolism and its role in fetal programming of non communicable diseases could help design effective interventions, starting with maternal nutrition before conception. PMID:24219896

  15. Ultrasonographic assessment of fetal growth in miniature "Shiba" goats (Capra hircus).

    PubMed

    Kandiel, Mohamed M M; Watanabe, Gen; Taya, Kazuyoshi

    2015-11-01

    The aim of the present study was to monitor fetal growth in relation to gestational stage to generate formulae which could be used to estimate fetal age in goats. Eight miniature Shiba goats (Capra hircus) were examined weekly by transrectal and transabdominal ultrasound scanning during the gestation period between Day 21 and 126 days of gestation. For accurate judgment, all fetometric parameters were measured at least three times per one examination for each animal. Quantification of the growth of the fetus allowed the development of a number of predictors of fetal age. Low correlations were associated with measurement of the chest diameter (R(2)=0.869), trunk diameter (R(2)=0.8969), tibia length (R(2)=0.8662) and placentome diameter (R(2)=0.8999). Moderate correlation was assessed by calculation of the length of six successive lumbar vertebrae (R(2)=0.9296), femur length (R(2)=0.9278), heart axis length (R(2)=0.9382 and 0.9589; for the longitudinal and transverse axis, respectively), occipitonasal length (R(2)=0.9527), umbilical cord diameter (R(2)=0.9119) and orbit diameter (R(2)=0.9239). A high correlation was estimated in investigating the length of six successive thoracic vertebrae (R(2)=0.9674), braincase diameter (R(2)=0.9831) and crown rump length (R(2)=0.9848). In conclusion, the intrauterine fetal biometry estimation through ultrasound might be useful to predict the accurate gestational age in miniature goats. PMID:26427952

  16. Methyl Donor Deficiency Affects Fetal Programming of Gastric Ghrelin Cell Organization and Function in the Rat

    PubMed Central

    Bossenmeyer-Pourié, Carine; Blaise, Sébastien; Pourié, Grégory; Tomasetto, Catherine; Audonnet, Sandra; Ortiou, Sandrine; Koziel, Violette; Rio, Marie-Christine; Daval, Jean-Luc; Guéant, Jean-Louis; Beck, Bernard

    2010-01-01

    Methyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastric ghrelin system in MDD-induced intrauterine growth retardation. By using specific markers and approaches (such as periodic acid–Schiff, bromodeoxyuridine, homocysteine, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunostaining, reverse transcription-polymerase chain reaction), we studied the gastric oxyntic mucosa cellular organization and ghrelin gene expression in the mucosa in 20-day-old fetuses and weanling pups, and plasma ghrelin concentration in weanling rat pups of dams either normally fed or deprived of choline, folate, vitamin B6, and vitamin B12 during gestation and suckling periods. MDD fetuses weighed less than controls; the weight deficit reached 57% at weaning (P < 0.001). Both at the end of gestation and at weaning, they presented with an aberrant gastric oxyntic mucosa formation with loss of cell polarity, anarchic cell migration, abnormal progenitor differentiation, apoptosis, and signs of surface layer erosion. Ghrelin cells were abnormally located in the pit region of oxyntic glands. At weaning, plasma ghrelin levels were decreased (−28%; P < 0.001) despite unchanged mRNA expression in the stomach. This decrease was associated with lower body weight. Taken together, these data indicate that one mechanism through which MDD influences fetal programming is the remodeling of gastric cellular organization, leading to dysfunction of the ghrelin system and dramatic effects on growth. PMID:19948829

  17. Fetal calf serum-mediated inhibition of neurite growth from ciliary ganglion neurons in vitro.

    PubMed

    Davis, G E; Skaper, S D; Manthorpe, M; Moonen, G; Varon, S

    1984-01-01

    Embryonic chick ciliary ganglion (CG) neurons cultured in fetal calf serum-containing medium have been previously reported to extend neurites on polyornithine (PORN) substrata precoated with a neurite-promoting factor (PNPF) from rat schwannoma-conditioned medium. On PORN substrata alone, however, no neuritic growth occurred. This was interpreted as evidence that PORN was an incompetent substratum for ciliary neuritic growth. In this study, we now find that an untreated PORN substratum allows neuritic growth in serum-free defined medium. When PNPF was added to PORN, a more rapid and extensive neuritic response occurred. After 5 hr of culture, a 60% neuritic response occurred on PNPF/PORN, whereas no neurons initiated neurites until 10-12 hr on PORN. The inhibitory effect of fetal calf serum noted above on PORN could be obtained in part by pretreating the substratum with serum for 1 hr. Maximal inhibitory effects in the PORN pretreatment were achieved after 30 min and were not further improved by treatments up to 4 hr. Bovine serum albumin was also found to inhibit neurite growth on PORN to about 60% of the inhibition obtained by an equivalent amount of serum protein. Fetal calf serum was shown to cause a 15% reduction in the percentage of neurons bearing neurites after its addition to 18-hr serum-free PORN cultures and to cause statistically significant reductions in neurite lengths measured 2 hr later. PMID:6481819

  18. Exposure to Ergot Alkaloids During Gestation Reduces Fetal Growth in Sheep

    NASA Astrophysics Data System (ADS)

    Duckett, Susan; Pratt, Scott; Andrae, John

    2014-08-01

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh; Schedonorus phoenix (Scop.) Holub] is the primary cool season perennial grass in the eastern U.S. Most tall fescue contains an endophyte (Neotyphodium coenophialum), which produces ergot alkaloids that cause vasoconstriction and could restrict blood flow to the fetus in pregnant animals. The objective of this study was to examine fetal growth during maternal exposure to ergot alkaloids during gestation. Pregnant ewes (n = 16) were randomly assigned to one of two dietary treatments: 1) endophyte-infected (Neotyphodium coenophialum) tall fescue seed (E+; 0.8 ug of ergovaline /g diet DM) and 2) endophyte-free tall fescue seed (E-; 0.0 ug of ergovaline/g diet DM). Birth weight of lambs was reduced by 37% for E+ compared to E-. Organ and muscle weights were also lighter for E+ than E-. Exposure to ergot alkaloids in utero reduces fetal growth and muscle development.

  19. Exposure to ergot alkaloids during gestation reduces fetal growth in sheep

    PubMed Central

    Duckett, Susan K.; Andrae, John G.; Pratt, Scott L.

    2014-01-01

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh; Schedonorus phoenix (Scop.) Holub] is the primary cool season perennial grass in the eastern U.S. Most tall fescue contains an endophyte (Neotyphodium coenophialum), which produces ergot alkaloids that cause vasoconstriction and could restrict blood flow to the fetus in pregnant animals. The objective of this study was to examine fetal growth during maternal exposure to ergot alkaloids during gestation. Pregnant ewes (n = 16) were randomly assigned to one of two dietary treatments: (1) endophyte-infected (N. coenophialum) tall fescue seed (E+; 0.8 ug of ergovaline /g diet DM) and (2) endophyte-free tall fescue seed (E−; 0.0 ug of ergovaline/g diet DM). Birth weight of lambs was reduced by 37% for E+ compared to E−. Organ and muscle weights were also lighter for E+ than E−. Exposure to ergot alkaloids in utero reduces fetal growth and muscle development. PMID:25191653

  20. INFANT EMOTIONAL WITHDRAWAL: A PRECURSOR OF AFFECTIVE AND COGNITIVE DISTURBANCE IN FETAL ALCOHOL SPECTRUM DISORDERS

    PubMed Central

    Molteno, Christopher D.; Jacobson, Joseph L.; Carter, R. Colin; Dodge, Neil C.; Jacobson, Sandra W.

    2013-01-01

    Objectives To test the hypothesis that emotional withdrawal is an early indicator of affective disorder in infants heavily exposed prenatally to alcohol, which is independent of alcohol-related effects on mother-infant interaction and temperament and discriminated between children later diagnosed with fetal alcohol syndrome (FAS) and partial FAS (PFAS) and predicted cognitive and affective outcomes at 5 and 9 years. Methods The sample consisted of Cape Coloured (mixed ancestry) infants, whose mothers were interviewed during pregnancy regarding their alcohol consumption using a timeline follow-back approach. Infant emotional withdrawal (n = 85) was assessed on the Alarm Distress Baby Scale at 6.5 months. Mother-infant interaction was evaluated from video recordings during free play and infant feeding at 6.5 months (n = 127). Infant temperament was assessed by maternal report on the EAS Temperament Survey at 13 months (n = 119). Socio-demographic and psychological correlates of maternal alcohol use and infant iron deficiency were examined as potential confounders. The children were diagnosed for FAS/PFAS by expert dysmorphologists at 5 years; cognitive and affective function, at 5 and 9 years. Results Prenatal alcohol exposure was associated with increased infant emotional withdrawal and decreased activity, but unrelated to mother-infant interaction or any other temperament measures. Children later diagnosed with FAS and PFAS at 5 years exhibited more emotional withdrawal and less responsivity and activity as infants. Infant withdrawal, responsivity, quality of interaction, and maternal sensitivity also predicted poorer IQ and affective response at 5 and 9 years. When all four infant affective measures were examined simultaneously in a regression analysis, only infant emotional withdrawal persisted as a significant predictor of 9-year IQ. Conclusions This study is the first to document a direct effect of fetal alcohol exposure on emotional withdrawal in infancy

  1. From the α to the ω-3: Breaking the link between impaired fetal growth and adult cardiovascular disease.

    PubMed

    Skilton, Michael R; Phang, Melinda

    2016-01-01

    Atherosclerotic vascular disease is an important cause of premature morbidity and mortality. An extensive body of epidemiologic data links impaired fetal growth, evidenced by reductions in birth weight, with a higher risk for cardiovascular disease in adulthood. This association appears to be at least partially independent of established cardiovascular risk factors, such as hypertension and type 2 diabetes. There is currently no clinically established strategy to prevent cardiovascular events secondary to being born with poor fetal growth. This review summarizes recent evidence that suggests that ω-3 polyunsaturated fatty acids may be beneficial for this indication; in particular being associated with more marked reductions in blood pressure and subclinical atherosclerosis in people who were born with poor fetal growth, than in those with healthy birth weight. Possible mechanisms, and the evidence base required to support the implementation of dietary guidelines specific to people born with impaired fetal growth are also described. PMID:27025974

  2. Peri-Implantation Hormonal Milieu: Elucidating Mechanisms of Abnormal Placentation and Fetal Growth1

    PubMed Central

    Mainigi, Monica A.; Olalere, Devvora; Burd, Irina; Sapienza, Carmen; Bartolomei, Marisa; Coutifaris, Christos

    2013-01-01

    ABSTRACT Assisted reproductive technologies (ART) have been associated with several adverse perinatal outcomes involving placentation and fetal growth. It is critical to examine each intervention individually in order to assess its relationship to the described adverse perinatal outcomes. One intervention ubiquitously used in ART is superovulation with gonadotropins. Superovulation results in significant changes in the hormonal milieu, which persist during the peri-implantation and early placentation periods. Epidemiologic evidence suggests that the treatment-induced peri-implantation maternal environment plays a critical role in perinatal outcomes. In this study, using the mouse model, we have isolated the exposure to the peri-implantation period, and we examine the effect of superovulation on placentation and fetal growth. We report that the nonphysiologic peri-implantation maternal hormonal environment resulting from gonadotropin stimulation appears to have a direct effect on fetal growth, trophoblast differentiation, and gene expression. This appears to be mediated, at least in part, through trophoblast expansion and invasion. Although the specific molecular and cellular mechanism(s) leading to these observations remain to be elucidated, identifying this modifiable risk factor will not only allow us to improve perinatal outcomes with ART, but help us understand the pathophysiology contributing to these outcomes. PMID:24352558

  3. Shining light in dark corners: diagnosis and management of late-onset fetal growth restriction.

    PubMed

    MacDonald, Teresa M; McCarthy, Elizabeth A; Walker, Susan P

    2015-02-01

    Fetal growth restriction (FGR) is the single biggest risk factor for stillbirth. In the absence of any effective treatment for fetal growth restriction, the mainstay of management is close surveillance and timely delivery. While such statements are almost self-evident, the daily clinical challenge of late-onset fetal growth restriction remains; the competing priorities of minimising stillbirth risk, while avoiding excessive obstetric intervention and the neonatal sequelae of iatrogenic preterm birth. This dilemma is made harder because the tools for late-onset FGR diagnosis and surveillance compare poorly to those used in early-onset FGR; screening tests in early pregnancy have limited predictive value; most cases escape clinical detection, a phenomenon set to worsen given the obesity epidemic; there is a failure of consensus on the definition of small for gestational age, and ancillary tools, such as umbilical artery Doppler--of value in identification of preterm FGR--are less useful in the late-preterm period and at term. Most importantly, the problem is common; 96% of all births occur after 32 weeks. This means a poor noise/signal ratio of any test or management algorithm will inevitably have large clinical consequences. Into such a dark corner, we cast some light; a summary on diagnostic criteria, new developments to improve the diagnosis of late-onset FGR and a suggested approach to management. PMID:25557743

  4. Prenatal Exposure to Polybrominated Flame Retardants and Fetal Growth in the INMA Cohort (Spain)

    PubMed Central

    2015-01-01

    Our aim was to investigate the relation between PBDEs and fetal growth or newborn anthropometry in a Spanish cohort (2003–2008). PBDE congeners (BDE-47, -99, -153, -154, and -209) were determined in serum of 670 mothers at gestational week 12 and in 534 umbilical cord samples. Abdominal circumference (AC), estimated fetal weight (EFW), femur length (FL), and biparietal diameter (BPD) during gestation were measured by ultrasounds. At birth, weight (BW), head circumference (HC), and length (BL) were also measured. We assessed growth in the intervals between 12–20 and 20–34 weeks of gestation and size at birth by standard deviation (SD)-scores adjusted for constitutional characteristics. We conducted multivariate linear regression analyses between PBDE congeners and their sum (ΣPBDEs) and outcomes. We found statistically significant inverse associations between ΣPBDEs and AC, EFW, and BPD at weeks 20–34 and HC at birth. Regarding congeners, the association was clearer with BDE-99, with inverse associations being found with AC, EFW, and BPD at weeks 20–34, and with BW and HC at delivery. These outcomes decreased between 1.3% and 3.5% for each 2-fold PBDE increase. Concerning matrices, we found statistically significant inverse associations with BPD, HC, and BW when using maternal serum, and for AC and EFW with cord serum. In conclusion, PBDEs may impair fetal growth in late pregnancy and reduce birth size. PMID:26181825

  5. Fetal production of growth factors and inflammatory mediators predicts pulmonary hypertension in congenital diaphragmatic hernia

    PubMed Central

    Fleck, Shannon; Bautista, Geoanna; Keating, Sheila M.; Lee, Tzong-Hae; Keller, Roberta L.; Moon-Grady, Anita J.; Gonzales, Kelly; Norris, Philip J.; Busch, Michael P.; Kim, CJ; Romero, Roberto; Lee, Hanmin; Miniati, Doug; MacKenzie, Tippi C.

    2014-01-01

    Background Congenital diaphragmatic hernia (CDH) represents a spectrum of lung hypoplasia and consequent pulmonary hypertension is an important cause of postnatal morbidity and mortality. We studied biomarkers at the maternal-fetal interface to understand factors associated with the persistence of pulmonary hypertension. Methods Maternal and cord blood samples from fetuses with CDH and unaffected controls were analyzed using a human 39plex immunoassay kit. Cellular trafficking between the mother and the fetu was quantified using quantitative real-time PCR for non-shared alleles. Biomarker profiles were then correlated with CDH severity based on the degree of pulmonary hypertension. Results Cord blood levels of epidermal growth factor, platelet-derived growth factor, and several inflammatory mediators increased significantly as the severity of CDH increased, while maternal levels growth factors and mediators decreased significantly with CDH severity. Maternal cells were increased in fetuses with severe CDH compared to controls, with elevated levels of the chemokine CXCL-10 in patients with the highest trafficking. Conclusion Patients with CDH demonstrate pro-inflammatory and chemotactic signals in fetal blood at the time of birth. Since some of these molecules have been implicated in the development of pulmonary hypertension, prenatal strategies targeting specific molecular pathways may be useful adjuncts to current fetal therapies. PMID:23770923

  6. Elevated circulating insulin-like growth factor binding protein-1 is sufficient to cause fetal growth restriction.

    PubMed

    Watson, Carole S; Bialek, Peter; Anzo, Makoto; Khosravi, Javad; Yee, Siu-Pok; Han, Victor K M

    2006-03-01

    IGF binding protein-1 (IGFBP-1) inhibits the mitogenic actions of the IGFs. Circulating IGFBP-1 is elevated in newborns and experimental animals with fetal growth restriction (FGR). To establish a causal relationship between high circulating IGFBP-1 and FGR, we have generated transgenic mice using the mouse alpha-fetoprotein gene promoter to target overexpression of human IGFBP-1 (hIGFBP-1) in the fetal liver. These transgenic mice (AFP-BP1) expressed hIGFBP-1 mainly in the fetal hepatocytes, starting at embryonic d 14.5 (E14.5), with lower levels in the gut. The expression peaked at 1 wk postnatally (plasma concentration, 474 +/- 34 ng/ml). At birth, AFP-BP1 pups were 18% smaller [weighed 1.34 +/- 0.02 g compared with 1.62 +/- 0.04 g for wild type (WT); P < 0.05], and they did not demonstrate any postnatal catch-up growth. The placentas of the AFP-BP1 mice were larger than WT from E16.5 onwards (150 +/- 12 for AFP-BP1 vs. 100 +/- 5 mg for WT at E16.5; P < 0.05). Thus, this model of FGR is associated with a larger placenta, but without postnatal catch-up growth. Overall, these data clearly demonstrate that high concentrations of circulating IGFBP-1 are sufficient to cause FGR. PMID:16293667

  7. Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction.

    PubMed

    Brown, Laura D; Rozance, Paul J; Bruce, Jennifer L; Friedman, Jacob E; Hay, William W; Wesolowski, Stephanie R

    2015-10-15

    Intrauterine growth-restricted (IUGR) fetal sheep, produced by placental insufficiency, have lower oxygen concentrations, higher lactate concentrations, and increased hepatic glucose production that is resistant to suppression by insulin. We hypothesized that increased lactate production in the IUGR fetus results from reduced glucose oxidation, during basal and maximal insulin-stimulated conditions, and is used to support glucose production. To test this, studies were performed in late-gestation control (CON) and IUGR fetal sheep under basal and hyperinsulinemic-clamp conditions. The basal glucose oxidation rate was similar and increased by 30-40% during insulin clamp in CON and IUGR fetuses (P < 0.005). However, the fraction of glucose oxidized was 15% lower in IUGR fetuses during basal and insulin-clamp periods (P = 0.05). IUGR fetuses also had four-fold higher lactate concentrations (P < 0.001) and lower lactate uptake rates (P < 0.05). In IUGR fetal muscle and liver, mRNA expression of pyruvate dehydrogenase kinase (PDK4), an inhibitor of glucose oxidation, was increased over fourfold. In IUGR fetal liver, but not skeletal muscle, mRNA expression of lactate dehydrogenase A (LDHA) was increased nearly fivefold. Hepatic expression of the gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK)1, and PCK2, was correlated with expression of PDK4 and LDHA. Collectively, these in vivo and tissue data support limited capacity for glucose oxidation in the IUGR fetus via increased PDK4 in skeletal muscle and liver. We speculate that lactate production also is increased, which may supply carbon for glucose production in the IUGR fetal liver. PMID:26224688

  8. Effect of Prenatal Hypoxia in Transgenic Mouse Models of Preeclampsia and Fetal Growth Restriction

    PubMed Central

    Rueda-Clausen, C. F.; Thambiraj, D. F.; Poudel, R.; Davidge, S. T.; Baker, P. N.

    2014-01-01

    Mice lacking endothelial nitric oxide synthase (eNOS− /−) or catechol-O-methyl transferase (COMT−/−) exhibit a preeclampsia-like phenotype and fetal growth restriction. We hypothesized that a hypoxic insult would result in a more severe phenotype. Pregnant eNOS−/−, COMT−/− and control (C57BL/6J) mice were randomized to hypoxic (10.5% O2) or normal conditions (20.9% O2) from gestational day 10.5 to 18.5. Hypoxia increased the blood pressure in all genotypes and proteinuria in C57BL/6J and eNOS−/− mice. Fetal survival was significantly reduced following hypoxia, particularly in eNOS−/− mice. Birth weight was decreased in both C57BL/6J and COMT−/− mice. Placentas from COMT−/− mice demonstrated increased peroxynitrite. Despite similar hypoxia-induced effects on maternal blood pressure and proteinuria, eNOS−/− embryos have a decreased tolerance to hypoxia. Compared to C57BL/6J, COMT−/− mice exhibited less severe changes in proteinuria and fetal growth when exposed to prenatal hypoxia. This relative resistance to prenatal hypoxia was associated with a significant increase in placental levels of peroxynitrite. PMID:24084523

  9. Prenatal Origins of Temperament: Fetal Growth, Brain Structure, and Inhibitory Control in Adolescence

    PubMed Central

    Schlotz, Wolff; Godfrey, Keith M.; Phillips, David I.

    2014-01-01

    Objective Individual differences in the temperamental dimension of effortful control are constitutionally based and have been associated with an adverse prenatal developmental environment, with structural brain alterations presenting a potential mechanism. We investigated this hypothesis for anatomically defined brain regions implicated in cognitive and inhibitory motor control. Methods Twenty-seven 15–16 year old participants with low, medium, or high fetal growth were selected from a longitudinal birth cohort to maximize variation and represent the full normal spectrum of fetal growth. Outcome measures were parent ratings of attention and inhibitory control, thickness and surface area of the orbitofrontal cortex (lateral (LOFC) and medial (MOFC)) and right inferior frontal gyrus (rIFG), and volumetric measures of the striatum and amygdala. Results Lower birth weight was associated with lower inhibitory control, smaller surface area of LOFC, MOFC and rIFG, lower caudate volume, and thicker MOFC. A mediation model found a significant indirect effect of birth weight on inhibitory control via caudate volume. Conclusions Our findings support a neuroanatomical mechanism underlying potential long-term consequences of an adverse fetal developmental environment for behavioral inhibitory control in adolescence and have implications for understanding putative prenatal developmental origins of externalizing behavioral problems and self-control. PMID:24802625

  10. The association of indicators of fetal growth with visual acuity and hearing among conscripts.

    PubMed

    Olsen, J; Sørensen, H T; Steffensen, F H; Sabroe, S; Gillman, M W; Fischer, P; Rothman, K J

    2001-03-01

    Impaired fetal growth is associated with increased susceptibility to several chronic diseases. We studied the association between birth weight, indicators of disproportional fetal growth, and impaired visual acuity and hearing in 4,300 conscripts from a well-defined region in Denmark from August 1, 1993, to July 31, 1994. From the standard health examination for conscripts, we obtained data on sight based on the Snellen's chart and data on hearing acuity based on audiometry. By means of record linkage, we obtained data on outcomes for the conscripts at birth from the Medical Birth Registry. From this registry, we have data on birth weight, gestational age, and birth length that were recorded from existing computerized registers based on the records of midwives. A birth weight of less than 3,000 gm and a body mass index at birth of less than 3.4 were associated with reduced visual acuity and impaired hearing. The results could be due to fetal brain programming or due to confounding, by early birth trauma or other factors. PMID:11246586

  11. Fetal PCB syndrome: clinical features, intrauterine growth retardation and possible alteration in calcium metabolism

    SciTech Connect

    Yamashita, F.; Hayashi, M.

    1985-02-01

    Pregnant mothers with Yusho in Fukuoka, Nagasaki and Kochi Prefectures delivered babies with a peculiar clinical manifestation which will be called fetal PCB syndrome (FPS). The birth rate incidences were 3.6% (Fukuoka Prefecture), 4% (Nagasaki Prefecture), 2.9% (Kochi Prefecture) and 3.9% (total). The manifestations consisted of dark brown pigmentation of the skin and the mucous membrane, gingival hyperplasia, exophthalmic edematous eye, dentition at birth, abnormal calcification of the skull as demonstrated by X-ray, rocker bottom heel and high incidence of light for date (low birth weight) babies. The authors suggest that there may be a possible alteration in calcium metabolism in these babies, related to the fragile egg shells observed in PCB-contaminated birds and to the female hormone-enhancing effect of PCB. The high incidence of low birth weight among these newborns and two other similar studies indicated that PCBs suppress fetal growth.

  12. Generalized disruption of inherited genomic imprints leads to wide-ranging placental defects and dysregulated fetal growth

    PubMed Central

    Himes, K. P.; Koppes, E.; Chaillet, J. Richard

    2012-01-01

    Monoallelic expression of imprinted genes, including ones solely expressed in the placenta, is essential for normal placental development and fetal growth. To better understand the role of placental imprinting in placental development and fetal growth, we examined conceptuses developing in the absence of maternally derived DNA (cytosine-5-)- methyltransferase 1o (DNMT1o). Absence of DNMT1o results in the partial loss of methylation at imprinted differentially methylated domain (DMD) sequences in the embryo and the placenta. Mid-gestation E9.5 DNMT1o-deficient placentas exhibited structural abnormalities of all tissue layers. At E17.5, all examined placentas had aberrant placental morphology, most notably in the spongiotrophoblast and labyrinth layers. Abnormalities included an expanded volume fraction of spongiotrophoblast tissue with extension of the spongiotrophoblast layer into the labyrinth. Many mutant placentas also demonstrated migration abnormalities of glycogen cells. Additionally, the volume fraction of the labyrinth was reduced, as was the surface area for maternal fetal gas exchange. Despite these placental morphologic abnormalities, approximately one-half of DNMT1o-deficient fetuses survived to late gestation (E17.5). Furthermore, DNMT1o- deficient placentas supported a broad range of fetal growth. The ability of some DNMT1o-deficient and morphologically abnormal placentas to support fetal growth in excess of wild type demonstrates the importance of differential methylation of DMDs and proper imprinting of discrete gene clusters to placental morphogenesis and fetal growth. PMID:23085235

  13. Fetal development

    MedlinePlus

    Cunningham FG, Leveno KJ, Bloom SL, et al. Fetal growth and development. In: Cunningham FG, Leveno KL, Bloom SL, et al, eds. Williams Obstetrics . 23rd ed. New York, NY: McGraw-Hill; ... and fetal physiology. In: Gabbe SG, Niebyl JR, Simpson JL, ...

  14. Influence of endurance exercise and diet on human placental development and fetal growth.

    PubMed

    Clapp, J F

    2006-01-01

    The delivery of oxygen and substrate to the maternal-fetal interphase is the major maternal environmental stimulus which either up- or down-regulates feto-placental growth. During pregnancy, sustained exercise sessions cause an intermittent reduction in oxygen and substrate delivery to the interphase that may exceed 50% during the exercise but, it is probable that regular bouts of sustained exercise or exercise training may improve oxygen and substrate delivery at rest. The type of maternal carbohydrate intake (low- versus high-glycemic sources) and food intake frequency also influence substrate availability through their effects on maternal blood glucose levels and insulin sensitivity. As a result, different exercise regimens and/or different types of carbohydrate intake modify feto-placental growth. The magnitude and direction of the effect is determined by their average 24-h effect on oxygen and substrate availability at different time-points in pregnancy. In general, exercise in early and mid pregnancy stimulates placental growth while the relative amount of exercise in late pregnancy determines its effect on late fetal growth. Low-glycemic food sources in the diet decrease growth rate and size at birth while high-glycemic food sources increase it. Thus, it may be possible to improve pregnancy outcomes in both healthy, low-risk women and a variety of high-risk populaces by simply modifying maternal physical activity and dietary carbohydrate intake during pregnancy. PMID:16165206

  15. Prenatal Air Pollution Exposure and Ultrasound Measures of Fetal Growth in Los Angeles, California

    PubMed Central

    Ritz, Beate; Qiu, Jiaheng; Lee, Pei-Chen; Lurmann, Fred; Penfold, Bryan; Weiss, Robert Erin; McConnell, Rob; Arora, Chander; Hobel, Calvin; Wilhelm, Michelle

    2014-01-01

    Background Few previous studies examined the impact of prenatal air pollution exposures on fetal development based on ultrasound measures during pregnancy. Methods In a prospective birth cohort of more than 500 women followed during 1993-1996 in Los Angeles, California, we examined how air pollution impacts fetal growth during pregnancy. Exposure to traffic related air pollution was estimated using CALINE4 air dispersion modeling for nitrogen oxides (NOx) and a land use regression (LUR) model for nitrogen monoxide (NO), nitrogen dioxide (NO2) and NOx. Exposures to carbon monoxide (CO), NO2, ozone (O3) and particles <10 μm in aerodynamic diameter (PM10) were estimated using government monitoring data. We employed a linear mixed effects model to estimate changes in fetal size at approximately 19, 29 and 37 weeks gestation based on ultrasound. Results Exposure to traffic-derived air pollution during 29 to 37 weeks was negatively associated with biparietal diameter at 37 weeks gestation. For each interquartile range (IQR) increase in LUR-based estimates of NO, NO2 and NOx, or freeway CALINE4 NOx we estimated a reduction in biparietal diameter of 0.2-0.3 mm. For women residing within 5 km of a monitoring station, we estimated biparietal diameter reductions of 0.9-1.0 mm per IQR increase in CO and NO2. Effect estimates were robust to adjustment for a number of potential confounders. We did not observe consistent patterns for other growth endpoints we examined. Conclusions Prenatal exposure to traffic-derived pollution was negatively associated with fetal head size measured as biparietal diameter in late pregnancy. PMID:24517884

  16. Spontaneous intrauterine umbilical artery thrombosis leading to severe fetal growth restriction.

    PubMed

    Klaritsch, P; Haeusler, M; Karpf, E; Schlembach, D; Lang, U

    2008-04-01

    Intrauterine thrombosis of umbilical cord vessels is a rare event (2.5-4.5/10,000) and usually followed by poor fetal outcome. We present the rare case of spontaneous intrauterine thrombosis of an umbilical artery leading to severe intrauterine growth restriction (IUGR) and provide clinical and pathological findings. A 28-year-old nulliparous third gravida was referred to our institution because of IUGR at 32+4 weeks of gestation. Fetal growth had been appropriate until the 31st week of gestation and had stopped thereafter. There were no signs of abruption of the placenta and no structural abnormalities except an absent paravesical colour Doppler flow in the region of the right umbilical artery. Other Doppler measurements, karyotype and TORCH serology were normal. Intermittent non-reassuring fetal heart rate led to cesarean section at 34+3 weeks of gestation. A healthy girl with measurements on the 3rd centile was born (weight of 1,590 g, length of 41 cm and head circumference of 29 cm). Gross examination displayed an elongated, highly twisted umbilical cord with a length of 70 cm, central insertion and three umbilical vessels. Microscopic examination confirmed the diagnosis of umbilical artery thrombosis along the entire length of the umbilical cord. Calcification within the thrombus and microcalcification in occluded chorionic vessels were observed as well as hemorrhagic endovasculitis and endangiopathia obliterans in the stem villi arteries. This fetal thrombotic vasculopathy (FTV) comprised about 40% of the parenchyma. The coagulation parameters and blood counts of the mother and the infant were normal apart from transient neonatal thrombocytopenia. The reason for thrombosis remained unclear but could be attributed to the elongated and highly twisted umbilical cord. Intrauterine arterial thrombosis may cause severe IUGR. This condition might be detectable by ultrasound in the course of an IUGR workup, especially when no other reasons can be found. PMID:18289672

  17. Cervical dilatation and grade of doctor affects the interval between decision and result of fetal scalp blood sampling in labour.

    PubMed

    Rimmer, Stephanie; Roberts, Stephen A; Heazell, Alexander E P

    2016-08-01

    Fetal scalp blood sampling (FSBS) is used to provide information regarding fetal acid-base status during labour. This study assessed the interval between the decision to perform the procedure and obtaining the result and evaluated whether it is affected by cervical dilatation or the experience of the doctor. The median time for FSBS was 10 min. When cervical dilatation was ≤4 cm samples took approximately 30% longer to obtain. After adjustment for dilation, there were no significant differences between different grades of doctors. FSBS is shorter than previously reported; clinicians should be aware that procedures in early labour take longer to complete. PMID:26399279

  18. Fetal Growth and the Risk of Spontaneous Preterm Birth in a Prospective Cohort Study of Nulliparous Women.

    PubMed

    Partap, Uttara; Sovio, Ulla; Smith, Gordon C S

    2016-07-15

    Previous studies have suggested an association between fetal growth restriction and the risk of spontaneous preterm birth (sPTB). However, addressing this association is methodologically challenging. We conducted a prospective cohort study of nulliparous women with a singleton pregnancy in Cambridge, United Kingdom (2008-2012). Ultrasonic fetal biometry was performed at 20 weeks of gestation as per routine clinical care. Participants also had blinded research ultrasonography performed at approximately 28 weeks. Biometric measurements were expressed as gestational-age-adjusted z scores. Fetal growth velocity was quantified by change in z score between 20 weeks and 28 weeks. Risk of sPTB, defined as delivery at ≥28 weeks and <37 weeks associated with labor in the absence of induction, was analyzed using cause-specific Cox regression. Of 3,892 women, 98 (2.5%) had sPTB. When compared with the other decile groups, the lowest decile of growth velocity of the fetal femur between 20 and 28 weeks was associated with increased risk of sPTB (hazard ratio = 2.37, 95% confidence interval: 1.43, 3.93; P < 0.001). Adjustment for maternal characteristics had no material effect (hazard ratio = 2.50, 95% confidence interval: 1.50, 4.14; P < 0.001). There were no significant associations between other fetal measurements and risk of sPTB. To conclude, slow growth velocity of the fetal femur is associated with an increased risk of sPTB. PMID:27370790

  19. Antenatal taurine supplementation increases taurine content in intrauterine growth restricted fetal rat brain tissue.

    PubMed

    Li, Fang; Teng, Hui-Yun; Liu, Jing; Wang, Hua-Wei; Zeng, Li; Zhao, Li-Fang

    2014-09-01

    This study aimed to determine the influence of antenatal taurine supplementation on taurine content in the brains of fetal rats with intrauterine growth restriction (IUGR). Experiments were performed at the Central Laboratory of Bayi Children's Hospital Affiliated to Beijing Military General Hospital in China from January to June 2013. Fifteen pregnant rats were randomly divided into three groups: normal controls, an IUGR group and an IUGR + antenatal taurine supplement group (Taurine group) (n = 5). The IUGR model was induced using a low-protein diet throughout gestation. Rats in the taurine group were fed a diet supplemented with 300 mg/kg/day taurine for 12 days after conception until natural delivery. Two fetal rats were randomly selected in every litter, and taurine levels in the brains of rats were detected using high-performance liquid chromatography-mass spectrometry. Results showed that (1) the mean body weight of the fetal rats in the normal control, IUGR and IUGR + antenatal taurine supplement groups was 6.619 ± 0.4132, 4.509 ± 0.454, and 5.176 ± 0.436 g (F = 429.818, P < 0.01), respectively, and (2) that taurine levels in the brains of the fetal rats in the normal control, IUGR and taurine groups were (2.399 ± 0.134) × 10(5), (1.881 ± 0.166) × 10(5) and (2.170 ± 0.191) × 10(5) μg/g (F = 24.828, P < 0.01), respectively. Overall, our results indicated that taurine levels in IUGR fetal rat brains were lower than in the control animals, and that antenatal taurine supplementation could significantly increase taurine levels in the brains of fetal rats with IUGR. PMID:24676564

  20. Fetal growth and birth size is associated with maternal anthropometry and body composition.

    PubMed

    Thame, Minerva; Osmond, Clive; Trotman, Helen

    2015-10-01

    The objective was to investigate the association of maternal weight, height and body composition with fetal growth. We recruited 425 women at the University Hospital of the West Indies, Jamaica, who had singleton pregnancies, were less than 15 weeks gestation and had no systemic illness. Maternal weight, height and skinfold thicknesses were measured at the first antenatal visit and lean mass was calculated. Sonographic measurements of the fetus were made at 15, 25 and 35 weeks gestation. Weight, crown-heel length and head circumference were measured at birth. Analyses were confined to 360 (85%) women; 65 women did not complete the study. Maternal height was positively associated with femoral length at 25 and 35 weeks gestation and with head circumference at 35 weeks (all P < 0.02). Maternal weight was positively associated with abdominal circumference and femoral length at 25 weeks, and with larger head and abdominal circumference and longer femur at 35 weeks (all P < 0.02). Maternal lean mass had similar associations to maternal weight and they were both positively associated with estimated fetal weight (all P < 0.02). All three maternal measurements were positively associated with birthweight, length and head circumference. Maternal size was associated with fetal size as early as 25 weeks gestation, with height strongly associated with femoral length, and with weight and lean mass strongly associated with abdominal circumference. PMID:23241104

  1. Effect of fetal growth on maternal protein metabolism in postabsorptive rat

    SciTech Connect

    Ling, P.R.; Bistrian, B.R.; Blackburn, G.L.; Istfan, N.

    1987-03-01

    Rates of protein synthesis were measured in whole fetuses and maternal tissues at 17 and 20 days of gestation in postabsorptive rats using continuous infusion of L-(1-/sup 14/C)leucine. Fetal protein degradation rates were derived from the fractional rates of synthesis and growth. Whole-body (plasma) leucine kinetics in the mother showed a significant reduction of the fraction of plasma leucine oxidized in the mothers bearing older fetuses, a slight increase in the plasma flux, with total leucine oxidation and incorporation into protein remaining similar at the two gestational ages. Estimates of fractional protein synthesis in maternal tissues revealed an increase in placental and hepatic rates at 20 days of gestation, whereas the fractional synthetic rate in muscle remained unchanged. A model for estimation of the redistribution of leucine between plasma and tissues is described in detail. This model revealed a more efficient utilization of leucine in fetal protein synthesis in comparison with other maternal tissues, a greater dependency of the fetus on plasma supply of leucine, and a significant increase (2-fold) in the release of leucine from maternal muscle as the fetal requirements increased proportionately with its size. The latter conclusion, supported by nitrogen analysis and the ratio of bound-to-free leucine in maternal tissues, confirms the importance of maternal stores in maintaining the homeostasis of essential amino acids during late pregnancy.

  2. The Navigation Guide—Evidence-Based Medicine Meets Environmental Health: Systematic Review of Nonhuman Evidence for PFOA Effects on Fetal Growth

    PubMed Central

    Lam, Juleen; Sutton, Patrice; Johnson, Paula I.; Atchley, Dylan S.; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.

    2014-01-01

    Background: In contrast to current methods of expert-based narrative review, the Navigation Guide is a systematic and transparent method for synthesizing environmental health research from multiple evidence streams. The Navigation Guide was developed to effectively and efficiently translate the available scientific evidence into timely prevention-oriented action. Objectives: We applied the Navigation Guide systematic review method to answer the question “Does fetal developmental exposure to perfluorooctanoic acid (PFOA) or its salts affect fetal growth in animals ?” and to rate the strength of the experimental animal evidence. Methods: We conducted a comprehensive search of the literature, applied prespecified criteria to the search results to identify relevant studies, extracted data from studies, obtained additional information from study authors, conducted meta-analyses, and rated the overall quality and strength of the evidence. Results: Twenty-one studies met the inclusion criteria. From the meta-analysis of eight mouse gavage data sets, we estimated that exposure of pregnant mice to increasing concentrations of PFOA was associated with a change in mean pup birth weight of –0.023 g (95% CI: –0.029, –0.016) per 1-unit increase in dose (milligrams per kilogram body weight per day). The evidence, consisting of 15 mammalian and 6 nonmammalian studies, was rated as “moderate” and “low” quality, respectively. Conclusion: Based on this first application of the Navigation Guide methodology, we found sufficient evidence that fetal developmental exposure to PFOA reduces fetal growth in animals. Citation: Koustas E, Lam J, Sutton P, Johnson PI, Atchley DS, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health: systematic review of nonhuman evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1015–1027; http://dx.doi.org/10.1289/ehp.1307177 PMID:24968374

  3. Disproportionate Fetal Growth and the Risk for Congenital Cerebral Palsy in Singleton Births

    PubMed Central

    Streja, Elani; Miller, Jessica E.; Wu, Chunsen; Bech, Bodil H.; Pedersen, Lars Henning; Schendel, Diana E.; Uldall, Peter; Olsen, Jørn

    2015-01-01

    Objective To investigate the association between proportionality of fetal and placental growth measured at birth and the risk for congenital cerebral palsy (CP). Study Design We identified all live-born singletons born in Denmark between 1995 and 2003 and followed them from 1 year of age until December 31st, 2008. Information on four indices of fetal growth: ponderal index, head circumference/ abdominal circumference ratio, cephalization index and birth weight/ placenta weight ratio was collected. Cox proportional hazards regression models were used to estimate adjusted hazard ratios (aHR) and 95% confidence intervals (CI). All measurements were evaluated as gestational age and sex specific z-scores and in z-score percentile groups, adjusted for potential confounders, and stratified on gestational age groups (<32, 32-36, 37-38, 39, 40, ≥41 weeks). Results We identified 503,784 singleton births, of which 983 were confirmed cases of CP. Head/ abdominal circumference ratio (aHR:1.12; 95%CI:1.07-1.16) and cephalization index (aHR:1.14; 95%CI:1.11-1.16) were associated with the risk of CP irrespective of gestational age. Birth weight-placental weight ratio was also associated with CP in the entire cohort (aHR:0.90; 95%CI:0.83-0.97). Ponderal index had a u-shaped association with CP, where both children with low and high ponderal index were at higher risk of CP. Conclusions CP is associated with disproportions between birth weight, birth length, placental weight and head circumference suggesting pre and perinatal conditions contribute to fetal growth restriction in children with CP. PMID:25974407

  4. The effect of fetal growth and nutrient stresses on steroid pathways.

    PubMed

    Stirrat, Laura I; Reynolds, Rebecca M

    2016-06-01

    The early life environment is a crucial time for establishing the trajectory of future health. Low birthweight is considered a marker of an adverse in utero environment and predisposes to cardio-metabolic disease later in life. It has been proposed that this is mediated by glucocorticoids, with life-long activation of the HPA axis. Here we review the evidence to support this hypothesis, with particular emphasis on the effects of fetal growth and nutrient stresses in utero on steroid pathways of the HPA axis. A better understanding of the mechanisms underlying these processes could help to optimize in utero health, and identify individuals at greatest risk of future disease. PMID:26196121

  5. Placental development during early pregnancy in sheep: Effects of embryo origin on fetal and placental growth and global methylation

    PubMed Central

    Grazul-Bilska, Anna T.; Johnson, Mary Lynn; Borowicz, Pawel P.; Baranko, Loren; Redmer, Dale A.; Reynolds, Lawrence P.

    2012-01-01

    The origin of embryos including those created through assisted reproductive technologies (ART) may have profound effects on placental and fetal development, possibly leading to compromised pregnancies associated with poor placental development. To determine the effects of embryo origin on fetal size, and maternal and fetal placental cellular proliferation and global methylation, pregnancies were achieved through natural mating (NAT), or transfer of embryos generated through in vivo (NAT-ET), IVF, or in vitro activation (IVA). On Day 22 of pregnancy, fetuses were measured and placental tissues were collected to immunodetect Ki67 (a marker of proliferating cells) and 5-methyl cytosine (5mC) followed by image analysis, and determination of mRNA expression for three DNA methyltransferases (DNMT). Fetal length and labeling index (proportion of proliferating cells) in maternal caruncles (CAR; maternal placenta) and fetal membranes (FM; fetal placenta) were less (P < 0.001) in NAT-ET, IVF and IVA than in NAT. Expression of 5mC was greater (P < 0.02) in IVF and IVA than in NAT. In CAR, mRNA expression for DNMT1 was greater (P < 0.01) in IVA compared to the other groups, but DNMT3A expression was less (P < 0.04) in NAT-ET and IVA than NAT. In FM, expression of mRNA for DNMT3A was greater (P < 0.01) in IVA compared to the other groups, and was similar in NAT, NAT-ET and IVF groups. Thus, embryo origin may have specific effects on growth and function of ovine utero-placental and fetal tissues through regulation of tissue growth, DNA methylation and likely other mechanisms. These data provide a foundation for determining expression of specific factors regulating placental and fetal tissue growth and function in normal and compromised pregnancies, including those achieved with ART. PMID:23117132

  6. Effects of overfeeding naturally-mated adolescent ewes on maternal, fetal, and postnatal lamb growth.

    PubMed

    Peel, R K; Eckerle, G J; Anthony, R V

    2012-11-01

    The objective of this study was to evaluate the effects of overfeeding naturally-mated adolescent ewes (Ovis aries) on maternal, fetal, and postnatal lamb growth, hormone concentrations, and lamb carcass characteristics. Two experiments were conducted in which singleton-bearing adolescent ewes were fed a diet containing 2.72 Mcal/kg ME at a rate which met NRC gestational age requirements (MN; n = 10 in Exp. 1, n = 7 in Exp. 2) or were fed the same diet ad libitum (15% refusal rate) throughout gestation (HN; n = 7 in Exp. 1, n = 6 in Exp. 2). Ewe BW was greater (P < 0.05) for HN than MN ewes beginning on 75 d and 52 d of gestation for Exp. 1 and 2, respectively. Final BCS was greater (P ≤ 0.05) for HN than MN ewes in both experiments; 3.5 vs. 3.0, respectively, for Exp. 1, and 4.8 vs. 2.9, respectively, for Exp. 2. Fasting maternal blood insulin concentrations were greater (P ≤ 0.05) in HN ewes near term (135 d of gestation), whereas fasting maternal glucose concentrations were greater (P ≤ 0.05) during most of the second half of gestation in HN ewes, for both experiments. Gestation length did not differ (P = 0.69) between treatments in Exp. 1, but in Exp. 2, HN ewes had shorter (P = 0.01) gestation lengths (144 vs. 149 d) and had increased (P = 0.002) dystocia scores. Fetal abdominal circumference was greater (P < 0.05) in lambs from MN than HN ewes at 97 d of gestation in Exp. 1 (20.8 vs. 17.4 cm) but did not differ (P = 0.94) between treatments at 95 d of gestation in Exp. 2 (averaging 20.5 cm). There were no differences (P ≥ 0.15) in lamb BW, abdominal circumference, crown-rump length, and biparietal distance at birth; or in postnatal BW and plasma concentrations of glucose, insulin, and lactate in either experiment. There were no differences (P ≥ 0.18) in HCW, dressing percentage, LM area, fat thickness, or KPH between treatments in Exp. 2. Although there was no difference (P ≥ 0.31) between treatments in concentrations of IGF1 or IGF2 mRNA in liver

  7. Role of the fetoplacental endothelium in fetal growth restriction with abnormal umbilical artery Doppler velocimetry.

    PubMed

    Su, Emily J

    2015-10-01

    Growth-restricted fetuses with absent or reversed end-diastolic velocities in the umbilical artery are at substantially increased risk for adverse perinatal and long-term outcome, even in comparison to growth-restricted fetuses with preserved end-diastolic velocities. Translational studies show that this Doppler velocimetry correlates with fetoplacental blood flow, with absent or reversed end-diastolic velocities signifying abnormally elevated resistance within the placental vasculature. The fetoplacental vasculature is unique in that it is not subject to autonomic regulation, unlike other vascular beds. Instead, humoral mediators, many of which are synthesized by local endothelial cells, regulate placental vascular resistance. Existing data demonstrate that in growth-restricted pregnancies complicated by absent or reversed umbilical artery end-diastolic velocities, an imbalance in production of these vasoactive substances occurs, favoring vasoconstriction. Morphologically, placentas from these pregnancies also demonstrate impaired angiogenesis, whereby vessels within the terminal villi are sparsely branched, abnormally thin, and elongated. This structural deviation from normal placental angiogenesis restricts blood flow and further contributes to elevated fetoplacental vascular resistance. Although considerable work has been done in the field of fetoplacental vascular development and function, much remains unknown about the mechanisms underlying impaired development and function of the human fetoplacental vasculature, especially in the context of severe fetal growth restriction with absent or reversed umbilical artery end-diastolic velocities. Fetoplacental endothelial cells are key regulators of angiogenesis and vasomotor tone. A thorough understanding of their role in placental vascular biology carries the significant potential of discovering clinically relevant and innovative approaches to prevention and treatment of fetal growth restriction with compromised

  8. The Role of Mucosal Defense in Intestinal Injury of Infants With Fetal Growth Retardation

    PubMed Central

    Panakhova, Nushaba F.

    2016-01-01

    Background: Infants with fetal growth retardation (FGR) are prone to intestinal disorders. Objectives: Aim of the study was to determine the role of mucosal defense ability in formation of gut injury in infants with FGR. Materials and Methods: 44 premature infants who were admitted to the Neonatal Intensive Care Unit were divided into two groups: 20 infants with FGR (FGR group) and 24 appropriate-for-gestational age newborns (AGA group). Control group consisted of 22 premature infants who were delivered after uncomplicated pregnancy. Gut barrier function was evaluated by detecting serum intestinal trefoil factor (ITF) and intestinal fatty acid binding protein (IFABP). The level of serum IFABP and ITF was measured by using ELISA method. Results: FGR group showed significantly higher ITF concentration than AGA group on the first days of life (P ˂ 0.01). High level of ITF in the FGR group significantly declines up to 7th - 10th day of life (P ˂ 0.01). This reduction was accompanied by increase of IFABP which is a marker of ischemic intestinal mucosal injury. Correlation analyses showed that ITF had a negative correlation with IFABP. Conclusions: Infants with fetal growth retardation are characterized by a high level of ITF on the first days of life. This protects intestinal mucosa under hypoxic conditions. Its subsequent decline accompanied by an increase of IFABP reflects the depletion of Goblet cells to secret ITF causing damage to the integrity of intestinal mucosal barrier. PMID:26848381

  9. Dysregulated flow-mediated vasodilatation in the human placenta in fetal growth restriction

    PubMed Central

    Jones, Sarah; Bischof, Helen; Lang, Ingrid; Desoye, Gernot; Greenwood, Sue L; Johnstone, Edward D; Wareing, Mark; Sibley, Colin P; Brownbill, Paul

    2015-01-01

    Increased vascular resistance and reduced fetoplacental blood flow are putative aetiologies in the pathogenesis of fetal growth restriction (FGR); however, the regulating sites and mechanisms remain unclear. We hypothesised that placental vessels dictate fetoplacental resistance and in FGR exhibit endothelial dysfunction and reduced flow-mediated vasodilatation (FMVD). Resistance was measured in normal pregnancies (n = 10) and FGR (n = 10) both in vivo by umbilical artery Doppler velocimetry and ex vivo by dual placental perfusion. Ex vivo FMVD is the reduction in fetal-side inflow hydrostatic pressure (FIHP) following increased flow rate. Results demonstrated a significant correlation between vascular resistance measured in vivo and ex vivo in normal pregnancy, but not in FGR. In perfused FGR placentas, vascular resistance was significantly elevated compared to normal placentas (58 ± 7.7 mmHg and 36.8 ± 4.5 mmHg, respectively; 8 ml min−1; means ± SEM; P < 0.0001) and FMVD was severely reduced (3.9 ± 1.3% and 9.1 ± 1.2%, respectively). In normal pregnancies only, the highest level of ex vivo FMVD was associated with the lowest in vivo resistance. Inhibition of NO synthesis during perfusion (100 μm l-NNA) moderately elevated FIHP in the normal group, but substantially in the FGR group. Human placenta artery endothelial cells from FGR groups exhibited increased shear stress-induced NO generation, iNOS expression and eNOS expression compared with normal groups. In conclusion, fetoplacental resistance is determined by placental vessels, and is increased in FGR. The latter also exhibit reduced FMVD, but with a partial compensatory increased NO generation capacity. The data support our hypothesis, which highlights the importance of FMVD regulation in normal and dysfunctional placentation. Key points A correlation was found between in vivo umbilical artery Doppler velocimetry and resistance to fetal-side flow in the human ex vivo dually

  10. Placental restriction of fetal growth decreases IGF1 and leptin mRNA expression in the perirenal adipose tissue of late gestation fetal sheep.

