Science.gov

Sample records for affect fetal growth

  1. Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth.

    PubMed

    Madeja, Zofia; Yadi, Hakim; Apps, Richard; Boulenouar, Selma; Roper, Stephen J; Gardner, Lucy; Moffett, Ashley; Colucci, Francesco; Hemberger, Myriam

    2011-03-08

    The mammalian fetus represents a semiallograft within the maternal uterus yet is not rejected. This situation is particularly pronounced in species with a hemochorial type of placentation, such as humans and rodents, where maternal tissues and blood are in direct contact with fetal trophoblast and thus potentially with paternal antigens. The main polymorphic antigens responsible for graft rejection are MHC antigens. In humans the trophoblast cells invading into the decidua have a unique pattern of MHC class I expression characterized by both classical (HLA-C) and nonclassical (HLA-G and HLA-E) molecules. Whether such an unusual MHC repertoire on the surface of trophoblast is a conserved feature between species with hemochorial placentation has not been resolved. Here we demonstrate, using a range of methods, that C57BL/6 mouse trophoblast predominantly expresses only one MHC class I antigen, H2-K, at the cell surface of giant cells but lacks expression of nonclassical MHC molecules. Antigenic disparity between parental MHCs affects trophoblast-induced transformation of the uterine vasculature and, consequently, placental and fetal gowth. Maternal uterine blood vessels were more dilated, allowing for increased blood supply, in certain combinations of maternal and paternal MHC haplotypes, and these allogeneic fetuses and placentas were heavier at term compared with syngeneic controls. Thus, maternal-fetal immune interactions are instrumental to optimize reproductive success. This cross-talk has important implications for human disorders of pregnancy, such as preeclampsia and fetal growth restriction.

  2. Role of the Placental Vitamin D Receptor in Modulating Feto-Placental Growth in Fetal Growth Restriction and Preeclampsia-Affected Pregnancies

    PubMed Central

    Murthi, Padma; Yong, Hannah E. J.; Ngyuen, Thy P. H.; Ellery, Stacey; Singh, Harmeet; Rahman, Rahana; Dickinson, Hayley; Walker, David W.; Davies-Tuck, Miranda; Wallace, Euan M.; Ebeling, Peter R.

    2016-01-01

    Fetal growth restriction (FGR) is a common pregnancy complication that affects up to 5% of pregnancies worldwide. Recent studies demonstrate that Vitamin D deficiency is implicated in reduced fetal growth, which may be rescued by supplementation of Vitamin D. Despite this, the pathway(s) by which Vitamin D modulate fetal growth remains to be investigated. Our own studies demonstrate that the Vitamin D receptor (VDR) is significantly decreased in placentae from human pregnancies complicated by FGR and contributes to abnormal placental trophoblast apoptosis and differentiation and regulation of cell-cycle genes in vitro. Thus, Vitamin D signaling is important for normal placental function and fetal growth. This review discusses the association of Vitamin D with fetal growth, the function of Vitamin D and its receptor in pregnancy, as well as the functional significance of a placental source of Vitamin D in FGR. Additionally, we propose that for Vitamin D to be clinically effective to prevent and manage FGR, the molecular mechanisms of Vitamin D and its receptor in modulating fetal growth requires further investigation. PMID:26924988

  3. Stillbirth and fetal growth restriction.

    PubMed

    Bukowski, Radek

    2010-09-01

    The association between stillbirth and fetal growth restriction is strong and supported by a large body of evidence and clinically employed for the stillbirth prediction. However, although assessment of fetal growth is a basis of clinical practice, it is not trivial. Essentially, fetal growth is a result of the genetic growth potential of the fetus and placental function. The growth potential is the driving force of fetal growth, whereas the placenta as the sole source of nutrients and oxygen might become the rate limiting element of fetal growth if its function is impaired. Thus, placental dysfunction may prevent the fetus from reaching its full genetically determined growth potential. In this sense fetal growth and its aberration provides an insight into placental function. Fetal growth is a proxy for the test of the effectiveness of placenta, whose function is otherwise obscured during pregnancy.

  4. Hormonal regulation of fetal growth.

    PubMed

    Gicquel, C; Le Bouc, Y

    2006-01-01

    Fetal growth is a complex process depending on the genetics of the fetus, the availability of nutrients and oxygen to the fetus, maternal nutrition and various growth factors and hormones of maternal, fetal and placental origin. Hormones play a central role in regulating fetal growth and development. They act as maturational and nutritional signals in utero and control tissue development and differentiation according to the prevailing environmental conditions in the fetus. The insulin-like growth factor (IGF) system, and IGF-I and IGF-II in particular, plays a critical role in fetal and placental growth throughout gestation. Disruption of the IGF1, IGF2 or IGF1R gene retards fetal growth, whereas disruption of IGF2R or overexpression of IGF2 enhances fetal growth. IGF-I stimulates fetal growth when nutrients are available, thereby ensuring that fetal growth is appropriate for the nutrient supply. The production of IGF-I is particularly sensitive to undernutrition. IGF-II plays a key role in placental growth and nutrient transfer. Several key hormone genes involved in embryonic and fetal growth are imprinted. Disruption of this imprinting causes disorders involving growth defects, such as Beckwith-Wiedemann syndrome, which is associated with fetal overgrowth, or Silver-Russell syndrome, which is associated with intrauterine growth retardation. Optimal fetal growth is essential for perinatal survival and has long-term consequences extending into adulthood. Given the high incidence of intrauterine growth retardation and the high risk of metabolic and cardiovascular complications in later life, further clinical and basic research is needed to develop accurate early diagnosis of aberrant fetal growth and novel therapeutic strategies.

  5. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  6. Intrauterine Cannabis Exposure Affects Fetal Growth Trajectories: The Generation R Study

    ERIC Educational Resources Information Center

    El Marroun, Hanan; Tiemeier, Henning; Steegers, Eric A. P.; Jaddoe, Vincent W. V.; Hofman, Albert; Verhulst, Frank C.; van den Brink, Wim; Huizink, Anja C.

    2009-01-01

    Objective: Cannabis is the most commonly consumed illicit drug among pregnant women. Intrauterine exposure to cannabis may result in risks for the developing fetus. The importance of intrauterine growth on subsequent psychological and behavioral child development has been demonstrated. This study examined the relation between maternal cannabis use…

  7. Fetal growth and timing of parturition in humans.

    PubMed

    Zhang, Jun; Sundaram, Rajeshwari; Sun, Wenyu; Troendle, James

    2008-10-15

    Animal studies indicate that either the fetus or the intrauterine environment, both of which set the pattern for fetal growth, may affect the timing of parturition. The authors examined the association between fetal growth and timing of spontaneous onset of labor in humans among low-risk white US women with singleton pregnancies (1987-1991). They restricted the data to pregnancies which had a reliable date of the last menstrual period, normal fetal growth in the first half of pregnancy, and no history of or current pregnancy complications that might have impaired fetal growth (n = 3,360). Subjects received ultrasound examinations at 15-22 and 31-35 weeks' gestation. Fetal growth was adjusted for parity, fetal sex, and maternal prepregnancy weight and height. Results showed that slower or faster fetal growth in the second half of pregnancy resulted in substantially lower or higher birth weight, respectively. However, fetal growth in the second half of pregnancy, even at extremes (2 standard deviations below or above the mean), did not have a meaningful impact on the timing of parturition; neither did fetal growth acceleration or deceleration in late pregnancy. Thus, in low-risk pregnancies where fetal growth is normal in early gestation, fetal growth in the second half of pregnancy does not affect the timing of normal parturition.

  8. Short-term maternal psychological stress in the post-conception period in ewes affects fetal growth and gestation length.

    PubMed

    Smith, Jennifer; Ferguson, Drewe; Jauregui, Guillermo; Panarace, Martín; Medina, Mariano; Lehnert, Sigrid; Hill, Jonathan R

    2008-08-01

    Fetal development can be influenced by maternal environment in the peri-conceptional period. This study investigated the effect of maternal feed intake and psychological stress within the first 6 days after conception on embryo development and fetal growth. Superovulated ewes (n=40) were artificially inseminated with semen from one ram. Ewes were then divided into four groups (n=10): group 1 (control) was fed at maintenance level, group 2 (high) at 2x maintenance, and group 3 (low) at 0.5x maintenance on days 2-6 after conception. Group 4 (stress) was fed at maintenance level and then an intense physical and psychological stress challenge was applied for 1 h only on days 2 and 3 after conception. Embryos were recovered at day 6. A total of 113 transferable grade embryos were transferred singly into synchronized untreated recipients, while the remaining embryos (n=165) were fixed and stained for cell counts. Post-conception maternal stress or feed intake did not alter the cell count or grade of day 6 embryos. Fetuses from the stress group had longer crown-rump lengths at day 30 and longer femur length at day 58. Fetuses from the stressed and high feed groups had greater abdominal circumferences at day 85. Subsequent birth weights were not significantly different. Ewes carrying lambs from the stress treatment had shorter gestation lengths. These results show that short-term perturbations of the post-conception maternal environment have measurable effects on fetal development and gestation length.

  9. Metabolic requirements for fetal growth.

    PubMed

    Milley, J R; Simmons, M A

    1979-09-01

    Table 1 outlines a metabolic balance sheet for the sheep fetus. It is clear that maternal substrate concentrations as well as placental function are important in assuring the provision of adequate substrate to meet fetal metabolic and growth requirements. It is intriguing that the fetus appears to use substrates not usually regarded as important in extrauterine diets (lactate) and to use substrates for catabolic purposes normally thought to be primarily anabolic substrates (amino acids). This information emphasizes the hazards of extrapolating metabolic and nutritional patterns seen in extrauterine life in reaching conclusions concerning the fetus. It likewise emphasizes the importance of ongoing studies in maternal and fetal nutrition and metabolism.

  10. Neurodevelopment after fetal growth restriction.

    PubMed

    Baschat, Ahmet A

    2014-01-01

    Fetal growth restriction (FGR) can emerge as a complication of placental dysfunction and increases the risk for neurodevelopmental delay. Marked elevations of umbilical artery (UA) Doppler resistance that set the stage for cardiovascular and biophysical deterioration with subsequent preterm birth characterize early-onset FGR. Minimal, or absent UA Doppler abnormalities and isolated cerebral Doppler changes with subtle deterioration and a high risk for unanticipated term stillbirth are characteristic for late-onset FGR. Nutritional deficiency manifested in lagging head growth is the most powerful predictor of developmental delay in all forms of FGR. Extremes of blood flow resistance and cardiovascular deterioration, prematurity and intracranial hemorrhage increase the risks for psychomotor delay and cerebral palsy. In late-onset FGR, regional cerebral vascular redistribution correlates with abnormal behavioral domains. Irrespective of the phenotype of FGR, prenatal tests that provide precise and independent stratification of risks for adverse neurodevelopment have yet to be determined.

  11. Uterine artery blood flow, fetal hypoxia and fetal growth

    PubMed Central

    Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  12. Micronutrients in fetal growth and development.

    PubMed

    McArdle, H J; Ashworth, C J

    1999-01-01

    The roles that the different vitamins and minerals play in fetal growth and development are reviewed, primarily with respect to growth and differentiation in humans; but, as appropriate, data provided from animal and cellular studies are also considered.

  13. Thyroid hormones in fetal growth and prepartum maturation.

    PubMed

    Forhead, A J; Fowden, A L

    2014-06-01

    The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are essential for normal growth and development of the fetus. Their bioavailability in utero depends on development of the fetal hypothalamic-pituitary-thyroid gland axis and the abundance of thyroid hormone transporters and deiodinases that influence tissue levels of bioactive hormone. Fetal T4 and T3 concentrations are also affected by gestational age, nutritional and endocrine conditions in utero, and placental permeability to maternal thyroid hormones, which varies among species with placental morphology. Thyroid hormones are required for the general accretion of fetal mass and to trigger discrete developmental events in the fetal brain and somatic tissues from early in gestation. They also promote terminal differentiation of fetal tissues closer to term and are important in mediating the prepartum maturational effects of the glucocorticoids that ensure neonatal viability. Thyroid hormones act directly through anabolic effects on fetal metabolism and the stimulation of fetal oxygen consumption. They also act indirectly by controlling the bioavailability and effectiveness of other hormones and growth factors that influence fetal development such as the catecholamines and insulin-like growth factors (IGFs). By regulating tissue accretion and differentiation near term, fetal thyroid hormones ensure activation of physiological processes essential for survival at birth such as pulmonary gas exchange, thermogenesis, hepatic glucogenesis, and cardiac adaptations. This review examines the developmental control of fetal T4 and T3 bioavailability and discusses the role of these hormones in fetal growth and development with particular emphasis on maturation of somatic tissues critical for survival immediately at birth.

  14. Fetal growth potential and pregnancy outcome.

    PubMed

    Bukowski, Radek

    2004-02-01

    Although the association of fetal growth restriction and adverse pregnancy outcomes is well known, lack of sensitivity limits its clinical value. To a large extent, this limitation is a result of traditionally used method to define growth restriction by comparing fetal or birth weight to population norms. The use of population norms, by virtue of their inability to fully consider individual variation, results in high false positive and negative rates. An alternative, calculating fetal individually optimal growth potential, based on physiological determinants of individual growth, is superior in predicting adverse outcomes of pregnancy. Impairment of fetal growth potential identifes some adverse pregnancy outcomes that are not associated with growth restrction defined by population norms. When compared with traditional population-based norms, fetal growth potential is a better predictor of several important adverse outcomes of pregnancy which include: stillbirth, neonatal mortality and morbidity, and long-term adverse neonatal outcomes like neonatal encephalopathy, cerebral palsy and cognitive abilities. Impairment of individual growth potential is also strongly associated with spontaneous preterm delivery. Although definitive interventional trials have not been conducted as yet to validate the clinical value of fetal growth potential, many observational studies, conducted in various populations, indicate its significant promise in this respect.

  15. Endocrine interactions in the control of fetal growth.

    PubMed

    Fowden, Abigail L; Forhead, Alison J

    2013-01-01

    Hormones are both growth stimulatory and growth inhibitory in utero. They act as environmental and maturational signals in regulating tissue accretion and differentiation during late gestation. They ensure that fetal development is appropriate for the nutrient supply and is optimal for neonatal survival. Growth-stimulatory hormones, such as insulin, the insulin-like growth factors and the thyroid hormones, have anabolic effects on fetal metabolism and increase cellular nutrient uptake and energy production for tissue accretion. Thyroid hormones also have specific effects on tissue differentiation at key developmental milestones. Similarly, leptin appears to affect development of specific fetal tissues and may counterbalance the maturational actions of other hormones near term. Glucocorticoids inhibit growth in utero but are essential for prepartum tissue differentiation in preparation for delivery. They also affect fetal bioavailability of most of the other growth-regulatory hormones. In addition, many of these hormones alter the placental capacity to supply nutrients for fetal growth. In producing a fetoplacental epigenome specific to the prevailing intrauterine environment, hormones interact to produce phenotypical diversity with potential health consequences long after birth.

  16. Maternal corticosterone regulates nutrient allocation to fetal growth in mice.

    PubMed

    Vaughan, Owen R; Sferruzzi-Perri, Amanda N; Fowden, Abigail L

    2012-11-01

    Stresses during pregnancy that increase maternal glucocorticoids reduce birth weight in several species. However, the role of natural glucocorticoids in the mother in fetal acquisition of nutrients for growth remains unknown. This study aimed to determine whether fetal growth was reduced as a consequence of altered amino acid supply when mice were given corticosterone in their drinking water for 5 day periods in mid to late pregnancy (day, D, 11-16 or D14-19). Compared to controls drinking tap water, fetal weight was always reduced by corticosterone. At D16, corticosterone had no effect on materno-fetal transfer of [(14)C]methylaminoisobutyric acid (MeAIB), although placental MeAIB accumulation and expression of the Slc38a1 and Slc38a2 transporters were increased. However, at D19, 3 days after treatment ended, materno-fetal transfer of MeAIB was increased by 37% (P < 0.04). During treatment at D19, placental accumulation and materno-fetal transfer of MeAIB were reduced by 40% (P < 0.01), although expression of Slc38a1 was again elevated. Permanent reductions in placental vascularity occurred during the earlier but not the later period of treatment. Placental Hsd11b2 expression, which regulates feto-placental glucocorticoid bioavailability, was also affected by treatment at D19 only. Maternal corticosterone concentrations inversely correlated with materno-fetal MeAIB clearance and fetal weight at D19 but not D16. On D19, weight gain of the maternal carcass was normal during corticosterone treatment but reduced in those mice treated from D11 to D16, in which corticosterone levels were lowest. Maternal corticosterone is, therefore, a physiological regulator of the amino acid supply for fetal growth via actions on placental phenotype.

  17. Maternal corticosterone regulates nutrient allocation to fetal growth in mice

    PubMed Central

    Vaughan, Owen R; Sferruzzi-Perri, Amanda N; Fowden, Abigail L

    2012-01-01

    Stresses during pregnancy that increase maternal glucocorticoids reduce birth weight in several species. However, the role of natural glucocorticoids in the mother in fetal acquisition of nutrients for growth remains unknown. This study aimed to determine whether fetal growth was reduced as a consequence of altered amino acid supply when mice were given corticosterone in their drinking water for 5 day periods in mid to late pregnancy (day, D, 11–16 or D14–19). Compared to controls drinking tap water, fetal weight was always reduced by corticosterone. At D16, corticosterone had no effect on materno-fetal transfer of [14C]methylaminoisobutyric acid (MeAIB), although placental MeAIB accumulation and expression of the Slc38a1 and Slc38a2 transporters were increased. However, at D19, 3 days after treatment ended, materno-fetal transfer of MeAIB was increased by 37% (P < 0.04). During treatment at D19, placental accumulation and materno-fetal transfer of MeAIB were reduced by 40% (P < 0.01), although expression of Slc38a1 was again elevated. Permanent reductions in placental vascularity occurred during the earlier but not the later period of treatment. Placental Hsd11b2 expression, which regulates feto-placental glucocorticoid bioavailability, was also affected by treatment at D19 only. Maternal corticosterone concentrations inversely correlated with materno-fetal MeAIB clearance and fetal weight at D19 but not D16. On D19, weight gain of the maternal carcass was normal during corticosterone treatment but reduced in those mice treated from D11 to D16, in which corticosterone levels were lowest. Maternal corticosterone is, therefore, a physiological regulator of the amino acid supply for fetal growth via actions on placental phenotype. PMID:22930269

  18. Defining Normal and Abnormal Fetal Growth: Promises and Challenges

    PubMed Central

    Zhang, Jun; Merialdi, Mario; Platt, Lawrence D.; Kramer, Michael S.

    2010-01-01

    Normal fetal growth is a critical component of a healthy pregnancy and influences the long-term health of the offspring. However, defining normal and abnormal fetal growth has been a long-standing challenge in clinical practice and research. The authors review various references and standards that are widely used to evaluate fetal growth, and discuss common pitfalls of current definitions of abnormal fetal growth. Pros and cons of different approaches to customize fetal growth standards are described. The authors further discuss recent advances towards an integrated definition for fetal growth restriction. Such a definition may incorporate fetal size with the status of placental health measured by maternal and fetal Doppler velocimetry and biomarkers, biophysical findings and genetics. Although the concept of an integrated definition appears promising, further development and testing are required. An improved definition of abnormal fetal growth should benefit both research and clinical practice. PMID:20074690

  19. Maternal growth factor regulation of human placental development and fetal growth.

    PubMed

    Forbes, Karen; Westwood, Melissa

    2010-10-01

    Normal development and function of the placenta is critical to achieving a successful pregnancy, as normal fetal growth depends directly on the transfer of nutrients from mother to fetus via this organ. Recently, it has become apparent from both animal and human studies that growth factors within the maternal circulation, for example the IGFs, are important regulators of placental development and function. Although these factors act via distinct receptors to exert their effects, the downstream molecules activated upon ligand/receptor interaction are common to many growth factors. The expression of numerous signaling molecules is altered in the placentas from pregnancies affected by the fetal growth complications, fetal growth restriction, and macrosomia. Thus, targeting these molecules may lead to more effective treatments for complications of pregnancy associated with altered placental development. Here, we review the maternal growth factors required for placental development and discuss their mechanism of action.

  20. Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth.

    PubMed

    Delahaye, Fabien; Wijetunga, N Ari; Heo, Hye J; Tozour, Jessica N; Zhao, Yong Mei; Greally, John M; Einstein, Francine H

    2014-10-10

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34(+) haematopoietic stem/progenitor cells showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular ageing and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life.

  1. Fetal growth in rats treated with lapachol.

    PubMed

    Felício, André Carvalho; Chang, Cláudia Veiga; Brandão, Marcos Antônio; Peters, Vera Maria; Guerra, Martha de Oliveira

    2002-10-01

    Lapachol is a naphthoquinone well known for its therapeutic potential. Previous studies have shown that lapachol does not interfere with embryonic development during the pre-implantation period. However, when administered during the organogenic period at the same dose level, it induces a high fetal death incidence. To evaluate the effect of lapachol during fetogenesis, 20 pregnant Wistar rats were randomly divided into two groups: vehicle (10 mL of a 50% aqueous ethanol solution/kg body weight) and treated (100 mg of lapachol/kg body weight). Lapachol was administered from the 17th to 20th day of pregnancy. The following variables were analyzed: maternal body weight from 16th to 21st day of pregnancy, food intake from 17th to 21st day of pregnancy, clinical signs of physical discomfort, ovarian weights, implantations, resorptions and mortality indices, fetal and placenta weights, external malformations, and fetal organ weights. Results indicated that lapachol was not toxic to mothers, although it was fetotoxic leading to fetal growth retardation.

  2. Maternal insulin-like growth factor binding protein-1, body mass index, and fetal growth

    PubMed Central

    Holmes, R.; Holly, J; Soothill, P.

    2000-01-01

    AIM—To examine the hypothesis that the maternal insulin-like growth factor system may constrain fetal growth.
METHODS—A prospective observational study of maternal serum insulin-like growth factor binding protein-1 (IGFBP-1) and fetal growth was undertaken in neonates with birthweights below the 5th centile. They had been classified either as having fetal growth restriction (FGR) due to placental dysfunction (increased umbilical artery Doppler pulsatility index (PI); n = 25) or as being small for gestational age (SGA; normal umbilical artery PI, growth velocity and amniotic fluid; n = 27). Eighty nine controls had normal birthweights (5th-95th centile), umbilical artery PI, growth velocity, and amniotic fluid. IGFBP-1 was measured by radioimmunoassay.
RESULTS—Among the controls, there was no significant correlation between IGFBP-1 and birthweight after allowing for body mass index (BMI). Maternal BMI was high in FGR and after adjusting for this, IGFBP-1 was increased (109 ng/ml) compared with SGA babies (69ng/ml) and controls (57 ng/ml) and correlated with the umbilical artery PI.
CONCLUSIONS—Maternal IGFBP-1 is probably not part of normal placental function. Its increase in FGR could be the cause or consequence of impaired placental perfusion, but high IGFBP-1 concentrations might further reduce the availability of maternal IGF-I to the placenta. This could worsen placental function and so adversely affect fetal growth.
 PMID:10685983

  3. Factors affecting bone growth.

    PubMed

    Gkiatas, Ioannis; Lykissas, Marios; Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Batistatou, Anna; Beris, Alexandros

    2015-02-01

    Bone growth and development are products of the complex interactions of genetic and environmental factors. Longitudinal bone growth depends on the growth plate. The growth plate has 5 different zones-each with a different functional role-and is the final target organ for longitudinal growth. Bone length is affected by several systemic, local, and mechanical factors. All these regulation systems control the final length of bones in a complicated way. Despite its significance to bone stability, bone growth in width has not been studied as extensively as longitudinal bone growth. Bone growth in width is also controlled by genetic factors, but mechanical loading regulates periosteal apposition. In this article, we review the most recent data regarding bone growth from the embryonic age and analyze the factors that control bone growth. An understanding of this complex system is important in identifying metabolic and developmental bone diseases and fracture risk.

  4. Fetal jaw movement affects condylar cartilage development.

    PubMed

    Habib, H; Hatta, T; Udagawa, J; Zhang, L; Yoshimura, Y; Otani, H

    2005-05-01

    Using a mouse exo utero system to examine the effects of fetal jaw movement on the development of condylar cartilage, we assessed the effects of restraint of the animals' mouths from opening, by suture, at embryonic day (E)15.5. We hypothesized that pre-natal jaw movement is an important mechanical factor in endochondral bone formation of the mandibular condyle. Condylar cartilage was reduced in size, and the bone-cartilage margin was ill-defined in the sutured group at E18.5. Volume, total number of cells, and number of 5-bromo-2'-deoxyuridine-positive cells in the mesenchymal zone were lower in the sutured group than in the non-sutured group at E16.5 and E18.5. Hypertrophic chondrocytes were larger, whereas fewer apoptotic chondrocytes and osteoclasts were observed in the hypertrophic zone in the sutured group at E18.5. Analysis of our data revealed that restricted fetal TMJ movement influences the process of endochondral bone formation of condylar cartilage.

  5. Maternal coffee intake and associated risk factors: effects on fetal growth and activity.

    PubMed

    Conde, Ana; Teves, Cláudia; Figueiredo, Bárbara

    2011-01-01

    Empirical studies have shown that fetal growth and activity can be affected by several risk factors, such as maternal anxiety, depression and tobacco or alcohol consumption. Caffeine intake has received less attention in the literature, as well as the analysis of the mutual interplay of the range of such risk factors. This study aimed to examine effects of mother's coffee intake and associated risk factors during early pregnancy on fetal growth and activity. The sample involved 47 fetuses (51.1% male and 48.9% female) with gestational ages between 20-22 weeks whose mothers were recruited in a Portuguese antenatal obstetric unit. Repeated measures of mother's anxiety (STAI-S) and depression (EPDS) and information about socio-demographics and substances consumption were collected during the first and second trimesters of pregnancy. Fetal activity and biometry were measured during the 2(nd) trimester ultrasound. Results showed that 1) 23.4% of the pregnant women (N = 11) had regular coffee intake; 2) no significant differences were found neither on fetal growth nor on fetal movements considering mother's coffee intake; 3) when mother's socio-demographics and substances consumption were considered, tobacco consumption and anxiety at the 2(nd) trimester appeared as significant predictors of fetal growth and mother's coffee intake and anxiety symptoms at the 2(nd) trimester emerged as significant predictors of fetal movements. An adverse impact of maternal coffee intake during pregnancy was found on fetal activity but not on fetal growth. A deeper understanding of the multiple pathways by which these risk factors affect fetal growth and activity is needed.

  6. Diagnosis and Management of Fetal Growth Restriction

    PubMed Central

    Bamfo, Jacqueline E. A. K.; Odibo, Anthony O.

    2011-01-01

    Fetal growth restriction (FGR) remains a leading contributor to perinatal mortality and morbidity and metabolic syndrome in later life. Recent advances in ultrasound and Doppler have elucidated several mechanisms in the evolution of the disease. However, consistent classification and characterization regarding the severity of FGR is lacking. There is no cure, and management is reliant on a structured antenatal surveillance program with timely intervention. Hitherto, the time to deliver is an enigma. In this paper, the challenges in the diagnosis and management of FGR are discussed. The biophysical profile, Doppler, biochemical and molecular technologies that may refine management are reviewed. Finally, a model pathway for the clinical management of pregnancies complicated by FGR is presented. PMID:21547092

  7. Fetal growth sustained by parenteral nutrition in pregnancy.

    PubMed

    Rivera-Alsina, M E; Saldana, L R; Stringer, C A

    1984-07-01

    Severe maternal nutritional deprivation has been associated with intrauterine growth retardation, premature labor, and increased perinatal mortality and morbidity. The authors present four cases in which total parenteral nutrition was used successfully to support fetal growth in such diverse complications as twin pregnancy with maternal jejunoileal bypass, regional enteritis, and acute pancreatitis. Maintenance of fetal growth as evidenced by serial sonographic examination allows achievement of fetal lung maturation before delivery. In all the cases presented there was no perinatal mortality or morbidity. The main clinical implication of the report is the possible application of total parenteral nutrition to maintain adequate growth in fetuses small for gestational age because of maternal nutritional deprivation.

  8. Maternal Stress and Affect Influence Fetal Neurobehavioral Development.

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; Hilton, Sterling C.; Hawkins, Melissa; Costigan, Kathleen A.; Pressman, Eva K.

    2002-01-01

    Investigated associations between maternal psychological and fetal neurobehavioral functioning with data provided at 24, 30, and 36 weeks gestation. Found that fetuses of women who were more affectively intense, appraised their lives as more stressful, and reported more pregnancy-specific hassles were more active across gestation. Fetuses of women…

  9. Fetal growth velocities in Hong Kong Chinese infants.

    PubMed

    Fok, T F; Hon, K L; So, H K; Wong, E; Ng, P C; Chang, A; Lau, J; Chow, C B; Lee, W H

    2005-01-01

    Few studies have investigated the velocities of fetal growth. The aim of the present study was to determine the pattern of 'fetal' growth velocities in a Chinese population. The gestation-specific measurements of the body weight, body length and head circumference in a representative sample of 5,045 male and 4,484 female newborns delivered between 26 and 42 weeks of gestation at 12 hospitals in Hong Kong were obtained. Peak growth velocity occurred before 30 weeks of gestation for head circumference, at week 30 for length and at week 30 for weight. When compared with data obtained from a French population, a significant difference in the growth velocity for body weight was observed below 32 weeks between French and Chinese infants, suggesting an ethnic difference in fetal growth of this parameter.

  10. Fetal growth and the lifetime risk of generalized anxiety disorder

    PubMed Central

    Vasiliadis, Helen-Maria; Buka, Stephen L.; Martin, Laurie T.; Gilman, Stephen E.

    2010-01-01

    Background Anxiety disorders are thought to have their origins in early childhood, though they have not yet been studied as a potential outcome of impaired fetal growth, which has been implicated in the developmental etiologies of many psychopathologies. This study investigated the association between indicators of fetal growth and the development of generalized anxiety disorder (GAD). Methods Indicators of fetal growth, including birth weight (BW) and ponderal index (PI), were assessed among 682 offspring of participants in the Providence, RI, site of the Collaborative Perinatal Project. Participants were interviewed as adults, and their lifetime histories of GAD were assessed using the Diagnostic Interview Schedule. We used Cox regression to estimate the association between fetal growth indicators and the development of GAD. Results The lifetime risk of GAD differed between infants in the highest category of BW and PI and all others. Newborns with birth weights below 3.5 kg (hazard ratio, HR: 2.38; CI=1.25, 4.55), in the lowest four BW z-score quintiles (HR=2.49; CI=1.14, 5.45) or a PI in the lowest four quintiles (HR=2.33; CI=1.04, 5.00) had higher lifetime risks of GAD. Conclusion In contrast to prior studies on psychiatric outcomes in relation to fetal growth, there was not a linear relationship between birth weight and GAD. While these results generally support the hypothesis that a healthy nutritional fetal uptake, as indicated by BW and PI, is associated with better lifetime mental health, further work is needed to characterize the nature of the association between fetal growth and subsequent psychopathology. PMID:20734359

  11. Prenatal diagnosis of a placental infarction hematoma associated with fetal growth restriction, preeclampsia and fetal death: clinicopathological correlation

    PubMed Central

    Aurioles-Garibay, Alma; Hernandez-Andrade, Edgar; Romero, Roberto; Qureshi, Faisal; Ahn, Hyunyoung; Jacques, Suzanne M.; Garcia, Maynor; Yeo, Lami; Hassan, Sonia S.

    2014-01-01

    The lesion termed “placental infarction hematoma” is associated with fetal death and adverse perinatal outcome. Such lesion has been associated with a high risk of fetal death and abruption placentae. The fetal and placental hemodynamic changes associated with placental infarction hematoma have not been reported. This communication describes a case of early and severe growth restriction with preeclampsia, and progressive deterioration of the fetal and placental Doppler parameters in the presence of a placental infarction hematoma. PMID:24852332

  12. Prenatal diagnosis of a placental infarction hematoma associated with fetal growth restriction, preeclampsia and fetal death: clinicopathological correlation.

    PubMed

    Aurioles-Garibay, Alma; Hernandez-Andrade, Edgar; Romero, Roberto; Qureshi, Faisal; Ahn, Hyunyoung; Jacques, Suzanne M; Garcia, Maynor; Yeo, Lami; Hassan, Sonia S

    2014-01-01

    The lesion termed 'placental infarction hematoma' is associated with fetal death and adverse perinatal outcome. Such a lesion has been associated with a high risk of fetal death and abruption placentae. The fetal and placental hemodynamic changes associated with placental infarction hematoma have not been reported. This paper describes a case of early and severe growth restriction with preeclampsia, and progressive deterioration of the fetal and placental Doppler parameters in the presence of a placental infarction hematoma.

  13. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans.

    PubMed

    Luo, Zhong-Cheng; Bilodeau, Jean-François; Nuyt, Anne Monique; Fraser, William D; Julien, Pierre; Audibert, Francois; Xiao, Lin; Garofalo, Carole; Levy, Emile

    2015-12-08

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24-28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin concentrations. Strong positive correlations were observed between maternal and cord plasma biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently negatively correlated to oxidative stress biomarkers in maternal (r = -0.32, p < 0.0001 for MDA; r = -0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = -0.13, p = 0.04 for MDA; r = -0.32, p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect fetal ghrelin levels in humans. The implications in developmental "programming" the vulnerability to metabolic syndrome related disorders remain to be elucidated.

  14. Assessment of fetal growth on the basis of signal strength in fetal magnetocardiography.

    PubMed

    Van Leeuwen, P; Beuvink, Y; Lange, S; Klein, A; Geue, D; Grönemeyer, D

    2004-11-30

    Fetal magnetocardiography has shown that fetal P wave and QRS complex durations increase with gestational age, reflecting change in cardiac muscle mass. The latter should, in principle, be associated with an increase in signal strength. We examined two approaches for determining QRS signal strength in a healthy fetus on a weekly basis in the second and third trimester. Twenty-two fetal magnetocardiograms of the same fetus were obtained using a 61 channel Magnes 1300 biomagnetometer (20th-42nd week of gestation). In the signal averaged fetal beat produced at each week, signal strength was assessed on the basis of 1) peak-to-peak QRS signal amplitudes and 2) strength of an equivalent current dipole (ECD) computed at R peak. The results were assessed on the basis of correlation to week of gestation and by comparison to changes in QRS interval duration. All values increased with advancing gestation and regression analysis suggested a nonlinear dependency on age. ECD strength reflected gestational age slightly more reliably (r2=0.93) than signal amplitude values (mean, median, maximum: r2=089, 0.88, 0.85, respectively). ECD strength and mean signal amplitude also correlated well (r=0.97, p<0.0005) Values calculated from QRS complexes determined immediately before and after a clear change in fetal position (acquisition week 24) demonstrated a certain instability in both approaches. Nonetheless, the overall correlation of the amplitude to gestational age compared favorably with that of QRS complex duration. This indicates that not only magnetocardiographically determined fetal cardiac time intervals but also signal strength may be used to assess fetal growth.

  15. The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth.

    PubMed

    Sferruzzi-Perri, A N; Owens, J A; Pringle, K G; Roberts, C T

    2011-01-01

    Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming.

  16. Vitamin E: maternal concentrations are associated with fetal growth2

    PubMed Central

    Scholl, Theresa O; Chen, Xinhua; Sims, Melissa; Stein, T Peter

    2007-01-01

    Background Few data exist on the effects of the 2 most abundant isomers of vitamin E (α- and γ-tocopherols) on fetal growth. Objective We measured maternal plasma concentrations of α- and γ-tocopherols and examined their relation with measures of fetal growth. We also examined the relation, controlled for associated maternal factors, of diet and supplement use to tocopherol concentrations at week 28 of gestation. Design A cohort of 1231 gravid women from Camden, NJ, was studied from entry to care (16.0 ± 0.15 wk gestation); plasma tocopherol concentrations were measured at entry and at week 28. Results Plasma concentrations of α-tocopherol at entry and at week 28 were positively related to increased fetal growth (birth weight for gestation), a decreased risk of small-for-gestational-age births, and an increased risk of large-for-gestational-age births. Concentration of α-tocopherol at week 28 was positively related to use of prenatal multivitamins and dietary intake of vitamin E; concentration of γ-tocopherol was related positively to dietary fat intake and negatively to multivitamin use. Conclusion Early and late circulating concentrations of α-tocopherol are positively associated with fetal growth. PMID:17158428

  17. Role of insulin in the growth of fetal rat tissues.

    PubMed

    Cooke, P S; Nicoll, C S

    1984-02-01

    The effect of insulin on the growth of fetal rat tissues was investigated using a transplant system. Paws from 15-day-old fetal rats were transplanted under the kidney capsule of 1-month-old syngeneic hosts, where they grew and differentiated normally. After 11 days of incubation, growth of transplants in hosts made diabetic by streptozotocin injection was reduced by 37% compared to growth in nondiabetic controls, but tissue differentiation and bone formation were normal in the absence of insulin. Injections of insulin (2 U, twice daily) into diabetic hosts restored paw growth to normal. Growth of transplants in hypophysectomized (HX) and in HX-diabetic hosts was reduced to the same degree (i.e. by 65%). Thus, the growth decrements produced by host hypophysectomy and diabetes are not additive. In contrast to the results with insulin-deficient hosts, the transplants failed to differentiate normally in the HX hosts. Injections of exogenous insulin (3 U, twice daily) to produce transient hyperinsulinemia failed to increase transplant growth in intact hosts over 11 days of incubation. The transplants were exposed to frequent periods of hyperglycemia and hyperinsulinemia by injecting 0.66 g glucose/100 g BW four times per day into intact hosts during 6 days of incubation. This treatment also failed to stimulate transplant growth. These results indicate that normal growth of transplanted fetal paw tissue is partially dependent on insulin, but whether the insulin acts directly or indirectly to support growth is not known. Supranormal insulin levels or frequent periods of hyperglycemia with hyperinsulinemia are not capable of producing overgrowth of the fetal paws. The HX, diabetic, and HX-diabetic host rats did not grow, as judged by tail length increase, and they lost weight. Accordingly, the juvenile host tissues have an obligatory dependence on insulin and GH for normal growth, but the fetal tissue is only partially dependent, because the paw transplants continued to

  18. Growth curve analysis of placental and fetal growth influenced by adjacent fetal sex status under crowded uterine conditions in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intrauterine position and sex of adjacent fetuses in litter bearing species have been implicated in physiological and behavioral differences in males and females. Our objective was to establish growth curves for fetal and placental weight gain as influenced by sex status of flanking fetuses under cr...

  19. Late but not early gestational maternal growth hormone treatment increases fetal adiposity in overnourished adolescent sheep.

    PubMed

    Wallace, Jacqueline M; Matsuzaki, Masatoshi; Milne, John; Aitken, Raymond

    2006-08-01

    In the overnourished adolescent sheep, maternal tissue synthesis is promoted at the expense of placental growth and leads to a major decrease in lamb birth weight at term. Maternal growth hormone (GH) concentrations are attenuated in these pregnancies, and it was recently demonstrated that exogenous GH administration throughout the period of placental proliferation stimulates uteroplacental and fetal development by Day 81 of gestation. The present study aimed to determine whether these effects persist to term and to establish whether GH affects fetal growth and body composition by increasing placental size or by altering maternal metabolism. Adolescent recipient ewes were implanted with singleton embryos on Day 4 postestrus. Three groups of ewes offered a high dietary intake were injected twice daily with recombinant bovine GH from Days 35 to 65 of gestation (high intake plus early GH) or from Days 95 to 125 of gestation (high intake plus late GH) or remained untreated (high intake only). A fourth moderate-intake group acted as optimally nourished controls. Pregnancies were terminated at Day 130 of gestation (6 per group) or were allowed to progress to term (8-10 per group). GH administration elevated maternal plasma concentrations of GH, insulin, glucose, and nonesterified fatty acids during the defined treatment windows, while urea concentrations were decreased. At Day 130, GH treatment had reduced the maternal adiposity score, percentage of fat in the carcass, and internal fat depots and leptin concentrations, predominantly in the high-intake plus late GH group. Placental weight was lower in high-intake vs. control dams but independent of GH treatment. In contrast, fetal weight was elevated by late GH treatment, and these fetuses had higher relative carcass fat content, perirenal fat mass, and liver glycogen concentrations than all other groups. Expression of leptin mRNA in fetal perirenal fat and fetal plasma leptin concentrations were not significantly altered

  20. Fetal Genotype for the Xenobiotic Metabolizing Enzyme "NQO1" Influences Intrauterine Growth among Infants Whose Mothers Smoked during Pregnancy

    ERIC Educational Resources Information Center

    Price, Thomas S.; Grosser, Tilo; Plomin, Robert; Jaffee, Sara R.

    2010-01-01

    Maternal smoking during pregnancy retards fetal growth and depresses infant birth weight. The magnitude of these effects may be moderated by fetal genotype. The current study investigated maternal smoking, fetal genotype, and fetal growth in a large population sample of dizygotic twins. Maternal smoking retarded fetal growth in a dose-dependent…

  1. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth.

    PubMed

    Sferruzzi-Perri, Amanda N; Sandovici, Ionel; Constancia, Miguel; Fowden, Abigail L

    2017-03-24

    The placenta is the main determinant of fetal growth and development in utero. It supplies all the nutrients and oxygen required for fetal growth and secretes hormones that facilitate maternal allocation of nutrients to the fetus. Furthermore, the placenta responds to nutritional and metabolic signals in the mother by altering its structural and functional phenotype which can lead to changes in maternal resource allocation to the fetus. The molecular mechanisms by which the placenta senses and responds to environmental cues are poorly understood. This review discusses the role of the insulin-like growth factors (IGFs) in controlling placental resource allocation to fetal growth, particularly in response to adverse gestational environments. In particular, it assesses the impact of the IGFs and their signalling machinery on placental morphogenesis, substrate transport and hormone secretion, primarily in the laboratory species, although it draws on data from human and other species where relevant. It also considers the role of the IGFs as environmental signals in linking resource availability, to fetal growth through changes in the morphological and functional phenotype of the placenta. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing adult-onset diseases in later life, understanding the role of IGFs during pregnancy in regulating placental resource allocation to fetal growth is important for identifying the mechanisms underlying the developmental programming of offspring phenotype by suboptimal intrauterine growth. This article is protected by copyright. All rights reserved.

  2. Fetal growth, gestation length and phosphoglucomutase-1 phenotype.

    PubMed

    Johnstone, F D; West, J D; Prescott, R J; Steel, J M; Flockhart, J A; Greer, I A; Drago, G A; Whitehouse, D B

    1993-12-01

    This study investigates reports that phosphoglucomutase-1 (PGM1) phenotype is associated with fetal growth and gestation length. A total of 350 women were studied, 234 having uncomplicated pregnancies and 114 with a baby weighing greater than 90th centile, corrected for parity, gestation and fetal sex. All women had gestation confirmed by early ultrasound. Conventional cellulose acetate electrophoresis was used to distinguish the three common PGM1 phenotypes and polyacrylamide gel isoelectric focusing to distinguish the ten PGM1 subtypes. Neither PGM1 phenotype nor subtype were found to be associated with gestation length or standardised birth weight. Logistic regression, where maternal age, parity, fetal sex, maternal weight, gestation and smoking were introduced as explanatory variables in addition to PGM1 phenotype testing against the dependent variables birth weight, standardised birth weight and gestation length, did not show differences related to PGM1 phenotype. Two possible reasons for the discrepancy with previously published data are discussed. We conclude that the study provides no support for the belief that PGM1 phenotype is related to fetal growth or gestation length and that the original observations could have arisen as a result of statistical artefact due to multiple testing.

  3. Genotype and fetal size affect maternal-fetal amino acid status and fetal endocrinology in Large White × Landrace and Meishan pigs.

    PubMed

    Ashworth, Cheryl J; Nwagwu, Margaret O; McArdle, Harry J

    2013-01-01

    This study compared maternal plasma amino acid concentrations, placental protein secretion in vitro and fetal body composition and plasma amino acid and hormone concentrations in feto-placental units from the smallest and a normally-sized fetus carried by Large White × Landrace or Meishan gilts on Day 100 of pregnancy. Compared with Large White × Landrace, Meishan placental tissue secreted more protein and Meishan fetuses contained relatively more fat and protein, but less moisture. Fetal plasma concentrations of insulin, triiodothryonine, thyroxine and insulin-like growth factor (IGF)-II were higher in Meishan than Large White × Landrace fetuses. In both breeds, fetal cortisol concentrations were inversely related to fetal size, whereas concentrations of IGF-I were higher in average-sized fetuses. Concentrations of 10 amino acids were higher in Large White × Landrace than Meishan gilts, while glutamine concentrations were higher in Meishan gilts. Concentrations of alanine, aspartic acid, glutamic acid and threonine were higher in Meishan than Large White × Landrace fetuses. Average-sized fetuses had higher concentrations of asparagine, leucine, lysine, phenylalanine, threonine, tyrosine and valine than the smallest fetus. This study revealed novel genotype and fetal size differences in porcine maternal-fetal amino acid status and fetal hormone and metabolite concentrations.