    PubMed

    Duffield, Jaime A; Vuocolo, Tony; Tellam, Ross; Yuen, Bernard S; Muhlhausler, Beverly S; McMillen, I Caroline

    2008-05-01

    Placental restriction (PR) of fetal growth results in a low birth weight and an increased visceral fat mass in postnatal life. We investigated whether PR alters expression of genes that regulate adipogenesis [IGF1, IGF1 receptor (IGF1R), IGF2, IGF2R, proliferator-activated receptor-gamma, retinoid-X-receptor-alpha], adipocyte metabolism (lipoprotein lipase, G3PDH, GAPDH) and adipokine signaling (leptin, adiponectin) in visceral adipose tissue before birth. PR was induced by removal of the majority of endometrial caruncles in nonpregnant ewes before mating. Fetal blood samples were collected from 116 days gestation, and perirenal visceral adipose tissue (PAT) was collected from PR and control fetuses at 145 days. PAT gene expression was measured by quantitative RT-PCR. PR fetuses had a lower weight (PR 2.90 +/- 0.32 kg; control, 5.12 +/- 0.24 kg; P < 0.0001), mean gestational arterial Po(2) (P < 0.0001), plasma glucose (P < 0.01), and insulin concentrations (P < 0.02), than controls. The expression of IGF1 mRNA in PAT was lower in the PR fetuses (PR, 0.332 +/- 0.063; control, 0.741 +/- 0.083; P < 0.01). Leptin mRNA expression in PAT was also lower in PR fetuses (PR, 0.077 +/- 0.009; control, 0.115 +/- 0.013; P < 0.05), although there was no difference in the expression of other adipokine or adipogenic genes in PAT between PR and control fetuses. Thus, restriction of placental and hence, fetal substrate supply results in decreased IGF1 and leptin expression in fetal visceral adipose tissue, which may alter the functional development of the perirenal fat depot and contribute to altered leptin signaling in the growth-restricted newborn and the subsequent emergence of an increased visceral adiposity. PMID:18272661

  11. Breed-specific fetal biometry and factors affecting the prediction of whelping date in the German shepherd dog.

    PubMed

    Groppetti, D; Vegetti, F; Bronzo, V; Pecile, A

    2015-01-01

    To date many studies have been published about predicting parturition by ultrasonographic fetal measurements in the bitch. Given that accuracy in such prediction is a key point for clinicians and breeders, formulas to calculate the whelping date were mainly obtained from small and medium sized dogs, which means poor accuracy when applied to large or giant breeds. Based on the evidence that ethnicity significantly affects fetal biometry in humans, this study aimed at developing a breed-specific linear regression model for estimating parturition date in the German shepherd dog. For this purpose, serial ultrasonographic measurements of the inner chorionic cavity diameter (ICC) and the fetal biparietal diameter (BP) were collected in 40 pregnant German shepherd bitches. The quality of the regression models for estimating parturition date was further verified in 22 other pregnant German shepherd bitches. Accuracy related to the prediction of parturition date was higher than previously reported: 94.5% and 91.7% within ±2 days interval based on ICC and BP measurements, respectively. Additional investigation was performed on the effects of maternal weight, age and litter size in relation to fetal biometry and to accuracy of parturition estimation. Moreover, the study included a comparison between hormonal and fetal ultrasound (ICC and BP) measurements connected to the estimation of whelping date. We suggest that specific equations from a single breed are likely to offer excellent accuracy, comparable to that of periovulatory progesteronemia, in parturition prediction and to avoid morphological variables present in dogs of different breeds even with the same size/weight. PMID:25510562

  12. First trimester fetal growth restriction and cardiovascular risk factors in school age children: population based cohort study

    PubMed Central

    de Jonge, Layla L; Hofman, Albert; Franco, Oscar H; Steegers, Eric A P; Gaillard, Romy

    2014-01-01

    Objective To examine whether first trimester fetal growth restriction correlates with cardiovascular outcomes in childhood. Design Population based prospective cohort study. Setting City of Rotterdam, the Netherlands. Participants 1184 children with first trimester fetal crown to rump length measurements, whose mothers had a reliable first day of their last menstrual period and a regular menstrual cycle. Main outcomes measures Body mass index, total and abdominal fat distribution, blood pressure, and blood concentrations of cholesterol, triglycerides, insulin, and C peptide at the median age of 6.0 (90% range 5.7-6.8) years. Clustering of cardiovascular risk factors was defined as having three or more of: high android fat mass; high systolic or diastolic blood pressure; low high density lipoprotein cholesterol or high triglycerides concentrations; and high insulin concentrations. Results One standard deviation score greater first trimester fetal crown to rump length was associated with a lower total fat mass (−0.30%, 95% confidence interval −0.57% to −0.03%), android fat mass (−0.07%, −0.12% to −0.02%), android/gynoid fat mass ratio (−0.53, −0.89 to −0.17), diastolic blood pressure (−0.43, −0.84 to −0.01, mm Hg), total cholesterol (−0.05, −0.10 to 0, mmol/L), low density lipoprotein cholesterol (−0.04, −0.09 to 0, mmol/L), and risk of clustering of cardiovascular risk factors (relative risk 0.81, 0.66 to 1.00) in childhood. Additional adjustment for gestational age and weight at birth changed these effect estimates only slightly. Childhood body mass index fully explained the associations of first trimester fetal crown to rump length with childhood total fat mass. First trimester fetal growth was not associated with other cardiovascular outcomes. Longitudinal growth analyses showed that compared with school age children without clustering of cardiovascular risk factors, those with clustering had a smaller first trimester fetal crown

  13. Prenatal Exposure to Traffic-Related Air Pollution and Ultrasound Measures of Fetal Growth in the INMA Sabadell Cohort

    PubMed Central

    Aguilera, Inmaculada; Garcia-Esteban, Raquel; Iñiguez, Carmen; Nieuwenhuijsen, Mark J.; Rodríguez, Àgueda; Paez, Montserrat; Ballester, Ferran; Sunyer, Jordi

    2010-01-01

    Background Few studies have used longitudinal ultrasound measurements to assess the effect of traffic-related air pollution on fetal growth. Objective We examined the relationship between exposure to nitrogen dioxide (NO2) and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] on fetal growth assessed by 1,692 ultrasound measurements among 562 pregnant women from the Sabadell cohort of the Spanish INMA (Environment and Childhood) study. Methods We used temporally adjusted land-use regression models to estimate exposures to NO2 and BTEX. We fitted mixed-effects models to estimate longitudinal growth curves for femur length (FL), head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD), and estimated fetal weight (EFW). Unconditional and conditional SD scores were calculated at 12, 20, and 32 weeks of gestation. Sensitivity analyses were performed considering time–activity patterns during pregnancy. Results Exposure to BTEX from early pregnancy was negatively associated with growth in BPD during weeks 20–32. None of the other fetal growth parameters were associated with exposure to air pollution during pregnancy. When considering only women who spent < 2 hr/day in nonresidential outdoor locations, effect estimates were stronger and statistically significant for the association between NO2 and growth in HC during weeks 12–20 and growth in AC, BPD, and EFW during weeks 20–32. Conclusions Our results lend some support to an effect of exposure to traffic-related air pollutants from early pregnancy on fetal growth during mid-pregnancy. PMID:20103496

  14. Ultrasonographic Fetal Growth Charts: An Informatic Approach by Quantitative Analysis of the Impact of Ethnicity on Diagnoses Based on a Preliminary Report on Salentinian Population

    PubMed Central

    Bochicchio, Mario Alessandro

    2014-01-01

    Clear guidance on fetal growth assessment is important because of the strong links between growth restriction or macrosomia and adverse perinatal outcome in order to reduce associated morbidity and mortality. Fetal growth curves are extensively adopted to track fetal sizes from the early phases of pregnancy up to delivery. In the literature, a large variety of reference charts are reported but they are mostly up to five decades old. Furthermore, they do not address several variables and factors (e.g., ethnicity, foods, lifestyle, smoke, and physiological and pathological variables), which are very important for a correct evaluation of the fetal well-being. Therefore, currently adopted fetal growth charts are inadequate to support the melting pot of ethnic groups and lifestyles of our society. Customized fetal growth charts are needed to provide an accurate fetal assessment and to avoid unnecessary obstetric interventions at the time of delivery. Starting from the development of a growth chart purposely built for a specific population, in the paper, authors quantify and analyse the impact of the adoption of wrong growth charts on fetal diagnoses. These results come from a preliminary evaluation of a new open service developed to produce personalized growth charts for specific ethnicity, lifestyle, and other parameters. PMID:25028648

  15. Ultrasonographic fetal growth charts: an informatic approach by quantitative analysis of the impact of ethnicity on diagnoses based on a preliminary report on Salentinian population.

    PubMed

    Tinelli, Andrea; Bochicchio, Mario Alessandro; Vaira, Lucia; Malvasi, Antonio

    2014-01-01

    Clear guidance on fetal growth assessment is important because of the strong links between growth restriction or macrosomia and adverse perinatal outcome in order to reduce associated morbidity and mortality. Fetal growth curves are extensively adopted to track fetal sizes from the early phases of pregnancy up to delivery. In the literature, a large variety of reference charts are reported but they are mostly up to five decades old. Furthermore, they do not address several variables and factors (e.g., ethnicity, foods, lifestyle, smoke, and physiological and pathological variables), which are very important for a correct evaluation of the fetal well-being. Therefore, currently adopted fetal growth charts are inadequate to support the melting pot of ethnic groups and lifestyles of our society. Customized fetal growth charts are needed to provide an accurate fetal assessment and to avoid unnecessary obstetric interventions at the time of delivery. Starting from the development of a growth chart purposely built for a specific population, in the paper, authors quantify and analyse the impact of the adoption of wrong growth charts on fetal diagnoses. These results come from a preliminary evaluation of a new open service developed to produce personalized growth charts for specific ethnicity, lifestyle, and other parameters. PMID:25028648

  16. Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth

    PubMed Central

    Eitan, Erez; Zhang, Shi; Witwer, Kenneth W.; Mattson, Mark P.

    2015-01-01

    Background Fetal bovine serum (FBS) is the most widely used serum supplement for mammalian cell culture. It supports cell growth by providing nutrients, growth signals, and protection from stress. Attempts to develop serum-free media that support cell expansion to the same extent as serum-supplemented media have not yet succeeded, suggesting that FBS contains one or more as-yet-undefined growth factors. One potential vehicle for the delivery of growth factors from serum to cultured cells is extracellular vesicles (EVs). Methods EV-depleted FBS and human serum were generated by 120,000g centrifugation, and its cell growth–supporting activity was measured. Isolated EVs from FBS were quantified and characterized by nanoparticle tracking analysis, electron microscopy, and protein assay. EV internalization into cells was quantified using fluorescent plate reader analysis and microscopy. Results Most cell types cultured with EV-depleted FBS showed a reduced growth rate but not an increased sensitivity to the DNA-damaging agent etoposide and the endoplasmic reticulum stress–inducing chemical tunicamycin. Supplying cells with isolated FBS-derived EVs enhanced their growth. FBS-derived EVs were internalized by mouse and human cells wherein 65±26% of them interacted with the lysosomes. EV-depleted human serum also exhibited reduced cell growth–promoting activity. Conclusions EVs play a role in the cell growth and survival-promoting effects of FBS and human serum. Thus, it is important to take the effect of EV depletion under consideration when planning EV extraction experiments and while attempting to develop serum-free media that support rapid cell expansion. In addition, these findings suggest roles for circulating EVs in supporting cell growth and survival in vivo. PMID:25819213

  17. The insulin-like growth factor II/mannose-6-phosphate receptor is present in fetal and maternal sheep serum.

    PubMed

    Gelato, M C; Rutherford, C; Stark, R I; Daniel, S S

    1989-06-01

    A large mol wt binding protein for insulin-like growth factor II (IGF-II) has been described in fetal sheep serum. We now provide evidence to demonstrate that this binding protein is the IGF-II/mannose-6-phosphate (Man-6-P) receptor. Serum and plasma were gel filtered on Sephadex G-200, and the column fractions were assayed for binding of radiolabeled IGF-II. There was significant binding of [125I]IGF-II to the void volume fractions in addition to binding to the 150K and 40K carrier proteins. Binding to the void volume fractions was increased in fetal serum as well as maternal serum and dramatically decreased in the nonpregnant adult. Competitive binding studies with [125I]IGF-II and the void volume pools from fetal and maternal sheep serum demonstrated that IGF-I competed less potently than IGF-II, and insulin did not compete. There was no specific binding of [125I]IGF-I to the void volume pools of either fetal or maternal samples. Chemical cross-linking of [125I]IGF-II to aliquots of the void volume pools from fetal and maternal sheep serum samples and analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of dithiothreitol demonstrated a specific band at about 240K. Western blotting using a specific antiserum (no. 3637) against rat IGF-II/Man-6-P receptor was performed on aliquots of the Sephadex G-200 void volume pools of fetal, maternal, uterine vein, and adult sheep serum; a band of approximately 210K (without dithiothreitol) was seen. The IGF-II/Man-6-P receptor band was more intense in fetal serum than in either maternal or adult nonpregnant sheep serum. There was also increased binding of [125I]IGF-II in the 40K region of the Sephadex G-200 column fractions in the maternal serum compared to that in serum from nonpregnant adult ewes. When fetal, maternal, and adult nonpregnant sheep serum Sephadex G-200 pools were gel filtered on Sephadex G-50 in 1 mol/liter acetic acid to separate bound from free IGF, and IGF-II was

  18. Fetal and Neonatal Levels of Omega-3: Effects on Neurodevelopment, Nutrition, and Growth

    PubMed Central

    Bernardi, Juliana Rombaldi; Escobar, Renata de Souza; Ferreira, Charles Francisco; Silveira, Patrícia Pelufo

    2012-01-01

    Nutrition in pregnancy, during lactation, childhood, and later stages has a fundamental influence on overall development. There is a growing research interest on the role of key dietary nutrients in fetal health. Omega-3 polyunsaturated fatty acids (n-3 LCPUFAs) play an important role in brain development and function. Evidence from animal models of dietary n-3 LCPUFAs deficiency suggests that these fatty acids promote early brain development and regulate behavioral and neurochemical aspects related to mood disorders (stress responses, depression, and aggression and growth, memory, and cognitive functions). Preclinical and clinical studies suggest the role of n-3 LCPUFAs on neurodevelopment and growth. n-3 LCPUFAs may be an effective adjunctive factor for neural development, growth, and cognitive development, but further large-scale, well-controlled trials and preclinical studies are needed to examine its clinical mechanisms and possible benefits. The present paper discusses the use of n-3 LCPUFAs during different developmental stages and the investigation of different sources of consumption. The paper summarizes the role of n-3 LCPUFAs levels during critical periods and their effects on the children's neurodevelopment, nutrition, and growth. PMID:23125553

  19. Region-Specific Growth Effects in the Developing Rat Prostate Following Fetal Exposure to Estrogenic Ultraviolet Filters

    PubMed Central

    Hofkamp, Luke; Bradley, Sarahann; Tresguerres, Jesus; Lichtensteiger, Walter; Schlumpf, Margret; Timms, Barry

    2008-01-01

    Background and objectives Exposure to environmental endocrine disruptors is a potential risk factor for humans. Many of these chemicals have been shown to exhibit disruption of normal cellular and developmental processes in animal models. Ultraviolet (UV) filters used as sunscreens in cosmetics have previously been shown to exhibit estrogenic activity in in vitro and in vivo assays. We examined the effects of two UV filters, 4-methylbenzylidene camphor (4-MBC) and 3-benzylidene camphor (3-BC), in the developing prostate of the fetal rat. Methods Pregnant Long Evans rats were fed diets containing doses of 4-MBC and 3-BC that resulted in average daily intakes of these chemicals corresponding to the lowest observed adverse effects level (LOAEL) and the no observed adverse effects level (NOAEL) doses in prior developmental toxicity studies. Using digital photographs of serial sections from postnatal day 1 animals, we identified, contoured, and aligned the epithelial ducts from specific regions of the developing prostate, plus the accessory sex glands and calculated the total volume for each region from three-dimensional, surface-rendered models. Results Fetal exposure to 4-MBC (7.0 mg/kg body weight/day) resulted in a significant increase (p < 0.05) in tissue volume in the prostate and accessory sex glands. Treated males exhibited a 62% increase in the number of ducts in the caudal dorsal prostate. Increased distal branching morphogenesis appears to be a consequence of exposure in the ventral region, resulting in a 106% increase in ductal volume. Conclusions 4-MBC exposure during development of the male reproductive accessory sex glands exhibited classical growth effects associated with estrogenic endocrine disruptors. The different regional responses suggest that the two developmental processes of ductal outgrowth and branching morphogenesis are affected independently by exposure to the environmental chemicals. PMID:18629307

  20. Effortful Control Mediates Associations of Fetal Growth with Hyperactivity and Behavioural Problems in 7- to 9-Year-Old Children

    ERIC Educational Resources Information Center

    Schlotz, Wolff; Jones, Alexander; Godfrey, Keith M.; Phillips, David I. W.

    2008-01-01

    Background: Inverse associations of fetal growth with behavioural problems in childhood have been repeatedly reported, suggesting long-term effects of the prenatal developmental environment on behaviour later in life. However, no study so far has examined effects on temperament and potential developmental pathways. Temperamental traits may be…

  1. A comparative analysis of prenatal care and fetal growth in eight South American countries.

    PubMed

    Woodhouse, Cristina; Lopez Camelo, Jorge; Wehby, George L

    2014-01-01

    There has been little work that comprehensively compared the relationship between prenatal care and infant health across multiple countries using similar data sources and analytical models. Such comparative analyses are useful for understanding the background of differences in infant health between populations. We evaluated the association between prenatal care visits and fetal growth measured by birth weight (BW) in grams or low birth weight (<2500 grams; LBW) adjusted for gestational age in eight South American countries using similarly collected data across countries and the same analytical models. OLS and logistic regressions were estimated adjusting for a large set of relevant infant, maternal, and household characteristics and birth year and hospital fixed effects. Birth data were acquired from 140 hospitals that are part of the Latin American Collaborative Study of Congenital Malformations (ECLAMC) network. The analytical sample included 56,014 live-born infants (∼69% of total sample) with complete data born without congenital anomalies in the years 1996-2011 in Brazil, Argentina, Chile, Venezuela, Ecuador, Colombia, Bolivia, and Uruguay. Prenatal care visits were significantly (at p<.05) and positively associated with BW and negatively associated with LBW for all countries. The OLS coefficients ranged from 9 grams per visit in Bolivia to 36 grams in Uruguay. The association with LBW was strongest for Chile (OR = 0.87 per visit) and lowest for Argentina and Venezuela (OR = 0.95). The association decreased in the recent decade compared to earlier years. Our findings suggest that estimates of association between prenatal care and fetal growth are population-specific and may not be generalizable to other populations. Furthermore, as one of the indicators for a country's healthcare system for maternal and child health, prenatal care is a highly variable indicator between countries in South America. PMID:24625630

  2. Ultrasonographic measurement of fetal growth parameters over three successive pregnancies in a captive Malayan tapir (Tapirus indicus).

    PubMed

    Hoyer, M J; van Engeldorp Gastelaars, H M D

    2014-01-01

    This study was conducted to establish representative curves that allow evaluation of fetal growth and estimation of gestational age from measurement of fetal structures by ultrasound in Malayan tapirs (Tapirus indicus). Three pregnancies (i.e. 3 fetuses) were examined in one female Malayan tapir. Transabdominal ultrasonographic examination was performed without anesthesia from 79 ± 8 days to 281 ± 48 days (mean ± S.D.) post mating. To assess fetal growth attempts were made to measure biparietal diameter (BPD), head length (HL), thorax diameter A (TDA), thorax height A (THA), thorax diameter B (TDB), thorax height B (THB), abdomen diameter (AD), abdomen height (AH), humerus length (HUL) and Crown rump length (CRL). The value of each parameter as an estimator of gestational age was assessed by ease of observation and the length of time the parameter was measurable throughout gestation. The most precise predictors for gestational age in this study were BPD and CRL (weeks 10-20 of gestation), as well as AD and AH (weeks 14-43 of gestation). The parameters TDB, THB and HUL (weeks 15-41 of gestation) gave almost as good predictions. Fetal viability was assessed by identifying a fetal heartbeat and movement. All pregnancies resulted in normal deliveries and healthy offspring. The ultrasound examination was well tolerated by the female. The gestation lengths (399 ± 3 days) were within reported ranges. The serial transabdominal ultrasound, without the need for anesthesia, was an effective method to evaluate fetal growth, development and well being in a Malayan tapir. PMID:25042428

  3. Effect of fetal undernutrition and postnatal overfeeding on rat adipose tissue and organ growth at early stages of postnatal development.

    PubMed

    Munoz-Valverde, D; Rodríguez-Rodríguez, P; Gutierrez-Arzapalo, P Y; López de Pablo, A L; Carmen González, M; López-Giménez, R; Somoza, B; Arribas, S M

    2015-01-01

    Intrauterine and perinatal life are critical periods for programming of cardiometabolic diseases. However, their relative role remains controversial. We aimed to assess, at weaning, sex-dependent alterations induced by fetal or postnatal nutritional interventions on key organs for metabolic and cardiovascular control. Fetal undernutrition was induced by dam food restriction (50 % from mid-gestation to delivery) returning to ad libitum throughout lactation (Maternal Undernutrition, MUN, 12 pups/litter). Postnatal overfeeding (POF) was induced by litter size reduction from normally fed dams (4 pups/litter). Compared to control, female and male MUN offspring exhibited: 1) low birth weight and accelerated growth, reaching similar weight and tibial length by weaning, 2) increased glycemia, liver and white fat weights; 3) increased ventricular weight and tendency to reduced kidney weight (males only). Female and male POF offspring showed: 1) accelerated growth; 2) increased glycemia, liver and white fat weights; 3) unchanged heart and kidney weights. In conclusion, postnatal accelerated growth, with or without fetal undernutrition, induces early alterations relevant for metabolic disease programming, while fetal undernutrition is required for heart abnormalities. The progression of cardiac alterations and their role on hypertension development needs to be evaluated. The similarities between sexes in pre-pubertal rats suggest a role of sex-hormones in female protection against programming. PMID:25470520

  4. Increased Fetal Plasma Erythropoietin in Monochorionic Twin Pregnancies With Selective Intrauterine Growth Restriction and Abnormal Umbilical Artery Doppler.

    PubMed

    Chang, Yao-Lung; Chao, An-Shine; Peng, Hsiu-Huei; Chang, Shuenn-Dyh; Su, Sheng-Yuan; Chen, Kuan-Ju; Cheng, Po-Jen; Wang, Tzu-Hao

    2016-08-01

    Hypoxia is the primary stimulus for the production of erythropoietin (EPO) in both fetal and adult life. Here, we investigated fetal plasma EPO concentrations in monochorionic (MC) twin pregnancies with selective intrauterine growth restriction (sIUGR) and abnormal umbilical artery (UA) Doppler. We diagnosed sIUGR in presence of (1) birth-weight discordance >20% and (2) either twin with a birth weight <10th percentile. An abnormal UA Doppler was defined as a persistent absent-reverse end diastolic flow (AREDF). The intertwin EPO ratio was calculated as the plasma EPO level of the smaller (or small-for-gestational-age) twin divided by the EPO concentration of the larger (or appropriate-for-gestational-age (AGA)) twin. Thirty-two MC twin pairs were included. Of these, 17 pairs were normal twins (Group 1), seven pairs were twins with sIUGR without UA Doppler abnormalities (Group 2), and eight pairs were twins with sIUGR and UA Doppler abnormalities (Group 3). The highest EPO ratio was identified in Group 3 (p < .001) but no significant differences were observed between Groups 1 and 2. Fetal hemoglobin levels did not differ significantly in the three groups, and fetal EPO concentration did not correlate with gestational age at birth. We conclude that fetal plasma EPO concentrations are selectively increased in MC twin pregnancies with sIUGR and abnormal UA Doppler, possibly as a result of uncompensated hypoxia. PMID:27161360

  5. Insulin-like growth factor binding protein production and regulation in fetal rat lung cells.

    PubMed

    Price, W A; Moats-Staats, B M; D'Ercole, A J; Stiles, A D

    1993-04-01

    Insulin-like growth factor binding proteins (IGFBPs) are expressed in lung from early in gestation and may modulate IGF-stimulated fetal lung cell proliferation and/or differentiation. To begin to define IGFBP production and regulation in lung cells during development, we prepared primary cultures of 19 day gestation fetal rat lung fibroblasts and epithelial cells and identified IGFBPs secreted into medium. Ligand blot analysis of conditioned media (CM) from both cell types demonstrated IGFBP bands of approximately 39,000-45,000, 32,000, 24,000, and 22,000 M(r). These migration characteristics allowed the identification of the 39,000-45,000 M(r) bands as IGFBP-3 and the 24,000 M(r) band as IGFBP-4, while Western immunoblot analyses localized IGFBP-2 to the 32,000 M(r) band and IGFBP-5 to the 22,000 M(r) band. Polymerase chain reaction amplification of cDNAs generated by reverse transcription of fibroblast and epithelial cell RNA using specific oligodeoxynucleotide primers for IGFBPs 1 through 6, demonstrated the presence of amplified products for IGFBP-2, -3, -4, -5, and -6. In both cell types, IGFBP-2 and -3 production was sustained during 48 h of incubation in serum-free medium, whereas IGFBP-4 abundance increased only during the first 6 to 12 h of incubation. CM from fibroblasts and epithelial cells plated at low densities contained a high abundance of IGFBP-2 per microgram cellular DNA compared with cells at higher densities. In contrast, IGFBP-3 and -4 abundance normalized to cell DNA did not change with differing cell densities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7682822

  6. Does milk and dairy consumption during pregnancy influence fetal growth and infant birthweight? A systematic literature review

    PubMed Central

    Brantsæter, Anne Lise; Olafsdottir, Anna S.; Forsum, Elisabet; Olsen, Sjurdur F.; Thorsdottir, Inga

    2012-01-01

    It is increasingly acknowledged that the maternal diet influences fetal development and health of the child. Milk and milk products contribute essential nutrients and bioactive substances; they are of ample supply and have a long tradition in Nordic countries. To revise and update dietary guidelines for pregnant women valid in Nordic countries, the Pregnancy and Lactation expert group within the NNR5 project identified a need to systematically review recent scientific data on infant growth measures and maternal milk consumption. The objective of this study was to assess the influence of milk and dairy consumption during pregnancy on fetal growth through a systematic review of studies published between January 2000 and December 2011. A literature search was run in June 2011. Two authors independently selected studies for inclusion from the 495 abstracts according to predefined eligibility criteria. A complementary search in January 2012 revealed 64 additional abstracts published during the period June to December 2011, among them one study of interest previously identified. Of the 33 studies extracted, eight were relevant research papers. Five were prospective cohort studies (including a retrospective chart review), one was a case–control study, and two were retrospective cohort studies. For fetal length or infant birth length, three studies reported no association and two reported positive associations with milk or dairy consumption. For birthweight related outcomes, two studies reported no associations, and four studies reported positive associations with milk and/or dairy consumption. There was large heterogeneity in exposure range and effect size between studies. A beneficial fetal growth-increase was most pronounced for increasing maternal milk intake in the lower end of the consumption range. Evidence from prospective cohort studies is limited but suggestive that moderate milk consumption relative to none or very low intake, is positively associated with

  7. The Navigation Guide—Evidence-Based Medicine Meets Environmental Health: Integration of Animal and Human Evidence for PFOA Effects on Fetal Growth

    PubMed Central

    Koustas, Erica; Sutton, Patrice; Johnson, Paula I.; Atchley, Dylan S.; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.

    2014-01-01

    Background: The Navigation Guide is a novel systematic review method to synthesize scientific evidence and reach strength of evidence conclusions for environmental health decision making. Objective: Our aim was to integrate scientific findings from human and nonhuman studies to determine the overall strength of evidence for the question “Does developmental exposure to perfluorooctanoic acid (PFOA) affect fetal growth in humans?” Methods: We developed and applied prespecified criteria to systematically and transparently a) rate the quality of the scientific evidence as “high,” “moderate,” or “low”; b) rate the strength of the human and nonhuman evidence separately as “sufficient,” “limited,” “moderate,” or “evidence of lack of toxicity”; and c) integrate the strength of the human and nonhuman evidence ratings into a strength of the evidence conclusion. Results: We identified 18 epidemiology studies and 21 animal toxicology studies relevant to our study question. We rated both the human and nonhuman mammalian evidence as “moderate” quality and “sufficient” strength. Integration of these evidence ratings produced a final strength of evidence rating in which review authors concluded that PFOA is “known to be toxic” to human reproduction and development based on sufficient evidence of decreased fetal growth in both human and nonhuman mammalian species. Conclusion: We concluded that developmental exposure to PFOA adversely affects human health based on sufficient evidence of decreased fetal growth in both human and nonhuman mammalian species. The results of this case study demonstrate the application of a systematic and transparent methodology, via the Navigation Guide, for reaching strength of evidence conclusions in environmental health. Citation: Lam J, Koustas E, Sutton P, Johnson PI, Atchley DS, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health

  8. Effect of maternal alcohol and nicotine intake, individually and in combination, on fetal growth in the rat

    SciTech Connect

    Leichter, J. )

    1991-03-15

    The effect of maternal ethanol and nicotine administration, separately and in combination, on fetal growth of rats was studied. Nicotine was administered by gavage for the entire gestational period. Alcohol was given in drinking water for 4 weeks prior to mating and 30% throughout gestation. Appropriate pair-fed and ad libitum control animals were included to separate the effect of ethanol and nicotine on the outcome of pregnancy from those produced by the confounding variables of malnutrition. Body weights of fetuses exposed to alcohol alone or in combination with nicotine were significantly lower than those of the pair-fed and ad libitum controls. However, the difference in fetal body weight between the alcohol plus nicotine and the alcohol alone group was not significant. Similarly, in the rats administered nicotine only, fetal weight was not significantly different compared to control animals. The results of this study indicate that maternal alcohol intake impairs fetal growth and nicotine does not, regardless whether it is administered separately or in combination with alcohol for the entire gestational period.

  9. Do the Levels of Maternal Plasma Trace Elements Affect Fetal Nuchal Translucency Thickness?

    PubMed Central

    Liao, Kai-Wei; Tsai, Ming-Song; Chang, Chia-Huang; Chien, Ling-Chu; Mao, I-Fang; Tsai, Yen-An; Chen, Mei-Lien

    2015-01-01

    Objective Fetal nuchal translucency (NT) thickness is an important marker for prenatal screening; however, studies focusing on the correlation between maternal trace element levels and NT thickness are limited. The aim of this study was to evaluate maternal trace element levels during the first trimester and to investigate the association between maternal trace element levels and fetal NT thickness. Methods In total, 113 samples were obtained from singleton pregnant women. Maternal plasma samples were collected in the first trimester of gestation. Plasma trace element levels were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Nuchal translucency thickness was measured using ultrasonography at 10–14 weeks of gestation. Results We found that maternal plasma potassium (K) levels had a significant negative correlation with both NT (r = -0.230, p < 0.05) and NT Multiples of the Median (NT MoM) (r = -0.206, p < 0.05). After adjustment for potential confounders, log-transformed maternal plasma potassium levels in the first trimester were significantly associated with fetal NT (NT MoM: β = -0.68, p < 0.05; NT: β = -1.20, p < 0.01). Although not statistically significant, the As, Hg and Pb levels in maternal plasma were positively correlated with NT, and the Mg, Cu, Zn, Na and Ca levels were negatively correlated with NT. Conclusion Maternal plasma K levels during the first trimester appeared to be associated with NT thickness. The essential elements tended to decrease NT thickness, and non-essential elements tended to increase it. PMID:26367380

  10. Exogenous transforming growth factor-beta amplifies its own expression and induces scar formation in a model of human fetal skin repair.

    PubMed Central

    Lin, R Y; Sullivan, K M; Argenta, P A; Meuli, M; Lorenz, H P; Adzick, N S

    1995-01-01

    OBJECTIVE: Fetal skin wounds heal without scarring. To determine the role of TGF-beta 1 in fetal wound healing, mRNA expression of TGF-beta 1 was analyzed in human fetal and adult skin wounds. METHODS: Human fetal skin transplanted to a subcutaneous location on an adult athymic mouse that was subsequently wounded heals without scar, whereas human adult skin heals with scar formation in that location. In situ hybridization for TGF-beta 1 mRNA expression and species-specific immunohistochemistry for fibroblasts, macrophages, and neutrophils were performed in human adult wounds, fetal wounds, and fetal wounds treated with a TGF-beta 1 slow release disk. RESULTS: Transforming growth factor-beta 1 mRNA expression was induced by wounding adult skin. No TGF-beta 1 mRNA upregulation was detected in human fetal skin after wounding. However, when exogenous TGF-beta 1 was added to human fetal skin, induction of TGF-beta 1 mRNA expression in human fetal fibroblasts occurred, an adult-like inflammatory response was detected, and the skin healed with scar formation. CONCLUSIONS: Transforming growth factor-beta 1 is an important modulator in scar formation. Anti-TGF-beta 1 strategies may promote scarless healing in adult wounds. Images Figure 1. Figure 2. Figure 3. Figure 5. Figure 6. PMID:7639582

  11. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    SciTech Connect

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  12. Prenatal Exposure to Organophosphorous Pesticides and Fetal Growth: Pooled Results from Four Longitudinal Birth Cohort Studies

    PubMed Central

    Harley, Kim G.; Engel, Stephanie M.; Vedar, Michelle G.; Eskenazi, Brenda; Whyatt, Robin M.; Lanphear, Bruce P.; Bradman, Asa; Rauh, Virginia A.; Yolton, Kimberly; Hornung, Richard W.; Wetmur, James G.; Chen, Jia; Holland, Nina T.; Barr, Dana Boyd; Perera, Frederica P.; Wolff, Mary S.

    2015-01-01

    Background: Organophosphorous (OP) pesticides are associated with reduced fetal growth in animals, but human studies are inconsistent. Objectives: We pooled data from four cohorts to examine associations of prenatal OP exposure with birth weight (n = 1,169), length (n = 1,152), and head circumference (n = 1,143). Methods: Data were from the CHAMACOS, HOME, Columbia, and Mount Sinai birth cohorts. Concentrations of three diethyl phosphate (ΣDEP) and three dimethyl phosphate (ΣDMP) metabolites of OP pesticides [summed to six dialkyl phosphates (ΣDAPs)] were measured in maternal urine. Linear regression and mixed-effects models were used to examine associations with birth outcomes. Results: We found no significant associations of ΣDEP, ΣDMP, or ΣDAPs with birth weight, length, or head circumference overall. However, among non-Hispanic black women, increasing urinary ΣDAP and ΣDMP concentrations were associated with decreased birth length (β = –0.4 cm; 95% CI: –0.9, 0.0 and β = –0.4 cm; 95% CI: –0.8, 0.0, respectively, for each 10-fold increase in metabolite concentration). Among infants with the PON1192RR genotype, ΣDAP and ΣDMP were negatively associated with length (β = –0.4 cm; 95% CI: –0.9, 0.0 and β = –0.5 cm; 95% CI: –0.9, –0.1). Conclusions: This study confirms previously reported associations of prenatal OP exposure among black women with decreased infant size at birth, but finds no evidence of smaller birth weight, length, or head circumference among whites or Hispanics. Contrary to our hypothesis, we found stronger inverse associations of DAPs and birth outcome in infants with the less susceptible PON1192RR genotype. The large pooled data set facilitated exploration of interactions by race/ethnicity and PON1 genotype, but was limited by differences in study populations. Citation: Harley KG, Engel SM, Vedar MG, Eskenazi B, Whyatt RM, Lanphear BP, Bradman A, Rauh VA, Yolton K, Hornung RW, Wetmur JG, Chen J, Holland NT, Barr DB

  13. Site-specific IGFBP-1 hyper-phosphorylation in fetal growth restriction: clinical and functional relevance.

    PubMed

    Abu Shehab, Majida; Khosravi, Javad; Han, Victor K M; Shilton, Brian H; Gupta, Madhulika B

    2010-04-01

    Phosphorylation enhances IGFBP-1 binding to IGF-I, thereby limiting the bioavailability of IGF-I that may be important in fetal growth. Our goal in this study was to determine whether changes in site-specific IGFBP-1 phosphorylation were unique to fetal growth restriction. To establish a link, we compared IGFBP-1 phosphorylation (sites and degree) in amniotic fluid from FGR (N = 10) and controls (N = 12). The concentration of serine phosphorylated IGFBP-1 showed a negative correlation with birth weight in FGR (P = 0.049). LC-MS/MS analysis revealed all four previously identified phosphorylation sites (Ser98, Ser101, Ser119, and Ser169) to be common to FGR and control groups. Relative phosphopeptide intensities (LC-MS) between FGR and controls demonstrated 4-fold higher intensity for Ser101 (P = 0.026), 7-fold for Ser98/Ser101 (P = 0.02), and 23-fold for Ser169 (P = 0.002) in the FGR group. Preliminary BIAcore data revealed 4-fold higher association and 1.7-fold lower dissociation constants for IGFBP-1/IGF-I in FGR. A structural model of IGFBP-1 bound to IGF-I indicates that all the phosphorylation sites are on relatively mobile regions of the IGFBP-1 sequence. Residues Ser98, Ser101, and Ser169 are close to structured regions that are involved in IGF-I binding and, therefore, could potentially make direct contact with IGF-I. On the other hand, residue Ser119 is in the middle of the unstructured linker that connects the N- and C-terminal domains of IGFBP-1. The model is consistent with the assumption that residues Ser98, Ser101, and Ser169 could directly interact with IGF-I, and therefore phosphorylation at these sites could change IGF-I interactions. We suggest that site-specific increase in IGFBP-1 phosphorylation limits IGF-I bioavailability, which directly contributes to the development of FGR. This study delineates the potential role of higher phosphorylation of IGFBP-1 in FGR and provides the basis to substantiate these findings with larger sample size. PMID

  14. Perfluoroalkyl Acids in Maternal Serum and Indices of Fetal Growth: The Aarhus Birth Cohort

    PubMed Central

    Bach, Cathrine Carlsen; Bech, Bodil Hammer; Nohr, Ellen Aagaard; Olsen, Jørn; Matthiesen, Niels Bjerregård; Bonefeld-Jørgensen, Eva Cecilie; Bossi, Rossana; Henriksen, Tine Brink

    2015-01-01

    Background: Previous studies indicated an association between intrauterine exposure to perfluorooctane sulfonate (PFOS) or perfluorooctanoate (PFOA) and lower birth weight. However, these perfluoroalkyl acids (PFAAs) have to some extent been substituted by other compounds on which little is known. Objectives: We investigated the association between specific PFAAs and birth weight, birth length, and head circumference at birth. Methods: We studied 1,507 mothers and their children from the Aarhus Birth Cohort (2008–2013). Nulliparous women were included during pregnancy, and serum levels of 16 PFAAs were measured between 9 and 20 completed gestational weeks (96% within 13 weeks). For compounds with quantifiable values in > 50% of samples (7 compounds), we report the associations with birth weight, birth length, and head circumference at birth determined by multivariable linear regression. Results: Estimated mean birth weights were lower among women with serum perfluorohexane sulfonate, perfluoroheptane sulfonate, and PFOS concentrations above the lowest exposure quartile, but we found no consistent monotonic dose–response patterns. These associations were stronger when the population was restricted to term births (n = 1,426). For PFOS, the birth weight estimates for the highest versus lowest quartile were –50 g (95% CI: –123, 23 g) in all births and –62 g (95% CI: –126, 3 g) in term births. For the other PFAAs, the direction of the associations was inconsistent, and no overall association with birth weight was apparent. No PFAAs were associated with birth length or head circumference at birth. Conclusions: Overall, we did not find strong or consistent associations between PFAAs and birth weight or other indices of fetal growth, though estimated mean birth weights were lower among those with exposures above the lowest quartile for some compounds. Citation: Bach CC, Bech BH, Nohr EA, Olsen J, Matthiesen NB, Bonefeld-Jørgensen EC, Bossi R, Henriksen TB

  15. The Navigation Guide—Evidence-Based Medicine Meets Environmental Health: Systematic Review of Human Evidence for PFOA Effects on Fetal Growth

    PubMed Central

    Sutton, Patrice; Atchley, Dylan S.; Koustas, Erica; Lam, Juleen; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.

    2014-01-01

    Background: The Navigation Guide methodology was developed to meet the need for a robust method of systematic and transparent research synthesis in environmental health science. We conducted a case study systematic review to support proof of concept of the method. Objective: We applied the Navigation Guide systematic review methodology to determine whether developmental exposure to perfluorooctanoic acid (PFOA) affects fetal growth in humans. Methods: We applied the first 3 steps of the Navigation Guide methodology to human epidemiological data: 1) specify the study question, 2) select the evidence, and 3) rate the quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using prespecified criteria. We evaluated each study for risk of bias and conducted meta-analyses on a subset of studies. We rated quality and strength of the entire body of human evidence. Results: We identified 18 human studies that met our inclusion criteria, and 9 of these were combined through meta-analysis. Through meta-analysis, we estimated that a 1-ng/mL increase in serum or plasma PFOA was associated with a –18.9 g (95% CI: –29.8, –7.9) difference in birth weight. We concluded that the risk of bias across studies was low, and we assigned a “moderate” quality rating to the overall body of human evidence. Conclusion: On the basis of this first application of the Navigation Guide systematic review methodology, we concluded that there is “sufficient” human evidence that developmental exposure to PFOA reduces fetal growth. Citation: Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1028–1039; http://dx.doi.org/10.1289/ehp.1307893 PMID:24968388

  16. Placental restriction of fetal growth reduces cutaneous responses to antigen after sensitization in sheep.

    PubMed

    Wooldridge, Amy L; Bischof, Robert J; Meeusen, Els N; Liu, Hong; Heinemann, Gary K; Hunter, Damien S; Giles, Lynne C; Kind, Karen L; Owens, Julie A; Clifton, Vicki L; Gatford, Kathryn L

    2014-04-01

    Prenatal and early childhood exposures are implicated as causes of allergy, but the effects of intrauterine growth restriction on immune function and allergy are poorly defined. We therefore evaluated effects of experimental restriction of fetal growth on immune function and allergic sensitization in adolescent sheep. Immune function (circulating total red and white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, and basophils, and the antibody response to Clostridial vaccination) and responses to house dust mite (HDM) allergen and ovalbumin (OVA) antigen sensitization (specific total Ig, IgG1, and IgE antibodies, and cutaneous hypersensitivity) were investigated in adolescent sheep from placentally restricted (PR, n = 23) and control (n = 40) pregnancies. Increases in circulating HDM-specific IgE (P = 0.007) and OVA-specific IgE (P = 0.038) were greater in PR than control progeny. PR did not alter total Ig, IgG1, or IgM responses to either antigen. PR increased OVA-specific but not HDM-specific IgA responses in females only (P = 0.023). Multiple birth increased Ig responses to OVA in a sex-specific manner. PR decreased the proportion of positive cutaneous hypersensitivity responders to OVA at 24 h (P = 0.030) but had no effect on cutaneous responses to HDM. Acute wheal responses to intradermal histamine correlated positively with birth weight in singletons (P = 0.023). Intrauterine growth restriction may suppress inflammatory responses in skin downstream of IgE induction, without impairment in antibody responses to a nonpolysaccharide vaccine. Discord between cutaneous and IgE responses following sensitization suggests new mechanisms for prenatal allergy programming. PMID:24500430

  17. Placental restriction of fetal growth reduces cutaneous responses to antigen after sensitization in sheep

    PubMed Central

    Wooldridge, Amy L.; Bischof, Robert J.; Meeusen, Els N.; Liu, Hong; Heinemann, Gary K.; Hunter, Damien S.; Giles, Lynne C.; Kind, Karen L.; Owens, Julie A.; Clifton, Vicki L.

    2014-01-01

    Prenatal and early childhood exposures are implicated as causes of allergy, but the effects of intrauterine growth restriction on immune function and allergy are poorly defined. We therefore evaluated effects of experimental restriction of fetal growth on immune function and allergic sensitization in adolescent sheep. Immune function (circulating total red and white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, and basophils, and the antibody response to Clostridial vaccination) and responses to house dust mite (HDM) allergen and ovalbumin (OVA) antigen sensitization (specific total Ig, IgG1, and IgE antibodies, and cutaneous hypersensitivity) were investigated in adolescent sheep from placentally restricted (PR, n = 23) and control (n = 40) pregnancies. Increases in circulating HDM-specific IgE (P = 0.007) and OVA-specific IgE (P = 0.038) were greater in PR than control progeny. PR did not alter total Ig, IgG1, or IgM responses to either antigen. PR increased OVA-specific but not HDM-specific IgA responses in females only (P = 0.023). Multiple birth increased Ig responses to OVA in a sex-specific manner. PR decreased the proportion of positive cutaneous hypersensitivity responders to OVA at 24 h (P = 0.030) but had no effect on cutaneous responses to HDM. Acute wheal responses to intradermal histamine correlated positively with birth weight in singletons (P = 0.023). Intrauterine growth restriction may suppress inflammatory responses in skin downstream of IgE induction, without impairment in antibody responses to a nonpolysaccharide vaccine. Discord between cutaneous and IgE responses following sensitization suggests new mechanisms for prenatal allergy programming. PMID:24500430

  18. Fractal scaling of microbial colonies affects growth

    NASA Astrophysics Data System (ADS)

    Károlyi, György

    2005-03-01

    The growth dynamics of filamentary microbial colonies is investigated. Fractality of the fungal or actinomycetes colonies is shown both theoretically and in numerical experiments to play an important role. The growth observed in real colonies is described by the assumption of time-dependent fractality related to the different ages of various parts of the colony. The theoretical results are compared to a simulation based on branching random walks.

  19. Somatomedin-C/insulin-like growth factor-I and Insulin-like growth factor-II mRNAs in rate fetal and adult tissues

    SciTech Connect

    Lund, P.K.; Moats-Staats, B.M.; Hynes, M.A.; Simmons, J.G.; Jansen, M.; D'ercole, A.J.; Van Wyk, J.J.

    1986-11-05

    Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study /sup 32/P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyze rat Sm-C/IGF-I and IGF-II mRNAs in poly(A/sup +/) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobase (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A/sup +/) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded.

  20. Correlations between Prenatal Exposure to Perfluorinated Chemicals and Reduced Fetal Growth

    PubMed Central

    Washino, Noriaki; Saijo, Yasuaki; Sasaki, Seiko; Kato, Shizue; Ban, Susumu; Konishi, Kanae; Ito, Rie; Nakata, Ayako; Iwasaki, Yusuke; Saito, Koichi; Nakazawa, Hiroyuki; Kishi, Reiko

    2009-01-01

    Background Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are man-made, ubiquitous, and persistent contaminants in the environment, wildlife, and humans. Although recent studies have shown that these chemicals interfere with fetal growth in humans, the results are inconsistent. Objectives Our goal was to investigate the correlation between relatively low levels of PFOS and PFOA in maternal serum and birth weight and birth size. Methods We conducted a hospital-based prospective cohort study between July 2002 and October 2005 in Sapporo, Japan. A total of 428 women and their infants were involved in the study. We obtained characteristics of the mothers and infants from self-administered questionnaire surveys and from medical records. We analyzed maternal serum samples for PFOS and PFOA by liquid chromatography–tandem mass spectrometry (LC/MS/MS). Results After adjusting for confounding factors, PFOS levels negatively correlated with birth weight [per log10 unit: β = −148.8 g; 95% confidence interval (CI), −297.0 to −0.5 g]. In addition, analyses stratified by sex revealed that PFOS levels negatively correlated with birth weight only in female infants (per log10 unit: β = −269.4 g; 95% CI, −465.7 to −73.0 g). However, we observed no correlation between PFOA levels and birth weight. Conclusion Our results indicate that in utero exposure to relatively low levels of PFOS was negatively correlated with birth weight. PMID:19440508

  1. Cord Blood 25-hydroxyvitamin D and Fetal Growth in the China-Anhui Birth Cohort Study.

    PubMed

    Zhu, Peng; Tong, Shi-lu; Hu, Wen-biao; Hao, Jia-hu; Tao, Rui-xue; Huang, Kun; Mou, Zhe; Zhou, Qi-fan; Jiang, Xiao-min; Tao, Fang-biao

    2015-01-01

    We determined the association of cord blood 25-hydroxyvitamin D [25(OH)D] with birth weight and the risk of small for gestational age (SGA). As part of the China-Anhui Birth Cohort (C-ABC) study, we measured cord blood levels of 25(OH)D in 1491 neonates in Hefei, China. The data on maternal sociodemographic characteristics, health status, lifestyle, birth outcomes were prospectively collected. Multiple regression models were used to estimate the association of 25(OH)D levels with birth weight and the risk of SGA. Compared with neonates in the lowest decile of cord blood 25(OH)D levels, neonates in four deciles (the fourth, fifth, sixth and seventh deciles) had significantly increased birth weight and decreased risk of SGA. Multiple linear regression models showed that per 10 nmol/L increase in cord blood 25(OH)D, birth weight increased by 61.0 g (95% CI: 31.9, 89.9) at concentrations less than 40 nmol/L, and then decreased by 68.5 g (95% CI: -110.5, -26.6) at concentrations from 40 to 70 nmol/L. This study provides the first epidemiological evidence that there was an inverted U shaped relationship between neonatal vitamin D status and fetal growth, and the risk of SGA reduced at moderate concentration. PMID:26450157

  2. Growth characteristics of the fetal ligament of the head of femur: significance in congenital hip disease.

    PubMed Central

    Walker, J. M.

    1980-01-01

    Measurement of the length and width of the ligament of the head of femur (ligamentum teres) in 140 normal human fetuses between 12 weeks and term provides limits for growth changes in this structure. These observations provide no morphological evidence of a significant difference between males and females, or between the right and left sides, to explain the female and left hip preponderance reported in congenital hip disease. The ligament is shown to be variable in length, width, and shape, and it is not a distinctly linear structure through linearity may increase with age. Tests of femoral head mobility support the opinion that this ligament must play a role in fetal and neonatal hip joint stability. Weak correlation only was demonstrated between the ligament variables and acetabular depth, which suggests that ligament shape and socket shape are not closely related. Comparison of measurements from normal and 12 dysplastic or subluxated joints provides no evidence to support previous observations that this structure is unusually long in abnormal hip joints which are not frankly dislocated. Images FIG. 1 PMID:7445537

  3. A rodent model of low- to moderate-dose ethanol consumption during pregnancy: patterns of ethanol consumption and effects on fetal and offspring growth.