  4. Sildenafil citrate for the management of fetal growth restriction and oligohydramnios.

    PubMed

    Choudhary, Rana; Desai, Kavita; Parekh, Hetal; Ganla, Kedar

    2016-01-01

    Fetal growth restriction (FGR) and preeclampsia are the major causes of neonatal morbidity and mortality, which affect up to 8% of all pregnancies. The pathogenesis in FGR is an abnormal trophoblastic invasion leading to compromised uteroplacental circulation. However, in spite of this understanding and identification of high-risk patients, the management options are limited. There are some new studies which have demonstrated the role of sildenafil citrate in improving vasodilatation of small myometrial vessels and therefore improvement in amniotic fluid index, fetal weight, and even uterine and umbilical artery Doppler patterns. We report here the case of a 31-year-old female with infertility and preconceptional thin endometrium responding well to sildenafil citrate, followed by conception. However, she presented with an early-onset FGR at 26 weeks of gestation, and again after treatment with sildenafil citrate, showed improvement in amniotic fluid index and fetal weight, finally resulting in delivery of a full-term healthy baby with uneventful neonatal course.

  5. Intrauterine growth restriction: effects of physiological fetal growth determinants on diagnosis.

    PubMed

    Haram, Kjell; Søfteland, Eirik; Bukowski, Radek

    2013-01-01

    The growth of the fetus, which is strongly associated with the outcome of pregnancy, reflects interplay of several physiological and pathological factors. The assessment of fetal growth is based on comparison of birthweight (BW) or estimated fetal weight (EFW) to standards which define reference ranges at a spectrum of gestational ages. Most birthweight standards do not take into account effects of physiological determinants of fetal growth. Additionally, gestational age in many standards is based on the menstrual history and is often inaccurate. Fetal growth norms should be based on an early ultrasound estimate of gestational age. Customized standards, which have included only ultrasound-dated pregnancies, seem to be superior to population-based birthweight norms in predicting perinatal mortality and morbidity. Adjustment for individual variation in customized growth curves reduces false-positive diagnosis of IUGR and may lead to a very significant reduction in intervention for suspected IUGR. Customized growth potential identifies better the risk for adverse outcome than the currently used national standards, but customized charts may fail in detecting growth-restricted stillbirth. An individual's birthweight is the sum of physiological and pathological influences operating during pregnancy. Growth potential norms are a better discriminator of aberrations of fetal growth than population, ultrasound, and customized norms.

  6. Intrauterine Growth Restriction: Effects of Physiological Fetal Growth Determinants on Diagnosis

    PubMed Central

    Haram, Kjell

    2013-01-01

    The growth of the fetus, which is strongly associated with the outcome of pregnancy, reflects interplay of several physiological and pathological factors. The assessment of fetal growth is based on comparison of birthweight (BW) or estimated fetal weight (EFW) to standards which define reference ranges at a spectrum of gestational ages. Most birthweight standards do not take into account effects of physiological determinants of fetal growth. Additionally, gestational age in many standards is based on the menstrual history and is often inaccurate. Fetal growth norms should be based on an early ultrasound estimate of gestational age. Customized standards, which have included only ultrasound-dated pregnancies, seem to be superior to population-based birthweight norms in predicting perinatal mortality and morbidity. Adjustment for individual variation in customized growth curves reduces false-positive diagnosis of IUGR and may lead to a very significant reduction in intervention for suspected IUGR. Customized growth potential identifies better the risk for adverse outcome than the currently used national standards, but customized charts may fail in detecting growth-restricted stillbirth. An individual's birthweight is the sum of physiological and pathological influences operating during pregnancy. Growth potential norms are a better discriminator of aberrations of fetal growth than population, ultrasound, and customized norms. PMID:23864862

  7. Methionine, homocysteine, one carbon metabolism and fetal growth.

    PubMed

    Kalhan, Satish C; Marczewski, Susan E

    2012-06-01

    Methionine and folate are the key components of one carbon metabolism, providing the methyl groups for numerous methyl transferase reactions via the ubiquitous methyl donor, s-adenosyl methionine. Methionine metabolism is responsive to nutrient intake, is regulated by several hormones and requires a number of vitamins (B12, pyridoxine, riboflavin) as co-factors. The critical relationship between perturbations in the mother's methionine metabolism and its impact on fetal growth and development is now becoming evident. The relation of folate intake to fetal teratogenesis has been known for some time. Studies in human pregnancy show a continuous decrease in plasma homocysteine, and an increase in plasma choline concentrations with advancing gestation. A higher rate of transsulfuration of methionine in early gestation and of transmethylation in the 3rd trimester was seen in healthy pregnant women. How these processes are impacted by nutritional, hormonal and other influences in human pregnancy and their effect on fetal growth has not been examined. Isocaloric protein restriction in pregnant rats, resulted in fetal growth restriction and metabolic reprogramming. Isocaloric protein restriction in the non-pregnant rat, resulted in differential expression of a number of genes in the liver, a 50% increase in whole body serine biosynthesis and high rate of transmethylation, suggesting high methylation demands. These responses were associated with a significant decrease in intracellular taurine levels in the liver suggesting a role of cellular osmolarity in the observed metabolic responses. These unique changes in methionine and one carbon metabolism in response to physiological, nutritional and hormonal influences make these processes critical for cellular and organ function and growth.

  8. Atenolol and fetal growth in pregnancies complicated by hypertension.

    PubMed

    Lydakis, C; Lip, G Y; Beevers, M; Beevers, D G

    1999-06-01

    Atenolol use may be associated with growth retardation when given in pregnancy, although the relationship to trimester of initiation, duration of treatment, and its use as monotherapy is still uncertain. To compare the obstetric and fetal outcome between women receiving atenolol (as monotherapy) and other antihypertensive drug monotherapies, and also to investigate the effect of duration of treatment on fetal growth, we performed a retrospective cohort study of 312 pregnancies in 223 women attending an Antenatal Hypertension Clinic. Atenolol (as monotherapy) was given in 78 pregnancies (25.0%), other types of antihypertensive drugs as monotherapy were given in 53 pregnancies (17.0%), and multiple drug combinations were given in 90 pregnancies (28.8%). In 91 pregnancies (29.2%) no antihypertensive drugs were given. Atenolol was found to be associated with lower birth weight and ponderal index values, with a trend toward a higher prevalence of preterm (<37 weeks) delivery and small-for-gestational-age babies when compared to other antihypertensive drugs as monotherapy, or to no treatment. The adverse effect of atenolol was more pronounced in women receiving the drug earlier in their pregnancy, and continuing the drug for a longer duration. In conclusion, atenolol should be avoided in the early stages of pregnancy and given with caution at the later stages, as it is associated with fetal growth retardation, which is related to duration of treatment.

  9. IGF2 DNA methylation is a modulator of newborn's fetal growth and development.

    PubMed

    St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi

    2012-10-01

    The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn's fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn's weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn's fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.

  10. Early rapid growth, early birth: Accelerated fetal growth and spontaneous late preterm birth

    PubMed Central

    Kusanovic, Juan Pedro; Erez, Offer; Espinoza, Jimmy; Gotsch, Francesca; Goncalves, Luis; Hassan, Sonia; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A.; Romero, Roberto

    2011-01-01

    The past two decades in the United States have seen a 24 % rise in spontaneous late preterm delivery (34 to 36 weeks) of unknown etiology. This study tested the hypothesis that fetal growth was identical prior to spontaneous preterm (n=221, median gestational age at birth 35.6 weeks) and term (n=3706) birth among pregnancies followed longitudinally in Santiago, Chile. The hypothesis was not supported: Preterm-delivered fetuses were significantly larger than their term-delivered peers by mid-second trimester in estimated fetal weight, head, limb and abdominal dimensions, and they followed different growth trajectories. Piecewise regression assessed time-specific differences in growth rates at 4-week intervals from 16 weeks. Estimated fetal weight and abdominal circumference growth rates faltered at 20 weeks among the preterm-delivered, only to match and/or exceed their term-delivered peers at 24–28 weeks. After an abrupt decline at 28 weeks attenuating growth rates in all dimensions, fetuses delivered preterm did so at greater population-specific sex and age-adjusted weight than their peers from uncomplicated pregnancies (p<0.01). Growth rates predicted birth timing: one standard score of estimated fetal weight increased the odds ratio for preterm birth from 2.8 prior to 23 weeks, to 3.6 (95% confidence interval, 1.82–7.11, p<0.05) between 23 and 27 weeks. After 27 weeks, increasing size was protective (OR: 0.56, 95% confidence interval, 0.38–0.82, p=0.003). These data document, for the first time, a distinctive fetal growth pattern across gestation preceding spontaneous late preterm birth, identify the importance of mid-gestation for alterations in fetal growth, and add perspective on human fetal biological variability. PMID:18988282

  11. [Sonography of fetal growth behavior in maternal diabetes mellitus].

    PubMed

    Hielscher, K; Renziehausen, K; Döring, E

    1989-01-01

    In the Gynaecological Hospital affiliated to the District Hospital of Karl-Marx-Stadt, which is a care centre for pregnant diabetic women, 363 diabetic women of classes White A-F 1779 were subjected to ultrasonic examinations between 1982 and 1988. In this connection, nominal-value graphs were prepared to show the biparietal diameter (BIP), the medium thorax diameter and the head-thorax index in dependence upon the gestational age. These nominal-value graphs give a general idea of the specific fetal growth behaviour in case of diabetes mellitus. They permit to reliably diagnose a fetal hypertrophy or hypotrophy. Moreover, they provide a starting point for a more effective coverage of gestational diabetics and open up new prospects for insulinisation.

  12. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review)

    PubMed Central

    AGROGIANNIS, GEORGIOS D.; SIFAKIS, STAVROS; PATSOURIS, EFSTRATIOS S.; KONSTANTINIDOU, ANASTASIA E.

    2014-01-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre-implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development. PMID:24859417

  13. Growth perturbations in a phenotype with rapid fetal growth preceding preterm labor and term birth.

    PubMed

    Lampl, Michelle; Kusanovic, Juan Pedro; Erez, Offer; Gotsch, Francesca; Espinoza, Jimmy; Goncalves, Luis; Lee, Wesley; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A; Romero, Roberto

    2009-01-01

    The variability in fetal growth rates and gestation duration in humans is not well understood. Of interest are women presenting with an episode of preterm labor and subsequently delivering a term neonate, who is small relative to peers of similar gestational age. To further understand these relationships, fetal growth patterns predating an episode of preterm labor were investigated. Retrospective analysis of fetal biometry assessed by serial ultrasound in a prospectively studied sample of pregnancies in Santiago, Chile, tested the hypothesis that fetal growth patterns among uncomplicated pregnancies (n = 3,706) and those with an episode of preterm labor followed by term delivery (n = 184) were identical across the time intervals 16-22 weeks, 22-28 weeks, and 28-34 weeks in a multilevel mixed-effects regression. The hypothesis was not supported. Fetal weight growth rate was faster from 16 weeks among pregnancies with an episode of preterm labor (P < 0.05), declined across midgestation (22-28 weeks, P < 0.05), and rebounded between 28 and 34 weeks (P = 0.06). This was associated with perturbations in abdominal circumference growth and proportionately larger biparietal diameter from 22 gestational weeks (P = 0.03), greater femur (P = 0.01), biparietal diameter (P = 0.001) and head circumference (P = 0.02) dimensions relative to abdominal circumference across midgestation (22-28 weeks), followed by proportionately smaller femur diaphyseal length (P = 0.02) and biparietal diameter (P = 0.03) subsequently. A distinctive rapid growth phenotype characterized fetal growth preceding an episode of preterm labor among this sample of term-delivered neonates. Perturbations in abdominal circumference growth and patterns of proportionality suggest an altered growth strategy pre-dating the preterm labor episode.

  14. Fetal hydantoin syndrome: inhibition of placental folic acid transport as a potential mechanism for fetal growth retardation in the rat

    SciTech Connect

    Will, M.; Barnard, J.A.; Said, H.M.; Ghishan, F.K.

    1985-04-01

    Maternal hydantoin ingestion during pregnancy results in a well defined clinical entity termed ''fetal hydantoin syndrome''. The clinical characteristics of this syndrome includes growth retardation, and congenital anomalies. Because folic acid is essential for protein synthesis and growth, and since hydantoin interferes with intestinal transport of folic acid, the authors postulated that part of the fetal hydantoin syndrome may be due to inhibition of placental folic acid by maternal hydantoin. Therefore, they studied in vivo placental folate transport in a well-established model for fetal hydantoin syndrome in the rat. Our results indicate that maternal hydantoin ingestion, significantly decreased fetal weight and placental and fetal uptake of folate compared to controls. To determine whether maternal hydantoin ingestion has a generalized or specific effect on placental function, they examined placental and fetal zinc transport in the same model. Our results indicate that zinc transport is not altered by hydantoin ingestion. They conclude that maternal hydantoin ingestion results in fetal growth retardation which may be due in part to inhibition of placental folate transport.

  15. Chronic Protein Restriction in Mice Impacts Placental Function and Maternal Body Weight before Fetal Growth

    PubMed Central

    Barbeito-Andrés, Jimena; Klenin, Natasha; Cross, James C.; Hallgrímsson, Benedikt

    2016-01-01

    Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth. PMID:27018791

  16. Fetal growth and air pollution - A study on ultrasound and birth measures.

    PubMed

    Malmqvist, Ebba; Liew, Zeyan; Källén, Karin; Rignell-Hydbom, Anna; Rittner, Ralf; Rylander, Lars; Ritz, Beate

    2017-01-01

    Air pollution has been suggested to affect fetal growth, but more data is needed to assess the timing of exposure effects by using ultrasound measures. It is also important to study effects in low exposure areas to assess eventual thresholds of effects. The MAPSS (Maternal Air Pollution in Southern Sweden) cohort consists of linked registry data for around 48,000 pregnancies from an ultrasound database, birth registry and exposure data based on residential addresses. Measures of air pollution exposure were obtained through dispersion modelling with input data from an emissions database (NOx) with high resolution (100-500m grids). Air pollution effects were assessed with linear regressions for the following endpoints; biparietal diameter, femur length, abdominal diameter and estimated fetal weight measured in late pregnancy and birth weight and head circumference measured at birth. We estimated negative effects for NOx; in the adjusted analyses the decrease of abdominal diameter and femur length were -0.10 (-0.17, -0.03) and -0.13 (-0.17, -0.01)mm, respectively, per 10µg/m(3) increment of NOx. We also estimated an effect of NOx-exposures on birth weight by reducing birth weight by 9g per 10µg/m(3) increment of NOx. We estimated small but statistically significant effects of air pollution on late fetal and birth size and reduced fetal growth late in pregnancy in a geographic area with levels below current WHO air quality guidelines.

  17. Fetal Growth and Risk of Stillbirth: A Population-Based Case–Control Study

    PubMed Central

    Bukowski, Radek; Hansen, Nellie I.; Willinger, Marian; Reddy, Uma M.; Parker, Corette B.; Pinar, Halit; Silver, Robert M.; Dudley, Donald J.; Stoll, Barbara J.; Saade, George R.; Koch, Matthew A.; Rowland Hogue, Carol J.; Varner, Michael W.; Conway, Deborah L.; Coustan, Donald; Goldenberg, Robert L.

    2014-01-01

    Background Stillbirth is strongly related to impaired fetal growth. However, the relationship between fetal growth and stillbirth is difficult to determine because of uncertainty in the timing of death and confounding characteristics affecting normal fetal growth. Methods and Findings We conducted a population-based case–control study of all stillbirths and a representative sample of live births in 59 hospitals in five geographic areas in the US. Fetal growth abnormalities were categorized as small for gestational age (SGA) (<10th percentile) or large for gestational age (LGA) (>90th percentile) at death (stillbirth) or delivery (live birth) using population, ultrasound, and individualized norms. Gestational age at death was determined using an algorithm that considered the time-of-death interval, postmortem examination, and reliability of the gestational age estimate. Data were weighted to account for the sampling design and differential participation rates in various subgroups. Among 527 singleton stillbirths and 1,821 singleton live births studied, stillbirth was associated with SGA based on population, ultrasound, and individualized norms (odds ratio [OR] [95% CI]: 3.0 [2.2 to 4.0]; 4.7 [3.7 to 5.9]; 4.6 [3.6 to 5.9], respectively). LGA was also associated with increased risk of stillbirth using ultrasound and individualized norms (OR [95% CI]: 3.5 [2.4 to 5.0]; 2.3 [1.7 to 3.1], respectively), but not population norms (OR [95% CI]: 0.6 [0.4 to 1.0]). The associations were stronger with more severe SGA and LGA (<5th and >95th percentile). Analyses adjusted for stillbirth risk factors, subset analyses excluding potential confounders, and analyses in preterm and term pregnancies showed similar patterns of association. In this study 70% of cases and 63% of controls agreed to participate. Analysis weights accounted for differences between consenting and non-consenting women. Some of the characteristics used for individualized fetal growth estimates were missing

  18. NDRG1 deficiency attenuates fetal growth and the intrauterine response to hypoxic injury.

    PubMed

    Larkin, Jacob; Chen, Baosheng; Shi, Xiao-Hua; Mishima, Takuya; Kokame, Koichi; Barak, Yaacov; Sadovsky, Yoel

    2014-03-01

    Intrauterine mammalian development depends on the preservation of placental function. The expression of the protein N-myc downstream-regulated gene 1 (NDRG1) is increased in placentas of human pregnancies affected by fetal growth restriction and in hypoxic primary human trophoblasts, where NDRG1 attenuates cell injury. We sought to assess the function of placental NDRG1 in vivo and tested the hypothesis that NDRG1 deficiency in the mouse embryo impairs placental function and consequently intrauterine growth. We found that Ndrg1 knock-out embryos were growth restricted in comparison to wild-type or heterozygous counterparts. Furthermore, hypoxia reduced the survival of female, but not male, knock-out embryos. Ndrg1 deletion caused significant alterations in placental gene expression, with a marked reduction in transcription of several lipoproteins in the placental labyrinth. These transcriptional changes were associated with reduced fetal:maternal serum cholesterol ratio exclusively in hypoxic female embryos. Collectively, our findings indicate that NDRG1 promotes fetal growth and regulates the metabolic response to intrauterine hypoxic injury in a sexually dichotomous manner.

  19. The role of growth hormone in fetal development.

    PubMed

    Waters, M J; Kaye, P L

    2002-06-01

    Studies across several species, particularly the mouse, show that growth hormone (GH, somatotrophin) is an important determinant of litter size, and to a lesser extent, of birth length. GH acts at all stages of development, from ovulation through preimplantation development to the late fetus, with actions on both embryo/fetus and mother contributing to successful fetal development. The fact that these are not more obvious in vivo is likely a result of redundancy of cytokine hormone action, particularly in relation to prolactin, which shares common actions and receptor locations with GH.

  20. Imprinted gene expression in fetal growth and development.

    PubMed

    Lambertini, L; Marsit, C J; Sharma, P; Maccani, M; Ma, Y; Hu, J; Chen, J

    2012-06-01

    Experimental studies showed that genomic imprinting is fundamental in fetoplacental development by timely regulating the expression of the imprinted genes to overlook a set of events determining placenta implantation, growth and embryogenesis. We examined the expression profile of 22 imprinted genes which have been linked to pregnancy abnormalities that may ultimately influence childhood development. The study was conducted in a subset of 106 placenta samples, overrepresented with small and large for gestational age cases, from the Rhode Island Child Health Study. We investigated associations between imprinted gene expression and three fetal development parameters: newborn head circumference, birth weight, and size for gestational age. Results from our investigation show that the maternally imprinted/paternally expressed gene ZNF331 inversely associates with each parameter to drive smaller fetal size, while paternally imprinted/maternally expressed gene SLC22A18 directly associates with the newborn head circumference promoting growth. Multidimensional Scaling analysis revealed two clusters within the 22 imprinted genes which are independently associated with fetoplacental development. Our data suggest that cluster 1 genes work by assuring cell growth and tissue development, while cluster 2 genes act by coordinating these processes. Results from this epidemiologic study offer solid support for the key role of imprinting in fetoplacental development.

  1. [Consequences of smoking on fetal development and risk of intra-uterine growth retardation or in utero fetal death].

    PubMed

    Collet, M; Beillard, C

    2005-04-01

    Active and passive smoking constitutes one of the most serious public health problems due to the deleterious effect on the expected infant and the mother. These effects are dose dependent as illustrated by intra-uterine growth retardation, where the effect worsens with duration of smoking during pregnancy, and also by other conditions such as abrutio placentae or placenta praevia, premature rupture of the membranes and preterm birth, where the risk is multiplied by two (or even three)! In utero death is the ultimate sanction. Studies on the consequences of maternal smoking on fetal development have demonstrated the cardiovascular effect (CO and nicotine) and the respiratory effect (CO) which can be aggravated after birth by passive smoking. Teratogenic and cancerogenic effects have also been clearly demonstrated. Maternal smoking would also affect fetal brain development with negative effects on the major neurotransmitter systems (domaminergic, serotinergic, noradrenergic) and on the development of key structures such as the prefrontal cortex, certain limbic structures including the hippocampus and other structures implicated in motor function such as the ventral striatum. These development anomalies of the brain could give rise, after birth, to psychological, behavioral, attention and cognitive disorders, further arguments in favor of an effective anti-smoking policy including appropriate care for smoking pregnant mothers in both hospital and outpatient settings.

  2. Fetal organ growth in response to oesophageal infusion of amniotic fluid, colostrum, milk or gastrin-releasing peptide: a study in fetal sheep.

    PubMed

    Trahair, J F; Sangild, P T

    2000-01-01

    altered nutrient uptake and/or availability can affect the growth of other major fetal organs.

  3. Fetal growth and the ethnic origins of type 2 diabetes.

    PubMed

    Skilton, Michael R

    2015-03-01

    Birthweight is known to differ by ethnicity, with South Asian, black African and Caribbean, and Hispanic ethnic groups having lower birthweight on average, when compared with people of white European ethnicity. Birthweight is the most frequently used proxy of fetal growth, and represents the net effect of a host of genetic, physiological and pathophysiological factors. These same ethnic groups that have lower average birthweight also tend to have a higher prevalence of type 2 diabetes in adulthood. It is not unreasonable to propose that the well-established inverse association between birthweight and risk of type 2 diabetes may at least partially contribute to these differences in prevalence of type 2 diabetes between ethnic groups. This hypothesis would rely on the mechanisms that drive the ethnic differences in birthweight aligning with those that modify the risk of type 2 diabetes. In this issue of Diabetologia (DOI: 10.1007/s00125-014-3474-7), Nightingale et al have furthered this field by determining whether ethnic differences in markers of cardio-metabolic risk are consistent with the differences in birthweight in an ethnically diverse cohort of children. The likely contribution of fetal growth to ethnic differences in risk of type 2 diabetes and cardiovascular disease is discussed, particularly in light of the magnitude of the birthweight differences, as are implications for the prevention of type 2 diabetes.

  4. Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction.

    PubMed

    Satterfield, M Carey; Bazer, Fuller W; Spencer, Thomas E; Wu, Guoyao

    2010-02-01

    Adequate placental blood flow is essential for the optimal delivery of nutrients from mother to fetus for conceptus growth. Restricted fetal development results from pathophysiological and environmental factors that alter utero-placental blood flow, placental function, and, therefore, nutrient availability in the fetus. To test this hypothesis, 0, 75, or 150 mg/d sildenafil citrate (Viagra) was administered subcutaneously from d 28 to 115 of gestation to either nutrient-restricted [50% of NRC requirements) or adequately-fed ewes (100% of NRC requirements). On d 115, maternal, fetal, and placental tissues and fluids were collected. Concentrations of total amino acids and polyamines in uterine venous and arterial sera, amniotic and allantoic fluids, and fetal umbilical venous serum were lower (P < 0.05) in nutrient-restricted ewes than in adequately fed ewes, as were the ratios of total amino acids in fetal umbilical venous serum to uterine arterial serum. Sildenafil citrate dose-dependently increased (P < 0.05) total amino acids and polyamines in amniotic fluid, allantoic fluid, and fetal serum without affecting values in maternal serum. Fetal weight was lower (P < 0.05) in nutrient-restricted ewes on d 115. Sildenafil citrate treatment dose-dependently increased (P < 0.05) fetal weight in both nutrient-restricted and adequately fed ewes. This study supports the hypothesis that long-term sildenafil citrate treatment enhances fetal growth, at least in part, by increasing the availability of amino acids in the conceptus. These findings may lead to the clinical use of sildenafil citrate in human pregnancies suspected to be at risk for intrauterine fetal growth retardation.

  5. Prenatal caffeine intake differently affects synaptic proteins during fetal brain development.

    PubMed

    Mioranzza, Sabrina; Nunes, Fernanda; Marques, Daniela M; Fioreze, Gabriela T; Rocha, Andréia S; Botton, Paulo Henrique S; Costa, Marcelo S; Porciúncula, Lisiane O

    2014-08-01

    Caffeine is the psychostimulant most consumed worldwide. However, little is known about its effects during fetal brain development. In this study, adult female Wistar rats received caffeine in drinking water (0.1, 0.3 and 1.0 g/L) during the active cycle in weekdays, two weeks before mating and throughout pregnancy. Cerebral cortex and hippocampus from embryonic stages 18 or 20 (E18 or E20, respectively) were collected for immunodetection of the following synaptic proteins: brain-derived neurotrophic factor (BDNF), TrkB receptor, Sonic Hedgehog (Shh), Growth Associated Protein 43 (GAP-43) and Synaptosomal-associated Protein 25 (SNAP-25). Besides, the estimation of NeuN-stained nuclei (mature neurons) and non-neuronal nuclei was verified in both brain regions and embryonic periods. Caffeine (1.0 g/L) decreased the body weight of embryos at E20. Cortical BDNF at E18 was decreased by caffeine (1.0 g/L), while it increased at E20, with no major effects on TrkB receptors. In the hippocampus, caffeine decreased TrkB receptor only at E18, with no effects on BDNF. Moderate and high doses of caffeine promoted an increase in Shh in both brain regions at E18, and in the hippocampus at E20. Caffeine (0.3g/L) decreased GAP-43 only in the hippocampus at E18. The NeuN-stained nuclei increased in the cortex at E20 by lower dose and in the hippocampus at E18 by moderate dose. Our data revealed that caffeine transitorily affect synaptic proteins during fetal brain development. The increased number of NeuN-stained nuclei by prenatal caffeine suggests a possible acceleration of the telencephalon maturation. Although some modifications in the synaptic proteins were transient, our data suggest that caffeine even in lower doses may alter the fetal brain development.

  6. Sildenafil Citrate Increases Fetal Weight in a Mouse Model of Fetal Growth Restriction with a Normal Vascular Phenotype

    PubMed Central

    Dilworth, Mark Robert; Andersson, Irene; Renshall, Lewis James; Cowley, Elizabeth; Baker, Philip; Greenwood, Susan; Sibley, Colin Peter; Wareing, Mark

    2013-01-01

    Fetal growth restriction (FGR) is defined as the inability of a fetus to achieve its genetic growth potential and is associated with a significantly increased risk of morbidity and mortality. Clinically, FGR is diagnosed as a fetus falling below the 5th centile of customised growth charts. Sildenafil citrate (SC, Viagra™), a potent and selective phosphodiesterase-5 inhibitor, corrects ex vivo placental vascular dysfunction in FGR, demonstrating potential as a therapy for this condition. However, many FGR cases present without an abnormal vascular phenotype, as assessed by Doppler measures of uterine/umbilical artery blood flow velocity. Thus, we hypothesized that SC would not increase fetal growth in a mouse model of FGR, the placental-specific Igf2 knockout mouse, which has altered placental exchange capacity but normal placental blood flow. Fetal weights were increased (by 8%) in P0 mice following maternal SC treatment (0.4 mg/ml) via drinking water. There was also a trend towards increased placental weight in treated P0 mice (P = 0.056). Additionally, 75% of the P0 fetal weights were below the 5th centile, the criterion used to define human FGR, of the non-treated WT fetal weights; this was reduced to 51% when dams were treated with SC. Umbilical artery and vein blood flow velocity measures confirmed the lack of an abnormal vascular phenotype in the P0 mouse; and were unaffected by SC treatment. 14C-methylaminoisobutyric acid transfer (measured to assess effects on placental nutrient transporter activity) per g placenta was unaffected by SC, versus untreated, though total transfer was increased, commensurate with the trend towards larger placentas in this group. These data suggest that SC may improve fetal growth even in the absence of an abnormal placental blood flow, potentially affording use in multiple sub-populations of individuals presenting with FGR. PMID:24204949

  7. Growth in Inuit children exposed to polychlorinated biphenyls and lead during fetal development and childhood

    PubMed Central

    Dallaire, Renée; Dewailly, Éric; Ayotte, Pierre; Forget-Dubois, Nadine; Jacobson, Sandra W.; Jacobson, Joseph L.; Muckle, Gina

    2014-01-01

    Background Because of their geographical location and traditional lifestyle, Canadian Inuit children are highly exposed to polychlorinated biphenyls (PCBs) and lead (Pb), environmental contaminants that are thought to affect fetal and child growth. We examined the associations of these exposures with the fetal and postnatal growth of Inuit children. Methods We conducted a prospective cohort study among Inuit from Nunavik (Arctic Québec). Mothers were recruited at their first prenatal visit; children (n = 290) were evaluated at birth and at 8–14 years of age. Concentrations of PCB 153 and Pb were determined in umbilical cord and child blood. Weight, height and head circumference were measured at birth and during childhood. Results Cord blood PCB 153 concentrations were not associated with anthropometric measurements at birth or school age, but child blood PCB 153 concentrations were associated with reduced weight, height and head circumference during childhood. There was no association between cord Pb levels and anthropometric outcomes at birth, but cord blood Pb was related to smaller height and a tendency to a smaller head circumference during childhood. Interpretation Our results suggest that chronic exposure to PCBs during childhood is negatively associated with skeletal growth and weight, while prenatal Pb exposure is related to reduce growth during childhood. This study is the first to link prenatal Pb exposure to poorer growth in school-age children. PMID:25042032

  8. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth

    PubMed Central

    Aye, Irving L. M. H.; Rosario, Fredrick J.; Powell, Theresa L.; Jansson, Thomas

    2015-01-01

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity. PMID:26417088

  9. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth.

    PubMed

    Aye, Irving L M H; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-10-13

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity.

  10. Structural equation modeling and nested ANOVA: Effects of lead exposure on maternal and fetal growth in rats

    SciTech Connect

    Hamilton, J.D. ); O'Flaherty, E.J.; Shukla, R.; Gartside, P.S. ); Ross, R. )

    1994-01-01

    This study provided an assessment of the effects of lead on early growth in rats based on structural equation modeling and nested analysis of variance (ANOVA). Structural equation modeling showed that lead in drinking water (250, 500, or 1000 ppm) had a direct negative effect on body weight and tail length (i.e., growth) in female rats during the first week of exposure. During the following 2 weeks of exposure, high correlation between growth measurements taken over time resulted in reduced early postnatal growth. By the fourth week of exposure, reduced growth was not evident. Mating began after 8 weeks of exposure, and exposure continued during gestation. Decreased fetal body weight was detected when the effects of litter size, intrauterine position, and sex were controlled in a nested ANOVA. Lead exposure did not appear to affect fetal skeletal development, possibly because lead did not alter maternal serum calcium and phosphorus levels. The effect of lead on individual fetal body weight suggests that additional studies are needed to examine the effect of maternal lead exposure on fetal development and early postnatal growth. 24 refs., 4 figs., 6 tabs.

  11. Fetal Growth and Neurodevelopmental Outcome in Congenital Heart Disease

    PubMed Central

    Fifer, William P.; Andrews, Howard

    2017-01-01

    We evaluated differences in growth between fetuses with and without congenital heart disease (CHD) and tested associations between growth and early childhood neurodevelopment (ND). In this prospective cohort study, fetuses with hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and tetralogy of Fallot (TOF) and controls had biparietal diameter (BPD), head (HC) and abdominal circumference (AC), femur length (FL), and estimated fetal weight (EFW) recorded serially during pregnancy at 18and controls were assessed using–26 weeks GA (F1), at 27–33 weeks GA (F2), and at 34–40 weeks GA (F3). CHD subjects underwent Bayley Scales of Infant Development-III ND testing at 18 months. Differences between CHD fetuses and controls were assessed using t tests and generalized linear modeling. Correlations between biometry and ND informed regression modeling. We enrolled 41 controls and 68 fetuses with CHD (N = 24 HLHS, N = 21 TGA, N = 23 TOF), 46 of whom had ND scores available. At 18–26 weeks, CHD fetuses were smaller than controls in all biometric parameters. Differences in growth rates were observed for HC, BPD, and AC, but not for FL or EFW. Cognitive score correlated with HC/AC at F2 (r = −0.33, P = 0.04) and mean HC/AC across gestation (r = −0.35, P = 0.03). Language correlated with FL/BPD at F2 (r = 0.34, P = 0.04). In stepwise linear regression, mean HC/AC predicted Cognition (B = −102, P = 0.026, R2 = 0.13) and FL/BPD at F2 predicted Language score (B = 127, P = 0.03, R2 = 0.12). Differences in growth between CHD fetuses and controls can be measured early in pregnancy. In CHD fetuses, larger abdominal relative to head circumference is associated with better 18-month neurodevelopment. PMID:25753684

  12. THYROID HORMONE IS REQUIRED FOR GROWTH ADAPTATION TO PRESSURE LOAD IN THE OVINE FETAL HEART

    PubMed Central

    Segar, Jeffrey L; Volk, Ken A; Lipman, Michael H.B.; Scholz, Thomas D

    2012-01-01

    Thyroid hormone exerts broad effects on the adult heart, however little is known regarding the role of thyroid hormone on regulating cardiac growth early in development and in response to pathophysiological conditions. To address this issue, we determined the effects of fetal thyroidectomy on cardiac growth and growth related gene expression in control and pulmonary artery banded fetal sheep. Fetal thyroidectomy (THX) and placement of a restrictive pulmonary artery band (PAB) was performed at 126 ± 1 d gestation (term 145 d). Four groups of animals (n = 5–6 in each group): 1) control; 2) fetal THX; 3) fetal PAB; and 4) fetal PAB + THX; were monitored for 1 week prior to being euthanized. Fetal heart rate was significantly lower in the two THX groups compared with the non-THX groups while mean arterial blood pressure was similar among groups. Combined left and right ventricle free wall + septum weight, expressed per kg fetal weight, was significantly increased in PAB (6.27 ± 0.85 g/kg) compared to control animals (4.72 ± 0.12 g/kg). THX significantly attenuated the increase in cardiac mass associated with PAB (4.94 ± 0.13 g/kg) while THX alone had no detectable effect on heart mass (4.95 ± 0.27 g/kg). The percentage of binucleated cardiomyocytes was significantly decreased in THX and PAB +THX (~16%) compared to the non-THX groups (~27%). No differences in levels of activated Akt, ERK or JNK were detected among the groups. Markers of cellular proliferation but not apoptosis or expression of growth related genes were lower in the THX and THX+ PAB groups relative to thyroid intact animals. These findings suggest that in the late gestation fetal heart, thyroid hormone has important cellular growth functions in both physiologic and pathophysiologic states. Specifically, thyroid hormone is required for adaptive fetal cardiac growth in response to pressure overload. PMID:23104936

  13. Effect of maternal asthma and gestational asthma therapy on fetal growth.

    PubMed

    Bakhireva, Ludmila N; Schatz, Michael; Chambers, Christina D

    2007-03-01

    Asthma is a common chronic condition that might seriously complicate pregnancy and fetal development. This article provides a comprehensive review of the existing literature regarding the effect on fetal growth of maternal asthma and common asthma medications used during pregnancy, including short-and long-acting beta (2)-agonists, inhaled and oral corticosteroids, chromones, leukotriene receptor agonists, and theophylline. Evaluated outcomes of fetal growth include low birth weight, mean birth weight, small for gestational age, birth length and head circumference, and measures of asymmetrical growth retardation. Methodological and practical considerations related to safety of asthma medications in pregnancy and management of gestational asthma are discussed.

  14. Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation

    PubMed Central

    Solano, María Emilia; Kowal, Mirka Katharina; O’Rourke, Greta Eugenia; Horst, Andrea Kristina; Modest, Kathrin; Plösch, Torsten; Barikbin, Roja; Remus, Chressen Catharina; Berger, Robert G.; Jago, Caitlin; Ho, Hoang; Sass, Gabriele; Parker, Victoria J.; Lydon, John P.; DeMayo, Francesco J.; Hecher, Kurt; Karimi, Khalil; Arck, Petra Clara

    2015-01-01

    Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies in Western societies. IUGR is a strong predictor of reduced short-term neonatal survival and impairs long-term health in children. Placental insufficiency is often associated with IUGR; however, the molecular mechanisms involved in the pathogenesis of placental insufficiency and IUGR are largely unknown. Here, we developed a mouse model of fetal-growth restriction and placental insufficiency that is induced by a midgestational stress challenge. Compared with control animals, pregnant dams subjected to gestational stress exhibited reduced progesterone levels and placental heme oxygenase 1 (Hmox1) expression and increased methylation at distinct regions of the placental Hmox1 promoter. These stress-triggered changes were accompanied by an altered CD8+ T cell response, as evidenced by a reduction of tolerogenic CD8+CD122+ T cells and an increase of cytotoxic CD8+ T cells. Using progesterone receptor– or Hmox1-deficient mice, we identified progesterone as an upstream modulator of placental Hmox1 expression. Supplementation of progesterone or depletion of CD8+ T cells revealed that progesterone suppresses CD8+ T cell cytotoxicity, whereas the generation of CD8+CD122+ T cells is supported by Hmox1 and ameliorates fetal-growth restriction in Hmox1 deficiency. These observations in mice could promote the identification of pregnancies at risk for IUGR and the generation of clinical interventional strategies. PMID:25774501

  15. Perinatal programming of childhood asthma: early fetal size, growth trajectory during infancy, and childhood asthma outcomes.

    PubMed

    Turner, Steve

    2012-01-01

    The "fetal origins hypothesis" or concept of "developmental programming" suggests that faltering fetal growth and subsequent catch-up growth are implicated in the aetiology of cardiovascular disease. Associations between reduced birth weight, rapid postnatal weight gain, and asthma suggest that there are fetal origins to respiratory disease. The present paper first summarises the literature relating birth weight and post natal growth trajectories to asthma outcomes. Second, issues regarding the interpretation of antenatal fetal ultrasound measurements are discussed. Finally, recent reports linking antenatal measurement and growth trajectory to early childhood asthma outcomes are discussed. Understanding the nature and timing of factors which influence antenatal growth may give important insight into the antecedents of early-onset asthma with implications for interventions.

  16. Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy

    PubMed Central

    Higgins, J. S.; Vaughan, O. R.; Fernandez de Liger, E.; Fowden, A. L.

    2015-01-01

    Key points Hypoxia is a major cause of fetal growth restriction, particularly at high altitude, although little is known about its effects on placental phenotype and resource allocation to fetal growth.In the present study, maternal hypoxia induced morphological and functional changes in the mouse placenta, which depended on the timing and severity of hypoxia, as well as the degree of maternal hypophagia.Hypoxia at 13% inspired oxygen induced beneficial changes in placental morphology, nutrient transport and metabolic signalling pathways associated with little or no change in fetal growth, irrespective of gestational age.Hypoxia at 10% inspired oxygen adversely affected placental phenotype and resulted in severe fetal growth restriction, which was due partly to maternal hypophagia.There is a threshold between 13% and 10% inspired oxygen, corresponding to altitudes of ∼3700 m and 5800 m, respectively, at which the mouse placenta no longer adapts to support fetal resource allocation. This has implications for high altitude human pregnancies. Abstract The placenta adapts its transport capacity to nutritional cues developmentally, although relatively little is known about placental transport phenotype in response to hypoxia, a major cause of fetal growth restriction. The present study determined the effects of both moderate hypoxia (13% inspired O2) between days (D)11 and D16 or D14 and D19 of pregnancy and severe hypoxia (10% inspired O2) from D14 to D19 on placental morphology, transport capacity and fetal growth on D16 and D19 (term∼D20.5), relative to normoxic mice in 21% O2. Placental morphology adapted beneficially to 13% O2; fetal capillary volume increased at both ages, exchange area increased at D16 and exchange barrier thickness reduced at D19. Exposure to 13% O2 had no effect on placental nutrient transport on D16 but increased placental uptake and clearance of 3H‐methyl‐d‐glucose at D19. By contrast, 10% O2 impaired fetal vascularity

  17. Assessment of in vivo fetal growth and placental vascular function in a novel intrauterine growth restriction model of progressive uterine artery occlusion in guinea pigs

    PubMed Central

    Herrera, Emilio A.; Alegría, René; Farias, Marcelo; Díaz‐López, Farah; Hernández, Cherie; Uauy, Ricardo; Regnault, Timothy R. H.; Casanello, Paola

    2016-01-01

    Key points Intrauterine growth restriction (IUGR) is associated with short‐ and long‐term detrimental cardiometabolic effects.Mice and rats are commonly used to assess IUGR, but differences in placental and fetal developmental physiology relative to those in humans highlight the need for alternative small animal IUGR models.We developed a guinea pig IUGR model by gradual occlusion of uterine arteries by ameroid constrictor implantation. In this model, reduced uterine blood flow was associated with IUGR, allowing in vivo assessment of fetal growth trajectory and umbilico‐placental vascular function in conscious animals.The intervention induces placental vascular dysfunction and remodelling, as well as altered fetal abdominal growth resulting in an asymmetric IUGR and preserved brain growth. Abstract Intra‐uterine growth restriction (IUGR) is associated with short and long‐term metabolic and cardiovascular alterations. Mice and rats have been extensively used to study the effects of IUGR, but there are notable differences in fetal and placental physiology relative to those of humans that argue for alternative animal models. This study proposes that gradual occlusion of uterine arteries from mid‐gestation in pregnant guinea pigs produces a novel model to better assess human IUGR. Fetal biometry and in vivo placental vascular function were followed by sonography and Doppler of control pregnant guinea pigs and sows submitted to surgical placement of ameroid constrictors in both uterine arteries (IUGR) at mid‐gestation (35 days). The ameroid constrictors induced a reduction in the fetal abdominal circumference growth rate (0.205 cm day−1) compared to control (0.241 cm day−1, P < 0.001) without affecting biparietal diameter growth. Umbilical artery pulsatility and resistance indexes at 10 and 20 days after surgery were significantly higher in IUGR animals than controls (P < 0.01). These effects were associated with a decrease in the relative

  18. Altered cytokine network in gestational diabetes mellitus affects maternal insulin and placental-fetal development.

    PubMed

    Wedekind, Lauren; Belkacemi, Louiza

    2016-01-01

    Pregnancy is characterized by an altered inflammatory profile, compared to the non-pregnant state with an adequate balance between pro-and anti-inflammatory cytokines needed for normal development. Cytokines are small secreted proteins expressed mainly in immunocompetent cells in the reproductive system. From early developmental stages onward, the secretory activity of placenta cells clearly contributes to increase local as well as systemic levels of cytokines. The placental production of cytokines may affect mother and fetus independently. In turn because of this unique position at the maternal fetal interface, the placenta is also exposed to the regulatory influence of cytokines from maternal and fetal circulations, and hence, may be affected by changes in any of these. Gestational diabetes mellitus (GDM) is associated with an overall alteration of the cytokine network. This review discusses the changes that occur in cytokines post GDM and their negative effects on maternal insulin and placental-fetal development.

  19. Leptin increases growth of primary ossification centers in fetal mice

    PubMed Central

    Bertoni, Laura; Ferretti, Marzia; Cavani, Francesco; Zavatti, Manuela; Resca, Elisa; Benelli, Augusta; Palumbo, Carla

    2009-01-01

    The effect of peripheral leptin on fetal primary ossification centers during the early phases of bone histogenesis was investigated by administration of leptin to pregnant mice. Fourteen pregnant mice were divided into two groups. The treated pregnant group was subcutaneously injected in the intrascapular region with supraphysiologic doses (2 mg kg−1) of leptin (Vinci Biochem, Firenze, Italy) in a volume of 0.1 mL per 10 g body weight, at the 7th, 9th and 11th day of gestation. The control group was treated with physiological solution in the same manner and same times as the treated group. The new-born mice were killed 1 day after birth and the primary ossification centers were stained with Alizarin Red S after diaphanizing the soft tissues in 1% potassium hydroxide. The development of both endochondral and intramembranous ossification centers was morphometrically analysed in long bones. The results showed that the ossification centers of mice born by mothers treated with leptin grow more rapidly in both length and cross-sectional area compared with mice born by the untreated mothers. As the development of long bones depends on endochondral ossification occurring at proximal and distal epiphyseal plates as well as on intramembranous ossification along the periosteal surface, it appears that leptin activates the differentiation and proliferation of both chondrocytes and osteoblasts. The role of leptin as a growth factor of cartilage and bone is discussed in the light of the data reported in the literature. PMID:19682137

  20. [Maternal serum IgA in intrauterine fetal growth retardation].