    PubMed

    Probyn, Megan E; Zanini, Simone; Ward, Leigh C; Bertram, John F; Moritz, Karen M

    2012-01-01

    It is unknown whether low to moderate maternal alcohol consumption adversely affects postnatal health. The aim of the present study was to develop a rodent model of low-moderate-dose prenatal ethanol (EtOH) exposure. Sprague-Dawley rats were fed a liquid diet with or without 6% v/v EtOH throughout gestation and the pattern of dietary consumption determined. Fetal bodyweights and hepatic alcohol-metabolising gene expression were measured on embryonic Day (E) 20 and offspring growth studied until 1 year. At E8 the plasma EtOH concentration was 0.03%. There was little difference in dietary consumption between the two treatment groups. At E20, EtOH-exposed fetuses were significantly lighter than controls and had significantly decreased ADH4 and increased CYP2E1 gene expression. Offspring killed on postnatal Day (PN) 30 did not exhibit any growth deficits. Longitudinal repeated measures of offspring growth demonstrated slower growth in males from EtOH-fed dams between 7 and 12 months of age; a cohort of male pups killed at 8 months of age had a reduced crown-rump length and kidney weight. In conclusion, a liquid diet of 6% v/v EtOH fed to pregnant dams throughout gestation caused a 3-8% reduction in fetal growth and brain sparing, with growth differences observed in male offspring later in life. This model will be useful for future studies on the effects of low-moderate EtOH on the developmental origins of health and disease. PMID:22781937

  4. Blood Biomarkers of Late Pregnancy Exposure to Trihalomethanes in Drinking Water and Fetal Growth Measures and Gestational Age in a Chinese Cohort

    PubMed Central

    Cao, Wen-Cheng; Zeng, Qiang; Luo, Yan; Chen, Hai-Xia; Miao, Dong-Yue; Li, Li; Cheng, Ying-Hui; Li, Min; Wang, Fan; You, Ling; Wang, Yi-Xin; Yang, Pan; Lu, Wen-Qing

    2015-01-01

    Background: Previous studies have suggested that elevated exposure to disinfection by-products (DBPs) in drinking water during gestation may result in adverse birth outcomes. However, the findings of these studies remain inconclusive. Objective: The purpose of our study was to examine the association between blood biomarkers of late pregnancy exposure to trihalomethanes (THMs) in drinking water and fetal growth and gestational age. Methods: We recruited 1,184 pregnant women between 2011 and 2013 in Wuhan and Xiaogan City, Hubei, China. Maternal blood THM concentrations, including chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM), were measured as exposure biomarkers during late pregnancy. We estimated associations with gestational age and fetal growth indicators [birth weight, birth length, and small for gestational age (SGA)]. Results: Total THMs (TTHMs; sum of TCM, BDCM, DBCM, and TBM) were associated with lower mean birth weight (–60.9 g; 95% CI: –116.2, –5.6 for the highest vs. lowest tertile; p for trend = 0.03), and BDCM and DBCM exposures were associated with smaller birth length (e.g., –0.20 cm; 95% CI: –0.37, –0.04 for the highest vs. lowest tertile of DBCM; p for trend = 0.02). SGA was increased in association with the second and third tertiles of TTHMs (OR = 2.91; 95% CI: 1.32, 6.42 and OR = 2.25; 95% CI: 1.01, 5.03; p for trend = 0.08). Conclusions: Our results suggested that elevated maternal THM exposure may adversely affect fetal growth. Citation: Cao WC, Zeng Q, Luo Y, Chen HX, Miao DY, Li L, Cheng YH, Li M, Wang F, You L, Wang YX, Yang P, Lu WQ. 2016. Blood biomarkers of late pregnancy exposure to trihalomethanes in drinking water and fetal growth measures and gestational age in a Chinese cohort. Environ Health Perspect 124:536–541; http://dx.doi.org/10.1289/ehp.1409234 PMID:26340795

  5. Differential expression of vascular endothelial growth factor in human fetal skeletal site-specific tissues: Mandible versus femur.

    PubMed

    Marini, Mirca; Bertolai, Roberto; Ambrosini, Stefano; Sarchielli, Erica; Vannelli, Gabriella Barbara; Sgambati, Eleonora

    2015-04-01

    Vascular endothelial growth factor (VEGF) is a well-known mediator that signals through pathways in angiogenesis and osteogenesis. Angiogenesis and bone formation are coupled during either skeletal development or bone remodeling and repair occurring in postnatal life. In this study, we examined for the first time the expression of VEGF in human fetal mandibular and femoral bone in comparison with the respective adult tissues. Similarly to other craniofacial bones, but at variance with the axial and appendicular skeleton, during development mandible does not arise from mesoderm but neural crest cells of the neuroectoderm germ layer, and undergoes intramembranous instead of endochondral ossification. By quantitative real-time PCR technique, we could show that VEGF gene expression levels were significantly higher in fetal than in adult samples, especially in femoral tissue. Western blotting analysis confirmed higher protein expression of VEGF in the fetal femur respect to the mandible. Moreover, immunohistochemistry revealed that in both fetal tissues VEGF expression was mainly localized in pre- and osteoblasts. Differential expression of VEGF in femoral and mandibular bone tissues could be related to their different structure, function and development during organogenesis. PMID:25769656

  6. An Outcome-based Approach for the Creation of Fetal Growth Standards: Do Singletons and Twins Need Separate Standards?

    PubMed Central

    Fahey, John; Platt, Robert W.; Liston, Robert M.; Lee, Shoo K.; Sauve, Reg; Liu, Shiliang; Allen, Alexander C.; Kramer, Michael S.

    2009-01-01

    Contemporary fetal growth standards are created by using theoretical properties (percentiles) of birth weight (for gestational age) distributions. The authors used a clinically relevant, outcome-based methodology to determine if separate fetal growth standards are required for singletons and twins. All singleton and twin livebirths between 36 and 42 weeks’ gestation in the United States (1995–2002) were included, after exclusions for missing information and other factors (n = 17,811,922). A birth weight range was identified, at each gestational age, over which serious neonatal morbidity and neonatal mortality rates were lowest. Among singleton males at 40 weeks, serious neonatal morbidity/mortality rates were lowest between 3,012 g (95% confidence interval (CI): 3,008, 3,018) and 3,978 g (95% CI: 3,976, 3,980). The low end of this optimal birth weight range for females was 37 g (95% CI: 21, 53) less. The low optimal birth weight was 152 g (95% CI: 121, 183) less for twins compared with singletons. No differences were observed in low optimal birth weight by period (1999–2002 vs. 1995–1998), but small differences were observed for maternal education, race, parity, age, and smoking status. Patterns of birth weight-specific serious neonatal morbidity/neonatal mortality support the need for plurality-specific fetal growth standards. PMID:19126584

  7. Is Placental Mitochondrial Function a Regulator that Matches Fetal and Placental Growth to Maternal Nutrient Intake in the Mouse?

    PubMed Central

    Chiaratti, Marcos R.; Malik, Sajida; Diot, Alan; Rapa, Elizabeth; Macleod, Lorna; Morten, Karl; Vatish, Manu; Boyd, Richard; Poulton, Joanna

    2015-01-01

    Background Effective fetal growth requires adequate maternal nutrition coupled to active transport of nutrients across the placenta, which, in turn requires ATP. Epidemiological and experimental evidence has shown that impaired maternal nutrition in utero results in an adverse postnatal phenotype for the offspring. Placental mitochondrial function might link maternal food intake to fetal growth since impaired placental ATP production, in response to poor maternal nutrition, could be a pathway linking maternal food intake to reduced fetal growth. Method We assessed the effects of maternal diet on placental water content, ATP levels and mitochondrial DNA (mtDNA) content in mice at embryonic (E) day 18 (E18). Females maintained on either low- (LPD) or normal- (NPD) protein diets were mated with NPD males. Results To investigate the possibility of an underlying mitochondrial stress response, we studied cultured human trophoblast cells (BeWos). High throughput imaging showed that amino acid starvation induces changes in mitochondrial morphology that suggest stress-induced mitochondrial hyperfusion. This is a defensive response, believed to increase mitochondrial efficiency, that could underlie the increase in ATP observed in placenta. Conclusions These findings reinforce the pathophysiological links between maternal diet and conceptus mitochondria, potentially contributing to metabolic programming. The quiet embryo hypothesis proposes that pre-implantation embryo survival is best served by a relatively low level of metabolism. This may extend to post-implantation trophoblast responses to nutrition. PMID:26132581

  8. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development

    PubMed Central

    Dunford, Louise J.; Sinclair, Kevin D.; Kwong, Wing Y.; Sturrock, Craig; Clifford, Bethan L.; Giles, Tom C.; Gardner, David S.

    2014-01-01

    This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet.—Dunford, L. J., Sinclair, K. D., Kwong, W. Y., Sturrock, C., Clifford, B. L., Giles, T. C., Gardner, D. S.. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development. PMID:25077559

  9. Hyperglycemia Differentially Affects Maternal and Fetal DNA Integrity and DNA Damage Response

    PubMed Central

    Moreli, Jusciele B.; Santos, Janine H.; Lorenzon-Ojea, Aline Rodrigues; Corrêa-Silva, Simone; Fortunato, Rodrigo S.; Rocha, Clarissa Ribeiro; Rudge, Marilza V.; Damasceno, Débora C.; Bevilacqua, Estela; Calderon, Iracema M.

    2016-01-01

    Objective: Investigate the DNA damage and its cellular response in blood samples from both mother and the umbilical cord of pregnancies complicated by hyperglycemia. Methods: A total of 144 subjects were divided into 4 groups: normoglycemia (ND; 46 cases), mild gestational hyperglycemia (MGH; 30 cases), gestational diabetes mellitus (GDM; 45 cases) and type-2 diabetes mellitus (DM2; 23 cases). Peripheral blood mononuclear cell (PBMC) isolation and/or leukocytes from whole maternal and umbilical cord blood were obtained from all groups at delivery. Nuclear and mitochondrial DNA damage were measured by gene-specific quantitative PCR, and the expression of mRNA and proteins involved in the base excision repair (BER) pathway were assessed by real-time qPCR and Western blot, respectively. Apoptosis was measured in vitro experiments by caspase 3/7 activity and ATP levels. Results: GDM and DM2 groups were characterized by an increase in oxidative stress biomarkers, an increase in nuclear and mitochondrial DNA damage, and decreased expression of mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1) involved in BER. The levels of hyperglycemia were associated with the in vitro apoptosis pathway. Blood levels of DNA damage in umbilical cord were similar among the groups. Newborns of diabetic mothers had increased expression of BER mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1, POLβ and FEN1). A diabetes-like environment was unable to induce apoptosis in the umbilical cord blood cells. Conclusions: Our data show relevant asymmetry between maternal and fetal blood cell susceptibility to DNA damage and apoptosis induction. Maternal cells seem to be more predisposed to changes in an adverse glucose environment. This may be due to differential ability in upregulating multiple genes involved in the activation of DNA repair response, especially the BER mechanism. However if this study shows a more effective adaptive response by the fetal organism, it also calls for

  10. How Population Growth Affects Linkage Disequilibrium

    PubMed Central

    Rogers, Alan R.

    2014-01-01

    The “LD curve” relates the linkage disequilibrium (LD) between pairs of nucleotide sites to the distance that separates them along the chromosome. The shape of this curve reflects natural selection, admixture between populations, and the history of population size. This article derives new results about the last of these effects. When a population expands in size, the LD curve grows steeper, and this effect is especially pronounced following a bottleneck in population size. When a population shrinks, the LD curve rises but remains relatively flat. As LD converges toward a new equilibrium, its time path may not be monotonic. Following an episode of growth, for example, it declines to a low value before rising toward the new equilibrium. These changes happen at different rates for different LD statistics. They are especially slow for estimates of σd2, which therefore allow inferences about ancient population history. For the human population of Europe, these results suggest a history of population growth. PMID:24907258

  11. Lack of Thromboxane Synthase Prevents Hypertension and Fetal Growth Restriction after High Salt Treatment during Pregnancy

    PubMed Central

    Pai, Chen-Hsueh; Yen, Ching-Tzu; Chen, Chie-Pein; Yu, I-Shing

    2016-01-01

    Preeclampsia (PE) is a potentially fatal pregnancy-related hypertensive disorder characterized by poor placenta development that can cause fetal growth restriction. PE-associated pathologies, including thrombosis, hypertension, and impaired placental development, may result from imbalances between thromboxane A2 (TXA2) and prostacyclin. Low-dose aspirin, which selectively inhibits TXA2 production, is used to prevent high-risk PE. However, the role of TXA2 in aspirin-mediated protective effects in women with PE is not understood fully. In this study, we examined the role of prostanoids in PE using human samples and an induced PE mouse model. We demonstrated that the administration of salted drinking water (2.7% NaCl) to wild-type mice resulted in elevated placental TXA2 synthase (TXAS) and plasma TXA2, but not prostacyclin, levels, which was also found in our clinical PE placenta samples. The high salt-treated wild-type pregnant mice had shown unchanged maternal body weight, hypertension (MAP increase 15 mmHg), and decreased pup weight (~50%) and size (~24%), but these adverse effects were ameliorated in TXAS knockout (KO) mice. Moreover, increased expression of interleukin-1β and downstream phosphorylated-p38-mitogen-activated protein kinase were concordant with apoptosis induction in the placentas of salt water-treated wild-type mice. These alterations were not observed in TXAS KO mice. Together, our data suggest that TXA2 depletion has anti-PE effects due to the prevention of hypertension and placental damage through downregulation of the interleukin-1β pathway. PMID:26974824

  12. Maternal Dietary Patterns and Fetal Growth: A Large Prospective Cohort Study in China

    PubMed Central

    Lu, Min-Shan; Chen, Qiao-Zhu; He, Jian-Rong; Wei, Xue-Ling; Lu, Jin-Hua; Li, Sheng-Hui; Wen, Xing-Xuan; Chan, Fan-Fan; Chen, Nian-Nian; Qiu, Lan; Mai, Wei-Bi; Zhang, Rui-Fang; Hu, Cui-Yue; Xia, Hui-Min; Qiu, Xiu

    2016-01-01

    There was limited evidence revealing the association of Chinese maternal dietary patterns with fetal growth. We aimed to examine the relationship of maternal dietary patterns during pregnancy to neonatal birth weight and birth weight for gestational age in a Chinese population. A total of 6954 mother-child pairs were included from the Born in Guangzhou Cohort Study. Maternal diet during pregnancy was assessed using a self-administered food frequency questionnaire. Cluster analysis was used to identify dietary patterns. The following six dietary patterns were identified: “Cereals, eggs, and Cantonese soups” (n 1026, 14.8%), “Dairy” (n 1020, 14.7%), “Fruits, nuts, and Cantonese desserts” (n 799, 11.5%), “Meats” (n 1066, 15.3%), “Vegetables” (n 1383, 19.9%), and “Varied” (n 1224, 17.6%). The mean neonatal birth weight Z scores of women in the above patterns were 0.02, 0.07, 0.20, 0.01, 0.06, and 0.14, respectively. Women in the “Fruits, nuts, and Cantonese desserts” and “Varied” groups had significantly heavier infants compared with those in the “Cereals, eggs, and Cantonese soups” group. Compared with women in the “Cereals, eggs, and Cantonese soups” group, those in the “Varied” group had marginally significantly lower odds of having a small-for-gestational age (SGA) infant after adjustment for other confounders (OR 0.77, 95% CI 0.57, 1.04, p = 0.08). These findings suggest that compared to a traditional Cantonese diet high in cereals, eggs, and Cantonese soups, a diet high in fruits, nuts, and Cantonese desserts might be associated with a higher birth weight, while a varied diet might be associated with a greater birth weight and also a decreased risk of having a SGA baby. PMID:27136584

  13. Maternal Dietary Patterns and Fetal Growth: A Large Prospective Cohort Study in China.

    PubMed

    Lu, Min-Shan; Chen, Qiao-Zhu; He, Jian-Rong; Wei, Xue-Ling; Lu, Jin-Hua; Li, Sheng-Hui; Wen, Xing-Xuan; Chan, Fan-Fan; Chen, Nian-Nian; Qiu, Lan; Mai, Wei-Bi; Zhang, Rui-Fang; Hu, Cui-Yue; Xia, Hui-Min; Qiu, Xiu

    2016-01-01

    There was limited evidence revealing the association of Chinese maternal dietary patterns with fetal growth. We aimed to examine the relationship of maternal dietary patterns during pregnancy to neonatal birth weight and birth weight for gestational age in a Chinese population. A total of 6954 mother-child pairs were included from the Born in Guangzhou Cohort Study. Maternal diet during pregnancy was assessed using a self-administered food frequency questionnaire. Cluster analysis was used to identify dietary patterns. The following six dietary patterns were identified: "Cereals, eggs, and Cantonese soups" (n 1026, 14.8%), "Dairy" (n 1020, 14.7%), "Fruits, nuts, and Cantonese desserts" (n 799, 11.5%), "Meats" (n 1066, 15.3%), "Vegetables" (n 1383, 19.9%), and "Varied" (n 1224, 17.6%). The mean neonatal birth weight Z scores of women in the above patterns were 0.02, 0.07, 0.20, 0.01, 0.06, and 0.14, respectively. Women in the "Fruits, nuts, and Cantonese desserts" and "Varied" groups had significantly heavier infants compared with those in the "Cereals, eggs, and Cantonese soups" group. Compared with women in the "Cereals, eggs, and Cantonese soups" group, those in the "Varied" group had marginally significantly lower odds of having a small-for-gestational age (SGA) infant after adjustment for other confounders (OR 0.77, 95% CI 0.57, 1.04, p = 0.08). These findings suggest that compared to a traditional Cantonese diet high in cereals, eggs, and Cantonese soups, a diet high in fruits, nuts, and Cantonese desserts might be associated with a higher birth weight, while a varied diet might be associated with a greater birth weight and also a decreased risk of having a SGA baby. PMID:27136584

  14. Inadequate weight gain in overweight and obese pregnant women: what is the effect on fetal growth?

    PubMed Central

    Catalano, Patrick M.; Mele, Lisa; Landon, Mark B.; Ramin, Susan M.; Reddy, Uma M.; Casey, Brian; Wapner, Ronald J.; Varner, Michael W.; Rouse, Dwight J.; Thorp, John M.; Saade, George; Sorokin, Yoram; Peaceman, Alan M.; Tolosa, Jorge E.

    2014-01-01

    Objective To evaluate inadequate gestational weight gain and fetal growth among overweight and obese women (O/O). Study Design Analysis of prospective singleton term pregnancies in which 1053 O/O gained greater (14.4± 6.2 kg) or 188 who either lost or gained ≤5 kg (1.1± 4.4 kg). Birth weight, fat (FM) and lean mass (LM) were assessed using anthropometry. Small for gestational age (SGA) was defined as ≤ 10th percentile of a standard US population. Univariable and multivariable analysis evaluated the association between weight change and neonatal morphometry. Results There was no significant difference in age, race, smoking, parity, or gestational age between groups. Weight loss or gain ≤ 5 kg was associated with SGA, 18/188 (9.6%) vs. 51/1053 (4.9%); (adjusted OR 2.6, 95% CI 1.4, 4.7; p=0.003). Neonates of women who lost or gained ≤ 5 kg had lower birth weight (3258 ± 443 g vs. 3467 ± 492g, p<0.0001), FM (403±175 vs. 471 ± 193g, p<0.0001), LM (2855±321 vs. 2995 ± 347g, p<0.0001) and smaller length, %FM and head circumference (HC). Adjusting for diabetic status, pre-pregnancy BMI, smoking, parity, study site, gestational age and gender; neonates of women who gained ≤ 5 kg had significantly lower birth weight, LBM, FM, %FM, HC and length. There were no significant differences in neonatal outcomes between those who lost weight and those who gained ≤ 5 kg. Conclusion In O/O weight loss or gain ≤ 5 kg is associated with increased risk of SGA and decreased neonatal FM, LM and HC. PMID:24530820

  15. Lack of Thromboxane Synthase Prevents Hypertension and Fetal Growth Restriction after High Salt Treatment during Pregnancy.

    PubMed

    Pai, Chen-Hsueh; Yen, Ching-Tzu; Chen, Chie-Pein; Yu, I-Shing; Lin, Shu-Wha; Lin, Shu-Rung

    2016-01-01

    Preeclampsia (PE) is a potentially fatal pregnancy-related hypertensive disorder characterized by poor placenta development that can cause fetal growth restriction. PE-associated pathologies, including thrombosis, hypertension, and impaired placental development, may result from imbalances between thromboxane A2 (TXA2) and prostacyclin. Low-dose aspirin, which selectively inhibits TXA2 production, is used to prevent high-risk PE. However, the role of TXA2 in aspirin-mediated protective effects in women with PE is not understood fully. In this study, we examined the role of prostanoids in PE using human samples and an induced PE mouse model. We demonstrated that the administration of salted drinking water (2.7% NaCl) to wild-type mice resulted in elevated placental TXA2 synthase (TXAS) and plasma TXA2, but not prostacyclin, levels, which was also found in our clinical PE placenta samples. The high salt-treated wild-type pregnant mice had shown unchanged maternal body weight, hypertension (MAP increase 15 mmHg), and decreased pup weight (~50%) and size (~24%), but these adverse effects were ameliorated in TXAS knockout (KO) mice. Moreover, increased expression of interleukin-1β and downstream phosphorylated-p38-mitogen-activated protein kinase were concordant with apoptosis induction in the placentas of salt water-treated wild-type mice. These alterations were not observed in TXAS KO mice. Together, our data suggest that TXA2 depletion has anti-PE effects due to the prevention of hypertension and placental damage through downregulation of the interleukin-1β pathway. PMID:26974824

  16. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome.

    PubMed

    Lyall, Fiona; Robson, Stephen C; Bulmer, Judith N

    2013-12-01

    Failure to transform uteroplacental spiral arteries is thought to underpin disorders of pregnancy, including preeclampsia and fetal growth restriction (FGR). In this study, spiral artery remodeling and extravillous-cytotrophoblast were examined in placental bed biopsies from normal pregnancy (n = 25), preeclampsia (n = 22), and severe FGR (n = 10) and then compared with clinical parameters. Biopsies were immunostained to determine vessel wall integrity, extravillous-cytotrophoblast location/density, periarterial fibrinoid, and endothelium. Muscle disruption was reduced in myometrial spiral arteries in preeclampsia (P = 0.0001) and FGR (P = 0.0001) compared with controls. Myometrial vessels from cases with birth weight <5th percentile (P<0.001), abnormal uterine Doppler (P<0.01), abnormal umbilical artery Doppler (P<0.001), and preterm delivery (P<0.001) had less muscle destruction compared with >5th percentile. Fewer extravillous-cytotrophoblast surrounded both decidual and myometrial vessels in the normal group and preeclampsia group compared with the FGR group (P = 0.001). For myometrial vessels, the normal group contained more intramural extravillous-cytotrophoblast than in preeclampsia (P = 0.015). Decidual vessels in the FGR group had less fibrinoid deposition compared with controls (P = 0.013). For myometrial vessels, less fibrinoid was deposited in both the preeclampsia group (P = 0.0001) and the FGR group (P = 0.01) when compared with controls, and less fibrinoid was deposited in the preeclampsia group when compared with FGR group (P<0.001). Myometrial vessels obtained from birth weights <5th percentile had less periarterial fibrinoid than those with >5th percentile (P<0.02). A major defect in myometrial spiral artery remodeling occurs in preeclampsia and FGR that is linked to clinical parameters. Interstitial extravillous-cytotrophoblast is not reduced in preeclampsia but is increased in FGR. PMID:24060885

  17. Embryo development, fetal growth and postnatal phenotype of eGFP lambs generated by lentiviral transgenesis.

    PubMed

    Crispo, M; Vilariño, M; dos Santos-Neto, P C; Núñez-Olivera, R; Cuadro, F; Barrera, N; Mulet, A P; Nguyen, T H; Anegón, I; Menchaca, A

    2015-02-01

    Lentiviral technology has been recently proposed to generate transgenic farm animals more efficiently and easier than traditional techniques. The objective was to evaluate several parameters of lambs obtained by lentiviral transgenesis in comparison with non-transgenic counterparts. In vitro produced embryos were microinjected (TG group) at two-cell stage with a lentiviral construct containing enhanced green fluorescent protein (eGFP) gene, while embryos produced by in vitro fertilization (IVF group) or intrauterine insemination (IUI group) were not microinjected. Microinjection technique efficiently generated eight-cell transgenic embryos (97.4%; 114/117). Development rate on day 5 after fertilization was similar for TG (39.3%, 46/117) and IVF embryos (39.6%, 44/111). Pregnancy rate was detected in 50.0% (6/12) of recipient ewes with TG embryos, in 46.7% (7/15) with IVF embryos, and in 65.0% (13/20) of IUI ewes (P = NS). Nine lambs were born in TG group, six lambs in IVF group, and 16 lambs in IUI group. All TG lambs (9/9) were GFP positive to real-time PCR and eight (88.9%) showed a strong and evident GFP expression in mucosae, eyes and keratin tissues. Fetal growth monitored every 15 day by ultrasonography did not show significant differences. Transgenic lambs neither differ in morphometric variables in comparison with non transgenic IVF lambs within 3 months after birth. Transmission of the transgene to the progeny was observed in green fluorescent embryos produced by IVF using semen from the TG founder lambs. In conclusion, this study demonstrates the high efficiency of lentiviral technology to produce transgenic sheep, with no clinic differences in comparison with non transgenic lambs. PMID:25048992

  18. Fetal size in a rural melanesian population with minimal risk factors for growth restriction: an observational ultrasound study from Papua New Guinea.

    PubMed

    Unger, Holger W; Karl, Stephan; Wangnapi, Regina A; Siba, Peter; Mola, Glen; Walker, Jane; Mueller, Ivo; Ome, Maria; Rogerson, Stephen J

    2015-01-01

    We conducted a prospective longitudinal study of fetal size in rural Papua New Guinea (PNG) involving 439 ultrasound-dated singleton pregnancies with no obvious risk factors for growth restriction. Sonographically estimated fetal weights (EFWs; N = 788) and birth weights (N = 376) were included in a second-order polynomial regression model (optimal fit) to generate fetal weight centiles. Means for specific fetal biometric measurements were also estimated. Fetal weight centiles from a healthy PNG cohort were consistently lower than those derived from Caucasian and Congolese populations, which overestimated the proportion of fetuses measuring small for gestational age (SGA; < 10th centile). Tanzanian and global reference centiles (Caucasian weight reference adapted to our PNG cohort) were more similar to those observed in our cohort, but the global reference underestimated SGA. Individual biometric measurements did not differ significantly from other cohorts. In rural PNG, a locally derived nomogram may be most appropriate for detection of SGA fetuses. PMID:25385863

  19. Fetal Size in a Rural Melanesian Population with Minimal Risk Factors for Growth Restriction: An Observational Ultrasound Study from Papua New Guinea

    PubMed Central

    Unger, Holger W.; Karl, Stephan; Wangnapi, Regina A.; Siba, Peter; Mola, Glen; Walker, Jane; Mueller, Ivo; Ome, Maria; Rogerson, Stephen J.

    2015-01-01

    We conducted a prospective longitudinal study of fetal size in rural Papua New Guinea (PNG) involving 439 ultrasound-dated singleton pregnancies with no obvious risk factors for growth restriction. Sonographically estimated fetal weights (EFWs; N = 788) and birth weights (N = 376) were included in a second-order polynomial regression model (optimal fit) to generate fetal weight centiles. Means for specific fetal biometric measurements were also estimated. Fetal weight centiles from a healthy PNG cohort were consistently lower than those derived from Caucasian and Congolese populations, which overestimated the proportion of fetuses measuring small for gestational age (SGA; < 10th centile). Tanzanian and global reference centiles (Caucasian weight reference adapted to our PNG cohort) were more similar to those observed in our cohort, but the global reference underestimated SGA. Individual biometric measurements did not differ significantly from other cohorts. In rural PNG, a locally derived nomogram may be most appropriate for detection of SGA fetuses. PMID:25385863

  20. The Effect of Fetal and Childhood Growth over Depression in Early Adulthood in a Southern Brazilian Birth Cohort

    PubMed Central

    Loret de Mola, Christian; Quevedo, Luciana de Avila; Pinheiro, Ricardo Tavares; Gonçalves, Helen; Gigante, Denise Petrucci; Motta, Janaína Vieira dos Santos; Barros, Fernando C.; Horta, Bernardo Lessa

    2015-01-01

    Background Poor nutrition and growth during fetal life and childhood might be associated with depression in adulthood; however, studies evaluating these associations present controversial results, especially when comparing studies using different proxies for fetal growth. We evaluated the association of fetal and childhood growth/nutrition with depression, in adulthood, using different approaches and measurement methods. Method In 1982, hospital births (n = 5914) in Pelotas, southern Brazil, were examined and have been prospectively followed. At 30 years, the presence of major depression and depressive symptoms severity was evaluated using the Mini International Neuropsychiatric Interview (MINI) and Beck Depression Inventory (BDI-II). The present study assessed their association with birth weight, premature birth, small for gestational age (SGA), stunting and conditional growth during childhood. Results At 30 years, 3576 individuals were evaluated and 7.9% had major depression. Low birth weight (PR = 1.01 95%CI [0.64–1.60]), having been born SGA (PR = 0.87 95%CI [0.64–1.19]) and premature birth (PR = 1.22 95%CI [0.72–2.07]) were not associated with major depression in multivariable models. However, those born SGA who were also stunted in childhood had a higher prevalence of major depression (PR = 1.87 95%CI [1.06–3.29]) and greater odds of scoring a higher level of depression in the BDI-II (OR = 2.18 95%CI [1.34–3.53]). Conclusion In this Brazilian cohort of young adults, those born SGA who were also stunted during childhood had a higher risk of depression in adulthood. Our results show that the effect of growth impairment on depression is cumulative. PMID:26469192

  1. Low and high dietary protein:carbohydrate ratios during pregnancy affect materno-fetal glucose metabolism in pigs.

    PubMed

    Metges, Cornelia C; Görs, Solvig; Lang, Iris S; Hammon, Harald M; Brüssow, Klaus-Peter; Weitzel, Joachim M; Nürnberg, Gerd; Rehfeldt, Charlotte; Otten, Winfried

    2014-02-01

    Inadequate dietary protein during pregnancy causes intrauterine growth retardation. Whether this is related to altered maternal and fetal glucose metabolism was examined in pregnant sows comparing a high-protein:low-carbohydrate diet (HP-LC; 30% protein, 39% carbohydrates) with a moderately low-protein:high-carbohydrate diet (LP-HC; 6.5% protein, 68% carbohydrates) and the isoenergetic standard diet (ST; 12.1% protein, 60% carbohydrates). During late pregnancy, maternal and umbilical glucose metabolism and fetal hepatic mRNA expression of gluconeogenic enzymes were examined. During an i.v. glucose tolerance test (IVGTT), the LP-HC-fed sows had lower insulin concentrations and area under the curve (AUC), and higher glucose:insulin ratios than the ST- and the HP-LC-fed sows (P < 0.05). Insulin sensitivity and glucose clearance were higher in the LP-HC sows compared with ST sows (P < 0.05). Glucagon concentrations during postabsorptive conditions and IVGTT, and glucose AUC during IVGTT, were higher in the HP-LC group compared with the other groups (P < 0.001). (13)C glucose oxidation was lower in the HP-LC sows than in the ST and LP-HC sows (P < 0.05). The HP-LC fetuses were lighter and had a higher brain:liver ratio than the ST group (P < 0.05). The umbilical arterial inositol concentration was greater in the HP-LC group (P < 0.05) and overall small fetuses (230-572 g) had higher values than medium and heavy fetuses (≥573 g) (P < 0.05). Placental lactate release was lower in the LP-HC group than in the ST group (P < 0.05). Fetal glucose extraction tended to be lower in the LP-HC group than in the ST group (P = 0.07). In the HP-LC and LP-HC fetuses, hepatic mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC) was higher than in the ST fetuses (P < 0.05). In conclusion, the HP-LC and LP-HC sows adapted by reducing glucose turnover and oxidation and having higher glucose utilization, respectively. The HP-LC and LP

  2. Fetal alcohol syndrome

    MedlinePlus

    Fetal alcohol syndrome is growth, mental, and physical problems that may occur in a baby when a mother drinks ... A baby with fetal alcohol syndrome may have the following symptoms: Poor growth while the baby is in the womb and after birth Decreased muscle ...

  3. Utilizing Longitudinal Measures of Fetal Growth to Create a Standard Method to Assess the Impacts of Maternal Disease and Environmental Exposure

    PubMed Central

    Cantonwine, David E.; Ferguson, Kelly K.; Mukherjee, Bhramar; Chen, Yin-Hsiu; Smith, Nicole A.; Robinson, Julian N.; Doubilet, Peter M.; Meeker, John D.; McElrath, Thomas F.

    2016-01-01

    Impaired or suboptimal fetal growth is associated with an increased risk of perinatal morbidity and mortality. By utilizing readily available clinical data on the relative size of the fetus at multiple points in pregnancy, including delivery, future epidemiological research can improve our understanding of the impacts of maternal, fetal, and environmental factors on fetal growth at different windows during pregnancy. This study presents mean and standard deviation ultrasound measurements from a clinically representative US population that can be utilized for creating Z-scores to this end. Between 2006 and 2012, 18, 904 non-anomalous pregnancies that received prenatal care, first and second trimester ultrasound evaluations, and ultimately delivered singleton newborns at Brigham and Women’s hospital in Boston were used to create the standard population. To illustrate the utility of this standard, we created Z-scores for ultrasound and delivery measurements for a cohort study population and examined associations with factors known to be associated with fetal growth. In addition to cross-sectional regression models, we created linear mixed models and generalized additive mixed models to illustrate how these scores can be utilized longitudinally and for the identification of windows of susceptibility. After adjustment for a priori confounders, maternal BMI was positively associated with increased fetal size beginning in the second trimester in cross-sectional models. Female infants and maternal smoking were associated with consistently reduced fetal size in the longitudinal models. Maternal age had a non-significant association with increased size in the first trimester that was attenuated as gestation progressed. As the growth measurements examined here are widely available in contemporary obstetrical practice, these data may be abstracted from medical records by investigators and standardized with the population means presented here. This will enable easy extension

  4. Chronic exposure to simulated space conditions predominantly affects cytoskeleton remodeling and oxidative stress response in mouse fetal fibroblasts.

    PubMed

    Beck, Michaël; Moreels, Marjan; Quintens, Roel; Abou-El-Ardat, Khalil; El-Saghire, Hussein; Tabury, Kevin; Michaux, Arlette; Janssen, Ann; Neefs, Mieke; Van Oostveldt, Patrick; De Vos, Winnok H; Baatout, Sarah

    2014-08-01

    Microgravity and cosmic rays as found in space are difficult to recreate on earth. However, ground-based models exist to simulate space flight experiments. In the present study, an experimental model was utilized to monitor gene expression changes in fetal skin fibroblasts of murine origin. Cells were continuously subjected for 65 h to a low dose (55 mSv) of ionizing radiation (IR), comprising a mixture of high‑linear energy transfer (LET) neutrons and low-LET gamma-rays, and/or simulated microgravity using the random positioning machine (RPM), after which microarrays were performed. The data were analyzed both by gene set enrichment analysis (GSEA) and single gene analysis (SGA). Simulated microgravity affected fetal murine fibroblasts by inducing oxidative stress responsive genes. Three of these genes are targets of the nuclear factor‑erythroid 2 p45-related factor 2 (Nrf2), which may play a role in the cell response to simulated microgravity. In addition, simulated gravity decreased the expression of genes involved in cytoskeleton remodeling, which may have been caused by the downregulation of the serum response factor (SRF), possibly through the Rho signaling pathway. Similarly, chronic exposure to low-dose IR caused the downregulation of genes involved in cytoskeleton remodeling, as well as in cell cycle regulation and DNA damage response pathways. Many of the genes or gene sets that were altered in the individual treatments (RPM or IR) were not altered in the combined treatment (RPM and IR), indicating a complex interaction between RPM and IR. PMID:24859186

  5. Association between maternal seafood consumption before pregnancy and fetal growth: evidence for an association in overweight women. The EDEN mother-child cohort

    PubMed Central

    Drouillet, Peggy; Kaminski, Monique; De Lauzon-Guillain, Blandine; Forhan, Anne; Ducimetière, Pierre; Schweitzer, Michel; Magnin, Guillaume; Goua, Valérie; Thiébaugeorges, Olivier; Charles, Marie-Aline

    2009-01-01

    SUMMARY Studies, in countries with high seafood consumption, suggested its benefit on fetal growth and child development. The objective of our study was to determine the association between seafood consumption in French pregnant women and fetal growth. Pregnant women included in the EDEN mother-child cohort study completed two food frequency questionnaires on their usual diet in the year before and during the last three months of pregnancy (n=1805). Fetal circumferences were measured by ultrasound, and anthropometry at birth. Variables were compared across tertiles of the mother’s seafood consumption by multiple linear regressions adjusted for confounding variables. Analyses were stratified according to maternal overweight because of interaction (p<0.01). As results, there was no association between seafood intake and fetal growth in the whole sample of women. For overweight women (n=464), a higher consumption before pregnancy was associated with higher fetal biparietal and abdominal circumferences and anthropometric measures. From the lowest to the highest tertiles, mean birthweight was 167g higher (p=0.002). No significant association was found with consumption at the end of pregnancy. In conclusion, high seafood consumption before pregnancy is positively associated with fetal growth in overweight women. Follow-up of the infants may help determine potential beneficial consequences for the child’s health and development. PMID:19228317

  6. Enhancing Learning Environments for Students Affected by Fetal Alcohol Spectrum Disorders: An Exploratory Study of Canadian Pre-Service Teacher Knowledge and Conceptions

    ERIC Educational Resources Information Center

    Pei, Jacqueline; Job, Jenelle; Poth, Cheryl; O'Brien-Langer, Anna; Tang, Wei

    2015-01-01

    There is a pressing need for enhancing the learning environment for students affected by Fetal Alcohol Spectrum Disorders (FASDs). To develop relevant professional learning opportunities for teachers, a logical initial step is to explore the extent to which pre-service teachers accurately understand the unique neuropsychological functioning…

  7. Cadmium-induced neural tube defects and fetal growth restriction: Association with disturbance of placental folate transport.

    PubMed

    Zhang, Gui-Bin; Wang, Hua; Hu, Jun; Guo, Min-Yin; Wang, Ying; Zhou, Yan; Yu, Zhen; Fu, Lin; Chen, Yuan-Hua; Xu, De-Xiang

    2016-09-01

    Previous studies found that maternal Cd exposure on gestational day (GD)9 caused forelimb ectrodactyly and tail deformity, the characteristic malformations. The aim of the present study was to investigate whether maternal Cd exposure on GD8 induces fetal neural tube defects (NTDs). Pregnant mice were intraperitoneally injected with CdCl2 (2.5 or 5.0mg/kg) on GD8. Neither forelimb ectrodactyly nor tail deformity was observed in mice injected with CdCl2 on GD8. Instead, maternal Cd exposure on GD8 resulted in the incidence of NTDs. Moreover, maternal Cd exposure on GD8 resulted in fetal growth restriction. In addition, maternal Cd exposure on GD8 reduced placental weight and diameter. The internal space of maternal and fetal blood vessels in the labyrinth layer was decreased in the placentas of mice treated with CdCl2. Additional experiment showed that placental PCFT protein and mRNA, a critical folate transporter, was persistently decreased when dams were injected with CdCl2 on GD8. Correspondingly, embryonic folate content was markedly decreased in mice injected with CdCl2 on GD8, whereas Cd had little effect on folate content in maternal serum. Taken together, these results suggest that maternal Cd exposure during organogenesis disturbs transport of folate from maternal circulation to the fetuses through down-regulating placental folate transporters. PMID:27417525

  8. Antidepressant Use During Pregnancy and the Risk of Preterm Delivery and Fetal Growth Restriction

    PubMed Central

    Toh, Sengwee; Mitchell, Allen A.; Louik, Carol; Werler, Martha M.; Chambers, Christina D.; Hernández-Díaz, Sonia

    2011-01-01

    Objective The associations between prenatal exposure to antidepressants and preterm delivery and fetal growth restriction are controversial and poorly understood. We studied the relation between antidepressant use and these outcomes. Methods Analysis included women with nonmalformed infants interviewed in the Slone Epidemiology Center Birth Defects Study between 1998 and 2008. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for premature and small-for–gestational age (SGA) offsprings, adjusting for sociodemographic, lifestyle, medical, and reproductive factors. Results The frequencies of preterm delivery were 7.3% among the 5710 nonusers (reference), 8.9% among the 192 selective serotonin reuptake inhibitor (SSRI) users (OR, 1.1; 95% CI, 0.6–2.0), and 15.3% among the 59 non-SSRI antidepressant users (OR, 2.2; 95% CI, 1.0–4.9); the respective frequencies of delivering an SGA offspring were 7.2%, 10.9% (OR, 1.7; 95% CI, 1.0–2.7), and 13.6% (OR, 2.2; 95% CI, 1.0–4.9). Compared with nonusers, the frequencies of preterm delivery (7.6%) and SGA offspring (5.7%) were not increased among the 106 women who discontinued SSRIs before the end of the first trimester. Among women who continued SSRIs beyond the first trimester, 10.5% delivered a preterm infant (OR, 1.3; 95% CI, 0.6–2.8) and 17.4% had an SGA offspring (OR, 3.0; 95% CI, 1.7–5.5). Conclusions Women treated with SSRIs late in pregnancy had a higher frequency of delivering SGA infants, and women receiving non-SSRI antidepressants were more likely to deliver premature and SGA offsprings. The findings suggest an effect of underlying mood disorder or an effect common to both drug classes. In any case, prenatal antidepressant use may help identify women at elevated risks of delivering preterm and SGA infants. PMID:19910720

  9. Effects of macroporous hydroxyapatite carriers on the growth and function of human hepatoblasts derived from fetal hepatocytes.

    PubMed

    Ishii, Takaaki; Saito, Hiroshi; Komizu, Yuji; Tomoshige, Ryuichi; Matsushita, Taku

    2016-08-01

    Improvement of three-dimensional (3D) culture conditions, including substrates for cell growth, is needed for various cell-based applications. In this study, we developed hydroxyapatite (HAp) macroporous carriers having several pore size distributions and tried to obtain the findings about the effective pore sizes for the growth and function of hepatoblasts derived from human fetal hepatocytes. Cellular CYP3A4 activity was significantly enhanced when 20% HAp macroporous carrier was used, reaching 1.49±0.28 pmol/10(6) cells/min of benzyloxyresorufin-O-dealkylation activity, which is comparable to that of primary human hepatocytes from livers of adult donors. Analysis of the pore size (the radius of curvature) distribution of each HAp carrier using a 3D-electron beam surface roughness analyzer revealed two peaks of pore size distribution at 30-40 μm and 70-80 μm, respectively. Thirty-five percent of the pores in the 20% carrier had a size distribution within 50-80 μm. Especially, pores of 70-80 μm were more abundant in the 20% HAp carrier than in the 10% and 30% HAp carriers. These results suggested that a HAp carrier with the pore size distribution of 50-80 μm might be effective for cell growth and function in human hepatoblasts derived from fetal hepatocytes. PMID:26968126

  10. Effect of nebivolol treatment during pregnancy on the genital circulation, fetal growth and postnatal development in the Wistar rat.

    PubMed

    Altoama, Kassem; Yassine Mallem, Mohamed; Thorin, Chantal; Betti, Eric; Desfontis, Jean-Claude

    2015-07-01

    The aim of study was to evaluate the effects of nebivolol, a cardioselective beta-1 adrenergic receptor blocker of the third generation with vasodilatory properties, vs. bisoprolol on the genital circulation, uterine vasculature, fetal growth and postnatal development in pregnant Wistar rats. Non invasive measurements of systolic and diastolic blood pressure (SBP and DBP) and heart rate (HR), and invasive measurement of genital blood flow (GBF) were taken in pregnant rats, by tail cuff and transonic probe methods respectively, after an oral treatment by gastric gavage with nebivolol (8mg/kg/day) or bisoprolol (10mg/kg/day) from day 11 to day 18 of pregnancy. Other morphometrical and histological measurements were performed on the ovarian and uterine arteries to evaluate the effect of nebivolol on the uterine vasculature. Furthermore, postnatal mortality and pup growth were recorded. The data demonstrated that nebivolol (compared with bisoprolol) induced a significant decrease in SBP, HR and GBF while DBP remained unchanged. Moreover, nebivolol increased the diameter and the length of ovarian and uterine arteries and the number of uterine artery segmental branches. The results also showed that the body weight gain of newborns in the nebivolol group was significantly lower vs. bisoprolol and vs. control with a higher mortality rate. The nebivolol action is not only limited to its favorable hemodynamic effects represented by a decrease in blood pressure, but it also produces adverse effects on fetal growth and postnatal development that may limit its therapeutic use in females during pregnancy. PMID:25863257

  11. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study

    PubMed Central

    Sovio, Ulla; White, Ian R; Dacey, Alison; Pasupathy, Dharmintra; Smith, Gordon C S

    2015-01-01

    Summary Background Fetal growth restriction is a major determinant of adverse perinatal outcome. Screening procedures for fetal growth restriction need to identify small babies and then differentiate between those that are healthy and those that are pathologically small. We sought to determine the diagnostic effectiveness of universal ultrasonic fetal biometry in the third trimester as a screening test for small-for-gestational-age (SGA) infants, and whether the risk of morbidity associated with being small differed in the presence or absence of ultrasonic markers of fetal growth restriction. Methods The Pregnancy Outcome Prediction (POP) study was a prospective cohort study of nulliparous women with a viable singleton pregnancy at the time of the dating ultrasound scan. Women participating had clinically indicated ultrasonography in the third trimester as per routine clinical care and these results were reported as usual (selective ultrasonography). Additionally, all participants had research ultrasonography, including fetal biometry at 28 and 36 weeks' gestational age. These results were not made available to participants or treating clinicians (universal ultrasonography). We regarded SGA as a birthweight of less than the 10th percentile for gestational age and screen positive for SGA an ultrasonographic estimated fetal weight of less than the 10th percentile for gestational age. Markers of fetal growth restriction included biometric ratios, utero-placental Doppler, and fetal growth velocity. We assessed outcomes for consenting participants who attended research scans and had a livebirth at the Rosie Hospital (Cambridge, UK) after the 28 weeks' research scan. Findings Between Jan 14, 2008, and July 31, 2012, 4512 women provided written informed consent of whom 3977 (88%) were eligible for analysis. Sensitivity for detection of SGA infants was 20% (95% CI 15–24; 69 of 352 fetuses) for selective ultrasonography and 57% (51–62; 199 of 352 fetuses) for universal

  12. Localization of transforming growth factor-beta at the human fetal-maternal interface: role in trophoblast growth and differentiation.

    PubMed

    Graham, C H; Lysiak, J J; McCrae, K R; Lala, P K

    1992-04-01

    We examined the localization of transforming growth factor (TGF)-beta in first-trimester and term human decidua and chorionic villi and explored the role of this factor on the proliferation and differentiation of cultured trophoblast cells. Two antibodies, 1D11.16.8, a mouse monoclonal neutralizing antibody capable of recognizing both TGF-beta 1 and TGF-beta 2 and CL-B1/29, a rabbit polyclonal antibody capable of recognizing TGF-beta 2, were used to immunolocalize TGF-beta in fixed, paraffin-embedded, or fixed, frozen sections of placenta and decidua, providing similar results. Intense labeling was observed in the extracellular matrix (ECM) of the first-trimester decidua and cytoplasm of term decidual cells. Syncytiotrophoblast cell cytoplasm as well as the ECM in the core of the chorionic villi of both first-trimester and term placentas exhibited a moderate degree of labeling. Strong cytoplasmic labeling was observed in the cytotrophoblastic shell of the term placenta. To examine the role of TGF-beta on trophoblast proliferation and differentiation, early passage cultures of first-trimester and primary cultures of term trophoblast cells were established and characterized on the basis of numerous immunocytochemical and functional markers. These cells expressed cytokeratin, placental alkaline phosphatase, urokinase-type plasminogen activator, and pregnancy-specific beta glycoprotein, but not factor VIII or 63D3; they also produced hCG and collagenase type IV. Exposure of first-trimester trophoblast cultures to TGF-beta 1 significantly inhibited proliferation in a dose-dependent manner. An antiproliferative effect was also noted in the presence of TGF-beta 2. These effects were abrogated in the presence of the neutralizing anti-TGF-beta antibody (1D11.16.8) in a concentration-dependent manner. In a 3-day culture, exogenous TGF-beta 1 stimulated formation of multinucleated cells by the first trimester as well as term trophoblast cells. Addition of neutralizing anti

  13. Role of Insulinlike Growth Factor 1 in Fetal Development and in the Early Postnatal Life of Premature Infants.

    PubMed

    Hellström, Ann; Ley, David; Hansen-Pupp, Ingrid; Hallberg, Boubou; Ramenghi, Luca A; Löfqvist, Chatarina; Smith, Lois E H; Hård, Anna-Lena

    2016-09-01

    The neonatal period of very preterm infants is often characterized by a difficult adjustment to extrauterine life, with an inadequate nutrient supply and insufficient levels of growth factors, resulting in poor growth and a high morbidity rate. Long-term multisystem complications include cognitive, behavioral, and motor dysfunction as a result of brain damage as well as visual and hearing deficits and metabolic disorders that persist into adulthood. Insulinlike growth factor 1 (IGF-1) is a major regulator of fetal growth and development of most organs especially the central nervous system including the retina. Glucose metabolism in the developing brain is controlled by IGF-1 which also stimulates differentiation and prevents apoptosis. Serum concentrations of IGF-1 decrease to very low levels after very preterm birth and remain low for most of the perinatal development. Strong correlations have been found between low neonatal serum concentrations of IGF-1 and poor brain and retinal growth as well as poor general growth with multiorgan morbidities, such as intraventricular hemorrhage, retinopathy of prematurity, bronchopulmonary dysplasia, and necrotizing enterocolitis. Experimental and clinical studies indicate that early supplementation with IGF-1 can improve growth in catabolic states and reduce brain injury after hypoxic/ischemic events. A multicenter phase II study is currently underway to determine whether intravenous replacement of human recombinant IGF-1 up to normal intrauterine serum concentrations can improve growth and development and reduce prematurity-associated morbidities. PMID:27603537

  14. Fetal growth restriction and risk of chronic lung disease among infants born before the 28th week of gestation

    PubMed Central

    Bose, Carl; Van Marter, Linda J.; Laughon, Matthew; O'Shea, T. Michael; Allred, Elizabeth N.; Karna, Padmani; Ehrenkranz, Richard A.; Boggess, Kim; Leviton, Alan

    2009-01-01

    Objective Improvement in survival of extremely premature infants over the past several decades has resulted in an increase in the number infants with chronic lung disease (CLD). Historical neonatal exposures associated with CLD now less frequently precede the disease. There is now increasing interest in exposures and events before delivery that predict CLD. The objective of this study was to identify current antenatal predictors of CLD. Patients and Methods We collected data about antenatal, placental and neonatal characteristics of 1241 newborns delivered before completion of the 28th week of gestation who were enrolled in a 14-center, observational study conducted during the years 2002-2004. Associations between antenatal factors, microbiologic and histologic characteristics of the placenta, and selected neonatal characteristics and CLD risk were first evaluated in univariate analyses. Subsequent multivariate analyses investigated the contribution of antenatal factors, particularly fetal growth restriction (FGR), to CLD risk. Results Among the antenatal factors, birth weight Z-score, used as a marker of FGR, provided the most information about CLD risk. Indicators of placental inflammation and infection were not associated with increased risk of CLD. Within nearly all strata of antenatal, placental and neonatal variables, growth restricted infants were at increased CLD risk compared with infants who were not growth restricted. FGR was the only maternal or antenatal characteristic that was highly predictive of CLD after adjustment for other risk factors. Conclusions FGR is independently associated with the risk of CLD. Thus factors that control fetal somatic growth may have a significant impact on vulnerability to lung injury, and in this way increase CLD risk. Future investigations should focus on the impact of FGR on growth factors that modulate lung growth. PMID:19706590

  15. Dietary blueberry supplementation affects growth but not vascularization of neural transplants

    PubMed Central

    Willis, Lauren M; Small, Brent J; Bickford, Paula C; Umphlet, Claudia D; Moore, Alfred B; Granholm, Ann-Charlotte E

    2009-01-01

    Transplantation of neural tissue has been attempted as a treatment method for neurodegenerative disorders. Grafted neurons survive to a lesser extent into middle-aged or aged hosts, and survival rates of < 10% of grafted neurons is common. Antioxidant diets, such as blueberry, can exert powerful effects on developing neurons and blood vessels in vitro, but studies are lacking that examine the effects of these diets on transplanted tissues. In this study, we examined the effects of a blueberry diet on survival, growth, and vascularization of fetal hippocampal tissue to the anterior chamber of the eye of young or middle-aged female rats. Previous work from our group showed significant increase in neuronal survival and development with blueberry diet in grafts. However, the effects of antioxidant diet on vascular development in grafts have not been explored previously. The age of the host affected individual vessel morphology in that aged hosts contained grafts with thick, undeveloped walls, and wider lumen. The blood–brain barrier also appeared to be affected by the age of the host. The blueberry diet did not affect vessel morphology or density of vessel-associated protein markers but gave rise to significantly increased growth capacity, cytoarchitecture, and the final size of hippocampal grafts. PMID:18285804

  16. Fetal programming of overweight through the microbiome: boys are disproportionately affected.

    PubMed

    Kozyrskyj, A L; Kalu, R; Koleva, P T; Bridgman, S L

    2016-02-01

    Maternal and childhood obesity in pregnancy are worrisome public health issues facing our world today. New gene sequencing methods have advanced our knowledge of the disruptive effect of birth interventions and postnatal exposures on the maturation of gut microbiota and immunity during infancy. Yet, little is known about the impact of maternal pregnancy overweight on gut microbes and related processes, and how this may affect overweight risk in offspring. To address this gap in knowledge, we surveyed human studies for evidence in children, infants and pregnant women to piece together the limited literature and generate hypotheses for future investigation. From this literature, we learned that higher Lactobacillus yet lower Bacteroides spp. colonization of gut microbiota within 3 months of birth predicted risk for infant and child overweight. The abundance of bifidobacteria and staphylococci also appeared to play a role in the association with overweight, as did infant fecal immunoglobulin A levels, glycoproteins of the gut immune system that are acquired from breast milk and produced by the infant. We proposed that pregnancy overweight influences the compositional structure of gut microbiota in infants through vertical transfer of microbiota and/or their metabolites during pregnancy, delivery and breastfeeding. Finally, we brought forward emerging evidence on sex dimorphism, as well as ethnic and geographic variation, in reported associations between maternal overweight-induced gut microbiota dysbiosis and overweight risk. PMID:26118444

  17. Effects of Prenatal Multiple Micronutrient Supplementation on Fetal Growth Factors: A Cluster-Randomized, Controlled Trial in Rural Bangladesh

    PubMed Central

    Gernand, Alison D.; Schulze, Kerry J.; Nanayakkara-Bind, Ashika; Arguello, Margia; Shamim, Abu Ahmed; Ali, Hasmot; Wu, Lee; West, Keith P.; Christian, Parul

    2015-01-01

    Prenatal multiple micronutrient (MM) supplementation improves birth weight through increased fetal growth and gestational age, but whether maternal or fetal growth factors are involved is unclear. Our objective was to examine the effect of prenatal MM supplementation on intrauterine growth factors and the associations between growth factors and birth outcomes in a rural setting in Bangladesh. In a double-blind, cluster-randomized, controlled trial of MM vs. iron and folic acid (IFA) supplementation, we measured placental growth hormone (PGH) at 10 weeks and PGH and human placental lactogen (hPL) at 32 weeks gestation in maternal plasma (n = 396) and insulin, insulin-like growth factor-1 (IGF-1), and IGF binding protein-1 (IGFBP-1) in cord plasma (n = 325). Birth size and gestational age were also assessed. Early pregnancy mean (SD) BMI was 19.5 (2.4) kg/m2 and birth weight was 2.68 (0.41) kg. There was no effect of MM on concentrations of maternal hPL or PGH, or cord insulin, IGF-1, or IGFBP-1. However, among pregnancies of female offspring, hPL concentration was higher by 1.1 mg/L in the third trimester (95% CI: 0.2, 2.0 mg/L; p = 0.09 for interaction); and among women with height <145 cm, insulin was higher by 59% (95% CI: 3, 115%; p = 0.05 for interaction) in the MM vs. IFA group. Maternal hPL and cord blood insulin and IGF-1 were positively, and IGFBP-1 was negatively, associated with birth weight z score and other measures of birth size (all p<0.05). IGF-1 was inversely associated with gestational age (p<0.05), but other growth factors were not associated with gestational age or preterm birth. Prenatal MM supplementation had no overall impact on intrauterine growth factors. MM supplementation altered some growth factors differentially by maternal early pregnancy nutritional status and sex of the offspring, but this should be examined in other studies. Trial Registration ClinicalTrials.gov NCT00860470 PMID:26431336

  18. Hypoxia and fetal heart development.

    PubMed

    Patterson, A J; Zhang, L

    2010-10-01

    Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation. PMID:20712587

  19. Adrenal Demedullation and Oxygen Supplementation Independently Increase Glucose-Stimulated Insulin Concentrations in Fetal Sheep With Intrauterine Growth Restriction.