    PubMed

    Briese, V; Straube, W

    1983-01-01

    The problem was to prove the significance of IgA estimations in maternal serum samples with regard to the diagnosis and the monitoring of intrauterine fetal growth retardation. IgA was estimated in serum samples from two groups of patients. The first was formed from 62 serum samples of 14 primi- and multiparae delivered from new-borns with a birth weight below the 10th centile. The second was the control group. 82 serum samples from 18 gravidae were available. The IgA estimations were carried out by means of single radial immunodiffusion according to Mancini and co-workers. The IgA values of the two groups were different considering that linear regression model was used; negative correlation between IgA and pregnancy weeks in group with retarded new-borns (y = -151,78 X + 7579,8; r = -0,39) and positive correlation of these parameters in control group (y = 73,59 X -429,38; r = 0,26). It could be that IgA is an additional parameter within placental function tests of the 3rd trimester of pregnancy.

  1. Leptin increases growth of primary ossification centers in fetal mice.

    PubMed

    Bertoni, Laura; Ferretti, Marzia; Cavani, Francesco; Zavatti, Manuela; Resca, Elisa; Benelli, Augusta; Palumbo, Carla

    2009-11-01

    The effect of peripheral leptin on fetal primary ossification centers during the early phases of bone histogenesis was investigated by administration of leptin to pregnant mice. Fourteen pregnant mice were divided into two groups. The treated pregnant group was subcutaneously injected in the intrascapular region with supraphysiologic doses (2 mg kg(-1)) of leptin (Vinci Biochem, Firenze, Italy) in a volume of 0.1 mL per 10 g body weight, at the 7th, 9th and 11th day of gestation. The control group was treated with physiological solution in the same manner and same times as the treated group. The new-born mice were killed 1 day after birth and the primary ossification centers were stained with Alizarin Red S after diaphanizing the soft tissues in 1% potassium hydroxide. The development of both endochondral and intramembranous ossification centers was morphometrically analysed in long bones. The results showed that the ossification centers of mice born by mothers treated with leptin grow more rapidly in both length and cross-sectional area compared with mice born by the untreated mothers. As the development of long bones depends on endochondral ossification occurring at proximal and distal epiphyseal plates as well as on intramembranous ossification along the periosteal surface, it appears that leptin activates the differentiation and proliferation of both chondrocytes and osteoblasts. The role of leptin as a growth factor of cartilage and bone is discussed in the light of the data reported in the literature.

  2. Fetal Hemodynamics and Fetal Growth Indices by Ultrasound in Late Pregnancy and Birth Weight in Gestational Diabetes Mellitus

    PubMed Central

    Liu, Fang; Liu, Yong; Lai, Ya-Ping; Gu, Xiao-Ning; Liu, Dong-Mei; Yang, Min

    2016-01-01

    Background: The offspring of women with gestational diabetes mellitus (GDM) are prone to macrosomia. However, birth weight is difficult to be correctly estimated by ultrasound because of fetal asymmetric growth characteristics. This study aimed to investigate the correlations between fetal hemodynamics, fetal growth indices in late pregnancy, and birth weight in GDM. Methods: A total of 147 women with GDM and 124 normal controls (NC) were enrolled in this study. Fetal hemodynamic indices, including the systolic/diastolic ratio (S/D), resistance index (RI), pulsatility index (PI) of umbilical artery (UA), middle cerebral artery (MCA), and renal artery (RA), were collected. Fetal growth indices, including biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length, were also measured by ultrasound. Birth weight, newborn gender, and maternal clinical data were collected. Results: The independent samples t-test showed that BPD, HC, and AC were larger in GDM than in NC (P < 0.05). Fetal hemodynamic indices of the UA and MCA were lower (P < 0.05), but those of the RA were higher (P < 0.001) in GDM than in NC. Birth weight was higher in GDM than in NC (P < 0.001). Pearson's correlation analysis showed that hemodynamic indices of the UA were negatively correlated with birth weight, BPD, HC, and AC in both groups (P < 0.05). MCA (S/D, PI, and RI) was negatively correlated with birth weight, HC, and AC in GDM (r = −0.164, −0.206, −0.200, −0.226, −0.189, −0.179, −0.196, −0.177, and − 0.172, respectively, P < 0.05), but there were no correlations in NC (P > 0.05). RA (S/D, PI, and RI) was positively correlated with birth weight in GDM (r = 0.168, 0.207, and 0.184, respectively, P < 0.05), but there were no correlations in NC (P > 0.05). Conclusion: Fetal hemodynamic indices in late pregnancy might be helpful for estimating newborn birth weight in women with GDM. PMID:27569240

  3. The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight

    PubMed Central

    Carroli, Guillermo; Widmer, Mariana; Neerup Jensen, Lisa; Giordano, Daniel; Abdel Aleem, Hany; Talegawkar, Sameera A.; Benachi, Alexandra; Diemert, Anke; Tshefu Kitoto, Antoinette; Thinkhamrop, Jadsada; Lumbiganon, Pisake; Tabor, Ann; Kriplani, Alka; Gonzalez Perez, Rogelio; Hecher, Kurt; Hanson, Mark A.; Gülmezoglu, A. Metin; Platt, Lawrence D.

    2017-01-01

    Background Perinatal mortality and morbidity continue to be major global health challenges strongly associated with prematurity and reduced fetal growth, an issue of further interest given the mounting evidence that fetal growth in general is linked to degrees of risk of common noncommunicable diseases in adulthood. Against this background, WHO made it a high priority to provide the present fetal growth charts for estimated fetal weight (EFW) and common ultrasound biometric measurements intended for worldwide use. Methods and Findings We conducted a multinational prospective observational longitudinal study of fetal growth in low-risk singleton pregnancies of women of high or middle socioeconomic status and without known environmental constraints on fetal growth. Centers in ten countries (Argentina, Brazil, Democratic Republic of the Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand) recruited participants who had reliable information on last menstrual period and gestational age confirmed by crown–rump length measured at 8–13 wk of gestation. Participants had anthropometric and nutritional assessments and seven scheduled ultrasound examinations during pregnancy. Fifty-two participants withdrew consent, and 1,387 participated in the study. At study entry, median maternal age was 28 y (interquartile range [IQR] 25–31), median height was 162 cm (IQR 157–168), median weight was 61 kg (IQR 55–68), 58% of the women were nulliparous, and median daily caloric intake was 1,840 cal (IQR 1,487–2,222). The median pregnancy duration was 39 wk (IQR 38–40) although there were significant differences between countries, the largest difference being 12 d (95% CI 8–16). The median birthweight was 3,300 g (IQR 2,980–3,615). There were differences in birthweight between countries, e.g., India had significantly smaller neonates than the other countries, even after adjusting for gestational age. Thirty-one women had a miscarriage, and three fetuses had

  4. Can anomalies of fetal brain circulation be useful in the management of growth restricted fetuses?

    PubMed

    Hernandez-Andrade, Edgar; Serralde, Jesus Andres Benavides; Cruz-Martinez, Rogelio

    2012-02-01

    Assessment of the fetal cerebral circulation provides important information on the hemodynamic changes associated with chronic hypoxia and intrauterine growth restriction. Despite the incorporation of new US parameters, the landmark for the fetal brain hemodynamic evaluation is still the middle cerebral artery. However, new vascular territories, such as the anterior and posterior cerebral arteries, might provide additional information on the onset of the brain sparing effect. The fractional moving blood volume estimation and three-dimensional power Doppler ultrasound indices are new techniques that seem to be promising in identifying cases at earlier stages of vascular deterioration; still, they are not available for clinical application and more information is needed on the reproducibility and advantages of three-dimensional power Doppler ultrasound blood flow indices. In the past, the brain sparing effect was considered as a protective mechanism; however, recent information challenges this concept. There is growing evidence of an association between brain sparing effect and increased risk of abnormal neurodevelopment after birth. Even in mild late-onset intrauterine growth restriction affected fetuses with normal umbilical artery blood flow, increased cerebral blood perfusion can be associated with a substantial risk of abnormal neuroadaptation and neurodevelopment during childhood.

  5. Socioeconomic status accounts for rapidly increasing geographic variation in the incidence of poor fetal growth.

    PubMed

    Ball, Stephen J; Jacoby, Peter; Zubrick, Stephen R

    2013-06-25

    Fetal growth is an important risk factor for infant morbidity and mortality. In turn, socioeconomic status is a key predictor of fetal growth; however, other sociodemographic factors and environmental effects may also be important. This study modelled geographic variation in poor fetal growth after accounting for socioeconomic status, with a fixed effect for socioeconomic status and a combination of spatially-correlated and spatially-uncorrelated random effects. The dataset comprised 88,246 liveborn singletons, aggregated within suburbs in Perth, Western Australia. Low socioeconomic status was strongly associated with an increased risk of poor fetal growth. An increase in geographic variation of poor fetal growth from 1999-2001 (interquartile odds ratio among suburbs = 1.20) to 2004-2006 (interquartile odds ratio = 1.40) indicated a widening risk disparity by socioeconomic status. Low levels of residual spatial patterns strengthen the case for targeting policies and practices in areas of low socioeconomic status for improved outcomes. This study indicates an alarming increase in geographic inequalities in poor fetal growth in Perth which warrants further research into the specific aspects of socioeconomic status that act as risk factors.

  6. Deletion of the homeobox gene PRX-2 affects fetal but not adult fibroblast wound healing responses.

    PubMed

    White, Philip; Thomas, David W; Fong, Steven; Stelnicki, Eric; Meijlink, Fritz; Largman, Corey; Stephens, Phil

    2003-01-01

    The phenotype of fibroblasts repopulating experimental wounds in vivo has been shown to influence both wound healing responses and clinical outcome. Recent studies have demonstrated that the human homeobox gene PRX-2 is strongly upregulated in fibroblasts within fetal, but not adult, mesenchymal tissues during healing. Differential homeobox gene expression by fibroblasts may therefore be important in mediating the scarless healing exhibited in early fetal wounds. RNase protection analysis demonstrated that murine Prx-2 expression was involved in fetal but not adult wound healing responses in vitro. Using fibroblasts established from homozygous mutant (Prx-2-/-) and wild-type (Prx-2+/+) murine skin tissues it was demonstrated that Prx-2 affected a number of fetal fibroblastic responses believed to be important in mediating scarless healing in vivo; namely cellular proliferation, extracellular matrix reorganization, and matrix metalloproteinase 2 and hyaluronic acid production. These data demonstrate how Prx-2 may contribute to the regulation of fetal, but not adult, fibroblasts and ultimately the wound healing phenotype. This study provides further evidence for the importance of homeobox transcription factors in the regulation of scarless wound healing. A further understanding of these processes will, it is hoped, enable the targeting of specific therapies in wound healing, both to effect scarless healing and to stimulate healing in chronic, nonhealing wounds such as venous leg ulcers.

  7. Should we use customized fetal growth percentiles in urban Canada?

    PubMed

    Melamed, Nir; Ray, Joel G; Shah, Prakesh S; Berger, Howard; Kingdom, John C

    2014-02-01

    An increasingly common challenge in antenatal care of the small for gestational age (SGA) fetus is the distinction between the constitutionally (physiologically) small fetus and the fetus affected by pathological intrauterine growth restriction (IUGR). We discuss here the rationale and the evidence for the use of customized growth percentiles for the purpose of distinguishing between the fetus with true IUGR and the fetus with constitutional SGA. We also provide estimates of the potential effects of adopting ethnicity-specific birth weight curves on the rates of SGA and large for gestational age status in multi-ethnic metropolitan cities in North America and Europe, such as the City of Toronto. Using customized growth percentiles would result in a considerable decline in the rate of a false-positive diagnosis of SGA among visible minorities, and improve the detection rate of true large for gestational age fetuses among these groups.

  8. Influence of intrauterine growth restriction on airway development in fetal and postnatal sheep.

    PubMed

    Wignarajah, Dharshini; Cock, Megan L; Pinkerton, Kent E; Harding, Richard

    2002-06-01

    Epidemiologic studies suggest that intrauterine growth restriction (IUGR) can lead to impaired lung function, yet little information exists on the effects of IUGR on airway development. Our objectives were to characterize morphometrically effects of IUGR on airway structure in the fetus and to determine whether alterations persist into postnatal life. We used two groups of sheep, each with appropriate controls; a fetal group was subjected to IUGR by restriction of placental function from 120 to 140 d (term approximately 147 d), and a postnatal group, killed 8 wk after birth, was subjected to IUGR from 120 d to birth at term. In both fetuses and postnatal lambs, IUGR did not alter lung weight relative to body weight. In IUGR fetuses, the luminal areas and basement membrane perimeters of the trachea and larger bronchi (generations 0-8, trachea = 0) were smaller than in controls. Airway wall areas, relative to basement membrane perimeters, were reduced in IUGR fetuses compared with controls, largely due to reduced areas of cartilage and epithelium. At 8 wk after birth, there were no significant differences in airway dimensions between IUGR and control lambs. However, the number of profiles of bronchial submucosal glands, relative to basement membrane perimeters, was lower in IUGR lambs than in controls and the area of epithelial mucin was increased. We conclude that restriction of fetal growth during late gestation impairs the growth of bronchial walls that could affect airway compliance in the immediate postnatal period. Although airway growth deficits are reversed by 8 wk, alterations in mucus elements persist.

  9. Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero

    PubMed Central

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A.; Kim, Kio; Corbett-Detig, James; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2011-01-01

    Existing knowledge of growth patterns in the living fetal human brain is based upon in utero imaging studies by MRI and ultrasound, which describe overall growth and provided mainly qualitative findings. However, formation of the complex folded cortical structure of the adult brain requires, in part, differential rates of regional tissue growth. To better understand these local tissue growth patterns, we applied recent advances in fetal MRI motion correction and computational image analysis techniques to 40 normal fetal human brains covering a period of primary sulcal formation (20-28 gestational weeks). Growth patterns were mapped by quantifying tissue locations that were expanding more or less quickly than the overall cerebral growth rate, which reveal increasing structural complexity. We detected increased local relative growth rates in the formation of the pre- and post-central gyri, right superior temporal gyrus and opercula, which differentiated between the constant growth rate in underlying cerebral mantle and the accelerating rate in the cortical plate undergoing folding. Analysis focused on the cortical plate revealed greater volume increases in parietal and occipital regions compared to the frontal lobe. Cortical plate growth patterns constrained to narrower age ranges showed that gyrification, reflected by greater growth rates, was more pronounced after 24 gestational weeks. Local hemispheric volume asymmetry was located in the posterior peri-Sylvian area associated with structural lateralization in the mature brain. These maps of fetal brain growth patterns construct a spatially specific baseline of developmental biomarkers with which to correlate abnormal development in the human. PMID:21414909

  10. Placental mTOR links maternal nutrient availability to fetal growth.

    PubMed

    Roos, Sara; Powell, Theresa L; Jansson, Thomas

    2009-02-01

    The mTOR (mammalian target of rapamycin) signalling pathway functions as a nutrient sensor, both in individual cells and, more globally, in organs such as the fat body in Drosophila and the hypothalamus in the rat. The activity of placental amino acid transporters is decreased in IUGR (intrauterine growth restriction), and recent experimental evidence suggests that these changes contribute directly to the restricted fetal growth. We have shown that mTOR regulates the activity of the placental L-type amino acid transporter system and that placental mTOR activity is decreased in IUGR. The present review summarizes the emerging evidence implicating placental mTOR signalling as a key mechanism linking maternal nutrient and growth factor concentrations to amino acid transport in the human placenta. Since fetal growth is critically dependent on placental nutrient transport, placental mTOR signalling plays an important role in the regulation of fetal growth.

  11. Maternal Nutrient Restriction in Guinea Pigs as an Animal Model for Inducing Fetal Growth Restriction.

    PubMed

    Elias, Alexander A; Ghaly, Andrew; Matushewski, Brad; Regnault, Timothy R H; Richardson, Bryan S

    2016-02-01

    We determined the impact of moderate maternal nutrient restriction (MNR) in guinea pigs on pregnancy outcomes, maternal/fetal growth parameters, and blood analytes to further characterize the utility of this model for inducing fetal growth restriction (FGR). Thirty guinea pig sows were fed ad libitum (Control) or 70% of the control diet prepregnant switching to 90% at midpregnancy (MNR). Animals were necropsied near term with weights obtained on all sows, fetuses, and placenta. Fetal blood sampling and organ dissection were undertaken in appropriate for gestational age (AGA) fetuses from Control litters and FGR fetuses from MNR litters using > or < 80 g which approximated the 10th percentile for the population weight distribution of the Control fetuses. MNR fetal demise rates (1/43) were extremely low in contrast to that seen with uterine artery ligation/ablation models, albeit with increased preterm delivery in MNR sows (3 of 15). We confirm that MNR fetuses are smaller and have increased placental/fetal weight ratios as often seen in human FGR infants. We provide justification for using a fetal weight threshold for categorizing AGA Control and FGR-MNR cohorts reducing population variance, and show that FGR-MNR fetuses have asymmetrical organ growth, and are polycythemic and hypoglycemic which are also well associated with moderate FGR in humans. These findings further support the utility of moderate MNR in guinea pigs for inducing FGR with many similarities to that in humans with moderate growth restriction whether resulting from maternal undernourishment or placental insufficiency.

  12. A computational model of the fetal circulation to quantify blood redistribution in intrauterine growth restriction.

    PubMed

    Garcia-Canadilla, Patricia; Rudenick, Paula A; Crispi, Fatima; Cruz-Lemini, Monica; Palau, Georgina; Camara, Oscar; Gratacos, Eduard; Bijnens, Bart H; Bijens, Bart H

    2014-06-01

    Intrauterine growth restriction (IUGR) due to placental insufficiency is associated with blood flow redistribution in order to maintain delivery of oxygenated blood to the brain. Given that, in the fetus the aortic isthmus (AoI) is a key arterial connection between the cerebral and placental circulations, quantifying AoI blood flow has been proposed to assess this brain sparing effect in clinical practice. While numerous clinical studies have studied this parameter, fundamental understanding of its determinant factors and its quantitative relation with other aspects of haemodynamic remodeling has been limited. Computational models of the cardiovascular circulation have been proposed for exactly this purpose since they allow both for studying the contributions from isolated parameters as well as estimating properties that cannot be directly assessed from clinical measurements. Therefore, a computational model of the fetal circulation was developed, including the key elements related to fetal blood redistribution and using measured cardiac outflow profiles to allow personalization. The model was first calibrated using patient-specific Doppler data from a healthy fetus. Next, in order to understand the contributions of the main parameters determining blood redistribution, AoI and middle cerebral artery (MCA) flow changes were studied by variation of cerebral and peripheral-placental resistances. Finally, to study how this affects an individual fetus, the model was fitted to three IUGR cases with different degrees of severity. In conclusion, the proposed computational model provides a good approximation to assess blood flow changes in the fetal circulation. The results support that while MCA flow is mainly determined by a fall in brain resistance, the AoI is influenced by a balance between increased peripheral-placental and decreased cerebral resistances. Personalizing the model allows for quantifying the balance between cerebral and peripheral-placental remodeling

  13. An evaluation of fetal glucogenesis in intrauterine growth-retarded pregnancies.

    PubMed

    Marconi, A M; Cetin, I; Davoli, E; Baggiani, A M; Fanelli, R; Fennessey, P V; Battaglia, F C; Pardi, G

    1993-07-01

    The presence of fetal glucogenesis was evaluated in nine patients with pregnancies complicated by intrauterine growth retardation (IUGR) at the time of fetal blood sampling (FBS) between 29 and 35 weeks of pregnancy. Eight were singleton pregnancies and one was a twin pregnancy in which blood samples were obtained from both twins. A maternal primed-constant infusion of D(U-13C]glucose was performed, and the presence of fetal glucogenesis was assessed by a comparison of steady-state maternal and fetal glucose enrichments. No significant difference was present between maternal and fetal molar percent excess ([MPE] P = .97), and the mean fetal to maternal (F/M) MPE ratio (0.99 +/- 0.01) was not significantly different from 1 (P = .76). F/M MPE ratio was independent of the time of FBS and umbilical venous glucose and lactate concentrations. Thus fetal glucogenesis is not demonstrable in a group of fairly severe growth-retarded fetuses after an overnight fast with this relatively noninvasive approach.

  14. The role and interaction of imprinted genes in human fetal growth.

    PubMed

    Moore, Gudrun E; Ishida, Miho; Demetriou, Charalambos; Al-Olabi, Lara; Leon, Lydia J; Thomas, Anna C; Abu-Amero, Sayeda; Frost, Jennifer M; Stafford, Jaime L; Chaoqun, Yao; Duncan, Andrew J; Baigel, Rachel; Brimioulle, Marina; Iglesias-Platas, Isabel; Apostolidou, Sophia; Aggarwal, Reena; Whittaker, John C; Syngelaki, Argyro; Nicolaides, Kypros H; Regan, Lesley; Monk, David; Stanier, Philip

    2015-03-05

    Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown-rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (-132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it

  15. Maternal/fetal mortality and fetal growth restriction: Role of nitric oxide and virulence factors in intrauterine infection in rats

    PubMed Central

    Wroblewska-Seniuk, Katarzyna; Nowicki, Stella; Lebouguénec, Chantal; Nowicki, Bogdan; Yallampalli, Chandra

    2011-01-01

    Objective The mechanism of infection-related mortality of pregnant rats and the intrauterine growth restriction (IUGR) are not understood. We assessed if nitric oxide (NO) has differential effects on infection with E. coli Dr/Afa mutants lacking either AfaE or AfaD invasins. Material and Methods Sprague-Dawley rats were intrauterinally infected with the clinical strain of E. coli AfaE+D+ or one of its isogenic mutants in the presence or absence of the NO synthesis inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Maternal/fetal mortality, feto-placental weight, and the infection rate were evaluated. Results Maternal and/or fetal mortality was associated with the presence of at least one virulence factor (AfaE+D+>AfaE+D−>AfaE-D+) and was increased by L-NAME treatment. The fetal and placental weights were lower than controls and they were further reduced by L-NAME treatment. Conclusions These results demonstrate that NO enhanced AfaE and AfaD mediated virulence and play an important role in Dr/Afa+ E. coli gestational tropism. PMID:21481839

  16. Periconceptional growth hormone treatment alters fetal growth and development in lambs.

    PubMed

    Koch, J M; Wilmoth, T A; Wilson, M E

    2010-05-01

    Research in the area of fetal programming has focused on intrauterine growth restriction. Few studies have attempted to examine programming mechanisms that ultimately lead to lambs with a greater potential for postnatal growth. We previously demonstrated that treatment of ewes with GH at the time of breeding led to an increase in birth weight. Therefore, the objective of this study was to determine the effects of a single injection of sustained-release GH given during the periconceptional period on fetal growth and development and to determine if the GH axis would be altered in these offspring. Estrus was synchronized using 2 injections of PGF(2alpha); at the time of the second injection, ewes assigned to treatment were also given an injection of sustained-release GH. A maternal jugular vein sample was taken weekly to analyze IGF-I as a proxy for GH to estimate the duration of the treatment effect. In ewes treated with GH, IGF-I increased (P < 0.05) by wk 1 and remained elevated until wk 4 postinjection. Lambs were weighed, crown-rump length and abdominal girth were determined, and a plasma sample was collected. In a subset of male lambs, liver, heart, and brain weights were obtained, as well as left and right ventricular wall thicknesses. On postnatal d 100, a subset of ewe lambs were weighed and challenged with an intravenous injection of GHRH. Lambs from treated ewes had increased (P < 0.05) birth weight and abdominal girth compared with control lambs; however, there was no difference in crown-rump length. Expression of GH receptor and IGF-I were increased (P < 0.05) in lambs gestated by GH-treated ewes compared with control ewes. The left ventricular wall was thinner (P < 0.05) from lambs in the GH-treated group compared with control lambs. On postnatal d 100, those ewe lambs born to ewes treated with GH continued to be heavier (P < 0.05) and had no IGF-I response to GHRH challenge. In conclusion, treating ewes with a single injection of GH appeared to alter

  17. Effects of Vivax Malaria Acquired Before 20 Weeks of Pregnancy on Subsequent Changes in Fetal Growth

    PubMed Central

    Machado Filho, Amantino C.; da Costa, Elenice P.; da Costa, Emely P.; Reis, Iracema S.; Fernandes, Emanoela A. C.; Paim, Bernardo V.; Martinez-Espinosa, Flor E.

    2014-01-01

    The resistance index (RI), pulsatility index (PI), fetal biometry, fetal heart rate (FHR), placental thickness, and hemoglobin levels were compared in 30 Plasmodium vivax-infected women between 14 and 20 weeks of pregnancy and a control group. Evaluations were performed at the moment of the malaria diagnosis and 26 weeks of pregnancy. The malaria group had lower levels of hemoglobin and greater placental thickness in both assessments, higher FHR in the first evaluation, and lower values on fetal biometry in the second assessment. There were no differences when comparing RI and PI on umbilical arteries between the two groups. Birth weight and height were lower in newborns in the malaria group than the control group. The results suggest that P. vivax infections at an earlier gestational age do not affect umbilical arteries blood flow but do affect fetal biometry in the second trimester of pregnancy and at birth. PMID:24420773

  18. Fetal growth restriction and 18-year growth and nutritional status: Aboriginal birth cohort 1987-2007.

    PubMed

    Sayers, Susan; Mott, Susan; Singh, Gurmeet

    2011-01-01

    The main objective of the work is to compare the growth and nutritional status of Australian Aboriginal term infants born with (n = 81) and without fetal growth restriction (n = 260). A prospective birth cohort study of 341 Aboriginal babies from the Top End of the Northern Territory of Australia was recruited at birth (1987-1990) and re-examined at a mean age of 18.3 years (2006-2008) for outcome measures of growth and nutrition status. Those with growth restriction at birth were 3 cm shorter (P = 0.0026) and 9 kg lighter (P = 0.0001) with head circumferences 0.95 cm smaller (P = 0.0008) than those without growth restriction. The proportions of growth restricted participants with body mass index <18.5 kg/m(2) were significantly greater (P = 0.028), and those with BMI > 25 kg/m(2) and with fat percentage >85th percentile were significantly smaller (P = 0.012 and 0.004, respectively). In this cohort, those Aboriginal babies born smaller and lighter have remained smaller and lighter at 18 years of age. However, the highest risk of later chronic noncommunicable disease has been reported in subjects who were born small and become relatively larger in later life. The continued study of this Aboriginal birth cohort will give us an opportunity to determine if and when in later life the effects of birth weight are modified by environmental nutritional factors.

  19. Restrictive dermopathy and fetal behaviour.

    PubMed

    Mulder, E J; Beemer, F A; Stoutenbeek, P

    2001-07-01

    We report three siblings from consecutive pregnancies affected with restrictive dermopathy (RD). During the second pregnancy, fetal behavioural development and growth were studied extensively using ultrasound at 1-4 week intervals. Dramatic and sudden changes occurred in fetal body movements and growth but not until the end of the second trimester of pregnancy. Prominent at that time were prolonged periods of fetal quiescence and very low heart rate variability, together with abnormally executed body movements of short duration. Retarded femoral development and jerky abrupt fetal body movements (abnormal movement quality) were already present in the early second trimester of pregnancy. Facial anomalies emerged despite the presence of fetal mouth movements. The clinical features of RD were only partly explained by present knowledge of skin development and the fetal akinesia deformation sequence hypothesis. Quantitative assessment of fetal movements proved to be a poor early marker for antenatal diagnosis of this disorder.

  20. Effects of Atypical Patterns of Fetal Growth on Newborn (NBAS) Behavior.

    ERIC Educational Resources Information Center

    Lester, Barry M.; And Others

    1986-01-01

    Newborn infants showing anthropometric signs of atypical patterns of fetal growth were compared with infants of appropriate growth on the Neonatal Behavioral Assessment Scale and on recently developed supplementary items. The sample consisted of lower-socioeconomic-status families in San Juan, Puerto Rico, and included teenage and older mothers.…

  1. In utero glucocorticoid (GLC) exposure reduces fetal skeletal muscle growth in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal undernutrition and stress expose the fetus to above normal levels of GLC and predispose to intrauterine growth restriction. The aim of this study was to determine if fetal GLC exposure impairs skeletal muscle growth independently of maternal undernutrition. Three groups (n=7/group) of timed...

  2. Sex differences in fetal growth responses to maternal height and weight

    PubMed Central

    Gotsch, Francesca; Kusanovic, Juan Pedro; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A.; Romero, Roberto

    2012-01-01

    Sex differences in fetal growth have been reported, but how this happens remains to be described. It is unknown if fetal growth rates, a reflection of genetic and environmental factors, express sexually dimorphic sensitivity to the mother herself. This analysis investigated homogeneity of male and female growth responses to maternal height and weight. The study sample included 3495 uncomplicated singleton pregnancies followed longitudinally. Analytic models regressed fetal and neonatal weight on tertiles of maternal height and weight, and modification by sex was investigated (n=1814 males, n=1681 females) with birth gestational age, maternal parity and smoking as covariates. Sex modified the effects of maternal height and weight on fetal growth rates and birth weight. Among boys, tallest maternal height influenced fetal weight growth prior to 18 gestational weeks of age (p=0.006), pre-pregnancy maternal weight and BMI subsequently had influence (p<0.001); this was not found among girls. Additionally, interaction terms between sex, maternal height, and maternal weight identified that males were more sensitive to maternal weight among shorter mothers (p=0.003), and more responsive to maternal height among lighter mothers (p<=0.03), compared to females. Likewise, neonatal birth weight dimorphism varied by maternal phenotype. A male advantage of 60 grams occurred among neonates of the shortest and lightest mothers (p=0.08), compared to 150 and 191 grams among short and heavy mothers, and tall and light weight mothers, respectively (p=0.01). Sex differences in response to maternal size are underappreciated sources of variation in fetal growth studies and may reflect differential growth strategies. PMID:19950190

  3. Associations of Maternal Retinal Vasculature with Subsequent Fetal Growth and Birth Size

    PubMed Central

    Li, Ling-Jun; Aris, Izzuddin; Su, Lin Lin; Tint, Mya Thway; Cheung, Carol Yim-Lui; Ikram, M. Kamran; Gluckman, Peter; Godfrey, Keith M.; Tan, Kok Hian; Yeo, George; Yap, Fabian; Kwek, Kenneth; Saw, Seang-Mei; Chong, Yap-Seng; Wong, Tien-Yin; Lee, Yung Seng

    2015-01-01

    Objective We aimed to study the maternal retinal microvasculature at mid-trimester and its relationship with subsequent fetal growth and birth size. Methods We recruited 732 pregnant women aged 18-46 years in the first trimester with singleton pregnancies. All had retinal photography and fetal scan performed at 26-28 weeks gestation, and subsequent fetal scan at 32-34 weeks gestation. Infant anthropometric measurements were done at birth. Retinal microvasculature was measured using computer software from the retinal photographs. Results In multiple linear regression models, each 10 μm narrowing in maternal retinal arteriolar caliber was associated with decreases of 1.36 mm in fetal head circumference at 32-34 weeks gestation, as well as decreases of 1.50 mm and 2.30 mm in infant head circumference and birth length at delivery, respectively. Each standard deviation decrease in maternal retinal arteriolar fractal dimension was associated with decreases of 1.55 mm in fetal head circumference at 32-34 weeks gestation, as well as decreases of 1.08 mm and 46.42 g in infant head circumference and birth weight at delivery, respectively. Conclusions Narrower retinal arteriolar caliber and a sparser retinal vascular network in mothers, reflecting a suboptimal uteroplacental microvasculature during mid-pregnancy, were associated with poorer fetal growth and birth size. PMID:25909909

  4. Maternal and paternal height and BMI and patterns of fetal growth: the Pune Maternal Nutrition Study.

    PubMed

    Wills, Andrew K; Chinchwadkar, Manoj C; Joglekar, Charudatta V; Natekar, Asit S; Yajnik, Chittaranjan S; Fall, Caroline H D; Kinare, Arun S

    2010-09-01

    We examined the differential associations of each parent's height and BMI with fetal growth, and examined the pattern of the associations through gestation. Data are from 557 term pregnancies in the Pune Maternal Nutrition Study. Size and conditional growth outcomes from 17 to 29 weeks to birth were derived from ultrasound and birth measures of head circumference, abdominal circumference, femur length and placental volume (at 17 weeks only). Parental height was positively associated with fetal head circumference and femur length. The associations with paternal height were detectible earlier in gestation (17-29 weeks) compared to the associations with maternal height. Fetuses of mothers with a higher BMI had a smaller mean head circumference at 17 weeks, but caught up to have larger head circumference at birth. Maternal but not paternal BMI, and paternal but not maternal height, were positively associated with placental volume. The opposing associations of placenta and fetal head growth with maternal BMI at 17 weeks could indicate prioritisation of early placental development, possibly as a strategy to facilitate growth in late gestation. This study has highlighted how the pattern of parental-fetal associations varies over gestation. Further follow-up will determine whether and how these variations in fetal/placental development relate to health in later life.

  5. Fetal Growth Restriction Induces Heterogeneous Effects on Vascular Biomechanical and Functional Properties in Guinea Pigs (Cavia porcellus)

    PubMed Central

    Cañas, Daniel; Herrera, Emilio A.; García-Herrera, Claudio; Celentano, Diego; Krause, Bernardo J.

    2017-01-01

    Aim: Fetal growth restriction (FGR) is associated with a variety of cardiometabolic diseases in adulthood which could involve remodeling processes of the vascular walls that could start in the fetal period. However, there is no consensus whether this remodeling affects in a similar way the whole vascular system. We aimed to determine the effects of FGR on the vasoactive and biomechanical properties of umbilical and systemic vessels in fetal guinea pigs. Methods: FGR was induced by implanting ameroid occluders at mid-gestation in uterine arteries of pregnant guinea pigs, whilst the control group was exposed to simulated surgery. At the term of gestation, systemic arteries (aorta, carotid and femoral) and umbilical vessels were isolated to determine ex vivo contractile and biomechanical responses (stretch-stress until rupture) on a wire myograph, as well as opening angle and residual stresses. Histological characteristics in tissue samples were measured by van Gieson staining. Results: Aorta and femoral arteries from FGR showed an increased in biomechanical markers of stiffness (p < 0.01), contractile capacity (p < 0.05) and relative media thickness (p < 0.01), but a reduced internal diameter (p < 0.001), compared with controls. There were no differences in the biomechanical properties of carotid and umbilical from control and FGR fetuses, but FGR umbilical arteries had a decreased contractile response to KCl (p < 0.05) along with a reduced relative media thickness (p < 0.05). Conclusion: Altogether, these changes in functional, mechanical and morphological properties suggest that FGR is associated with a heterogeneous pro-constrictive vascular remodeling affecting mainly the lower body fetal arteries. These effects would be set during a pathologic pregnancy in order to sustain the fetal blood redistribution in the FGR and may persist up to adulthood increasing the risk of a cardiovascular disease. PMID:28344561

  6. Fetal Growth Restriction Induces Heterogeneous Effects on Vascular Biomechanical and Functional Properties in Guinea Pigs (Cavia porcellus).

    PubMed

    Cañas, Daniel; Herrera, Emilio A; García-Herrera, Claudio; Celentano, Diego; Krause, Bernardo J

    2017-01-01

    Aim: Fetal growth restriction (FGR) is associated with a variety of cardiometabolic diseases in adulthood which could involve remodeling processes of the vascular walls that could start in the fetal period. However, there is no consensus whether this remodeling affects in a similar way the whole vascular system. We aimed to determine the effects of FGR on the vasoactive and biomechanical properties of umbilical and systemic vessels in fetal guinea pigs. Methods: FGR was induced by implanting ameroid occluders at mid-gestation in uterine arteries of pregnant guinea pigs, whilst the control group was exposed to simulated surgery. At the term of gestation, systemic arteries (aorta, carotid and femoral) and umbilical vessels were isolated to determine ex vivo contractile and biomechanical responses (stretch-stress until rupture) on a wire myograph, as well as opening angle and residual stresses. Histological characteristics in tissue samples were measured by van Gieson staining. Results: Aorta and femoral arteries from FGR showed an increased in biomechanical markers of stiffness (p < 0.01), contractile capacity (p < 0.05) and relative media thickness (p < 0.01), but a reduced internal diameter (p < 0.001), compared with controls. There were no differences in the biomechanical properties of carotid and umbilical from control and FGR fetuses, but FGR umbilical arteries had a decreased contractile response to KCl (p < 0.05) along with a reduced relative media thickness (p < 0.05). Conclusion: Altogether, these changes in functional, mechanical and morphological properties suggest that FGR is associated with a heterogeneous pro-constrictive vascular remodeling affecting mainly the lower body fetal arteries. These effects would be set during a pathologic pregnancy in order to sustain the fetal blood redistribution in the FGR and may persist up to adulthood increasing the risk of a cardiovascular disease.

  7. Neurobehavioral determinants of nutritional security in fetal growth-restricted individuals.

    PubMed

    Portella, André Krumel; Silveira, Patrícia Pelufo

    2014-12-01

    Fetal growth restriction results from a failure to achieve a higher growth potential and has been associated with many maternal conditions, such as chronic diseases (infections, hypertension, and some cases of diabetes and obesity), exposures (tobacco smoke, drugs), and malnutrition. This early adversity induces a series of adaptive physiological responses aimed at improving survival, but imposing increased risk for developing chronic nontransmittable diseases (obesity, type II diabetes, cardiovascular disease) in the long term. Recently, mounting evidence has shown that fetal growth impairment is related to altered feeding behavior and preferences through the life course. When living in countries undergoing nutritional transition, in which individuals experience the coexistence of underweight and overweight problems (the "double burden of malnutrition"), fetal growth-restricted children can be simultaneously growth restricted and overweight-a double burden of malnutrition at the individual level. Considering food preferences as an important aspect of nutrition security, we will summarize the putative neurobiological mechanisms at the core of the relationship between fetal growth and nutrition security over the life course and the evidence linking early life adversity to later food preferences.

  8. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess.

    PubMed

    Wyrwoll, Caitlin S; Noble, June; Thomson, Adrian; Tesic, Dijana; Miller, Mark R; Rog-Zielinska, Eva A; Moran, Carmel M; Seckl, Jonathan R; Chapman, Karen E; Holmes, Megan C

    2016-05-31

    Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a key role. We previously discovered that Hsd11b2(-/-) mice, lacking 11β-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2(+/+), Hsd11b2(+/-), and Hsd11b2(-/-) littermates from heterozygous (Hsd11b(+/-)) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2(-/-) fetuses did not undergo the normal gestational increase seen in Hsd11b2(+/+) littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11β-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2(-/-) fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2(-/-) fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2(-/-) fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction.

  9. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess

    PubMed Central

    Wyrwoll, Caitlin S.; Noble, June; Thomson, Adrian; Tesic, Dijana; Miller, Mark R.; Rog-Zielinska, Eva A.; Moran, Carmel M.; Seckl, Jonathan R.; Chapman, Karen E.; Holmes, Megan C.

    2016-01-01

    Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a key role. We previously discovered that Hsd11b2−/− mice, lacking 11β-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2+/+, Hsd11b2+/−, and Hsd11b2−/− littermates from heterozygous (Hsd11b+/−) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2−/− fetuses did not undergo the normal gestational increase seen in Hsd11b2+/+ littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11β-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2−/− fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2−/− fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2−/− fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction. PMID:27185937

  10. The relationship between gestational weight gain and fetal growth: time to take stock?

    PubMed

    O'Higgins, Amy C; Doolan, Anne; Mullaney, Laura; Daly, Niamh; McCartney, Daniel; Turner, Michael J

    2014-07-01

    The aim of this article is to review the current evidence on gestational weight gain (GWG). Maternal obesity has emerged as one of the great challenges in modern obstetrics as it is becoming increasingly common and is associated with increased maternal and fetal complications. There has been an upsurge of interest in GWG with an emphasis on the relationship between excessive GWG and increased fetal growth. Recent recommendations from the Institute of Medicine in the USA have revised downwards the weight gain recommendations in pregnancy for obese mothers. We believe that it is time to take stock again about the advice that pregnant women are given about GWG and their lifestyle before, during, and after pregnancy. The epidemiological links between excessive GWG and aberrant fetal growth are weak, particularly in obese women. There is little evidence that intervention studies decrease excessive GWG or improve intrauterine fetal growth. Indeed, there is a potential risk that inappropriate interventions during the course of pregnancy may lead to fetal malnutrition that may have adverse clinical consequences, both in the short- and long-term. It may be more appropriate to shift the focus of attention from monitoring maternal weight to increasing physical activity levels and improving nutritional intakes.

  11. Gestational Dietary Protein Is Associated with Sex Specific Decrease in Blood Flow, Fetal Heart Growth and Post-Natal Blood Pressure of Progeny

    PubMed Central

    2015-01-01

    Study Overview The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60d up to 23dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Conclusion and Significance Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system. PMID:25915506

  12. Second-Trimester Amniotic Fluid Corticotropin-Releasing Hormone and Urocortin in Relation to Maternal Stress and Fetal Growth in Human Pregnancy.

    PubMed

    La Marca-Ghaemmaghami, Pearl; Dainese, Sara M; Stalla, Günter; Haller, Marina; Zimmermann, Roland; Ehlert, Ulrike

    2017-03-27

    This study explored the association between the acute psychobiological stress response, chronic social overload and amniotic fluid corticotropin corticotropin-releasing hormone (CRH) and urocortin (UCN) in 34 healthy, second-trimester pregnant women undergoing amniocentesis. The study further examined the predictive value of second-trimester amniotic fluid CRH and UCN for fetal growth and neonatal birth outcome. The amniocentesis served as a naturalistic stressor, during which maternal state anxiety and salivary cortisol was measured repeatedly and an aliquot of amniotic fluid was collected. The pregnant women additionally completed a questionnaire on chronic social overload. Fetal growth parameters were obtained at amniocentesis using fetal ultrasound biometry and at birth from medical records. The statistical analyses revealed that the acute maternal psychobiological stress response was unassociated with the amniotic fluid peptides, but that maternal chronic overload and amniotic CRH were positively correlated. Moreover, amniotic CRH was negatively associated with fetal size at amniocentesis and positively with growth in size from amniocentesis to birth. Hardly any studies have previously explored whether acute maternal psychological stress influences fetoplacental CRH or UCN levels significantly. Our findings suggest that 1) chronic, but not acute maternal stress may affect fetoplacental CRH secretion and that 2) CRH is complexly involved in fetal growth processes as previously shown in animals.

  13. Fetal akinesia.

    PubMed

    Hammond, E; Donnenfeld, A E

    1995-03-01

    Normal fetal growth and development during pregnancy is highly dependent upon adequate fetal movement. Limitation of movement, regardless of the underlying cause, can result in a particular pattern of abnormal fetal morphogenesis. This phenotype is termed the fetal akinesia deformation sequence (FADS). The etiology of fetal akinesia may be generally classified into one of five categories: neuropathy, myopathy, restrictive dermopathy, teratogen exposure, or restricted movement due to intrauterine constraint. In this article, the differential diagnosis of fetal akinesia is systematically reviewed and information regarding prenatal diagnosis, prognosis, perinatal management, and recurrence risks are discussed.

  14. Noninvasive monitoring of fetal growth and development in the Siberian polecat (Mustela eversmanni)

    USGS Publications Warehouse

    Wimsatt, Jeffrey; Johnson, Jay D.; Wrigley, Robert H.; Biggins, Dean E.; Godbey, Jerry L.

    1998-01-01

    The Siberian polecat (Mustela eversmanni) is the preferred species to assess procedures and establish normative values for application in the related and endangered black-footed ferret (Mustela nigripes). This study was undertaken to physically, ultrasonographically, and radiographically evaluate fetal development in a spontaneously breeding captive Siberian polecat population. Ultrasonographically, fetal sac enlargement allowed presumptive preg nancy detection as early as 12 days of gestation, the fetal pole was the first definitive sign of pregnancy at about 18 days of gestation, when the fetal heart beat also appeared, and definitive pregnancy detection by ultrasound was essentially 100% accurate after 18 days. The estimation of fetal number by ultrasound was less reliable than by radiography, as it is in other litter-bearing species. Crown-rump growth, organ differentiation, and calcification patterns resembled those of domestic carnivores except that comparable developmental stages in polecats occurred at dispro portionately later times, suggesting that young Siberian polecats are delivered in a less developed state. Careful palpation permitted detection of pregnancy after day 17 but with less certainty than with ultrasound. Radiographic evaluation was insensitive and of limited value for pregnancy detection until near term. Litter number and fetal detail were difficult to assess until ossification could be observed, 3-6 days before parturition.