    PubMed

    Macko, Antoni R; Yates, Dustin T; Chen, Xiaochuan; Shelton, Leslie A; Kelly, Amy C; Davis, Melissa A; Camacho, Leticia E; Anderson, Miranda J; Limesand, Sean W

    2016-05-01

    In pregnancies complicated by placental insufficiency and intrauterine growth restriction (IUGR), fetal glucose and oxygen concentrations are reduced, whereas plasma norepinephrine and epinephrine concentrations are elevated throughout the final third of gestation. Here we study the effects of chronic hypoxemia and hypercatecholaminemia on β-cell function in fetal sheep with placental insufficiency-induced IUGR that is produced by maternal hyperthermia. IUGR and control fetuses underwent a sham (intact) or bilateral adrenal demedullation (AD) surgical procedure at 0.65 gestation. As expected, AD-IUGR fetuses had lower norepinephrine concentrations than intact-IUGR fetuses despite being hypoxemic and hypoglycemic. Placental insufficiency reduced fetal weights, but the severity of IUGR was less with AD. Although basal plasma insulin concentrations were lower in intact-IUGR and AD-IUGR fetuses compared with intact-controls, glucose-stimulated insulin concentrations were greater in AD-IUGR fetuses compared with intact-IUGR fetuses. Interestingly, AD-controls had lower glucose- and arginine-stimulated insulin concentrations than intact-controls, but AD-IUGR and AD-control insulin responses were not different. To investigate chronic hypoxemia in the IUGR fetus, arterial oxygen tension was increased to normal levels by increasing the maternal inspired oxygen fraction. Oxygenation of IUGR fetuses enhanced glucose-stimulated insulin concentrations 3.3-fold in intact-IUGR and 1.7-fold in AD-IUGR fetuses but did not lower norepinephrine and epinephrine concentrations. Together these findings show that chronic hypoxemia and hypercatecholaminemia have distinct but complementary roles in the suppression of β-cell responsiveness in IUGR fetuses. PMID:26937714

  20. Fetal programming in meat production.

    PubMed

    Du, Min; Wang, Bo; Fu, Xing; Yang, Qiyuan; Zhu, Mei-Jun

    2015-11-01

    Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies. PMID:25953215

  1. [Nutrition of pregnant women: consequences for fetal growth and adult diseases].

    PubMed

    Weber, M; Ayoubi, J-M; Picone, O

    2015-01-01

    The developmental origins of human adult disease are thought to be secondary to a perturbation of the embryonic or fetal development, which leads to metabolic disorders such as diabetes or hypertension at adulthood. Maternal undernutrition or overnutrition, repeated glucocorticosteroids administered to the mother, or placental dysfunction are the most frequently considered causal factors. Therefore, it is necessary that the pediatrician is aware of these phenomena, as this knowledge may contribute to the prevention of adult diseases. Little is known yet, however, on the pathophysiological or epigenetic mechanisms that lead to theses observations, and more studies are needed both in humans and animal models. PMID:25440770

  2. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  3. Expression of Nerve Growth Factor (NGF), TrkA, and p75NTR in Developing Human Fetal Teeth

    PubMed Central

    Mitsiadis, Thimios A.; Pagella, Pierfrancesco

    2016-01-01

    Nerve growth factor (NGF) is important for the development and the differentiation of neuronal and non-neuronal cells. NGF binds to specific low- and high-affinity cell surface receptors, respectively, p75NTR and TrkA. In the present study, we examined by immunohistochemistry the expression patterns of the NGF, p75NTR, and TrkA proteins during human fetal tooth development, in order to better understand the mode of NGF signaling action in dental tissues. The results obtained show that these molecules are expressed in a wide range of dental cells of both epithelial and mesenchymal origin during early stages of odontogenesis, as well as in nerve fibers that surround the developing tooth germs. At more advanced developmental stages, NGF and TrkA are localized in differentiated cells with secretory capacities such as preameloblasts/ameloblasts secreting enamel matrix and odontoblasts secreting dentine matrix. In contrast, p75NTR expression is absent from these secretory cells and restricted in proliferating cells of the dental epithelium. The temporospatial distribution of NGF and p75NTR in fetal human teeth is similar, but not identical, with that observed previously in the developing rodent teeth, thus indicating that the genetic information is well-conserved during evolution. The expression patterns of NGF, p75NTR, and TrkA during odontogenesis suggest regulatory roles for NGF signaling in proliferation and differentiation of epithelial and mesenchymal cells, as well as in attraction and sprouting of nerve fibers within dental tissues. PMID:27536251

  4. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep.

    PubMed

    Rozance, Paul J; Seedorf, Gregory J; Brown, Alicia; Roe, Gates; O'Meara, Meghan C; Gien, Jason; Tang, Jen-Ruey; Abman, Steven H

    2011-12-01

    Intrauterine growth restriction (IUGR) increases the risk for bronchopulmonary dysplasia (BPD). Abnormal lung structure has been noted in animal models of IUGR, but whether IUGR adversely impacts fetal pulmonary vascular development and pulmonary artery endothelial cell (PAEC) function is unknown. We hypothesized that IUGR would decrease fetal pulmonary alveolarization, vascular growth, and in vitro PAEC function. Studies were performed in an established model of severe placental insufficiency and IUGR induced by exposing pregnant sheep to elevated temperatures. Alveolarization, quantified by radial alveolar counts, was decreased 20% (P < 0.005) in IUGR fetuses. Pulmonary vessel density was decreased 44% (P < 0.01) in IUGR fetuses. In vitro, insulin increased control PAEC migration, tube formation, and nitric oxide (NO) production. This response was absent in IUGR PAECs. VEGFA stimulated tube formation, and NO production also was absent. In control PAECs, insulin increased cell growth by 68% (P < 0.0001). Cell growth was reduced in IUGR PAECs by 29% at baseline (P < 0.01), and the response to insulin was attenuated (P < 0.005). Despite increased basal and insulin-stimulated Akt phosphorylation in IUGR PAECs, endothelial NO synthase (eNOS) protein expression as well as basal and insulin-stimulated eNOS phosphorylation were decreased in IUGR PAECs. Both VEGFA and VEGFR2 also were decreased in IUGR PAECs. We conclude that fetuses with IUGR are characterized by decreased alveolar and vascular growth and PAEC dysfunction in vitro. This may contribute to the increased risk for adverse respiratory outcomes and BPD in infants with IUGR. PMID:21873446

  5. Fetal growth restriction and intra-uterine growth restriction: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians.

    PubMed

    Vayssière, C; Sentilhes, L; Ego, A; Bernard, C; Cambourieu, D; Flamant, C; Gascoin, G; Gaudineau, A; Grangé, G; Houfflin-Debarge, V; Langer, B; Malan, V; Marcorelles, P; Nizard, J; Perrotin, F; Salomon, L; Senat, M-V; Serry, A; Tessier, V; Truffert, P; Tsatsaris, V; Arnaud, C; Carbonne, B

    2015-10-01

    Small for gestational age (SGA) is defined by weight (in utero estimated fetal weight or birth weight) below the 10th percentile (professional consensus). Severe SGA is SGA below the third percentile (professional consensus). Fetal growth restriction (FGR) or intra-uterine growth restriction (IUGR) usually correspond with SGA associated with evidence indicating abnormal growth (with or without abnormal uterine and/or umbilical Doppler): arrest of growth or a shift in its rate measured longitudinally (at least two measurements, 3 weeks apart) (professional consensus). More rarely, they may correspond with inadequate growth, with weight near the 10th percentile without being SGA (LE2). Birthweight curves are not appropriate for the identification of SGA at early gestational ages because of the disorders associated with preterm delivery. In utero curves represent physiological growth more reliably (LE2). In diagnostic (or reference) ultrasound, the use of growth curves adjusted for maternal height and weight, parity and fetal sex is recommended (professional consensus). In screening, the use of adjusted curves must be assessed in pilot regions to determine the schedule for their subsequent introduction at national level. This choice is based on evidence of feasibility and the absence of any proven benefits for individualized curves for perinatal health in the general population (professional consensus). Children born with FGR or SGA have a higher risk of minor cognitive deficits, school problems and metabolic syndrome in adulthood. The role of preterm delivery in these complications is linked. The measurement of fundal height remains relevant to screening after 22 weeks of gestation (Grade C). The biometric ultrasound indicators recommended are: head circumference (HC), abdominal circumference (AC) and femur length (FL) (professional consensus). They allow calculation of estimated fetal weight (EFW), which, with AC, is the most relevant indicator for screening

  6. Biochemical properties of Na+/K(+)-ATPase in axonal growth cone particles isolated from fetal rat brain.

    PubMed

    Mercado, R; Hernández, J

    1994-08-01

    Axonal growth cones (AGC) isolated from fetal rat brain have an important specific activity of N+/K(+)-ATPase. Kinetic assays of the enzyme in AGC showed that Km values for ATP or K+ are similar to those reported for the adult brain enzyme. For Na+ the affinity (Km) was lower. Vmax for the three substrates was several times lower in AGC as compared to the adult value. We also observed two apparent inhibition constants of Na+/K(+)-ATPase by ouabain, one of low affinity, possibly corresponding to the alpha 1 isoform and another of high affinity which is different to that described for the alpha 2 isoform of the enzyme. These results support an important role for the sodium pump in the maintainance of volume and cationic balance in neuronal differentiating structures. The functional differences observed also suggest that the enzymatic complex of Na+/K(+)-ATPase in AGC is in a transitional state towards the adult configuration. PMID:7817790

  7. [The imbalance of metal-containing proteins and free metal ions in the amniotic fluid during fetal growth].

    PubMed

    Pogorelova, T N; Linde, V A; Gunko, V O; Selyutina, S N

    2016-01-01

    The levels of zinc, copper, iron, and magnesium ions, and some of their binding proteins have been investigated in an amniotic fluid under the fetal growth retardation (FGR). FGR, developed under conditions of placental insufficiency, is characterized by a decrease in the content of zinc, iron, and magnesium ions and by an increase in the copper content in the amniotic fluid in the II and III trimesters of pregnancy. During these trimesters the levels of ceruloplasmin, ferritin, and Ca2+,Mg2+-ATPase were lower in FGR, while the level of zinc-a-2-glycoprotein was higher than during the same periods of normal pregnancy. Changes in the parameters studied in the amniotic fluid were associated with developmental disorders of the newborns. These changes obviously have a pathogenetic importance in the development of FGR, and the levels of metal ions and their ratio in the amniotic fluid can be used as markers of the pre- and postnatal pathology. PMID:26973190

  8. Effect of a milk-based food supplement on maternal nutritional status and fetal growth in underweight Chilean women.

    PubMed

    Mardones-Santander, F; Rosso, P; Stekel, A; Ahumada, E; Llaguno, S; Pizarro, F; Salinas, J; Vial, I; Walter, T

    1988-03-01

    The effects on pregnancy outcome and maternal iron status of powdered milk (PUR) and a milk-based fortified product (V-N) were compared in a group of underweight gravidas. These take-home products were distributed during regular prenatal visits. Women in the V-N group had greater weight gain (12.29 vs 11.31 kg, p less than 0.05) and mean birth weights (3178 vs 3105 g, p less than 0.05) than those in the PUR group. Values for various indicators of maternal Fe status were also higher in the V-N group. Compared with self-selected noncompliers, similar in all control variables to compliers, children of women who consumed powdered milk or the milk-based fortified product had mean birth weights that were higher by 258 and 335 g, respectively. Data indicate a beneficial effect of the fortified product on both maternal nutritional status and fetal growth. PMID:3279745

  9. Fetal Research

    NASA Astrophysics Data System (ADS)

    Hansen, John T.; Sladek, John R.

    1989-11-01

    This article reviews some of the significant contributions of fetal research and fetal tissue research over the past 20 years. The benefits of fetal research include the development of vaccines, advances in prenatal diagnosis, detection of malformations, assessment of safe and effective medications, and the development of in utero surgical therapies. Fetal tissue research benefits vaccine development, assessment of risk factors and toxicity levels in drug production, development of cell lines, and provides a source of fetal cells for ongoing transplantation trials. Together, fetal research and fetal tissue research offer tremendous potential for the treatment of the fetus, neonate, and adult.

  10. CD10/neutral endopeptidase 24.11 regulates fetal lung growth and maturation in utero by potentiating endogenous bombesin-like peptides.

    PubMed Central

    King, K A; Hua, J; Torday, J S; Drazen, J M; Graham, S A; Shipp, M A; Sunday, M E

    1993-01-01

    Bombesin-like peptides (BLPs) are mitogens for bronchial epithelial cells and small cell lung carcinomas, and increase fetal lung growth and maturation in utero and in organ cultures. BLPs are hydrolyzed by the enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP) which is expressed in bronchial epithelium and functions to inhibit BLP-mediated growth of small cell lung carcinomas. To determine whether CD10/NEP regulates peptide-mediated lung development, we administered a specific CD10/NEP inhibitor, SCH32615, to fetal mice in utero from gestational days e15-17. Fetal lung tissues were evaluated on e18 for: (a) growth using [3H]thymidine incorporation into nuclear DNA; and (b) maturation using: [3H]-choline incorporation into surfactant phospholipids, electron microscopy for type II pneumocytes, and Northern blot analyses for surfactant apoproteins A, B, and C. Inhibition of CD10/NEP stimulated [3H]thymidine incorporation into DNA (70% above baseline, P < 0.005), [3H]choline incorporation into surfactant phospholipids (38% above baseline, P < 0.005), increased numbers of type II pneumocytes (36% above baseline, P = 0.07), and fivefold higher surfactant protein A transcripts (P < 0.05). CD10/NEP-mediated effects were completely blocked by the specific bombesin receptor antagonist, [D-Phe12, Leu14]bombesin. These observations suggest that CD10/NEP regulates fetal lung growth and maturation mediated by endogenous BLPs. Images PMID:8486767

  11. Measurement of internal diameter changes and pulse wave velocity in fetal descending aorta using the ultrasonic phased-tracking method in normal and growth-restricted fetuses.

    PubMed

    Miyashita, Susumu; Murotsuki, Jun; Muromoto, Jin; Ozawa, Katsusuke; Yaegashi, Nobuo; Hasegawa, Hideyuki; Kanai, Hiroshi

    2015-05-01

    Phased tracking (PT) is an ultrasound-based technique that enables precise measurement of a target velocity. The aims of this study were to use PT to evaluate arterial pulse waveform, pulse wave velocity and fetal pulse pressure in normal and growth-restricted fetuses. One hundred fetuses with normal development and 15 fetuses with growth restriction were analyzed. Ultrasonic raw radiofrequency signals were captured from a direction perpendicular to the vascular axis at the fetal diaphragmatic level for the difference in internal dimensions (DID), or simultaneously from different directions for the pulse wave velocity. Pulsatile movement of the proximal and distal intima of the vessels was analyzed using PT. The fetal DID exhibited no significant changes in growth-restricted fetuses. Pulse wave velocity (3.8 ± 0.32 m/s vs. 2.2 ± 0.069 m/s, p < 0.001) and estimated pulse pressure (6.9 ± 0.90 kPa vs. 2.5 ± 0.18 kPa, p < 0.001) were significantly elevated in growth-restricted fetuses. Assessment of DID and pulse wave velocity of the descending aorta using PT is a feasible, non-invasive approach to evaluation of fetal hemodynamics. PMID:25727918

  12. Spinal fusion with demineralized calf fetal growth plate as novel biomaterial in rat model: a preliminary study

    PubMed Central

    Karimi, Iraj; Oryan, Ahmad; Mahmoudi, Elena; Shafiei-Sarvestani, Zahra

    2014-01-01

    Background Spinal fusions are being performed for various pathologies of the spine such as degenerative diseases, deformities, tumors and fractures. Recently, other bone substitutes such as demineralized bone matrix (DBM) have been developed for spinal fusion. Therefore, this study was conducted to evaluate the intertransverse posterolateral fusion with the Bovine fetal growth plate (DCFGP) and compare it with commercial DBM in rat model. Methods A total of 16 mature male rats (aged 4 months and weighing 200-300 g) were randomly divided in two groups. After a skin incision on posterolateral site, two separate fascial incisions were made 3 mm from the midline. A muscle-splitting approach was used to expose the transverse processes of L4 and L5. Group I (n = 8) underwent with implanted Bovine fetal growth plate among decorticated transverse processes. In group II (n = 8) commercial DBM was placed in the same manner. Fusion was evaluated by manual palpation, radiographical, gross and histopathological analysis. Results The manual palpation, radiological, gross and histopathological findings indicate high potential of the DCFGP in spinal fusion. At the 42nd postoperative day, new bone formation as evidenced by a bridge between L4 and L5 was visualized in all rats implanted with DCFGP and commercial DBM. The newly formed bone tissue was observed in all implanted areas on the 42nd day after operation in the two groups. Conclusions The spinal fusion of the animals of both groups demonstrated more advanced osteogenic potential and resulted in proper fusion of the transverse process of lumbar vertebra. PMID:25694913

  13. Sildenafil Therapy Normalizes the Aberrant Metabolomic Profile in the Comt−/− Mouse Model of Preeclampsia/Fetal Growth Restriction

    PubMed Central

    Stanley, Joanna L.; Sulek, Karolina; Andersson, Irene J.; Davidge, Sandra T.; Kenny, Louise C.; Sibley, Colin P.; Mandal, Rupasri; Wishart, David S.; Broadhurst, David I.; Baker, Philip N.

    2015-01-01

    Preeclampsia (PE) and fetal growth restriction (FGR) are serious complications of pregnancy, associated with greatly increased risk of maternal and perinatal morbidity and mortality. These complications are difficult to diagnose and no curative treatments are available. We hypothesized that the metabolomic signature of two models of disease, catechol-O-methyl transferase (COMT−/−) and endothelial nitric oxide synthase (Nos3−/−) knockout mice, would be significantly different from control C57BL/6J mice. Further, we hypothesised that any differences in COMT−/− mice would be resolved following treatment with Sildenafil, a treatment which rescues fetal growth. Targeted, quantitative comparisons of serum metabolic profiles of pregnant Nos3−/−, COMT−/− and C57BL/6J mice were made using a kit from BIOCRATES. Significant differences in 4 metabolites were observed between Nos3−/− and C57BL/6J mice (p < 0.05) and in 18 metabolites between C57BL/6J and COMT−/− mice (p < 0.05). Following treatment with Sildenafil, only 5 of the 18 previously identified differences in metabolites (p < 0.05) remained in COMT−/− mice. Metabolomic profiling of mouse models is possible, producing signatures that are clearly different from control animals. A potential new treatment, Sildenafil, is able to normalize the aberrant metabolomic profile in COMT−/− mice; as this treatment moves into clinical trials, this information may assist in assessing possible mechanisms of action. PMID:26667607

  14. Adiponectin Inhibits Nutrient Transporters and Promotes Apoptosis in Human Villous Cytotrophoblasts: Involvement in the Control of Fetal Growth.

    PubMed

    Duval, Fabien; Santos, Esther Dos; Poidatz, Dorothée; Sérazin, Valérie; Gronier, Héloïse; Vialard, François; Dieudonné, Marie-Noëlle

    2016-05-01

    The placenta exchanges nutrients between the mother and the fetus and requires a constant abundant energy supply. Adiponectin (a cytokine produced primarily by adipose tissue) controls glucose and lipid homeostasis. It is well-known that maternal serum adiponectin levels are inversely related to birth weight, suggesting that adiponectin has a negative effect on fetal growth. This effect appears to be related to the control of nutrient transporters in human placenta. However, the underlying molecular mechanisms have not yet been characterized. In the present work, we studied adiponectin's direct effect on human primary cytotrophoblasts from first-trimester placenta. Our result showed that in placental cells, adiponectin 1) inhibits the expression of the major glucose transporters (GLUT1 and GLUT12) and sodium-coupled neutral amino acid transporters (SNAT1, SNAT2, and SNAT4), 2) enhances total ATP production but decreases lactate production, 3) inhibits mitochondrial biogenesis and function, and 4) stimulates cell death by enhancing the expression of the pro-apoptotic B-cell lymphoma-2 (BCL-2)-associated X protein (BAX) and tumor protein P53 (TP53) gene expression and inducing the caspase activity. Small-interfering RNA mediating the down-regulation of adiponectin receptors (ADIPOR1 and ADIPOR2) was used to demonstrate that adiponectin effects on placental nutrient transport and apoptosis seemed to be essentially mediated by these specific receptors. Taken as a whole, these results strongly suggest that adiponectin regulates human placental function by limiting nutrient transporter expression and inducing apoptosis. These findings may help us to better understand adiponectin's role in placental pathologies such as intrauterine growth restriction, which is characterized by fetal weight loss and drastic apoptosis of placental cells. PMID:27030046

  15. Maternal dietary patterns in pregnancy and fetal growth in Japan: the Osaka Maternal and Child Health Study.

    PubMed

    Okubo, Hitomi; Miyake, Yoshihiro; Sasaki, Satoshi; Tanaka, Keiko; Murakami, Kentaro; Hirota, Yoshio; Kanzaki, Hideharu; Kitada, Mitsuyoshi; Horikoshi, Yorihiko; Ishiko, Osamu; Nakai, Yuichiro; Nishio, Junko; Yamamasu, Seiichi; Yasuda, Jinsuke; Kawai, Seigo; Yanagihara, Kazumi; Wakuda, Koji; Kawashima, Tokio; Narimoto, Katsuhiko; Iwasa, Yoshihiko; Orino, Katsuhiko; Tsunetoh, Itsuo; Yoshida, Junichi; Iito, Junichi; Kaneko, Takuzi; Kamiya, Takao; Kuribayashi, Hiroyuki; Taniguchi, Takeshi; Takemura, Hideo; Morimoto, Yasuhiko; Matsunaga, Ichiro; Oda, Hajime; Ohya, Yukihiro

    2012-05-01

    Maternal nutritional status during pregnancy is an important determinant of fetal growth. Although the effects of several nutrients and foods have been well examined, little is known about the relationship of overall maternal diet in pregnancy to fetal growth, particularly in non-Western populations. We prospectively examined the relationship of maternal dietary patterns in pregnancy to neonatal anthropometric measurements at birth and risk of small-for-gestational-age (SGA) birth among 803 Japanese women with live-born, singleton, term deliveries. Maternal diet in pregnancy was assessed using a validated, self-administered diet history questionnaire. Dietary patterns from thirty-three predefined food groups (g/4184 kJ) were extracted by cluster analysis. The following three dietary patterns were identified: the 'meat and eggs' (n 326), 'wheat products', with a relatively high intake of bread, confectioneries and soft drinks (n 303), and 'rice, fish and vegetables' (n 174) patterns. After adjustment for potential confounders, women in the 'wheat products' pattern had infants with the significantly lowest birth weight (P = 0·045) and head circumference (P = 0·036) among those in the three dietary patterns. Compared with women in the 'rice, fish and vegetables' pattern, women in the 'wheat products' pattern had higher odds of having a SGA infant for weight (multivariate OR 5·2, 95 % CI 1·1, 24·4), but this was not the case for birth length or head circumference. These results suggest that a diet high in bread, confectioneries, and soft drinks and low in fish and vegetables during pregnancy might be associated with a small birth weight and an increased risk of having a SGA infant. PMID:21929833

  16. Association of in Utero Organophosphate Pesticide Exposure and Fetal Growth and Length of Gestation in an Agricultural Population

    PubMed Central

    Eskenazi, Brenda; Harley, Kim; Bradman, Asa; Weltzien, Erin; Jewell, Nicholas P.; Barr, Dana B.; Furlong, Clement E.; Holland, Nina T.

    2004-01-01

    Although pesticide use is widespread, little is known about potential adverse health effects of in utero exposure. We investigated the effects of organophosphate pesticide exposure during pregnancy on fetal growth and gestational duration in a cohort of low-income, Latina women living in an agricultural community in the Salinas Valley, California. We measured nonspecific metabolites of organophosphate pesticides (dimethyl and diethyl phosphates) and metabolites specific to malathion (malathion dicarboxylic acid), chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphoro-thioate], and parathion (4-nitrophenol) in maternal urine collected twice during pregnancy. We also measured levels of cholinesterase in whole blood and butyryl cholinesterase in plasma in maternal and umbilical cord blood. We failed to demonstrate an adverse relationship between fetal growth and any measure of in utero organophosphate pesticide exposure. In fact, we found increases in body length and head circumference associated with some exposure measures. However, we did find decreases in gestational duration associated with two measures of in utero pesticide exposure: urinary dimethyl phosphate metabolites [βadjusted = −0.41 weeks per log10 unit increase; 95% confidence interval (CI), −0.75–−0.02; p = 0.02], which reflect exposure to dimethyl organophosphate compounds such as malathion, and umbilical cord cholinesterase (βadjusted = 0.34 weeks per unit increase; 95% CI, 0.13–0.55; p = 0.001). Shortened gestational duration was most clearly related to increasing exposure levels in the latter part of pregnancy. These associations with gestational age may be biologically plausible given that organophosphate pesticides depress cholinesterase and acetylcholine stimulates contraction of the uterus. However, despite these observed associations, the rate of preterm delivery in this population (6.4%) was lower than in a U.S. reference population. PMID:15238287

  17. Ovine Surgical Model of Uterine Space Restriction: Interactive Effects of Uterine Anomalies and Multifetal Gestations on Fetal and Placental Growth1

    PubMed Central

    Meyer, Katie M.; Koch, Jill M.; Ramadoss, Jayanth; Kling, Pamela J.; Magness, Ronald R.

    2010-01-01

    Intrauterine growth restriction (IUGR) is observed in conditions with limitations in uterine space (e.g., uterine anomalies and multifetal gestations). IUGR is associated with reduced fetal weight, organ growth, and a spectrum of adult-onset diseases. To examine the interaction of uterine anomalies and multifetal gestations, we developed a surgical uterine space restriction model with a unilateral uterine horn ligation before breeding (unilateral surgery). Placentas and fetuses were studied on Gestational Day (GD) 120 and GD 130 (term = 147 days). Unilateral surgery decreased placentome numbers in singleton and twin pregnancies (25% and 50%, respectively) but not unilateral triplets. Unilateral surgery decreased total placentome weight in twin pregnancies (decreased 24%). Fetuses categorized as uterine space restricted (unilateral twin and both groups of triplets) had 51% fewer placentomes per fetus and a 31% reduction in placentomal weight per fetus compared to the nonrestricted group (control singleton, unilateral singleton, and control twin). By GD 130, uterine space-restricted fetuses exhibited decreased weight, smaller crown-rump, abdominal girth, and thoracic girth as well as decreased fetal heart, kidney, liver, spleen, and thymus weights. Lung and brain weights were unaffected, demonstrating asymmetric IUGR. At GD 130, placental efficiency (fetal weight per total placentomal weight) was elevated in uterine space-restricted fetuses. However, fetal arterial creatinine, blood urea nitrogen, and cholesterol were elevated, suggesting insufficient placental clearance. Maternal-to-fetal glucose and triglycerides ratios were elevated in the uterine space-restricted pregnancies, suggesting placental nutrient transport insufficiency. This model allows for examination of interactive effects of uterine space restriction-induced IUGR on placental adaptation and fetal organ growth. PMID:20574052

  18. Fetal alcohol spectrum disorders.

    PubMed

    Dörrie, Nora; Föcker, Manuel; Freunscht, Inga; Hebebrand, Johannes

    2014-10-01

    Prenatal alcohol exposure (PAE) is one of the most prevalent and modifiable risk factors for somatic, behavioral, and neurological abnormalities. Affected individuals exhibit a wide range of such features referred to as fetal alcohol spectrum disorders (FASD). These are characterized by a more or less specific pattern of minor facial dysmorphic features, growth deficiency and central nervous system symptoms. Nevertheless, whereas the diagnosis of the full-blown fetal alcohol syndrome does not pose a major challenge, only a tentative diagnosis of FASD can be reached if only mild features are present and/or maternal alcohol consumption during pregnancy cannot be verified. The respective disorders have lifelong implications. The teratogenic mechanisms induced by PAE can lead to various additional somatic findings and structural abnormalities of cerebrum and cerebellum. At the functional level, cognition, motor coordination, attention, language development, executive functions, memory, social perception and emotion processing are impaired to a variable extent. The long-term development is characterized by disruption and failure in many domains; an age-adequate independency is frequently not achieved. In addition to primary prevention, individual therapeutic interventions and tertiary prevention are warranted; provision of extensive education to affected subjects and their caregivers is crucial. Protective environments are often required to prevent negative consequences such as delinquency, indebtedness or experience of physical/sexual abuse. PMID:24965796

  19. Spaceflight and age affect tibial epiphyseal growth plate histomorphometry

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.

    1992-01-01

    Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.

  20. Cord Blood Methylmercury and Fetal Growth Outcomes in Baltimore Newborns: Potential Confounding and Effect Modification by Omega-3 Fatty Acids, Selenium, and Sex

    PubMed Central

    Wells, Ellen M.; Herbstman, Julie B.; Lin, Yu Hong; Jarrett, Jeffery; Verdon, Carl P.; Ward, Cynthia; Caldwell, Kathleen L.; Hibbeln, Joseph R.; Witter, Frank R.; Halden, Rolf U.; Goldman, Lynn R.

    2015-01-01

    Background Methylmercury (MeHg) may affect fetal growth; however, prior research often lacked assessment of mercury speciation, confounders, and interactions. Objective Our objective was to assess the relationship between MeHg and fetal growth as well as the potential for confounding or interaction of this relationship from speciated mercury, fatty acids, selenium, and sex. Methods This cross-sectional study includes 271 singletons born in Baltimore, Maryland, 2004–2005. Umbilical cord blood was analyzed for speciated mercury, serum omega-3 highly unsaturated fatty acids (n-3 HUFAs), and selenium. Multivariable linear regression models controlled for gestational age, birth weight, maternal age, parity, prepregnancy body mass index, smoking, hypertension, diabetes, selenium, n-3 HUFAs, and inorganic mercury (IHg). Results Geometric mean cord blood MeHg was 0.94 μg/L (95% CI: 0.84, 1.07). In adjusted models for ponderal index, βln(MeHg) = –0.045 (g/cm3) × 100 (95% CI: –0.084, –0.005). There was no evidence of a MeHg × sex interaction with ponderal index. Contrastingly, there was evidence of a MeHg × n-3 HUFAs interaction with birth length [among low n-3 HUFAs, βln(MeHg) = 0.40 cm, 95% CI: –0.02, 0.81; among high n-3 HUFAs, βln(MeHg) = –0.15, 95% CI: –0.54, 0.25; p-interaction = 0.048] and head circumference [among low n-3 HUFAs, βln(MeHg) = 0.01 cm, 95% CI: –0.27, 0.29; among high n-3 HUFAs, βln(MeHg) = –0.37, 95% CI: –0.63, –0.10; p-interaction = 0.042]. The association of MeHg with birth weight and ponderal index was affected by n-3 HUFAs, selenium, and IHg. For birth weight, βln(MeHg) without these variables was –16.8 g (95% CI: –75.0, 41.3) versus –29.7 (95% CI: –93.9, 34.6) with all covariates. Corresponding values for ponderal index were –0.030 (g/cm3) × 100 (95% CI: –0.065, 0.005) and –0.045 (95% CI: –0.084, –0005). Conclusion We observed an association of increased MeHg with decreased ponderal index. There is

  1. Maternal blood and hair manganese concentrations, fetal growth, and length of gestation in the ISA cohort in Costa Rica

    PubMed Central

    Mora, Ana M.; van Wendel de Joode, Berna; Mergler, Donna; Córdoba, Leonel; Cano, Camilo; Quesada, Rosario; Smith, Donald R.; Menezes-Filho, José A.; Eskenazi, Brenda

    2014-01-01

    Background Animal studies have shown that both deficiency and excess manganese (Mn) may result in decreased fetal size and weight, but human studies have reported inconsistent results. Methods We examined the association of blood and hair Mn concentrations measured at different times during pregnancy with fetal growth among term births and length of gestation in a cohort of 380 mother-infant pairs living near banana plantations aerially sprayed with Mn-containing fungicides in Costa Rica. We used linear regression and generalized additive models to test for linear and nonlinear associations. Results Mean (± SD) blood Mn concentration was 24.4 ± 6.6 μg/L and geometric mean (geometric SD) hair Mn concentration was 1.8 (3.2) μg/g. Hair Mn concentrations during the second and third trimesters of gestation were positively related to infant chest circumference (β for 10-fold increase = 0.62 cm; 95% CI: 0.16, 1.08; and β = 0.55 cm; 95% CI: −0.16, 1.26, respectively). Similarly, average maternal hair Mn concentrations during pregnancy were associated with increased chest circumference (β for 10-fold increase = 1.19 cm; 95% CI: 0.43, 1.95) in infants whose mothers did not have gestational anemia, but not in infants of mothers who had gestational anemia (β = 0.39 cm; 95% CI: −0.32, 1.10; pINT = 0.14). All these associations were linear. Blood Mn concentrations did not show consistent linear nor nonlinear relationships with any of the birth outcomes. Conclusions Mn plays an important role in fetal development, but the extent to which environmental exposures may cause adverse health effects to the developing fetus is not well understood. Among women living near banana plantations in Costa Rica, we did not observe linear or nonlinear associations of Mn concentrations with lowered birth weight or head circumference, as reported in previous studies. However, we did find positive linear associations between maternal hair Mn concentrations during pregnancy and infant

  2. Is the fetoplacental ratio a differential marker of fetal growth restriction in small for gestational age infants?

    PubMed

    Luque-Fernandez, Miguel Angel; Ananth, Cande V; Jaddoe, Vincent W V; Gaillard, Romy; Albert, Paul S; Schomaker, Michael; McElduff, Patrick; Enquobahrie, Daniel A; Gelaye, Bizu; Williams, Michelle A

    2015-04-01

    Higher placental weight relative to birthweight has been described as an adaptive mechanism to fetal hypoxia in small for gestational age (SGA) infants. However, placental weight alone may not be a good marker reflecting intrauterine growth restriction. We hypothesized that fetoplacental ratio (FPR)-the ratio between birthweight and placental weight-may serve as a good marker of SGA after adjustment for surrogates of fetal hypoxemia (maternal iron deficiency anemia, smoking and choriodecidual necrosis). We conducted a within-sibling analysis using data from the US National Collaborative Perinatal Project (1959-1966) of 1,803 women who delivered their first two (or more) consecutive infants at term (n = 3,494). We used variance-component fixed-effect linear regression models to explore the effect of observed time-varying factors on placental weight and conditional logistic regression to estimate the effects of the tertiles of FPRs (1st small, 2nd normal and 3rd large) on the odds of SGA infants. We found placental weights to be 15 g [95 % confidence interval (CI) 8, 23] higher and -7 g (95 % CI -13, -2) lower among women that had anemia and choriodecidual necrosis, respectively. After multivariable adjustment, newborns with a small FPR (1st-tertile ≤7) had twofold higher odds of being SGA (OR 2.0, 95 % CI 1.2, 3.5) than their siblings with a large FPR (3nd-tertile ≥9). A small FPR was associated with higher odds of SGA, suggesting that small FPR may serve as an indicator suggestive of adverse intrauterine environment. This observation may help to distinguish pathological from constitutional SGA. PMID:25630563

  3. Cortisol augments synthesis of growth hormone, but does not alter synthesis of prolactin and proopiomelanocortin, in the 120- to 125-day fetal ovine pituitary.

    PubMed

    Miller, W L; Leisti, S

    1984-07-01

    In adult animal pituitaries or in cultured pituitary tumor cells, glucocorticoids are regulators of GH, PRL, and proopiomelancortin (POMC) synthesis. However, ovine fetal plasma cortisol concentrations are low until shortly before parturition, suggesting that cortisol may not normally regulate hormone synthesis in the fetal pituitary. To investigate whether cortisol could affect fetal synthesis of GH, PRL, and POMC, we obtained fetal pituitary tissue from normal fetuses and from fetuses which had received cortisol infusion for 48 h. Tissues were labeled in short term organ culture and the newly synthesized proteins were displayed by two-dimensional gel electrophoresis and autoradiography. Results were quantified by computerized integration of the area and density of the autoradiographic spots after high resolution television scanning. Cortisol infusion augmented synthesis of GH in comparison to controls (P = 0.01), but did not alter PRL synthesis. Cortisol also did not inhibit POMC synthesis in either the anterior pituitary or the neurointermediate lobe. These data suggest that the pituitary-adrenocortical slow feedback inhibition of POMC synthesis is not functional in the ovine fetus at 120 to 125-days gestation, but that pituitary somatotropes are responsive to glucocorticoids at this stage of fetal development. PMID:6734516

  4. Indoor exposure and adverse birth outcomes related to fetal growth, miscarriage and prematurity-a systematic review.

    PubMed

    Patelarou, Evridiki; Kelly, Frank J

    2014-06-01

    The purpose of this review was to summarize existing epidemiological evidence of the association between quantitative estimates of indoor air pollution and all-day personal exposure with adverse birth outcomes including fetal growth, prematurity and miscarriage. We carried out a systematic literature search of MEDLINE and EMBASE databases with the aim of summarizing and evaluating the results of peer-reviewed epidemiological studies undertaken in "westernized" countries that have assessed indoor air pollution and all-day personal exposure with specific quantitative methods. This comprehensive literature search identified 16 independent studies which were deemed relevant for further review and two additional studies were added through searching the reference lists of all included studies. Two reviewers independently and critically appraised all eligible articles using the Critical Appraisal Skills Programme (CASP) tool. Of the 18 selected studies, 14 adopted a prospective cohort design, three were case-controls and one was a retrospective cohort study. In terms of pollutants of interest, seven studies assessed exposure to electro-magnetic fields, four studies assessed exposure to polycyclic aromatic hydrocarbons, four studies assessed PM2.5 exposure and three studies assessed benzene, phthalates and noise exposure respectively. Furthermore, 12 studies examined infant growth as the main birth outcome of interest, six examined spontaneous abortion and three studies assessed gestational age at birth and preterm delivery. This survey demonstrates that there is insufficient research on the possible association of indoor exposure and early life effects and that further research is needed. PMID:24896737

  5. Indoor Exposure and Adverse Birth Outcomes Related to Fetal Growth, Miscarriage and Prematurity—A Systematic Review

    PubMed Central

    Patelarou, Evridiki; Kelly, Frank J.

    2014-01-01

    The purpose of this review was to summarize existing epidemiological evidence of the association between quantitative estimates of indoor air pollution and all-day personal exposure with adverse birth outcomes including fetal growth, prematurity and miscarriage. We carried out a systematic literature search of MEDLINE and EMBASE databases with the aim of summarizing and evaluating the results of peer-reviewed epidemiological studies undertaken in “westernized” countries that have assessed indoor air pollution and all-day personal exposure with specific quantitative methods. This comprehensive literature search identified 16 independent studies which were deemed relevant for further review and two additional studies were added through searching the reference lists of all included studies. Two reviewers independently and critically appraised all eligible articles using the Critical Appraisal Skills Programme (CASP) tool. Of the 18 selected studies, 14 adopted a prospective cohort design, three were case-controls and one was a retrospective cohort study. In terms of pollutants of interest, seven studies assessed exposure to electro-magnetic fields, four studies assessed exposure to polycyclic aromatic hydrocarbons, four studies assessed PM2.5 exposure and three studies assessed benzene, phthalates and noise exposure respectively. Furthermore, 12 studies examined infant growth as the main birth outcome of interest, six examined spontaneous abortion and three studies assessed gestational age at birth and preterm delivery. This survey demonstrates that there is insufficient research on the possible association of indoor exposure and early life effects and that further research is needed. PMID:24896737

  6. Studies in Fetal Behavior: Revisited, Renewed, and Reimagined

    PubMed Central

    DiPietro, Janet A.; Costigan, Kathleen A.; Voegtline, Kristin M.

    2016-01-01

    Among the earliest volumes of this Monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodermal activity and fetal heart rate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include: within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physiological processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship. We pose a number of open questions for future research. Although the human fetus remains just out of reach, new

  7. Fetal growth restriction promotes physical inactivity and obesity in female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental exposures during critical periods of prenatal and early postnatal life affect the development of mammalian body weight regulatory mechanisms, influencing lifelong risk of obesity. The specific biological processes that mediate the persistence of such effects, however, remain poorly und...

  8. Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values.

    PubMed

    Zywicki, Micaela; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J

    2016-08-01

    Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IUGR In an ovine model, we hypothesized that fetal plasma biochemical values would reflect progressive placental, fetal liver, and fetal kidney dysfunction as the number of fetuses per gestation rose. To determine fetal plasma biochemical values in singleton, twin, triplet, and quadruplet/quintuplet ovine gestation, we investigated morphometric measures and comprehensive metabolic panels with nutritional measures, liver enzymes, and placental and fetal kidney excretory measures at gestational day (GD) 130 (90% gestation). As anticipated, placental dysfunction was supported by a stepwise fall in fetal weight, fetal plasma glucose, and triglyceride levels as fetal number per ewe rose. Fetal glucose and triglycerides were directly related to fetal weight. Plasma creatinine, reflecting fetal renal excretory function, and plasma cholesterol, reflecting placental excretory function, were inversely correlated with fetal weight. Progressive biochemical disturbances and growth restriction accompanied the rise in fetal number. Understanding the compensatory and adaptive responses of growth-restricted fetuses at the biochemical level may help explain how metabolic pathways in growth restriction can be predetermined at birth. This physiological understanding is important for clinical care and generating interventional strategies to prevent altered developmental programming in multifetal gestation. PMID:27565903

  9. Duration of maternal undernutrition differentially alters fetal growth and hormone concentrations.

    PubMed

    Field, M E; Anthony, R V; Engle, T E; Archibeque, S L; Keisler, D H; Han, H

    2015-04-01

    To investigate the impact of duration of maternal undernutrition in twin sheep pregnancies, ewes were either fed 100% (C) or 50% of their nutrient requirements from 28 to 78 d gestational age (dGA) and readjusted to 100% beginning at 79 dGA (LC) or continuously restricted from 28 to 135 dGA (LL). Weights of the fetus, empty carcass, brain, and liver were greater in the LC than LL fetuses at 135 dGA (P ≤ 0.05). Although umbilical vein (UmV) glucose concentrations did not differ, the UmV:umbilical artery (UmA) glucose gradient was smaller (0.26 ± 0.03 vs 0.38 ± 0.03 and 0.39 ± 0.04 mmol L(-1); P ≤ 0.05) in LL than C and LC fetuses, respectively. Umbilical vein concentrations of IGF-1 were less (46.7 ± 5.62 vs 74.3 ± 6.71 ng/mL; P ≤ 0.05) in LL than LC fetuses. Additionally, LL fetuses tended (P ≤ 0.10) to have lower UmA concentrations of insulin (0.24 ± 0.13 vs 0.70 ± 0.15 ng/mL) and IGF-1 (66.6 ± 7.51 vs 91.4 ± 8.97 ng/mL) than LC fetuses. Although most of the observed differences occurred between LC and LL pregnancies, LC fetuses tended (P ≤ 0.10) to have greater UmV and UmA pCO2 than C fetuses. Furthermore, the UmV:UmA O2 content gradient tended to be greater (5.02 ± 0.43 vs 3.41 ± 0.47; P ≤ 0.10) in C than LL fetuses. UmA placental lactogen also tended to be greater (46.6 ± 4.40 vs 31.1 ± 4.69 ng/mL; P ≤ 0.10) in LL than C fetuses. These data suggest that in twin pregnancies, maternal undernutrition followed by realimentation induces a different fetal outcome compared with continuous nutrient restriction, and both may differ physiologically from control fed pregnancies. PMID:25460066

  10. Regulated release of serotonin from axonal growth cones isolated from the fetal rat brain.

    PubMed

    Mercado, R; Floran, B; Hernandez, J

    1998-01-01

    In the present work we propose an hypothetical model related to a molecular recognizing system for serotonin in isolated growth cone particles. This model is supported by previous results from our laboratory plus new ones which show that growth cones release serotonin tonically and such release can be stimulated by potassium in a calcium-dependent manner. The present results, together with other author's data, suggest a physiological basis for the putative role of serotonin as a trophic factor during nervous system development. PMID:9460708

  11. The fetal urinoma revisited.

    PubMed

    Yitta, Silaja; Saadai, Payam; Filly, Roy A

    2014-01-01

    The fetal urinoma is a rare but important diagnosis, as it indicates substantial underlying obstruction with implications for the functionality of the affected kidney. This case series describes a single center's experience with the diagnosis and management of fetal urinomas. All 25 cases were diagnosed or referred to our medical center over an 11-year period. Most cases were secondary to either posterior urethral valves or ureteropelvic junction obstruction. Fetal interventions, including percutaneous drainage of the urinoma and cystoscopic alleviation of bladder outlet obstruction, were performed in 4 cases. PMID:24371112

  12. Fetal endocrinology

    PubMed Central

    Kota, Sunil Kumar; Gayatri, Kotni; Jammula, Sruti; Meher, Lalit Kumar; Kota, Siva Krishna; Krishna, S. V. S.; Modi, Kirtikumar D.

    2013-01-01

    Successful outcome of pregnancy depends upon genetic, cellular, and hormonal interactions, which lead to implantation, placentation, embryonic, and fetal development, parturition and fetal adaptation to extrauterine life. The fetal endocrine system commences development early in gestation and plays a modulating role on the various physiological organ systems and prepares the fetus for life after birth. Our current article provides an overview of the current knowledge of several aspects of this vast field of fetal endocrinology and the role of endocrine system on transition to extrauterine life. We also provide an insight into fetal endocrine adaptations pertinent to various clinically important situations like placental insufficiency and maternal malnutrition. PMID:23961471

  13. Fetal Exposure to Maternal Inflammation Does Not Affect Postnatal Development of Genetically-Driven Ileitis and Colitis

    PubMed Central

    Hemmerling, Jana; Heller, Katharina; Hörmannsperger, Gabriele; Bazanella, Monika; Clavel, Thomas; Kollias, George; Haller, Dirk

    2014-01-01

    Background: Chronic inflammatory disorders have been increasing in incidence over the past decades following geographical patterns of industrialization. Fetal exposure to maternal inflammation may alter organ functions and the offspring's disease risk. We studied the development of genetically-driven ileitis and colitis in response to maternal inflammation using mouse models. Methods: Disease susceptible (TnfΔARE/+ and IL10−/−) and disease-free (Tnf+/+ and IL10−/+) offspring were raised in inflamed and non-inflamed dams. Ileal, caecal and colonic pathology was evaluated in the offspring at 8 or 12 weeks of age. Ly6G-positive cells in inflamed sections from the distal ileum and distal colon were analysed by immunofluorescence microscopy. Gene expression of pro-inflammatory cytokines was measured in whole tissue specimens by quantitative PCR. Microarray analyses were performed on laser microdissected intestinal epithelium. Caecal bacterial communities were assessed by Illumina sequencing of 16S rRNA amplicons. Results: Disease severity, the number of infiltrated neutrophils as well as Tnf and Il12p40 mRNA expression were independent of maternal inflammation in the offspring of mouse models for ileitis (TnfΔARE/+) and colitis (IL10−/−). Although TNF-driven maternal inflammation regulated 2,174 (wild type) and 3,345 (TnfΔARE/+) genes in the fetal epithelium, prenatal gene expression patterns were completely overwritten after birth. In addition, co-housing experiments revealed no change in phylogenetic diversity of the offspring's caecal microbiota in response to maternal inflammation. This is independent of the offspring's genotype before and after the onset of tissue pathology. Conclusions: Disease risk and activity in mouse models of chronic ileitis and colitis was independent of the fetal exposure to maternal inflammation. Likewise, maternal inflammation did not alter the diversity and composition of offspring's caecal microbiota, clearly demonstrating

  14. Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia

    PubMed Central

    Cotechini, Tiziana; Komisarenko, Maria; Sperou, Arissa; Macdonald-Goodfellow, Shannyn; Adams, Michael A.