  15. Organochlorine Compounds and Ultrasound Measurements of Fetal Growth in the INMA Cohort (Spain)

    PubMed Central

    Lopez-Espinosa, Maria-Jose; Murcia, Mario; Iñiguez, Carmen; Vizcaino, Esther; Costa, Olga; Fernández-Somoano, Ana; Basterrechea, Mikel; Lertxundi, Aitana; Guxens, Mònica; Gascon, Mireia; Goñi-Irigoyen, Fernando; Grimalt, Joan O.; Tardón, Adonina; Ballester, Ferran

    2015-01-01

    Background Several studies have reported decreases in birth size associated with exposure to organochlorine compounds (OCs), but uncertainties remain regarding the critical windows of prenatal exposure and the effects on fetal body segments. Objective We examined the relationship between prenatal OC concentrations and fetal anthropometry. Methods We measured 4,4´-dichlorodiphenyldichloroethylene (4,4´-DDE), hexachlorobenzene (HCB), and polychlorinated biphenyl (PCB) congeners (138, 153, and 180) in 2,369 maternal and 1,140 cord serum samples in four Spanish cohorts (2003–2008). We used linear mixed models to obtain longitudinal growth curves for estimated fetal weight (EFW), abdominal circumference (AC), biparietal diameter (BPD), and femur length (FL) adjusted by parental and fetal characteristics. We calculated standard deviation (SD) scores of growth at 0–12, 12–20, and 20–34 weeks of gestation as well as size at gestational week 34 for the four parameters. We studied the association between OCs and the fetal outcomes by cohort-specific linear models and subsequent meta-analyses. Results PCBs were associated with a reduction in AC up to mid-pregnancy, and BPD and FL from gestational week 20 onward. An inverse association was also found between HCB and AC growth in early pregnancy. The reduction of these parameters ranged from –4% to –2% for a doubling in the OC concentrations. No association between 4,4´-DDE and fetal growth was observed. Conclusions To our knowledge, this is the first study to report an association between prenatal exposure to some PCBs and HCB and fetal growth: AC during the first two trimesters of pregnancy, and BPD and FL later in pregnancy. Citation Lopez-Espinosa MJ, Murcia M, Iñiguez C, Vizcaino E, Costa O, Fernández-Somoano A, Basterrechea M, Lertxundi A, Guxens M, Gascon M, Goñi-Irigoyen F, Grimalt JO, Tardón A, Ballester F. 2016. Organochlorine compounds and ultrasound measurements of fetal growth in the INMA cohort

  16. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    SciTech Connect

    Ergaz, Zivanit; Shoshani-Dror, Dana; Guillemin, Claire; Neeman-azulay, Meytal; Fudim, Liza; Weksler-Zangen, Sarah; Stodgell, Christopher J.; Miller, Richard K.; Ornoy, Asher

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  17. Assessment of Fetal Autonomic Nervous System Activity by Fetal Magnetocardiography: Comparison of Normal Pregnancy and Intrauterine Growth Restriction

    PubMed Central

    Fukushima, Akimune; Nakai, Kenji; Kanasugi, Tomonobu; Terata, Miyuki; Sugiyama, Toru

    2011-01-01

    Objective. To clarify the developmental activity of the autonomic nervous system (ANS) of the normal fetus and intrauterine growth restriction (IUGR) cases using fetal magnetocardiography (FMCG). Subjects and Methods. Normal pregnancy (n = 35) and IUGR (n = 12) cases at 28–39 and 32–37 weeks of gestation, respectively, were included in this study. The R-R interval variability was used to calculate the coefficient of variance (CVRR) and low frequency/high frequency (LF/HF) ratio. Results. The value of CVRR in the normal pregnancy group displayed a slight increasing trend with gestational age. However, no such trend was observed in the IUGR group. In contrast, the LF/HF ratio in both the normal pregnancy group and the IUGR group clearly increased over the gestational period; the normal group showing statistical significance. Conclusion. The development of fetal ANS activity in IUGR cases might differ from that observed in the normal pregnancy group, and this may facilitate early detection of IUGR. PMID:21547087

  18. IFPA Meeting 2011 workshop report II: Angiogenic signaling and regulation of fetal endothelial function; placental and fetal circulation and growth; spiral artery remodeling.

    PubMed

    Bulmer, J N; Burton, G J; Collins, S; Cotechini, T; Crocker, I P; Croy, B A; Cvitic, S; Desforges, M; Deshpande, R; Gasperowicz, M; Groten, T; Haugen, G; Hiden, U; Host, A J; Jirkovská, M; Kiserud, T; König, J; Leach, L; Murthi, P; Pijnenborg, R; Sadekova, O N; Salafia, C M; Schlabritz-Loutsevitch, N; Stanek, J; Wallace, A E; Westermeier, F; Zhang, J; Lash, G E

    2012-02-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2011 there were twelve themed workshops, three of which are summarized in this report. These workshops related to vascular systems and circulation in the mother, placenta and fetus, and were divided in to 1) angiogenic signaling and regulation of fetal endothelial function; 2) placental and fetal circulation and growth; 3) spiral artery remodeling.

  19. Spontaneous Preterm Delivery, Particularly with Reduced Fetal Growth, is Associated with DNA Hypomethylation of Tumor Related Genes

    PubMed Central

    Chen, Xinhua; Bai, Guang; Scholl, Theresa O

    2016-01-01

    Background Preterm delivery and sub-optimal fetal growth are associated with each other and affect both mother and infant. Our aim was to determine (i) whether there are detectable differences in DNA methylation between early and late gestation and (ii) whether changes in DNA methylation from entry are associated with spontaneous preterm delivery with and without reduced fetal growth. Methods We conducted a case-control study nested within a large prospective cohort. Gene specific methylation was measured by Methyl-Profiler PCR Array in a Human Breast Cancer Signature Panel of 24 genes from maternal peripheral leukocytes genomic DNA at entry and 3rd trimester (sampled at 16 and 30 weeks of gestation, respectively). Clonal bisulfite DNA sequencing was performed to confirm the changes in selected genes (CYP1B1, GADD45A and CXCL12). Multivariable analysis was used for data analysis. Results There was significantly decrease in DNA methylation in 15 of 24 genes during the 3rd trimester in cases of spontaneous preterm delivery (n=23) as compared to the controls (n=19) (p<0.05–p<0.01 for each gene). Similar results were observed by bisulfite sequencing for 3 genes. The change in DNA methylation between late and early gestation was significantly different in cases (overall decrease in methylation was −4.0 ± 1.5%) compared to the controls (overall increase in methylation was 12.6 ± 2.19%, p<0.0001). A graded pattern of DNA methylation was observed in 15 genes. Cases who delivered preterm with reduced fetal growth had the lowest level of methylation, cases delivering preterm without reduced fetal growth were next and term controls were highest in methylation (p for trend <0.05 to p<0.01 for each gene). Cases of preterm delivery also had significantly lower dietary choline intake. Conclusions These data suggest that epigenetic modification is associated with an increased risk of spontaneous preterm delivery, spontaneous preterm delivery with reduced fetal growth in

  20. Placental Vitamin D-Binding Protein Expression in Human Idiopathic Fetal Growth Restriction

    PubMed Central

    Wookey, Alice F.; Chollangi, Tejasvy; Yong, Hannah E. J.

    2017-01-01

    Vitamin D-binding protein is a multifunctional serum protein with multiple actions related to normal health. Vitamin D-binding protein transports vitamin D and influences the metabolism of this key hormone but it also has additional immunomodulatory and actin-clearing properties. We investigated whether vitamin D-binding protein expression is altered in fetal growth restriction-associated placental dysfunction. Protein was extracted from 35 placentae derived from 17 healthy control subjects and 18 gestation-matched subjects with fetal growth restriction (FGR). FGR subjects were further subdivided as idiopathic (n = 9) and nonidiopathic (n = 9). Vitamin D-binding protein and 25(OH) vitamin D were measured by ELISA and normalized to protein concentration. The results showed significantly reduced levels of placental vitamin D-binding protein (control versus FGR, p < 0.05, Student's t-test) that were strongly associated with idiopathic fetal growth restriction (p < 0.01, Kruskal-Wallis), whereas levels of vitamin D-binding protein were not associated with placental 25(OH) vitamin D stores (p = 0.295, Pearson's correlation). As such, vitamin D-binding protein may be a factor in unexplained placental dysfunction associated with idiopathic fetal growth restriction and may potentially serve as a biomarker of this disease. PMID:28293436

  1. Paternal Low Protein Diet Programs Preimplantation Embryo Gene Expression, Fetal Growth and Skeletal Development in Mice.

    PubMed

    Watkins, Adam J; Sirovica, Slobodan; Stokes, Ben; Isaacs, Mark; Addison, Owen; Martin, Richard A

    2017-02-08

    Defining the mechanisms underlying the programming of early life growth is fundamental for improving adult health and wellbeing. While the association between maternal diet, offspring growth and adult disease risk is well-established, the effect of father's diet on offspring development are largely unknown. Therefore, we fed male mice an imbalanced low protein diet (LPD) to determine the impact on post-fertilisation development and fetal growth. We observed that in preimplantation embryos derived from LPD fed males, expression of multiple genes within the central metabolic AMPK pathway was reduced. In late gestation, paternal LPD programmed increased fetal weight, however, placental weight was reduced, resulting in an elevated fetal:placental weight ratio. Analysis of gene expression patterns revealed increased levels of transporters for calcium, amino acids and glucose within LPD placentas. Furthermore, placental expression of the epigenetic regulators Dnmt1 and Dnmt3L were increased also, coinciding with altered patterns of maternal and paternal imprinted genes. More strikingly, we observed fetal skeletal development was perturbed in response to paternal LPD. Here, while offspring of LPD fed males possessed larger skeletons, their bones comprised lower volumes of high mineral density in combination with reduced maturity of bone apatite. These data offer new insight in the underlying programming mechanisms linking poor paternal diet at the time of conception with the development and growth of his offspring.

  2. Timing and trajectories of fetal growth related to cognitive development in childhood.

    PubMed

    von Ehrenstein, Ondine S; Mikolajczyk, Rafael T; Zhang, Jun

    2009-12-01

    The authors investigated timing and trajectories of fetal growth in relation to childhood development in the National Institute of Child Health and Human Development-Scandinavian Study of Successive Small-for-Gestational Age Births (1986-1988) (n = 1,059). Fetal size was assessed by ultrasound at 17, 25, and 33 gestational weeks and at birth. Bayley Scales of Infant Development and the Wechsler Preschool and Primary Scale of Intelligence-Revised tests were conducted at ages 1 and 5 years, respectively, producing mental and psychomotor development indexes and verbal and performance intelligence quotients. Relative fetal size was calculated as a standard deviation score at each data point; growth trajectories were explored with longitudinal mixture models. Fetal size at 17, 25, and 33 weeks was positively associated with mental development index; larger size at 33 weeks and at birth was associated with higher verbal intelligence quotient scores (2.61, 95% confidence interval: 1.06, 4.15 and 1.90, 95% confidence interval: 0.67, 3.13 increase per 1 standard deviation score, respectively); findings were similar for performance intelligence quotient. Seven trajectories were identified; scores were lower for "small" and "medium-to-small" trajectories than for "medium" and "big" (representing normal size) trajectories: mental development index (P < 0.01), performance intelligence quotient (P < 0.001), and verbal intelligence quotient (P < 0.001). Overall, larger fetal size in the second and third trimesters was positively associated with childhood development. Fetal growth trajectories may matter beyond birth.

  3. Comparison between Urinary Oestrogen Assay and Serial Ultrasonic Cephalometry in Assessment of Fetal Growth Retardation

    PubMed Central

    Campbell, Stuart; Kurjak, Asim

    1972-01-01

    Urinary oestrogen assay and serial ultrasonic cephalometry were performed on 284 patients who were considered on clinical grounds to be at risk of having a growth-retarded fetus. It was found that ultrasonic cephalometry was significantly better than oestrogens in diagnosing the small-for-dates baby, but that there was no significant difference between the two methods in predicting perinatal asphyxia. Of the 14 stillbirths, three were in the normal ultrasonic growth rate group and five had normal oestrogen excretion. Both methods were found to be of value in the diagnosis of fetal growth-retardation, although cephalometry would seem to have some advantages, especially in distinguishing between fetal growth-retardation and mistaken maturity. PMID:4673993

  4. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development.

    PubMed

    Handwerger, S; Freemark, M

    2000-04-01

    The human growth hormone (hGH)/human placental lactogen (hPL) gene family, which consists of two GH and three PL genes, is important in the regulation of maternal and fetal metabolism and the growth and development of the fetus. During pregnancy, pituitary GH (hGH-N) expression in the mother is suppressed; and hGH-V, a GH variant expressed by the placenta, becomes the predominant GH in the mother. hPL, which is the product of the hPL-A and hPL-B genes, is secreted into both the maternal and fetal circulations after the sixth week of pregnancy. hGH-V and hPL act in concert in the mother to stimulate insulin-like growth factor (IGF) production and modulate intermediary metabolism, resulting in an increase in the availability of glucose and amino acids to the fetus. In the fetus, hPL acts via lactogenic receptors and possibly a unique PL receptor to modulate embryonic development, regulate intermediary metabolism and stimulate the production of IGFs, insulin, adrenocortical hormones and pulmonary surfactant. hGH-N, which is expressed by the fetal pituitary, has little or no physiological actions in the fetus until late in pregnancy due to the lack of functional GH receptors on fetal tissues. hGH-V, which is also a potent somatogenic hormone, is not released into the fetus. Taken together, studies of the hGH/hPL gene family during pregnancy reveal a complex interaction of the hormones with one another and with other growth factors. Additional investigations are necessary to clarify the relative roles of the family members in the regulation of fetal growth and development and the factors that modulate the expression of the genes.

  5. Population versus Customized Fetal Growth Norms and Adverse Outcomes in an Intrapartum Cohort

    PubMed Central

    Costantine, Maged M.; Lai, Yinglei; Bloom, Steven L.; Spong, Catherine Y.; Varner, Michael W.; Rouse, Dwight J.; Ramin, Susan M.; Caritis, Steve N.; Peaceman, Alan M.; Sorokin, Yoram; Sciscione, Anthony; Mercer, Brian M.; Thorp, John M.; Malone, Fergal D.; Harper, Margaret; Iams, Jay D.

    2013-01-01

    Objective To compare population versus customized fetal growth norms in identifying neonates at risk for adverse outcomes (APO) associated with small for gestational age (SGA). Study Design Secondary analysis of an intrapartum fetal pulse oximetry trial in nulliparous women at term. Birthweight percentiles were calculated using ethnicity- & gender-specific population norms and customized norms (Gardosi). Results 508 (9.9%) and 584 (11.3%) neonates were SGA by population (SGApop) and customized (SGAcust) norms. SGApop infants were significantly associated with a composite adverse neonatal outcome, neonatal intensive care admission, low fetal oxygen saturation and reduced risk of cesarean delivery; while both SGApop and SGAcust were associated with a 5-minute Apgar score < 4. The ability of customized and population birthweight percentiles in predicting APO was poor (12 out of 14 APOs had AUC <0.6). Conclusion In this intrapartum cohort, neither customized nor normalized-population norms adequately identify neonates at risk of APO related to SGA. PMID:22893556

  6. Maternal Administration of Sildenafil Citrate Alters Fetal and Placental Growth and Fetal-Placental Vascular Resistance in the Growth-Restricted Ovine Fetus.

    PubMed

    Oyston, Charlotte; Stanley, Joanna L; Oliver, Mark H; Bloomfield, Frank H; Baker, Philip N

    2016-09-01

    Intrauterine growth restriction (IUGR) causes short- and long-term morbidity. Reduced placental perfusion is an important pathogenic component of IUGR; substances that enhance vasodilation in the uterine circulation, such as sildenafil citrate (sildenafil), may improve placental blood flow and fetal growth. This study aimed to examine the effects of sildenafil in the growth-restricted ovine fetus. Ewes carrying singleton pregnancies underwent insertion of vascular catheters, and then, they were randomized to receive uterine artery embolization (IUGR) or to a control group. Ewes in the IUGR group received a daily infusion of sildenafil (IUGR+SC; n=10) or vehicle (IUGR+V; n=8) for 21 days. The control group received no treatment (n=9). Umbilical artery blood flow was measured using Doppler ultrasound and the resistive index (RI) calculated. Fetal weight, biometry, and placental weight were obtained at postmortem after treatment completion. Umbilical artery RI in IUGR+V fell less than in controls; the RI of IUGR+SC was intermediate to that of the other 2 groups (mean±SEM for control versus IUGR+V versus IUGR+SC: ∆RI, 0.09±0.03 versus -0.01±0.02 versus 0.03±0.02; F(2, 22)=4.21; P=0.03). Compared with controls, lamb and placental weights were reduced in IUGR+V but not in IUGR+SC (control versus IUGR+V versus IUGR+SC: fetal weight, 4381±247 versus 3447±235 versus 3687±129 g; F(2, 24)=5.49; P=0.01 and placental weight: 559.7±35.0 versus 376.2±32.5 versus 475.2±42.5 g; F(2, 24)=4.64; P=0.01). Sildenafil may be a useful adjunct in the management of IUGR. An increase in placental weight and fall in fetal-placental resistance suggests that changes to growth are at least partly mediated by changes to placental growth rather than alterations in placental efficiency.

  7. Prenatal Exposure to NO2 and Ultrasound Measures of Fetal Growth in the Spanish INMA Cohort

    PubMed Central

    Iñiguez, Carmen; Esplugues, Ana; Sunyer, Jordi; Basterrechea, Mikel; Fernández-Somoano, Ana; Costa, Olga; Estarlich, Marisa; Aguilera, Inmaculada; Lertxundi, Aitana; Tardón, Adonina; Guxens, Mònica; Murcia, Mario; Lopez-Espinosa, Maria-Jose; Ballester, Ferran

    2015-01-01

    Background Air pollution exposure during pregnancy has been associated with impaired fetal growth. However, few studies have measured fetal biometry longitudinally, remaining unclear as to whether there are windows of special vulnerability. Objective The aim was to investigate the impact of nitrogen dioxide (NO2) exposure on fetal and neonatal biometry in the Spanish INMA study. Methods Biparietal diameter (BPD), femur length (FL), abdominal circumference (AC), and estimated fetal weight (EFW) were evaluated for up to 2,478 fetuses in each trimester of pregnancy. Size at 12, 20, and 34 weeks of gestation and growth between these points, as well as anthropometry at birth, were assessed by SD scores derived using cohort-specific growth curves. Temporally adjusted land-use regression was used to estimate exposure to NO2 at home addresses for up to 2,415 fetuses. Associations were investigated by linear regression in each cohort and subsequent meta-analysis. Results A 10-μg/m3 increase in average exposure to NO2 during weeks 0–12 was associated with reduced growth at weeks 0–12 in AC (–2.1%; 95% CI: –3.7, –0.6) and EFW (–1.6%; 95% CI: –3.0, –0.3). The same exposure was inversely associated with reduced growth at weeks 20–34 in BPD (–2.6%; 95% CI: –3.9, –1.2), AC (–1.8%; 95% CI: –3.3, –0.2), and EFW (–2.1%; 95% CI: –3.7, –0.2). A less consistent pattern of association was observed for FL. The negative association of this exposure with BPD and EFW was significantly stronger in smoking versus nonsmoking mothers. Conclusions Maternal exposure to NO2 in early pregnancy was associated with reduced fetal growth based on ultrasound measures of growth during pregnancy and measures of size at birth. Citation Iñiguez C, Esplugues A, Sunyer J, Basterrechea M, Fernández-Somoano A, Costa O, Estarlich M, Aguilera I, Lertxundi A, Tardón A, Guxens M, Murcia M, Lopez-Espinosa MJ, Ballester F, on behalf of the INMA Project. 2016. Prenatal exposure

  8. Lung-derived growth factors: possible paracrine effectors of fetal lung development

    SciTech Connect

    Montes, A.M.

    1985-01-01

    A potential role for paracrine secretions in lung organogenesis has been hypothesized (Alescio and Piperno, 1957). These studies present direct support for the paracrine model by demonstrating the presence of locally produced mitogenic/maturational factors in fetal rat lung tissue. Conditioned serum free medium (CSFM) from nineteen-day fetal rat lung cultures was shown to contain several bioactive peptides as detected by /sup 3/H-Thymidine incorporation into chick embryo and rat lung fibroblasts, as well as /sup 14/C-choline incorporation into surfactant in mixed cell cultures. Using ion-exchange chromatography and Sephadex gel filtration, a partially purified mitogen, 11-III, was obtained. The partially purified 11-III stimulates mitosis in chick embryo fibroblasts and post-natal rat lung fibroblasts. Multiplication in fetal rat lung fibroblasts cultures is stimulated only when these are pre-incubated with a competence factor or unprocessed CSFM. This suggests the existence of an endogenously produced competence factor important in the regulation of fetal lung growth. Preparation 11-III does not possess surfactant stimulating activity as assessed by /sup 3/H-choline incorporation into lipids in predominantly type-II cell cultures. These data demonstrate the presence of a maturational/mitogenic factor, influencing type-II mixed cell cultures. In addition, 11-III had been shown to play an autocrine role stimulating the proliferation of fetal lung fibroblasts. Finally, these data suggest the existence of a local produced competence factor.

  9. Fetal, neonatal, infant, and child international growth standards: an unprecedented opportunity for an integrated approach to assess growth and development.

    PubMed

    Garza, Cutberto

    2015-07-01

    The recent publication of fetal growth and gestational age-specific growth standards by the International Fetal and Newborn Growth Consortium for the 21st Century Project and the previous publication by the WHO of infant and young child growth standards based on the WHO Multicentre Growth Reference Study enable evaluations of growth from ∼9 wk gestation to 5 y. The most important features of these projects are the prescriptive approach used for subject selection and the rigorous testing of the assertion that growth is very similar among geographically and ethnically diverse nonisolated populations when health, nutrition, and other care needs are met and the environment imposes minimal constraints on growth. Both studies documented that with adequate controls, the principal source of variability in growth during gestation and early childhood resides among individuals. Study sites contributed much less to observed variability. The agreement between anthropometric measurements common to both studies also is noteworthy. Jointly, these studies provide for the first time, to my knowledge, a conceptually consistent basis for worldwide and localized assessments and comparisons of growth performance in early life. This is an important contribution to improving the health care of children across key periods of growth and development, especially given the appropriate interest in pursuing "optimal" health in the "first 1000 d," i.e., the period covering fertilization/implantation, gestation, and postnatal life to 2 y of age.

  10. Morpho-functional characteristics of rat fetal thyroid gland are affected by prenatal dexamethasone exposure.

    PubMed

    Manojlović-Stojanoski, Milica N; Filipović, Branko R; Nestorović, Nataša M; Šošić-Jurjević, Branka T; Ristić, Nataša M; Trifunović, Svetlana L; Milošević, Verica Lj

    2014-06-01

    Thyroid hormones (TH) and glucocorticoids strongly contribute to the maturation of fetal tissues in the preparation for extrauterine life. Influence of maternal dexamethasone (Dx) administration on thyroid glands morpho-functional characteristics of near term rat fetuses was investigated applying unbiased stereology. On the 16th day of pregnancy dams received 1.0mg/Dx/kg/b.w., followed by 0.5mg/Dx/kg/b.w. on the 17th and 18th days of gestation. The control females received the same volume of saline. The volume of fetal thyroid was estimated using Cavalieri's principle; the physical/fractionator design was applied for the determination of absolute number of follicular cells in mitosis and immunohistochemically labeled C cells; C cell volume was measured using the planar rotator. The functional activity of thyroid tissue was provided from thyroglobulin (Tg) and thyroperoxidase (TPO) immunohistochemical staining. Applying these design-based modern stereological methods it was shown that Dx treatment of gravid females led to a significant decrease of fetal thyroid gland volume in 19- and 21-day-old fetuses, due to decreased proliferation of follicular cells. The Tg and TPO immunohistochemistry demonstrated that intensive TH production starts and continues during the examined period in control and Dx-exposed fetuses. Under the influence of Dx the absolute number of C cells was lower in both groups of near term fetuses, although unchanged relation between the two populations of endocrine cells, follicular and C cells suggesting that structural relationships within the gland are preserved. In conclusion maternal glucocorticoid administration at the thyroid gland level exerts growth-inhibitory and maturational promoting effects in near term rat fetuses.

  11. Fetal growth restriction in hypothyroidism is associated with changes in proliferative activity, apoptosis and vascularisation of the placenta.

    PubMed

    Silva, Juneo F; Vidigal, Paula N; Galvão, Daniele D; Boeloni, Jankerle N; Nunes, Philipe Pimenta; Ocarino, Natália M; Nascimento, Ernane F; Serakides, Rogéria

    2012-01-01

    The objective of this study was to evaluate fetal weight, histomorphometric changes and proliferative activity, apoptosis and angiogenesis of the placenta in rats with hypothyroidism. Thirty-six adult female rats were divided into two groups with 18 animals each: control and hypothyroidism. Hypothyroidism was induced by daily administration of propylthiouracil (1 mg/animal). The administration began five days before becoming pregnant and the animals were sacrificed at 14 or 19 days of gestation. The control group received a placebo. The number and weight of fetuses and the rate of fetal death was determined, as well as the morphometric characteristics, the immunohistochemical expression of cell division control protein 47 (CDC)-47 and vascular endothelial growth factor (VEGF) and the number of apoptotic cells in the placental disk. The data were analysed by Mann-Whitney U test. Hypothyroidism reduced the weight of fetuses and of the uterus and placenta (P<0.05), altered the thickness of the placental labyrinth and spongiotrophoblast (P<0.05), increased the population of glycogen cells in the spongiotrophoblast (P<0.05), interfered with the vascular development of the placental labyrinth and decreased VEGF expression (P<0.05), reduced the expression of CDC-47 and cellularity and increased the apoptotic rate in the placental disk (P<0.05). We conclude that hypothyroidism affects fetal weight by altering the proliferative activity, apoptosis and vascularisation of the placenta.

  12. Birth Weight, Intrauterine Growth Retardation and Fetal Susceptibility to Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Ladinig, Andrea; Foxcroft, George; Ashley, Carolyn; Lunney, Joan K.; Plastow, Graham; Harding, John C. S.

    2014-01-01

    The severity of porcine reproductive and respiratory syndrome was compared in pregnant gilts originating from high and low birth weight litters. One-hundred and eleven pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus on gestation day 85 (±1) were necropsied along with their fetuses 21 days later. Ovulation rates and litter size did not differ between groups, but fetuses from low birth weight gilts were shorter, lighter and demonstrated evidence of asymmetric growth with large brain:organ weight ratios (i.e. brain sparing). The number of intrauterine growth retarded fetuses, defined by brain:organ weight ratios greater than 1 standard deviation from the mean, was significantly greater in low, compared to high, birth weight gilts. Although γδ T cells significantly decreased over time in high compared to low birth weight gilts, viral load in serum and tissues, gilt serum cytokine levels, and litter outcome, including the percent dead fetuses per litter, did not differ by birth weight group. Thus, this study provided no substantive evidence that the severity of porcine reproductive and respiratory syndrome is affected by dam birth weight. However, intrauterine growth retarded fetuses had lower viral loads in both fetal thymus and in endometrium adjacent to the umbilical stump. Crown rump length did not significantly differ between fetuses that survived and those that died at least one week prior to termination. Taken together, this study clearly demonstrates that birth weight is a transgenerational trait in pigs, and provides evidence that larger fetuses are more susceptible to transplacental PRRSv infection. PMID:25275491

  13. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction.

    PubMed

    Rideau Batista Novais, Aline; Pham, Hoa; Van de Looij, Yohan; Bernal, Miguel; Mairesse, Jerome; Zana-Taieb, Elodie; Colella, Marina; Jarreau, Pierre-Henri; Pansiot, Julien; Dumont, Florent; Sizonenko, Stéphane; Gressens, Pierre; Charriaut-Marlangue, Christiane; Tanter, Mickael; Demene, Charlie; Vaiman, Daniel; Baud, Olivier

    2016-12-01

    Fetal growth restriction (FGR) is a major complication of human pregnancy, frequently resulting from placental vascular diseases and prenatal malnutrition, and is associated with adverse neurocognitive outcomes throughout life. However, the mechanisms linking poor fetal growth and neurocognitive impairment are unclear. Here, we aimed to correlate changes in gene expression induced by FGR in rats and abnormal cerebral white matter maturation, brain microstructure, and cortical connectivity in vivo. We investigated a model of FGR induced by low-protein-diet malnutrition between embryonic day 0 and birth using an interdisciplinary approach combining advanced brain imaging, in vivo connectivity, microarray analysis of sorted oligodendroglial and microglial cells and histology. We show that myelination and brain function are both significantly altered in our model of FGR. These alterations, detected first in the white matter on magnetic resonance imaging significantly reduced cortical connectivity as assessed by ultrafast ultrasound imaging. Fetal growth retardation was found associated with white matter dysmaturation as shown by the immunohistochemical profiles and microarrays analyses. Strikingly, transcriptomic and gene network analyses reveal not only a myelination deficit in growth-restricted pups, but also the extensive deregulation of genes controlling neuroinflammation and the cell cycle in both oligodendrocytes and microglia. Our findings shed new light on the cellular and gene regulatory mechanisms mediating brain structural and functional defects in malnutrition-induced FGR, and suggest, for the first time, a neuroinflammatory basis for the poor neurocognitive outcome observed in growth-restricted human infants. GLIA 2016;64:2306-2320.

  14. Fetal deficiency of lin28 programs life-long aberrations in growth and glucose metabolism.

    PubMed

    Shinoda, Gen; Shyh-Chang, Ng; Soysa, T Yvanka de; Zhu, Hao; Seligson, Marc T; Shah, Samar P; Abo-Sido, Nora; Yabuuchi, Akiko; Hagan, John P; Gregory, Richard I; Asara, John M; Cantley, Lewis C; Moss, Eric G; Daley, George Q

    2013-08-01

    LIN28A/B are RNA binding proteins implicated by genetic association studies in human growth and glucose metabolism. Mice with ectopic over-expression of Lin28a have shown related phenotypes. Here, we describe the first comprehensive analysis of the physiologic consequences of Lin28a and Lin28b deficiency in knockout (KO) mice. Lin28a/b-deficiency led to dwarfism starting at different ages, and compound gene deletions showed a cumulative dosage effect on organismal growth. Conditional gene deletion at specific developmental stages revealed that fetal but neither neonatal nor adult deficiency resulted in growth defects and aberrations in glucose metabolism. Tissue-specific KO mice implicated skeletal muscle-deficiency in the abnormal programming of adult growth and metabolism. The effects of Lin28b KO could be rescued by Tsc1 haplo-insufficiency in skeletal muscles. Our data implicate fetal expression of Lin28a/b in the regulation of life-long effects on metabolism and growth, and demonstrate that fetal Lin28b acts at least in part via mTORC1 signaling.

  15. Sildenafil citrate rescues fetal growth in the catechol-O-methyl transferase knockout mouse model.

    PubMed

    Stanley, Joanna L; Andersson, Irene J; Poudel, Rajan; Rueda-Clausen, Christian F; Sibley, Colin P; Davidge, Sandra T; Baker, Philip N

    2012-05-01

    Preeclampsia and fetal growth restriction are responsible for the majority of maternal and perinatal morbidity and mortality associated with complicated pregnancies. Although their etiologies are complex and multifactorial, both are associated with increased uterine artery resistance. Sildenafil citrate is able to rescue the dysfunction observed ex vivo in uterine arteries of women with preeclampsia. The ability of sildenafil citrate to increase uterine artery vasodilation, thereby decreasing uterine artery resistance and, hence, ameliorated preeclampsia and fetal growth restriction, was tested in a mouse model of preeclampsia, the catechol-O-methyl transferase knockout mouse (COMT(-/-)). COMT(-/-) and C57BL/6J mice were treated (0.2 mg/mL in drinking water, n=6-12) from gestational day 12.5 to 18.5. Measures of pup growth, including body weight, crown/rump length, and abdominal circumference, were reduced in COMT(-/-) mice; this was normalized after treatment with Sildenafil. COMT(-/-) mice also demonstrated abnormal umbilical Doppler waveforms, including reverse arterial blood flow velocity. This was normalized after treatment with Sildenafil. Abnormal uterine artery Doppler waveforms were not demonstrated in COMT(-/-) mice, although ex vivo responses of uterine arteries to phenylephrine were increased; moreover, treatment with Sildenafil did improve ex vivo sensitivity to an endothelium-dependent vasodilator. The data presented here demonstrate that Sildenafil can rescue pup growth and improve abnormal umbilical Doppler waveforms, providing support for a potential new therapeutic strategy targeting fetal growth restriction.

  16. Effect of placental factors on growth and function of the human fetal adrenal in vitro

    SciTech Connect

    Riopel, L.; Branchaud, C.L.; Goodyer, C.G.; Zweig, M.; Lipowski, L.; Adkar, V.; Lefebvre, Y. )

    1989-11-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: (1) maximal response to PM was 2-5 times greater; (2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; (3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland.

  17. Fetal deficiency of Lin28 programs life-long aberrations in growth and glucose metabolism

    PubMed Central

    Shinoda, Gen; Shyh-Chang, Ng; de Soysa, T. Yvanka; Zhu, Hao; Seligson, Marc T.; Shah, Samar P.; Abo-Sido, Nora; Yabuuchi, Akiko; Hagan, John P.; Gregory, Richard I.; Asara, John M.; Cantley, Lewis C.; Moss, Eric G.; Daley, George Q.

    2013-01-01

    LIN28A/B are RNA binding proteins implicated by genetic association studies in human growth and glucose metabolism. Mice with ectopic over-expression of Lin28a have shown related phenotypes. Here we describe the first comprehensive analysis of the physiologic consequences of Lin28a and Lin28b deficiency in knockout (KO) mice. Lin28a/b-deficiency led to dwarfism starting at different ages, and compound gene deletions showed a cumulative dosage effect on organismal growth. Conditional gene deletion at specific developmental stages revealed that fetal but neither neonatal nor adult deficiency resulted in growth defects and aberrations in glucose metabolism. Tissue-specific KO mice implicated skeletal muscle-deficiency in the abnormal programming of adult growth and metabolism. The effects of Lin28b KO can be rescued by Tsc1 haplo-insufficiency in skeletal muscles. Our data implicate fetal expression of Lin28a/b in the regulation of life-long effects on metabolism and growth, and demonstrate that fetal Lin28b acts at least in part via mTORC1 signaling. PMID:23666760

  18. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease.

    PubMed

    Rush, E C; Katre, P; Yajnik, C S

    2014-01-01

    This review brings together human and animal studies and reviews that examine the possible role of maternal vitamin B12 (B12) on fetal growth and its programming for susceptibility to chronic disease. A selective literature review was undertaken to identify studies and reviews that investigate these issues, particularly in the context of a vegetarian diet that may be low in B12 and protein and high in carbohydrate. Evidence is accumulating that maternal B12 status influences fetal growth and development. Low maternal vitamin B12 status and protein intake are associated with increased risk of neural tube defect, low lean mass and excess adiposity, increased insulin resistance, impaired neurodevelopment and altered risk of cancer in the offspring. Vitamin B12 is a key nutrient associated with one carbon metabolic pathways related to substrate metabolism, synthesis and stability of nucleic acids and methylation of DNA which regulates gene expression. Understanding of factors regulating maternal-fetal one carbon metabolism and its role in fetal programming of non communicable diseases could help design effective interventions, starting with maternal nutrition before conception.

  19. Ultrasonographic assessment of fetal growth in miniature "Shiba" goats (Capra hircus).

    PubMed

    Kandiel, Mohamed M M; Watanabe, Gen; Taya, Kazuyoshi

    2015-11-01

    The aim of the present study was to monitor fetal growth in relation to gestational stage to generate formulae which could be used to estimate fetal age in goats. Eight miniature Shiba goats (Capra hircus) were examined weekly by transrectal and transabdominal ultrasound scanning during the gestation period between Day 21 and 126 days of gestation. For accurate judgment, all fetometric parameters were measured at least three times per one examination for each animal. Quantification of the growth of the fetus allowed the development of a number of predictors of fetal age. Low correlations were associated with measurement of the chest diameter (R(2)=0.869), trunk diameter (R(2)=0.8969), tibia length (R(2)=0.8662) and placentome diameter (R(2)=0.8999). Moderate correlation was assessed by calculation of the length of six successive lumbar vertebrae (R(2)=0.9296), femur length (R(2)=0.9278), heart axis length (R(2)=0.9382 and 0.9589; for the longitudinal and transverse axis, respectively), occipitonasal length (R(2)=0.9527), umbilical cord diameter (R(2)=0.9119) and orbit diameter (R(2)=0.9239). A high correlation was estimated in investigating the length of six successive thoracic vertebrae (R(2)=0.9674), braincase diameter (R(2)=0.9831) and crown rump length (R(2)=0.9848). In conclusion, the intrauterine fetal biometry estimation through ultrasound might be useful to predict the accurate gestational age in miniature goats.

  20. Association of prenatal lipid-based nutritional supplementation with fetal growth in rural Gambia.

    PubMed

    Johnson, William; Darboe, Momodou K; Sosseh, Fatou; Nshe, Patrick; Prentice, Andrew M; Moore, Sophie E

    2017-04-01

    Prenatal supplementation with protein-energy (PE) and/or multiple-micronutrients (MMNs) may improve fetal growth, but trials of lipid-based nutritional supplements (LNSs) have reported inconsistent results. We conducted a post-hoc analysis of non-primary outcomes in a trial in Gambia, with the aim to test the associations of LNS with fetal growth and explore how efficacy varies depending on nutritional status. The sample comprised 620 pregnant women in an individually randomized, partially blinded trial with four arms: (a) iron and folic acid (FeFol) tablet (usual care, referent group), (b) MMN tablet, (c) PE LNS, and (d) PE + MMN LNS. Analysis of variance examined unadjusted differences in fetal biometry z-scores at 20 and 30 weeks and neonatal anthropometry z-scores, while regression tested for modification of intervention-outcome associations by season and maternal height, body mass index, and weight gain. Despite evidence of between-arm differences in some fetal biometry, z-scores at birth were not greater in the intervention arms than the FeFol arm (e.g., birth weight z-scores: FeFol -0.71, MMN -0.63, PE -0.64, PE + MMN -0.62; group-wise p = .796). In regression analyses, intervention associations with birth weight and head circumference were modified by maternal weight gain between booking and 30 weeks gestation (e.g., PE + MMN associations with birth weight were +0.462 z-scores (95% CI [0.097, 0.826]) in the highest quartile of weight gain but -0.099 z-scores (-0.459, 0.260) in the lowest). In conclusion, we found no strong evidence that a prenatal LNS intervention was associated with better fetal growth in the whole sample.

  1. Fetal Echocardiography and Pulsed-wave Doppler Ultrasound in a Rabbit Model of Intrauterine Growth Restriction

    PubMed Central

    Hodges, Ryan; Endo, Masayuki; La Gerche, Andre; Eixarch, Elisenda; DeKoninck, Philip; Ferferieva, Vessilina; D'hooge, Jan; Wallace, Euan M.; Deprest, Jan

    2013-01-01

    Fetal intrauterine growth restriction (IUGR) results in abnormal cardiac function that is apparent antenatally due to advances in fetoplacental Doppler ultrasound and fetal echocardiography. Increasingly, these imaging modalities are being employed clinically to examine cardiac function and assess wellbeing in utero, thereby guiding timing of birth decisions. Here, we used a rabbit model of IUGR that allows analysis of cardiac function in a clinically relevant way. Using isoflurane induced anesthesia, IUGR is surgically created at gestational age day 25 by performing a laparotomy, exposing the bicornuate uterus and then ligating 40-50% of uteroplacental vessels supplying each gestational sac in a single uterine horn. The other horn in the rabbit bicornuate uterus serves as internal control fetuses. Then, after recovery at gestational age day 30 (full term), the same rabbit undergoes examination of fetal cardiac function. Anesthesia is induced with ketamine and xylazine intramuscularly, then maintained by a continuous intravenous infusion of ketamine and xylazine to minimize iatrogenic effects on fetal cardiac function. A repeat laparotomy is performed to expose each gestational sac and a microultrasound examination (VisualSonics VEVO 2100) of fetal cardiac function is performed. Placental insufficiency is evident by a raised pulsatility index or an absent or reversed end diastolic flow of the umbilical artery Doppler waveform. The ductus venosus and middle cerebral artery Doppler is then examined. Fetal echocardiography is performed by recording B mode, M mode and flow velocity waveforms in lateral and apical views. Offline calculations determine standard M-mode cardiac variables, tricuspid and mitral annular plane systolic excursion, speckle tracking and strain analysis, modified myocardial performance index and vascular flow velocity waveforms of interest. This small animal model of IUGR therefore affords examination of in utero cardiac function that is

  2. Dietary fat impacts fetal growth and metabolism: uptake of chylomicron remnant core lipids by the placenta.

    PubMed

    Rebholz, Sandra L; Burke, Katie T; Yang, Qing; Tso, Patrick; Woollett, Laura A

    2011-08-01

    The fetus requires significant energy for growth and development. Although glucose is a major source of energy for the fetus, other maternal nutrients also appear to promote growth. Thus, the goal of these studies was to determine whether triglyceride-rich remnants are taken up by the placenta and whether maternal dietary lipids, independently of adiposity, can impact fetal growth. To accomplish our first goal, chylomicron particles were duallly labeled with cholesteryl ester and triglycerides. The placenta took up remnant particles/core lipids at rates greater than adipose tissue and skeletal muscle but less than the liver. Although the placenta expresses apoE receptors, uptake of chylomicron remnants and/or core lipids can occur independently of apoE. To determine the impact of dietary lipid on fetal growth, independent of maternal adiposity, females were fed high-fat diets (HFD) for 1 mo; there was no change in adiposity or leptin levels prior to or during pregnancy of dams fed HFD. Fetal masses were greater in dams fed HFD, and mRNA levels of proteins involved in fatty acid oxidation (CPT I, PPARα), but not glucose oxidation (pyruvate kinase) or other regulatory processes (HNF-4α, LXR), were increased with maternal dietary fat. There was also no change in mRNA levels of proteins involved in placental glucose and fatty acid transport, and GLUT1 protein levels in microvillous membranes were similar in placentas of dams fed either diet. Thus, the ability of the placenta to take up chylomicron remnant core lipids likely contributes to accelerated fetal growth in females fed high fat diets.

  3. Placental leptin in normal, diabetic and fetal growth-retarded pregnancies.

    PubMed

    Lea, R G; Howe, D; Hannah, L T; Bonneau, O; Hunter, L; Hoggard, N

    2000-08-01

    Leptin expression in third trimester placenta (p) and leptin concentrations in umbilical cord blood (cb) were investigated in normal pregnancies [n = 10 (p), 31 (cb)] and abnormal pregnancies complicated with (i) maternal insulin-dependent diabetes [IDDM: n = 3 (p), 13 (cb)], (ii) gestational diabetes [GD: n = 2 (p), 10 (cb)] and (iii) fetal growth retardation [FGR: n = 5 (p), 5 (cb)]. By in-situ hybridization and immunohistochemistry, placental leptin mRNA and protein were co-localized to the syncytiotrophoblast and villous vascular endothelial cells. Leptin receptor was immunolocalized to the syncytiotrophoblast. Relative to controls, the FGR group was characterized by low concentrations of placental and cord blood leptin. In a twin pregnancy, the normal-sized infant exhibited more placental and cord blood leptin than its growth-retarded twin. In contrast, both diabetic groups exhibited high concentrations of placental leptin mRNA and protein. The IDDM group exhibited the highest concentrations of leptin in cord blood. No change was observed in the expression of the leptin receptor in either the growth-retarded or diabetic pregnancies. In conclusion, the localization of placental leptin suggests that it may be released into both maternal and fetal blood. Furthermore, in fetal growth-retarded and diabetic pregnancies, the changes in leptin expression in the placenta and in leptin concentrations in umbilical cord blood appear to be related.

  4. Exposure to ergot alkaloids during gestation reduces fetal growth in sheep

    PubMed Central

    Duckett, Susan K.; Andrae, John G.; Pratt, Scott L.

    2014-01-01

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh; Schedonorus phoenix (Scop.) Holub] is the primary cool season perennial grass in the eastern U.S. Most tall fescue contains an endophyte (Neotyphodium coenophialum), which produces ergot alkaloids that cause vasoconstriction and could restrict blood flow to the fetus in pregnant animals. The objective of this study was to examine fetal growth during maternal exposure to ergot alkaloids during gestation. Pregnant ewes (n = 16) were randomly assigned to one of two dietary treatments: (1) endophyte-infected (N. coenophialum) tall fescue seed (E+; 0.8 ug of ergovaline /g diet DM) and (2) endophyte-free tall fescue seed (E−; 0.0 ug of ergovaline/g diet DM). Birth weight of lambs was reduced by 37% for E+ compared to E−. Organ and muscle weights were also lighter for E+ than E−. Exposure to ergot alkaloids in utero reduces fetal growth and muscle development. PMID:25191653

  5. Exposure to Ergot Alkaloids During Gestation Reduces Fetal Growth in Sheep

    NASA Astrophysics Data System (ADS)

    Duckett, Susan; Pratt, Scott; Andrae, John

    2014-08-01

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh; Schedonorus phoenix (Scop.) Holub] is the primary cool season perennial grass in the eastern U.S. Most tall fescue contains an endophyte (Neotyphodium coenophialum), which produces ergot alkaloids that cause vasoconstriction and could restrict blood flow to the fetus in pregnant animals. The objective of this study was to examine fetal growth during maternal exposure to ergot alkaloids during gestation. Pregnant ewes (n = 16) were randomly assigned to one of two dietary treatments: 1) endophyte-infected (Neotyphodium coenophialum) tall fescue seed (E+; 0.8 ug of ergovaline /g diet DM) and 2) endophyte-free tall fescue seed (E-; 0.0 ug of ergovaline/g diet DM). Birth weight of lambs was reduced by 37% for E+ compared to E-. Organ and muscle weights were also lighter for E+ than E-. Exposure to ergot alkaloids in utero reduces fetal growth and muscle development.

  6. Stimulation of DNA and Collagen Synthesis by Autologous Growth Factor in Cultured Fetal Rat Calvaria

    NASA Astrophysics Data System (ADS)

    Canalis, Ernesto; Peck, William A.; Raisz, Lawrence G.

    1980-11-01

    Conditioned medium derived from organ or cell cultures prepared from 19- to 21-day fetal rat calvaria stimulated the incorporation of [3H]proline into collagen and of [3H]thymidine into DNA in organ cultures of the same tissue. Addition of cortisol enhanced the effect on collagen but not on DNA synthesis. These effects appeared to be due to a nondialyzable and heat-stable growth factor.

  7. Melanocortin 1 receptor function: shifting gears from determining skin and nevus phenotype to fetal growth.

    PubMed

    Gruis, Nelleke A; van Doorn, Remco

    2012-08-01

    Variants in the MC1R gene influence skin pigmentation and thereby modulate risk of melanoma and basal and squamous cell carcinoma. In this issue, Kinsler et al. report an association between the MC1R genotype and the development of congenital melanocytic nevi. Further, higher birth weight was observed in carriers of MC1R variants, suggesting a role for the melanocortin network in fetal growth.

  8. Maternal Lipids as Strong Determinants of Fetal Environment and Growth in Pregnancies With Gestational Diabetes Mellitus

    PubMed Central

    Schaefer-Graf, Ute M.; Graf, Kristof; Kulbacka, Irina; Kjos, Siri L.; Dudenhausen, Joachim; Vetter, Klaus; Herrera, Emilio

    2008-01-01

    OBJECTIVE—To determine the contribution of maternal glucose and lipids to intrauterine metabolic environment and fetal growth in pregnancies with gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS—In 150 pregnancies, serum triglycerides (TGs), cholesterol, free fatty acids (FFAs), glycerol, insulin, and glucose were determined in maternal serum and cord blood during the 3rd trimester. Maternal glucose values came from oral glucose tolerance testing and glucose profiles. Measurements of fetal abdominal circumference (AC) were performed simultaneously with maternal blood sampling and birth weight, and BMI and neonatal fat mass were obtained following delivery. RESULTS—Maternal TGs and FFAs correlated with fetal AC size (at 28 weeks: triglycerides, P = 0.001; FFAs, P = 0.02), and at delivery they correlated with all neonatal anthropometric measures (FFA: birth weight, P = 0.002; BMI, P = 0.001; fat mass, P = 0.01). After adjustment for confounding variables, maternal FFAs and TGs at delivery remained the only parameters independently related to newborns large for gestational age (LGA) (P = 0.008 and P = 0.04, respectively). Maternal FFA levels were higher in mothers with LGA newborns than in those with appropriate for gestational age (AGA) newborns (362.8 ± 101.7 vs. 252.4 ± 10.1, P = 0.002). Maternal levels of TGs, FFAs, and glycerol at delivery correlated with those in cord blood (P = 0.003, P = 0.004, and P = 0.005, respectively). Fetal triglyceride and cholesterol levels were negatively correlated with newborn birth weight (P = 0.001), BMI (P = 0.004), and fat mass (P = 0.001). TGs were significantly higher in small for gestational age (SGA) newborns compared with AGA or LGA newborns, while insulin-to-glucose ratio and FFAs were the highest in LGA newborns. CONCLUSIONS—In well-controlled GDM pregnancies, maternal lipids are strong predictors for fetal lipids and fetal growth. Infants with abnormal growth seem to be exposed to a distinct

  9. Growth hormone and Pit-1 expression in bovine fetal lymphoid cells.

    PubMed

    Chen, H T; Schuler, L A; Schultz, R D

    1997-11-01

    Bovine fetal lymphoid cells were examined for growth hormone (GH) and the transcription factor Pit-1/GHF-1 mRNA. GH and Pit-1/GHF-1 transcripts were detected in thymocytes and splenocytes from fetuses at 60, 90, 120, and 270 d of gestation using reverse transcription-polymerase chain reaction (RT-PCR). Northern analysis indicated that the lymphoid GH mRNA was approximately 350 nucleotides larger than in the pituitary. RT-PCR analysis demonstrated that the coding regions as well as 3' untranslated region of the lymphocyte GH and pituitary transcripts were the same. Analysis of the 5'-untranslated region of the lymphocyte GH mRNA showed that transcription began upstream from the start site in the pituitary gland, suggesting differences in regulation in these tissues. Fetal thymocytes and splenocytes expressed Pit-1/GHF-1 mRNA; however, they contained only the 2.5-kb transcript. The GH and Pit-1/GHF-1 mRNA in fetal lymphoid cells supports the hypothesis that lymphocyte-derived GH may function as an autocrine and/or paracrine factor during the development and maturation of the bovine fetal immune system.

  10. Peri-Implantation Hormonal Milieu: Elucidating Mechanisms of Abnormal Placentation and Fetal Growth1

    PubMed Central

    Mainigi, Monica A.; Olalere, Devvora; Burd, Irina; Sapienza, Carmen; Bartolomei, Marisa; Coutifaris, Christos

    2013-01-01

    ABSTRACT Assisted reproductive technologies (ART) have been associated with several adverse perinatal outcomes involving placentation and fetal growth. It is critical to examine each intervention individually in order to assess its relationship to the described adverse perinatal outcomes. One intervention ubiquitously used in ART is superovulation with gonadotropins. Superovulation results in significant changes in the hormonal milieu, which persist during the peri-implantation and early placentation periods. Epidemiologic evidence suggests that the treatment-induced peri-implantation maternal environment plays a critical role in perinatal outcomes. In this study, using the mouse model, we have isolated the exposure to the peri-implantation period, and we examine the effect of superovulation on placentation and fetal growth. We report that the nonphysiologic peri-implantation maternal hormonal environment resulting from gonadotropin stimulation appears to have a direct effect on fetal growth, trophoblast differentiation, and gene expression. This appears to be mediated, at least in part, through trophoblast expansion and invasion. Although the specific molecular and cellular mechanism(s) leading to these observations remain to be elucidated, identifying this modifiable risk factor will not only allow us to improve perinatal outcomes with ART, but help us understand the pathophysiology contributing to these outcomes. PMID:24352558

  11. Non-occupational exposure to paint fumes during pregnancy and fetal growth in a general population.

    PubMed

    Sørensen, Mette; Andersen, Anne-Marie N; Raaschou-Nielsen, Ole

    2010-05-01

    Occupational exposure to organic solvents during pregnancy has been associated with reduced fetal growth. Though organic solvents in the form of paint fumes are also found in the home environment, no studies have investigated the effect of such exposure in a general population. We studied associations between residential exposure to paint fumes during pregnancy and fetal growth within the Danish National Birth Cohort which consecutively recruited pregnant women from 1996 to 2002 from all over Denmark. Around the 30th pregnancy week, 19,000 mothers were interviewed about use of paint in their residence during pregnancy. The mothers were also asked about smoking habits and alcohol consumption during pregnancy, pre-pregnancy weight, height, parity and occupation. Information on birth weight and gestational age was obtained from national registers. We found that 45% of the mothers had been exposed to paint fumes in their residence during pregnancy. We found a statistically significant inverse relationship between exposure to paint fumes and the risk of being small for gestational age. There were no statistically significant associations between exposure to paint fumes and birth weight and risk of preterm birth after adjustment for potential confounders. Our results suggest that there are no causal relationship between non-occupational exposure to paint fumes in the residence during pregnancy and fetal growth.

  12. Prenatal Exposure to Polybrominated Flame Retardants and Fetal Growth in the INMA Cohort (Spain)

    PubMed Central

    2015-01-01

    Our aim was to investigate the relation between PBDEs and fetal growth or newborn anthropometry in a Spanish cohort (2003–2008). PBDE congeners (BDE-47, -99, -153, -154, and -209) were determined in serum of 670 mothers at gestational week 12 and in 534 umbilical cord samples. Abdominal circumference (AC), estimated fetal weight (EFW), femur length (FL), and biparietal diameter (BPD) during gestation were measured by ultrasounds. At birth, weight (BW), head circumference (HC), and length (BL) were also measured. We assessed growth in the intervals between 12–20 and 20–34 weeks of gestation and size at birth by standard deviation (SD)-scores adjusted for constitutional characteristics. We conducted multivariate linear regression analyses between PBDE congeners and their sum (ΣPBDEs) and outcomes. We found statistically significant inverse associations between ΣPBDEs and AC, EFW, and BPD at weeks 20–34 and HC at birth. Regarding congeners, the association was clearer with BDE-99, with inverse associations being found with AC, EFW, and BPD at weeks 20–34, and with BW and HC at delivery. These outcomes decreased between 1.3% and 3.5% for each 2-fold PBDE increase. Concerning matrices, we found statistically significant inverse associations with BPD, HC, and BW when using maternal serum, and for AC and EFW with cord serum. In conclusion, PBDEs may impair fetal growth in late pregnancy and reduce birth size. PMID:26181825

  13. Fetal production of growth factors and inflammatory mediators predicts pulmonary hypertension in congenital diaphragmatic hernia

    PubMed Central

    Fleck, Shannon; Bautista, Geoanna; Keating, Sheila M.; Lee, Tzong-Hae; Keller, Roberta L.; Moon-Grady, Anita J.; Gonzales, Kelly; Norris, Philip J.; Busch, Michael P.; Kim, CJ; Romero, Roberto; Lee, Hanmin; Miniati, Doug; MacKenzie, Tippi C.

    2014-01-01

    Background Congenital diaphragmatic hernia (CDH) represents a spectrum of lung hypoplasia and consequent pulmonary hypertension is an important cause of postnatal morbidity and mortality. We studied biomarkers at the maternal-fetal interface to understand factors associated with the persistence of pulmonary hypertension. Methods Maternal and cord blood samples from fetuses with CDH and unaffected controls were analyzed using a human 39plex immunoassay kit. Cellular trafficking between the mother and the fetu was quantified using quantitative real-time PCR for non-shared alleles. Biomarker profiles were then correlated with CDH severity based on the degree of pulmonary hypertension. Results Cord blood levels of epidermal growth factor, platelet-derived growth factor, and several inflammatory mediators increased significantly as the severity of CDH increased, while maternal levels growth factors and mediators decreased significantly with CDH severity. Maternal cells were increased in fetuses with severe CDH compared to controls, with elevated levels of the chemokine CXCL-10 in patients with the highest trafficking. Conclusion Patients with CDH demonstrate pro-inflammatory and chemotactic signals in fetal blood at the time of birth. Since some of these molecules have been implicated in the development of pulmonary hypertension, prenatal strategies targeting specific molecular pathways may be useful adjuncts to current fetal therapies. PMID:23770923

  14. Anthropometry of fetal growth in rural Malawi in relation to maternal malaria and HIV status

    PubMed Central

    Kalanda, B; van Buuren, S; Verhoeff, F; Brabin, B

    2005-01-01

    Objective: To describe fetal growth centiles in relation to maternal malaria and HIV status, using cross sectional measurements at birth. Design: A cross sectional study of pregnant women and their babies. Data on maternal socioeconomic status and current pregnancy, including HIV status and newborn anthropometry, were collected. Malaria parasitaemia was assessed in maternal peripheral and placental blood, fetal haemoglobin was measured in cord blood, and maternal HIV status was determined. Setting: Two district hospitals in rural southern Malawi, between March 1993 and July 1994. Outcome variables: Newborn weight, length, Rohrer's ponderal index. Results: Maternal HIV (adjusted odds ratio (AOR) 1.76 (95% confidence interval 1.04 to 2.98)) and first pregnancy (AOR 1.83 (1.10 to 3.05)) were independently associated with low weight for age. Placental or peripheral parasitaemia at delivery (AOR 1.73 (1.02 to 2.88)) and primigravidae (AOR 2.13 (1.27 to 3.59)) were independently associated with low length for age. Maternal malaria at delivery and primiparity were associated with reduced newborn weight and length but not with disproportionate growth. Maternal HIV infection was associated only with reduced birth weight. The malaria and parity effect occurred throughout gestational weeks 30–40, but the HIV effect primarily after 38 weeks gestation. Conclusion: Fetal growth retardation in weight and length commonly occurs in this highly malarious area and is present from 30 weeks gestation. A maternal HIV effect on fetal weight occurred after 38 weeks gestation. PMID:15724042

  15. Timing of Gestational Weight Gain on Fetal Growth and Infant Size at Birth in Vietnam

    PubMed Central

    Young, Melissa F.; Hong Nguyen, Phuong; Addo, O. Yaw; Pham, Hoa; Nguyen, Son; Martorell, Reynaldo; Ramakrishnan, Usha

    2017-01-01

    Objective To examine the importance of timing of gestational weight gain during three time periods: 1: ≤ 20 weeks gestation), 2: 21–29 weeks) and 3: ≥ 30 weeks) on fetal growth and infant birth size. Methods Study uses secondary data from the PRECONCEPT randomized controlled trial in Thai Nguyen province, Vietnam (n = 1436). Prospective data were collected on women starting pre-pregnancy through delivery. Maternal conditional weight gain (CWG) was defined as window-specific weight gains, uncorrelated with pre-pregnancy body mass index and all prior body weights. Fetal biometry, was assessed by ultrasound measurements of head and abdomen circumferences, biparietal diameter, and femoral length throughout pregnancy. Birth size outcomes included weight and length, and head, abdomen and mid upper arm circumferences as well as small for gestational age (SGA). Adjusted generalized linear and logistic models were used to examine associations. Results Overall, three-quarters of women gained below the Institute of Medicine guidelines, and these women were 2.5 times more likely to give birth to a SGA infant. Maternal CWG in the first window (≤ 20 weeks), followed by 21–29 weeks, had the greatest association on all parameters of fetal growth (except abdomen circumference) and infant size at birth. For birth weight, a 1 SD increase CWG in the first 20 weeks had 3 times the influence compared to later CWG (≥ 30 weeks) (111 g vs. 39 g) and was associated with a 43% reduction in SGA risk (OR (95% CI): 0.57 (0.46–0.70). Conclusion There is a need to target women before or early in pregnancy to ensure adequate nutrition to maximize impact on fetal growth and birth size. Trial Registration ClinicalTrials.gov, NCT01665378 PMID:28114316

  16. Fetal alcohol exposure and mammary tumorigenesis in offspring: role of the estrogen and insulin-like growth factor systems.

    PubMed

    Cohick, Wendie S; Crismale-Gann, Catina; Stires, Hillary; Katz, Tiffany A

    2015-01-01

    Fetal alcohol spectrum disorders affect a significant number of live births each year, indicating that alcohol consumption during pregnancy is an important public health issue. Environmental exposures and lifestyle choices during pregnancy may affect the offspring's risk of disease in adulthood, leading to the idea that a woman's risk of breast cancer may be pre-programmed prior to birth. Exposure of pregnant rats to alcohol increases tumorigenesis in the adult offspring in response to mammary carcinogens. The estrogen and insulin-like growth factor (IGF-I) axes occupy central roles in normal mammary gland development and breast cancer. 17-β estradiol (E2) and IGF-I synergize to regulate formation of terminal end buds and ductal elongation during pubertal development. The intracellular signaling pathways mediated by the estrogen and IGF-I receptors cross-talk at multiple levels through both genomic and non-genomic mechanisms. Several components of the E2 and IGF-I systems are altered in early development in rat offspring exposed to alcohol in utero, therefore, these changes may play a role in the enhanced susceptibility to mammary carcinogens observed in adulthood. Alcohol exposure in utero induces a number of epigenetic alterations in non-mammary tissues in the offspring and other adverse in utero exposures induce epigenetic modifications in the mammary gland. Future studies will determine if fetal alcohol exposure can induce epigenetic modifications in genes that regulate E2/IGF action at key phases of mammary development, ultimately leading to changes in susceptibility to carcinogens.

  17. Relation of fetal growth to adult lung function in south India

    PubMed Central

    Stein, C. E.; Kumaran, K.; Fall, C. H.; Shaheen, S. O.; Osmond, C.; Barker, D. J.

    1997-01-01

    BACKGROUND: Follow up studies in Britain have shown that low rates of fetal growth are followed by reduced lung function in adult life, independent of smoking and social class. It is suggested that fetal adaptations to undernutrition in utero result in permanent changes in lung structure, which in turn lead to chronic airflow obstruction. India has high rates of intrauterine growth retardation, but no study has examined the association between fetal growth and adult lung function in Indian people. We have related size at birth to lung function in an urban Indian population aged 38-59 years. METHODS: Two hundred and eighty six men and women born in one hospital in Mysore City, South India, during 1934-1953 were traced by a house-to-house survey of the city. Their mean forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were measured using a turbine spirometer. These measurements were linked to their size at birth, recorded at the time. RESULTS: In both men and women mean FEV1 fell with decreasing birthweight. Adjusted for age and height, it fell by 0.09 litres with each pound (454 g) decrease in birthweight in men (95% confidence interval (CI) 0.01 to 0.16) and by 0.06 (95% CI -0.01 to 0.13) in women. Likewise, mean FVC fell by 0.11 litres (95% CI 0.02 to 0.19) with each pound decrease in birthweight in men, and by 0.08 litres (95% CI 0.002 to 0.16) in women. FEV1 and FVC were lower in men who smoked, but the associations with size at birth were independent of smoking. Small head circumference at birth was associated with a low FEV1/FVC ratio in men which may reflect restriction in airway growth in early gestation. CONCLUSION: This is further evidence that adult lung function is "programmed" in fetal life. Smoking may be particularly detrimental to the lung function of populations already disadvantaged by poor rates of fetal growth. 


 PMID:9404378

  18. Placental development during early pregnancy in sheep: effects of embryo origin on fetal and placental growth and global methylation.

    PubMed

    Grazul-Bilska, Anna T; Johnson, Mary Lynn; Borowicz, Pawel P; Baranko, Loren; Redmer, Dale A; Reynolds, Lawrence P

    2013-01-01

    The origin of embryos including those created through assisted reproductive technologies might have profound effects on placental and fetal development, possibly leading to compromised pregnancies associated with poor placental development. To determine the effects of embryo origin on fetal size, and maternal and fetal placental cellular proliferation and global methylation, pregnancies were achieved through natural mating (NAT), or transfer of embryos generated through in vivo (NAT-ET), IVF, or in vitro activation (IVA). On Day 22 of pregnancy, fetuses were measured and placental tissues were collected to immunologically detect Ki67 (a marker of proliferating cells) and 5-methyl cytosine followed by image analysis, and determine mRNA expression for three DNA methyltransferases. Fetal length and labeling index (proportion of proliferating cells) in maternal caruncles (maternal placenta) and fetal membranes (fetal placenta) were less (P < 0.001) in NAT-ET, IVF, and IVA than in NAT. In fetal membranes, expression of 5-methyl cytosine was greater (P < 0.02) in IVF and IVA than in NAT. In maternal caruncles, mRNA expression for DNMT1 was greater (P < 0.01) in IVA compared with the other groups, but DNMT3A expression was less (P < 0.04) in NAT-ET and IVA than in NAT. In fetal membranes, expression of mRNA for DNMT3A was greater (P < 0.01) in IVA compared with the other groups, and was similar in NAT, NAT-ET, and IVF groups. Thus, embryo origin might have specific effects on growth and function of ovine uteroplacental and fetal tissues through regulation of tissue growth, DNA methylation, and likely other mechanisms. These data provide a foundation for determining expression of specific factors regulating placental and fetal tissue growth and function in normal and compromised pregnancies, including those achieved with assisted reproductive technologies.

  19. Prenatal Origins of Temperament: Fetal Growth, Brain Structure, and Inhibitory Control in Adolescence

    PubMed Central

    Schlotz, Wolff; Godfrey, Keith M.; Phillips, David I.

    2014-01-01

    Objective Individual differences in the temperamental dimension of effortful control are constitutionally based and have been associated with an adverse prenatal developmental environment, with structural brain alterations presenting a potential mechanism. We investigated this hypothesis for anatomically defined brain regions implicated in cognitive and inhibitory motor control. Methods Twenty-seven 15–16 year old participants with low, medium, or high fetal growth were selected from a longitudinal birth cohort to maximize variation and represent the full normal spectrum of fetal growth. Outcome measures were parent ratings of attention and inhibitory control, thickness and surface area of the orbitofrontal cortex (lateral (LOFC) and medial (MOFC)) and right inferior frontal gyrus (rIFG), and volumetric measures of the striatum and amygdala. Results Lower birth weight was associated with lower inhibitory control, smaller surface area of LOFC, MOFC and rIFG, lower caudate volume, and thicker MOFC. A mediation model found a significant indirect effect of birth weight on inhibitory control via caudate volume. Conclusions Our findings support a neuroanatomical mechanism underlying potential long-term consequences of an adverse fetal developmental environment for behavioral inhibitory control in adolescence and have implications for understanding putative prenatal developmental origins of externalizing behavioral problems and self-control. PMID:24802625

  20. Chronically Increased Amino Acids Improve Insulin Secretion, Pancreatic Vascularity, and Islet Size in Growth-Restricted Fetal Sheep.

    PubMed

    Brown, Laura D; Davis, Melissa; Wai, Sandra; Wesolowski, Stephanie R; Hay, William W; Limesand, Sean W; Rozance, Paul J

    2016-10-01

    Placental insufficiency is associated with reduced supply of amino acids to the fetus and leads to intrauterine growth restriction (IUGR). IUGR fetuses are characterized by lower glucose-stimulated insulin secretion, smaller pancreatic islets with less β-cells, and impaired pancreatic vascularity. To test whether supplemental amino acids infused into the IUGR fetus could improve these complications of IUGR we used acute (hours) and chronic (11 d) direct fetal amino acid infusions into a sheep model of placental insufficiency and IUGR near the end of gestation. IUGR fetuses had attenuated acute amino acid-stimulated insulin secretion compared with control fetuses. These results were confirmed in isolated IUGR pancreatic islets. After the chronic fetal amino acid infusion, fetal glucose-stimulated insulin secretion and islet size were restored to control values. These changes were associated with normalization of fetal pancreatic vascularity and higher fetal pancreatic vascular endothelial growth factor A protein concentrations. These results demonstrate that decreased fetal amino acid supply contributes to the pathogenesis of pancreatic islet defects in IUGR. Moreover, the results show that pancreatic islets in IUGR fetuses retain their ability to respond to increased amino acids near the end of gestation after chronic fetal growth restriction.

  1. Fetal growth according to different reference ranges in twin pregnancies with placental insufficiency

    PubMed Central

    Nakano, Julianny Cavalheiro Nery; Liao, Adolfo Wenjaw; de Lourdes Brizot, Maria; Miyadahira, Mariana; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo

    2015-01-01

    The aim of this study was to compare different fetal growth curves in twin pregnancies with severe placental insufficiency. A retrospective cross-sectional analysis of 47 twin pregnancies with absent or reverse end diastolic flow in the umbilical artery of one fetus was performed. Pregnancies with major fetal abnormalities, twin-twin transfusion or three or more fetuses were not included. The estimated fetal weight zeta-scores were calculated for both fetuses (abnormal Doppler and co-twin) according to the following criteria: Hadlock, Liao and Araújo. The abdominal circumference zeta-scores were calculated according to Hadlock, Liao, Araújo, Ong and Stirrup. The mean estimates of the zeta-score values were calculated using generalized estimating equation regression analysis. The mean gestational age at inclusion was 27.4±4.7 weeks. The fetal sex and the interaction Doppler findings × criteria correlated significantly with the zeta-score values (p<0.001 for both variables). The estimated fetal weight mean zeta-scores (standard error) according to each criteria were as follows: Hadlock - abnormal Doppler: -2.98 (0.18), co-twin: -1.16 (0.15); Liao - abnormal Doppler: -2.89 (0.24), co-twin: -0.58 (0.19); and Araújo - abnormal Doppler: -3.05 (0.29), co-twin: -0.75 (0.18). Values for abdominal circumference were as follows: Hadlock - abnormal Doppler: -3.14 (0.26), co-twin: -1.13 (0.19); Liao - abnormal Doppler: -2.63 (0.27), co-twin: -0.42 (0.19); Araújo - abnormal Doppler: -2.44 (0.22), co-twin: -0.71 (0.14); Ong - abnormal Doppler: -3.36 (0.34), co-twin: -1.48 (0.23); and Stirrup AD -- -2.36 (0.14), co-twin: -1.18 (0.10). Sex- and plurality-specific charts should be used in the evaluation of fetal growth in twin pregnancies with placental insufficiency. PMID:26735222

  2. Fetal PCB syndrome: clinical features, intrauterine growth retardation and possible alteration in calcium metabolism.

    PubMed Central

    Yamashita, F; Hayashi, M

    1985-01-01

    Pregnant mothers with yusho in Fukuoka, Nagasaki and Kochi Prefectures delivered babies with a peculiar clinical manifestation which will be called fetal PCB syndrome (FPS). The birth rate incidences were 3.6% (Fukuoka Prefecture), 4% (Nagasaki Prefecture), 2.9% (Kochi Prefecture) and 3.9% (total). The manifestations consisted of dark brown pigmentation of the skin and the mucous membrane, gingival hyperplasia, exophthalmic edematous eye, dentition at birth, abnormal calcification of the skull as demonstrated by X-ray, rocker bottom heel and high incidence of light for date (low birth weight) babies. We suggest that there may be a possible alteration in calcium metabolism in these babies, related to the fragile egg shells observed in PCB-contaminated birds and to the female hormone-enhancing effect of PCB. The high incidence of low birth weight among these newborns and two other similar studies indicated that PCBs suppress fetal growth. PMID:3921362

  3. Fetal PCB syndrome: clinical features, intrauterine growth retardation and possible alteration in calcium metabolism

    SciTech Connect

    Yamashita, F.; Hayashi, M.

    1985-02-01

    Pregnant mothers with Yusho in Fukuoka, Nagasaki and Kochi Prefectures delivered babies with a peculiar clinical manifestation which will be called fetal PCB syndrome (FPS). The birth rate incidences were 3.6% (Fukuoka Prefecture), 4% (Nagasaki Prefecture), 2.9% (Kochi Prefecture) and 3.9% (total). The manifestations consisted of dark brown pigmentation of the skin and the mucous membrane, gingival hyperplasia, exophthalmic edematous eye, dentition at birth, abnormal calcification of the skull as demonstrated by X-ray, rocker bottom heel and high incidence of light for date (low birth weight) babies. The authors suggest that there may be a possible alteration in calcium metabolism in these babies, related to the fragile egg shells observed in PCB-contaminated birds and to the female hormone-enhancing effect of PCB. The high incidence of low birth weight among these newborns and two other similar studies indicated that PCBs suppress fetal growth.

  4. Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI

    PubMed Central

    Scott, Julia A.; Habas, Piotr A.; Kim, Kio; Rajagopalan, Vidya; Hamzelou, Kia S.; Corbett-Detig, James M.; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2012-01-01

    In the latter half of gestation (20 to 40 gestational weeks), human brain growth accelerates in conjunction with cortical folding and the deceleration of ventricular zone progenitor cell proliferation. These processes are reflected in changes in the volume of respective fetal tissue zones. Thus far, growth trajectories of the fetal tissue zones have been extracted primarily from 2D measurements on histological sections and magnetic resonance imaging (MRI). In this study, the volumes of major fetal zones—cortical plate (CP), subplate and intermediate zone (SP+IZ), germinal matrix (GMAT), deep gray nuclei (DG), and ventricles (VENT)—are calculated from automatic segmentation of motion-corrected, 3D reconstructed MRI. We analyzed 48 T2-weighted MRI scans from 39 normally developing fetuses in utero between 20.57 and 31.14 gestational weeks (GW). The supratentorial volume (STV) increased linearly at a rate of 15.22% per week. The SP+IZ (14.75% per week) and DG (15.56% per week) volumes increased at similar rates. The CP increased at a greater relative rate (18.00% per week), while the VENT (9.18% per week) changed more slowly. Therefore, CP increased as a fraction of STV and the VENT fraction declined. The total GMAT volume slightly increased then decreased after 25 GW. We did not detect volumetric sexual dimorphisms or total hemispheric volume asymmetries, which may emerge later in gestation. Further application of the automated fetal brain segmentation to later gestational ages will bridge the gap between volumetric studies of premature brain development and normal brain development in utero. PMID:21530634

  5. Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI.

    PubMed

    Scott, Julia A; Habas, Piotr A; Kim, Kio; Rajagopalan, Vidya; Hamzelou, Kia S; Corbett-Detig, James M; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2011-08-01

    In the latter half of gestation (20-40 gestational weeks), human brain growth accelerates in conjunction with cortical folding and the deceleration of ventricular zone progenitor cell proliferation. These processes are reflected in changes in the volume of respective fetal tissue zones. Thus far, growth trajectories of the fetal tissue zones have been extracted primarily from 2D measurements on histological sections and magnetic resonance imaging (MRI). In this study, the volumes of major fetal zones-cortical plate (CP), subplate and intermediate zone (SP+IZ), germinal matrix (GMAT), deep gray nuclei (DG), and ventricles (VENT)--are calculated from automatic segmentation of motion-corrected, 3D reconstructed MRI. We analyzed 48 T2-weighted MRI scans from 39 normally developing fetuses in utero between 20.57 and 31.14 gestational weeks (GW). The supratentorial volume (STV) increased linearly at a rate of 15.22% per week. The SP+IZ (14.75% per week) and DG (15.56% per week) volumes increased at similar rates. The CP increased at a greater relative rate (18.00% per week), while the VENT (9.18% per week) changed more slowly. Therefore, CP increased as a fraction of STV and the VENT fraction declined. The total GMAT volume slightly increased then decreased after 25 GW. We did not detect volumetric sexual dimorphisms or total hemispheric volume asymmetries, which may emerge later in gestation. Further application of the automated fetal brain segmentation to later gestational ages will bridge the gap between volumetric studies of premature brain development and normal brain development in utero.

  6. Prenatal Air Pollution Exposure and Ultrasound Measures of Fetal Growth in Los Angeles, California

    PubMed Central

    Ritz, Beate; Qiu, Jiaheng; Lee, Pei-Chen; Lurmann, Fred; Penfold, Bryan; Weiss, Robert Erin; McConnell, Rob; Arora, Chander; Hobel, Calvin; Wilhelm, Michelle

    2014-01-01

    Background Few previous studies examined the impact of prenatal air pollution exposures on fetal development based on ultrasound measures during pregnancy. Methods In a prospective birth cohort of more than 500 women followed during 1993-1996 in Los Angeles, California, we examined how air pollution impacts fetal growth during pregnancy. Exposure to traffic related air pollution was estimated using CALINE4 air dispersion modeling for nitrogen oxides (NOx) and a land use regression (LUR) model for nitrogen monoxide (NO), nitrogen dioxide (NO2) and NOx. Exposures to carbon monoxide (CO), NO2, ozone (O3) and particles <10 μm in aerodynamic diameter (PM10) were estimated using government monitoring data. We employed a linear mixed effects model to estimate changes in fetal size at approximately 19, 29 and 37 weeks gestation based on ultrasound. Results Exposure to traffic-derived air pollution during 29 to 37 weeks was negatively associated with biparietal diameter at 37 weeks gestation. For each interquartile range (IQR) increase in LUR-based estimates of NO, NO2 and NOx, or freeway CALINE4 NOx we estimated a reduction in biparietal diameter of 0.2-0.3 mm. For women residing within 5 km of a monitoring station, we estimated biparietal diameter reductions of 0.9-1.0 mm per IQR increase in CO and NO2. Effect estimates were robust to adjustment for a number of potential confounders. We did not observe consistent patterns for other growth endpoints we examined. Conclusions Prenatal exposure to traffic-derived pollution was negatively associated with fetal head size measured as biparietal diameter in late pregnancy. PMID:24517884

  7. Maternal and fetal insulin-like growth factor system and embryonic survival during pregnancy in rats: interaction between dietary chromium and diabetes.

    PubMed

    Spicer, M T; Stoecker, B J; Chen, T; Spicer, L J

    1998-12-01

    Chromium (Cr) depletion may exacerbate hyperglycemia and negative outcomes of pregnancy in the streptozotocin (STZ) diabetic pregnant rat model through the regulation of the insulin-like growth factor (IGF) system. To test this hypothesis, 40 female rats, all fed a low Cr diet (i.e., 70 microgram Cr/kg diet ) from 21 d of age, were randomly assigned one of four treatments, applied on Day 1 of pregnancy, in a 2 x 2 factorial design: 1) very low Cr diet (40 microgram Cr/kg diet) + citrate buffer injection, 2) very low Cr diet + STZ injection (30 mg STZ/kg body wt in citrate buffer), 3) adequate Cr diet (2 mg Cr [from added CrK(SO4)2]/kg diet) + citrate buffer injectionand 4) adequate Cr diet + STZ injection. Blood and tissues were collected on Day 20 of pregnancy. Chromium depletion increased (P < 0.05) urinary hydroxyproline excretion, 22-kDa IGF binding protein (IGFBP) concentration and litter size but decreased (P < 0. 05) placental wt, percentage of protein per fetus, and fetal IGF-I and -II concentrations. Chromium had no effect (P > 0.10) on maternal hormones, 32-kDa IGFBP, glucose, or placental and fetal hydroxyproline concentrations. Diabetes decreased (P < 0.05) maternal wt gain, embryonic survival, litter size, mean pup wt and maternal insulin concentrations, increased (P < 0.05) maternal blood glucose, IGF-I concentrations and maternal hydroxyproline excretion but did not affect fetal concentrations of hormones, IGFBP, glucose or hydroxyproline. Interaction between chromium and diabetes tended (P < 0.10) to affect maternal IGF-II concentrations, but had no effect on other maternal or fetal variables. In conclusion, maternal chromium depletion did not exacerbate hyperglycemia or pregnancy outcome in STZ-induced diabetic rats, but may negatively affect fetal protein content by decreasing fetal IGF-II concentrations. Diabetes may negatively affect fetal growth through its effect on maternal glucose, insulin and IGF-I.

  8. Fetal growth and childhood acute lymphoblastic leukemia: findings from the childhood leukemia international consortium.

    PubMed

    Milne, Elizabeth; Greenop, Kathryn R; Metayer, Catherine; Schüz, Joachim; Petridou, Eleni; Pombo-de-Oliveira, Maria S; Infante-Rivard, Claire; Roman, Eve; Dockerty, John D; Spector, Logan G; Koifman, Sérgio; Orsi, Laurent; Rudant, Jérémie; Dessypris, Nick; Simpson, Jill; Lightfoot, Tracy; Kaatsch, Peter; Baka, Margarita; Faro, Alessandra; Armstrong, Bruce K; Clavel, Jacqueline; Buffler, Patricia A

    2013-12-15

    Positive associations have been reported between the measures of accelerated fetal growth and risk of childhood acute lymphoblastic leukemia (ALL). We investigated this association by pooling individual-level data from 12 case-control studies participating in the Childhood Leukemia International Consortium. Two measures of fetal growth-weight-for-gestational-age and proportion of optimal birth weight (POBW)-were analysed. Study-specific odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression, and combined in fixed effects meta-analyses. Pooled analyses of all data were also undertaken using multivariable logistic regression. Subgroup analyses were undertaken when possible. Data on weight for gestational age were available for 7,348 cases and 12,489 controls from all 12 studies and POBW data were available for 1,680 cases and 3,139 controls from three studies. The summary ORs from the meta-analyses were 1.24 (95% CI: 1.13, 1.36) for children who were large for gestational age relative to appropriate for gestational age, and 1.16 (95% CI: 1.09, 1.24) for a one-standard deviation increase in POBW. The pooled analyses produced similar results. The summary and pooled ORs for small-for-gestational-age children were 0.83 (95% CI: 0.75, 0.92) and 0.86 (95% CI: 0.77, 0.95), respectively. Results were consistent across subgroups defined by sex, ethnicity and immunophenotype, and when the analysis was restricted to children who did not have high birth weight. The evidence that accelerated fetal growth is associated with a modest increased risk of childhood ALL is strong and consistent with known biological mechanisms involving insulin-like growth factors. © 2013 UICC.

  9. Fetal Growth and Childhood Acute Lymphoblastic Leukemia: Findings from the Childhood Leukemia International Consortium (CLIC)

    PubMed Central

    Milne, Elizabeth; Greenop, Kathryn R.; Metayer, Catherine; Schüz, Joachim; Petridou, Eleni; Pombo-de-Oliveira, Maria S.; Infante-Rivard, Claire; Roman, Eve; Dockerty, John D.; Spector, Logan G.; Koifman, Sérgio; Orsi, Laurent; Rudant, Jérémie; Dessypris, Nick; Simpson, Jill; Lightfoot, Tracy; Kaatsch, Peter; Baka, Margarita; Faro, Alessandra; Armstrong, Bruce K.; Clavel, Jacqueline; Buffler, Patricia A.

    2013-01-01

    Positive associations have been reported between measures of accelerated fetal growth and risk of childhood acute lymphoblastic leukemia (ALL). We investigated this association by pooling individual-level data from 12 case-control studies participating in the Childhood Leukemia International Consortium. Two measures of fetal growth – weight-for-gestational-age and proportion of optimal birth weight (POBW) – were analysed. Study-specific odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression, and combined in fixed effects meta-analyses. Pooled analyses of all data were also undertaken using multivariable logistic regression. Subgroup analyses were undertaken when possible. Data on weight for gestational age were available for 7,348 cases and 12,489 controls from all 12 studies and POBW data were available for 1,680 cases and 3,139 controls from three studies. The summary ORs from the meta-analyses were 1.24 (95% CI 1.13, 1.36) for children who were large for gestational age relative to appropriate for gestational age, and 1.16 (95% CI: 1.09, 1.24) for a one standard deviation increase in POBW. The pooled analyses produced similar results. The summary and pooled ORs for small-for-gestational-age children were 0.83 (95% CI: 0.75, 0.92) and 0.86 (95% CI 0.77, 0.95) respectively. Results were consistent across subgroups defined by sex, ethnicity and immunophenotype, and when the analysis was restricted to children who did not have high birth weight. The evidence that accelerated fetal growth is associated with a modest increased risk of childhood ALL is strong and consistent with known biological mechanisms involving insulin like growth factors. PMID:23754574

  10. Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health.

    PubMed

    Brown, Laura D

    2014-05-01

    Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present during the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or 'catch-up' postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and the risk of cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts toward improving muscle growth early in life to prevent the development of chronic metabolic diseases later in life.

  11. Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome.

    PubMed

    Kaminen-Ahola, Nina; Ahola, Arttu; Flatscher-Bader, Traute; Wilkins, Sarah J; Anderson, Greg J; Whitelaw, Emma; Chong, Suyinn

    2010-10-01

    Growth restriction, craniofacial dysmorphology, and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal or postnatal, but the underlying mechanisms remain unknown.We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome (e.g., craniofacial changes and growth restriction in adolescent mice). In this study, we characterize in detail the growth restriction phenotype by measuring body weight at gestational day 16.5, cross-fostering from birth to weaning, and by extending our observations into adulthood. Furthermore, in an attempt to unravel the molecular events contributing to the growth phenotype, we have compared gene expression patterns in the liver and kidney of nonfostered, ethanol-exposed and control mice at postnatal day 28.We find that the ethanol-induced growth phenotype is not detectable prior to birth, but is present at weaning, even in mice that have been cross-fostered to unexposed dams. This finding suggests a postnatal growth restriction phenotype that is not due to deficient postpartum care by dams that drank ethanol, but rather a physiologic result of ethanol exposure in utero. We also find that, despite some catch-up growth after 5 weeks of age, the effect extends into adulthood, which is consistent with longitudinal studies in humans.Genome-wide gene expression analysis revealed interesting ethanol-induced changes in the liver, including genes involved in the metabolism of exogenous and endogenous compounds, iron homeostasis, and lipid metabolism.

  12. Prostaglandin E2 regulation of amnion cell vascular endothelial growth factor expression: relationship with intramembranous absorption rate in fetal sheep.

    PubMed

    Cheung, Cecilia Y; Beardall, Michael K; Anderson, Debra F; Brace, Robert A

    2014-08-01

    We hypothesized that prostaglandin E2 (PGE2) stimulates amniotic fluid transport across the amnion by upregulating vascular endothelial growth factor (VEGF) expression in amnion cells and that amniotic PGE2 concentration correlates positively with intramembranous (IM) absorption rate in fetal sheep. The effects of PGE2 at a range of concentrations on VEGF 164 and caveolin-1 gene expressions were analyzed in cultured ovine amnion cells. IM absorption rate, amniotic fluid (AF) volume, and PGE2 concentration in AF were determined in late-gestation fetal sheep during control conditions, isovolumic fetal urine replacement (low IM absorption rate), or intra-amniotic fluid infusion (high IM absorption rate). In ovine amnion cells, PGE2 induced dose- and time-dependent increases in VEGF 164 mRNA levels and reduced caveolin-1 mRNA and protein levels. VEGF receptor blockade abolished the caveolin-1 response, while minimally affecting the VEGF response to PGE2. In sheep fetuses, urine replacement reduced amniotic PGE2 concentration by 58%, decreased IM absorption rate by half, and doubled AF volume (P < 0.01). Intra-amniotic fluid infusion increased IM absorption rate and AF volume (P < 0.01), while amniotic PGE2 concentration was unchanged. Neither IM absorption rate nor AF volume correlated with amniotic PGE2 concentration under each experimental condition. Although PGE2 at micromolar concentrations induced dose-dependent responses in VEGF and caveolin-1 gene expression in cultured amnion cells consistent with a role of PGE2 in activating VEGF to mediate AF transport across the amnion, amniotic PGE2 at physiological nanomolar concentrations does not appear to regulate IM absorption rate or AF volume.

  13. Antenatal taurine supplementation increases taurine content in intrauterine growth restricted fetal rat brain tissue.

    PubMed

    Li, Fang; Teng, Hui-Yun; Liu, Jing; Wang, Hua-Wei; Zeng, Li; Zhao, Li-Fang

    2014-09-01

    This study aimed to determine the influence of antenatal taurine supplementation on taurine content in the brains of fetal rats with intrauterine growth restriction (IUGR). Experiments were performed at the Central Laboratory of Bayi Children's Hospital Affiliated to Beijing Military General Hospital in China from January to June 2013. Fifteen pregnant rats were randomly divided into three groups: normal controls, an IUGR group and an IUGR + antenatal taurine supplement group (Taurine group) (n = 5). The IUGR model was induced using a low-protein diet throughout gestation. Rats in the taurine group were fed a diet supplemented with 300 mg/kg/day taurine for 12 days after conception until natural delivery. Two fetal rats were randomly selected in every litter, and taurine levels in the brains of rats were detected using high-performance liquid chromatography-mass spectrometry. Results showed that (1) the mean body weight of the fetal rats in the normal control, IUGR and IUGR + antenatal taurine supplement groups was 6.619 ± 0.4132, 4.509 ± 0.454, and 5.176 ± 0.436 g (F = 429.818, P < 0.01), respectively, and (2) that taurine levels in the brains of the fetal rats in the normal control, IUGR and taurine groups were (2.399 ± 0.134) × 10(5), (1.881 ± 0.166) × 10(5) and (2.170 ± 0.191) × 10(5) μg/g (F = 24.828, P < 0.01), respectively. Overall, our results indicated that taurine levels in IUGR fetal rat brains were lower than in the control animals, and that antenatal taurine supplementation could significantly increase taurine levels in the brains of fetal rats with IUGR.

  14. Increased hepatic glucose production in fetal sheep with intrauterine growth restriction is not suppressed by insulin.

    PubMed

    Thorn, Stephanie R; Brown, Laura D; Rozance, Paul J; Hay, William W; Friedman, Jacob E

    2013-01-01

    Intrauterine growth restriction (IUGR) increases the risk for metabolic disease and diabetes, although the developmental origins of this remain unclear. We measured glucose metabolism during basal and insulin clamp periods in a fetal sheep model of placental insufficiency and IUGR. Compared with control fetuses (CON), fetuses with IUGR had increased basal glucose production rates and hepatic PEPCK and glucose-6-phosphatase expression, which were not suppressed by insulin. In contrast, insulin significantly increased peripheral glucose utilization rates in CON and IUGR fetuses. Insulin robustly activated AKT, GSK3β, and forkhead box class O (FOXO)1 in CON and IUGR fetal livers. IUGR livers, however, had increased basal FOXO1 phosphorylation, nuclear FOXO1 expression, and Jun NH(2)-terminal kinase activation during hyperinsulinemia. Expression of peroxisome proliferator-activated receptor γ coactivator 1α and hepatocyte nuclear factor-4α were increased in IUGR livers during basal and insulin periods. Cortisol and norepinephrine concentrations were positively correlated with glucose production rates. Isolated IUGR hepatocytes maintained increased glucose production in culture. In summary, fetal sheep with IUGR have increased hepatic glucose production, which is not suppressed by insulin despite insulin sensitivity for peripheral glucose utilization. These data are consistent with a novel mechanism involving persistent transcriptional activation in the liver that seems to be unique in the fetus with IUGR.