    2014-01-01

    Fetal growth restriction (FGR) and preeclampsia (PE) are often associated with abnormal maternal inflammation, deficient spiral artery (SA) remodeling, and altered uteroplacental perfusion. Here, we provide evidence of a novel mechanistic link between abnormal maternal inflammation and the development of FGR with features of PE. Using a model in which pregnant rats are administered low-dose lipopolysaccharide (LPS) on gestational days 13.5–16.5, we show that abnormal inflammation resulted in FGR mediated by tumor necrosis factor-α (TNF). Inflammation was also associated with deficient trophoblast invasion and SA remodeling, as well as with altered uteroplacental hemodynamics and placental nitrosative stress. Moreover, inflammation increased maternal mean arterial pressure (MAP) and was associated with renal structural alterations and proteinuria characteristic of PE. Finally, transdermal administration of the nitric oxide (NO) mimetic glyceryl trinitrate prevented altered uteroplacental perfusion, LPS-induced inflammation, placental nitrosative stress, renal structural and functional alterations, increase in MAP, and FGR. These findings demonstrate that maternal inflammation can lead to severe pregnancy complications via a mechanism that involves increased maternal levels of TNF. Our study provides a rationale for the use of antiinflammatory agents or NO-mimetics in the treatment and/or prevention of inflammation-associated pregnancy complications. PMID:24395887

  15. Similar photoperiod-related birth seasonalities among professional baseball players and lesbian women with an opposite seasonality among gay men: Maternal melatonin may affect fetal sexual dimorphism.

    PubMed

    Marzullo, Giovanni

    2014-05-30

    Based on pre-mid-20th-century data, the same photoperiod-related birth seasonality previously observed in schizophrenia was also recently found in neural-tube defects and in extreme left-handedness among professional baseball players. This led to a hypothesis implicating maternal melatonin and other mediators of sunlight actions capable of affecting 4th-embryonic-week developments including neural-tube closure and left-right differentiation of the brain. Here, new studies of baseball players suggest that the same sunlight actions could also affect testosterone-dependent male-female differentiation in the 4-month-old fetus. Independently of hand-preferences, baseball players (n=6829), and particularly the stronger hitters among them, showed a unique birth seasonality with an excess around early-November and an equally significant deficit 6 months later around early-May. In two smaller studies, north-American and other northern-hemisphere born lesbians showed the same strong-hitter birth seasonality while gay men showed the opposite seasonality. The sexual dimorphism-critical 4th-fetal-month testosterone surge coincides with the summer-solstice in early-November births and the winter-solstice in early-May births. These coincidences are discussed and a "melatonin mechanism" is proposed based on evidence that in seasonal breeders maternal melatonin imparts "photoperiodic history" to the newborn by direct inhibition of fetal testicular testosterone synthesis. The present effects could represent a vestige of this same phenomenon in man. PMID:24612972

  16. Strength of Rocks Affected by Deformation Enhanced Grain Growth

    NASA Astrophysics Data System (ADS)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.

    2005-12-01

    One way of looking into the possibility of long-term strength changes in the lithosphere is to study transient effects resulting from modifications of the microstructure of rocks. It is generally accepted that mechanical weakening may occur due to progressive grain size refinement resulting from dynamic recrystallization. A decrease in grain size may induce a switch from creep controlled by grain size insensitive dislocation mechanisms to creep governed by grain size sensitive (GSS) mechanisms involving diffusion and grain boundary sliding processes. This switch forms a well-known scenario to explain localization in the lithosphere. However, fine-grained rocks in localized deformation zones are prone to grain coarsening due to surface energy driven grain boundary migration (SED-GBM). This might harden the rock, affecting its role in localizing strain in the long term. The question has arisen if grain growth by SED-GBM in a rock deforming in the GSS creep field can be significantly affected by strain. The broad aim of this study is to shed more light onto this. We have experimentally investigated the microstructural and strength evolution of fine-grained (~0.6 μm) synthetic forsterite and Fe-bearing olivine aggregates that coarsen in grain size while deforming by GSS creep at elevated pressure (600 MPa) and temperature (850-1000 °C). The materials were prepared by `sol-gel' method and contained 0.3-0.5 wt% water and 5-10 vol% enstatite. We performed i) static heat treatment tests of various time durations involving hot isostatic pressing (HIP), and ii) heat treatment tests starting with HIP and continuing with deformation up to 45% axial strain at strain rates in the range 4x10-7 - 1x10-4 s-1. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. In addition to the experiments, we studied microstructural evolution in simple two-dimensional numerical models, combining deformation and SED-GBM by means of the

  17. An EG-VEGF-Dependent Decrease in Homeobox Gene NKX3.1 Contributes to Cytotrophoblast Dysfunction: A Possible Mechanism in Human Fetal Growth Restriction

    PubMed Central

    Murthi, Padma; Brouillet, Sophie; Pratt, Anita; Borg, Anthony; Kalionis, Bill; Goffin, Frederic; Tsatsaris, Vassilis; Munaut, Carine; Feige, Jean-Jacques; Benharouga, Mohamed; Fournier, Thierry; Alfaidy, Nadia

    2015-01-01

    Idiopathic fetal growth restriction (FGR) is frequently associated with placental insufficiency. Previous reports have provided evidence that endocrine gland–derived vascular endothelial growth factor (EG-VEGF), a placental secreted protein, is expressed during the first trimester of pregnancy, controls both trophoblast proliferation and invasion, and its increased expression is associated with human FGR. In this study, we hypothesize that EG-VEGF-dependent changes in placental homeobox gene expressions contribute to trophoblast dysfunction in idiopathic FGR. The changes in EG-VEGF-dependent homeobox gene expressions were determined using a homeobox gene cDNA array on placental explants of 8–12 wks gestation after stimulation with EG-VEGF in vitro for 24 h. The homeobox gene array identified a greater-than-five-fold increase in HOXA9, HOXC8, HOXC10, HOXD1, HOXD8, HOXD9 and HOXD11, while NKX 3.1 showed a greater-than-two-fold decrease in mRNA expression compared with untreated controls. Homeobox gene NKX3.1 was selected as a candidate because it is a downstream target of EG-VEGF and its expression and functional roles are largely unknown in control and idiopathic FGR-affected placentae. Real-time PCR and immunoblotting showed a significant decrease in NKX3.1 mRNA and protein levels, respectively, in placentae from FGR compared with control pregnancies. Gene inactivation in vitro using short-interference RNA specific for NKX3.1 demonstrated an increase in BeWo cell differentiation and a decrease in HTR-8/SVneo proliferation. We conclude that the decreased expression of homeobox gene NKX3.1 downstream of EG-VEGF may contribute to the trophoblast dysfunction associated with idiopathic FGR pregnancies. PMID:26208047

  18. Management of fetal malpresentation.

    PubMed

    Sharshiner, Rita; Silver, Robert M

    2015-06-01

    Fetal malpresentation is an important cause of the high cesarean delivery rate in the United States and around the world. This includes breech, face, brow, and compound presentations as well as transverse lie. Risk factors include multiparity, previously affected pregnancy, polyhydramnios, and fetal and uterine anomalies. Appropriate management can reduce the need for cesarean delivery in some cases. This review discusses management options and focuses specifically on external cephalic version and vaginal breech delivery. PMID:25811125

  19. Fetal medicine and treatment.

    PubMed

    Westgren, Magnus

    2011-01-01

    Fetal medicine covers a broad spectrum of conditions that can be diagnosed before birth. Different disorders will require different treatment strategies and there is often an important ontogenetic aspect on how and when treatment can be implemented. Due to the limited availability there is a general lack of knowledge on how pharmacotherapy can be provided in the most efficient way. Until recently most knowledge about how different drugs are transferred and metabolized in the human fetus is based on very limited observational studies on concentrations of drugs in fetal blood and other fetal compartments. It might be that the rapid development of other non-invasive methods for fetal diagnostics such as isolation of fetal DNA and RNA in maternal serum, NMR imaging and other techniques could in the future be explored in fetal pharmacotherapy. Introduction of new treatment strategies are often based on extrapolation from experience in neonates and adults. However some fetal conditions are very specific for this time period in life. This especially entails disturbances in development as malformations, early growth restriction and several congenital disorders. Here it might be required to introduce new treatment strategies without any previous experience in humans. Example of this ethical dilemma is gene therapy for lung growth in severe cases of diaphragmatic hernia and early growth restriction. The risk-benefit issues need to be discussed in all these alternatives. However, it is likely that the concept of the human fetus as a potential patient is still in its infancy and with an improved understanding about fetal patho-physiology there will be a continued need for better knowledge of pharmacotherapy during this crucial time period in life. PMID:21882116

  20. Factors Affecting Growth of Pinus radiata in Chile

    NASA Astrophysics Data System (ADS)

    Alvarez-Munoz, Jose Santos

    The Chilean forestry industry is based on hundreds of thousands of hectares of Pinus radiata plantations that have been established in a variety of soil and climate conditions. This approach has resulted in highly variable plantation productivity even when the best available technology was used. Little information is known about the ecophysiology basis for this variability. We explored the spatial and temporal variation of stand growth in Chile using a network of permanent sample plots from Modelo Nacional de Simulacion de Pino radiata. We hypothesized that the climate would play an important role in the annual variations in productivity. To answer these questions we developed the following projects: (1) Determination of site resource availability from historical data from automatic weather stations (rainfall, temperatures) and a geophysical model for solar irradiation, (2) Determination of peak annual leaf area index (LAI) for selected permanent sample plots using remote sensing technologies, (3) Analysis of soil, climate, canopy and stand factors affecting the Pinus radiata plantation growth and the use efficiency of site resources. For project 1, we estimated solar irradiation using the r.sun , Hargreaves-Samani (HS), and Bristow-Campbell (BC) models and validated model estimates with observations from weather stations. Estimations from a calibrated r.sun model accounted for 94% of the variance (r2=0.94) in monthly mean measured values. The r.sun model performed quite well for a wide range of Chilean conditions when compared with the HS and BC models. Our estimates of global irradiation may be improved with better estimates of cloudiness as they become available. Our model was able to provide spatial estimates of daily, weekly, monthly and yearly solar irradiation. For project 2, we estimated the inter-annual variation of LAI (Leaf Area Index), using remote sensing technologies. We determined LAI using Landsat Thematic Mapper (TM) data covering a 5 year period

  1. ASSOCIATIONS OF BLOOD PRESSURE CHANGE IN PREGNANCY WITH FETAL GROWTH AND GESTATIONAL AGE AT DELIVERY: FINDINGS FROM A PROSPECTIVE COHORT

    PubMed Central

    Macdonald-Wallis, Corrie; Tilling, Kate; Fraser, Abigail; Nelson, Scott M; Lawlor, Debbie A

    2014-01-01

    Hypertensive disorders of pregnancy are associated with intrauterine growth restriction and preterm birth. However, the associations of patterns of blood pressure change during pregnancy with these outcomes have not been studied in detail. We studied repeat antenatal blood pressure measurements of 9,697 women in the Avon Longitudinal Study of Parents and Children (median (interquartile range) 10 (9, 11) measurements per woman). Bivariate linear spline models were used to relate blood pressure changes to perinatal outcomes. Higher systolic, but not diastolic, blood pressure at baseline (8 weeks gestation) and a greater increase in systolic and diastolic blood pressure between 18 and 36 weeks gestation were associated with lower offspring birthweight and being smaller for gestational age in confounder-adjusted models. For example, the mean difference (95% CI) in birthweight per 1 mmHg/week greater increase in systolic blood pressure between 18-30 weeks was −71g (−134, −14) and between 30-36 weeks was −175g (−208, −145). A smaller decrease in systolic and diastolic blood pressure prior to 18 weeks and a greater increase between 18 and 36 weeks was associated with a shorter gestation (percentage difference in gestational duration per 1 mmHg/week greater increase in systolic blood pressure between 18-30 weeks: −0.60% (−1.01, −0.18) and 30-36 weeks: −1.01% (−1.36, −0.74)). Associations remained strong when restricting to normotensive women. We conclude that greater increases in blood pressure, from the 18-week nadir, are related to reduced fetal growth and shorter gestation even in women whose blood pressure does not cross the threshold for hypertensive disorders of pregnancy. PMID:24821945

  2. Fetal Diagnostics and Fetal Intervention.

    PubMed

    McLaughlin, Ericka S; Schlosser, Brian A; Border, William L

    2016-03-01

    Advances in ultrasound technology and specialized training have allowed clinicians to diagnose congenital heart disease in utero and counsel families on perinatal outcomes and management strategies, including fetal cardiac interventions and fetal surgery. This article gives a detailed approach to fetal cardiac assessment and provides the reader with accompanying figures and video clips to illustrate unique views and sweeps invaluable to diagnosing congenital heart disease. We demonstrate that using a sequential segmental approach to evaluate cardiac anatomy enables one to decipher the most complex forms of congenital heart disease. Also provided is a review of fetal cardiac intervention and surgery from the fetal cardiologist's perspective. PMID:26876119

  3. Intrauterine Growth Restricted Rats Exercised at Pregnancy: Maternal-Fetal Repercussions.

    PubMed

    Corvino, S B; Netto, A O; Sinzato, Y K; Campos, K E; Calderon, I M P; Rudge, M V C; Volpato, G T; Zambrano, E; Damasceno, D C

    2015-08-01

    To evaluate the effect of swimming in pregnant rats born with intrauterine growth restriction (IUGR) and their offspring, IUGR rats were obtained using the streptozotocin-induced severe diabetic (SD) rats. In this study, the nondiabetic parental generation presented 10 rats and diabetic parental generation presented 116 rats. Of these, the mated nondiabetic female rats were 10 and the number of diabetic rats was 45. In relation to term pregnancy, there were 10 animals in the nondiabetic group and 15 rats in the diabetic group. In the offspring of SD rats (IUGR group), 43 females were classified as small for pregnancy age, 19 rats were classified as appropriate for pregnancy age, and 0 female was classified as large for pregnancy age. The nondiabetic and SD pregnant rats generated offspring with appropriate (control [C]) and small (IUGR) weight for pregnancy age, respectively. At adult life, the C group was maintained as nonexercised C group and IUGR rats were distributed into 2 subgroups, namely, nonexercised (IUGR) and exercised (IUGRex). The rate of mated rats in the IUGR group was reduced compared to the C group. During pregnancy, the IUGR rats presented hyperinsulinemia, impaired reproductive outcomes, decreased body weight, hypertriglyceridemia, and hyperlactacidemia. The IUGRex presented reduced insulin and triglyceride levels. Thus, swimming improved lipid metabolism and increased insulin sensitivity. However, the offspring showed retarded growth, reinforcing the need to stimulate the exercise practice in women under supervision with different professional expertise to promote appropriate gestational conditions and improve perinatal outcomes. PMID:25761405

  4. Maternal high-fat diet is associated with impaired fetal lung development.

    PubMed

    Mayor, Reina S; Finch, Katelyn E; Zehr, Jordan; Morselli, Eugenia; Neinast, Michael D; Frank, Aaron P; Hahner, Lisa D; Wang, Jason; Rakheja, Dinesh; Palmer, Biff F; Rosenfeld, Charles R; Savani, Rashmin C; Clegg, Deborah J

    2015-08-15

    Maternal nutrition has a profound long-term impact on infant health. Poor maternal nutrition influences placental development and fetal growth, resulting in low birth weight, which is strongly associated with the risk of developing chronic diseases, including heart disease, hypertension, asthma, and type 2 diabetes, later in life. Few studies have delineated the mechanisms by which maternal nutrition affects fetal lung development. Here, we report that maternal exposure to a diet high in fat (HFD) causes placental inflammation, resulting in placental insufficiency, fetal growth restriction (FGR), and inhibition of fetal lung development. Notably, pre- and postnatal exposure to maternal HFD also results in persistent alveolar simplification in the postnatal period. Our novel findings provide a strong association between maternal diet and fetal lung development. PMID:26092997

  5. Do plastic particles affect microalgal photosynthesis and growth?

    PubMed

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size. PMID:26675372

  6. Artificial Polychromatic Light Affects Growth and Physiology in Chicks

    PubMed Central

    Yang, Bo; Yu, Yonghua

    2014-01-01

    Despite the overwhelming use of artificial light on captive animals, its effect on those animals has rarely been studied experimentally. Housing animals in controlled light conditions is useful for assessing the effects of light. The chicken is one of the best-studied animals in artificial light experiments, and here, we evaluate the effect of polychromatic light with various green and blue components on the growth and physiology in chicks. The results indicate that green-blue dual light has two side-effects on chick body mass, depending on the various green to blue ratios. Green-blue dual light with depleted and medium blue component decreased body mass, whereas enriched blue component promoted body mass in chicks compared with monochromatic green- or blue spectra-treated chicks. Moreover, progressive changes in the green to blue ratios of green-blue dual light could give rise to consistent progressive changes in body mass, as suggested by polychromatic light with higher blue component resulting in higher body mass. Correlation analysis confirmed that food intake was positively correlated with final body mass in chicks (R2 = 0.7664, P = 0.0001), suggesting that increased food intake contributed to the increased body mass in chicks exposed to higher blue component. We also found that chicks exposed to higher blue component exhibited higher blood glucose levels. Furthermore, the glucose level was positively related to the final body mass (R2 = 0.6406, P = 0.0001) and food intake (R2 = 0.784, P = 0.0001). These results demonstrate that spectral composition plays a crucial role in affecting growth and physiology in chicks. Moreover, consistent changes in spectral components might cause the synchronous response of growth and physiology. PMID:25469877

  7. Family Poverty Affects the Rate of Human Infant Brain Growth

    PubMed Central

    Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  8. Family poverty affects the rate of human infant brain growth.

    PubMed

    Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  9. Study of a fetal brain affected by a severe form of tyrosine hydroxylase deficiency, a rare cause of early parkinsonism.

    PubMed

    Tristán-Noguero, Alba; Díez, Héctor; Jou, Cristina; Pineda, Mercè; Ormazábal, Aida; Sánchez, Aurora; Artuch, Rafael; Garcia-Cazorla, Àngels

    2016-06-01

    Tyrosine hydroxylase (TH) deficiency is an inborn error of dopamine synthesis. Two clinical phenotypes have been described. The THD "B" phenotype produces a severe encephalopathy of early-onset with sub-optimal L-Dopa response, whereas the "A" phenotype has a better L-Dopa response and outcome. The objective of the study is to describe the expression of key synaptic proteins and neurodevelopmental markers in a fetal brain of THD "B" phenotype. The brain of a 16-week-old miscarried human fetus was dissected in different brain areas and frozen until the analysis. TH gene study revealed the p.R328W/p.T399M mutations, the same mutations that produced a B phenotype in her sister. After protein extraction, western blot analyses were performed to assess protein expression. The results were compared to an age-matched control. We observed a decreased expression in TH and in other dopaminergic proteins, such as VMAT 1 and 2 and dopamine receptors, especially D2DR. GABAergic and glutamatergic proteins such as GABA VT, NMDAR1 and calbindin were also altered. Developmental markers for synapses, axons and dendrites were decreased whereas markers of neuronal volume were preserved. Although this is an isolated case, this brain sample is unique and corresponds to the first reported study of a THD brain. It provides interesting information about the influence of dopamine as a regulator of other neurotransmitter systems, brain development and movement disorders with origin at the embryological state. This study could also contribute to a better understanding of the pathophysiology of THD at early fetal stages. PMID:26686676

  10. Effects of transforming growth factor beta and epidermal growth factor on cell proliferation and the formation of bone nodules in isolated fetal rat calvaria cells.

    PubMed

    Antosz, M E; Bellows, C G; Aubin, J E

    1989-08-01

    When cells enzymatically isolated from fetal rat calvaria (RC cells) are cultured in vitro in the presence of ascorbic acid and Na beta-glycerophosphate, discrete three-dimensional nodules form with the histologic, immunohistochemical, and ultrastructural characteristics of bone (Bellows et al; Calcified Tissue International 38:143-154, 1986; Bhargava et al., Bone, 9:155-163, 1988). Quantitation of the number of bone nodules that forms provides a colony assay for osteoprogenitor cells present in the RC population (Bellows and Aubin, Develop. Biol., 133:8-13, 1989). Continuous culture with either epidermal growth factor (EGF) or transforming growth factor beta (TGF-beta) results in dose-dependent inhibition of bone nodule formation; however, the former causes increased proliferation and saturation density, while the latter reduces both parameters. Addition of EGF (48 h pulse, 2-200 ng/ml) to RC cells at day 1 after plating results in increased proliferation and population saturation density and an increased number of bone nodules formed. Similar pulses at confluence and in postconfluent multilayered cultures when nodules first begin forming (approx. day 11) inhibited bone nodule formation and resulted in a smaller stimulation of cell proliferation. Forty-eight hour pulses of TGF-beta (0.01-1 ng/ml) reduced bone nodule formation and proliferation at all times examined, with pulses on day 1 causing maximum inhibition. The effects of pulses with TGF-beta and EGF on inhibition of nodule formation are independent of the presence of serum in the culture medium during the pulse. The data suggest that whereas EGF can either stimulate or inhibit the formation of bone nodules depending upon the time and duration of exposure, TGF-B inhibits bone nodule formation under all conditions tested. Moreover, these effects on osteoprogenitor cell differentiation do not always correlate with the effects of the growth factors on RC cell proliferation. PMID:2787326

  11. Growth and development of the ovary and small follicle pool from mid fetal life to pre-puberty in the African elephant (Loxodonta africana)

    PubMed Central

    2012-01-01

    Background Follicle numbers and developing ovarian morphology, particularly with reference to the presence of interstitial tissue, are intimately linked within the ovary of the African elephant during the period spanning mid-gestation to puberty. These have not been previously quantified in any studies. The collection of 7 sets of elephant fetal ovaries between 11.2 and 20.2 months of gestation, and 29 pairs of prepubertal calf ovaries between 2 months and 9 years of age during routine management off-takes of complete family groups in private conservancies in Zimbabwe provided an opportunity for a detailed study of this period. Results The changing morphology of the ovary is described as the presumptive cortex and medulla components of the fetal ovary settled into their adult form. Interstitial tissue dominated the ovary in late fetal life and these cells stained strongly for 3β–hydroxysteroid dehydrogenase. This staining continued postnatally through to 4.5 years of age suggesting continued secretion of progestagens by the ovary during this period. The considerable growth of antral follicles peaked at 28% of ovarian volume at around 16.7 months of fetal age. The numbers of small follicles (primordial, early primary and true primary), counted in the cortex using stereological protocols, revealed fewer small follicles in the ovaries of animals aged 0 to 4.5 years of age than during either late fetal life or prepubertal life. Conclusions The small follicle populations of the late-fetal and prepubertal ovaries of the African elephant were described along with the changing morphology of these organs. The changes noted represent a series of events that have been recorded only in the elephant and the giraffe species to date. The expansion of the interstitial tissue of the fetal ovary and its continued presence in early post natal life may well contribute to the control of follicle development in these early years. Further research is required to determine

  12. Fetal Alcohol Syndrome and Fetal Alcohol Effects in Child Development.

    ERIC Educational Resources Information Center

    Pancratz, Diane R.

    This literature review defines Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) and considers their causes, diagnoses, prevalence, and educational ramifications. Effects of alcohol during each of the trimesters of pregnancy are summarized. Specific diagnostic characteristics of FAS are listed: (1) growth deficiency, (2) a…

  13. Potential Effects of Chlorpyrifos on Fetal Growth Outcomes: Implications for Risk Assessment

    PubMed Central

    Mink, Pamela J.; Kimmel, Carole A.; Li, Abby A.

    2012-01-01

    Chlorpyrifos (CPF) is one of the most widely used organophosphate insecticides in the United States. By December 2000, nearly all residential uses were voluntarily canceled, so that today, CPF is only used to control insect pests on a variety of crops. Periodic review of the potential effects of CPF on all developmental outcomes is necessary in the United States because the Food Quality Protection Act mandates special consideration of risk assessments for infants and children. This article reviews epidemiologic studies examining the association of potential CPF exposure with growth indices, including birth weight, birth length, and head circumference, and animal studies focusing on related somatic developmental endpoints. It differs from earlier reviews by including an additional cohort study and providing in-depth systematic evaluation of the patterns of association across different studies with respect to specificity of biomarkers for CPF, consistency, dose response, strength of association, temporality, and biological plausibility (Hill 1965), as well as consideration of the potential role of effect modification and bias. The review did not identify any strong associations exhibiting consistent exposure-response patterns that were observed in more than one of the four cohort studies evaluated. In addition, the animal data indicate that developmental effects occur at doses that produce substantial maternal toxicity and red blood cell (RBC) acetylcholinesterase (AChE) inhibition. Based on consideration of both the epidemiologic and animal data, maternal RBC AChE inhibition is a more sensitive endpoint for risk assessment than somatic developmental effects reviewed in this article. PMID:22571222

  14. In vitro assessment of mouse fetal abdominal aortic vascular function

    PubMed Central

    Dilworth, Mark R.; Greenwood, Susan L.; Sibley, Colin P.; Wareing, Mark

    2014-01-01

    Fetal growth restriction (FGR) affects 3–8% of human pregnancies. Mouse models have provided important etiological data on FGR; they permit the assessment of treatment strategies on the physiological function of both mother and her developing offspring. Our study aimed to 1) develop a method to assess vascular function in fetal mice and 2) as a proof of principle ascertain whether a high dose of sildenafil citrate (SC; Viagra) administered to the pregnant dam affected fetal vascular reactivity. We developed a wire myography methodology for evaluation of fetal vascular function in vitro using the placenta-specific insulin-like growth factor II (Igf2) knockout mouse (P0; a model of FGR). Vascular function was determined in abdominal aortas isolated from P0 and wild-type (WT) fetuses at embryonic day (E) 18.5 of gestation. A subset of dams received SC 0.8 mg/ml via drinking water from E12.5; data were compared with water-only controls. Using wire myography, we found that fetal aortic rings exhibited significant agonist-induced contraction, and endothelium-dependent and endothelium-independent relaxation. Sex-specific alterations in reactivity were noted in both strains. Maternal treatment with SC significantly attenuated endothelium-dependent and endothelium-independent relaxation of fetal aortic rings. Mouse fetal abdominal aortas reproducibly respond to vasoactive agents. Study of these vessels in mouse genetic models of pregnancy complications may 1) help to delineate early signs of abnormal vascular reactivity and 2) inform whether treatments given to the mother during pregnancy may impact upon fetal vascular function. PMID:25056105

  15. Levels of Adipokines in Amniotic Fluid and Cord Blood Collected from Dichorionic-Diamniotic Twins Discordant for Fetal Growth

    PubMed Central

    Park, Joong Shin; Norwitz, Errol R.; Panyavatthanasinh, Sitthysack; Kim, Sun Min; Lee, JoonHo; Park, Chan-Wook; Kim, Byoung Jae; Jun, Jong Kwan

    2016-01-01

    Objective To compare the concentrations of adipokines in amniotic fluid (AF) and cord blood collected from discordant dichorionic-diamniotic (DCDA) twin fetuses. Study Design The study population included DCDA twins discordant for fetal growth (birth weight difference >10%) who either underwent mid-trimester amniocentesis for routine clinical indication (Cohort 1) or whose amniotic fluid was collected at the time of delivery (Cohort 2). In both cohorts, cord blood was collected at delivery. Results A total of 92 twin pairs were enrolled (n = 49 in Cohort 1; n = 43 in Cohort 2). In Cohort 1, the concentrations of adiponectin (median, 68.5 ng/mL vs 61.4 ng/mL; p<0.05) and leptin (median, 13.9 ng/mL vs 11.2 ng/mL; p<0.1) in mid-trimester AF were significantly higher in smaller compared with larger twins. In Cohort 2, the concentration of serpin E1 (median, 246.0 ng/mL vs 182.8 ng/mL; p<0.01) in AF at delivery was significantly higher in smaller twins, but no difference was noted in adiponectin and leptin concentrations. Levels of adiponectin (median, 10425.5 ng/mL vs 11552.0 ng/mL; p<0.005) and leptin (median, 2.1 ng/mL vs 2.6 ng/mL; p<0.005) were significantly lower in the cord blood of smaller twins whereas cord blood concentrations of serpin E1 (median, 15.5 ng/mL vs 13.3 ng/mL; p<0.05) was higher in the smaller twins. Conclusion In discordant DCDA twin pairs, concentrations of adiponectin, leptin, and serpin E1 in mid-trimester AF, AF at delivery, and cord blood at birth vary significantly but predictably between the smaller and larger twins. PMID:27135745

  16. Different effects of insulin and insulin-like growth factors I and II on osteoprogenitors and adipocyte progenitors in fetal rat bone cell populations.

    PubMed

    Bellows, C G; Jia, D; Jia, Y; Hassanloo, A; Heersche, J N M

    2006-07-01

    We investigated the effects of insulin (1-1,000 nM), insulin-like growth factor (IGF)-I, and IGF-II (3-100 nM each) alone or together with 10 nM dexamethasone (DEX) or 10 nM 1,25-dihydroxyvitamin D(3) (1,25[OH](2)D(3)) on proliferation and differentiation of adipocyte and osteoblast progenitors in bone cell populations derived from fetal rat calvaria. The effects on differentiation were evaluated by counting the number of bone or osteoid nodules and adipocyte colonies and the effects on proliferation, by measuring their size by image analysis. The types of cells studied were 1,25(OH)(2)D(3)- and DEX-responsive adipocyte progenitors and DEX-dependent and independent osteoprogenitors. Both IGF-I and IGF-II stimulated osteoprogenitor differentiation both alone and in the presence of DEX, while insulin stimulated osteoprogenitor differentiation only in the absence of DEX. Neither IGF-I/-II nor insulin affected proliferation of osteoprogenitors. Insulin had little effect on adipocyte differentiation by itself but strongly stimulated differentiation in the presence of either 1,25(OH)(2)D(3) or DEX, while IGF-II stimulated adipocyte differentiation in both the absence and presence of 1,25(OH)(2)D(3) or DEX. IGF-I by itself or in the presence of DEX strongly stimulated adipocyte cell differentiation but had little effect in the presence of 1,25(OH)(2)D(3). Our results demonstrate that insulin, IGF-II, and IGF-I have specific and different effects on the differentiation and proliferation of different groups of progenitor cells. PMID:16897348

  17. Association of Low-Protein Supplemented Diets with Fetal Growth in Pregnant Women with CKD

    PubMed Central

    Leone, Filomena; Attini, Rossella; Parisi, Silvia; Fassio, Federica; Deagostini, Maria Chiara; Ferraresi, Martina; Clari, Roberta; Ghiotto, Sara; Biolcati, Marilisa; Giuffrida, Domenica; Rolfo, Alessandro; Todros, Tullia

    2014-01-01

    Background and objectives Women affected by CKD increasingly choose to get pregnant. Experience with low-protein diets is limited. The aim of this study was to review results obtained from pregnant women with CKD on supplemented vegan–vegetarian low-protein diets. Design, setting, participants, & measurements This was a single-arm, open intervention study between 2000–2012 of a low-protein diet in pregnant patients with stages 3–5 CKD or severe proteinuria (>1 g/d in the first trimester or nephrotic at any time). Stages 3–5 CKD patients who were not on low-protein diets for clinical, psychologic, or logistic reasons served as controls. The setting was the Obstetrics-Nephrology Unit dedicated to kidney diseases in pregnancy. The treated group included 24 pregnancies—21 singleton deliveries, 1 twin pregnancy, 1 abortion, and 1 miscarriage. Additionally, there were 21 controls (16 singleton deliveries, 5 miscarriages). The diet was a vegan–vegetarian low-protein diet (0.6–0.8 g/kg per day) with keto-acid supplementation and 1–3 protein-unrestricted meals allowed per week. Results Treated patients and controls were comparable at baseline for median age (35 versus 34 years), referral week (7 versus 8), eGFR (59 versus 54 ml/min), and hypertension (43.5% versus 33.3%); median proteinuria was higher in patients on the low-protein diet (1.96 [0.1–6.3] versus 0.3 [0.1–2.0] g/d; P<0.001). No significant differences were observed in singletons with regard to gestational week (34 versus 36) or Caesarean sections (76.2% versus 50%). Kidney function at delivery was not different, but proteinuria was higher in the diet group. Incidence of small for gestational age babies was significantly lower in the diet group (3/21) versus controls (7/16; chi-squared test; P=0.05). Throughout follow-up (6 months to 10 years), hospitalization rates and prevalence of children below the third percentile were similar in both groups. Conclusion Vegan–vegetarian supplemented

  18. Genetic ablation of androgen receptor signaling in fetal Leydig cell lineage affects Leydig cell functions in adult testis.

    PubMed

    Kaftanovskaya, Elena M; Lopez, Carolina; Ferguson, Lydia; Myhr, Courtney; Agoulnik, Alexander I

    2015-06-01

    It is commonly accepted that androgen-producing fetal Leydig cells (FLC) are substituted by adult Leydig cells (ALC) during perinatal testis development. The mechanisms influencing this process are unclear. We used mice with a retinoid acid receptor 2 promoter-Cre recombinase transgene (Rarb-cre) expressed in embryonic FLC precursors, but not in postnatal testis, and a dual fluorescent Cre recombinase reporter to label FLC and ALC in vivo. All FLC in newborn testis had the recombinant, whereas the majority of LC in adult testis had the nonrecombinant reporter. Primary LC cultures from adult testis had either recombinant (20%) or nonrecombinant (80%) cells, demonstrating that the FLC survive in adult testis and their ontogeny is distinct from ALC. Conditional inactivation of androgen receptor (AR) allele using the Rarb-cre transgene resulted in a 50% increase of AR-negative LC in adult testis. The mutant males became infertile with age, with all LC in older testis showing signs of incomplete differentiation, such as a large number of big lipid droplets, an increase of finger-like protrusions, and a misexpression of steroidogenic or FLC- and ALC-specific genes. We propose that the antiandrogenic exposure during early development may similarly result in an increase of FLC in adult testis, leading to abnormal LC differentiation. PMID:25713029

  19. PRENATAL NICOTINE EXPOSURE SELECTIVELY AFFECTS NICOTINIC RECEPTOR EXPRESSION IN PRIMARY AND ASSOCIATIVE VISUAL CORTICES OF THE FETAL BABOON

    PubMed Central

    Duncan, Jhodie R.; Garland, Marianne; Stark, Raymond I.; Myers, Michael M.; Fifer, William P.; Mokler, David J.; Kinney, Hannah C.

    2014-01-01

    Exposure to nicotine during pregnancy via maternal cigarette smoking is associated with visual deficits in children. This is possibly due to activation of nicotinic acetylcholine receptors (nAChRs) in the occipital cortex which are important in the development of visual mapping. Using a baboon model we explored the effects of prenatal nicotine on parameters in the primary and associated visual cortices. Pregnant baboons were infused with nicotine (0.5 mg/hr, i.v.) or saline from 86 days gestation. At 161 days gestation fetal brains were collected (n=5/group) and the occipital lobe assessed for nAChRs and markers of the serotonergic and catecholaminergic systems using tissue autoradiography and/or high performance liquid chromatography. Neuronal nAChRs and serotonergic markers were expressed in a region and subunit dependent manner. Prenatal nicotine exposure was associated with increased binding for 3H-epibatidine sensitive nAChRs in the primary visual cortex (BA 17) and BA 18, but not BA 19, of the associative visual cortex (p<0.05). Markers of the serotonergic or catecholaminergic systems were not significantly altered. Thus, prenatal nicotine exposure is associated with alterations in the cholinergic system in the occipital lobe which may aid in the explanation of the appearance of visual deficits in children from mothers who smoke during pregnancy. PMID:24903536

  20. Fetal ultrasonography.

    PubMed Central

    Garmel, S H; D'Alton, M E

    1993-01-01

    Since its introduction in the 1950s, ultrasonography in pregnancy has been helpful in determining gestational age, detecting multiple pregnancies, locating placentas, diagnosing fetal anomalies, evaluating fetal well-being, and guiding obstetricians with in utero treatment. We review current standards and controversies regarding the indications, safety, accuracy, and limitations of ultrasonography in pregnancy. Images PMID:8236969

  1. Fetal Abuse.

    ERIC Educational Resources Information Center

    Kent, Lindsey; And Others

    1997-01-01

    Five cases of fetal abuse by mothers suffering from depression are discussed. Four of the women had unplanned pregnancies and had considered termination of the pregnancy. Other factors associated with fetal abuse include pregnancy denial, pregnancy ambivalence, previous postpartum depression, and difficulties in relationships. Vigilance for…

  2. [Fetal programming].

    PubMed

    Lang, U; Fink, D; Kimmig, R

    2008-01-01

    The intrauterine environment not only influences fetal well-being and behaviour during pregnancy, but also predisposes the fetus in many health aspects of later life. The terms 'fetal programming' and 'developmental origins of health and disease' reflect the enormous impact of pregnancy-related factors on the individual and the health. PMID:19096216

  3. The relationship between transplacental O2 diffusion and placental expression of PlGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction

    PubMed Central

    Regnault, Timothy R H; de Vrijer, Barbra; Galan, Henry L; Davidsen, Meredith L; Trembler, Karen A; Battaglia, Frederick C; Wilkening, Randall B; Anthony, Russell V

    2003-01-01

    Placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) are involved in placental angiogenesis through interactions with the VEGFR-1 and VEGFR-2 receptors. The placenta of pregnancies whose outcome is fetal growth restriction (FGR) are characterized by abnormal angiogenic development, classically associated with hypoxia. The present study evaluated the near-term expression of this growth factor family in an ovine model of placental insufficiency–FGR, in relationship to uteroplacental oxygenation. Compared to controls, FGR pregnancies demonstrated a 37 % increase in uterine blood flow (FGR vs. control, 610.86 ± 48.48 vs. 443.17 ± 37.39 ml min−1 (kg fetus)−1; P < 0.04), which was associated with an increased maternal uterine venous PO2 (58.13 ± 1.00 vs. 52.89 ± 1.26 mmHg; P < 0.02), increased umbilical artery systolic/diastolic ratio (3.90 ± 0.33 vs. 2.12 ± 0.26, P < 0.05), and fetal hypoxia (arterial PO2; 12.79 ± 0.97 vs. 18.65 ± 1.6 mmHg, P < 0.005). Maternal caruncle PlGF mRNA was increased in FGR (P < 0.02), while fetal cotyledon VEGF mRNA was reduced (P < 0.02). VEGFR-1 mRNA was also reduced in FGR fetal cotyledon (P < 0.001) but was not altered in caruncle tissue. Immunoblot analysis of PlGF and VEGF demonstrated single bands at 19 000 and 18 600 Mr, respectively. Caruncle PlGF concentration was increased (P < 0.04), while cotyledon VEGF was decreased (P < 0.05) in FGR placentae. The data establish that uterine blood flow is not reduced in relationship to metabolic demands in this FGR model and that the transplacental PO2 gradient is increased, maintaining umbilical oxygen uptake per unit of tissue. Furthermore, these data suggest that an increased transplacental gradient of oxygen generates changes in angiogenic growth factors, which may underline the pathophysiology of the post-placental hypoxic FGR. PMID:12740423

  4. Does Training Affect Growth? Answers to Common Questions.

    ERIC Educational Resources Information Center

    Daly, Robin M.; Bass, Shona; Caine, Dennis; Howe, Warren

    2002-01-01

    Adolescent athletes may be at risk of restricted growth and delayed maturation when combining intense training with insufficient energy intake. Because catch-up growth commonly occurs with reduced training, final adult stature is generally not compromised. However, in athletes with long-term, clinically delayed maturation, catch-up growth may be…

  5. Prenatal Intestinal Obstruction Affects the Myenteric Plexus and Causes Functional Bowel Impairment in Fetal Rat Experimental Model of Intestinal Atresia

    PubMed Central

    Khen-Dunlop, Naziha; Sarnacki, Sabine; Victor, Anais; Grosos, Celine; Menard, Sandrine; Soret, Rodolphe; Goudin, Nicolas; Pousset, Maud; Sauvat, Frederique; Revillon, Yann; Cerf-Bensussan, Nadine; Neunlist, Michel

    2013-01-01

    Background Intestinal atresia is a rare congenital disorder with an incidence of 3/10 000 birth. About one-third of patients have severe intestinal dysfunction after surgical repair. We examined whether prenatal gastrointestinal obstruction might effect on the myenteric plexus and account for subsequent functional disorders. Methodology/Principal Findings We studied a rat model of surgically induced antenatal atresia, comparing intestinal samples from both sides of the obstruction and with healthy rat pups controls. Whole-mount preparations of the myenteric plexus were stained for choline acetyltransferase (ChAT) and nitric oxide synthase (nNOS). Quantitative reverse transcription PCR was used to analyze mRNAs for inflammatory markers. Functional motility and permeability analyses were performed in vitro. Phenotypic studies were also performed in 8 newborns with intestinal atresia. In the experimental model, the proportion of nNOS-immunoreactive neurons was similar in proximal and distal segments (6.7±4.6% vs 5.6±4.2%, p = 0.25), but proximal segments contained a higher proportion of ChAT-immunoreactive neurons (13.2±6.2% vs 7.5±4.3%, p = 0.005). Phenotypic changes were associated with a 100-fold lower concentration-dependent contractile response to carbachol and a 1.6-fold higher EFS-induced contractile response in proximal compared to distal segments. Transcellular (p = 0.002) but not paracellular permeability was increased. Comparison with controls showed that modifications involved not only proximal but also distal segments. Phenotypic studies in human atresia confirmed the changes in ChAT expression. Conclusion Experimental atresia in fetal rat induces differential myenteric plexus phenotypical as well as functional changes (motility and permeability) between the two sides of the obstruction. Delineating these changes might help to identify markers predictive of motility dysfunction and to define guidelines for post-surgical care. PMID:23667464

  6. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies. PMID:21419855

  7. The Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Umbreit, John; Ostrow, Lisa S.

    1980-01-01

    Fetal alcohol syndrome is a pattern of altered growth and morphogenesis found in about half the offspring of severely and chronically alcoholic women who continue drinking throughout their pregnancy. Of children studied, mild to moderate mental retardation was the most common disorder, occurring in 44 percent of the cases. (PHR)

  8. Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Zerrer, Peggy

    The paper reviews Fetal Alcohol Syndrome (FAS), a series of effects seen in children whose mothers drink alcohol to excess during pregnancy. The identification of FAS and its recognition as a major health problem in need of prevention are traced. Characteristics of children with FAS are described and resultant growth retardation, abnormal physical…

  9. Elsevier Trophoblast Research Award Lecture: Searching for an early pregnancy 3-D morphometric ultrasound marker to predict fetal growth restriction.

    PubMed

    Collins, S L; Stevenson, G N; Noble, J A; Impey, L

    2013-03-01

    Fetal growth restriction (FGR) is a major cause of perinatal morbidity and mortality, even in term babies. An effective screening test to identify pregnancies at risk of FGR, leading to increased antenatal surveillance with timely delivery, could decrease perinatal mortality and morbidity. Placental volume, measured with commercially available packages and a novel, semi-automated technique, has been shown to predict small for gestational age babies. Placental morphology measured in 2-D in the second trimester and ex-vivo post delivery, correlates with FGR. This has also been investigated using 2-D estimates of diameter and site of cord insertion obtained using the Virtual Organ Computer-aided AnaLysis (VOCAL) software. Data is presented describing a pilot study of a novel 3-D method for defining compactness of placental shape. We prospectively recruited women with a singleton pregnancy and BMI of <35. A 3-D ultrasound scan was performed between 11 and 13 + 6 weeks' gestation. The placental volume, total placental surface area and the area of the utero-placental interface were calculated using our validated technique. From these we generated dimensionless indices including sphericity (ψ), standardised placental volume (sPlaV) and standardised functional area (sFA) using Buckingham π theorem. The marker for FGR used was small for gestational age, defined as <10th customised birth weight centile (cSGA). Regression analysis examined which of the morphometric indices were independent predictors of cSGA. Data were collected for 143 women, 20 had cSGA babies. Only sPlaV and sFA were significantly correlated to birth weight (p < 0.001). Regression demonstrated all dimensionless indices were inter-dependent co-factors. ROC curves showed no advantage for using sFA over the simpler sPlaV. The generated placental indices are not independent of placental volume this early in gestation. It is hoped that another placental ultrasound marker based on vascularity can improve the

  10. Interpretation of the electronic fetal heart rate during labor.

    PubMed

    Sweha, A; Hacker, T W; Nuovo, J

    1999-05-01

    Electronic fetal heart rate monitoring is commonly used to assess fetal well-being during labor. Although detection of fetal compromise is one benefit of fetal monitoring, there are also risks, including false-positive tests that may result in unnecessary surgical intervention. Since variable and inconsistent interpretation of fetal heart rate tracings may affect management, a systematic approach to interpreting the patterns is important. The fetal heart rate undergoes constant and minute adjustments in response to the fetal environment and stimuli. Fetal heart rate patterns are classified as reassuring, nonreassuring or ominous. Nonreassuring patterns such as fetal tachycardia, bradycardia and late decelerations with good short-term variability require intervention to rule out fetal acidosis. Ominous patterns require emergency intrauterine fetal resuscitation and immediate delivery. Differentiating between a reassuring and nonreassuring fetal heart rate pattern is the essence of accurate interpretation, which is essential to guide appropriate triage decisions. PMID:10323356

  11. Fetal echocardiography

    MedlinePlus

    ... Fetal echocardiography is a test that uses sound waves ( ultrasound ) to evaluate the baby's heart for problems ... over the area. The probe sends out sound waves, which bounce off the baby's heart and create ...

  12. Organizational Career Growth, Affective Occupational Commitment and Turnover Intentions

    ERIC Educational Resources Information Center

    Weng, Qingxiong; McElroy, James C.

    2012-01-01

    Survey data, collected from the People's Republic of China, were used to test Weng's (2010) four facet model of career growth and to examine its effect on occupational commitment and turnover intentions. Weng conceptualized career growth as consisting of four factors: career goal progress, professional ability development, promotion speed, and…

  13. Maternal iron intake at mid-pregnancy is associated with reduced fetal growth: results from Mothers and Children’s Environmental Health (MOCEH) study

    PubMed Central

    2013-01-01

    Background Iron supplementation is a common recommendation for pregnant women to prevent iron deficiency during pregnancy. There is an increasing concern about excessive iron consumption as a general iron prophylaxis by pregnant women without any due consideration about their dietary iron intake or iron status. Our present study investigated the association between total iron intake from diet and supplements and fetal growth in 337 pregnant women at mid-pregnancy in South Korea. Methods Iron intake from diet and supplements was examined by a 24-hour recall method. Subjects were divided into three groups based on tertiles of total iron intake levels. Fetal biometry was assessed by ultrasonography at mid-pregnancy. Results About 99% of the non-supplement users had iron intake below the recommended nutrient intake (RNI) for pregnant women (24 mg), whereas 64.9% of supplement users had iron intake above the upper level (UL) (45 mg). In the babies of mothers in the third tertile of iron intake (>17.04 mg), biparietal diameter, abdominal circumference, and femur length were lower by 0.41 cm (P =0.019), 0.41 cm (P = 0.027), and 0.07 cm (P = 0.051), respectively, than the babies of mothers in the second tertile of iron intake (11.49 ~ 17.04 mg). Conclusion These results suggest that excessive maternal iron intake at mid-pregnancy is associated with reduced fetal growth. Iron supplementation for pregnant women should be individualized according to their iron status. Appropriate diet education is needed for pregnant women so that they can consume adequate amounts of iron from food and supplements. PMID:23547877

  14. Artificial oxygen carriers rescue placental hypoxia and improve fetal development in the rat pre-eclampsia model

    PubMed Central

    Li, Heng; Ohta, Hidenobu; Tahara, Yu; Nakamura, Sakiko; Taguchi, Kazuaki; Nakagawa, Machiko; Oishi, Yoshihisa; Goto, Yu-ichi; Wada, Keiji; Kaga, Makiko; Inagaki, Masumi; Otagiri, Masaki; Yokota, Hideo; Shibata, Shigenobu; Sakai, Hiromi; Okamura, Kunihiro; Yaegashi, Nobuo

    2015-01-01

    Pre-eclampsia affects approximately 5% of all pregnant women and remains a major cause of maternal and fetal morbidity and mortality. The hypertension associated with pre-eclampsia develops during pregnancy and remits after delivery, suggesting that the placenta is the most likely origin of this disease. The pathophysiology involves insufficient trophoblast invasion, resulting in incomplete narrow placental spiral artery remodeling. Placental insufficiency, which limits the maternal-fetal exchange of gas and nutrients, leads to fetal intrauterine growth restriction. In this study, in our attempt to develop a new therapy for pre-eclampsia, we directly rescued placental and fetal hypoxia with nano-scale size artificial oxygen carriers (hemoglobin vesicles). The present study is the first to demonstrate that artificial oxygen carriers successfully treat placental hypoxia, decrease maternal plasma levels of anti-angiogenic proteins and ameliorate fetal growth restriction in the pre-eclampsia rat model. PMID:26471339

  15. Slower Economic Growth Affects the 1995 Labor Market.

    ERIC Educational Resources Information Center

    Gardner, Jennifer M.; Hayghe, Howard V.

    1996-01-01

    Shows how job growth slowed dramatically in 1995, but the unemployment rate remained little changed. Discusses trends in nonfarm payroll employment by industry and changes in employment status of people in various demographic and occupational groups. (Author)

  16. Endotoxin-induced nitric oxide production rescues airway growth and maturation in atrophic fetal rat lung explants

    SciTech Connect

    Rae, C.; Cherry, J.I.; Land, F.M.; Land, S.C. . E-mail: s.c.land@dundee.ac.uk

    2006-10-13

    Inflammation induces premature maturation of the fetal lung but the signals causing this effect remain unclear. We determined if nitric oxide (NO) synthesis, evoked by Escherichia coli lipopolysaccharide (LPS, 2 {mu}g ml{sup -1}), participated in this process. Fetal rat lung airway surface complexity rose 2.5-fold over 96 h in response to LPS and was associated with increased iNOS protein expression and activity. iNOS inhibition by N6-(1-iminoethyl)-L-lysine-2HCl (L-NIL) abolished this and induced airway atrophy similar to untreated explants. Surfactant protein-C (SP-C) expression was also induced by LPS and abolished by L-NIL. As TGF{beta} suppresses iNOS activity, we determined if feedback regulation modulated NO-dependent maturation. LPS induced TGF{beta}1 release and SMAD4 nuclear translocation 96 h after treatment. Treatment of explants with a blocking antibody against TGF{beta}1 sustained NO production and airway morphogenesis whereas recombinant TGF{beta}1 antagonized these effects. Feedback regulation of NO synthesis by TGF{beta} may, thus, modulate airway branching and maturation of the fetal lung.

  17. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  18. Dissolved oxygen concentration affects hybrid striped bass growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. Three studies were conducted to quantify performance traits and metabolic responses of hybrid striped b...