  15. Fetal growth and birth size is associated with maternal anthropometry and body composition.

    PubMed

    Thame, Minerva; Osmond, Clive; Trotman, Helen

    2015-10-01

    The objective was to investigate the association of maternal weight, height and body composition with fetal growth. We recruited 425 women at the University Hospital of the West Indies, Jamaica, who had singleton pregnancies, were less than 15 weeks gestation and had no systemic illness. Maternal weight, height and skinfold thicknesses were measured at the first antenatal visit and lean mass was calculated. Sonographic measurements of the fetus were made at 15, 25 and 35 weeks gestation. Weight, crown-heel length and head circumference were measured at birth. Analyses were confined to 360 (85%) women; 65 women did not complete the study. Maternal height was positively associated with femoral length at 25 and 35 weeks gestation and with head circumference at 35 weeks (all P < 0.02). Maternal weight was positively associated with abdominal circumference and femoral length at 25 weeks, and with larger head and abdominal circumference and longer femur at 35 weeks (all P < 0.02). Maternal lean mass had similar associations to maternal weight and they were both positively associated with estimated fetal weight (all P < 0.02). All three maternal measurements were positively associated with birthweight, length and head circumference. Maternal size was associated with fetal size as early as 25 weeks gestation, with height strongly associated with femoral length, and with weight and lean mass strongly associated with abdominal circumference.

  16. Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction.

    PubMed

    Liu, J; Liu, L; Chen, H

    2011-05-05

    Changes in brain ultrastructure of fetal rats with intrauterine growth restriction (IUGR) were explored and the effects of antenatal taurine supplementation on their brain ultrastructure were determined. Fifteen pregnant rats were randomly divided into three groups: control group, IUGR model group and IUGR group given antenatal taurine supplements. Taurine was added to the diet of the taurine group at a dose of 300 mg/kg/d from 12 days after conception until natural delivery. Transmission electron microscopy was used to observe ultrastructural changes in the brains of the newborn rats. At the same time, brain cellular apoptosis was detected using TUNEL, and the changes in protein expression of neuron specific enolase and glial fibrillary acidic protein were analyzed using immunohistochemistry. The results showed that: 1) The average body weight and cerebral weight were significantly lower in the IUGR group than in the control group (p<0.01) and both of them were less so after taurine was supplemented (p<0.01). 2) Transmission electron microscopy revealed that brain cortex structures were sparse IUGR rats, showing many scattered apoptotic cells, decreased numbers of synapses, lower glial cell proliferation, and fewer neurons, more sparsely arranged, while these factors were significantly improved with taurine supplementation. 3) The results of TUNEL showed that the counts of apoptotic brain cells in IUGR groups were significantly increased from those in control groups and that taurine could significantly decrease brain cell apoptosis (p<0.001). 4) The results of immunohistochemistry showed that antenatal taurine-supplementation could significantly increase the counts of neuron specific enolase and glial fibrillary acidic protein immunoreactive cells in fetal rats with IUGR (p<0.001). It can be concluded that it IUGR has a significant detrimental influence on the development of fetal rat brains, and antenatal supplement of taurine can significantly improve the IUGR

  17. Metabolomics Reveals Metabolic Alterations by Intrauterine Growth Restriction in the Fetal Rabbit Brain

    PubMed Central

    van Vliet, Erwin; Eixarch, Elisenda; Illa, Miriam; Arbat-Plana, Ariadna; González-Tendero, Anna; Hogberg, Helena T.; Zhao, Liang; Hartung, Thomas; Gratacos, Eduard

    2013-01-01

    Background Intrauterine Growth Restriction (IUGR) due to placental insufficiency occurs in 5–10% of pregnancies and is a major risk factor for abnormal neurodevelopment. The perinatal diagnosis of IUGR related abnormal neurodevelopment represents a major challenge in fetal medicine. The development of clinical biomarkers is considered a promising approach, but requires the identification of biochemical/molecular alterations by IUGR in the fetal brain. This targeted metabolomics study in a rabbit IUGR model aimed to obtain mechanistic insight into the effects of IUGR on the fetal brain and identify metabolite candidates for biomarker development. Methodology/Principal Findings At gestation day 25, IUGR was induced in two New Zealand rabbits by 40–50% uteroplacental vessel ligation in one horn and the contralateral horn was used as control. At day 30, fetuses were delivered by Cesarian section, weighed and brains collected for metabolomics analysis. Results showed that IUGR fetuses had a significantly lower birth and brain weight compared to controls. Metabolomics analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and database matching identified 78 metabolites. Comparison of metabolite intensities using a t-test demonstrated that 18 metabolites were significantly different between control and IUGR brain tissue, including neurotransmitters/peptides, amino acids, fatty acids, energy metabolism intermediates and oxidative stress metabolites. Principle component and hierarchical cluster analysis showed cluster formations that clearly separated control from IUGR brain tissue samples, revealing the potential to develop predictive biomarkers. Moreover birth weight and metabolite intensity correlations indicated that the extent of alterations was dependent on the severity of IUGR. Conclusions IUGR leads to metabolic alterations in the fetal rabbit brain, involving neuronal viability, energy metabolism, amino acid levels, fatty

  18. Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth.

    PubMed

    Meyer, Nicole; Woidacki, Katja; Knöfler, Martin; Meinhardt, Gudrun; Nowak, Désirée; Velicky, Philipp; Pollheimer, Jürgen; Zenclussen, Ana C

    2017-03-22

    Intrauterine growth restriction (IUGR) is caused by insufficient remodeling of spiral arteries (SAs). The mechanism underlying the relevance of natural killer cells (NKs) and mast cells (MCs) for SA remodeling and its effects on pregnancy outcome are not well understood. We show that NK depletion arrested SA remodeling without affecting pregnancy. MC depletion resulted in abnormally remodeled SAs and IUGR. Combined absence of NKs and MCs substantially affected SA remodeling and impaired fetal growth. We found that α-chymase mast cell protease (Mcpt) 5 mediates apoptosis of uterine smooth muscle cells, a key feature of SA remodeling. Additionally, we report a previously unknown source for Mcpt5: uterine (u) NKs. Mice with selective deletion of Mcpt5(+) cells had un-remodeled SAs and growth-restricted progeny. The human α-chymase CMA1, phylogenetic homolog of Mcpt5, stimulated the ex vivo migration of human trophoblasts, a pre-requisite for SA remodeling. Our results show that chymases secreted by uMCs and uNKs are pivotal to the vascular changes required to support pregnancy. Understanding the mechanisms underlying pregnancy-induced vascular changes is essential for developing therapeutic options against pregnancy complications associated with poor vascular remodeling.

  19. Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth

    PubMed Central

    Meyer, Nicole; Woidacki, Katja; Knöfler, Martin; Meinhardt, Gudrun; Nowak, Désirée; Velicky, Philipp; Pollheimer, Jürgen; Zenclussen, Ana C.

    2017-01-01

    Intrauterine growth restriction (IUGR) is caused by insufficient remodeling of spiral arteries (SAs). The mechanism underlying the relevance of natural killer cells (NKs) and mast cells (MCs) for SA remodeling and its effects on pregnancy outcome are not well understood. We show that NK depletion arrested SA remodeling without affecting pregnancy. MC depletion resulted in abnormally remodeled SAs and IUGR. Combined absence of NKs and MCs substantially affected SA remodeling and impaired fetal growth. We found that α-chymase mast cell protease (Mcpt) 5 mediates apoptosis of uterine smooth muscle cells, a key feature of SA remodeling. Additionally, we report a previously unknown source for Mcpt5: uterine (u) NKs. Mice with selective deletion of Mcpt5+ cells had un-remodeled SAs and growth-restricted progeny. The human α-chymase CMA1, phylogenetic homolog of Mcpt5, stimulated the ex vivo migration of human trophoblasts, a pre-requisite for SA remodeling. Our results show that chymases secreted by uMCs and uNKs are pivotal to the vascular changes required to support pregnancy. Understanding the mechanisms underlying pregnancy-induced vascular changes is essential for developing therapeutic options against pregnancy complications associated with poor vascular remodeling. PMID:28327604

  20. Protein restriction during pregnancy affects maternal liver lipid metabolism and fetal brain lipid composition in the rat.

    PubMed

    Torres, Nimbe; Bautista, Claudia J; Tovar, Armando R; Ordáz, Guillermo; Rodríguez-Cruz, Maricela; Ortiz, Victor; Granados, Omar; Nathanielsz, Peter W; Larrea, Fernando; Zambrano, Elena

    2010-02-01

    Suboptimal developmental environments program offspring to lifelong metabolic problems. The aim of this study was to determine the impact of protein restriction in pregnancy on maternal liver lipid metabolism at 19 days of gestation (dG) and its effect on fetal brain development. Control (C) and restricted (R) mothers were fed with isocaloric diets containing 20 and 10% of casein. At 19 dG, maternal blood and livers and fetal livers and brains were collected. Serum insulin and leptin levels were determinate in mothers. Maternal and fetal liver lipid and fetal brain lipid quantification were performed. Maternal liver and fetal brain fatty acids were quantified by gas chromatography. In mothers, liver desaturase and elongase mRNAs were measured by RT-PCR. Maternal body and liver weights were similar in both groups. However, fat body composition, including liver lipids, was lower in R mothers. A higher fasting insulin at 19 dG in the R group was observed (C = 0.2 +/- 0.04 vs. R = 0.9 +/- 0.16 ng/ml, P < 0.01) and was inversely related to early growth retardation. Serum leptin in R mothers was significantly higher than that observed in C rats (C = 5 +/- 0.1 vs. R = 7 +/- 0.7 ng/ml, P < 0.05). In addition, protein restriction significantly reduced gene expression in maternal liver of desaturases and elongases and the concentration of arachidonic (AA) and docosahexanoic (DHA) acids. In fetus from R mothers, a low body weight (C = 3 +/- 0.3 vs. R = 2 +/- 0.1 g, P < 0.05), as well as liver and brain lipids, including the content of DHA in the brain, was reduced. This study showed that protein restriction during pregnancy may negatively impact normal fetal brain development by changes in maternal lipid metabolism.

  1. Maternal protein restriction and fetal growth: lack of evidence of a role for homocysteine in fetal programming.

    PubMed

    Langley-Evans, Simon C; Lilley, Christina; McMullen, Sarah

    2006-09-01

    The disease-programming effects of a maternal low-protein (MLP) diet in rat pregnancy have been suggested to be attributable of hyperhomocysteinaemia. The aim of the present study was to determine whether MLP feeding impacted upon maternal and day 20 fetal homocysteine concentrations, with ensuing effects upon oxidant/antioxidant status. Sixty-four pregnant rats were fed either MLP diet or control diet before termination of pregnancy at days 4, 10, 18 or 20 gestation (full-term gestation 22 d). Maternal plasma homocysteine concentrations were similar in control and MLP-fed dams at all points in gestation. Fetal plasma homocysteine was similarly unaffected by MLP feeding at day 20 gestation. Activities of superoxide dismutase and glutathione peroxidase were similar in livers of mothers and fetuses in the two groups. Whilst catalase activity was not influenced by diet in maternal liver, MLP exposure increased catalase activity in fetal liver at day 20. Oxidative injury (protein carbonyl concentration) was lower in the livers of MLP-fed animals at day 18 gestation (P<0.05), but significantly greater at day 20. Hepatic expression of methionine synthase was similar in control and MLP-fed dams at all stages of gestation. Expression of DNA methyltransferase 1 in fetal liver was altered by maternal diet in a sex- and gestational age-specific manner. In conclusion, MLP feeding does not impact upon maternal or fetal homocysteine concentrations prior to day 20 gestation in the rat. There was no evidence of increased oxidative injury in fetal tissue that might explain the long-term programming effects of the diet.

  2. Relationship between nutritionally-mediated placental growth restriction and fetal growth, body composition and endocrine status during late gestation in adolescent sheep.

    PubMed

    Wallace, J M; Bourke, D A; Aitken, R P; Palmer, R M; Da Silva, P; Cruickshank, M A

    2000-01-01

    The aim was to investigate the consequences of nutritionally-mediated placental growth restriction on fetal organ growth, conformation, body composition and endocrine status during late gestation. Embryos recovered from superovulated adult ewes inseminated by a single sire were transferred in singleton to the uterus of peripubertal adolescent recipients. Post-transfer, adolescent dams were offered a high (H) or moderate (M) level of a complete diet to promote rapid or moderate maternal growth rates, respectively (n=7 per group). After day 100 of gestation the feed intake of the M dams was adjusted weekly to maintain body condition score. Liveweight gain during the first 100 days of gestation was 301+/-24 and 90+/-4.6 g/day for the H and M groups, respectively. Maternal plasma concentrations of insulin, IGF-I and urea were significantly higher and non-esterified fatty acid concentrations significantly lower in H compared with M dams prior to slaughter on day 128 of gestation. At this stage of gestation, total placentome weight was 50 per cent lower in H compared with M groups (P< 0.001) and was associated with a 37 per cent reduction in fetal weight (P< 0.01). All variables of fetal conformation and absolute fetal organ weights, with the exception of the adrenal glands, were lower (P< 0. 05) in the fetuses from H intake dams. However, relative fetal organ weights expressed as g/kg fetal body weight, with the exception of the gut, were not influenced by maternal dietary intake. Furthermore, fetal weight but not maternal nutritional group were predictive of individual organ weight for all organs dissected. Together these results imply that growth restriction in the fetuses derived from H intake dams was largely symmetrical. Fetal plasma concentrations of insulin, IGF-I and glucose were attenuated (P< 0.05) in fetuses from H compared with M groups. The lower fetal body weight in the former group was associated with a reduction in absolute but not relative crude protein

  3. Effects of perfluorooctane sulfuric acid on placental PRL-family hormone production and fetal growth retardation in mice.

    PubMed

    Lee, Chae Kwan; Kang, Sung Goo; Lee, Jong Tae; Lee, Soo-Woong; Kim, Jeong Ho; Kim, Dae Hwan; Son, Byung Chul; Kim, Kun Hyung; Suh, Chun Hui; Kim, Se Yeong; Park, Yeong Beom

    2015-02-05

    Perfluorooctane sulfuric acid (PFOS) is a persistent organic pollutant, causes fetal growth retardation but the mechanism is still unclear. This study focused on PFOS-induced toxicity such as placental trophoblast cell histopathological changes, endocrine function (i.e., prolactin (PRL)-family hormone production) and subsequent fetal growth retardation in mice. Maternal body weight gain, placental and fetal weights were significantly decreased in proportion to PFOS dosage. Placental efficiency (fetal weight/placental weight) was significantly reduced dose-dependently. Necrotic changes were observed in PFOS-treated placental tissues, and the area of injury increased dose-dependently. Finally, mRNA levels and maternal serum concentrations of the PRL-family hormones (mPL-II, mPLP-Cα, mPLP-K) were significantly reduced dose-dependently. In addition, the changing pattern between PRL-family hormone concentrations and fetal body weight was positively correlated. These results suggest that gestational PFOS treatment induces placental histopathological changes and disruption of endocrine function, finally may lead to fetal growth retardation in mice.

  4. Retarded fetal growth patterns and early neonatal mortality in a Mexico City population.

    PubMed

    Balcazar, H; Haas, J D

    1991-01-01

    The study reported here classified 9,660 newborn infants delivered at a maternal and child health center in Mexico City by length of gestation, presence or absence of growth retardation, and (in the case of growth-retarded infants) proportionate or disproportionate growth retardation in terms of the infants' weight and length. It was found that preterm infants (delivered before 38 weeks of gestation) had nine times the early neonatal mortality of term infants, irrespective of growth retardation patterns. Also, the type of fetal growth retardation involved (proportionate or disproportionate) in those cases where such retardation was present was found to have an impact on early neonatal mortality. That is, preterm and term infants classified as having proportionate growth retardation respectively exhibited 1.5 and 9.5 times the early neonatal mortality of preterm and term infants with disproportionate growth retardation. Among other things, these findings suggest a need for assessing types of growth retardation as well as etiologic factors when evaluating mortality risk in newborns.

  5. Aquaporins in Fetal Development.

    PubMed

    Martínez, Nora; Damiano, Alicia E

    2017-01-01

    Water homeostasis during fetal development is of crucial physiologic importance. The successful formation and development of the placenta is critical to maintain normal fetal growth and homeostasis. The expression of several aquaporins (AQPs ) was found from blastocyst stages to term placenta and fetal membranes. Therefore, AQPs are proposed to play important roles in normal pregnancy, fetal growth, and homeostasis of amniotic fluid volume, and water handling in other organs. However, the functional importance of AQPs in fetal development remains to be elucidated.

  6. Is There Hope for Renal Growth on Imaging Studies Following Ureteral Reimplant for Boys With Fetal Hydronephrosis and Urinary Reflux?

    PubMed Central

    Wang, Ming-Hsien

    2015-01-01

    Reflux nephropathy is thought to be the etiology for renal maldevelopment. We present two boys with fetal hydronephrosis and sterile vesicoureteral reflux (VUR). There was lack of renal growth of the refluxing renal units on surveillance renal ultrasound. Parents elected to undergo open ureteral reimplants. Post-surgical ultrasounds demonstrated improved renal growth. PMID:26793522

  7. Maternal oxygen delivery is not related to altitude- and ancestry-associated differences in human fetal growth

    PubMed Central

    Zamudio, Stacy; Postigo, Lucrecia; Illsley, Nicholas P; Rodriguez, Carmelo; Heredia, Gladys; Brimacombe, Michael; Echalar, Lourdes; Torricos, Tatiana; Tellez, Wilma; Maldonado, Ivan; Balanza, Elfride; Alvarez, Tatiana; Ameller, Julio; Vargas, Enrique

    2007-01-01

    Fetal growth is reduced at high altitude, but the decrease is less among long-resident populations. We hypothesized that greater maternal uteroplacental O2 delivery would explain increased fetal growth in Andean natives versus European migrants to high altitude. O2 delivery was measured with ultrasound, Doppler and haematological techniques. Participants (n= 180) were pregnant women of self-professed European or Andean ancestry living at 3600 m or 400 m in Bolivia. Ancestry was quantified using ancestry-informative single nucleotide polymorphims. The altitude-associated decrement in birth weight was 418 g in European versus 236 g in Andean women (P < 0.005). Altitude was associated with decreased uterine artery diameter, volumetric blood flow and O2 delivery regardless of ancestry. But the hypothesis was rejected as O2 delivery was similar between ancestry groups at their respective altitudes of residence. Instead, Andean neonates were larger and heavier per unit of O2 delivery, regardless of altitude (P < 0.001). European admixture among Andeans was negatively correlated with birth weight at both altitudes (P < 0.01), but admixture was not related to any of the O2 transport variables. Genetically mediated differences in maternal O2 delivery are thus unlikely to explain the Andean advantage in fetal growth. Of the other independent variables, only placental weight and gestational age explained significant variation in birth weight. Thus greater placental efficiency in O2 and nutrient transport, and/or greater fetal efficiency in substrate utilization may contribute to ancestry- and altitude-related differences in fetal growth. Uterine artery O2 delivery in these pregnancies was 99 ± 3 ml min−1, ∼5-fold greater than near-term fetal O2 consumption. Deficits in maternal O2 transport in third trimester normal pregnancy are unlikely to be causally associated with variation in fetal growth. PMID:17510190

  8. Fetal growth restriction and cardiovascular outcome in early human infancy: a prospective longitudinal study.

    PubMed

    Mäkikallio, Kaarin; Shah, Jyotsna; Slorach, Cameron; Qin, Hong; Kingdom, John; Keating, Sarah; Kelly, Ed; Manlhiot, Cedric; Redington, Andrew; Jaeggi, Edgar

    2016-09-01

    The association between low birth weight and premature cardiovascular disease has led to the "prenatal origin of adult disease-hypothesis". We postulated that fetal growth restriction is associated with cardiovascular changes detectable at birth and in early infancy. Fifty-two appropriately grown fetuses (AGA) and 60 growth-restricted fetuses (FGR) with (n = 20) or without (n = 40) absent or reversed end-diastolic umbilical artery blood flow were prospectively examined by echocardiography before birth, at 1 week and 6 months of life. The impact of growth restriction on postnatal blood pressure, heart rate, cardiovascular dimensions, and function, as well as on vascular morphology of umbilical cord vessels was studied. FGR fetuses displayed significant blood flow redistribution and were delivered earlier with lower birth weights than AGA fetuses. After adjustment for gender, gestational age, and weight at birth, there were no intergroup differences in blood pressure, heart rate, left ventricular morphology, mass, and performance, and in cord vessel morphology. During the first 6 months of life brachioradial pulse wave velocity increased more in FGR fetuses, while other parameters describing vascular stiffness remained comparable between the groups. Fetal growth restriction had no detectable adverse impact on cardiovascular dimensions and function at birth. Cardiovascular findings also remained comparable during the first 6 months of life between the groups except a higher increase in brachioradial pulse wave velocity in the FGR group. Our observations suggest that abnormalities that link reduced intrauterine growth with premature cardiovascular diseases may commence later in childhood, indicating a potential window for screening and prevention.

  9. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis

    PubMed Central

    Grosse, Ann S.; Pressprich, Mark F.; Curley, Lauren B.; Hamilton, Kara L.; Margolis, Ben; Hildebrand, Jeffrey D.; Gumucio, Deborah L.

    2011-01-01

    The cellular mechanisms that drive growth and remodeling of the early intestinal epithelium are poorly understood. Current dogma suggests that the murine fetal intestinal epithelium is stratified, that villi are formed by an epithelial remodeling process involving the de novo formation of apical surface at secondary lumina, and that radial intercalation of the stratified cells constitutes a major intestinal lengthening mechanism. Here, we investigate cell polarity, cell cycle dynamics and cell shape in the fetal murine intestine between E12.5 and E14.5. We show that, contrary to previous assumptions, this epithelium is pseudostratified. Furthermore, epithelial nuclei exhibit interkinetic nuclear migration, a process wherein nuclei move in concert with the cell cycle, from the basal side (where DNA is synthesized) to the apical surface (where mitosis takes place); such nuclear movements were previously misinterpreted as the radial intercalation of cells. We further demonstrate that growth of epithelial girth between E12.5 and E14.5 is driven by microtubule- and actinomyosin-dependent apicobasal elongation, rather than by progressive epithelial stratification as was previously thought. Finally, we show that the actin-binding protein Shroom3 is crucial for the maintenance of the single-layered pseudostratified epithelium. In mice lacking Shroom3, the epithelium is disorganized and temporarily stratified during villus emergence. These results favor an alternative model of intestinal morphogenesis in which the epithelium remains single layered and apicobasally polarized throughout early intestinal development. PMID:21880782

  10. Prenatal acetaminophen affects maternal immune and endocrine adaptation to pregnancy, induces placental damage, and impairs fetal development in mice.

    PubMed

    Thiele, Kristin; Solano, M Emilia; Huber, Samuel; Flavell, Richard A; Kessler, Timo; Barikbin, Roja; Jung, Roman; Karimi, Khalil; Tiegs, Gisa; Arck, Petra C

    2015-10-01

    Acetaminophen (APAP; ie, Paracetamol or Tylenol) is generally self-medicated to treat fever or pain and recommended to pregnant women by their physicians. Recent epidemiological studies reveal an association between prenatal APAP use and an increased risk for asthma. Our aim was to identify the effects of APAP in pregnancy using a mouse model. Allogeneically mated C57Bl/6J females were injected i.p. with 50 or 250 mg/kg APAP or phosphate-buffered saline on gestation day 12.5; nonpregnant females served as controls. Tissue samples were obtained 1 or 4 days after injection. APAP-induced liver toxicity was mirrored by significantly increased plasma alanine aminotransferase levels. In uterus-draining lymph nodes of pregnant dams, the frequencies of mature dendritic cells and regulatory T cells significantly increased on 250 mg/kg APAP. Plasma progesterone levels significantly decreased in dams injected with APAP, accompanied by a morphologically altered placenta. Although overall litter sizes and number of fetal loss remained unaltered, a reduced fetal weight and a lower frequency of hematopoietic stem cells in the fetal liver were observed on APAP treatment. Our data provide strong evidence that prenatal APAP interferes with maternal immune and endocrine adaptation to pregnancy, affects placental function, and impairs fetal maturation and immune development. The latter may have long-lasting consequences on children's immunity and account for the increased risk for asthma observed in humans.

  11. Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis.

    PubMed

    Mohan, Vishwa; Sinha, Rohit A; Pathak, Amrita; Rastogi, Leena; Kumar, Praveen; Pal, Amit; Godbole, Madan M

    2012-10-01

    Neuronal progenitor cell proliferation and their optimum number are indispensable for neurogenesis, which is determined by cell cycle length and cell cycle quitting rate of the dividing progenitors. These processes are tightly orchestrated by transcription factors like Tbr2, Pax6, and E2f-1. Radial glia and intermediate progenitor cells (IPC) through direct and indirect neurogenesis maintain surface area and neocortical thickness during development. Here we show that fetal neurogenesis is maternal thyroid hormone (MTH) dependent with differential effect on direct and indirect neurogenesis. MTH deficiency (MTHD) impairs direct neurogenesis through initial down-regulation of Pax6 and diminished progenitor pool with recovery even before the onset of fetal thyroid function (FTF). However, persistent decrease in Tbr2 positive IPCs, diminished NeuN positivity in layers I-III of neocortex, and reduced cortical thickness indicate a non-compensatory impairment in indirect neurogenesis. TH deficiency causes disrupted cell cycle kinetics and deranged neurogenesis. It specifically affects indirect neurogenesis governed by intermediate progenitor cells (IPCs). TH replacement in hypothyroid dams partially restored the rate of neurogenesis in the fetal neocortex. Taken together we describe a novel role of maternal TH in promoting IPCs derived neuronal differentiation in developing neo-cortex. We have also shown for the first time that ventricular zone progenitors are TH responsive as they express its receptor, TR alpha-1, transporters (MCT8) and deiodinases. This study highlights the importance of maternal thyroid hormone (TH) even before the start of the fetal thyroid function.

  12. A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth.

    PubMed

    Gholipour, Ali; Rollins, Caitlin K; Velasco-Annis, Clemente; Ouaalam, Abdelhakim; Akhondi-Asl, Alireza; Afacan, Onur; Ortinau, Cynthia M; Clancy, Sean; Limperopoulos, Catherine; Yang, Edward; Estroff, Judy A; Warfield, Simon K

    2017-03-28

    Longitudinal characterization of early brain growth in-utero has been limited by a number of challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an improved digital brain atlas of the spatiotemporal maturation of the fetal brain extending over the key developmental periods. We have developed an algorithm for construction of an unbiased four-dimensional atlas of the developing fetal brain by integrating symmetric diffeomorphic deformable registration in space with kernel regression in age. We applied this new algorithm to construct a spatiotemporal atlas from MRI of 81 normal fetuses scanned between 19 and 39 weeks of gestation and labeled the structures of the developing brain. We evaluated the use of this atlas and additional individual fetal brain MRI atlases for completely automatic multi-atlas segmentation of fetal brain MRI. The atlas is available online as a reference for anatomy and for registration and segmentation, to aid in connectivity analysis, and for groupwise and longitudinal analysis of early brain growth.

  13. Transamniotic fetal feeding. II. A model of intrauterine growth retardation using the relationship of "natural runting" to uterine position.

    PubMed

    Flake, A W; Villa, R L; Adzick, N S; Harrison, M R

    1987-09-01

    Intrauterine growth retardation (IUGR) is a leading cause of perinatal morbidity and mortality. Most IUGR is the result of inadequate transfer of nutrients from mother to fetus. Transamniotic fetal feeding (TAFF) has been proposed as a method of treating IUGR in which nutrients, infused into the amniotic fluid, would be swallowed, absorbed, and utilized by the growth retarded fetus. To study this hypothesis, we have developed a rabbit model for IUGR and TAFF. We studied the effects of maternal nutritional deprivation, uterine artery ligation, and fetal position in the uterine horn on fetal body and organ growth in 96 rabbit litters. Nutritional deprivation (n = 28) and vascular interruption (n = 34) yielded inconsistent results with high fetal mortality. We were surprised to find that fetal growth was directly and consistently related to position in the uterine horn. There is a highly significant difference (P less than .0001) in weight between siblings in the no. 1 and no. 3 positions in the rabbit uterine horn at 30 days gestation that is not present at 23 days. This "natural" runting resembles human IUGR, which occurs during the last trimester of pregnancy and shows relative brain sparing. This model, in combination with our previously reported technique for TAFF, will make possible a controlled study of the efficacy of TAFF in the treatment of IUGR.

  14. Parenteral Administration of l-Arginine Prevents Fetal Growth Restriction in Undernourished Ewes12

    PubMed Central

    Lassala, Arantzatzu; Bazer, Fuller W.; Cudd, Timothy A.; Datta, Sujay; Keisler, Duane H.; Satterfield, M. Carey; Spencer, Thomas E.; Wu, Guoyao

    2010-01-01

    Intrauterine growth restriction (IUGR) is a major health problem worldwide that currently lacks an effective therapeutic solution. This study was conducted with an ovine IUGR model to test the hypothesis that parenteral administration of l-arginine (Arg) is effective in enhancing fetal growth. Beginning on d 28 of gestation, ewes were fed a diet providing 100% (control-fed) or 50% (underfed) of NRC-recommended nutrient requirements. Between d 60 of gestation and parturition, underfed ewes received i.v. infusions of saline or 155 μmol Arg-HCl/kg body weight 3 times daily, whereas control-fed ewes received only saline. The birth weights of lambs from saline-infused underfed ewes were 23% lower (P < 0.01) than those of lambs from control-fed dams. Administration of Arg to underfed ewes increased (P < 0.01) concentrations of Arg (69%), ornithine (55%), proline (29%), methionine (37%), leucine (36%), isoleucine (35%), cysteine (19%), and FFA (43%) in maternal serum, decreased maternal circulating levels of ammonia (18%) and triglycerides (32%), and enhanced birth weights of lambs by 21% compared with saline-infused underfed ewes. There was no difference in birth weights of lambs between the control-fed and the Arg-infused underfed ewes. These novel results indicate that parenteral administration of Arg to underfed ewes prevented fetal growth restriction and provide support for its clinical use to ameliorate IUGR in humans. The findings also lay a new framework for studying cellular and molecular mechanisms responsible for the beneficial effects of Arg in regulating conceptus growth and development. PMID:20505020

  15. Impact of donor and recipient adiposity on placental and fetal growth in adolescent sheep.

    PubMed

    Wallace, Jacqueline M; Milne, John S; Adam, Clare L; Aitken, Raymond P

    2017-04-01

    The influence of maternal obesity during oocyte development and its putative interaction with nutrient reserves at conception on pregnancy outcome were examined in an adolescent sheep model. Donor ewes were nutritionally managed to achieve contrasting adiposity (control (CD)/obese (ObD)) for 6 weeks prior to superovulation and inseminated by a non-obese sire. Morulae from 6 CD and 7 ObD were transferred in singleton into adolescent recipients of identical age but differing adiposity, classified as relatively fat or thin respectively. Thereafter, all were overnourished to promote rapid growth/adiposity (2 × 2 design, 13/14 pregnancies/group). A fifth recipient group of intermediate adiposity received embryos from another 5 CD, was offered a moderate intake to maintain adiposity throughout gestation and acted as controls for normal pregnancy outcome (optimally treated control (OTC), 19 pregnancies). Donor obesity did not influence ovulation, fertilisation or recovery rates or impact embryo morphology. Gestation length and colostrum yield were unaffected by donor or recipient adiposity and were reduced relative to OTC. Total fetal cotyledon and lamb birth weights were independent of initial donor adiposity but reduced in relatively thin vs relatively fat recipients and lower than those in the OTC group. In spite of high placental efficiency, the incidence of fetal growth restriction was greatest in the thin recipients. Thus, maternal adiposity at conception, but not pre-conception maternal obesity, modestly influences the feto-placental growth trajectory, whereas comparison with the OTC indicates that high gestational intakes to promote rapid maternal growth remain the dominant negative influence on pregnancy outcome in young adolescents. These findings inform dietary advice for pregnant adolescent girls.

  16. Phenotypic and molecular characterization of intrauterine fetal growth restriction in interspecies sheep pregnancy.

    PubMed

    Chávez-García, A; Vázquez-Martínez, E R; Murcia, C; Rodríguez, A; Cerbón, M; Mejía, O

    2015-10-01

    Interspecies pregnancies between closely related species are usually performed in livestock to obtain improved and enriched offspring. Indeed, different hybrids have been obtained for research purposes since many years ago, and the maternal-fetal interactions have been studied as a possible strategy for species preservation. The aim of this study was to characterize by physiological and molecular approaches the interspecies pregnancy between bighorn sheep () and domestic sheep (). Hybrids were obtained by artificial insemination; the blood pressure and protein urine levels were measured during the last two-thirds of gestation. After parturition, offspring and placentas were weighed and measured and cotyledons were counted and weighed and their surface area determined. Plasma samples were obtained between wk 8 and 21 of gestation to assess progesterone (P4), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF) levels and cell-free RNA was isolated during the same period to assess hypoxia-inducible factor-1 α (α) gene expression. Hybrid and normal pregnancies were analyzed using physiological and molecular parameters during the last two-thirds of gestation (wk 8-21). The results show that during the measurement period, ewes with a hybrid pregnancy presented normal blood pressure and no alteration in urinary protein content. However, compared with sheep with a normal pregnancy, those with a hybrid pregnancy had a decrease in fetal and placental growth as well as in the cotyledonary surface area. Furthermore, in the hybrid group, there was placental insufficiency, characterized by a decrease in P4 production, as well as indications of endothelial dysfunction, characterized an increase in plasma levels of VEGF and PlGF as well as in plasma gene expression of α. Overall, the results indicate that hybrids of and presented intrauterine growth restriction, essentially due to altered endothelial function and chronic placental insufficiency

  17. Mild Gestational Hyperglycemia in Rat Induces Fetal Overgrowth and Modulates Placental Growth Factors and Nutrient Transporters Expression

    PubMed Central

    Cisse, Ouma; Fajardy, Isabelle; Dickes-Coopman, Anne; Moitrot, Emmanuelle; Montel, Valérie; Deloof, Sylvie; Rousseaux, Jean; Vieau, Didier; Laborie, Christine

    2013-01-01

    Mild gestational hyperglycemia is often associated with fetal overgrowth that can predispose the offspring to metabolic diseases later in life. We hypothesized that unfavorable intrauterine environment may compromise the development of placenta and contribute to fetal overgrowth. Therefore, we developed a rat model and investigated the effects of maternal dysglycemia on fetal growth and placental gene expression. Female rats were treated with single injection of nicotinamide plus streptozotocin (N-STZ) 1-week before mating and were studied at gestational day 21. N-STZ pregnant females displayed impaired glucose tolerance that is associated with a lower insulin secretion. Moderate hyperglycemia induced fetal overgrowth in 40% of newborns, from pregnancies with 10 to 14 pups. The incidence of macrosomia was less than 5% in the N-STZ pregnancies when the litter size exceeds 15 newborns. We found that placental mass and the labyrinthine layer were increased in macrosomic placentas. The expression of genes involved in placental development and nutrient transfer was down regulated in the N-STZ placentas of macrosomic and normosomic pups from pregnancies with 10 to 14 ones. However, we observed that lipoprotein lipase 1 (LPL1) gene expression was significantly increased in the N-STZ placentas of macrosomic pups. In pregnancies with 15 pups or more, the expression of IGFs and glucose transporter genes was also modulated in the control placentas with no additional effect in the N-STZ ones. These data suggest that placental gene expression is modulated by gestational conditions that might disrupt the fetal growth. We described here a new model of maternal glucose intolerance that results in fetal overgrowth. We proposed that over-expression of LPL1 in the placenta may contribute to the increased fetal growth in the N-STZ pregnancies. N-STZ model offers the opportunity to determinate whether these neonatal outcomes may contribute to developmental programming of metabolic

  18. Computer-assisted analysis of fetal movements in intrauterine growth retardation (IUGR).

    PubMed

    D'Elia, A; Pighetti, M; Moccia, G F; Di Meo, P

    1998-05-29

    A quantitative analysis of various fetal activities (mouth, eye and gross body movements) was made in 10 IUGR human fetuses. The aim of the study was to see whether IUGR fetuses move differently to normal fetuses. Each real-time ultrasound recording lasted 1 h and the analysis of various activities was carried out during replay of video recordings by means of a specially designed computer program. The following aspects have been investigated: (1) incidence, duration and interval for each of the fetal activities described; (2) the relationship between incidence, duration and interval for each single activity; (3) the correlations between the different activities. The results were compared with a group of 10 fetuses from normal pregnancies. On quantitative evaluation no clear effects due to uncomplicated IUGR could be detected except for median duration of eye movements, which turned out to be longer in the IUGR group. The evaluation of correlations between the characteristics (incidence, duration and interval) of each activity showed a positive correlation between incidence and duration of mouthing movements in the IUGR group, not found in the normal group. The study of the correlation between different fetal activities has shown an inverse correlation between mouthing and other activities in the normal fetuses, not found in the IUGR group. We conclude that in mildly affected fetuses with no evidence of hypoxia, there are no quantitative differences compared to normal fetuses in terms of the motility studied. The only differences found were in relation to the performance of such activities and they could reflect a dysfunction of the central nervous system resulting from a metabolic disturbance.

  19. Antenatal melatonin as an antioxidant in human pregnancies complicated by fetal growth restriction—a phase I pilot clinical trial: study protocol

    PubMed Central

    Alers, Nicole O; Jenkin, Graham; Miller, Suzanne L; Wallace, Euan M

    2013-01-01

    Background Fetal growth restriction complicates about 5% of pregnancies and is commonly caused by placental dysfunction. It is associated with increased risks of perinatal mortality and short-term and long-term morbidity, such as cerebral palsy. Chronic in utero hypoxaemia, inflammation and oxidative stress are likely culprits contributing to the long-term neurological sequelae of fetal growth restriction. In this regard, we propose that melatonin, a powerful antioxidant, might mitigate morbidity and/or mortality associated with fetal growth restriction. Melatonin has an excellent biosafety profile and crosses the placenta and blood–brain barrier. We present the protocol for a phase I clinical trial to investigate the efficacy of maternal oral melatonin administration in women with a pregnancy complicated by fetal growth restriction. Methods and analysis The proposed trial is a single-arm, open-label clinical trial involving 12 women. Severe, early onset fetal growth restriction will be diagnosed by an estimated fetal weight ≤10th centile in combination with abnormal fetoplacental Doppler studies, occurring before 34 weeks of pregnancy. Baseline measurements of maternal and fetal well-being, levels of oxidative stress and ultrasound and Doppler measurements will be obtained at the time of diagnosis of fetal growth restriction. Women will then start melatonin treatment (4 mg) twice daily until birth. The primary outcomes are the levels of oxidative stress in the maternal and fetal circulation and placenta. Secondary outcomes are fetoplacental Doppler studies (uterine artery, umbilical artery middle cerebral artery and ductus venosus), fetal biometry, fetal biophysical profile and a composite determination of neonatal outcome. A historical cohort of gestational-matched fetal growth restriction and a healthy pregnancy cohort will be used as comparators. Ethics and dissemination Ethical approval has been obtained from Monash Health Human Research Ethics

  20. Ultrasonographic fetal growth charts: an informatic approach by quantitative analysis of the impact of ethnicity on diagnoses based on a preliminary report on Salentinian population.

    PubMed

    Tinelli, Andrea; Bochicchio, Mario Alessandro; Vaira, Lucia; Malvasi, Antonio

    2014-01-01

    Clear guidance on fetal growth assessment is important because of the strong links between growth restriction or macrosomia and adverse perinatal outcome in order to reduce associated morbidity and mortality. Fetal growth curves are extensively adopted to track fetal sizes from the early phases of pregnancy up to delivery. In the literature, a large variety of reference charts are reported but they are mostly up to five decades old. Furthermore, they do not address several variables and factors (e.g., ethnicity, foods, lifestyle, smoke, and physiological and pathological variables), which are very important for a correct evaluation of the fetal well-being. Therefore, currently adopted fetal growth charts are inadequate to support the melting pot of ethnic groups and lifestyles of our society. Customized fetal growth charts are needed to provide an accurate fetal assessment and to avoid unnecessary obstetric interventions at the time of delivery. Starting from the development of a growth chart purposely built for a specific population, in the paper, authors quantify and analyse the impact of the adoption of wrong growth charts on fetal diagnoses. These results come from a preliminary evaluation of a new open service developed to produce personalized growth charts for specific ethnicity, lifestyle, and other parameters.

  1. Fetal and neonatal levels of omega-3: effects on neurodevelopment, nutrition, and growth.

    PubMed

    Rombaldi Bernardi, Juliana; de Souza Escobar, Renata; Ferreira, Charles Francisco; Pelufo Silveira, Patrícia

    2012-01-01

    Nutrition in pregnancy, during lactation, childhood, and later stages has a fundamental influence on overall development. There is a growing research interest on the role of key dietary nutrients in fetal health. Omega-3 polyunsaturated fatty acids (n-3 LCPUFAs) play an important role in brain development and function. Evidence from animal models of dietary n-3 LCPUFAs deficiency suggests that these fatty acids promote early brain development and regulate behavioral and neurochemical aspects related to mood disorders (stress responses, depression, and aggression and growth, memory, and cognitive functions). Preclinical and clinical studies suggest the role of n-3 LCPUFAs on neurodevelopment and growth. n-3 LCPUFAs may be an effective adjunctive factor for neural development, growth, and cognitive development, but further large-scale, well-controlled trials and preclinical studies are needed to examine its clinical mechanisms and possible benefits. The present paper discusses the use of n-3 LCPUFAs during different developmental stages and the investigation of different sources of consumption. The paper summarizes the role of n-3 LCPUFAs levels during critical periods and their effects on the children's neurodevelopment, nutrition, and growth.

  2. Identifying Maternal Constraints on Fetal Growth and Subsequent Perinatal Outcomes Using a Multiple Embryo Implantation Model

    PubMed Central

    Cozzubbo, Tyler; Cheung, Stephanie; Rosenwaks, Zev; Neri, Queenie V.

    2016-01-01

    spontaneously reduced. Failure of the implanted embryo to progress was not related to maternal age. Singleton newborns resulting from multiple implantation sites had lower birth weights (P<0.01) and shorter gestational ages (P<0.01) than those from a single implanted embryo. The number of embryos transferred did not affect the gestational length of singleton newborns. Although the birth weights of singletons from multiple implantation sites (virtual singletons) were lower than true singletons, the birth weight of virtual singletons were comparable to the birth weights of true twin, triplet, and quadruplet live births. Multiple logistic regression revealed that virtual singletons were an independent risk factor for PTB (odds ratio: 4.55, 95% CI 2.23–9.29) and LBW (odds ratio: 3.61, 95% CI 1.78–7.32), even after controlling for the number of oocytes, stimulation protocol type, sperm source, total gonadotropins administered, age, embryo quality, and day of embryo transfer. Conclusions Our study highlights that embryonic implantation sites during early gestation set the growth profile of each embryo, dictating later growth patterns. Specifically, spontaneous reduction of an embryo after multiple embryo implantations can confer greater perinatal risk in the form of LBW and PTB to the surviving fetus. Our findings suggest that maternal constraints or physiologic adaptations maybe one of the mechanisms mediating adverse perinatal outcomes when multiple embryo implantation occurs. PMID:27824942

  3. Effects of maternal obesity on fetal growth and body composition: implications for programming and future health.

    PubMed

    Freeman, Dilys J

    2010-04-01

    Since the hypothesis linking low birth weight and poor fetal growth with future risk of cardiovascular disease was first proposed, there has been much interest in the early origins of disease. As rates of obesity increase and as maternal obesity has become common, interest has been directed towards the early origins of obesity. It is likely that a complex interaction of inherited gene effects and in-utero environment may interact in the developing fetus to programme pathways leading to future obesity. It is clear that maternal metabolism is disturbed in pregnancy in obese women, and that offspring of obese mothers have a higher percentage of body fat and are insulin resistant. This review discusses the ideas contributing to the current working concept of obesity programming, and discusses several potential mechanisms that may underlie obesity programming and susceptibility to future metabolic and vascular disease.