  19. Seed Production Affects Maternal Growth and Senescence in Arabidopsis.

    PubMed

    Wuest, Samuel Elias; Philipp, Matthias Anton; Guthörl, Daniela; Schmid, Bernhard; Grossniklaus, Ueli

    2016-05-01

    Correlative control (influence of one organ over another organ) of seeds over maternal growth is one of the most obvious phenotypic expressions of the trade-off between growth and reproduction. However, the underlying molecular mechanisms are largely unknown. Here, we characterize the physiological and molecular effects of correlative inhibition by seeds on Arabidopsis (Arabidopsis thaliana) inflorescences, i.e. global proliferative arrest (GPA) during which all maternal growth ceases upon the production of a given number of seeds. We observed transcriptional responses to growth- and branching-inhibitory hormones, and low mitotic activity in meristems upon GPA, but found that meristems retain their identity and proliferative potential. In shoot tissues, we detected the induction of stress- and senescence-related gene expression upon fruit production and GPA, and a drop in chlorophyll levels, suggestive of altered source-sink relationships between vegetative shoot and reproductive tissues. Levels of shoot reactive oxygen species, however, strongly decreased upon GPA, a phenomenon that is associated with bud dormancy in some perennials. Indeed, gene expression changes in arrested apical inflorescences after fruit removal resembled changes observed in axillary buds following release from apical dominance. This suggests that GPA represents a form of bud dormancy, and that dominance is gradually transferred from growing inflorescences to maturing seeds, allowing offspring control over maternal resources, simultaneously restricting offspring number. This would provide a mechanistic explanation for the constraint between offspring quality and quantity. PMID:27009281

  20. A Comparative Study of Growth Kinetics, In Vitro Differentiation Potential and Molecular Characterization of Fetal Adnexa Derived Caprine Mesenchymal Stem Cells

    PubMed Central

    Somal, Anjali; Bhat, Irfan A.; B., Indu; Pandey, Sriti; Panda, Bibhudatta S. K.; Thakur, Nipuna; Sarkar, Mihir; Chandra, Vikash; Saikumar, G.; Sharma, G. Taru

    2016-01-01

    The present study was conducted with an objective of isolation, in vitro expansion, growth kinetics, molecular characterization and in vitro differentiation of fetal adnexa derived caprine mesenchymal stem cells. Mid-gestation gravid caprine uteri (2–3 months) were collected from abattoir to derive mesenchymal stem cells (MSCs) from fetal adnexa {amniotic fluid (cAF), amniotic sac (cAS), Wharton’s jelly (cWJ) and cord blood (cCB)} and expanded in vitro. These cultured MSCs were used at the 3rd passage (P3) to study growth kinetics, localization as well as molecular expression of specific surface antigens, pluripotency markers and mesenchymal tri-lineage differentiation. In comparison to cAF and cAS MSCs, cWJ and cCB MSCs showed significantly (P<0.05) higher clonogenic potency, faster growth rate and low population doubling (PDT) time. All the four types of MSCs were positive for alkaline phosphatase (AP) and differentiated into chondrogenic, osteogenic, and adipogenic lineages. These stem cells expressed MSC surface antigens (CD73, CD90 and CD105) and pluripotency markers (Oct4, Sox2, Nanog, KLF, cMyc, FoxD3) but did not express CD34, a hematopoietic stem cell marker (HSC) as confirmed by RT-PCR, immunocytochemistry and flow cytometric analysis. The relative mRNA expression of MSC surface antigens (CD73, CD90 and CD105) was significantly (P<0.05) higher in cWJ MSCs compared to the other cell lines. The mRNA expression of Oct4 was significantly (P<0.05) higher in cWJ, whereas mRNA expression of KLF and cMyc was significantly (P<0.05) higher in cWJ and cAF than that of cAS and cCB. The comparative assessment revealed that cWJ MSCs outperformed MSCs from other sources of fetal adnexa in terms of growth kinetics, relative mRNA expression of surface antigens, pluripotency markers and tri-lineage differentiation potential, hence, these MSCs could be used as a preferred source for regenerative medicine. PMID:27257959

  1. Bridging nigrostriatal pathway with fibroblast growth factor-primed peripheral nerves and fetal ventral mesencephalon transplant recuperates from deficits in parkinsonian rats.

    PubMed

    Chiang, Yung-Hsiao; Lin, Shinn-Zong; Zhou, Feng C

    2006-01-01

    Previous studies have indicated that the nigrostriatal dopaminergic (DA) pathway can be reconstructed in hemiparkinsonian rats with a bridge transplantation technique involving fetal ventral mesencephalic transplants and glial cell line-derived neurotrophic factor. In this study, we examined if the nigrostriatal pathway can be restored by combining peripheral nervous tissue with the fetal ventral mesencephalon transplants. Adult rats were injected with 6-hydroxydopamine into left median forebrain bundle. Those with marked rotational behavior, which has been previously shown to indicate complete DA dennervtion, were used for transplant treatments. One month after the lesion, fetal ventral mesencephalic cells were transplanted into the nigral region followed by nigral-striatal grafting of peripheral nerves as a bridge. The bridging nerves (sciatic or intercostals) were pretreated with basic fibrous growth factor (nerve+bFGF+) or Hank's saline (nerve+bFGF-). We found that (a) animals receiving transplants of VM and bFGF+ nerve had a reduction in rotational behavior; (b) animals receiving bFGF-- nerve bridge only had a partial improvement in rotation. Reinnervation of tyrosine hydroxylase (TH)-immunoreactive (ir) fibers into the striatum was found in both of the above groups with more innervation in the former than in the latter. No TH-ir fibers in lesioned striatum or reduction in rotational behavior were found in animals receiving VM only, or VM plus bFGF. Taken together, our data indicate that peripheral nerve, with the aid of bFGF, greatly facilitates the reconstitution of the TH pathway from nigra to striatum and improves motor function in hemiparkinsonian rats. PMID:17121158

  2. Phasic temperature change patterns affect growth and tuberization in potatoes

    SciTech Connect

    Cao, W.; Tibbitts, T.W. . Dept. of Horticulture)

    1994-07-01

    This study determined the response of potato (Solanum tuberosum L., cv. Norland) plants to various patterns of air temperature changes over different growth periods. In each of two experiments under controlled environments, eight treatments of temperature changes were carried out in two growth rooms maintained at 17 and 22 C and a constant vapor pressure deficit of 0.60 kPa and 14-hour photoperiod. Plants were grown for 63 days after transplanting of tissue culture plantlets in 20-liter pots containing peat-vermiculite mix. Temperature changes were imposed on days 21 and 42, which were essentially at the beginning of tuber initiation and tuber enlargement, respectively, for this cultivar. Plants were moved between two temperature rooms to obtain eight temperature change patterns: 17-17-17, 17-17-22, 17-22-17, 22-17-17, 17-22-22, 22-17-22, 22-22-17, and 22-22-22C over three 21-day growth periods. At harvest on day 63, total plant dry weight was higher for the treatments beginning with 22 C than for those beginning with 17C, with highest biomass obtained at 22-22-17 and 22-17-17C. Shoot dry weight increased with temperature increased from 17-17-17 to 22-22-22C during the three growth periods. Tuber dry weight was highest with 22-17-17C, and lowest with 17-17-22 and 17-22-22C. With 22-17-17C, both dry weights of stolons and roots were lowest. Total tuber number and number of small tubers were highest with 17-17-17 and 17-17-22C, and lowest with 17-22-22 and 22-22-22C, whereas number of medium tubers was highest with 22-17-22C, and number of large tubers was highest with 22-17-17C. This study indicates that tuber development of potatoes is optimized with a phasic pattern of high temperature during early growth and low temperature during later growth.

  3. Fetal radiofrequency radiation exposure from 800-1900 mhz-rated cellular telephones affects neurodevelopment and behavior in mice.

    PubMed

    Aldad, Tamir S; Gan, Geliang; Gao, Xiao-Bing; Taylor, Hugh S

    2012-01-01

    Neurobehavioral disorders are increasingly prevalent in children, however their etiology is not well understood. An association between prenatal cellular telephone use and hyperactivity in children has been postulated, yet the direct effects of radiofrequency radiation exposure on neurodevelopment remain unknown. Here we used a mouse model to demonstrate that in-utero radiofrequency exposure from cellular telephones does affect adult behavior. Mice exposed in-utero were hyperactive and had impaired memory as determined using the object recognition, light/dark box and step-down assays. Whole cell patch clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) revealed that these behavioral changes were due to altered neuronal developmental programming. Exposed mice had dose-responsive impaired glutamatergic synaptic transmission onto layer V pyramidal neurons of the prefrontal cortex. We present the first experimental evidence of neuropathology due to in-utero cellular telephone radiation. Further experiments are needed in humans or non-human primates to determine the risk of exposure during pregnancy. PMID:22428084

  4. Development of the human fetal testis.

    PubMed

    O'Shaughnessy, Peter J; Fowler, Paul A

    2014-05-01

    Masculinisation and adult fertility in the male are dependent on appropriate fetal endocrine programming. There is also now increasing evidence to indicate that the same mechanisms which regulate masculinisation also affect the general wellbeing of males throughout their life and, particularly, during ageing. Testosterone, secreted by the fetal testes, is the main factor regulating these processes and an understanding of fetal testis development in the human male is essential if we are to prevent adult reproductive disorders. This review focuses on what is known about human testis development and describes the effects of maternal smoking, a surrogate of possible xenotoxicant exposure on fetal testis and fetal liver function. PMID:24746112

  5. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  6. Growth in body size affects rotational performance in women's gymnastics.

    PubMed

    Ackland, Timothy; Elliott, Bruce; Richards, Joanne

    2003-07-01

    National and state representative female gymnasts (n = 37), aged initially between 10 and 12 years, completed a mixed longitudinal study over 3.3 years, to investigate the effect of body size on gymnastic performance. Subjects were tested at four-monthly intervals on a battery of measures including structural growth, strength and gymnastic performance. The group were divided into 'high growers' and 'low growers' based on height (> 18 cm or < 14 cm/37 months, respectively) and body mass (> 15 kg or < 12 kg/37 months, respectively) for comparative purposes. Development of gymnastic performance was assessed through generic skills (front and back rotations, a twisting jump and a V-sit action) and a vertical jump for maximum height. The results show that the smaller gymnast, with a high strength to mass ratio, has greater potential for performing skills involving whole-body rotations. Larger gymnasts, while able to produce more power and greater angular momentum, could not match the performance of the smaller ones. The magnitude of growth experienced by the gymnast over this period has a varying effect on performance. While some activities were greatly influenced by rapid increases in whole-body moment of inertia (e.g. back rotation), performance on others like the front rotation and vertical jump, appeared partly immune to the physical and mechanical changes associated with growth. PMID:14737925

  7. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-06-16

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analyzed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest. PMID:27043383

  8. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-05-01

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analysed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest. PMID:26918325

  9. Gestational dexamethasone alters fetal neuroendocrine axis.

    PubMed

    Ahmed, R G

    2016-09-01

    This study tested whether the maternal transport of dexamethasone (DEXA) may affect the development of the neuroendocrine system. DEXA (0.2mg/kg b.w., subcutaneous injection) was administered to pregnant rats from gestation day (GD) 1-20. In the DEXA-treated group, a decrease in maternal serum thyroxine (T4), triiodothyronine (T3), and increase in thyrotropin (TSH) levels (hypothyroid status) were observed at GDs 15 & 20 with respect to control group. The reverse pattern (hyperthyroid status) was observed in their fetuses at embryonic days (EDs) 15 & 20. Although the maternal body weight was diminished, the weight of the thyroid gland was increased at studied GDs as compared to the control group. The fetal growth retardation, hyperleptinemia, hyperinsulinism, and cytokines distortions (transforming growth factor-beta; TGF-β, tumor necrosis factor-alpha; TNF-α, and interferon-γ; IFN-γ) were noticed at examined EDs if compared to the control group. Alternatively, the maternofetal thyroid dysfunctions due to the maternal DEXA administration attenuated the levels of fetal cerebral norepinephrine (NE) and epinephrine (E), and elevated the levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) at considered days. These alterations were age-dependent and might damage the nerve transmission. Finally, maternal DEXA might act as neuroendocrine disruptor causing dyshormonogenesis and fetal cerebral dysfunction. PMID:27220267

  10. Effect of exposure to selective serotonin reuptake inhibitors in utero on fetal growth: potential role for the IGF-I and HPA axes.

    PubMed

    Davidson, Shmuel; Prokonov, Diana; Taler, Michal; Maayan, Rachel; Harell, Daniella; Gil-Ad, Irit; Weizman, Abraham

    2009-02-01

    To investigate the possible effect of fetal exposure to selective serotonin reuptake inhibitors (SSRIs) on somatic growth and on hormones of the hypothalamic-pituitary-adrenal (HPA) and insulin-like growth factor (IGF)-I axes, we compared the anthropometric parameters and hormonal profile of 21 SSRI-exposed infants and 20 matched controls. The SSRI group was characterized by lower crown-heel length (p < 0.01), smaller head circumference (p = 0.08), and higher percentage of infants with birth weight, birth length, and head circumference below the 10th percentile (p < 0.045, p = 0.08, p < 0.04, respectively), in addition to a significantly lower cord blood level of cortisol (p < 0.03) and higher level of thyroid-stimulating hormone (TSH) (p < 0.004). Infants exposed to citalopram had a lower cord blood IGF-I level than infants exposed to paroxetine (p < 0.001) and controls (p < 0.003). Placental IGF-I receptor (IGF-IR) expression was significantly higher in the SSRI group than in controls (p < 0.01). Urine 5-hydroxyindoleacetic acid (5-HIAA) level was negatively correlated with birth weight (r = -0.71, p < 0.025) and with dehydroepiandrosterone (DHEA) level (r = -0.71, p < 0.025). The Finnegan score was correlated with dehydroepiandrosterone sulfate (DHEAS) (r = 0.8, p < 0.005) and cortisol (r = 0.62, p = 0.05). Fetal exposure to SSRIs causes impaired intrauterine growth accompanied by alterations in the IGF-I and HPA axes. The findings may raise concern regarding maternal use of SSRIs during pregnancy. PMID:19262294

  11. Organ weight/bodyweight ratios: growth rates of fetal organs in the latter half of pregnancy with a simple method for calculating mean organ weights.

    PubMed

    Mitropoulos, G; Scurry, J; Cussen, L

    1992-06-01

    Ratios for major organ weights compared with bodyweights of 1023 stillborn and liveborn babies who lived less than 72 h are presented. The ratios were calculated for 2 week increments of gestational age from 20 to 43 weeks and clearly depict the relative growth of fetal organs during the last half of pregnancy. The ratios for heart and for kidneys were virtually constant for the whole period of gestation examined. The ratios for thymus and spleen increased between 20 and 30 weeks gestation and then became constant, although the ratio for the spleen dropped slightly during the last 6 weeks. The ratios for liver, lungs and adrenals decreased between 20 and 30 weeks gestation, and then steadied. The ratio for brain declined very slowly throughout the period examined. An observation of practical importance was that all organ weight/bodyweight ratios were virtually constant after 30 weeks gestation. Approximate mean organ weight/bodyweight ratios between 30 and 43 weeks gestation were: heart 0.007, lungs 0.02, spleen 0.003, liver 0.04, kidneys 0.01, adrenals 0.003, thymus 0.004 and brain 0.13. By multiplying the mean ratio by the total bodyweight, the approximate mean weight for a particular fetal organ can be calculated in situations where charts of normal organ weights are not at hand. PMID:1605975

  12. Maternal and fetal origins of lung disease in adulthood.

    PubMed

    Harding, Richard; Maritz, Gert

    2012-04-01

    This review focuses on genetic and environmental influences that result in long term alterations in lung structure and function. Environmental factors operating during fetal and early postnatal life can have persistent effects on lung development and so influence lung function and respiratory health throughout life. Common factors affecting the quality of the intrauterine environment that can alter lung development include fetal nutrient and oxygen availability leading to intrauterine growth restriction, fetal intrathoracic space, intrauterine infection or inflammation, maternal tobacco smoking and other drug exposures. Similarly, factors that operate during early postnatal life, such as mechanical ventilation and high FiO(2) in the case of preterm birth, undernutrition, exposure to tobacco smoke and respiratory infections, can all lead to persistent alterations in lung structure and function. Greater awareness of the many prenatal and early postnatal factors that can alter lung development will help to improve lung development and hence respiratory health throughout life. PMID:22277111

  13. Mexican propolis flavonoids affect photosynthesis and seedling growth.

    PubMed

    King-Díaz, Beatriz; Granados-Pineda, Jessica; Bah, Mustapha; Rivero-Cruz, J Fausto; Lotina-Hennsen, Blas

    2015-10-01

    As a continuous effort to find new natural products with potential herbicide activity, flavonoids acacetin (1), chrysin (2) and 4',7-dimethylnarangenin (3) were isolated from a propolis sample collected in the rural area of Mexico City and their effects on the photosynthesis light reactions and on the growth of Lolium perenne, Echinochloa crus-galli and Physalis ixocarpa seedlings were investigated. Acacetin (1) acted as an uncoupler by enhancing the electron transport under basal and phosphorylating conditions and the Mg(2+)-ATPase. Chrysin (2) at low concentrations behaved as an uncoupler and at concentrations up to 100 μM its behavior was as a Hill reaction inhibitor. Finally, 4',7-dimethylnarangenin (3) in a concentration-dependent manner behaved as a Hill reaction inhibitor. Flavonoids 2 and 3 inhibited the uncoupled photosystem II reaction measured from water to 2,5-dichloro-1,4-benzoquinone (DCBQ), and they did not inhibit the uncoupled partial reactions measured from water to sodium silicomolybdate (SiMo) and from diphenylcarbazide (DPC) to diclorophenol indophenol (DCPIP). These results indicated that chrysin and 4',7-dimethylnarangenin inhibited the acceptor side of PS II. The results were corroborated with fluorescence of chlorophyll a measurements. Flavonoids also showed activity on the growth of seedlings of Lolium perenne and Echinochloa crus-galli. PMID:26318278

  14. Fetal MRI: A pictorial essay

    PubMed Central

    Rathee, Sapna; Joshi, Priscilla; Kelkar, Abhimanyu; Seth, Nagesh

    2016-01-01

    Ultrasonography (USG) is the primary method for antenatal fetal evaluation. However, fetal magnetic resonance imaging (MRI) has now become a valuable adjunct to USG in confirming/excluding suspected abnormalities and in the detection of additional abnormalities, thus changing the outcome of pregnancy and optimizing perinatal management. With the development of ultrafast sequences, fetal MRI has made remarkable progress in recent times. In this pictorial essay, we illustrate a spectrum of structural abnormalities affecting the central nervous system, thorax, genitourinary and gastrointestinal tract, as well as miscellaneous anomalies. Anomalies in twin gestations and placental abnormalities have also been included. PMID:27081224

  15. Formaldehyde exposure affects growth and metabolism of common bean

    SciTech Connect

    Mutters, R.G.; Madore, M. ); Bytnerowicz, A. )

    1993-01-01

    Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design and build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.

  16. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    SciTech Connect

    Haghighi Poodeh, Saeid; Alhonen, Leena; Salonurmi, Tuire; Savolainen, Markku J.

    2014-03-28

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  17. Bovine Viral Diarrhea Virus: Prevention of Persistent Fetal Infection by a Combination of Two Mutations Affecting Erns RNase and Npro Protease▿

    PubMed Central

    Meyers, Gregor; Ege, Andreas; Fetzer, Christiane; von Freyburg, Martina; Elbers, Knut; Carr, Veronica; Prentice, Helen; Charleston, Bryan; Schürmann, Eva-Maria

    2007-01-01

    Different genetically engineered mutants of bovine viral diarrhea virus (BVDV) were analyzed for the ability to establish infection in the fetuses of pregnant heifers. The virus mutants exhibited either a deletion of the overwhelming part of the genomic region coding for the N-terminal protease Npro, a deletion of codon 349, which abrogates the RNase activity of the structural glycoprotein Erns, or a combination of both mutations. Two months after infection of pregnant cattle with wild-type virus or either of the single mutants, the majority of the fetuses contained virus or were aborted or found dead in the uterus. In contrast, the double mutant was not recovered from fetal tissues after a similar challenge, and no dead fetuses were found. This result was verified with a nonrelated BVDV containing similar mutations. After intrauterine challenge with wild-type virus, mutated viruses, and cytopathogenic BVDV, all viruses could be detected in fetal tissue after 5, 7, and 14 days. Type 1 interferon (IFN) could be detected in fetal serum after challenge, except with wild-type noncytopathogenic BVDV. On days 7 and 14 after challenge, the largest quantities of IFN in fetal serum were induced by the Npro and RNase-negative double mutant virus. The longer duration of fetal infection with the double mutant resulted in abortion. Therefore, for the first time, we have demonstrated the essential role of both Npro and Erns RNase in blocking interferon induction and establishing persistent infection by a pestivirus in the natural host. PMID:17215285

  18. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  19. Physiologic assessment of fetal compromise: biomarkers of toxic exposure

    SciTech Connect

    Longo, L.D.

    1987-10-01

    Understanding the physiologic and endocrinologic basis of fetal development is a major goal of perinatal biology. During the past decade a number of technological developments have allowed more precise evaluation of the fetus in utero and diagnosis of abnormalities. Despite these methodological achievements, however, there are no specific biological markers currently available to indicate that exposure to a given xenobiotic is associated with a cellular, subcellular, or pharmacodynamic event. This paper evaluates the following issues: what are some of the unique physiologic and endocrinologic features of the fetal milieu interieur. What problems are peculiar to fetal assessment. What are some examples of validated biomarkers and their applicability. What promising biomarkers are on the horizon. How may molecular probes be of value as biological markers of fetal compromise. What are some of the major research gaps and needs, and how should research priorities be set. Some of these topics are addressed. Moreover, the more general role(s) that various diagnostic methods and biological markers can have in an understanding of the regulation of fetal growth and differentiation and the role of xenobiotics in affecting the normal course of events are discussed.

  20. Alteration of proteoglycan sulfation affects bone growth and remodeling

    PubMed Central

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-01-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis. PMID:23369989

  1. Climatic conditions, twining and frequency of milking as factors affecting the risk of fetal losses in high-yielding Holstein cows in a hot environment.

    PubMed

    Mellado, Miguel; López, Ricardo; de Santiago, Ángeles; Veliz, Francisco G; Macías-Cruz, Ulises; Avendaño-Reyes, Leonel; García, José Eduardo

    2016-08-01

    An epidemiological study of risk factors for fetal losses was carried out on 62,403 high-yielding Holstein cows in 29 large highly technified dairy herds in northern Mexico (25° N; 23.5 °C mean annual temperature). Multivariate multiple-group response model indicated that fetal losses between 43 and 260 days of pregnancy were 23 %. Heat-stressed cows at conception (temperature-humidity index, THI >82) were 14 times more likely (P < 0.01) to present fetal losses than not heat-stressed cows (27 vs. 18 %). Heat-stressed cows at 60 days of pregnancy (THI >82) were 4.5 times more likely (P < 0.01) to present fetal losses than cows suffering heat stress in early gestation (29.1 vs. 17.7 %). The proportion of cows experiencing fetal loss was lower for multiparous than primiparous cows (odds ratio; OR = 0.7). Cows with twin pregnancies had significantly increased chances of losing their fetuses than cows with a single fetus (33.6 vs. 20.7 %; P < 0.01). Cows with three milkings per day were 30 % more likely (P < 0.01) to lose their fetuses than cows milked twice daily. Cows calving in winter and spring had significantly increased chances of losing their fetuses than cows calving in summer and fall (30-35 vs. 4-5 %; P < 0.01). It was concluded that, in this particular environment, heat stress exert a great influence on fetal losses in high producing Holstein cows. PMID:27225752

  2. Fetal Programming and Cardiovascular Pathology

    PubMed Central

    Alexander, Barbara T.; Dasinger, John Henry; Intapad, Suttira

    2016-01-01

    Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology. PMID:25880521

  3. Fetal electrocardiograph

    NASA Astrophysics Data System (ADS)

    Rios, Heriberto; Andrade, Armando; Puente, Ernestina; Lizana, Pablo R.; Mendoza, Diego

    2002-11-01

    The high intra-uterine death rate is due to failure in appropriately diagnosing some problems in the cardiobreathing system of the fetus during pregnancy. The electrocardiograph is one apparatus which might detect problems at an early stage. With electrodes located near the womb and uterus, in a way similar to the normal technique, the detection of so-called biopotential differences, caused by concentrations of ions, can be achieved. The fetal electrocardiograph is based on an ultrasound technique aimed at detecting intrauterine problems in pregnant women, because it is a noninvasive technique due to the very low level of ultrasound power used. With this system, the following tests can be done: Heart movements from the ninth week onwards; Rapid and safe diagnosis of intrauterine fetal death; Location and size of the placenta. The construction of the fetal electrocardiograph requires instrument level components directly mounted on the printed circuit board, in order to avoid stray capacitance in the cabling which prevents the detection of the E.C.G. activity. The low cost of the system makes it affordable to low budget institutions; in contrast, available commercial systems are priced in U.S. Dollars. (To be presented in Spanish.)

  4. Complete Biallelic Insulation at the H19/Igf2 Imprinting Control Region Position Results in Fetal Growth Retardation and Perinatal Lethality

    PubMed Central

    Lee, Dong-Hoon; Singh, Purnima; Tsark, Walter M. K.; Szabó, Piroska E.

    2010-01-01

    Background The H19/Igf2 imprinting control region (ICR) functions as an insulator exclusively in the unmethylated maternal allele, where enhancer-blocking by CTCF protein prevents the interaction between the Igf2 promoter and the distant enhancers. DNA methylation inhibits CTCF binding in the paternal ICR allele. Two copies of the chicken β-globin insulator (ChβGI)2 are capable of substituting for the enhancer blocking function of the ICR. Insulation, however, now also occurs upon paternal inheritance, because unlike the H19 ICR, the (ChβGI)2 does not become methylated in fetal male germ cells. The (ChβGI)2 is a composite insulator, exhibiting enhancer blocking by CTCF and chromatin barrier functions by USF1 and VEZF1. We asked the question whether these barrier proteins protected the (ChβGI)2 sequences from methylation in the male germ line. Methodology/Principal Findings We genetically dissected the ChβGI in the mouse by deleting the binding sites USF1 and VEZF1. The methylation of the mutant versus normal (ChβGI)2 significantly increased from 11% to 32% in perinatal male germ cells, suggesting that the barrier proteins did have a role in protecting the (ChβGI)2 from methylation in the male germ line. Contrary to the H19 ICR, however, the mutant (mChβGI)2 lacked the potential to attain full de novo methylation in the germ line and to maintain methylation in the paternal allele in the soma, where it consequently functioned as a biallelic insulator. Unexpectedly, a stricter enhancer blocking was achieved by CTCF alone than by a combination of the CTCF, USF1 and VEZF1 sites, illustrated by undetectable Igf2 expression upon paternal transmission. Conclusions/Significance In this in vivo model, hypomethylation at the ICR position together with fetal growth retardation mimicked the human Silver-Russell syndrome. Importantly, late fetal/perinatal death occurred arguing that strict biallelic insulation at the H19/Igf2 ICR position is not tolerated in development

  5. Fetal Alcohol Syndrome

    MedlinePlus

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Fetal Alcohol Syndrome Read in Chinese What is Fetal Alcohol Syndrome (FAS)? Fetal Alcohol Syndrome (FAS) describes changes in ...

  6. Intrapartum fetal resuscitation.

    PubMed

    Cowan, D B

    1980-08-30

    Fetal distress is defined. The pathophysiology of fetal distress is discussed and tretment is recommended. The principles of intrapartum fetal resuscitation are proposed, with particular reference to the inhibition of uterine activity. PMID:7404260

  7. Sonography in Fetal Birth Weight Estimation

    ERIC Educational Resources Information Center

    Akinola, R. A.; Akinola, O. I.; Oyekan, O. O.

    2009-01-01

    The estimation of fetal birth weight is an important factor in the management of high risk pregnancies. The information and knowledge gained through this study, comparing a combination of various fetal parameters using computer assisted analysis, will help the obstetrician to screen the high risk pregnancies, monitor the growth and development,…

  8. Parathyroid hormone blocks the stimulatory effect of insulin-like growth factor-I on collagen synthesis in cultured 21-day fetal rat calvariae

    SciTech Connect

    Kream, B.E.; Petersen, D.N.; Raisz, L.G. )

    1990-01-01

    We examined the interaction of parathyroid hormone (PTH) and recombinant human insulin-like growth factor I (IGF-I) on collagen synthesis in 21-day fetal rat calvariae as assessed by measuring the incorporation of ({sup 3}H)proline into collagenase-digestible protein. After 96 hours of culture, 10 nM PTH antagonized the stimulation of collagen synthesis and partially blocked the increase in dry weight produced by 10 nM IGF-I. The effect of PTH to block IGF-I stimulated collagen synthesis was observed in the central bone of calvariae and was mimicked by forskolin and phorbol 12-myristate 13-acetate, but not by 1,25-dihydroxyvitamin D3, transforming growth factor-alpha or dexamethasone. Our data are consistent with the concept that the direct effect of PTH is to inhibit basal CDP labeling and fully oppose IGF-I stimulated CDP labeling. The finding that this effect of PTH is mimicked by forskolin and PMA suggests that this block in IGF-I stimulation of CDP labeling involves both cAMP and protein kinase C mediated pathways.

  9. Paracrine Factors of Human Fetal MSCs Inhibit Liver Cancer Growth Through Reduced Activation of IGF-1R/PI3K/Akt Signaling

    PubMed Central

    Yulyana, Yulyana; Ho, Ivy A W; Sia, Kian Chuan; Newman, Jennifer P; Toh, Xin Yi; Endaya, Berwini B; Chan, Jerry K Y; Gnecchi, Massimiliano; Huynh, Hung; Chung, Alexander Y F; Lim, Kiat Hon; Leong, Hui Sun; Iyer, Narayanan Gopalakrishna; Hui, Kam Man; Lam, Paula Y P

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world. The multikinase inhibitor sorafenib only demonstrated marginal improvement in overall survival for advanced disease prompted the search for alternative treatment options. Human mesenchymal stem cells (MSCs) have the ability to home to tumor cells. However, its functional roles on the tumor microenvironment remain controversial. Herein, we showed that conditioned media derived from human fetal MSC (CM-hfMSCs) expressed high level of the insulin growth factor binding proteins IGFBPs and can sequester free insulin-like growth factors (IGFs) to inhibit HCC cell proliferation. The inhibitory effect of IGFBPs on IGF signaling was further evident from the reduction of activated IGF-1R and PI3K/Akt, leading eventually to the induction of cell cycle arrest. We also demonstrated that CM-hfMSCs could enhance the therapeutic efficacy of sorafenib and sunitinib. To the best of our knowledge, this is the first report to show that CM-hfMSCs has a tumor-specific, antiproliferative effect that is not observed with normal human hepatocyte cells and patient-derived matched normal tissues. Our results thus suggest that CM-hfMSCs can provide a useful tool to design alternative/adjuvant treatment strategies for HCC, especially in related function to potentiate the effects of chemotherapeutic drugs. PMID:25619723

  10. Fetal movements as a predictor of health.

    PubMed

    Lai, Jonathan; Nowlan, Niamh C; Vaidyanathan, Ravi; Shaw, Caroline J; Lees, Christoph C

    2016-09-01

    The key determinant to a fetus maintaining its health is through adequate perfusion and oxygen transfer mediated by the functioning placenta. When this equilibrium is distorted, a number of physiological changes, including reduced fetal growth, occur to favor survival. Technologies have been developed to monitor these changes with a view to prolong intrauterine maturity while reducing the risks of stillbirth. Many of these strategies involve complex interpretation, for example Doppler ultrasound for fetal blood flow and computerized analysis of fetal heart rate changes. However, even with these modalities of fetal assessment to determine the optimal timing of delivery, fetal movements remain integral to clinical decision-making. In high-risk cohorts with fetal growth restriction, the manifestation of a reduction in perceived movements may warrant an expedited delivery. Despite this, there has been little evolution in the development of technologies to objectively evaluate fetal movement behavior for clinical application. This review explores the available literature on the value of fetal movement analysis as a method of assessing fetal wellbeing, and demonstrates how interdisciplinary developments in this area may aid in the improvement of clinical outcomes. PMID:27374723

  11. Fetal alloimmune thrombocytopenia and maternal intravenous immunoglobulin infusion

    PubMed Central

    Giers, Günther; Wenzel, Folker; Stockschläder, Markus; Riethmacher, Regina; Lorenz, Horst; Tutschek, Boris

    2010-01-01

    Background Different therapeutic approaches have been used in fetal-neonatal alloimmune thrombocytopenia, but many centers administer immunoglobulin G infusions to the pregnant woman. We studied the effect of maternal antenatal immunoglobulin infusions on fetal platelet counts in pregnancies with fetal alloimmune thrombocytopenia. Design and Methods We retrospectively analyzed the clinical courses of fetuses with fetal alloimmune thrombocytopenia whose mothers were treated with immunoglobulin G infusions in a single center between 1999 and 2005. In a center-specific protocol, weekly maternal immunoglobulin G infusions were given to 25 pregnant women with previously affected neonates and four women with strong platelet antibodies, but no previous history of fetal alloimmune thrombocytopenia; before each infusion diagnostic fetal blood sampling was performed to determine fetal platelet counts and immunoglobulin G levels. Results There were 30 fetuses with fetal alloimmune thrombocytopenia, confirmed by initial fetal blood sampling showing fetal platelet counts between 4×109/L and 130×109/L and antibody-coated fetal platelets using a glycoprotein specific assay. Despite weekly antenatal maternal immunoglobulin G infusions fetal platelet counts did not change significantly. Maternal and fetal immunoglobulin G levels, measured before every infusion, increased significantly with the number of maternal immunoglobulin G infusions. Conclusions In this group of fetuses with fetal alloimmune thrombocytopenia no consistent increase of fetal platelets was achieved as a result of regular maternal immunoglobulin G infusions. PMID:20534698

  12. Increased sow nutrition during midgestation affects muscle fiber development and meat quality, with no consequences on growth performance.

    PubMed

    Cerisuelo, A; Baucells, M D; Gasa, J; Coma, J; Carrión, D; Chapinal, N; Sala, R

    2009-02-01

    Pregnant sow nutrition has potential effects on the muscle fiber development of progeny in utero. A total of 199 Landrace x Large White sows from parities 0 to 6 and their offspring were used to evaluate the effects of increasing the feeding amount during midpregnancy on the muscle tissue, growth performance, and meat quality of the progeny. The experiment was divided into 2 study replicates, and in each replicate, sows were assigned to 1 of the 2 treatments: 1) sows in the control group (C sows) were fed 2.5 to 3.0 kg/d (feed: 12.1 MJ of ME/kg and 0.62% lysine) throughout gestation; and 2) sows in the high group (H sows) received an extra feed allowance of 1.5 kg/d for gilts and 2.0 kg/d for multiparous sows above the C amount from d 45 to 85 of gestation (period of secondary muscle fiber formation). Sow backfat was recorded on d 40 and 85 of gestation. Sow performance (litter size and piglet BW) at farrowing and on d 18 of lactation was measured. At weaning, pigs were divided into 5 BW groups/treatment, and progeny growth performance was measured during the nursery (n = 958) and the growing-finishing (n = 636) periods. At slaughter, carcass and meat quality traits (lean content, main cut weight, pH, Minolta color, and drip loss) were recorded from the second lightest group at weaning (BW group 4; n = 90), and samples from the longissimus thoracis muscle were taken to study muscle fiber characteristics (n = 70). The extra nutrition from d 45 to 85 of gestation did not lead to differences in litter size or piglet BW at farrowing and on d 18 of lactation. Pigs born to H mothers had fewer muscle fibers and fewer estimated primary and secondary fibers than did pigs born to C mothers (P < 0.05). However, postnatal growth performance was not consistently affected by the maternal treatment. The smaller number of muscle fibers found in the H group of pigs was associated with fewer type IIB fibers (P < 0.05) with greater cross-sectional areas (P < 0.10), which might be

  13. [The value of current echographic parameters in fetal biometry].

    PubMed

    Sussmann, M; Curie, P; Dreyfus, M; Renaud, R

    1985-05-01

    A review of current literature concerning developments of new parameters in fetal biometry is presented. To be sure, these parameters are very useful for detection of fetal malformations but outside of femoral length they do not contribute more valuable information than the already accepted parameters for determination of gestational age or detection of disorders of fetal growth. PMID:3895364

  14. Maternal-fetal deprivation and the cardiometabolic syndrome.

    PubMed

    Bursztyn, Michael; Ariel, Ilana

    2006-01-01

    Epidemiologic studies suggest a relationship between low birth weight and adverse cardiovascular outcomes. Risk factors such as obesity, insulin resistance, diabetes mellitus, and hypertension--the cardiometabolic syndrome--are similarly affected. These observations are now supported by numerous animal studies. The mechanisms linking low birth weight and the cardiometabolic syndrome later in life appear to be multifactorial and involve alterations in the normal cellular and physiologic systems associated with growth in an unfavorable environment. Such "fetal programming," an adaptation to a shortage of nutrients, may bring about maladaptation upon postnatal exposure to an abundance of nutrients. This review briefly summarizes the adaptive responses in various models used to induce an intrauterine growth restriction, and discusses insights into the mechanisms mediating the fetal programming of the cardiometabolic syndrome. PMID:17679825

  15. Fetal syringomyelia.

    PubMed

    Guo, Anne; Chitayat, David; Blaser, Susan; Keating, Sarah; Shannon, Patrick

    2014-01-01

    We explored the prevalence of syringomyelia in a series of 113 cases of fetal dysraphism and hindbrain crowding, of gestational age ranging from 17.5 to 34 weeks with the vast majority less than 26 weeks gestational age. We found syringomyelia in 13 cases of Chiari II malformations, 5 cases of Omphalocele/Exostrophy/Imperforate anus/Spinal abnormality (OEIS), 2 cases of Meckel Gruber syndrome and in a single pair of pyopagus conjoined twins. Secondary injury was not uncommon, with vernicomyelia in Chiari malformations, infarct like histology, or old hemorrhage in 8 cases of syringomyelia. Vernicomyelia did not occur in the absence of syrinx formation. The syringes extended from the sites of dysraphism, in ascending or descending patterns. The syringes were usually in a major proportion anatomically distinct from a dilated or denuded central canal and tended to be dorsal and paramedian or median. We suggest that fetal syringomyelia in Chiari II malformation and other dysraphic states is often established prior to midgestation, has contributions from the primary malformation as well as from secondary in utero injury and is anatomically and pathophysiologically distinct from post natal syringomyelia secondary to hindbrain crowding. PMID:25092126

  16. Fetal nutrition

    PubMed Central

    Rosa, Franz W.; Turshen, Meredeth

    1970-01-01

    The extensive literature on nutrition in pregnancy is reviewed with special reference to international experience, including observations on nutritional trials in pregnancy, pregnancy during famines caused by war, and studies of birth-weight in relation to pregnancy interval, parity and multiple pregnancies. Recent research on the significance of fetal nutrition suggests that ”small-for-dates” infants, i.e., those that are developmentally retarded in utero, suffer long-term developmental sequelae. A high world-wide incidence of small-for-dates births was reported by the World Health Organization in 1960. Although a definite correlation has been found between socio-economic status and birth-weight, it is not known to what extent the smaller birth-weights observed in the lower socio-economic groups can be improved by specific nutritional measures. In addition to the general advice given on maternal nutrition and family-planning, further studies are needed to determine the precise means of achieving improvement in fetal nutrition and a better outcome of pregnancy. PMID:5314013

  17. Calf and disease factors affecting growth in female Holstein calves in Florida, USA.

    PubMed

    Donovan, G A; Dohoo, I R; Montgomery, D M; Bennett, F L

    1998-01-01

    A prospective cohort study was undertaken to determine calf-level factors that affect performance (growth) between birth and 14 months of age in a convenience sample of approximately 3300 female Holstein calves born in 1991 on two large Florida dairy farms. Data collected on each calf at birth included farm of origin, birth date, weight, height at the pelvis, and serum total protein (a measure of colostral immunoglobulin absorption). Birth season was dichotomized into summer and winter using meteorological data collected by University of Florida Agricultural Research Stations. Data collected at approximately 6 and 14 months of age included age, weight, height at the pelvis, and height at the withers. Growth in weight and stature (height) was calculated for each growth period; growth period 1 (GP1) = birth to 6 months, and growth period 2 (GP2) = 6 to 14 months. Health data collected included data of initial treatment and number of treatments for the diseases diarrhea, omphalitis, septicemia, pneumonia and keratoconjunctivitis. After adjusting for disease occurrence, passive transfer of colostral immunoglobulins had no significant effect on body weight gain or pelvic height growth. Season of birth and occurrence of diarrhea, septicemia and respiratory disease were significant variables decreasing heifer growth (height and weight) in GP1. These variables plus farm, birth weight and exact age when '6 month' data were collected explained 20% and 31% of the variation in body weight gain and pelvic height growth, respectively, in GP1. The number of days treated for pneumonia before 6 months of age significantly decreased average daily weight gain in GP2 (P < 0.025), but did not affect stature growth. Treatment for pneumonia after 6 months of age did not significantly affect weight or height gain after age 6 months. Neither omphalitis nor keratoconjunctivitis explained variability in growth in either of the growth periods. PMID:9500160

  18. Fetal and infant growth predict hip geometry at six years old: Findings from the Southampton Women’s Survey

    PubMed Central

    Harvey, Nicholas C; Cole, Zoe A; Crozier, Sarah R; Ntani, Georgia; Mahon, Pamela A; Robinson, Sian M; Inskip, Hazel M; Godfrey, Keith M; Dennison, Elaine M; Cooper, Cyrus

    2013-01-01

    Background We investigated relationships between early growth and proximal femoral geometry at age six years in a prospective population-based cohort, the Southampton Women’s Survey. Methods In 493 mother-offspring pairs we assessed linear size (individual measure dependent on developmental stage) using high-resolution ultrasound at 11, 19 and 34 weeks gestation (femur length) and at birth, 1, 2, 3, 4 and 6 years (crown-heel length/height). Standard deviation (SD)-scores were created and conditional regression modelling generated mutually independent growth variables. Children underwent hip DXA (Dual X-ray absorptiometry) at 6 years (Hologic Discovery, Hologic Inc., MA); hip structure analysis software yielded measures of geometry and strength. Results There were strong associations between early linear growth and femoral neck section modulus (Z) at 6 years, with the strongest relationships observed for femur growth from 19-34 weeks gestation (β=0.26 cm3/SD, p<0.0001), and for height growth from birth to 1 year (β=0.25 cm3/SD, p<0.0001) and 1-2 years (β=0.33 cm3/SD, p<0.0001), with progressively weaker relationships over years 3 (β=0.23 cm3/SD, p=0.0002) and 4 (β=0.10 cm3/SD, p=0.18). Conclusions These results demonstrate that growth before age 3 years predicts proximal femoral geometry at six years old. The data suggest critical periods in which there is capacity for long term influence on the later skeletal growth trajectory. PMID:23857297

  19. Perinatal protein restriction affects milk free amino acid and fatty acid profile in lactating rats: potential role on pup growth and metabolic status.

    PubMed

    Martin Agnoux, Aurore; Antignac, Jean-Philippe; Boquien, Clair-Yves; David, Agnes; Desnots, Emmanuelle; Ferchaud-Roucher, Veronique; Darmaun, Dominique; Parnet, Patricia; Alexandre-Gouabau, Marie-Cécile

    2015-07-01

    Perinatal undernutrition affects not only fetal and neonatal growth but also adult health outcome, as suggested by the metabolic imprinting concept. Although maternal milk is the only channel through which nutrients are transferred from mother to offspring during the postnatal period, the impact of maternal undernutrition on milk composition is poorly understood. The present study investigates, in a rat model of nutritional programming, the effects of feeding an isocaloric, low-protein diet throughout gestation and lactation on milk composition and its possible consequences on offspring's growth and metabolic status. We used an integrated methodological approach that combined targeted analyses of macronutrients, free amino acid and fatty acid content throughout lactation, with an untargeted mass-spectrometric-based metabolomic phenotyping. Whereas perinatal dietary protein restriction failed to alter milk protein content, it dramatically decreased the concentration of most free amino acids at the end of lactation. Interestingly, a decrease of several amino acids involved in insulin secretion or gluconeogenesis was observed, suggesting that maternal protein restriction during the perinatal period may impact the insulinotrophic effect of milk, which may, in turn, account for the slower growth of the suckled male offspring. Besides, the decrease in sulfur amino acids may alter redox status in the offspring. Maternal undernutrition was also associated with an increase in milk total fatty acid content, with modifications in their pattern. Altogether, our results show that milk composition is clearly influenced by maternal diet and suggest that alterations in milk composition may play a role in offspring growth and metabolic programming. PMID:25935308

  20. Cryopreserved mouse fetal liver stromal cells treated with mitomycin C are able to support the growth of human embryonic stem cells.

    PubMed

    Zhang, Wei; Hu, Jiabo; Ma, Quanhui; Hu, Sanqiang; Wang, Yanyan; Wen, Xiangmei; Ma, Yongbin; Xu, Hong; Qian, Hui; Xu, Wenrong

    2014-09-01

    An immortalized mouse fetal liver stromal cell line, named KM3, has demonstrated the potential to support the growth and maintenance of human embryonic stem cells (hESCs). In this study, the characteristics of KM3 cells were examined following cryopreservation at -70°C and in liquid nitrogen for 15, 30 and 60 days following treatment with 10 μg/ml mitomycin C. In addition, whether the KM3 cells were suitable for use as feeder cells to support the growth of hESCs was evaluated. The inhibition of mitosis without cell death was observed when the KM3 cells were treated with 10 μg/ml mitomycin C for 2 h. The morphology of the KM3 cells cryopreserved in liquid nitrogen for 60 days was not markedly changed, and the cell survival rate was 84.60±1.14%. By contrast, the survival rate of the KM3 cells was 66.40±2.88% following cryopreservation at -70°C for 60 days; the cells readily detached, were maintained for a shorter time, and had a reduced expression level of basic fibroblast growth factor. hESCs cultured on KM3 cells cryopreserved in liquid nitrogen for 60 days showed the typical bird's nest structure, with clear boundaries and a differentiation rate of 16.33±2.08%. The differentiation rate of hESCs cultured on KM3 cells cryopreserved at -70°C for 60 days was 37.67±3.51%. These results indicate that the cryopreserved KM3 cells treated with mitomycin C may be directly used in the subculture of hESCs, and the effect is relatively good with -70°C short-term or liquid nitrogen cryopreservation. PMID:25120627

  1. Changes in fetal ovine metabolism and oxygen delivery with fetal bypass.

    PubMed

    Lam, Christopher T; Baker, R Scott; Clark, Kenneth E; Eghtesady, Pirooz

    2011-07-01

    Since the 1980s, attempts at experimental fetal cardiac bypass for the purpose of correcting severe congenital heart defects in the womb have been hampered by deterioration of placental function. This placental pathophysiology in turn affects transplacental transport of nutrients and gas exchange. To date, the effects of bypass on fetal metabolism and oxygen delivery have not been studied. Nine Suffolk sheep fetuses from 109-121 days gestation were instrumented and placed on fetal bypass for 30 min and followed postbypass for 2 h. Blood gases, glucose, and lactate were serially measured in the fetal arterial and umbilical venous circulations throughout the procedure. Insulin and glucagon levels were serially measured by immunoassay in fetal plasma. Fetal-placental hemodynamics were measured continuously. The expression of glycogen content was examined in fetal liver. Oxygen delivery to the fetus and fetal oxygen consumption were significantly deranged after the conduct of bypass (in-group ANOVA (P = 0.001) and overall contrast (P = 0.072) with planned contrast (P < 0.05) for delivery and consumption, respectively). There were significant alterations in fetal glucose metabolism in the postbypass period; however, insulin and glucagon levels did not change. Fetal liver glycogen content appeared lower after bypass. This is the first report documenting fetal metabolic dysregulation that occurs in response to the conduct of fetal bypass. The significant alterations in fetal oxygen and glucose delivery coupled with hepatic glycogen depletion complicate and impede fetal recovery. These initial findings warrant further investigation of interventions to restore metabolic and hemodynamic homeostasis after fetal bypass. PMID:21508289

  2. Placental insufficiency decreases pancreatic vascularity and disrupts hepatocyte growth factor signaling in the pancreatic islet endothelial cell in fetal sheep.

    PubMed

    Rozance, Paul J; Anderson, Miranda; Martinez, Marina; Fahy, Anna; Macko, Antoni R; Kailey, Jenai; Seedorf, Gregory J; Abman, Steven H; Hay, William W; Limesand, Sean W

    2015-02-01

    Hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and β-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and β-cell. Vessel density was less in IUGR pancreata than in controls. HGF concentrations were also lower in islet EC-conditioned media (ECCM) from IUGR, and islets incubated with control islet ECCM responded by increasing insulin content, which was absent with IUGR ECCM. The effect of ECCM on islet insulin content was blocked with an inhibitory anti-HGF antibody. The HGF receptor was not different between control and IUGR islets, but VEGFA was lower and the high-affinity VEGF receptor was higher in IUGR islets and ECs, respectively. These findings show that paracrine actions from ECs increase islet insulin content, and in IUGR ECs, secretion of HGF was diminished. Given the potential feed-forward regulation of β-cell VEGFA and islet EC HGF, these two growth factors are highly integrated in normal pancreatic islet development, and this regulation is decreased in IUGR fetuses, resulting in lower pancreatic islet insulin concentrations and insulin secretion. PMID:25249573

  3. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  4. Postnatal nutritional restriction affects growth and immune function of piglets with intra-uterine growth restriction.

    PubMed

    Hu, Liang; Liu, Yan; Yan, Chuan; Peng, Xie; Xu, Qin; Xuan, Yue; Han, Fei; Tian, Gang; Fang, Zhengfeng; Lin, Yan; Xu, Shengyu; Zhang, Keying; Chen, Daiwen; Wu, De; Che, Lianqiang

    2015-07-14

    Postnatal rapid growth by excess intake of nutrients has been associated with an increased susceptibility to diseases in neonates with intra-uterine growth restricted (IUGR). The aim of the present study was to determine whether postnatal nutritional restriction could improve intestinal development and immune function of neonates with IUGR using piglets as model. A total of twelve pairs of normal-birth weight (NBW) and IUGR piglets (7 d old) were randomly assigned to receive adequate nutrient intake or restricted nutrient intake (RNI) by artificially liquid feeding for a period of 21 d. Blood samples and intestinal tissues were collected at necropsy and were analysed for morphology, digestive enzyme activities, immune cells and expression of innate immunity-related genes. The results indicated that both IUGR and postnatal nutritional restriction delayed the growth rate during the sucking period. Irrespective of nutrient intake, piglets with IUGR had a significantly lower villous height and crypt depth in the ileum than the NBW piglets. Moreover, IUGR decreased alkaline phosphatase activity while enhanced lactase activity in the jejunum and mRNA expressions of Toll-like receptor 9 (TLR-9) and DNA methyltransferase 1 (DNMT1) in the ileum of piglets. Irrespective of body weight, RNI significantly decreased the number and/or percentage of peripheral leucocytes, lymphocytes and monocytes of piglets, whereas the percentage of neutrophils and the ratio of CD4+ to CD8+ were increased. Furthermore, RNI markedly enhanced the mRNA expression of TLR-9 and DNMT1, but decreased the expression of NOD2 and TRAF-6 in the ileum of piglets. In summary, postnatal nutritional restriction led to abnormal cellular and innate immune response, as well as delayed the growth and intestinal development of IUGR piglets. PMID:26059215

  5. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells

    PubMed Central

    Kilcoyne, Karen R.; Smith, Lee B.; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S.; Chambers, Thomas J. G.; De Gendt, Karel; Verhoeven, Guido; O’Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L. M.; Anderson, Richard A.; Sharpe, Richard M.

    2014-01-01

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk. PMID:24753613

  6. A molecular recognizing system of serotonin in rat fetal axonal growth cones: uptake and high affinity binding.

    PubMed

    Mercado, R; Hernández, J

    1992-09-18

    Axonal growth cone particles (AGCP) isolated from prenatal and postnatal rat brain had different high-affinity 5-HT uptake characteristics. In postnatal AGCP the uptake behaves as in the adult rat brain, while in the prenatal AGCP the uptake characteristics seem to be in a transitional stage. Also in prenatal AGCP we observed specific, high-affinity 5-HT binding sites. These results support the idea of an important role for 5-HT during axogenesis. PMID:1424085

  7. IFPA meeting 2014 workshop report: Animal models to study pregnancy pathologies; new approaches to study human placental exposure to xenobiotics; biomarkers of pregnancy pathologies; placental genetics and epigenetics; the placenta and stillbirth and fetal growth restriction.

    PubMed

    Barbaux, S; Erwich, J J H M; Favaron, P O; Gil, S; Gallot, D; Golos, T G; Gonzalez-Bulnes, A; Guibourdenche, J; Heazell, A E P; Jansson, T; Laprévote, O; Lewis, R M; Miller, R K; Monk, D; Novakovic, B; Oudejans, C; Parast, M; Peugnet, P; Pfarrer, C; Pinar, H; Roberts, C T; Robinson, W; Saffery, R; Salomon, C; Sexton, A; Staff, A C; Suter, M; Tarrade, A; Wallace, J; Vaillancourt, C; Vaiman, D; Worton, S A; Lash, G E

    2015-04-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2014 there were six themed workshops, five of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of animal models, xenobiotics, pathological biomarkers, genetics and epigenetics, and stillbirth and fetal growth restriction. PMID:25703592

  8. Effects of ambient oxygen concentration on the growth and antioxidant defenses of of human cell cultures established from fetal and postnatal skin.

    PubMed

    Balin, Arthur K; Pratt, Loretta; Allen, R G

    2002-02-01

    Oxygen toxicity is believed to arise from changes in the rates at which cells generate reactive oxygen species (ROS). Sensitivity to hyperoxia has been postulated to depend on levels of antioxidant defense. Human cells obtained from fetal tissues have lower antioxidant defenses than those obtained from adult tissue. The present study was performed to determine whether the differences in fetal and adult antioxidant defense levels modulated their responses to changes in the ambient oxygen concentration. Our results demonstrate that oxygen modulates the proliferation of human fetal and adult skin fibroblasts in a similar fashion. In general, skin fibroblasts grew better at approximately 31 mm Hg, regardless of donor age. Manganese superoxide dismutase, catalase, and glutathione peroxidase activities were lower in fetal cells than in adult fibroblasts. Copper/zinc superoxide dismutase and glucose-6-phosphate dehydrogenase were similar in fetal and postnatal tissues and were unaltered appreciably by hyperoxic exposure. Glutathione concentration increased at higher oxygen tensions; however, the increase was much greater in fetal cells than in cultures derived from adult skin. These observations demonstrate that the capacity of fetal and adult cells to cope with oxidative stress, while similar, result from distinct mechanisms. PMID:11827751

  9. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments1

    PubMed Central

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    • Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578

  10. An affective-cognitive processing model of post-traumatic growth.

    PubMed

    Joseph, Stephen; Murphy, David; Regel, Stephen

    2012-01-01

    A topic that has begun to attract interest from clinical psychologists and psychotherapists is post-traumatic growth. First, we provide a general overview of the field, setting out the historical development, main concepts, measurement issues and research findings. Second, we review evidence showing that the relationship between post-traumatic stress and post-traumatic growth is likely curvilinear. Third, a new affective-cognitive processing model of post-traumatic growth will be introduced in which post-traumatic stress is understood to be the engine of post-traumatic growth. Fourth, points of clinical intervention are described showing the ways in which therapists can facilitate post-traumatic growth. PMID:22610981

  11. Review and hypothesis: syndromes with severe intrauterine growth restriction and very short stature--are they related to the epigenetic mechanism(s) of fetal survival involved in the developmental origins of adult health and disease?

    PubMed

    Hall, Judith G

    2010-02-01

    Diagnosing the specific type of severe intrauterine growth restriction (IUGR) that also has post-birth growth restriction is often difficult. Eight relatively common syndromes are discussed identifying their unique distinguishing features, overlapping features, and those features common to all eight syndromes. Many of these signs take a few years to develop and the lifetime natural history of the disorders has not yet been completely clarified. The theory behind developmental origins of adult health and disease suggests that there are mammalian epigenetic fetal survival mechanisms that downregulate fetal growth, both in order for the fetus to survive until birth and to prepare it for a restricted extra-uterine environment, and that these mechanisms have long lasting effects on the adult health of the individual. Silver-Russell syndrome phenotype has recently been recognized to be related to imprinting/methylation defects. Perhaps all eight syndromes, including those with single gene mutation origin, involve the mammalian mechanism(s) of fetal survival downsizing. Insights into those mechanisms should provide avenues to understanding the natural history, the heterogeneity and possible therapy not only for these eight syndromes, but for the common adult diseases with which IUGR is associated. PMID:20101705

  12. Comparative study of the effects of fetal bovine serum versus horse serum on growth and differentiation of primary equine bronchial fibroblasts

    PubMed Central

    2014-01-01

    Background Airway fibroblasts have become a critical addition to all facets of structural lung tissue changes such as in human asthma and chronic obstructive pulmonary disease, but little is known about their role in the equine recurrent airway obstruction, a disease that resembles to the human asthma. Since the equine bronchial fibroblasts (EBF) have not been isolated and characterized yet, the use of defined medium was investigated. Results Primary EBF were cultured on non-collagen coated flasks without serum or in the presence of fetal bovine serum (FBS) or horse serum (HS) or in serum depleted medium. EBF cultured in serum-free basal media and those serum deprived were not able to proliferate and even exhibited considerable cell death. In media containing FBS or HS, proliferation of the cells was reproducible between different primary cultures and cells demonstrated expression of vimentin. Large variations were found in the ability of FBS and HS to support growth and differentiation of EBF in monolayer culture. Indications of growth-promoting actions, increasing passage number as well as maintaining fibroblast morphology were found rather in FBS than in HS. EBF culturing in HS needed longer doubling and confluence time. The protein content of the cell pellets was higher in EBF cultured in medium containing HS than FBS. Alpha-smooth muscle actin seemed to be less expressed in EBF cultured in medium containing FBS than those in HS. Conclusions In sum, serum addition to basal EBF medium enhanced EBF differentiation into myofibroblasts, and these findings are useful to develop in vitro fibroblast culture models that mimic in vivo physiological processes and to study airway disease mechanisms and remodeling. PMID:24886635

  13. Disruption of the lower food web in Lake Ontario: Did it affect alewife growth or condition?

    USGS Publications Warehouse

    O'Gorman, R.; Prindle, S.E.; Lantry, J.R.; Lantry, B.F.

    2008-01-01

    From the early 1980s to the late 1990s, a succession of non-native invertebrates colonized Lake Ontario and the suite of consequences caused by their colonization became known as "food web disruption". For example, the native burrowing amphipod Diporeia spp., a key link in the profundal food web, declined to near absence, exotic predaceous cladocerans with long spines proliferated, altering the zooplankton community, and depth distributions of fishes shifted. These changes had the potential to affect growth and condition of planktivorous alewife Alosa pseudoharengus, the most abundant fish in the lake. To determine if food web disruption affected alewife, we used change-point analysis to examine alewife growth and adult alewife condition during 1976-2006 and analysis-of-variance to determine if values between change points differed significantly. There were no change points in growth during the first year of life. Of three change points in growth during the second year of life, one coincided with the shift in springtime distribution of alewife to deeper water but it was not associated with a significant change in growth. After the second year of life, no change points in growth were evident, although growth in the third year of life spiked in those years when Bythotrephes, the largest of the exotic cladocerans, was abundant suggesting that it was a profitable prey item for age-2 fish. We detected two change points in condition of adult alewife in fall, but the first occurred in 1981, well before disruption began. A second change point occurred in 2003, well after disruption began. After the springtime distribution of alewife shifted deeper during 1992-1994, growth in the first two years of life became more variable, and growth in years of life two and older became correlated (P < 0.05). In conclusion, food web disruption had no negative affect on growth and condition of alewife in Lake Ontario although it appears to have resulted in growth in the first two years of

  14. Fetal Alcohol Syndrome "Chemical Genocide."

    ERIC Educational Resources Information Center

    Asetoyer, Charon

    In the Northern Plains of the United States, 100% of Indian reservations are affected by alcohol related problems. Approximately 90% of Native American adults are currently alcohol users or abusers or are recovering from alcohol abuse. Alcohol consumption has a devastating effect on the unborn. Fetal Alcohol Syndrome (FAS) is an irreversible birth…

  15. Effect of maternal ethanol intake on fetal rabbit gastrointestinal development.

    PubMed

    Guo, W; Gregg, J P; Fonkalsrud, E W

    1994-08-01

    Maternal ingestion of alcohol is believed to be one factor that greatly influences the development of intrauterine growth retardation (IUGR) and postnatal growth failure. The present study was undertaken to determine whether maternally ingested alcohol adversely affects fetal growth and intestinal mucosal function. Five time-mated New Zealand white rabbit does were given ethanol intravenously (ETH group) (30% vol/vol; 1.0 g/kg/d) on gestational days (GD) 15 through 29 (term, 31 days). Two other rabbits received the same dose of ethanol. Maternal, fetal, and amniotic fluid alcohol levels were measured on GD 24. Four control rabbits (SH group) received normal saline (25 mL, intravenously). At term, the animals were delivered by cesarean section and killed. Seventeen of the 42 ETH fetuses survived the study period (43%); all 24 SH fetuses survived. On GD 24, within 60 minutes after maternal ethanol infusion, the fetal blood alcohol concentration (BAC) increased to 153 +/- 1.97 mg/dL (v maternal, 179 +/- 1.75 mg/dL); the amniotic ethanol level increased to 46 +/- 1.32 mg/dL. Birth weight was lower in the ETH group (46.88 +/- 2.21 g) than in the SH group (55.78 +/- 1.80 g) (P < .01). Disaccharidase activity, an indicator of intestinal mucosal function, showed that lactase activity (per milligram of protein) was significantly lower in ETH fetuses (2.60 x 10(-2) +/- 0.22 UE/mg) than in SH fetuses (3.50 x 10(-2) +/- 0.25 UE/mg) (P = .01); maltase activity and protein content were not affected significantly. This report provides the first description of the adverse effects of maternal alcohol ingestion on the small intestinal mucosal function of the fetal rabbit. PMID:7965501

  16. CO2 enrichment at night affects the growth and yield of common beans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some experiments to determine the crop yield increase expected with rising atmospheric carbon dioxide concentration added carbon dioxide only during the daytime, without tests of whether elevation of carbon dioxide at night affected plant growth. In this experiment, two cultivars of common bean wer...

  17. Dental caries affects body weight, growth and quality of life in pre-school children.

    PubMed

    Sheiham, A

    2006-11-25

    The effect of a relatively common chronic disease, severe dental caries, affects young childrens' growth and well-being. Treating dental caries in pre-school children would increase growth rates and the quality of life of millions of children. Severe untreated dental caries is common in pre-school children in many countries. Children with severe caries weighed less than controls, and after treatment of decayed teeth there was more rapid weight gain and improvements in their quality of life. This may be due to dietary intake improving because pain affected the quantity and variety of food eaten, and second, chronic inflammation from caries related pulpitis and abscesses is known to suppress growth through a metabolic pathway and to reduce haemoglobin as a result of depressed erythrocyte production. PMID:17128231

  18. Ketamine affects the neurogenesis of rat fetal neural stem progenitor cells via the PI3K/Akt-p27 signaling pathway

    PubMed Central

    Dong, Chaoxuan; Rovnaghi, Cynthia R.; Anand, KJS

    2014-01-01

    Ketamine is widely used as an anesthetic, analgesic, or sedative in pediatric patients. We reported that ketamine alters the normal neurogenesis of rat fetal neural stem progenitor cells (NSPCs) in the developing brain, but the underlying mechanisms remain unknown. The PI3K-PKB/Akt (Phosphatidylinositide 3-kinases/protein kinase B) signaling pathway plays many important roles in cell survival, apoptosis, and proliferation. We hypothesized that PI3K-PKB/Akt signaling may be involved in ketamine-altered neurogenesis of cultured NSPCs in vitro. NSPCs were isolated from Sprague-Dawley rat fetuses on gestational day 17. BrdU (bromodeoxyuridine) incorporation, Ki67 staining, and differentiation tests were utilized to identify primary cultured NSPCs. Immunofluorescent staining was used to detect Akt expression, whereas, Western blots measured phosphorylated Akt and p27 expression in NSPCs exposed to different treatments. We report that cultured NSPCs had properties of neurogenesis: proliferation and neural differentiation. PKB/Akt was expressed in cultured rat fetal cortical NSPCs. Ketamine inhibited the phosphorylation of Akt and further enhanced p27 expression in cultured NSPCs. All ketamine-induced PI3K/Akt signaling changes could be recovered by NMDA (N-Methyl-D-aspartate) receptor agonist, NMDA. These data suggest that inhibition of PI3K/Akt-p27 signaling may be involved in ketamine-induced neurotoxicity in the developing brain, whereas excitatory NMDA receptor activation may reverse these effects. PMID:25231110

  19. [Does the administration of derivatives of vitamin D to dairy cows in late pregnancy for the prevention of parturient paresis affect the maternal-fetal mineral metabolism?].

    PubMed

    Zepperitz, H; Grün, E

    1993-06-01

    Intramuscular injection of 1 alpha-hydroxyvitamin D3 (with or without 25-hydroxyvitamin D3) to highly pregnant dairy cows caused a significant increase of ionized calcium in blood and of total calcium and inorganic phosphate with a concomitant decrease of magnesium in blood plasma 3,5 +/- 1,9 days later (resp. 12-48 h a.p.). This brought about a higher Ca level at parturition preventing parturient paresis. The changes of maternal mineral and vitamin D status had no effect on the mineral concentrations of blood in newborn calves. However, the increase in calcium and phosphate concentrations in maternal blood after injection was accompanied by an increase of the minerals in the amniotic fluid reflecting their strong reciprocal exchange. On the other hand, the composition of allantoic fluid showed no significant changes. Therefore, analysis of both fetal fluids does not refer to disorders of fetal mineral metabolism. As a consequence, there seems to be no potential risk of intoxication after a prepartal injection of the substances to the mother for their offspring. PMID:8343105

  20. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    SciTech Connect

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  1. Fetal and maternal manifestations of tuberous sclerosis complex: Value of fetal MRI.

    PubMed

    Goel, Reema; Aggarwal, Nishant; Lemmon, Monica E; Bosemani, Thangamadhan

    2016-02-01

    Tuberous sclerosis complex (TSC) is a genetic disorder characterized by benign hamartomas in various organ systems of the body. Prenatal screening of fetuses of mothers affected with TSC using ultrasonography (US) may detect cardiac lesions. Fetal US is not sensitive for evaluation of the brain. We describe brain MRI findings in a fetus with cardiac rhabdomyomas identified on prenatal screening US. Postnatal brain MRI at 5 days of age demonstrated fetal MRI findings without significant added information. Fetal MRI is the imaging modality of choice for evaluation of cerebral manifestations of TSC. Maternal manifestations of TSC in the abdomen or pelvis may also be demonstrated on fetal MRI. PMID:26838171

  2. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  3. Anesthesia for fetal surgery.

    PubMed

    Cauldwell, Charles B

    2002-03-01

    Fetal surgery is the antenatal treatment of fetal malformations that cannot be adequately corrected after birth. Anesthesia for fetal surgery involves two patients, and issues of maternal safety, avoidance of fetal asphyxia, adequate fetal anesthesia and monitoring, and uterine relaxation are important. Communication with the surgeon to determine the surgical approach and need for uterine relaxation allows the anesthesiologist the ability to vary the anesthetic technique. Lessons learned from fetal surgery may help other neonates with life-threatening anomalies and may help understand the complex issues related to preterm labor. PMID:11892506

  4. Controlled Cu nanoparticle growth on wrinkle affecting deposition of large scale graphene

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohsin; Uddin, Md Jasim; Rahman, Muhammad Anisur; Kishi, Naoki; Soga, Tetsuo

    2016-09-01

    For Chemical Vapor Deposition (CVD) grown graphene on Cu substrate, deviation from atomic orientation in crystals may be resulted from diffusion of abnormalities in the form of Cu nanoparticle (NP) formation or defects and affects graphene quality and properties drastically. However, for the uniform graphene deposition, mechanism of nanoparticle formation and its suppression procedure need to be better understood. We report growth of graphene, affected by Cu nanoparticles (NPs) emergence on Cu substrates. In the current study, growth of these nanoparticles has been suppressed by fine tuning of carrier gas by two-fold gas insertion mechanism and hence, quality and uniformity of graphene is significantly improved. It has been also observed that during the deposition by CVD, Cu nanoparticles cluster preferentially on wrinkles or terrace of the Cu surface. Composition of NP is extensively studied and found to be the oxide nanoparticle of Cu. Our result, controlled NP growth affecting deposition of graphene layer would provide useful insight on the growth of uniform and high quality Single layer or bilayer graphene for numerous electronics applications.

  5. Oxidative Stress in Mouse Sperm Impairs Embryo Development, Fetal Growth and Alters Adiposity and Glucose Regulation in Female Offspring

    PubMed Central

    Lane, Michelle; McPherson, Nicole O.; Fullston, Tod; Spillane, Marni; Sandeman, Lauren; Kang, Wan Xian; Zander-Fox, Deirdre L.

    2014-01-01

    Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS) are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2), which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM) in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity. PMID:25006800

  6. Porphyromonas gingivalis Infection during Pregnancy Increases Maternal Tumor Necrosis Factor Alpha, Suppresses Maternal Interleukin-10, and Enhances Fetal Growth Restriction and Resorption in Mice

    PubMed Central

    Lin, Dongming; Smith, Mary Alice; Champagne, Catherine; Elter, John; Beck, James; Offenbacher, Steven

    2003-01-01

    Epidemiological studies have shown a potential association between maternal periodontitis and pregnancy complications. We used a pregnant murine model to study the effect of infection with the periodontal pathogen Porphyromonas gingivalis on pregnancy outcomes. Female BALB/c mice were inoculated with heat-killed P. gingivalis (109 CFU) in a subcutaneous chamber and mated 2 weeks later. At gestation day (GD) 7.5, mice were challenged with live P. gingivalis (107 CFU) (n = 20) or broth (control; n = 8) and sacrificed at GD 16.5. Fetal growth restriction (FGR, <0.46 g) was defined as fetuses with weights 2 standard deviations (SD) smaller than controls (0.56 ± 0.05 g [mean ± SD]). Among the 20 challenged mice, 8 had both normal-weight (0.51 ± 0.11 g) and FGR (0.34 ± 0.1 g) fetuses within the same litter. All other challenged dams had normal-weight fetuses (0.57 ± 0.04 g). Maternal liver, uterus, and spleen samples were examined for P. gingivalis DNA using a PCR technique. Of the eight challenged mice with FGR fetuses, three had PCR signals for P. gingivalis in liver and uterus, but not in the spleen. Liver, uterus, and spleen were negative for P. gingivalis DNA among all other challenged and control mice. In serum of dams with FGR fetuses, tumor necrosis factor alpha levels were elevated significantly, while interluekin-10 levels were significantly reduced compared to levels in dams with normal fetuses. P. gingivalis-specific serum immunoglobulin G levels were significantly elevated in dams with FGR fetuses compared to dams without any FGR fetuses. These data demonstrate that P. gingivalis-induced murine FGR is associated with systemic dissemination of the organism and activated maternal immune and inflammatory responses. PMID:12933859

  7. Fetal Pulmonary Arterial Vascular Impedance Reflects Changes in Fetal Oxygenation at Near-Term Gestation in a Nonhuman Primate Model

    PubMed Central

    Arraut, Amaryllis Maria Elpida; Frias, Antonio E.; Hobbs, Theodore R.; McEvoy, Cindy; Spindel, Eliot R.; Rasanen, Juha

    2013-01-01

    Objective: We tested the hypothesis that fetal pulmonary arterial circulation reacts to changes in fetal oxygenation status at near-term gestation. Study Design: A total of 20 rhesus macaques underwent fetal Doppler ultrasonography at near-term gestation. Right pulmonary artery (RPA), umbilical artery (UA), ductus arteriosus (DA), and ductus venosus (DV) blood velocity waveforms were obtained, and pulsatility index (PI) values were calculated. Fetal right and left ventricular cardiac outputs were determined. Ultrasonographic data were collected during 3 maternal oxygenation states: room air (baseline), hyperoxemia, and hypoxemia. Results: Fetal RPA PI values increased (P < .05) during maternal hypoxemia and decreased (P < .05) during maternal hyperoxemia, compared with baseline. Maternal hyperoxemia increased (P < .05) DA PI values from baseline. Fetal cardiac outputs, UA, and DV PI values were not affected. Conclusions: Our results demonstrate that at near-term gestation, fetal pulmonary arterial circulation is a dynamic vascular bed that reflects acute and short-term changes in fetal oxygenation. PMID:22991382

  8. Estimation of fetal gestational age from ultrasound images

    NASA Astrophysics Data System (ADS)

    Salari, Valiollah

    1992-06-01

    Estimation of fetal gestational age, weight, and determination of fetal growth from the measurements of certain parameters of fetal head, abdomen, and femur have been well established in prenatal sonography. The measurements are made from the two dimensional, B- mode, ultrasound images of the fetus. The most common parameters measured are, biparietal diameter, occipital frontal diameter, head circumference, femur diaphysis length, and abdominal circumference. Since the fetal head has an elliptical shape and the femur has a linear shape, fitting the ellipse on the image of the fetal head, a line on the image of the femur are the tasks of image processing which are discussed in this paper.

  9. Effects of proposed adipogenic factors in fetal swine sera upon preadipocyte development

    SciTech Connect

    Ramsay, T.G.; Hausman, G.J.; Martin, R.J.

    1986-03-01

    Genetic obesity has been detected in fetal pigs which suggests primary factors that cause the obesity develop prenatally. Growth hormone and thyroid hormones have been implicated as regulatory factors in fetal serum for preadipocyte differentiation. This experiment examined effects of growth hormone (GH) and thyroxine (T4) addition upon preadipocyte proliferation and differentiation when supplemented to deficient fetal pig sea. Hormones were added to decapitated fetal pig (Decap) sera to concentrations present in intact littermate (Reference) sera. Primary stromal-vascular cell cultures were prepared from rat inguinal adipose tissue. Cells were incubated with 5% decap or reference sera and hormones in media 199 during: days 1 to 5 for a /sup 3/H-thymidine incorporation assay; days 1 to 15 for assay of ..cap alpha..-glycerol phosphate dehydrogenase; days 5 to 14 for a complete differentiation assay. Decap sera promoted less proliferation and enzyme differentiation than reference sera with no effect of GH addition. GH reduced detection of lipid accumulating cells on percol density gradients by 81%. T4 addition stimulated preadipocyte multiplication and produced a 30% increase in completely differentiated preadipocytes. These results indicate thyroid hormones are important components of fetal sera for regulation of preadipocyte development, whereas GH may only affect cellular metabolism.

  10. Experimental icing affects growth, mortality, and flowering in a high Arctic dwarf shrub.

    PubMed

    Milner, Jos M; Varpe, Øystein; van der Wal, René; Hansen, Brage Bremset

    2016-04-01

    Effects of climate change are predicted to be greatest at high latitudes, with more pronounced warming in winter than summer. Extreme mid-winter warm spells and heavy rain-on-snow events are already increasing in frequency in the Arctic, with implications for snow-pack and ground-ice formation. These may in turn affect key components of Arctic ecosystems. However, the fitness consequences of extreme winter weather events for tundra plants are not well understood, especially in the high Arctic. We simulated an extreme mid-winter rain-on-snow event at a field site in high Arctic Svalbard (78°N) by experimentally encasing tundra vegetation in ice. After the subsequent growing season, we measured the effects of icing on growth and fitness indices in the common tundra plant, Arctic bell-heather (Cassiope tetragona). The suitability of this species for retrospective growth analysis enabled us to compare shoot growth in pre and postmanipulation years in icing treatment and control plants, as well as shoot survival and flowering. Plants from icing treatment plots had higher shoot mortality and lower flowering success than controls. At the individual sample level, heavily flowering plants invested less in shoot growth than nonflowering plants, while shoot growth was positively related to the degree of shoot mortality. Therefore, contrary to expectation, undamaged shoots showed enhanced growth in ice treatment plants. This suggests that following damage, aboveground resources were allocated to the few remaining undamaged meristems. The enhanced shoot growth measured in our icing treatment plants has implications for climate studies based on retrospective analyses of Cassiope. As shoot growth in this species responds positively to summer warming, it also highlights a potentially complex interaction between summer and winter conditions. By documenting strong effects of icing on growth and reproduction of a widespread tundra plant, our study contributes to an understanding of

  11. In utero exposure to low doses of environmental pollutants disrupts fetal ovarian development in sheep

    PubMed Central

    Fowler, Paul A.; Dorà, Natalie J.; McFerran, Helen; Amezaga, Maria R.; Miller, David W.; Lea, Richard G.; Cash, Phillip; McNeilly, Alan S.; Evans, Neil P.; Cotinot, Corinne; Sharpe, Richard M.; Rhind, Stewart M.

    2008-01-01

    Epidemiological studies of the impact of environmental chemicals on reproductive health demonstrate consequences of exposure but establishing causative links requires animal models using ‘real life’ in utero exposures. We aimed to determine whether prolonged, low-dose, exposure of pregnant sheep to a mixture of environmental chemicals affects fetal ovarian development. Exposure of treated ewes (n = 7) to pollutants was maximized by surface application of processed sewage sludge to pasture. Control ewes (n = 10) were reared on pasture treated with inorganic fertilizer. Ovaries and blood were collected from fetuses (n = 15 control and n = 8 treated) on Day 110 of gestation for investigation of fetal endocrinology, ovarian follicle/oocyte numbers and ovarian proteome. Treated fetuses were 14% lighter than controls but fetal ovary weights were unchanged. Prolactin (48% lower) was the only measured hormone significantly affected by treatment. Treatment reduced numbers of growth differentiation factor (GDF9) and induced myeloid leukaemia cell differentiation protein (MCL1) positive oocytes by 25–26% and increased pro-apoptotic BAX by 65% and 42% of protein spots in the treated ovarian proteome were differently expressed compared with controls. Nineteen spots were identified and included proteins involved in gene expression/transcription, protein synthesis, phosphorylation and receptor activity. Fetal exposure to environmental chemicals, via the mother, significantly perturbs fetal ovarian development. If such effects are replicated in humans, premature menopause could be an outcome. PMID:18436539

  12. si-RNA inhibition of brain insulin or insulin-like growth factor receptors causes developmental cerebellar abnormalities: relevance to fetal alcohol spectrum disorder

    PubMed Central

    2011-01-01

    Background In experimental models of fetal alcohol spectrum disorder (FASD), cerebellar hypoplasia and hypofoliation are associated with insulin and insulin-like growth factor (IGF) resistance with impaired signaling through pathways that mediate growth, survival, plasticity, metabolism, and neurotransmitter function. To more directly assess the roles of impaired insulin and IGF signaling during brain development, we administered intracerebroventricular (ICV) injections of si-RNA targeting the insulin receptor, (InR), IGF-1 receptor (IGF-1R), or IGF-2R into postnatal day 2 (P2) Long Evans rat pups and examined the sustained effects on cerebellar function, structure, and neurotransmitter-related gene expression (P20). Results Rotarod tests on P20 demonstrated significant impairments in motor function, and histological studies revealed pronounced cerebellar hypotrophy, hypoplasia, and hypofoliation in si-InR, si-IGF-1R, and si-IGF-2R treated rats. Quantitative RT-PCR analysis showed that si-InR, and to a lesser extent si-IGF-2R, broadly inhibited expression of insulin and IGF-2 polypeptides, and insulin, IGF-1, and IGF-2 receptors in the brain. ELISA studies showed that si-InR increased cerebellar levels of tau, phospho-tau and β-actin, and inhibited GAPDH. In addition, si-InR, si-IGF-1R, and si-IGF-2R inhibited expression of choline acetyltransferase, which mediates motor function. Although the ICV si-RNA treatments generally spared the neurotrophin and neurotrophin receptor expression, si-InR and si-IGF-1R inhibited NT3, while si-IGF-1R suppressed BDNF. Conclusions early postnatal inhibition of brain InR expression, and to lesser extents, IGF-R, causes structural and functional abnormalities that resemble effects of FASD. The findings suggest that major abnormalities in brains with FASD are mediated by impairments in insulin/IGF signaling. Potential therapeutic strategies to reduce the long-term impact of prenatal alcohol exposure may include treatment with agents

  13. Insulin-like growth factor- I and factors affecting it in thalassemia major

    PubMed Central

    Soliman, Ashraf T.; Sanctis, Vincenzo De; Elalaily, Rania; Yassin, Mohamed

    2015-01-01

    Despite improvement of blood transfusion regimens and iron chelation therapy growth and maturational delay, cardiomyopathy, endocrinopathies and osteoporosis still occur in good number of thalassemic patients. Decreased IGF-1 secretion occurs in the majority of the thalassemic patients particularly those with growth and pubertal delay. Many factors contribute to this decreased synthesis of IGF-I including disturbed growth hormone (GH) - insulin-like growth factor - I (IGF-I) axis. The possible factors contributing to low IGF-I synthesis in thalassemia and the possible interaction between low IGF-I secretion and the occurrence of these complications is discussed in this mini-review. Improvement of IGF-I secretion in thalassemic patients should be intended to improve linear growth and bone mineral accretion in thalassemic patients. This can be attained through adequate correction of anemia and proper chelation, nutritional supplementation (increasing caloric intake), correction of vitamin D and zinc deficiencies, induction of puberty and correction of hypogonadism at the proper time and treating GH deficiency. This review paper provides a summary of the current state of knowledge regarding IGF-I and factors affecting it in patients with thalassaemia major (TM). Search on PubMed and reference lists of articles with the term ‘IGF-I, GH, growth, thalassemia, thyroxine, anemia, vitamin D, and zinc’ was carried out. A hundred and forty-eight articles were found and used in the write up and the data analyzed was included in this report. PMID:25729686

  14. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth.

    PubMed

    G T Pereira, Anirene; Utsunomiya, Yuri T; Milanesi, Marco; Torrecilha, Rafaela B P; Carmo, Adriana S; Neves, Haroldo H R; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S; Sölkner, Johann; Contreras-Castillo, Carmen J; Garcia, José F

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  15. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth

    PubMed Central

    Milanesi, Marco; Torrecilha, Rafaela B. P.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S.; Sölkner, Johann; Contreras-Castillo, Carmen J.; Garcia, José F.

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  16. Challenge of Fetal Mortality

    MedlinePlus

    ... Death Data File and Linked Birth/Infant Death Data Set, National Vital Statistics System The magnitude of fetal ... Death Data File and Linked Birth/Infant Death Data Set, NVSS. The vital statistics Fetal Death Data File ...

  17. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... alcohol can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Effects can include physical and behavioral problems such ... alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, ...

  18. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... Daily life skills, such as feeding and bathing Fetal alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, including wide-set and narrow ...

  19. Growth of Bacillus cereus on solid media as affected by agar, sodium chloride, and potassium sorbate.

    PubMed

    Stecchini, M L; Del Torre, M; Donda, S; Maltini, E

    2000-07-01

    The effect of two independent variables: microstructure, as modified by the agar content (1.0, 4.0, 7.0%), and water activity (a(w)), as modified by the NaCl content (0.5, 2.5, 4.5%), in the absence or in the presence of potassium sorbate (0.0; 2,000 ppm) on Bacillus cereus growth on solid media was studied. The time to visible growth (TVG) and the radial growth rate (RGR) of colonies were evaluated. TVG was not affected by microstructure and K-sorbate, although when a(w) was reduced, TVG tended to increase. RGR depended on linear effects of microstructure and a(w) variables and their interaction. When K-sorbate was added to cultural media, RGR was reduced significantly. However, in the presence of K-sorbate, RGR was found to change only when a(w) vas varied. PMID:10914662

  20. Gonadotropin ratio affects the in vitro growth of rhesus ovarian preantral follicles.

    PubMed

    Kim, Yoon Young; Yun, Jun-Won; Kim, Jong Min; Park, Chung Gyu; Rosenwaks, Zev; Liu, Hung Ching; Kang, Byeong-Cheol; Ku, Seung-Yup

    2016-04-01

    In vitro follicle growth (IVFG) strategy is critical in the fertility preservation of cancer survivors; however, its optimal protocol needs to be developed using primate models since the availability of human samples is limited. Only a few previous studies have reported the successful IVFG of rhesus monkey ovaries using low-dose follicle-stimulating hormone (FSH) (0.3 or 3 ng/mL) and long-term culture (up to 5 weeks) and it is still uncertain in regard to the optimal culture duration and effective dose of treated gonadotropins applicable to the IVFG of rhesus preantral follicles. Recently, we have reported that the FSH to luteinizing hormone (LH) ratio affects the in vitro growth of murine ovarian follicles. We aimed to investigate whether gonadotropin ratios affect the efficiency of rhesus follicular growth in vitro Ovaries were collected from six necropsied rhesus macaques (4-9 years) and preantral follicles were retrieved and cultured for 14 days using 200 mIU/mL FSH. The characteristics of follicular growth were compared between the FSH:LH=1:1 (n=24) and FSH:LH=2:1 (n=24) groups. High concentration gonadotropin treatment shortened the duration required for in vitro maturation of rhesus preantral follicles. The FSH:LH=2:1 group showed a faster follicular growth and enabled the acquisition of mature oocytes, although the expression of growth differentiation factor (GDF)-9 and anti-Müllerian hormone (AMH) did not differ significantly between the two groups. Taken together, high dose gonadotropin treatment can shorten the duration of IVFG and the gonadotropin ratio is important in the IVFG of rhesus monkey ovaries. PMID:26980777

  1. Gonadotropin ratio affects the in vitro growth of rhesus ovarian preantral follicles

    PubMed Central

    Kim, Yoon Young; Yun, Jun-Won; Kim, Jong Min; Park, Chung Gyu; Rosenwaks, Zev; Liu, Hung Ching; Kang, Byeong-Cheol; Ku, Seung-Yup

    2016-01-01

    In vitro follicle growth (IVFG) strategy is critical in the fertility preservation of cancer survivors; however, its optimal protocol needs to be developed using primate models since the availability of human samples is limited. Only a few previous studies have reported the successful IVFG of rhesus monkey ovaries using low-dose follicle-stimulating hormone (FSH) (0.3 or 3 ng/mL) and long-term culture (up to 5 weeks) and it is still uncertain in regard to the optimal culture duration and effective dose of treated gonadotropins applicable to the IVFG of rhesus preantral follicles. Recently, we have reported that the FSH to luteinizing hormone (LH) ratio affects the in vitro growth of murine ovarian follicles. We aimed to investigate whether gonadotropin ratios affect the efficiency of rhesus follicular growth in vitro. Ovaries were collected from six necropsied rhesus macaques (4–9 years) and preantral follicles were retrieved and cultured for 14 days using 200 mIU/mL FSH. The characteristics of follicular growth were compared between the FSH:LH=1:1 (n=24) and FSH:LH=2:1 (n=24) groups. High concentration gonadotropin treatment shortened the duration required for in vitro maturation of rhesus preantral follicles. The FSH:LH=2:1 group showed a faster follicular growth and enabled the acquisition of mature oocytes, although the expression of growth differentiation factor (GDF)-9 and anti-Müllerian hormone (AMH) did not differ significantly between the two groups. Taken together, high dose gonadotropin treatment can shorten the duration of IVFG and the gonadotropin ratio is important in the IVFG of rhesus monkey ovaries. PMID:26980777

  2. Fetal and neonatal outcome in celiac disease.

    PubMed

    Suciu, Nicolae; Pop, Liviu; Panaitescu, Eugenia; Suciu, Ioan Dumitru; Popp, Alina; Anca, Ioana

    2014-05-01

    Celiac disease (CD) is characterized by an abnormal immune response in susceptible individuals to dietary gluten derived from wheat, rye and barley. The disease affects not only the small bowel mucosa, but also many other extraintestinal organs resulting bone, liver, neurologic, skin and reproductive system disorders. The details of the pathogenic mechanism are not perfectly clear yet, but it is now proved that both humoral and cellular immune responses are triggered and autoimmune mechanisms are implicated. Studies have shown association of different pregnancy outcomes with maternal celiac disease. In this review, the most frequent fetal and neonatal outcome related to CD are presented, with a special focus on intrautherine growth restriction (IUGR) and prematurity. The need of active case finding of CD is discussed. PMID:23998909

  3. Advances in fetal surgery

    PubMed Central

    Pedreira, Denise Araujo Lapa

    2016-01-01

    ABSTRACT This paper discusses the main advances in fetal surgical therapy aiming to inform health care professionals about the state-of-the-art techniques and future challenges in this field. We discuss the necessary steps of technical evolution from the initial open fetal surgery approach until the development of minimally invasive techniques of fetal endoscopic surgery (fetoscopy). PMID:27074241

  4. Basic fibroblast growth factor selectively amplifies the functional state of neurons producing neuropeptide Y but not somatostatin in cultures of fetal brain cells: evidence for a cooperative interaction with insulin-like growth factor-I.

    PubMed

    Barnea, A; Cho, G

    1993-10-01

    The role of basic fibroblast growth factor (bFGF) in regulating the functional state of neuropeptide Y (NPY) neurons in the brain was investigated, using aggregate cultures, derived from 17-day-old fetal rat cortex maintained for 16 days in serum-free medium, as a model. The criterion for the functional state was NPY production in response to a 24-h exposure to forskolin + phorbol 12-myristate 13-acetate (For + PMA). bFGF (0.1 nM) induced a approximately 2-fold increase in NPY production under basal conditions as well as after For + PMA (p < 0.001 vs control). To address the possibility that bFGF may interact with other growth factors, we assessed the effect of bFGF in the presence of long R3-insulin-like growth factor-I (l-IGF-I; 1 nM) and found that NPY production in response to For + PMA was even greater than with bFGF alone (2-fold; p < 0.001); even though l-IGF-I by itself was ineffective; suggesting that bFGF is the driving force of this amplification. To assess the selectivity of this process, we evaluated SRIF production in response to For + PMA and found that it was not amplified by bFGF, l-IGF-I, or bFGF + l-IGF-I. These results are consistent with bFGF selectively amplifying the functional state of the cAMP and protein kinase C (PKC) pathways leading to increased NPY-production, with cooperative interaction(s) between bFGF and IGF-I, and with a role for bFGF and IGF-I in the developmental expression/survival of the NPY neurons. PMID:8104779

  5. Mitogenic and metabolic actions of epidermal growth factor on rat articular chondrocytes: modulation by fetal calf serum, transforming growth factor-beta, and tyrphostin.

    PubMed

    Ribault, D; Khatib, A M; Panasyuk, A; Barbara, A; Bouizar, Z; Mitrovic, R D

    1997-01-15

    The effects of human recombinant epidermal growth factor (EGF) on rat articular chondrocytes from humeral and femoral head cartilage of 21-day-old Wistar rats were analyzed. The cells were cultured under standard conditions as monolayers. Cell proliferation was studied by [3H]thymidine incorporation and determination of DNA content, proteoglycan synthesis by [35S]sulfate incorporation, and collagen synthesis by [3H]proline incorporation. The presence of specific receptors was confirmed by [125I]-EGF binding and that of EGF and EGF-receptor (EGF-R) mRNA by reverse transcription and the polymerase chain reaction. EGF (0.5-2.5 ng/ml) stimulated [3H]thymidine incorporation and increased DNA content of cultures. The effect was strongest when serum concentration was low (< or =1%) and was lost at high (> or =7.5%) serum concentrations. The EGF-induced effect on deoxynucleic acid synthesis was inhibited by transforming growth factor-beta and tyrphostin, a tyrosine kinase inhibitor that blocks the phosphorylation of tyrosine residues on EGF-R. Cultured rat articular chondrocytes possess a single class of high-affinity binding sites (Kd 0.18 nM). There were about 4.5 x 10(9) binding sites per microgram of DNA or about 37,800 binding sites per cell with 8.3 pg DNA per cell. Cultured cells contained EGF mRNA and EGF-R mRNA. Incubation of cells with EGF for 24 h decreased the EGF mRNA transcripts and increased the EGF-R mRNA levels. These findings suggest that EGF probably takes part in the regulation of chondrocyte activity under normal and presumably pathological conditions. PMID:9016808

  6. Fetal origin of vascular aging

    PubMed Central

    Pitale, Shailesh; Sahasrabuddhe, Anagha

    2011-01-01

    Aging is increasingly regarded as an independent risk factor for development of cardiovascular diseases such as atherosclerosis and hypertension and their complications (e.g. MI and Stroke). It is well known that vascular disease evolve over decades with progressive accumulation of cellular and extracellular materials and many inflammatory processes. Metabolic syndrome, obesity and diabetes are conventionally recognized as risk factors for development of coronary vascular disease (CVD). These conditions are known to accelerate ageing process in general and vascular ageing in particular. Adverse events during intrauterine life may programme organ growth and favour disease later in life, popularly known as, ‘Barker's Hypothesis’. The notion of fetal programming implies that during critical periods of prenatal growth, changes in the hormonal and nutritional milieu of the conceptus may alter the full expression of the fetal genome, leading to permanent effects on a range of physiological. PMID:22145131

  7. Rearing Tenebrio molitor in BLSS: Dietary fiber affects larval growth, development, and respiration characteristics

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Stasiak, Michael; Li, Liang; Xie, Beizhen; Fu, Yuming; Gidzinski, Danuta; Dixon, Mike; Liu, Hong

    2016-01-01

    Rearing of yellow mealworm (Tenebrio molitor L.) will provide good animal nutrition for astronauts in a bioregenerative life support system. In this study, growth and biomass conversion data of T. molitor larvae were tested for calculating the stoichiometric equation of its growth. Result of a respiratory quotient test proved the validity of the equation. Fiber had the most reduction in mass during T. molitor‧s consumption, and thus it is speculated that fiber is an important factor affecting larval growth of T. molitor. In order to further confirm this hypothesis and find out a proper feed fiber content, T. molitor larvae were fed on diets with 4 levels of fiber. Larval growth, development and respiration in each group were compared and analyzed. Results showed that crude-fiber content of 5% had a significant promoting effect on larvae in early instars, and is beneficial for pupa eclosion. When fed on feed of 5-10% crude-fiber, larvae in later instars reached optimal levels in growth, development and respiration. Therefore, we suggest that crude fiber content in feed can be controlled within 5-10%, and with the consideration of food palatability, a crude fiber of 5% is advisable.

  8. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis.

    PubMed

    Poiré, Richard; Schneider, Heike; Thorpe, Michael R; Kuhn, Arnd J; Schurr, Ulrich; Walter, Achim

    2010-03-01

    In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots. PMID:19968824

  9. Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley 1

    PubMed Central

    Termaat, Annie; Passioura, John B.; Munns, Rana

    1985-01-01

    The aim of this work was to test the hypothesis that the reduced growth rate of wheat and barley that results when the roots are exposed to NaCl is due to inadequate turgor in the expanding cells of the leaves. The hypothesis was tested by exposing plants to 100 millimolar NaCl (which reduced their growth rates by about 20%), growing them for 7 to 10 days with their roots in pressure chambers, and applying sufficient pneumatic pressure in the chambers to offset the osmotic pressure of the NaCl, namely, 0.48 megapascals. The results showed that applying the pressure had no sustained effect (relative to unpressurized controls) on growth rates, transpiration rates, or osmotic pressures of the cell sap, in either the fully expanded or currently expanding leaf tissue, of both wheat and barley. The results indicate that the applied pressure correspondingly increased turgor in the shoot although this was not directly measured. We conclude that shoot turgor alone was not regulating the growth of these NaCl-affected plants, and, after discussing other possible influences, argue that a message arising in the roots may be regulating the growth of the shoot. PMID:16664152

  10. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    PubMed

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production. PMID:17803646

  11. Plasmid Transfer of Plasminogen K1-5 Reduces Subcutaneous Hepatoma Growth by Affecting Inflammatory Factors

    PubMed Central

    Koch, Lea A.; Strassburg, Christian P.; Raskopf, Esther

    2014-01-01

    There is evidence that plasminogen K1-5 (PlgK1-5) directly affects tumour cells and inflammation. Therefore, we analysed if PlgK1-5 has immediate effects on hepatoma cells and inflammatory factors in vitro and in vivo. In vitro, effects of plasmid encoding PlgK1-5 (pK1-5) on Hepa129, Hepa1-6, and HuH7 cell viability, apoptosis, and proliferation as well as VEGF and TNF-alpha expression and STAT3-phosphorylation were investigated. In vivo, tumour growth, proliferation, vessel density, and effects on vascular endothelial growth factor (VEGF) and tumour necrosis factor alpha (TNF-alpha) expression were examined following treatment with pK1-5. In vivo, pK1-5 halved cell viability; cell death was increased by up to 15% compared to the corresponding controls. Proliferation was not affected. VEGF, TNF-alpha, and STAT3-phosphorylation were affected following treatment with pK1-5. In vivo, ten days after treatment initiation, pK1-5 reduced subcutaneous tumour growth by 32% and mitosis by up to 77% compared to the controls. Vessel density was reduced by 50%. TNF-alpha levels in tumour and liver tissue were increased, whereas VEGF levels in tumours and livers were reduced after pK1-5 treatment. Taken together, plasmid gene transfer of PlgK1-5 inhibits hepatoma (cell) growth not only by reducing vessel density but also by inducing apoptosis, inhibiting proliferation, and triggering inflammation. PMID:24895598

  12. Maternal fatty acid intake and fetal growth: evidence for an association in overweight women. The 'EDEN mother-child' cohort (study of pre- and early postnatal determinants of the child's development and health)

    PubMed Central

    Drouillet, Peggy; Forhan, Anne; De Lauzon-Guillain, Blandine; Thiébaugeorges, Olivier; Goua, Valérie; Magnin, Guillaume; Schweitzer, Michel; Kaminski, Monique; Ducimetière, Pierre; Charles, Marie-Aline

    2009-01-01

    Background Recent studies suggest a benefit of seafood and n-3 Fatty Acids (FA) intake on fetal growth and infant development. Objectives To study the association between FA intake and fetal growth in French pregnant women. Design Pregnant women included in the EDEN mother-child cohort study answered food frequency questionnaires on their usual diet 1) in the year prior to pregnancy and 2) during the last three months of pregnancy (n=1439). Conversion into nutrient intakes was performed using data on portion size and a French food composition table. Associations between maternal FA intakes and several neonatal anthropometric measurements were studied using linear regressions adjusted for center, mother’s age, smoking habits, height, parity, gestational age and newborn’s sex. Due to significant interaction, analyses were stratified according to maternal pre-pregnancy overweight status. Results Neither total lipid nor saturated, monounsaturated or polyunsaturated (PUFA) fat intake were significantly associated with newborn size. In overweight women only (n=366), a high pre-pregnancy n-3FA intake (% n-3FA/PUFA) was positively associated with newborn’s birthweight (p=0.01), head, arm and wrist circumferences and sum of skinfolds (p<0.04). A substitution of one percent of n-3FA per day before pregnancy by other PUFA was related to an average decrease in birthweight of 60 g (p=0.01). Relationships with n-3FA intake at the end of pregnancy were weaker and not significant. Conclusions A high pre-pregnancy ratio n-3FA/PUFA may sustain fetal growth in overweight women. Follow-up of the children may help determine whether this has beneficial consequences for the child’s health and development. PMID:18631416

  13. Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield.

    PubMed

    Olmo, Manuel; Lozano, Ana María; Barrón, Vidal; Villar, Rafael

    2016-08-15

    Biochar (BC) is a carbonaceous material obtained by pyrolysis of organic waste materials and has been proposed as a soil management strategy to mitigate global warming and to improve crop productivity. Once BC has been applied to the soil, its imperfect and incomplete mixing with soil during the first few years and the standard agronomic practices (i.e. tillage, sowing) may generate spatial heterogeneity of the BC content in the soil, which may have implications for soil properties and their effects on plant growth. We investigated how, after two agronomic seasons, the spatial heterogeneity of olive-tree prunings BC applied to a vertisol affected soil characteristics and wheat growth and yield. During the second agronomic season and just before wheat germination, we determined the BC content in the soil by an in-situ visual categorization based on the soil darkening, which was strongly correlated to the BC content of the soil and the soil brightness. We found a high spatial heterogeneity in the BC plots, which affected soil characteristics and wheat growth and yield. Patches with high BC content showed reduced soil compaction and increased soil moisture, pH, electrical conductivity, and nutrient availability (P, Ca, K, Mn, Fe, and Zn); consequently, wheat had greater tillering and higher relative growth rate and grain yield. However, if the spatial heterogeneity of the soil BC content had not been taken into account in the data analysis, most of the effects of BC on wheat growth would not have been detected. Our study reveals the importance of taking into account the spatial heterogeneity of the BC content. PMID:27110980

  14. Are fetal growth impairment and preterm birth causally related to child attention problems and ADHD? Evidence from a comparison between high-income and middle-income cohorts

    PubMed Central

    Murray, Elizabeth; Pearson, Rebecca; Fernandes, Michelle; Santos, Iná S; Barros, Fernando C; Victora, Cesar G; Stein, Alan; Matijasevich, Alicia

    2016-01-01

    Background Cross-cohort comparison is an established method for improving causal inference. This study compared 2 cohorts, 1 from a high-income country and another from a middle-income country, to (1) establish whether birth exposures may play a causal role in the development of childhood attention problems; and (2) identify whether confounding structures play a different role in parent-reported attention difficulties compared with attention deficit hyperactivity disorder (ADHD) diagnoses. Methods Birth exposures included low birth weight (LBW), small-for-gestational age (SGA), small head circumference (HC) and preterm birth (PTB)). Outcomes of interest were attention difficulties (Strengths and Difficulties Questionnaire, SDQ) and ADHD (Development and Well-Being Assessment, DAWBA). Associations between exposures and outcomes were compared between 7-year-old children from the Avon Longitudinal Study of Parents and Children (ALSPAC) in the UK (N=6849) and the 2004 Pelotas cohort in Brazil (N=3509). Results For attention difficulties (SDQ), the pattern of association with birth exposures was similar between cohorts: following adjustment, attention difficulties were associated with SGA (OR=1.59, 95% CI 1.20 to 2.19) and small HC (OR=1.64, 95% CI 1.11 to 2.41) in ALSPAC and SGA (OR=1.35, 95% CI 1.04 to 1.75) in Pelotas. For ADHD, however, the pattern of association following adjustment differed markedly between cohorts. In ALSPAC, ADHD was associated with LBW (OR=2.29, 95% CI 1.09 to 4.80) and PTB (OR=2.33, 95% CI 1.23 to 4.42). In the Pelotas cohort, however, ADHD was associated with SGA (OR=1.69, 95% CI 1.02 to 2.82). Conclusions The findings suggest that fetal growth impairment may play a causal role in the development of attention difficulties in childhood, as similar associations were identified across both cohorts. Confounding structures, however, appear to play a greater role in determining whether a child meets the full diagnostic criteria for ADHD. PMID

  15. Gestational weight gain standards based on women enrolled in the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project: a prospective longitudinal cohort study

    PubMed Central

    Bishop, Deborah C; Pang, Ruyan; Ohuma, Eric O; Kac, Gilberto; Abrams, Barbara; Rasmussen, Kathleen; Barros, Fernando C; Hirst, Jane E; Lambert, Ann; Papageorghiou, Aris T; Stones, William; Jaffer, Yasmin A; Altman, Douglas G; Noble, J Alison; Giolito, Maria Rosa; Gravett, Michael G; Purwar, Manorama; Kennedy, Stephen H; Bhutta, Zulfiqar A; Villar, José

    2016-01-01

    Objective To describe patterns in maternal gestational weight gain (GWG) in healthy pregnancies with good maternal and perinatal outcomes. Design Prospective longitudinal observational study. Setting Eight geographically diverse urban regions in Brazil, China, India, Italy, Kenya, Oman, United Kingdom, and United States, April 2009 to March 2014. Participants Healthy, well nourished, and educated women enrolled in the Fetal Growth Longitudinal Study component of the INTERGROWTH-21st Project, who had a body mass index (BMI) of 18.50-24.99 in the first trimester of pregnancy. Main outcome measures Maternal weight measured with standardised methods and identical equipment every five weeks (plus/minus one week) from the first antenatal visit (<14 weeks’ gestation) to delivery. After confirmation that data from the study sites could be pooled, a multilevel, linear regression analysis accounting for repeated measures, adjusted for gestational age, was applied to produce the GWG values. Results 13 108 pregnant women at <14 weeks’ gestation were screened, and 4607 met the eligibility criteria, provided consent, and were enrolled. The variance within sites (59.6%) was six times higher than the variance between sites (9.6%). The mean GWGs were 1.64 kg, 2.86 kg, 2.86 kg, 2.59 kg, and 2.56 kg for the gestational age windows 14-18+6 weeks, 19-23+6 weeks, 24-28+6 weeks, 29-33+6 weeks, and 34-40+0 weeks, respectively. Total mean weight gain at 40 weeks’ gestation was 13.7 (SD 4.5) kg for 3097 eligible women with a normal BMI in the first trimester. Of all the weight measurements, 71.7% (10 639/14 846) and 94.9% (14 085/14 846) fell within the expected 1 SD and 2 SD thresholds, respectively. Data were used to determine fitted 3rd, 10th, 25th, 50th, 75th, 90th, and 97th smoothed GWG centiles by exact week of gestation, with equations for the mean and standard deviation to calculate any desired centiles according to gestational age in exact weeks. Conclusions

  16. Tissue engineering a fetal membrane.

    PubMed

    Mi, Shengli; David, Anna L; Chowdhury, Bipasha; Jones, Roanne Razalia; Hamley, Ian William; Squires, Adam M; Connon, Che John

    2012-02-01

    The aim of this study was to construct an artificial fetal membrane (FM) by combination of human amniotic epithelial stem cells (hAESCs) and a mechanically enhanced collagen scaffold containing encapsulated human amniotic stromal fibroblasts (hASFs). Such a tissue-engineered FM may have the potential to plug structural defects in the amniotic sac after antenatal interventions, or to prevent preterm premature rupture of the FM. The hAESCs and hASFs were isolated from human fetal amniotic membrane (AM). Magnetic cell sorting was used to enrich the hAESCs by positive ATP-binding cassette G2 selection. We investigated the use of a laminin/fibronectin (1:1)-coated compressed collagen gel as a novel scaffold to support the growth of hAESCs. A type I collagen gel was dehydrated to form a material mimicking the mechanical properties and ultra-structure of human AM. hAESCs successfully adhered to and formed a monolayer upon the biomimetic collagen scaffold. The resulting artificial membrane shared a high degree of similarity in cell morphology, protein expression profiles, and structure to normal fetal AM. This study provides the first line of evidence that a compacted collagen gel containing hASFs could adequately support hAESCs adhesion and differentiation to a degree that is comparable to the normal human fetal AM in terms of structure and maintenance of cell phenotype. PMID:21919796

  17. Hemodynamics in fetal arrhythmia.

    PubMed

    Sonesson, Sven-Erik; Acharya, Ganesh

    2016-06-01

    Fetal arrhythmias are among the few conditions that can be managed in utero. However, accurate diagnosis is essential for appropriate management. Ultrasound-based imaging methods can be used to study fetal heart structure and function noninvasively and help to understand fetal cardiovascular pathophysiology, and they remain the mainstay of evaluating fetuses with arrhythmias in clinical settings. Hemodynamic evaluation using Doppler echocardiography allows the elucidation of the electrophysiological mechanism and helps to make an accurate diagnosis. It can also be used as a tool to understand fetal cardiac pathophysiology, for assessing fetal condition and monitoring the effect of antiarrhythmic treatment. This narrative review describes Doppler techniques that are useful for evaluating fetal cardiac rhythms to refine diagnosis and provides an overview of hemodynamic changes observed in different types of fetal arrhythmia. PMID:26660845

  18. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  19. A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits.