  4. Region-Specific Growth Effects in the Developing Rat Prostate Following Fetal Exposure to Estrogenic Ultraviolet Filters

    PubMed Central

    Hofkamp, Luke; Bradley, Sarahann; Tresguerres, Jesus; Lichtensteiger, Walter; Schlumpf, Margret; Timms, Barry

    2008-01-01

    Background and objectives Exposure to environmental endocrine disruptors is a potential risk factor for humans. Many of these chemicals have been shown to exhibit disruption of normal cellular and developmental processes in animal models. Ultraviolet (UV) filters used as sunscreens in cosmetics have previously been shown to exhibit estrogenic activity in in vitro and in vivo assays. We examined the effects of two UV filters, 4-methylbenzylidene camphor (4-MBC) and 3-benzylidene camphor (3-BC), in the developing prostate of the fetal rat. Methods Pregnant Long Evans rats were fed diets containing doses of 4-MBC and 3-BC that resulted in average daily intakes of these chemicals corresponding to the lowest observed adverse effects level (LOAEL) and the no observed adverse effects level (NOAEL) doses in prior developmental toxicity studies. Using digital photographs of serial sections from postnatal day 1 animals, we identified, contoured, and aligned the epithelial ducts from specific regions of the developing prostate, plus the accessory sex glands and calculated the total volume for each region from three-dimensional, surface-rendered models. Results Fetal exposure to 4-MBC (7.0 mg/kg body weight/day) resulted in a significant increase (p < 0.05) in tissue volume in the prostate and accessory sex glands. Treated males exhibited a 62% increase in the number of ducts in the caudal dorsal prostate. Increased distal branching morphogenesis appears to be a consequence of exposure in the ventral region, resulting in a 106% increase in ductal volume. Conclusions 4-MBC exposure during development of the male reproductive accessory sex glands exhibited classical growth effects associated with estrogenic endocrine disruptors. The different regional responses suggest that the two developmental processes of ductal outgrowth and branching morphogenesis are affected independently by exposure to the environmental chemicals. PMID:18629307

  5. Effortful Control Mediates Associations of Fetal Growth with Hyperactivity and Behavioural Problems in 7- to 9-Year-Old Children

    ERIC Educational Resources Information Center

    Schlotz, Wolff; Jones, Alexander; Godfrey, Keith M.; Phillips, David I. W.

    2008-01-01

    Background: Inverse associations of fetal growth with behavioural problems in childhood have been repeatedly reported, suggesting long-term effects of the prenatal developmental environment on behaviour later in life. However, no study so far has examined effects on temperament and potential developmental pathways. Temperamental traits may be…

  6. Relationships among acylation-stimulating protein, insulin resistance, lipometabolism, and fetal growth in gestational diabetes mellitus women.

    PubMed

    Xu, M; Liu, B; Wu, M-F; Chen, H-T; Cianflone, K; Wang, Z-L

    2015-05-01

    The aim of this study was to investigate the potential relationship between acylation-stimulating protein (ASP), insulin resistance, lipometabolism, the intrauterine metabolic environment and fetal growth in well-controlled gestational diabetes mellitus (GDM) women. A total of 55 well-controlled GDM women, 66 pregnant women with normal glucose tolerance (NGT) and their newborns, were included in this study. Fasting maternal and cord blood ASP, serum lipid profiles, glucose level, insulin level, HOMA-IR, in addition to neonatal anthropometry data, were measured. Maternal blood ASP in GDM is higher than that in NGT. In the GDM group, maternal blood ASP has a positive correlation with TG, FFA and HOMA-IR. Maternal and cord blood ASP levels of LGA fetuses correlate with elevated birth weight and SF4. Similarly, cord blood ASP levels of LGA fetuses also correlate with birth weight and SF4 in the NGT group. The maternal blood ASP level of GDM mothers is associated with lipometabolism, insulin resistance and LGA fetal growth. Nevertheless, the cord blood ASP level correlates with FFA of GDM mothers, LGA fetal growth of GDM and NGT mothers. ASP may be a biomarker for evaluating insulin resistance of GDM and LGA fetal growth.

  7. Ultrasonographic measurement of fetal growth parameters over three successive pregnancies in a captive Malayan tapir (Tapirus indicus).

    PubMed

    Hoyer, M J; van Engeldorp Gastelaars, H M D

    2014-01-01

    This study was conducted to establish representative curves that allow evaluation of fetal growth and estimation of gestational age from measurement of fetal structures by ultrasound in Malayan tapirs (Tapirus indicus). Three pregnancies (i.e. 3 fetuses) were examined in one female Malayan tapir. Transabdominal ultrasonographic examination was performed without anesthesia from 79 ± 8 days to 281 ± 48 days (mean ± S.D.) post mating. To assess fetal growth attempts were made to measure biparietal diameter (BPD), head length (HL), thorax diameter A (TDA), thorax height A (THA), thorax diameter B (TDB), thorax height B (THB), abdomen diameter (AD), abdomen height (AH), humerus length (HUL) and Crown rump length (CRL). The value of each parameter as an estimator of gestational age was assessed by ease of observation and the length of time the parameter was measurable throughout gestation. The most precise predictors for gestational age in this study were BPD and CRL (weeks 10-20 of gestation), as well as AD and AH (weeks 14-43 of gestation). The parameters TDB, THB and HUL (weeks 15-41 of gestation) gave almost as good predictions. Fetal viability was assessed by identifying a fetal heartbeat and movement. All pregnancies resulted in normal deliveries and healthy offspring. The ultrasound examination was well tolerated by the female. The gestation lengths (399 ± 3 days) were within reported ranges. The serial transabdominal ultrasound, without the need for anesthesia, was an effective method to evaluate fetal growth, development and well being in a Malayan tapir.

  8. Epidermal growth factor acts as a corticotropin-releasing factor in chronically catheterized fetal lambs.

    PubMed Central

    Polk, D H; Ervin, M G; Padbury, J F; Lam, R W; Reviczky, A L; Fisher, D A

    1987-01-01

    Epidermal growth factor (EGF) has been reported to stimulate adrenocorticotropin hormone (ACTH), growth hormone and prolactin secretion from pituitary tissue in vitro, and in large doses evokes ACTH secretion in adult sheep in vivo. In order to assess a possible role for EGF in the pituitary hyperfunction characteristic of the in utero fetus, we measured changes in plasma immunoreactive ACTH concentrations after acute administration of saline, purified mouse EGF or synthetic ovine corticotropin releasing factor (CRF) to chronically catheterized fetal sheep. Both CRF and EGF were associated with increases in plasma immunoreactive ACTH concentrations. Peak values 60 min after 10-micrograms injections of either EGF or CRF increased from baseline ACTH values of 61 +/- 11 pg/ml to 191 +/- 37 and 178 +/- 25 pg/ml, respectively. Dose-response studies indicate that at low doses (less than 20 micrograms) EGF is as potent a stimulus for ACTH release as CRF. EGF infusion was not associated with detectable changes in circulating CRF, catecholamines, arginine vasopressin levels, or plasma growth hormone concentrations. We speculate that EGF may be important in the regulation of pituitary function in the developing mammalian fetus. PMID:3029180

  9. PRETERM BIRTH AND FETAL GROWTH RESTRICTION IN HIV-INFECTED BRAZILIAN PREGNANT WOMEN

    PubMed Central

    dos REIS, Helena Lucia Barroso; ARAUJO, Karina da Silva; RIBEIRO, Lilian Paula; da ROCHA, Daniel Ribeiro; ROSATO, Drielli Petri; PASSOS, Mauro Romero Leal; de VARGAS, Paulo Roberto Merçon

    2015-01-01

    Introduction: Maternal HIV infection and related co-morbidities may have two outstanding consequences to fetal health: mother-to-child transmission (MTCT) and adverse perinatal outcomes. After Brazilian success in reducing MTCT, the attention must now be diverted to the potentially increased risk for preterm birth (PTB) and intrauterine fetal growth restriction (IUGR). Objective: To determine the prevalence of PTB and IUGR in low income, antiretroviral users, publicly assisted, HIV-infected women and to verify its relation to the HIV infection stage. Patients and Methods: Out of 250 deliveries from HIV-infected mothers that delivered at a tertiary public university hospital in the city of Vitória, state of Espírito Santo, Southeastern Brazil, from November 2001 to May 2012, 74 single pregnancies were selected for study, with ultrasound validated gestational age (GA) and data on birth dimensions: fetal weight (FW), birth length (BL), head and abdominal circumferences (HC, AC). The data were extracted from clinical and pathological records, and the outcomes summarized as proportions of preterm birth (PTB, < 37 weeks), low birth weight (LBW, < 2500g) and small (SGA), adequate (AGA) and large (LGA) for GA, defined as having a value below, between or beyond the ±1.28 z/GA score, the usual clinical cut-off to demarcate the 10th and 90th percentiles. Results: PTB was observed in 17.5%, LBW in 20.2% and SGA FW, BL, HC and AC in 16.2%, 19.1%, 13.8%, and 17.4% respectively. The proportions in HIV-only and AIDS cases were: PTB: 5.9 versus 27.5%, LBW: 14.7% versus 25.0%, SGA BW: 17.6% versus 15.0%, BL: 6.0% versus 30.0%, HC: 9.0% versus 17.9%, and AC: 13.3% versus 21.2%; only SGA BL attained a significant difference. Out of 15 cases of LBW, eight (53.3%) were preterm only, four (26.7%) were SGA only, and three (20.0%) were both PTB and SGA cases. A concomitant presence of, at least, two SGA dimensions in the same fetus was frequent. Conclusions: The proportions of preterm

  10. Intrauterine growth restriction and the fetal programming of the hedonic response to sweet taste in newborn infants.

    PubMed

    Ayres, Caroline; Agranonik, Marilyn; Portella, André Krumel; Filion, Françoise; Johnston, Celeste C; Silveira, Patrícia Pelufo

    2012-01-01

    Intrauterine growth restriction is associated with increased risk for adult metabolic syndrome and cardiovascular disease, which seems to be related to altered food preferences in these individuals later in life. In this study, we sought to understand whether intrauterine growth leads to fetal programming of the hedonic responses to sweet. Sixteen 1-day-old preterm infants received 24% sucrose solution or water and the taste reactivity was filmed and analyzed. Spearman correlation demonstrated a positive correlation between fetal growth and the hedonic response to the sweet solution in the first 15 seconds after the offer (r = 0.864, P = 0.001), without correlation when the solution given is water (r = 0.314, P = 0.455). In fact, the more intense the intrauterine growth restriction, the lower the frequency of the hedonic response observed. IUGR is strongly correlated with the hedonic response to a sweet solution in the first day of life in preterm infants. This is the first evidence in humans to demonstrate that the hedonic response to sweet taste is programmed very early during the fetal life by the degree of intrauterine growth. The altered hedonic response at birth and subsequent differential food preference may contribute to the increased risk of obesity and related disorders in adulthood in intrauterine growth-restricted individuals.

  11. MCT8 expression in human fetal cerebral cortex is reduced in severe intrauterine growth restriction.

    PubMed

    Chan, Shiao Y; Hancox, Laura A; Martín-Santos, Azucena; Loubière, Laurence S; Walter, Merlin N M; González, Ana-Maria; Cox, Phillip M; Logan, Ann; McCabe, Christopher J; Franklyn, Jayne A; Kilby, Mark D

    2014-02-01

    The importance of the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), to human neurodevelopment is highlighted by findings of severe global neurological impairment in subjects with MCT8 (SLC16A2) mutations. Intrauterine growth restriction (IUGR), usually due to uteroplacental failure, is associated with milder neurodevelopmental deficits, which have been partly attributed to dysregulated TH action in utero secondary to reduced circulating fetal TH concentrations and decreased cerebral thyroid hormone receptor expression. We postulate that altered MCT8 expression is implicated in this pathophysiology; therefore, in this study, we sought to quantify changes in cortical MCT8 expression with IUGR. First, MCT8 immunohistochemistry was performed on occipital and parietal cerebral cortex sections obtained from appropriately grown for gestational age (AGA) human fetuses between 19 weeks of gestation and term. Secondly, MCT8 immunostaining in the occipital cortex of stillborn IUGR human fetuses at 24-28 weeks of gestation was objectively compared with that in the occipital cortex of gestationally matched AGA fetuses. Fetuses demonstrated widespread MCT8 expression in neurons within the cortical plate and subplate, in the ventricular and subventricular zones, in the epithelium of the choroid plexus and ependyma, and in microvessel wall. When complicated by IUGR, fetuses showed a significant fivefold reduction in the percentage area of cortical plate immunostained for MCT8 compared with AGA fetuses (P<0.05), but there was no significant difference in the proportion of subplate microvessels immunostained. Cortical MCT8 expression was negatively correlated with the severity of IUGR indicated by the brain:liver weight ratios (r(2)=0.28; P<0.05) at post-mortem. Our results support the hypothesis that a reduction in MCT8 expression in the IUGR fetal brain could further compromise TH-dependent brain development.

  12. MCT8 expression in human fetal cerebral cortex is reduced in severe intrauterine growth restriction

    PubMed Central

    Chan, Shiao Y; Hancox, Laura A; Martín-Santos, Azucena; Loubière, Laurence S; Walter, Merlin N M; González, Ana-Maria; Cox, Phillip M; Logan, Ann; McCabe, Christopher J; Franklyn, Jayne A; Kilby, Mark D

    2014-01-01

    The importance of the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), to human neurodevelopment is highlighted by findings of severe global neurological impairment in subjects with MCT8 (SLC16A2) mutations. Intrauterine growth restriction (IUGR), usually due to uteroplacental failure, is associated with milder neurodevelopmental deficits, which have been partly attributed to dysregulated TH action in utero secondary to reduced circulating fetal TH concentrations and decreased cerebral thyroid hormone receptor expression. We postulate that altered MCT8 expression is implicated in this pathophysiology; therefore, in this study, we sought to quantify changes in cortical MCT8 expression with IUGR. First, MCT8 immunohistochemistry was performed on occipital and parietal cerebral cortex sections obtained from appropriately grown for gestational age (AGA) human fetuses between 19 weeks of gestation and term. Secondly, MCT8 immunostaining in the occipital cortex of stillborn IUGR human fetuses at 24–28 weeks of gestation was objectively compared with that in the occipital cortex of gestationally matched AGA fetuses. Fetuses demonstrated widespread MCT8 expression in neurons within the cortical plate and subplate, in the ventricular and subventricular zones, in the epithelium of the choroid plexus and ependyma, and in microvessel wall. When complicated by IUGR, fetuses showed a significant fivefold reduction in the percentage area of cortical plate immunostained for MCT8 compared with AGA fetuses (P<0.05), but there was no significant difference in the proportion of subplate microvessels immunostained. Cortical MCT8 expression was negatively correlated with the severity of IUGR indicated by the brain:liver weight ratios (r2=0.28; P<0.05) at post-mortem. Our results support the hypothesis that a reduction in MCT8 expression in the IUGR fetal brain could further compromise TH-dependent brain development. PMID:24204008

  13. Increased Fetal Plasma Erythropoietin in Monochorionic Twin Pregnancies With Selective Intrauterine Growth Restriction and Abnormal Umbilical Artery Doppler.

    PubMed

    Chang, Yao-Lung; Chao, An-Shine; Peng, Hsiu-Huei; Chang, Shuenn-Dyh; Su, Sheng-Yuan; Chen, Kuan-Ju; Cheng, Po-Jen; Wang, Tzu-Hao

    2016-08-01

    Hypoxia is the primary stimulus for the production of erythropoietin (EPO) in both fetal and adult life. Here, we investigated fetal plasma EPO concentrations in monochorionic (MC) twin pregnancies with selective intrauterine growth restriction (sIUGR) and abnormal umbilical artery (UA) Doppler. We diagnosed sIUGR in presence of (1) birth-weight discordance >20% and (2) either twin with a birth weight <10th percentile. An abnormal UA Doppler was defined as a persistent absent-reverse end diastolic flow (AREDF). The intertwin EPO ratio was calculated as the plasma EPO level of the smaller (or small-for-gestational-age) twin divided by the EPO concentration of the larger (or appropriate-for-gestational-age (AGA)) twin. Thirty-two MC twin pairs were included. Of these, 17 pairs were normal twins (Group 1), seven pairs were twins with sIUGR without UA Doppler abnormalities (Group 2), and eight pairs were twins with sIUGR and UA Doppler abnormalities (Group 3). The highest EPO ratio was identified in Group 3 (p < .001) but no significant differences were observed between Groups 1 and 2. Fetal hemoglobin levels did not differ significantly in the three groups, and fetal EPO concentration did not correlate with gestational age at birth. We conclude that fetal plasma EPO concentrations are selectively increased in MC twin pregnancies with sIUGR and abnormal UA Doppler, possibly as a result of uncompensated hypoxia.

  14. The role of blood flow distribution in the regulation of cerebral oxygen availability in fetal growth restriction.

    PubMed

    Luria, Oded; Bar, Jacob; Kovo, Michal; Malinger, Gustavo; Golan, Abraham; Barnea, Ofer

    2012-04-01

    Fetal growth restriction (FGR) elicits hemodynamic compensatory mechanisms in the fetal circulation. These mechanisms are complex and their effect on the cerebral oxygen availability is not fully understood. To quantify the contribution of each compensatory mechanism to the fetal cerebral oxygen availability, a mathematical model of the fetal circulation was developed. The model was based on cardiac-output distribution in the fetal circulation. The compensatory mechanisms of FGR were simulated and their effects on cerebral oxygen availability were analyzed. The mathematical analysis included the effects of cerebral vasodilation, placental resistance to blood flow, degree of blood shunting by the ductus venosus and the effect of maternal-originated placental insufficiency. The model indicated a unimodal dependency between placental blood flow and cerebral oxygen availability. Optimal cerebral oxygen availability was achieved when the placental blood flow was mildly reduced compared to the normal flow. This optimal ratio was found to increase as the hypoxic state of FGR worsens. The model indicated that cerebral oxygen availability is increasingly dependent on the cardiac output distribution as the fetus gains weight.

  15. [Epidermal growth factor during pregnancy- a predictor of fetal growth retardation?].

    PubMed

    Huter, O; Kölle, D; Brezinka, C; Artner-Dworzak, E

    1998-01-01

    Epidermal growth factor (EGF) in urine was measured at 4-week intervals in 83 women referred for suspected intrauterine growth retardation (IUGR); 138 women with normal singleton pregnancies and newborns of normal weight served as controls. Of the 83 women, 30 delivered babies with weight below the 10th percentile after week 37. During pregnancy these women had shown significantly lower EGF levels than women who delivered normal-weight babies. However, due to the wide distribution of individual EGF data, no clear clinical cut-off point between normal and IUGR values could be established.

  16. Decreased maternal and fetal cholesterol following maternal bococizumab (anti-PCSK9 monoclonal antibody) administration does not affect rat embryo-fetal development.

    PubMed

    Campion, Sarah N; Han, Bora; Cappon, Gregg D; Lewis, Elise M; Kraynov, Eugenia; Liang, Hong; Bowman, Christopher J

    2015-11-01

    Bococizumab is a humanized monoclonal IgG2Δa antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9) for the treatment of hyperlipidemia. The evaluation of potential effects on embryo-fetal development was conducted in the rat. In a pharmacokinetic/pharmacodynamic study bococizumab was administered intravenously to pregnant Sprague-Dawley (SD) rats (n = 8/group) at 0, 10, 30, and 100 mg/kg during organogenesis. Maternal and fetal bococizumab, total cholesterol and HDL concentrations were determined. Bococizumab was well tolerated and there were no effects on ovarian or uterine parameters. Maternal and fetal bococizumab exposure increased with increasing dose, with a corresponding dose-dependent decrease in fetal cholesterol levels. Maternal cholesterol levels were decreased significantly, with reductions that were of a similar magnitude regardless of dose. In the definitive embryo-fetal development study bococizumab was administered to pregnant SD rats (n = 20/group) at 0, 10, 30, and 100 mg/kg and no adverse maternal or developmental effects were observed up to 100 mg/kg. These studies have provided an appropriate and relevant safety assessment of bococizumab in pregnant rats to inform human risk assessment, demonstrating no adverse effects on embryo-fetal development at magnitudes greater than anticipated clinical exposure and in the presence of maximal reductions in maternal cholesterol and dose-dependent reductions in fetal cholesterol.

  17. Fetal growth restriction and the programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb

    PubMed Central

    Wang, Kimberley C W; Zhang, Lei; McMillen, I Caroline; Botting, Kimberley J; Duffield, Jaime A; Zhang, Song; Suter, Catherine M; Brooks, Doug A; Morrison, Janna L

    2011-01-01

    Abstract Reduced growth in fetal life together with accelerated growth in childhood, results in a ∼50% greater risk of coronary heart disease in adult life. It is unclear why changes in patterns of body and heart growth in early life can lead to an increased risk of cardiovascular disease in adulthood. We aimed to investigate the role of the insulin-like growth factors in heart growth in the growth-restricted fetus and lamb. Hearts were collected from control and placentally restricted (PR) fetuses at 137–144 days gestation and from average (ABW) and low (LBW) birth weight lambs at 21 days of age. We quantified cardiac mRNA expression of IGF-1, IGF-2 and their receptors, IGF-1R and IGF-2R, using real-time RT-PCR and protein expression of IGF-1R and IGF-2R using Western blotting. Combined bisulphite restriction analysis was used to assess DNA methylation in the differentially methylated region (DMR) of the IGF-2/H19 locus and of the IGF-2R gene. In PR fetal sheep, IGF-2, IGF-1R and IGF-2R mRNA expression was increased in the heart compared to controls. LBW lambs had a greater left ventricle weight relative to body weight as well as increased IGF-2 and IGF-2R mRNA expression in the heart, when compared to ABW lambs. No changes in the percentage of methylation of the DMRs of IGF-2/H19 or IGF-2R were found between PR and LBW when compared to their respective controls. In conclusion, a programmed increased in cardiac gene expression of IGF-2 and IGF-2R may represent an adaptive response to reduced substrate supply (e.g. glucose and/or oxygen) in order to maintain heart growth and may be the underlying cause for increased ventricular hypertrophy and the associated susceptibility of cardiomyocytes to ischaemic damage later in life. PMID:21807611

  18. Ethanol effects on embryonic craniofacial growth and development: implications for study of the fetal alcohol syndrome.

    PubMed

    Weston, W M; Greene, R M; Uberti, M; Pisano, M M

    1994-02-01

    Fetal alcohol syndrome (FAS), which is brought about by maternal consumption of ethanol during pregnancy, is a major public health problem. To gain understanding of the etiology of this condition, a number of teratological studies have been performed in different animal systems to develop an animal model for FAS. The C57BL/6J mouse strain has been described as susceptible to the teratogenic effects of ethanol, whereas the ICR (CD-1) strain is considered relatively insensitive. We have compared the effects of ethanol on DNA and protein synthesis in cultured embryonic palate mesenchymal cells from both strains to determine if the reported differential sensitivity to ethanol is reflected in differences in ethanol's effects on cell behavior. Chronic exposure to 200 mM ethanol for 48 hr had a strong inhibitory effect on DNA synthesis in palate cells derived from both the C57BL/6J and ICR strains and a significant effect on protein synthesis in C57BL/6J palate cells. When we attempted to verify strain differences in susceptibility to ethanol teratogenesis, we were not able to observe an increased incidence of birth defects due to ethanol in either strain. High doses of ethanol (5.8 g/kg, administered by intraperitoneal injection on gestational day 8) resulted in death in both C57BL/6J and ICR mice. A lower dose (4.8 g/kg) caused decreased fetal weight and increased resorption in both strains, but did not bring about FAS-like craniofacial dysmorphology in either strain. It appears, therefore, that whereas ethanol can significantly affect the behavior of cells derived from craniofacial tissue, these effects cannot be correlated with sensitivity to ethanol teratogenesis in the mouse system.

  19. Effect of maternal alcohol and nicotine intake, individually and in combination, on fetal growth in the rat

    SciTech Connect

    Leichter, J. )

    1991-03-15

    The effect of maternal ethanol and nicotine administration, separately and in combination, on fetal growth of rats was studied. Nicotine was administered by gavage for the entire gestational period. Alcohol was given in drinking water for 4 weeks prior to mating and 30% throughout gestation. Appropriate pair-fed and ad libitum control animals were included to separate the effect of ethanol and nicotine on the outcome of pregnancy from those produced by the confounding variables of malnutrition. Body weights of fetuses exposed to alcohol alone or in combination with nicotine were significantly lower than those of the pair-fed and ad libitum controls. However, the difference in fetal body weight between the alcohol plus nicotine and the alcohol alone group was not significant. Similarly, in the rats administered nicotine only, fetal weight was not significantly different compared to control animals. The results of this study indicate that maternal alcohol intake impairs fetal growth and nicotine does not, regardless whether it is administered separately or in combination with alcohol for the entire gestational period.

  20. Prenatal Exposure to Organophosphorous Pesticides and Fetal Growth: Pooled Results from Four Longitudinal Birth Cohort Studies

    PubMed Central

    Harley, Kim G.; Engel, Stephanie M.; Vedar, Michelle G.; Eskenazi, Brenda; Whyatt, Robin M.; Lanphear, Bruce P.; Bradman, Asa; Rauh, Virginia A.; Yolton, Kimberly; Hornung, Richard W.; Wetmur, James G.; Chen, Jia; Holland, Nina T.; Barr, Dana Boyd; Perera, Frederica P.; Wolff, Mary S.

    2015-01-01

    Background: Organophosphorous (OP) pesticides are associated with reduced fetal growth in animals, but human studies are inconsistent. Objectives: We pooled data from four cohorts to examine associations of prenatal OP exposure with birth weight (n = 1,169), length (n = 1,152), and head circumference (n = 1,143). Methods: Data were from the CHAMACOS, HOME, Columbia, and Mount Sinai birth cohorts. Concentrations of three diethyl phosphate (ΣDEP) and three dimethyl phosphate (ΣDMP) metabolites of OP pesticides [summed to six dialkyl phosphates (ΣDAPs)] were measured in maternal urine. Linear regression and mixed-effects models were used to examine associations with birth outcomes. Results: We found no significant associations of ΣDEP, ΣDMP, or ΣDAPs with birth weight, length, or head circumference overall. However, among non-Hispanic black women, increasing urinary ΣDAP and ΣDMP concentrations were associated with decreased birth length (β = –0.4 cm; 95% CI: –0.9, 0.0 and β = –0.4 cm; 95% CI: –0.8, 0.0, respectively, for each 10-fold increase in metabolite concentration). Among infants with the PON1192RR genotype, ΣDAP and ΣDMP were negatively associated with length (β = –0.4 cm; 95% CI: –0.9, 0.0 and β = –0.5 cm; 95% CI: –0.9, –0.1). Conclusions: This study confirms previously reported associations of prenatal OP exposure among black women with decreased infant size at birth, but finds no evidence of smaller birth weight, length, or head circumference among whites or Hispanics. Contrary to our hypothesis, we found stronger inverse associations of DAPs and birth outcome in infants with the less susceptible PON1192RR genotype. The large pooled data set facilitated exploration of interactions by race/ethnicity and PON1 genotype, but was limited by differences in study populations. Citation: Harley KG, Engel SM, Vedar MG, Eskenazi B, Whyatt RM, Lanphear BP, Bradman A, Rauh VA, Yolton K, Hornung RW, Wetmur JG, Chen J, Holland NT, Barr DB

  1. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    SciTech Connect

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  2. Fetal nutrition and adult disease.

    PubMed

    Godfrey, K M; Barker, D J

    2000-05-01

    Recent research suggests that several of the major diseases of later life, including coronary heart disease, hypertension, and type 2 diabetes, originate in impaired intrauterine growth and development. These diseases may be consequences of "programming," whereby a stimulus or insult at a critical, sensitive period of early life has permanent effects on structure, physiology, and metabolism. Evidence that coronary heart disease, hypertension, and diabetes are programmed came from longitudinal studies of 25,000 UK men and women in which size at birth was related to the occurrence of the disease in middle age. People who were small or disproportionate (thin or short) at birth had high rates of coronary heart disease, high blood pressure, high cholesterol concentrations, and abnormal glucose-insulin metabolism. These relations were independent of the length of gestation, suggesting that cardiovascular disease is linked to fetal growth restriction rather than to premature birth. Replication of the UK findings has led to wide acceptance that low rates of fetal growth are associated with cardiovascular disease in later life. Impaired growth and development in utero seem to be widespread in the population, affecting many babies whose birth weights are within the normal range. Although the influences that impair fetal development and program adult cardiovascular disease remain to be defined, there are strong pointers to the importance of the fetal adaptations invoked when the maternoplacental nutrient supply fails to match the fetal nutrient demand.

  3. Placental restriction of fetal growth reduces cutaneous responses to antigen after sensitization in sheep

    PubMed Central

    Wooldridge, Amy L.; Bischof, Robert J.; Meeusen, Els N.; Liu, Hong; Heinemann, Gary K.; Hunter, Damien S.; Giles, Lynne C.; Kind, Karen L.; Owens, Julie A.; Clifton, Vicki L.

    2014-01-01

    Prenatal and early childhood exposures are implicated as causes of allergy, but the effects of intrauterine growth restriction on immune function and allergy are poorly defined. We therefore evaluated effects of experimental restriction of fetal growth on immune function and allergic sensitization in adolescent sheep. Immune function (circulating total red and white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, and basophils, and the antibody response to Clostridial vaccination) and responses to house dust mite (HDM) allergen and ovalbumin (OVA) antigen sensitization (specific total Ig, IgG1, and IgE antibodies, and cutaneous hypersensitivity) were investigated in adolescent sheep from placentally restricted (PR, n = 23) and control (n = 40) pregnancies. Increases in circulating HDM-specific IgE (P = 0.007) and OVA-specific IgE (P = 0.038) were greater in PR than control progeny. PR did not alter total Ig, IgG1, or IgM responses to either antigen. PR increased OVA-specific but not HDM-specific IgA responses in females only (P = 0.023). Multiple birth increased Ig responses to OVA in a sex-specific manner. PR decreased the proportion of positive cutaneous hypersensitivity responders to OVA at 24 h (P = 0.030) but had no effect on cutaneous responses to HDM. Acute wheal responses to intradermal histamine correlated positively with birth weight in singletons (P = 0.023). Intrauterine growth restriction may suppress inflammatory responses in skin downstream of IgE induction, without impairment in antibody responses to a nonpolysaccharide vaccine. Discord between cutaneous and IgE responses following sensitization suggests new mechanisms for prenatal allergy programming. PMID:24500430

  4. Arterial flow regulator enables transplantation and growth of human fetal kidneys in rats.

    PubMed

    Chang, N K; Gu, J; Gu, S; Osorio, R W; Concepcion, W; Gu, E

    2015-06-01

    Here we introduce a novel method of transplanting human fetal kidneys into adult rats. To overcome the technical challenges of fetal-to-adult organ transplantation, we devised an arterial flow regulator (AFR), consisting of a volume adjustable saline-filled cuff, which enables low-pressure human fetal kidneys to be transplanted into high-pressure adult rat hosts. By incrementally withdrawing saline from the AFR over time, blood flow entering the human fetal kidney was gradually increased until full blood flow was restored 30 days after transplantation. Human fetal kidneys were shown to dramatically increase in size and function. Moreover, rats which had all native renal mass removed 30 days after successful transplantation of the human fetal kidney were shown to have a mean survival time of 122 days compared to 3 days for control rats that underwent bilateral nephrectomy without a prior human fetal kidney transplant. These in vivo human fetal kidney models may serve as powerful platforms for drug testing and discovery.

  5. The bone-muscle ratio of fetal lambs is affected more by maternal nutrition during pregnancy than by maternal size.

    PubMed

    Firth, E C; Rogers, C W; Vickers, M; Kenyon, P R; Jenkinson, C M C; Blair, H T; Johnson, P L; Mackenzie, D D S; Peterson, S W; Morris, S T

    2008-06-01

    Bone formation and loss are related to the strain imposed on bone by muscle forces. Bone mineral content (BMC) and lean mass (LM) of fetal lambs was determined at day 140 of pregnancy in 8 groups of ewes, which were of either large or small body size, on either high (ad libitum) or maintenance pasture intake from day 21 of pregnancy, or carrying either singletons or twins. BMC and LM (using DXA scanning) of fetal hindquarters/spine were corrected to leg length. BMC and LM were less in twin than singleton groups (P < 0.001). Large ewes on high intake produced single fetuses with a (group mean) BMC/LM ratio that was higher (P < 0.002) than that in fetuses of large ewes with singletons on maintenance intake or twins on either high or maintenance intakes, the ratios of which were not different. In single fetuses from small ewes on high intake, the BMC/LM ratio was higher than those from small ewes with singletons on maintenance intake or twins on either high or maintenance intakes, the ratios of which were not different. The ratio was not different in singleton fetuses of ewes on high intake, whether they were large or small. Different fetal environments resulted in a given amount of muscle being associated with a higher or lower bone mass. Dietary intake during pregnancy was more important than maternal size in affecting the ratio. We conclude that intrauterine environmental factors may be important in determining bone mass postnatally, and possibly later in life.

  6. Chemical agents and peptides affect hair growth.

    PubMed

    Uno, H; Kurata, S

    1993-07-01

    During the past decade we have examined both the therapeutic and the prophylactic effects of several agents on the macaque model of androgenetic alopecia. Minoxidil and diazoxide, potent hypotensive agents acting as peripheral vasodilators, are known to have a hypertrichotic side effect. Topical use of both agents induced significant hair regrowth in the bald scalps of macaques. The application of a steroid 5 alpha-reductase inhibitor (4MA) in non-bald preadolescent macaques has prevented baldness, whereas controls developed it during 2 years of treatment. The effects of hair growth were determined by 1) phototrichogram, 2) folliculogram (micro-morphometric analysis), and 3) the rate of DNA synthesis in the follicular cells. These effects were essentially a stimulation of the follicular cell proliferation, resulting in an enlargement of the anagen follicles from vellus to terminal type (therapy) or a maintenance of the prebald terminal follicles (prevention). A copper binding peptide (PC1031) had the effect of follicular enlargement on the back skin of fuzzy rats, covering the vellus follicles; the effect was similar to that of topical minoxidil. Analyzing the quantitative sequences of follicular size and cyclic phases, we speculate on the effect of agents on follicular growth. We also discuss the triggering mechanism of androgen in the follicular epithelial-mesenchymal (dermal papilla) interaction.

  7. Blood folic acid, vitamin B12, and homocysteine levels in pregnant women with fetal growth restriction.

    PubMed

    Jiang, H L; Cao, L Q; Chen, H Y

    2016-12-19

    Deficiencies in nutrients such as folic acid and vitamin B12 may play a role in fetal growth restriction (FGR). However, whether folic acid, vitamin B12, or homocysteine is associated with FGR in Chinese populations remains unclear. This study investigated the relationship between these nutrient deficiencies and FGR in pregnant Chinese women. We selected 116 mother and infant pairs, and categorized the neonates into the FGR, appropriate for gestational age, and large for gestational age groups. Birth weight, body length, head circumference, body mass index (BMI), and Rohrer's body index of the newborns were measured. Serum folic acid, vitamin B12, and homocysteine levels were measured in mothers during the first three days of their hospital stay. Results showed that the FGR group exhibited reduced folic acid and vitamin B12 levels and elevated homocysteine levels than those in the other two groups. Folic acid and vitamin B12 levels were positively correlated with birth weight, head circumference, and BMI, whereas homocysteine level was negatively correlated with these variables. The FGR ratio in the folic acid and vitamin B12 deficiency group was higher than that in the sufficiency group (χ(2) = 4.717 and 4.437, P = 0.029 and 0.035, respectively). In addition, elevated homocysteine was associated with FGR (χ(2) = 5.366, P = 0.021). In conclusion, we found that folic acid and vitamin B12 deficiency was associated with elevated homocysteine levels, which may increase susceptibility to FGR.

  8. Growth characteristics of the fetal ligament of the head of femur: significance in congenital hip disease.

    PubMed Central

    Walker, J. M.

    1980-01-01

    Measurement of the length and width of the ligament of the head of femur (ligamentum teres) in 140 normal human fetuses between 12 weeks and term provides limits for growth changes in this structure. These observations provide no morphological evidence of a significant difference between males and females, or between the right and left sides, to explain the female and left hip preponderance reported in congenital hip disease. The ligament is shown to be variable in length, width, and shape, and it is not a distinctly linear structure through linearity may increase with age. Tests of femoral head mobility support the opinion that this ligament must play a role in fetal and neonatal hip joint stability. Weak correlation only was demonstrated between the ligament variables and acetabular depth, which suggests that ligament shape and socket shape are not closely related. Comparison of measurements from normal and 12 dysplastic or subluxated joints provides no evidence to support previous observations that this structure is unusually long in abnormal hip joints which are not frankly dislocated. Images FIG. 1 PMID:7445537

  9. Suspected Fetal Growth Restriction at 37 Weeks: A Comparison of Doppler and Placental Pathology

    PubMed Central

    Millington, Karmaine A.; Ibekwe, Tochi O.; Ural, Serdar H.

    2017-01-01

    Objective. Our objective was determining if abnormal Doppler evaluation had a higher prevalence of placental pathology compared to normal Doppler in suspected fetal growth restriction (FGR) of cases delivered at 37 weeks. Study Design. This retrospective cohort study of suspected FGR singletons with antenatal Doppler evaluation delivered at 37 weeks had a primary outcome of the prevalence of placental pathology related to FGR. Significance was defined as p ≤ 0.05. Results. Of 100 pregnancies 46 and 54 were in the abnormal and normal Doppler cohorts, respectively. Placental pathology was more prevalent with any abnormal Doppler, 84.8% versus 55.6%, odds ratio (OR) 4.46, 95% confidence interval (CI): 1.55, 13.22, and p = 0.002. Abnormal middle cerebral artery (MCA) Doppler had a higher prevalence: 96.2% versus 54.8%, OR 20.7, 95% CI: 2.54, 447.1, and p < 0.001. Conclusion. Abnormal Doppler was associated with more placental pathology in comparison to normal Doppler in fetuses with suspected FGR. Abnormal MCA Doppler had the strongest association.

  10. Craniofacial growth in fetal Tarsius bancanus: brains, eyes and nasal septa

    PubMed Central

    Jeffery, Nathan; Davies, Karen; Köckenberger, Walter; Williams, Steve

    2007-01-01

    The tarsier skull has been of particular interest in studies of primate taxonomy and functional morphology for several decades. Despite this, there remains no comprehensive data on how the tarsier skull develops, especially in relation to the soft-tissues of the head. Here we have documented for the first time fetal development of the skull and brain as well as the nasal septum and eyes in T. bancanus. We have also tested for the possible influence of these tissues in shaping skull architecture. Nineteen post-mortem specimens were imaged using high-resolution magnetic resonance imaging and magnetic resonance microscopy. Landmarks and volume data were collected and analysed. Findings demonstrated massive increases of brain size and eye size as well as flattening of the midline cranial base, facial projection and orbital margin frontation. Little evidence was found to support the notion that growth of the brain or nasal septum physically drives the observed changes of the skull. However, increases in the size of the eyes relative to skull size were associated with orbital margin frontation. With the possible exception of the results for eye size, the findings indicate that rather than forcing change the soft-tissues form a framework that physically constrains the morphogenetic template of the skeletal elements. This suggests, for example, that the degree of cranial base angulation seen in adulthood is not directly determined by brain expansion bending the basicranium, but by brain enlargement limiting the extent of cranial base flattening (retroflexion) in the fetus. PMID:17451471

  11. A rodent model of low- to moderate-dose ethanol consumption during pregnancy: patterns of ethanol consumption and effects on fetal and offspring growth.

    PubMed

    Probyn, Megan E; Zanini, Simone; Ward, Leigh C; Bertram, John F; Moritz, Karen M

    2012-01-01

    It is unknown whether low to moderate maternal alcohol consumption adversely affects postnatal health. The aim of the present study was to develop a rodent model of low-moderate-dose prenatal ethanol (EtOH) exposure. Sprague-Dawley rats were fed a liquid diet with or without 6% v/v EtOH throughout gestation and the pattern of dietary consumption determined. Fetal bodyweights and hepatic alcohol-metabolising gene expression were measured on embryonic Day (E) 20 and offspring growth studied until 1 year. At E8 the plasma EtOH concentration was 0.03%. There was little difference in dietary consumption between the two treatment groups. At E20, EtOH-exposed fetuses were significantly lighter than controls and had significantly decreased ADH4 and increased CYP2E1 gene expression. Offspring killed on postnatal Day (PN) 30 did not exhibit any growth deficits. Longitudinal repeated measures of offspring growth demonstrated slower growth in males from EtOH-fed dams between 7 and 12 months of age; a cohort of male pups killed at 8 months of age had a reduced crown-rump length and kidney weight. In conclusion, a liquid diet of 6% v/v EtOH fed to pregnant dams throughout gestation caused a 3-8% reduction in fetal growth and brain sparing, with growth differences observed in male offspring later in life. This model will be useful for future studies on the effects of low-moderate EtOH on the developmental origins of health and disease.

  12. Fetal growth-retardation and brain-sparing by malnutrition are associated to changes in neurotransmitters profile.

    PubMed

    García-Contreras, C; Valent, D; Vázquez-Gómez, M; Arroyo, L; Isabel, B; Astiz, S; Bassols, A; Gonzalez-Bulnes, A

    2017-04-01

    The present study assesses possible changes in the levels of different neurotransmitters (catecholamines and indoleamines) in fetuses affected by nutrient shortage. Hence, we determined the concentration of catecholamines and indoleamines at the hypothalamus of 56 swine fetuses obtained at both 70 and 90days of pregnancy (n=33 and 23 fetuses, respectively). The degree of fetal development and the fetal sex affected the neurotransmitters profile at both stages. At Day 70, there were found higher mean concentrations of l-DOPA in both female and male fetuses with severe IUGR; male fetuses with severe IUGR also showed higher concentrations of TRP than normal male littermates. At Day 90 of pregnancy, the differences between sexes were more evident. There were no significant effects from either severe IUGR on the neurotransmitter profile in male fetuses. However, in the females, a lower body-weight was related to lower concentrations of l-DOPA and TRP and those female fetuses affected by severe IUGR evidenced lower HVA concentration. In conclusion, the fetal synthesis and use of neurotransmitters increase with time of pregnancy but, in case of IUGR, both catecholamines and indoleamines pathways are affected by sex-related effects.

  13. Effects of hyperthyroidism on expression of vascular endothelial growth factor (VEGF) and apoptosis in fetal adrenal glands.

    PubMed

    Karaca, T; Hulya Uz, Y; Karabacak, R; Karaboga, I; Demirtas, S; Cagatay Cicek, A

    2015-11-26

    This study investigated the expression of vascular endothelial growth factor (VEGF), vascular density, and apoptosis in fetal rat adrenal glands with hyperthyroidism in late gestation. Twelve mature female Wistar albino rats with the same biological and physiological features were used for this study. Rats were divided into two groups: control and hyperthyroidism. Hyperthyroidism was induced by daily subcutaneous injections of L-thyroxine (250 μg/kg) before pregnancy for 21 days and during pregnancy. Rats in the control and hyperthyroidism groups were caged according to the number of male rats. Zero day of pregnancy (Day 0) was indicated when the animals were observed to have microscopic sperm in vaginal smears. Pregnant rats were sacrificed on the 20th day of pregnancy; blood from each animal was collected to determine the concentrations of maternal adrenocorticotropic hormone and thyroxine. Rat fetuses were then quickly removed from the uterus, and the adrenal glands of the fetuses were dissected. VEGF expression, vascular density, and apoptosis were analyzed in fetal rat adrenal glands. Maternal serum levels of the adrenocorticotropic hormone and free thyroxine were significantly higher in the hyperthyroidism group than in the control group. Immunohistochemistry revealed that the number of VEGF positive cells and vessel density significantly increased in the hyperthyroidism rat fetal adrenal group compared with the control group. Hyperthyroidism did not change the fetal and placental weights and the number of fetuses. This study demonstrates that hyperthyroidism may have an effect on the development of rat adrenal glands mediated by VEGF expression, angiogenesis, and apoptosis.

  14. Maternal serum levels of perfluoroalkyl substances and organochlorines and indices of fetal growth: a Scandinavian case–cohort study

    PubMed Central

    Lauritzen, Hilde B.; Larose, Tricia L.; Øien, Torbjørn; Sandanger, Torkjel M.; Odland, Jon Ø.; van de Bor, Margot; Jacobsen, Geir W.

    2017-01-01

    Background: The associations between prenatal exposure to endocrine disruptive chemicals (EDCs) and fetal growth are inconsistent, and few studies have considered small-for-gestational-age (SGA) birth as an outcome. Our current study of Scandinavian parous women aimed to address these inconsistencies and gaps in the literature. Methods: This case–cohort study included 424 mother–child pairs who participated in a prospective, multi-center study of parous women in Norway (Trondheim and Bergen) and Sweden (Uppsala). We used linear and logistic regression with 95% confidence intervals (CIs) to analyze the associations between two perfluoroalkyl substances (PFASs) and five organochlorines (OCs) from early second trimester and indices of fetal growth. Results: Among Swedish women, prenatal exposure to perfluorooctanoate (PFOA), polychlorinated biphenyl (PCB) 153 and hexachlorobenzene (HCB) were associated with higher odds for SGA birth. We found stronger associations among Swedish male offspring. In the Norwegian cohort, we found no significant associations between EDC exposure and indices of fetal growth. Conclusions: Some populations may be more vulnerable to EDCs, possibly due to differences in exposure levels, exposure sources and/or modifiable lifestyle factors. Male offspring may be more vulnerable to endocrine disruption. PMID:27656770

  15. Early Placental Insulin-like Protein (INSL4 or EPIL) in Placental and Fetal Membrane Growth1

    PubMed Central

    Millar, Lynnae; Streiner, Nicole; Webster, Lisa; Yamamoto, Sandra; Okabe, Rachel; Kawamata, Tasha; Shimoda, Jacqueline; Büllesbach, Erika; Schwabe, Christian; Bryant-Greenwood, Gillian

    2006-01-01

    Early placental insulin-like protein (INSL4 or EPIL) is a member of the insulin superfamily of hormones which is highly expressed in the placenta. We have confirmed this at term and shown it to be expressed by the maternal decidua. Although an abundance of locally acting growth factors are produced within the uterus during pregnancy, we hypothesized that INSL4 plays an important role in fetal and placental growth. We have demonstrated with cell lines and primary cells that it has a growth inhibitory effect by causing apoptosis and loss of cell viability. We used primary amniotic epithelial cells for flow cytometry to show that INSL4 caused apoptosis, which was dose related and significant (p<0.05) at 50ng/ml. This was confirmed by measurement of the nuclear matrix protein in the media. In comparison, relaxin treatment (up to 200ng/ml) had no effect on apoptosis. The addition of INSL4 (3-30ng/ml) also caused a loss of cell viability, although it had no effect on the numbers of cells at different phases of the cell cycle. Placental apoptosis is an important process in both normal placental development and in fetal growth restriction. Therefore an in vivo clinical correlate was sought in fraternal twins exhibiting discordant growth. Expression of INSL4 was doubled in the placenta of the growth restricted twin compared to the normally grown sibling, suggesting it may be linked to a higher level of apoptosis and loss of cell viability, and may therefore contribute to fetal growth restriction. PMID:15958731

  16. Hyperglycemia Differentially Affects Maternal and Fetal DNA Integrity and DNA Damage Response

    PubMed Central

    Moreli, Jusciele B.; Santos, Janine H.; Lorenzon-Ojea, Aline Rodrigues; Corrêa-Silva, Simone; Fortunato, Rodrigo S.; Rocha, Clarissa Ribeiro; Rudge, Marilza V.; Damasceno, Débora C.; Bevilacqua, Estela; Calderon, Iracema M.