    PubMed

    Stone, R T; Keele, J W; Shackelford, S D; Kappes, S M; Koohmaraie, M

    1999-06-01

    A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits. PMID:10375215

  20. Response to long-term growth hormone therapy in patients affected by RASopathies and growth hormone deficiency: Patterns of growth, puberty and final height data.

    PubMed

    Tamburrino, Federica; Gibertoni, Dino; Rossi, Cesare; Scarano, Emanuela; Perri, Annamaria; Montanari, Francesca; Fantini, Maria Pia; Pession, Andrea; Tartaglia, Marco; Mazzanti, Laura

    2015-11-01

    RASopathies are developmental disorders caused by heterozygous germline mutations in genes encoding proteins in the RAS-MAPK signaling pathway. Reduced growth is a common feature. Several studies generated data on growth, final height (FH), and height velocity (HV) after growth hormone (GH) treatment in patients with these disorders, particularly in Noonan syndrome, the most common RASopathy. These studies, however, refer to heterogeneous cohorts in terms of molecular information, GH status, age at start and length of therapy, and GH dosage. This work reports growth data in 88 patients affected by RASopathies with molecularly confirmed diagnosis, together with statistics on body proportions, pubertal pattern, and FH in 33, including 16 treated with GH therapy for proven GH deficiency. Thirty-three patients showed GH deficiency after pharmacological tests, and were GH-treated for an average period of 6.8 ± 4.8 years. Before starting therapy, HV was -2.6 ± 1.3 SDS, and mean basal IGF1 levels were -2.0 ± 1.1 SDS. Long-term GH therapy, starting early during childhood, resulted in a positive height response compared with untreated patients (1.3 SDS in terms of height-gain), normalizing FH for Ranke standards but not for general population and Target Height. Pubertal timing negatively affected pubertal growth spurt and FH, with IGF1 standardized score increased from -2.43 to -0.27 SDS. During GH treatment, no significant change in bone age velocity, body proportions, or cardiovascular function was observed. PMID:26227443

  1. Kinetics of grain growth in the weld heat-affected zone of Alloy 718

    SciTech Connect

    Radhakrishnan, B.; Thompson, R.G.

    1993-12-01

    Grain-boundary liquation occurs in the weld heat-affected zone (HAZ) of the Ni-base superalloy 718 at locations where the peak temperatures are greater than about 1,200 C. The evolution of the grain structure at the HAZ locations depends upon the interaction between the grains and the grain-boundary liquid. The evolution of grain structure in the presence of grain-boundary liquid was simulated by subjecting samples to controlled thermal cycles using resistance heating. A measurement of grain size as a function of isothermal hold at two peak temperatures of 1,200 C and 1,227 C indicated that in alloy 718, the kinetics of grain growth depended upon the prior thermal history of the alloy. In the solution-treated alloy, the presence of grain-boundary liquid did not arrest grain growth at either peak temperature. In the homogenized and aged alloy, a grain refinement was observed at the peak temperature of 1,227 C, while an arrest of grain growth was observed at a peak temperature of 1,200 C. Liquid film migration (LFM) and subgrain coalescence, either acting alone or simultaneously, are shown to explain most of the observed microstructural phenomena and the kinetics of grain growth in the alloy.

  2. Kinetics of grain growth in the weld heat-affected zone of alloy 718

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, B.; Thompson, R. G.

    1993-12-01

    Grain-boundary liquation occurs in the weld heat-affected zone (HAZ) of the Ni-base superalloy 718 at locations where the peak temperatures are greater than about 1200 ‡C. The evolution of the grain structure at these HAZ locations depends upon the interaction between the grains and the grain-boundary liquid. The evolution of grain structure in the presence of grain-boundary liquid was simulated by subjecting samples to controlled thermal cycles using resistance heating. A measurement of grain size as a function of isothermal hold at two peak temperatures of 1200 ‡C and 1227 ‡C indicated that in alloy 718, the kinetics of grain growth depended upon the prior thermal history of the alloy. In the solution-treated alloy, the presence of grain-boundary liquid did not arrest grain growth at either peak temperature. In the homogenized and aged alloy, a grain refinement was observed at the peak temperature of 1227 ‡C, while an arrest of grain growth was observed at a peak temperature of 1200‡C. Liquid film migration (LFM) and subgrain coalescence, either acting alone or simultaneously, are shown to explain most of the observed microstructural phenomena and the kinetics of grain growth in the alloy.

  3. Alkyl-methylimidazolium ionic liquids affect the growth and fermentative metabolism of Clostridium sp

    SciTech Connect

    Nancharaiah, Y.V.; Francis, A.

    2011-06-01

    In this study, the effect of ionic liquids, 1-ethyl-3-methylimidazolium acetate [EMIM][Ac], 1-ethyl-3-methylimidazolium diethylphosphate [EMIM][DEP], and 1-methyl-3-methylimidazolium dimethylphosphate [MMIM][DMP] on the growth and glucose fermentation of Clostridium sp. was investigated. Among the three ionic liquids tested, [MMIM][DMP] was found to be least toxic. Growth of Clostridium sp. was not inhibited up to 2.5, 4 and 4 g L{sup -1} of [EMIM][Ac], [EMIM][DEP] and [MMIM][DMP], respectively. [EMIM][Ac] at <2.5 g L{sup -1}, showed hormetic effect and stimulated the growth and fermentation by modulating medium pH. Total organic acid production increased in the presence of 2.5 and 2 g L{sup -1} of [EMIM][Ac] and [MMIM][DMP]. Ionic liquids had no significant influence on alcohol production at <2.5 g L{sup -1}. Total gas production was affected by ILs at {ge}2.5 g L{sup -1} and varied with type of methylimidazolium IL. Overall, the results show that the growth and fermentative metabolism of Clostridium sp. is not impacted by ILs at concentrations below 2.5 g L{sup -1}.

  4. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  5. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth.

    PubMed

    Besseau, Sébastien; Hoffmann, Laurent; Geoffroy, Pierrette; Lapierre, Catherine; Pollet, Brigitte; Legrand, Michel

    2007-01-01

    In Arabidopsis thaliana, silencing of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), a lignin biosynthetic gene, results in a strong reduction of plant growth. We show that, in HCT-silenced plants, lignin synthesis repression leads to the redirection of the metabolic flux into flavonoids through chalcone synthase activity. Several flavonol glycosides and acylated anthocyanin were shown to accumulate in higher amounts in silenced plants. By contrast, sinapoylmalate levels were barely affected, suggesting that the synthesis of that phenylpropanoid compound might be HCT-independent. The growth phenotype of HCT-silenced plants was shown to be controlled by light and to depend on chalcone synthase expression. Histochemical analysis of silenced stem tissues demonstrated altered tracheary elements. The level of plant growth reduction of HCT-deficient plants was correlated with the inhibition of auxin transport. Suppression of flavonoid accumulation by chalcone synthase repression in HCT-deficient plants restored normal auxin transport and wild-type plant growth. By contrast, the lignin structure of the plants simultaneously repressed for HCT and chalcone synthase remained as severely altered as in HCT-silenced plants, with a large predominance of nonmethoxylated H units. These data demonstrate that the reduced size phenotype of HCT-silenced plants is not due to the alteration of lignin synthesis but to flavonoid accumulation. PMID:17237352

  6. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  7. Fetal programming and early identification of newborns at high risk of free radical-mediated diseases

    PubMed Central

    Perrone, Serafina; Santacroce, Antonino; Picardi, Anna; Buonocore, Giuseppe

    2016-01-01

    Nowadays metabolic syndrome represents a real outbreak affecting society. Paradoxically, pediatricians must feel involved in fighting this condition because of the latest evidences of developmental origins of adult diseases. Fetal programming occurs when the normal fetal development is disrupted by an abnormal insult applied to a critical point in intrauterine life. Placenta assumes a pivotal role in programming the fetal experience in utero due to the adaptive changes in structure and function. Pregnancy complications such as diabetes, intrauterine growth restriction, pre-eclampsia, and hypoxia are associated with placental dysfunction and programming. Many experimental studies have been conducted to explain the phenotypic consequences of fetal-placental perturbations that predispose to the genesis of metabolic syndrome, obesity, diabetes, hyperinsulinemia, hypertension, and cardiovascular disease in adulthood. In recent years, elucidating the mechanisms involved in such kind of process has become the challenge of scientific research. Oxidative stress may be the general underlying mechanism that links altered placental function to fetal programming. Maternal diabetes, prenatal hypoxic/ischaemic events, inflammatory/infective insults are specific triggers for an acute increase in free radicals generation. Early identification of fetuses and newborns at high risk of oxidative damage may be crucial to decrease infant and adult morbidity. PMID:27170927

  8. Fetal programming and early identification of newborns at high risk of free radical-mediated diseases.

    PubMed

    Perrone, Serafina; Santacroce, Antonino; Picardi, Anna; Buonocore, Giuseppe

    2016-05-01

    Nowadays metabolic syndrome represents a real outbreak affecting society. Paradoxically, pediatricians must feel involved in fighting this condition because of the latest evidences of developmental origins of adult diseases. Fetal programming occurs when the normal fetal development is disrupted by an abnormal insult applied to a critical point in intrauterine life. Placenta assumes a pivotal role in programming the fetal experience in utero due to the adaptive changes in structure and function. Pregnancy complications such as diabetes, intrauterine growth restriction, pre-eclampsia, and hypoxia are associated with placental dysfunction and programming. Many experimental studies have been conducted to explain the phenotypic consequences of fetal-placental perturbations that predispose to the genesis of metabolic syndrome, obesity, diabetes, hyperinsulinemia, hypertension, and cardiovascular disease in adulthood. In recent years, elucidating the mechanisms involved in such kind of process has become the challenge of scientific research. Oxidative stress may be the general underlying mechanism that links altered placental function to fetal programming. Maternal diabetes, prenatal hypoxic/ischaemic events, inflammatory/infective insults are specific triggers for an acute increase in free radicals generation. Early identification of fetuses and newborns at high risk of oxidative damage may be crucial to decrease infant and adult morbidity. PMID:27170927

  9. Concentrations of Mineral in Amniotic Fluid and Their Relations to Selected Maternal and Fetal Parameters.

    PubMed

    Suliburska, J; Kocyłowski, R; Komorowicz, I; Grzesiak, M; Bogdański, P; Barałkiewicz, D

    2016-07-01

    The concentrations of various trace elements in amniotic fluid (AF) change over the course of pregnancy, with gestational age and fetus growth. The aim of the present study was to evaluate the concentrations of selected essential and toxic elements in AF and their relations to maternal and fetal parameters. The study was carried out in 39 pregnant women, aged 34.6 ± 4.7 years, between weeks 16 and 26 of gestation. Amniotic fluid samples were obtained during the standard procedure of amniocentesis in high-risk patients for chromosomal abnormalities. An inductively coupled plasma mass spectrometry (ICP-MS) technique was used to determine the levels of Al, As, Ba, Cd, Co, Cr, Cu, Mg, Mn, Ni, Sr, U, and V in AF. Body mass and blood pressure were measured in all the women. The basic parameters of fetal development were also assayed. It was found that the age of the mother, the gender of the fetus, and the week of the pregnancy may affect the concentrations of mineral in the amniotic fluid. Moreover, several significant correlations between the essential and toxic elements and maternal and fetal parameters were observed. In particular, negative and positive correlations between fetal parameters and magnesium and copper levels in AF, respectively, were seen. The present findings demonstrate the association between minerals in AF and fetal development. PMID:26547910

  10. Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization.

    PubMed

    Lu, Xuanyu; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Thomas Gh; Luan, Xianghong

    2016-06-01

    Matrix molecules such as the enamel-related calcium-binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN-deficient mice (AMBN(Δ5-6) ) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis-related growth factors, such as insulin-like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN-deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN-deficient BMSCs. Confirming the effects of AMBN on long bone growth, back-crossing of mutant mice with full-length AMBN overexpressors resulted in a complete rescue of AMBN(Δ5-6) bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis-related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the

  11. Fetal Circulatory Variation in an Acute Incident Causing Bradycardia

    PubMed Central

    Olgan, Safak; Sakinci, Mehmet; Dogan, Nasuh Utku; Cagliyan, Erkan; Altunyurt, Sabahattin

    2014-01-01

    Umbilical artery\\vein, middle cerebral artery, and ductus venosus Doppler velocimetry were performed at 33 weeks of gestation in the settings of an intrauterine growth restricted fetus during a heart rate deceleration. Interestingly, we recorded a sudden onset redistribution of fetal blood flow with fetal bradycardia. Spontaneous normalization of waveforms was observed once fetal heart rate returned to normal. Our case provides evidence to circulatory variation of a human fetus resulting from an acute incident causing bradycardia. PMID:25580322

  12. Fetal magnetic resonance imaging and ultrasound.

    PubMed

    Wataganara, Tuangsit; Ebrashy, Alaa; Aliyu, Labaran Dayyabu; Moreira de Sa, Renato Augusto; Pooh, Ritsuko; Kurjak, Asim; Sen, Cihat; Adra, Abdallah; Stanojevic, Milan

    2016-07-01

    Magnetic resonance imaging (MRI) has been increasingly adopted in obstetrics practice in the past three decades. MRI aids prenatal ultrasound and improves diagnostic accuracy for selected maternal and fetal conditions. However, it should be considered only when high-quality ultrasound cannot provide certain information that affects the counseling, prenatal intervention, pregnancy course, and delivery plan. Major indications of fetal MRI include, but are not restricted to, morbidly adherent placenta, selected cases of fetal brain anomalies, thoracic lesions (especially in severe congenital diaphragmatic hernia), and soft tissue tumors at head and neck regions of the fetus. For fetal anatomy assessment, a 1.5-Tesla machine with a fast T2-weighted single-shot technique is recommended for image requisition of common fetal abnormalities. Individual judgment needs to be applied when considering usage of a 3-Tesla machine. Gadolinium MRI contrast is not recommended during pregnancy. MRI should be avoided in the first half of pregnancy due to small fetal structures and motion artifacts. Assessment of fetal cerebral cortex can be achieved with MRI in the third trimester. MRI is a viable research tool for noninvasive interrogation of the fetus and the placenta. PMID:27092644

  13. [Intrauterine growth retardation and adult outcome].

    PubMed

    Lapillonne, Alexandre

    2011-03-01

    The epidemiologist David Barker was among the first to develop the concept that some adult diseases might have their origins during fetal life, based notably on a strong association between low birth weight and the risk of chronic diseases in adulthood (coronary artery disease, hypertension and stroke, type 2 diabetes, and osteoporosis). Several other groups replicated these results in other populations, thus confirming that birth weight is a determining factor of adult health. Intra-uterine growth retardation (IUGR) has been widely used as a marker of poor fetal nutrition and health, but some antenatal nutritional disturbances can increase the risk of diseases later in life without affecting fetal growth. The risk of diseases in adulthood appears to be further increased when IUGR is associated with rapid postnatal catch-up growth. This suggests that fetal malnutrition induces adaptations necessary for fetal survival and health, but that it also undermines future health if the postnatal environment is unfavorable. The fetal origins of adult diseases has major public health implications and calls for reinforced pre- and post-natal prevention strategies. PMID:22292298

  14. Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    PubMed Central

    Sandor, Manette E.; Chazdon, Robin L.

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700

  15. Effects of drought-affected corn and nonstarch polysaccharide enzyme inclusion on nursery pig growth performance.

    PubMed

    Jones, C K; Frantz, E L; Bingham, A C; Bergstrom, J R; DeRouchey, J M; Patience, J F

    2015-04-01

    The effectiveness of carbohydrase enzymes has been inconsistent in corn-based swine diets; however, the increased substrate of nonstarch polysaccharides in drought-affected corn may provide an economic model for enzyme inclusion, but this has not been evaluated. A total of 360 barrows (PIC 1050 × 337, initially 5.85 kg BW) were used to determine the effects of drought-affected corn inclusion with or without supplementation of commercial carbohydrases on growth performance and nutrient digestibility of nursery pigs. Initially, 34 corn samples were collected to find representatives of normal and drought-affected corn. The lot selected to represent the normal corn had a test weight of 719.4 kg/m3, 15.0% moisture, and 4.2% xylan. The lot selected to represent drought-affected corn had a test weight of 698.8 kg/m3, 14.3% moisture, and 4.7% xylan. After a 10-d acclimation period postweaning, nursery pigs were randomly allotted to 1 of 8 dietary treatments in a completely randomized design. Treatments were arranged in a 2 × 4 factorial with main effects of corn (normal vs. drought affected) and enzyme inclusion (none vs. 100 mg/kg Enzyme A vs. 250 mg/kg Enzyme B vs. 100 mg/kg Enzyme A + 250 mg/kg Enzyme B). Both enzymes were included blends of β-glucanase, cellulose, and xylanase (Enzyme A) or hemicellulase and pectinases (Enzyme B). Pigs were fed treatment diets from d 10 to 35 postweaning in 2 phases. Feed and fecal samples were collected on d 30 postweaning to determine apparent total tract digestibility of nutrients. The nutrient concentrations of normal and drought-affected corn were similar, which resulted in few treatment or main effects differences of corn type or enzyme inclusion. No interactions were observed (P > 0.10) between corn source and enzyme inclusion. Overall (d 10 to 35), treatments had no effect on ADG or ADFI, but enzyme A inclusion tended to improve (P < 0.10; 0.74 vs. 0.69) G:F, which was primarily driven by the improved feed efficiency (0

  16. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.

    PubMed

    Jones, E Eirian; Stewart, Alison; Whipps, John M

    2011-09-01

    Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to

  17. Exercise during pregnancy: maternal and fetal responses. A brief review.

    PubMed

    Gorski, J

    1985-08-01

    Since many physiological, metabolic, and endocrine changes that occur during pregnancy are evident even at rest, the alterations found during exercise may not necessarily be the same as those found in the normal population. Nonetheless, the exercise-induced cardiopulmonary changes are essentially normal or slightly exaggerated during pregnancy. The energy cost of cycle exercise is unchanged during pregnancy; however, the increased weight bearing, especially evident in late pregnancy, adds to the exercise effort during walking, climbing, or jogging. Aerobic work capacity remains unchanged during pregnancy, and typical training adaptations can be found during pregnancy. Hypoglycemia occurs more easily during exercise in pregnant women, even though lipid provision is exaggerated during late pregnancy. The influence of maternal exercise on the fetus is evident in changed heart rhythm and breathing patterns of the fetus. Pregnant patients with utero-placental insufficiency are more likely to have these fetal changes during exercise. Severe hyperthermia should be avoided during pregnancy. Animal studies indicate that some aspects of fetal metabolism are affected by maternal exercise; whether the reduction in uterine blood flow found during heavy exercise exacerbates this response is not known. Birth weight is unaffected when healthy well-nourished mothers participate in mild to moderate exercise programs during pregnancy. However, more intense exercise programs during pregnancy in animals can cause changes in fetal growth and litter size. PMID:3929010

  18. A growth QTL on chicken chromosome 1 affects emotionality and sociality.

    PubMed

    Wirén, Anna; Jensen, Per

    2011-03-01

    Domestication of animals, regardless of species, is often accompanied by simultaneous changes in several physiological and behavioral traits (e.g. growth rate and fearfulness). In this study we compared the social behavior and emotional reactivity, as measured in a battery of behavioral tests, of two groups of chickens selected from a common genetic background, an advanced intercross line between the ancestral red junglefowl ("RJF") and the domesticated White Leghorn layer ("WL"). The birds were selected for homozygosity for alternative alleles at one locus (a microsatellite marker), centrally positioned in a previously identified pleiotropic growth QTL on chromosome 1, closely linked to one major candidate gene (AVPR1a) for certain aspects of social behavior. Birds homozygous for the WL allele ("WL genotype") had a modified pattern of social and emotional reactions than birds homozygous for the RJF allele ("RJF genotype"), shown by different scores in a principal components analysis. These results suggest that the growth QTL affects a number of domestication related behavioral traits, and may have been a primary target of selection during domestication. The QTL contains a multitude of genes, several of which have been linked to social behavior (for example the vasotocin receptor AVPR1a targeted in this experiment). Future studies aimed at making a higher resolution genotypic characterization of the QTL should give more information about which of these genes may be considered the strongest candidates for bringing about the behavioral changes associated with animal domestication. PMID:20596888

  19. Sodic Soil Properties and Sunflower Growth as Affected by Byproducts of Flue Gas Desulfurization

    PubMed Central

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO4, which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha−1) and two leaching levels (750 and 1200 m3 ha−1). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha−1 and water was supplied at 1200 m3·ha−1. Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage. PMID:23285042

  20. Review of Factors Affecting the Growth and Survival of Follicular Grafts

    PubMed Central

    Parsley, William M; Perez-Meza, David

    2010-01-01

    Great strides have been made in hair restoration over the past 20 years. A better understanding of natural balding and non-balding patterns along with more respect for ageing has helped guide proper hairline design. Additionally, the use of smaller grafts has created a significantly improved natural appearance to the transplanted grafts. Inconsistent growth and survival of follicular grafts, however, has continued to be a problem that has perplexed hair restoration surgeons. This review attempts to explore the stresses affecting grafts during transplantation and some of the complexities involved in graft growth and survival. These authors reviewed the literature to determine the primary scope of aspects influencing growth and survival of follicular grafts. This scope includes patient selection, operating techniques, graft care, storage solutions and additives. The primary focus of the hair restoration surgeons should first be attention to the fundamentals of hair care, hydration, temperature, time out of body and gentle handling. Factors such as advanced storage solutions and additives can be helpful once the fundamentals have been addressed. PMID:21031063

  1. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris.

    PubMed

    Perales-Vela, Hugo Virgilio; García, Roberto Velasco; Gómez-Juárez, Evelyn Alicia; Salcedo-Álvarez, Martha Ofelia; Cañizares-Villanueva, Rosa Olivia

    2016-10-01

    Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment. PMID:27344399

  2. Loss of stromal JUNB does not affect tumor growth and angiogenesis.

    PubMed

    Braun, Jennifer; Strittmatter, Karin; Nübel, Tobias; Komljenovic, Dorde; Sator-Schmitt, Melanie; Bäuerle, Tobias; Angel, Peter; Schorpp-Kistner, Marina

    2014-03-15

    The transcription factor AP-1 subunit JUNB has been shown to play a pivotal role in angiogenesis. It positively controls angiogenesis by regulating Vegfa as well as the transcriptional regulator Cbfb and its target Mmp13. In line with these findings, it has been demonstrated that tumor cell-derived JUNB promotes tumor growth and angiogenesis. In contrast to JUNB's function in tumor cells, the role of host-derived stromal JUNB has not been elucidated so far. Here, we show that ablation of Junb in stromal cells including endothelial cells (ECs), vascular smooth muscle cells (SMCs) and fibroblasts does not affect tumor growth in two different syngeneic mouse models, the B16-F1 melanoma and the Lewis lung carcinoma model. In-depth analyses of the tumors revealed that tumor angiogenesis remains unaffected as assessed by measurements of the microvascular density and relative blood volume in the tumor. Furthermore, we could show that the maturation status of the tumor vasculature, analyzed by the SMC marker expression, α-smooth muscle actin and Desmin, as well as the attachment of pericytes to the endothelium, is not changed upon ablation of Junb. Taken together, these results indicate that the pro-angiogenic functions of stromal JUNB are well compensated with regard to tumor angiogenesis and tumor growth. PMID:24027048

  3. Sodic soil properties and sunflower growth as affected by byproducts of flue gas desulfurization.

    PubMed

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO(4), which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha(-1)) and two leaching levels (750 and 1200 m(3) ha(-1)). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha(-1) and water was supplied at 1200 m(3)·ha(-1). Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage. PMID:23285042

  4. Does forest fragmentation affect the same way all growth-forms?

    PubMed

    Rodríguez-Loinaz, Gloria; Amezaga, Ibone; Onaindia, Miren

    2012-02-01

    Fragmentation of natural habitats is one of the main causes of the loss of biodiversity. However, all plants do not respond to habitat fragmentation in the same way due to differences in species traits. We studied the effect of patch size and isolation on the biodiversity of vegetation in the mixed-oak forests in the north of the Iberian Peninsula. The aim was to evaluate whether all the growth-forms of vegetation are equally affected by forest fragmentation in order to improve the management strategies to restore this type of vegetation. This study has shown that the effect of the area and spatial isolation of the patches was not the same for the different growth-forms. Fragmentation had a mainly negative effect on the richness and diversity of forest specialist species, especially ferns and herbaceous growth-forms. Moreover, the presence and/or cover of woodland herbaceous species (such as Lamiastrum galeobdolon and Helleborus viridis) and of woodland ferns (namely Asplenium adiantum-nigrum, Asplenium trichomanes, Polystichum setiferum, Dryopteris affinis) were negatively affected by patch size, possibly due to the reduction of habitat quality. These species have been replaced by more generalist species (such as Cardamine pratensis, Cirsium sp., Pulmonaria longifolia or Rumex acetosella) in small patches. Patch isolation had a negative effect on the presence of forest specialist species (namely, L. galeobdolon, Frangula alnus, Hypericum androsaemum, A. adiantum-nigrum and Athyrium filix-femina) and favored colonization by more generalist species such as Cirsium sp., Calluna vulgaris, Erica arborea or Ulex sp. Thus, in this region special attention should be paid to the conservation of forest specialist species, especially ferns and herbs. In conservation policy focused on forest specialist species, the most valuable species in forest ecosystems, conservation of large forest areas should be promoted. PMID:21924813

  5. Increased systolic load causes adverse remodeling of fetal aortic and mitral valves.

    PubMed

    Tibayan, Frederick A; Louey, Samantha; Jonker, Sonnet; Espinoza, Herbert; Chattergoon, Natasha; You, Fanglei; Thornburg, Kent L; Giraud, George

    2015-12-15

    While abnormal hemodynamic forces alter fetal myocardial growth, little is known about whether such insults affect fetal cardiac valve development. We hypothesized that chronically elevated systolic load would detrimentally alter fetal valve growth. Chronically instrumented fetal sheep received either a continuous infusion of adult sheep plasma to increase fetal blood pressure, or a lactated Ringer's infusion as a volume control beginning on day 126 ± 4 of gestation. After 8 days, mean arterial pressure was higher in the plasma infusion group (63.0 mmHg vs. 41.8 mmHg, P < 0.05). Mitral annular septal-lateral diameter (11.9 mm vs. 9.1 mm, P < 0.05), anterior leaflet length (7.7 mm vs. 6.4 mm, P < 0.05), and posterior leaflet length (P2; 4.0 mm vs. 3.0 mm, P < 0.05) were greater in the elevated load group. mRNA levels of Notch-1, TGF-β2, Wnt-2b, BMP-1, and versican were suppressed in aortic and mitral valve leaflets; elastin and α1 type I collagen mRNA levels were suppressed in the aortic valves only. We conclude that sustained elevated arterial pressure load on the fetal heart valve leads to anatomic remodeling and, surprisingly, suppression of signaling and extracellular matrix genes that are important to valve development. These novel findings have important implications on the developmental origins of valve disease and may have long-term consequences on valve function and durability. PMID:26354842

  6. Fetal Health and Development

    MedlinePlus

    ... specific prenatal tests to monitor both the mother's health and fetal health during each trimester. With modern technology, health professionals can Detect birth defects Identify problems that ...

  7. Reduction in DNA topoisomerase I level affects growth, phenotype and nucleoid architecture of Mycobacterium smegmatis.

    PubMed

    Ahmed, Wareed; Menon, Shruti; Karthik, Pullela V; Nagaraja, Valakunja

    2015-02-01

    The steady-state negative supercoiling of eubacterial genomes is maintained by the action of DNA topoisomerases. Topoisomerase distribution varies in different species of mycobacteria. While Mycobacterium tuberculosis (Mtb) contains a single type I (TopoI) and a single type II (Gyrase) enzyme, Mycobacterium smegmatis (Msm) and other members harbour additional relaxases. TopoI is essential for Mtb survival. However, the necessity of TopoI or other relaxases in Msm has not been investigated. To recognize the importance of TopoI for growth, physiology and gene expression of Msm, we have developed a conditional knock-down strain of TopoI in Msm. The TopoI-depleted strain exhibited extremely slow growth and drastic changes in phenotypic characteristics. The cessation of growth indicates the essential requirement of the enzyme for the organism in spite of having additional DNA relaxation enzymes in the cell. Notably, the imbalance in TopoI level led to the altered expression of topology modulatory proteins, resulting in a diffused nucleoid architecture. Proteomic and transcript analysis of the mutant indicated reduced expression of the genes involved in central metabolic pathways and core DNA transaction processes. RNA polymerase (RNAP) distribution on the transcription units was affected in the TopoI-depleted cells, suggesting global alteration in transcription. The study thus highlights the essential requirement of TopoI in the maintenance of cellular phenotype, growth characteristics and gene expression in mycobacteria. A decrease in TopoI level led to altered RNAP occupancy and impaired transcription elongation, causing severe downstream effects. PMID:25516959

  8. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues

    PubMed Central

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-01-01

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment. PMID:26771139

  9. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues.

    PubMed

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-02-01

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment. PMID:26771139

  10. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed Central

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions. PMID:26735689

  11. Fetal and infant origins of asthma.

    PubMed

    Duijts, Liesbeth

    2012-01-01

    Previous studies have suggested that asthma, like other common diseases, has at least part of its origin early in life. Low birth weight has been shown to be associated with increased risks of asthma, chronic obstructive airway disease, and impaired lung function in adults, and increased risks of respiratory symptoms in early childhood. The developmental plasticity hypothesis suggests that the associations between low birth weight and diseases in later life are explained by adaptation mechanisms in fetal life and infancy in response to various adverse exposures. Various pathways leading from adverse fetal and infant exposures to growth adaptations and respiratory health outcomes have been studied, including fetal and early infant growth patterns, maternal smoking and diet, children's diet, respiratory tract infections and acetaminophen use, and genetic susceptibility. Still, the specific adverse exposures in fetal and early postnatal life leading to respiratory disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life, and their epigenetic mechanisms may underlie the complex associations of low birth weight with respiratory disease in later life. New well-designed epidemiological studies are needed to identify the specific underlying mechanisms. This review is focused on specific adverse fetal and infant growth patterns and exposures, genetic susceptibility, possible respiratory adaptations and perspectives for new studies. PMID:22350146

  12. Fibroblast growth factor 9 is a novel modulator of negative affect

    PubMed Central

    Aurbach, Elyse L.; Inui, Edny Gula; Turner, Cortney A.; Hagenauer, Megan H.; Prater, Katherine E.; Li, Jun Z.; Absher, Devin; Shah, Najmul; Blandino, Peter; Bunney, William E.; Myers, Richard M.; Barchas, Jack D.; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda

    2015-01-01

    Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9’s function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders. PMID:26351673

  13. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia.

    PubMed

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-08-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability. PMID:25908097

  14. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia

    PubMed Central

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-01-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability. PMID:25908097

  15. Fetal malnutrition--the price of upright posture?

    PubMed Central

    Briend, A

    1979-01-01

    The pattern of preterm fetal growth faltering, normally seen in man, differs from that observed in animals. This type of fetal growth cannot be considered as an adaptation to facilitate birth but is more likely to be due to rapid evolution and imperfect adaptation to the upright posture. The pattern of posture and physical activity during pregnancy may therefore be an important determinant of fetal growth. Differences in intrauterine nutrition existing between social groups, usually ascribed to variations of maternal diet and nutrition, may well result from different patterns of maternal activity in the weeks preceding birth. PMID:476446

  16. The protective function of personal growth initiative among a genocide-affected population in Rwanda.

    PubMed

    Blackie, Laura E R; Jayawickreme, Eranda; Forgeard, Marie J C; Jayawickreme, Nuwan

    2015-07-01

    The aim of the current study was to investigate the extent to which individual differences in personal growth initiative (PGI) were associated with lower reports of functional impairment of daily activities among a genocide-affected population in Rwanda. PGI measures an individual's motivation to develop as a person and the extent to which he or she is active in setting goals that work toward achieving self-improvement. We found that PGI was negatively associated with functional impairment when controlling for depression, posttraumatic stress disorder, and other demographic factors. Our results suggest that PGI may constitute an important mindset for facilitating adaptive functioning in the aftermath of adversity and in the midst of psychological distress, and as such they might have practical applications for the development of intervention programs. PMID:26147518

  17. Biomedical Instruments for Fetal and Neonatal Surveillance

    NASA Astrophysics Data System (ADS)

    Rolfe, P.; Scopesi, F.; Serra, G.

    2006-10-01

    Specialised instruments have been developed to aid the care of the fetus and the newborn baby. Miniature sensors using optical, electrical, chemical, mechanical and magnetic principles have been produced for capturing key measurands. These include temperature, pressure, flow and dimension, as well as several specific molecules such as glucose, oxygen and carbon dioxide. During pregnancy ultrasound imaging and blood flow techniques provide valuable information concerning fetal abnormalities, fetal growth, fetal breathing and fetal heart rate. Signal processing and pattern recognition can be useful for deriving indicators of fetal distress and clinical status, based on biopotentials as well as ultrasound signals. Fetal pH measurement is a critical requirement during labour and delivery. The intensive care of ill preterm babies involves provision of an optimal thermal environment and respiratory support. Monitoring of blood gas and acid-base status is essential, and this involves both blood sampling for in vitro analysis as well as the use of invasive or non-invasive sensors. For the future it will be vital that the technologies used are subjected to controlled trials to establish benefit or otherwise.

  18. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  19. Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation.

    PubMed

    Beuchat, Larry R; Kim, Hoikyung; Gurtler, Joshua B; Lin, Li-Chun; Ryu, Jee-Hoon; Richards, Glenner M

    2009-12-31

    Cronobacter sakazakii has been isolated from a wide range of environmental sources and from several foods of animal and plant origin. While infections caused by C. sakazakii have predominantly involved neonates and infants, its presence on or in foods other than powdered infant formula raises concern about the safety risks these foods pose to immunocompromised consumers. We have done a series of studies to better understand the survival and growth characteristics of C. sakazakii in infant formula, infant cereal, fresh-cut produce, and juices made from fresh produce. Over a 12-month storage period, the pathogen survived better in dried formula and cereal at low a(w) (0.25-0.30) than at high a(w) (0.69-0.82) and at 4 degrees C compared to 30 degrees C. C. sakazakii grows in formulas and cereals reconstituted with water or milk and held at 12-30 degrees C. The composition of formulas or cereals does not markedly affect the rate of growth. C. sakazakii grows well on fresh-cut apple, cantaloupe, watermelon, cabbage, carrot, cucumber, lettuce, and tomato at 25 degrees C and in some types of produce at 12 degrees C. Treatment of fresh fruits and vegetables with sanitizers such as chlorine, chlorine dioxide, and a peroxyacetic acid-based solution causes reductions of 1.6-5.4 log CFU/apple, tomato, and lettuce. Cells of C. sakazakii in biofilms formed on stainless steel and enteral feeding tubes or dried on the surface of stainless steel have increased resistance to disinfectants. Death of cells in biofilms is affected by atmospheric relative humidity. These studies have contributed to a better understanding of the behavior of C. sakazakii in and on foods and on food-contact surfaces, thereby enabling the development of more effective strategies and interventions for its control. PMID:19346021

  20. Kinetics of Growth Retardant and Hormone Interactions in Affecting Cucumber Hypocotyl Elongation 1

    PubMed Central

    Moore, Thomas C.

    1967-01-01

    The capacities of indole-3-acetic acid (IAA) and gibberellin A3 (GA3) to counteract the inhibitory effects of (2-chloroethyl) trimethylammonium chloride (CCC), 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride (Amo-1618), and N,N-dimethylaminosuccinamic acid (B-995) on hypocotyl elongation in light-grown cucumber (Cucumis sativus L.) seedlings were investigated. One μg of GA3 applied to the shoot tip was sufficient to completely nullify the effect of 10 μg of Amo-1618 or 25 μg of B-995 applied simultaneously to the shoot tip, and 10 μg of GA3 completely counteracted the effect of 10−3 m CCC added to the root medium. One μg of IAA counteracted the effect of 10−3 m CCC in the root medium, but IAA did not nullify the action of either Amo-1618 or B-995. Experiments were conducted using 2 growth retardants simultaneously, which indicated that Amo-1618 and CCC inhibit a common process, namely GA biosynthesis, essential to hypocotyl elongation. However, since the effect of CCC was overcome by applications of both GA and IAA, growth retardation resulting from treatment with CCC apparently is not due solely to inhibition of GA biosynthesis. B-995 did not interact additively with either Amo-1618 or CCC, which suggests that B-995 affects a process different from those affected by the other 2 retardants. Thus, while inhibition evoked by B-995 is reversible by applied GA, the action of B-995 does not appear to be inhibition of GA biosynthesis. PMID:16656555

  1. Ecosystem regime shifts have not affected growth and survivorship of eastern Beaufort Sea belugas.

    PubMed

    Luque, Sebastián P; Ferguson, Steven H

    2009-05-01

    Large-scale ocean-atmosphere physical dynamics can have profound impacts on the structure and organization of marine ecosystems. These changes have been termed "regime shifts", and five different episodes have been detected in the North Pacific Ocean, with concurrent changes also occurring in the Bering and Beaufort Seas. Belugas from the Eastern Beaufort Sea (EBS) use the Bering Sea during winter and the Beaufort Sea during summer, yet the potential effects of regime shifts on belugas have not been assessed. We investigated whether body size and survivorship of EBS belugas harvested in the Mackenzie River delta region between 1993 and 2003 have been affected by previous purported regime shifts in the North Pacific. Residuals from the relationship between body length and age were calculated and compared among belugas born between 1932 and 1989. Residual body size was not significantly related to birth year for any regime, nor to the age group individuals belonged to during any regime. The percentage deviation in number of belugas born in any given year that survived to be included in the hunt (survivorship) did not show any significant trend within or between regimes. Accounting for lags of 1-5 years did not reveal any evidence of delayed effects. Furthermore, neither population index was significantly related to changes in major climatic variables that precede regime shifts. Our results suggest that EBS beluga body size and survivorship have not been affected by the major regime shifts of the North Pacific and the adjacent Bering and Beaufort Seas. EBS belugas may have been able to modify their diet without compromising their growth and survivorship. Diet and reproductive analyses over large and small time scales can help understand the mechanisms enabling belugas to avoid significant growth and reproductive effects of past regime shifts. PMID:19229560

  2. Fetal Neurobehavioral Development.

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; And Others

    1996-01-01

    Investigated the ontogeny of fetal autonomic, motoric, state, and interactive functioning in 31 healthy fetuses from 20 weeks through term. Found that male fetuses were more active than female fetuses, and that greater maternal stress appraisal was associated with reduced fetal heart rate variability. Found that an apparent period of…

  3. Physicochemical Factors Affecting the Growth of Burkholderia pseudomallei in Soil Microcosm

    PubMed Central

    Wang-ngarm, Supunnipa; Chareonsudjai, Sorujsiri; Chareonsudjai, Pisit

    2014-01-01

    Burkholderia pseudomallei causes melioidosis, the third most common cause of death from infectious diseases in northeast Thailand. Four physicochemical factors were set so that their values covered the range of the northeast, which is an endemic area. The soil pH was set at pH 4–10, soil salinity was 0.0–5.0% NaCl, total iron was 50–150 mg/kg soil, and carbon to nitrogen ratio (C/N) was 10:1 to 40:1. The experiments were carried out at 37°C, and soil moisture was maintained for 7 days. The number of viable bacterial cells was counted daily. Soil pH, salinity, Fe, and C/N ratio affected the bacterial growth. The bacterial colony was significantly (P < 0.05) reduced at soil pH > 8, soil salinity > 1% NaCl, and C/N ratio > 40:1. However, the growth of B. pseudomallei was enhanced by increasing the concentrations of iron significantly (P < 0.05). We propose using these findings to control B. pseudomallei in situ. PMID:24445210

  4. Zebra pattern in rocks as a function of grain growth affected by second-phase particles

    NASA Astrophysics Data System (ADS)

    Kelka, Ulrich; Koehn, Daniel; Beaudoin, Nicolas

    2015-09-01

    In this communication we present a simple microdynamic model which can explain the beginning of the zebra pattern formation in rocks. The two dimensional model consists of two main processes, mineral replacement along a reaction front, and grain boundary migration affected by impurities. In the numerical model we assume that an initial distribution of second-phase particles is present due to sedimentary layering. The reaction front percolates the model and redistributes second-phase particles by shifting them until the front is saturated and drops the particles again. This produces and enhances initial layering. Grain growth is hindered in layers with high second-phase particle concentrations whereas layers with low concentrations coarsen. Due to the grain growth activity in layers with low second-phase particle concentrations these impurities are collected at grain boundaries and the crystals become very clean. Therefore the white layers in the pattern contain large grains with low concentration of second-phase particles, whereas the dark layers contain small grains with a large second-phase particle concentration.

  5. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells

    PubMed Central

    Akhtar Ali, Muhammad; Younis, Shady; Wallerman, Ola; Gupta, Rajesh; Andersson, Leif; Sjöblom, Tobias

    2015-01-01

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle–related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes. PMID:26056301

  6. Implantable Ultralow Pulmonary Pressure Monitoring System for Fetal Surgery

    PubMed Central

    Etemadi, Mozziyar; Heller, J. Alex; Schecter, Samuel C.; Shue, Eveline H.; Miniati, Doug; Roy, Shuvo

    2015-01-01

    Congenital pulmonary hypoplasia is a devastating condition affecting fetal and newborn pulmonary physiology, resulting in great morbidity and mortality. The fetal lung develops in a fluid-filled environment. In this paper, we describe a novel, implantable pressure sensing and recording device which we use to study the pressures present in the fetal pulmonary tree throughout gestation. The system achieves 0.18 cm H2O resolution and can record for 21 days continuously at 256 Hz. Sample tracings of in vivo fetal lamb recordings are shown. PMID:22801521

  7. Salivary enzymes and exhaled air affect Streptococcus salivarius growth and physiological state in complemented artificial saliva.

    PubMed

    Roger, P; Harn-Arsa, S; Delettre, J; Béal, C

    2011-12-01

    To better understand the phenomena governing the establishment of the oral bacterium Streptococcus salivarius in the mouth, the effect of some environmental factors has been studied in complemented artificial saliva, under oral pH and temperature conditions. Three salivary enzymes at physiological concentrations were tested: peroxidase, lysozyme and amylase, as well as injection of exhaled air. Injection of air containing 5% CO2 and 16% O2 induced a deleterious effect on S. salivarius K12, mainly by increasing redox potential. Addition of lysozyme slightly affected the physiological state of S. salivarius by altering membrane integrity. In contrast, peroxidase was not detrimental as it made it possible to decrease the redox potential. The addition of amylase reduced the specific growth rate of S. salivarius by formation of a complex with amylase and mucins, but led to high final biomass, as a result of enzymatic degradation of some nutrients. Finally, this work demonstrated that salivary enzymes had a slight impact on S. salivarius behaviour. It can thus be concluded that this bacterium was well adapted to in-mouth conditions, as it was able to resist certain salivary enzymes, even if tolerance to expired air was affected, as a result of an increased redox potential. PMID:21892611

  8. Cost of fetal alcohol spectrum disorder in Canada

    PubMed Central

    Stade, Brenda; Ungar, Wendy J.; Stevens, Bonnie; Beyen, Joseph; Koren, Gideon

    2007-01-01

    QUESTION I have heard that thousands of Canadian kids are affected by fetal alcohol spectrum disorders. Has there been any attempt to estimate what it costs our society? ANSWER In a recent Canadian study, the lifetime cost of fetal alcohol spectrum disorders was estimated at $1 million per case. With an estimated 4000 new cases yearly, this translates to $4 billion annually. PMID:17872844

  9. Widespread differential maternal and paternal genome effects on fetal bone phenotype at mid-gestation.

    PubMed

    Xiang, Ruidong; Lee, Alice M C; Eindorf, Tanja; Javadmanesh, Ali; Ghanipoor-Samami, Mani; Gugger, Madeleine; Fitzsimmons, Carolyn J; Kruk, Zbigniew A; Pitchford, Wayne S; Leviton, Alison J; Thomsen, Dana A; Beckman, Ian; Anderson, Gail I; Burns, Brian M; Rutley, David L; Xian, Cory J; Hiendleder, Stefan

    2014-11-01

    Parent-of-origin-dependent (epi)genetic factors are important determinants of prenatal development that program adult phenotype. However, data on magnitude and specificity of maternal and paternal genome effects on fetal bone are lacking. We used an outbred bovine model to dissect and quantify effects of parental genomes, fetal sex, and nongenetic maternal effects on the fetal skeleton and analyzed phenotypic and molecular relationships between fetal muscle and bone. Analysis of 51 bone morphometric and weight parameters from 72 fetuses recovered at day 153 gestation (54% term) identified six principal components (PC1-6) that explained 80% of the variation in skeletal parameters. Parental genomes accounted for most of the variation in bone wet weight (PC1, 72.1%), limb ossification (PC2, 99.8%), flat bone size (PC4, 99.7%), and axial skeletal growth (PC5, 96.9%). Limb length showed lesser effects of parental genomes (PC3, 40.8%) and a significant nongenetic maternal effect (gestational weight gain, 29%). Fetal sex affected bone wet weight (PC1, p < 0.0001) and limb length (PC3, p < 0.05). Partitioning of variation explained by parental genomes revealed strong maternal genome effects on bone wet weight (74.1%, p < 0.0001) and axial skeletal growth (93.5%, p < 0.001), whereas paternal genome controlled limb ossification (95.1%, p < 0.0001). Histomorphometric data revealed strong maternal genome effects on growth plate height (98.6%, p < 0.0001) and trabecular thickness (85.5%, p < 0.0001) in distal femur. Parental genome effects on fetal bone were mirrored by maternal genome effects on fetal serum 25-hydroxyvitamin D (96.9%, p < 0.001) and paternal genome effects on alkaline phosphatase (90.0%, p < 0.001) and their correlations with maternally controlled bone wet weight and paternally controlled limb ossification, respectively. Bone wet weight and flat bone size correlated positively with muscle weight (r = 0.84 and 0.77, p

  10. Fetal and Neonatal Alloimmune Thrombocytopenia

    PubMed Central

    CONSTANTINESCU, Simona; ZAMFIRESCU, Vlad; VLADAREANU, Prof. Radu

    2012-01-01

    ABSTRACT Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is the commonest cause of severe neonatal thrombocytopenia. FNAIT is usually suspected in neonates with bleeding or severe, unexplained, and/or isolated postnatal thrombocytopenia. Affected fetuses should be managed in referral centers with experience in the ante-natal management of FNAIT. Close collaboration is required between specialists in fetal medicine, obstetrics, hematology/transfusion medicine, and pediatrics. The mother and her partner should be provided with detailed information about FNAIT and its potential clinical consequences, and the benefits and risks of different approaches to ante-natal management. There has been huge progress in the ante-natal management of FNAIT over the last 20 years. However, the ideal effective treatment without significant side effects to the mother or fetus has yet to be determined. Key issues: Fetal and neonatal alloimmune thrombocytopenia is a condition that is underdiagnosed. Immunization seldom occurs in the first pregnancy. Immunization takes place in association with delivery in most cases. Anti-HPA-1a level is a predictor for the severity of thrombocytopenia. PMID:23482913

  11. [Fetal-neonatal alloimmune thrombocytopenia].

    PubMed

    Muñiz-Díaz, E; Ginovart Galiana, G

    2003-06-01

    Fetal-neonatal alloimmune thrombocytopenia is the commonest cause of severe thrombocytopenia in the newborn. This disorder is due to the destruction of fetal platelets by a maternal platelet-specific antibody caused by fetal-maternal incompatibility. The most serious complication is intracranial hemorrhage (10-30 % of newborns), which may cause death (10 % of the reported cases) or irreversible neurological sequelae (20 %). The diagnosis is usually made after birth when most affected neonates have petechiae, purpura or overt bleeding. The degree of severity varies according to platelet count. Current methods allow detection of maternal platelet alloantibodies (usually HPA-1a). Clinical grounds and the exclusion of other causes of neonatal thrombocytopenia are required to establish an accurate diagnosis. Recurrence of this disease is very high and has prompted clinicians to develop antenatal prophylactic programs in subsequent pregnancies. However, the optimal treatment of at-risk pregnancies remains controversial. The early diagnosis of this process allows effective therapy based on the infusion of compatible platelets and IgG immunoglobulins when hemorrhage is not obvious. Antenatal management of subsequent pregnancies can prevent recurrence of thrombocytopenia and intracranial hemorrhage. The aim of this review is to draw pediatricians' attention to the importance of this probably under-diagnosed disease in which early diagnosis can prevent potentially severe complications. PMID:12781112

  12. Children with Fetal Alcohol Syndrome and Fetal Alcohol Effects: Patterns of Performance on IQ and Visual Motor Ability.

    ERIC Educational Resources Information Center

    Kopera-Frye, Karen; Ziel