    2016-01-01

    Objective: Investigate the DNA damage and its cellular response in blood samples from both mother and the umbilical cord of pregnancies complicated by hyperglycemia. Methods: A total of 144 subjects were divided into 4 groups: normoglycemia (ND; 46 cases), mild gestational hyperglycemia (MGH; 30 cases), gestational diabetes mellitus (GDM; 45 cases) and type-2 diabetes mellitus (DM2; 23 cases). Peripheral blood mononuclear cell (PBMC) isolation and/or leukocytes from whole maternal and umbilical cord blood were obtained from all groups at delivery. Nuclear and mitochondrial DNA damage were measured by gene-specific quantitative PCR, and the expression of mRNA and proteins involved in the base excision repair (BER) pathway were assessed by real-time qPCR and Western blot, respectively. Apoptosis was measured in vitro experiments by caspase 3/7 activity and ATP levels. Results: GDM and DM2 groups were characterized by an increase in oxidative stress biomarkers, an increase in nuclear and mitochondrial DNA damage, and decreased expression of mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1) involved in BER. The levels of hyperglycemia were associated with the in vitro apoptosis pathway. Blood levels of DNA damage in umbilical cord were similar among the groups. Newborns of diabetic mothers had increased expression of BER mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1, POLβ and FEN1). A diabetes-like environment was unable to induce apoptosis in the umbilical cord blood cells. Conclusions: Our data show relevant asymmetry between maternal and fetal blood cell susceptibility to DNA damage and apoptosis induction. Maternal cells seem to be more predisposed to changes in an adverse glucose environment. This may be due to differential ability in upregulating multiple genes involved in the activation of DNA repair response, especially the BER mechanism. However if this study shows a more effective adaptive response by the fetal organism, it also calls for

  17. Maternal nutrition affects the ability of treatment with IGF-I and IGF-II to increase growth of the placenta and fetus, in guinea pigs.

    PubMed

    Sohlström, A; Fernberg, P; Owens, J A; Owens, P C

    2001-12-01

    The aim of this study was to investigate how administration of IGF-I and IGF-II, during early to mid pregnancy, affects maternal growth and body composition as well as fetal and placental growth, in ad libitum fed, and in moderately, chronically food restricted guinea pigs. From day 20 of gestation, mothers (3-4 months old) were infused with IGF-I, IGF-II (565 microg/day) or vehicle for 17 days and then killed on day 40 of gestation. Maternal organ weights, fetal and placental weights were assessed. Treatment with IGFs did not alter body weight gain and had small effects on body composition in the mothers. Both IGF-I and IGF-II increased fetal and placental weights in ad libitum fed dams and IGF-I increased placental weight in food restricted dams. In conclusion, treatment with IGF-I during the first half of pregnancy stimulates placental growth in both ad libitum fed and food restricted guinea pigs without affecting maternal growth while fetal growth is stimulated by IGF treatment only in ad libitum fed animals.

  18. [Fetal magnetocardiography].

    PubMed

    van Leeuwen, P

    1997-09-01

    demonstrate the potential of the method in the examination of the fetal conductive system, arrhythmias, congential defects, growth, development of the autonomic system, acidosis and distress. Furthermore, first results in pathological cases indicate that it may become a valuable tool in prenatal diagnostics. Improvements in instrumentation as well as prospective multicenter studies with larger numbers of appropriate subjects are required to determine whether magnetocardiography will establish itself as a new tool in clinical fetal, surveillance.

  19. Effects of prenatal methamphetamine exposure on fetal growth and drug withdrawal symptoms in infants born at term.

    PubMed

    Smith, Lynne; Yonekura, M Lynn; Wallace, Toni; Berman, Nancy; Kuo, Jennifer; Berkowitz, Carol

    2003-02-01

    To determine fetal growth and the incidence of withdrawal symptoms in term infants exposed to methamphetamine in utero, we retrospectively identified neonates whose mothers used methamphetamine during pregnancy and matched them to unexposed newborns. Exclusion criteria included multiple and preterm gestations. Although there were no differences in infant growth parameters between the methamphetamine-exposed and methamphetamine-unexposed neonates, methamphetamine exposure throughout gestation was associated with decreased growth relative to infants exposed only for the first two trimesters. In addition, there were significantly more small for gestational age infants in the methamphetamine group compared with the unexposed group. Methamphetamine-exposed infants whose mothers smoked had significantly decreased growth relative to infants exposed to methamphetamine alone. Withdrawal symptoms (as determined by a previously reported scoring system) requiring pharmacologic intervention were observed in 4% of methamphetamine-exposed infants. These preliminary findings indicate that methamphetamine use is associated with growth restriction in infants born at term.

  20. Association of Reported Trimester-Specific Smoking Cessation and Fetal Growth Restriction

    PubMed Central

    Blatt, Kaitlin; Moore, Elizabeth; Chen, Aimin; Van Hook, James; DeFranco, Emily A.

    2016-01-01

    Objective To assess the association of reported smoking cessation at various time points during pregnancy with fetal growth restriction (FGR). Methods This was a population-based retrospective cohort study of singleton nonanomalous live births using Ohio birth certificates, 2006–2012. Outcomes of women who reported smoking only in the 3 months before conception and women who reported smoking through the first, second, or third trimester were compared to a referent group of nonsmokers. Multivariate logistic regression assessed the association between smoking cessation at various times in pregnancy and FGR less than the 10th and 5th percentiles. Results Of 927,424 births analyzed, 75% did not smoke. Of smokers, 24% smoked preconception only, 10% quit after the 1st trimester, 4% quit after the 2nd trimester, and 59% smoked throughout pregnancy. The rate of FGR less than the 10th and 5th percentiles among non-smokers was 8.1% and 3.6%, respectively. Although smoking only in the preconception period did not significantly increase FGR risk, smoking in any trimester did. The adjOR(95%CI) for FGR less than the 10th and 5th percentiles, respectively, of cessation after the 1st trimester was 1.19(1.13,1.24) and 1.25(1.17,1.33), and 1.67(1.57,1.78) and 1.83(1.68,1.99) for cessation after the second trimester. Women who reported smoking throughout pregnancy had the highest risks of FGR, 2.26 (2.22,2.31) and 2.44(2.37,2.51), after accounting for the influence of race, low socioeconomic status, and medical comorbidities. Conclusions Smoking of any duration during pregnancy is associated with an increased risk of FGR, with decreasing risk the earlier that cessation occurs. Smoking cessation programs should focus on the benefit of quitting as early in pregnancy as possible. PMID:26000517

  1. Embryo development, fetal growth and postnatal phenotype of eGFP lambs generated by lentiviral transgenesis.

    PubMed

    Crispo, M; Vilariño, M; dos Santos-Neto, P C; Núñez-Olivera, R; Cuadro, F; Barrera, N; Mulet, A P; Nguyen, T H; Anegón, I; Menchaca, A

    2015-02-01

    Lentiviral technology has been recently proposed to generate transgenic farm animals more efficiently and easier than traditional techniques. The objective was to evaluate several parameters of lambs obtained by lentiviral transgenesis in comparison with non-transgenic counterparts. In vitro produced embryos were microinjected (TG group) at two-cell stage with a lentiviral construct containing enhanced green fluorescent protein (eGFP) gene, while embryos produced by in vitro fertilization (IVF group) or intrauterine insemination (IUI group) were not microinjected. Microinjection technique efficiently generated eight-cell transgenic embryos (97.4%; 114/117). Development rate on day 5 after fertilization was similar for TG (39.3%, 46/117) and IVF embryos (39.6%, 44/111). Pregnancy rate was detected in 50.0% (6/12) of recipient ewes with TG embryos, in 46.7% (7/15) with IVF embryos, and in 65.0% (13/20) of IUI ewes (P = NS). Nine lambs were born in TG group, six lambs in IVF group, and 16 lambs in IUI group. All TG lambs (9/9) were GFP positive to real-time PCR and eight (88.9%) showed a strong and evident GFP expression in mucosae, eyes and keratin tissues. Fetal growth monitored every 15 day by ultrasonography did not show significant differences. Transgenic lambs neither differ in morphometric variables in comparison with non transgenic IVF lambs within 3 months after birth. Transmission of the transgene to the progeny was observed in green fluorescent embryos produced by IVF using semen from the TG founder lambs. In conclusion, this study demonstrates the high efficiency of lentiviral technology to produce transgenic sheep, with no clinic differences in comparison with non transgenic lambs.

  2. Lack of Thromboxane Synthase Prevents Hypertension and Fetal Growth Restriction after High Salt Treatment during Pregnancy.

    PubMed

    Pai, Chen-Hsueh; Yen, Ching-Tzu; Chen, Chie-Pein; Yu, I-Shing; Lin, Shu-Wha; Lin, Shu-Rung

    2016-01-01

    Preeclampsia (PE) is a potentially fatal pregnancy-related hypertensive disorder characterized by poor placenta development that can cause fetal growth restriction. PE-associated pathologies, including thrombosis, hypertension, and impaired placental development, may result from imbalances between thromboxane A2 (TXA2) and prostacyclin. Low-dose aspirin, which selectively inhibits TXA2 production, is used to prevent high-risk PE. However, the role of TXA2 in aspirin-mediated protective effects in women with PE is not understood fully. In this study, we examined the role of prostanoids in PE using human samples and an induced PE mouse model. We demonstrated that the administration of salted drinking water (2.7% NaCl) to wild-type mice resulted in elevated placental TXA2 synthase (TXAS) and plasma TXA2, but not prostacyclin, levels, which was also found in our clinical PE placenta samples. The high salt-treated wild-type pregnant mice had shown unchanged maternal body weight, hypertension (MAP increase 15 mmHg), and decreased pup weight (~50%) and size (~24%), but these adverse effects were ameliorated in TXAS knockout (KO) mice. Moreover, increased expression of interleukin-1β and downstream phosphorylated-p38-mitogen-activated protein kinase were concordant with apoptosis induction in the placentas of salt water-treated wild-type mice. These alterations were not observed in TXAS KO mice. Together, our data suggest that TXA2 depletion has anti-PE effects due to the prevention of hypertension and placental damage through downregulation of the interleukin-1β pathway.

  3. Maternal Dietary Patterns and Fetal Growth: A Large Prospective Cohort Study in China

    PubMed Central

    Lu, Min-Shan; Chen, Qiao-Zhu; He, Jian-Rong; Wei, Xue-Ling; Lu, Jin-Hua; Li, Sheng-Hui; Wen, Xing-Xuan; Chan, Fan-Fan; Chen, Nian-Nian; Qiu, Lan; Mai, Wei-Bi; Zhang, Rui-Fang; Hu, Cui-Yue; Xia, Hui-Min; Qiu, Xiu

    2016-01-01

    There was limited evidence revealing the association of Chinese maternal dietary patterns with fetal growth. We aimed to examine the relationship of maternal dietary patterns during pregnancy to neonatal birth weight and birth weight for gestational age in a Chinese population. A total of 6954 mother-child pairs were included from the Born in Guangzhou Cohort Study. Maternal diet during pregnancy was assessed using a self-administered food frequency questionnaire. Cluster analysis was used to identify dietary patterns. The following six dietary patterns were identified: “Cereals, eggs, and Cantonese soups” (n 1026, 14.8%), “Dairy” (n 1020, 14.7%), “Fruits, nuts, and Cantonese desserts” (n 799, 11.5%), “Meats” (n 1066, 15.3%), “Vegetables” (n 1383, 19.9%), and “Varied” (n 1224, 17.6%). The mean neonatal birth weight Z scores of women in the above patterns were 0.02, 0.07, 0.20, 0.01, 0.06, and 0.14, respectively. Women in the “Fruits, nuts, and Cantonese desserts” and “Varied” groups had significantly heavier infants compared with those in the “Cereals, eggs, and Cantonese soups” group. Compared with women in the “Cereals, eggs, and Cantonese soups” group, those in the “Varied” group had marginally significantly lower odds of having a small-for-gestational age (SGA) infant after adjustment for other confounders (OR 0.77, 95% CI 0.57, 1.04, p = 0.08). These findings suggest that compared to a traditional Cantonese diet high in cereals, eggs, and Cantonese soups, a diet high in fruits, nuts, and Cantonese desserts might be associated with a higher birth weight, while a varied diet might be associated with a greater birth weight and also a decreased risk of having a SGA baby. PMID:27136584

  4. The Effect of Fetal and Childhood Growth over Depression in Early Adulthood in a Southern Brazilian Birth Cohort

    PubMed Central

    Loret de Mola, Christian; Quevedo, Luciana de Avila; Pinheiro, Ricardo Tavares; Gonçalves, Helen; Gigante, Denise Petrucci; Motta, Janaína Vieira dos Santos; Barros, Fernando C.; Horta, Bernardo Lessa

    2015-01-01

    Background Poor nutrition and growth during fetal life and childhood might be associated with depression in adulthood; however, studies evaluating these associations present controversial results, especially when comparing studies using different proxies for fetal growth. We evaluated the association of fetal and childhood growth/nutrition with depression, in adulthood, using different approaches and measurement methods. Method In 1982, hospital births (n = 5914) in Pelotas, southern Brazil, were examined and have been prospectively followed. At 30 years, the presence of major depression and depressive symptoms severity was evaluated using the Mini International Neuropsychiatric Interview (MINI) and Beck Depression Inventory (BDI-II). The present study assessed their association with birth weight, premature birth, small for gestational age (SGA), stunting and conditional growth during childhood. Results At 30 years, 3576 individuals were evaluated and 7.9% had major depression. Low birth weight (PR = 1.01 95%CI [0.64–1.60]), having been born SGA (PR = 0.87 95%CI [0.64–1.19]) and premature birth (PR = 1.22 95%CI [0.72–2.07]) were not associated with major depression in multivariable models. However, those born SGA who were also stunted in childhood had a higher prevalence of major depression (PR = 1.87 95%CI [1.06–3.29]) and greater odds of scoring a higher level of depression in the BDI-II (OR = 2.18 95%CI [1.34–3.53]). Conclusion In this Brazilian cohort of young adults, those born SGA who were also stunted during childhood had a higher risk of depression in adulthood. Our results show that the effect of growth impairment on depression is cumulative. PMID:26469192

  5. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia.

    PubMed

    Ornoy, Asher

    2011-09-01

    Pregestational (PGDM) and gestational (GDM) diabetes may be associated with a variety of fetal effects including increased rate of spontaneous abortions, intrauterine fetal death, congenital anomalies, neurodevelopmental problems and increased risk of perinatal complications. Additional problems of concern are fetal growth disturbances causing increased or decreased birth weight. Optimal control of maternal blood glucose is known to reduce these changes. Among the long lasting effects of these phenomena are a high rate of overweight and obesity at childhood and a high tendency to develop the "metabolic syndrome" characterized by hypertension, cardio-vascular complications and type 2 diabetes. Similarly, maternal overweight and obesity during pregnancy or excessive weight gain are also associated with increased obesity and complications in the offspring. Although there are different causes for fetal growth restriction (FGR) or for fetal excessive growth (macrosomis), paradoxically both are associated with the "metabolic syndrome" and its long term consequences. The exact mechanism(s) underlying these long term effects on growth are not fully elucidated, but they involve insulin resistance, fetal hyperleptinemia, hypothalamic changes and most probably epigenetic changes. Preventive measures to avoid the metabolic syndrome and its complications seem to be a tight dietary control and physical activity in the children born to obese or diabetic mothers or who had antenatal growth disturbances for other known or unknown reasons.

  6. Loss of the pregnancy-induced rise in cortisol concentrations in the ewe impairs the fetal insulin-like growth factor axis

    PubMed Central

    Jensen, Ellen C.; Bennet, Laura; Wood, Charles; Vickers, Mark; Breier, Bernhard; Gunn, Alistair J.; Keller-Wood, Maureen

    2013-01-01

    Maternal cortisol levels increase during pregnancy. Although this change is important for optimal fetal growth, the mechanisms of the changes in growth remain unclear. We examined whether alterations in maternal plasma cortisol concentrations are associated with changes in the fetal insulin-like growth factor (IGF) axis. Pregnant ewes in late gestation (115 ± 0.4 days) were studied: six control animals, five ewes given 1 mg/kg/day cortisol (high cortisol), and five adrenalectomized ewes given 0.5-0.6 mg cortisol/kg/day (low cortisol). Blood samples were taken throughout the experiment and at necropsy (130 ± 0.2 days) and fetal liver was frozen for mRNA analysis. Fetal IGF-I and insulin plasma concentrations were lower and IGFBP-1 concentrations were higher in the low cortisol group compared with those in controls (p<0.05). Fetal liver IGF-II and IGFBP-3 (insulin-like growth factor binding protein 3) mRNA were decreased in low cortisol animals compared with those in controls (p<0.05). There were no significant changes in these parameters in the high cortisol group, and there were no changes in fetal liver IGF-I, growth hormone receptor, IGF-I receptor, IGF-II receptor, IGFBP-1 or IGFBP-2 mRNA levels between the groups. These data suggest that reduced fetal IGF availability contributes to reduced fetal growth when maternal cortisol secretion is impaired, but not during exposure to moderate increases in cortisol. PMID:21635815

  7. Enhancing Learning Environments for Students Affected by Fetal Alcohol Spectrum Disorders: An Exploratory Study of Canadian Pre-Service Teacher Knowledge and Conceptions

    ERIC Educational Resources Information Center

    Pei, Jacqueline; Job, Jenelle; Poth, Cheryl; O'Brien-Langer, Anna; Tang, Wei

    2015-01-01

    There is a pressing need for enhancing the learning environment for students affected by Fetal Alcohol Spectrum Disorders (FASDs). To develop relevant professional learning opportunities for teachers, a logical initial step is to explore the extent to which pre-service teachers accurately understand the unique neuropsychological functioning…

  8. Association between maternal seafood consumption before pregnancy and fetal growth: evidence for an association in overweight women. The EDEN mother-child cohort

    PubMed Central

    Drouillet, Peggy; Kaminski, Monique; De Lauzon-Guillain, Blandine; Forhan, Anne; Ducimetière, Pierre; Schweitzer, Michel; Magnin, Guillaume; Goua, Valérie; Thiébaugeorges, Olivier; Charles, Marie-Aline

    2009-01-01

    SUMMARY Studies, in countries with high seafood consumption, suggested its benefit on fetal growth and child development. The objective of our study was to determine the association between seafood consumption in French pregnant women and fetal growth. Pregnant women included in the EDEN mother-child cohort study completed two food frequency questionnaires on their usual diet in the year before and during the last three months of pregnancy (n=1805). Fetal circumferences were measured by ultrasound, and anthropometry at birth. Variables were compared across tertiles of the mother’s seafood consumption by multiple linear regressions adjusted for confounding variables. Analyses were stratified according to maternal overweight because of interaction (p<0.01). As results, there was no association between seafood intake and fetal growth in the whole sample of women. For overweight women (n=464), a higher consumption before pregnancy was associated with higher fetal biparietal and abdominal circumferences and anthropometric measures. From the lowest to the highest tertiles, mean birthweight was 167g higher (p=0.002). No significant association was found with consumption at the end of pregnancy. In conclusion, high seafood consumption before pregnancy is positively associated with fetal growth in overweight women. Follow-up of the infants may help determine potential beneficial consequences for the child’s health and development. PMID:19228317

  9. Environmental and urinary markers of prenatal exposure to drinking water disinfection by-products, fetal growth, and duration of gestation in the PELAGIE birth cohort (Brittany, France, 2002-2006).

    PubMed

    Costet, Nathalie; Garlantézec, Ronan; Monfort, Christine; Rouget, Florence; Gagnière, Bertrand; Chevrier, Cécile; Cordier, Sylvaine

    2012-02-15

    Although prenatal exposure to water disinfection by-products does not appear to affect the duration of gestation, its impact on fetal growth remains an open question. The authors studied the associations between prenatal exposure to disinfection by-products and fetal growth restriction (FGR) and preterm birth in the PELAGIE cohort, a French birth cohort comprising 3,421 pregnant women recruited between 2002 and 2006. Exposure was assessed by estimating levels of trihalomethanes (THMs) in tap water during pregnancy and maternal water use and by measuring maternal urinary levels of trichloroacetic acid (TCAA) during early pregnancy in a nested case-control design that compared 174 FGR cases, 114 preterm births, and 399 controls. Higher uptake of THMs (especially brominated THMs) was associated with a higher risk of FGR. Women with TCAA detected in their urine (>0.01 mg/L) had a higher risk of FGR than those with TCAA levels below the detection limit (adjusted odds ratio = 1.8, 95% confidence interval: 0.9, 3.7) and had an odds ratio for preterm birth below 1 (adjusted odds ratio = 0.8, 95% confidence interval: 0.3, 2.6). Results from this prospective study, the first to use a biomarker of disinfection by-product exposure, suggest that prenatal exposure affects fetal growth, but the causal agent or agents remain to be identified.

  10. Prenatal Exposure to Perfluorocarboxylic Acids (PFCAs) and Fetal and Postnatal Growth in the Taiwan Maternal and Infant Cohort Study

    PubMed Central

    Wang, Yan; Adgent, Margaret; Su, Pen-Hua; Chen, Hsiao-Yen; Chen, Pau-Chung; Hsiung, Chao A.; Wang, Shu-Li

    2016-01-01

    Background: Perfluorocarboxylic acids (PFCAs) are environmentally and biologically persistent synthetic chemicals. PFCAs include perfluorooctanoic acid (PFOA; C8) and long-chain PFCAs (C9–C20). Studies examining long-chain PFCAs and fetal and postnatal growth are limited. Objectives: We investigated the associations of prenatal exposure to long-chain PFCAs with fetal and postnatal growth. Methods: For 223 Taiwanese mothers and their term infants, we measured PFOA and four long-chain PFCAs (ng/mL) in third-trimester maternal serum; infant weight (kg), length and head circumference (cm) at birth; and childhood weight and height at approximately 2, 5, 8, and 11 years of age. For each sex, we used multivariable linear regression to examine associations between ln-transformed prenatal PFCAs and continuous infant measures, and logistic regression to examine small for gestational age (SGA). Linear mixed models were applied to prenatal PFCAs and childhood weight and height z-scores. Results: In girls, prenatal perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDeA), perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoDA) concentrations were inversely associated with birth weight [e.g., βbirth weight (kg) = –0.06, 95% CI: –0.11, –0.01 per 1 ln-unit PFUnDA increase]; prenatal PFDeA and PFUnDA were associated with elevated odds of SGA; and PFDeA, PFUnDA, and PFDoDA were associated with lower average childhood height z-score. In boys, prenatal PFNA, and PFDoDA were associated with reductions in height at certain ages in childhood, but not with size at birth. Conclusions: Prenatal exposure to long-chain PFCAs may interfere with fetal and childhood growth in girls, and childhood growth in boys. Citation: Wang Y, Adgent M, Su PH, Chen HY, Chen PC, Hsiung CA, Wang SL. 2016. Prenatal exposure to perfluorocarboxylic acids (PFCAs) and fetal and postnatal growth in the Taiwan Maternal and Infant Cohort Study. Environ Health Perspect 124:1794–1800;

  11. Glucose replacement to euglycemia causes hypoxia, acidosis, and decreased insulin secretion in fetal sheep with intrauterine growth restriction.

    PubMed

    Rozance, Paul J; Limesand, Sean W; Barry, James S; Brown, Laura D; Hay, William W

    2009-01-01

    Nutritional interventions for intrauterine growth restriction (IUGR) have raised concerns for fetal toxicity, the mechanisms of which are unknown. Most of these attempts did not aim to normalize fetal metabolic conditions. Therefore, we used a model of IUGR to determine whether normalization of fetal hypoglycemia for 2 wks would be tolerated and increase insulin concentrations and pancreatic beta-cell mass. IUGR fetuses received either a direct saline infusion (Sal, the control group) or a 30% dextrose infusion (Glu) to normalize glucose concentrations. Neither insulin concentrations (0.11 +/- 0.01 Glu vs. 0.10 +/- 0.01 ng/mL Sal) nor beta-cell mass (65.2 +/- 10.3 Glu vs. 74.7 +/- 18.4 mg Sal) changed. Glucose stimulated insulin secretion (GSIS) was lower in the Glu group. Glu fetuses became progressively more hypoxic: O2 content 1.4 +/- 0.5 Glu vs. 2.7 +/- 0.4 mM Sal, p < 0.05. Partial pressure of carbon dioxide (Paco2) (53.6 +/- 0.8 Glu vs. 51.6 +/- 0.8 Sal, p < 0.05) and lactate (7.74 +/- 3.82 Glu vs. 2.47 +/- 0.55 mM Sal, p < 0.0001) were greater and pH lower (7.275 +/- 0.071 Glu vs. 7.354 +/- 0.003 Sal, p < 0.01) in the Glu group. We conclude that correction of fetal hypoglycemia is not well tolerated and fails to increase insulin concentrations or beta-cell mass in IUGR fetuses.

  12. Effect of nebivolol treatment during pregnancy on the genital circulation, fetal growth and postnatal development in the Wistar rat.

    PubMed

    Altoama, Kassem; Yassine Mallem, Mohamed; Thorin, Chantal; Betti, Eric; Desfontis, Jean-Claude

    2015-07-05

    The aim of study was to evaluate the effects of nebivolol, a cardioselective beta-1 adrenergic receptor blocker of the third generation with vasodilatory properties, vs. bisoprolol on the genital circulation, uterine vasculature, fetal growth and postnatal development in pregnant Wistar rats. Non invasive measurements of systolic and diastolic blood pressure (SBP and DBP) and heart rate (HR), and invasive measurement of genital blood flow (GBF) were taken in pregnant rats, by tail cuff and transonic probe methods respectively, after an oral treatment by gastric gavage with nebivolol (8mg/kg/day) or bisoprolol (10mg/kg/day) from day 11 to day 18 of pregnancy. Other morphometrical and histological measurements were performed on the ovarian and uterine arteries to evaluate the effect of nebivolol on the uterine vasculature. Furthermore, postnatal mortality and pup growth were recorded. The data demonstrated that nebivolol (compared with bisoprolol) induced a significant decrease in SBP, HR and GBF while DBP remained unchanged. Moreover, nebivolol increased the diameter and the length of ovarian and uterine arteries and the number of uterine artery segmental branches. The results also showed that the body weight gain of newborns in the nebivolol group was significantly lower vs. bisoprolol and vs. control with a higher mortality rate. The nebivolol action is not only limited to its favorable hemodynamic effects represented by a decrease in blood pressure, but it also produces adverse effects on fetal growth and postnatal development that may limit its therapeutic use in females during pregnancy.

  13. Artificial Neural Networks, and Evolutionary Algorithms as a systems biology approach to a data-base on fetal growth restriction.

    PubMed

    Street, Maria E; Buscema, Massimo; Smerieri, Arianna; Montanini, Luisa; Grossi, Enzo

    2013-12-01

    One of the specific aims of systems biology is to model and discover properties of cells, tissues and organisms functioning. A systems biology approach was undertaken to investigate possibly the entire system of intra-uterine growth we had available, to assess the variables of interest, discriminate those which were effectively related with appropriate or restricted intrauterine growth, and achieve an understanding of the systems in these two conditions. The Artificial Adaptive Systems, which include Artificial Neural Networks and Evolutionary Algorithms lead us to the first analyses. These analyses identified the importance of the biochemical variables IL-6, IGF-II and IGFBP-2 protein concentrations in placental lysates, and offered a new insight into placental markers of fetal growth within the IGF and cytokine systems, confirmed they had relationships and offered a critical assessment of studies previously performed.

  14. Glucocorticoid-induced changes in glucocorticoid receptor mRNA and protein expression in the human placenta as a potential factor for altering fetal growth and development.

    PubMed

    Bivol, Svetlana; Owen, Suzzanne J; Rose'Meyer, Roselyn B

    2016-02-05

    Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.

  15. Enhanced transforming growth factor-β signaling and fibrogenesis in ovine fetal skeletal muscle of obese dams at late gestation

    PubMed Central

    Huang, Yan; Yan, Xu; Zhu, Mei J.; McCormick, Richard J.; Ford, Stephen P.; Nathanielsz, Peter W.

    2010-01-01

    Maternal obesity (MO) is increasing at an alarming rate. The objective of this study was to evaluate the effect of MO on fibrogenesis in fetal skeletal muscle during maturation in late gestation. Nonpregnant ewes were assigned to a control diet (Con; fed 100% of NRC nutrient recommendations, n = 6) or obesogenic diet (OB; fed 150% of NRC recommendations, n = 6) from 60 days before conception, and fetal semitendenosus (St) muscle was sampled at 135 days of gestation (term 148 days). Total concentration and area of collagen in cross-sections of muscle increased by 27.0 ± 6.0 (P < 0.05) and 105.1 ± 5.9% (P = 0.05) in OB compared with Con fetuses. The expression of precursor TGF-β was 177.3 ± 47.6% higher, and concentration of phospho-p38 74.7 ± 23.6% was higher (P < 0.05) in OB than in CON fetal muscle. Increases of 327.9 ± 168.0 (P < 0.05) and 188.9 ± 82.1% (P < 0.05), respectively, were observed for mRNA expression of Smad7 and fibronectin in OB compared with Con muscles. In addition, enzymes involved in collagen synthesis, including lysyl oxidase, lysyl hydroxylase 2b, and prolyl 4-hydroxylase-α1, were increased by 350.2 ± 90.0 (P < 0.05), 236.5 ± 25.2 (P < 0.05), and 82.0 ± 36.2% (P = 0.05), respectively, in OB muscle. In conclusion, MO-enhanced fibrogenesis in fetal muscle in late gestation was associated with upregulation of the TGF-β/p38 signaling pathway. Enhanced fibrogenesis at such an early stage of development is expected to negatively affect the properties of offspring muscle because muscle fibrosis is a hallmark of aging. PMID:20371734

  16. Role of Insulinlike Growth Factor 1 in Fetal Development and in the Early Postnatal Life of Premature Infants.

    PubMed

    Hellström, Ann; Ley, David; Hansen-Pupp, Ingrid; Hallberg, Boubou; Ramenghi, Luca A; Löfqvist, Chatarina; Smith, Lois E H; Hård, Anna-Lena

    2016-09-01

    The neonatal period of very preterm infants is often characterized by a difficult adjustment to extrauterine life, with an inadequate nutrient supply and insufficient levels of growth factors, resulting in poor growth and a high morbidity rate. Long-term multisystem complications include cognitive, behavioral, and motor dysfunction as a result of brain damage as well as visual and hearing deficits and metabolic disorders that persist into adulthood. Insulinlike growth factor 1 (IGF-1) is a major regulator of fetal growth and development of most organs especially the central nervous system including the retina. Glucose metabolism in the developing brain is controlled by IGF-1 which also stimulates differentiation and prevents apoptosis. Serum concentrations of IGF-1 decrease to very low levels after very preterm birth and remain low for most of the perinatal development. Strong correlations have been found between low neonatal serum concentrations of IGF-1 and poor brain and retinal growth as well as poor general growth with multiorgan morbidities, such as intraventricular hemorrhage, retinopathy of prematurity, bronchopulmonary dysplasia, and necrotizing enterocolitis. Experimental and clinical studies indicate that early supplementation with IGF-1 can improve growth in catabolic states and reduce brain injury after hypoxic/ischemic events. A multicenter phase II study is currently underway to determine whether intravenous replacement of human recombinant IGF-1 up to normal intrauterine serum concentrations can improve growth and development and reduce prematurity-associated morbidities.

  17. Alcohol-induced brain growth restrictions (microencephaly) were not affected by concurrent exposure to cocaine during the brain growth spurt.

    PubMed

    Chen, W J; Andersen, K H; West, J R

    1994-09-01

    The prevalence of concomitant use of alcohol and cocaine among drug abusers has raised concern about the possible increased risk of fetal damage. The aim of this study was to assess the interactive effects of alcohol and cocaine on lethality, somatic growth, and brain growth using an animal model system. Sprague-Dawley rat pups were used as subjects. They were randomly assigned to 1 of the 9 artificially reared groups which varied with respect to the combination treatments of cocaine (0, 40, or 60 mg/kg) and alcohol (0, 3.3, or 4.5 g/kg). All artificially reared pups were given daily cocaine and alcohol treatments during a major part of the brain growth spurt period (postnatal days 4-9). An additional group of suckled control animals raised by their natural dams was included to control for artificial rearing. The results are summarized as follows: 1) Drug-induced lethality was higher in cocaine-treated groups when compared with non-cocaine-treated groups, and the concurrent administration of high doses of alcohol and cocaine significantly increased the mortality rate. 2) Somatic growth, in terms of body weight, was not affected by alcohol, cocaine, or the combination of both drugs using the artificial rearing technique. 3) Alcohol exposure during this brain growth spurt period significantly reduced whole brain weight, as well as forebrain, cerebellum, and brain stem weights. 4) In contrast to alcohol, cocaine failed to exert a detrimental effect on brain weight measures during this early postnatal period.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Growth and fertilization of porcine fetal oocytes grafted under the renal capsules of nude mice.

    PubMed

    Kaneko, Hiroyuki; Kikuchi, Kazuhiro; Noguchi, Junko

    2016-10-15

    The fetal ovary contains a larger pool of oocytes than the adult ovary, but utilization of the fetal oocytes of large animals has hardly been examined. In this study, we investigated the developmental competence of oocytes grown in host mice harboring ovarian grafts obtained from fetal pigs. Ovarian fragments from fetuses at 55, 70, and 90 days postartificial insemination (dpi) were grafted into ovariectomized nude mice (Crlj:CD1-Foxn1(nu); 55-, 70- and 90-dpi groups, respectively). For comparison, ovarian fragments from 20-day postpartum (dpp) piglets were also grafted (20-dpp group). About 60 days after detection of vaginal opening, the mice were given 62.5 U/mL porcine FSH for 13 days by infusion to enhance their follicular development. In the fetal ovaries before grafting, the percentage of germ cells in primordial follicles (termed primordial oocytes) relative to the total number of germ cells was 0.06% at 55 dpi, 2.4% at 70 dpi, and 7.2% at 90 dpi, but the majority was contained within egg nests. At 20 dpp, primordial oocytes accounted for 91.7% of the total number of germ cells and the rest were mostly in primary follicles. After FSH stimulation of host mice, formation of antral follicles was promoted in the grafts of the 70- and 90-dpi groups as well as the 20-dpp group, but a very small number of antral follicles developed in the 55-dpi group consistent with the lowest (P < 0.05) levels of circulating inhibin in that group. The mean number of full-sized oocytes with meiotic competence recovered per mouse was 6.0 in the 70-dpi, 18.0 in the 90-dpi, and 21.2 in the 20-dpp groups, whereas virtually no oocytes were recovered from mice in the 55-dpi group. Moreover, the mature oocytes in the 70- and 90-dpi groups were fertilized in vitro, as shown by formation of male and female pronuclei, but the percentage of oocytes penetrated by sperm was low in the 70- (49%) and 90-dpi (29%) groups as compared with the 20-dpp group (88%). These results clearly

  19. Fetal programming of overweight through the microbiome: boys are disproportionately affected.

    PubMed

    Kozyrskyj, A L; Kalu, R; Koleva, P T; Bridgman, S L

    2016-02-01

    Maternal and childhood obesity in pregnancy are worrisome public health issues facing our world today. New gene sequencing methods have advanced our knowledge of the disruptive effect of birth interventions and postnatal exposures on the maturation of gut microbiota and immunity during infancy. Yet, little is known about the impact of maternal pregnancy overweight on gut microbes and related processes, and how this may affect overweight risk in offspring. To address this gap in knowledge, we surveyed human studies for evidence in children, infants and pregnant women to piece together the limited literature and generate hypotheses for future investigation. From this literature, we learned that higher Lactobacillus yet lower Bacteroides spp. colonization of gut microbiota within 3 months of birth predicted risk for infant and child overweight. The abundance of bifidobacteria and staphylococci also appeared to play a role in the association with overweight, as did infant fecal immunoglobulin A levels, glycoproteins of the gut immune system that are acquired from breast milk and produced by the infant. We proposed that pregnancy overweight influences the compositional structure of gut microbiota in infants through vertical transfer of microbiota and/or their metabolites during pregnancy, delivery and breastfeeding. Finally, we brought forward emerging evidence on sex dimorphism, as well as ethnic and geographic variation, in reported associations between maternal overweight-induced gut microbiota dysbiosis and overweight risk.

  20. Telomere length in the two extremes of abnormal fetal growth and the programming effect of maternal arterial hypertension.

    PubMed

    Tellechea, Mariana; Gianotti, Tomas Fernandéz; Alvariñas, Jorge; González, Claudio D; Sookoian, Silvia; Pirola, Carlos J

    2015-01-19

    We tested the hypothesis that leukocyte telomere length (LTL) is associated with birth weight in both extremes of abnormal fetal growth: small (SGA) and large for gestational age newborns (LGA). Clinical and laboratory variables of the mothers and the neonates were explored; 45 newborns with appropriate weight for gestational age (AGA), 12 SGA and 12 LGA were included. Whether the differences might be explained by variation in OBFC1 (rs9419958) and CTC1 (rs3027234) genes associated with LTL was determined. A significant association between birth weight and LTL was observed; LTL was significantly shorter in LGA newborns (1.01 ± 0.12) compared with SGA (1.73 ± 0.19) p < 0.005, mean ± SE. Maternal (Spearman R = -0.6, p = 0.03) and neonatal LTL (R = -0.25, p = 0.03) were significantly and inversely correlated with maternal history of arterial hypertension in previous gestations. Neonatal LTL was not significantly associated with either rs9419950 or rs3027234, suggesting that the association between neonatal LTL and birth weight is not influenced by genetic variation in genes that modify the interindividual LTL. In conclusion, telomere biology seems to be modulated by abnormal fetal growth; modifications in telomere length might be programmed by an adverse environment in utero.

  1. Substrate-energy metabolism and metabolic risk factors for cardiovascular disease in relation to fetal growth and adult body composition.

    PubMed

    Kensara, Osama A; Wooton, Steve A; Phillips, David I W; Patel, Mayank; Hoffman, Daniel J; Jackson, Alan A; Elia, Marinos

    2006-08-01

    The effect of fetal programming on intermediary metabolism is uncertain. Therefore, we examined whether fetal programming affects oxidative and nonoxidative macronutrient metabolism and the prevalence of the metabolic syndrome in adult life. Healthy older men, aged 64-72 years, with either a lower birth weight (LBW, or=75th %ile; n = 13) had measurements of 1) net oxidative metabolism using indirect calorimetry before and for 6 h after a mixed meal (3,720 kJ) and 2) postprandial oxidation of exogenous [13C]palmitic acid. Body composition was measured using dual-energy X-ray absorptiometry. After adjustment for current weight and height, the LBW group had a lower resting energy expenditure (REE) in the preprandial (4.01 vs. 4.54 kJ/min, P = 0.015) and postprandial state (4.60 vs. 5.20 kJ/min, P = 0.004), and less fat-free mass than the HBW group. The BW category was a significant, independent, and better predictor of REE than weight plus height. There were no significant differences between groups in net oxidative and nonoxidative macronutrient (protein, fat, carbohydrate) metabolism (or of exogenous [13C]palmitate) or in the prevalence of the metabolic syndrome, which was present almost twice as commonly in the LBW than in the HBW group. The study suggests that fetal programming affects both pre- and postprandial EE in older life by mechanisms that are at least partly related to the mass of the fat-free body. BW was found to be a significant predictor of REE that was independent of adult weight plus height.

  2. Anthropometric protocols for the construction of new international fetal and newborn growth standards: the INTERGROWTH-21st Project

    PubMed Central

    Ismail, L Cheikh; Knight, HE; Bhutta, Z; Chumlea, WC

    2014-01-01

    The primary aim of the INTERGROWTH-21st Project is to construct new, prescriptive standards describing optimal fetal and preterm postnatal growth. The anthropometric measurements include the head circumference, recumbent length and weight of the infants, and the stature and weight of the parents. In such a large, international, multicentre project, it is critical that all study sites follow standardised protocols to ensure maximal validity of the growth and nutrition indicators used. This paper describes, in detail, the selection of anthropometric personnel, equipment, and measurement and calibration protocols used to construct the new standards. Implementing these protocols at each study site ensures that the anthropometric data are of the highest quality to construct the international standards. PMID:23841804

  3. The influence of maternal undernutrition in ovine twin pregnancy on fetal growth and Doppler flow-velocity waveforms.

    PubMed

    Newnham, J P; Kelly, R W; Patterson, L; James, I

    1991-11-01

    The effects on placental blood flow velocity of maternal undernutrition during mid pregnancy were investigated in 38 twin bearing pregnant sheep by Doppler analysis of umbilical and uteroplacental arterial waveforms. Mid pregnancy undernutrition resulted in fetal growth restriction manifest at term gestation by reduced mean birth weight. Arterial waveform systolic/diastolic ratios from the umbilical and uteroplacental arterial circulations were not influenced by maternal nutrition either during the dietary deprivation or during a subsequent period of dietary supplementation. An effect of heart rate on systolic/diastolic ratios could not be demonstrated. The results indicate that the fetus responds to mid pregnancy maternal undernutrition with restricted growth but without alterations in systolic/diastolic ratios in umbilical or uteroplacental arterial waveforms.

  4. Does nausea and vomiting of pregnancy play a role in the association found between maternal caffeine intake and fetal growth restriction?

    PubMed

    Boylan, S M; Greenwood, D C; Alwan, N; Cooke, M S; Dolby, V A; Hay, A W M; Kirk, S F L; Konje, J C; Potdar, N; Shires, S; Simpson, N A B; Taub, N; Thomas, J D; Walker, J J; White, K L M; Wild, C P; Cade, J E

    2013-05-01

    The aim of this study was to explore the relationships between nausea and vomiting in pregnancy and (a) fetal growth restriction; and (b) maternal caffeine metabolism and fetal growth restriction. A cohort of 2,643 pregnant women, aged 18-45 years, attending two UK maternity units between 8 and 12 weeks gestation, was recruited. A validated tool assessed caffeine intake at different stages of pregnancy and caffeine metabolism was assessed from a caffeine challenge test. Experience of nausea and vomiting of pregnancy was self-reported for each trimester. Adjustment was made for confounders, including salivary cotinine as a biomarker of current smoking status. There were no significant associations between fetal growth restriction and nausea and vomiting in pregnancy, even after adjustment for smoking and alcohol intake. There were no significant differences in the relationship between caffeine intake and fetal growth restriction between those experiencing symptoms of nausea and vomiting and those who did not, for either the first (p = 0.50) or second trimester (p = 0.61) after adjustment for smoking, alcohol intake and caffeine half-life. There were also no significant differences in the relationship between caffeine half-life and fetal growth restriction between those experiencing symptoms of nausea and vomiting and those who did not, for either the first trimester (p = 0.91) or the second trimester (p = 0.45) after adjusting for smoking, alcohol intake and caffeine intake. The results from this study show no evidence that the relationship between maternal caffeine intake and fetal growth restriction is modified by nausea and vomiting in pregnancy.

  5. Dietary phosphorus affects the growth of larval Manduca sexta.

    PubMed

    Perkins, Marc C; Woods, H Arthur; Harrison, Jon F; Elser, James J

    2004-03-01

    Although phosphorus has long been considered an important factor in the growth of diverse biota such as bacteria, algae, and zooplankton, insect nutrition has classically focused on dietary protein and energy content. However, research in elemental stoichiometry has suggested that primary producer biomass has similar N:P ratios in aquatic and terrestrial systems, and phosphorus-rich herbivores in freshwater systems frequently face phosphorus-limited nutritional conditions. Therefore, herbivorous insects should also be prone to phosphorus limitation. We tested this prediction by rearing Manduca sexta larvae on artificial and natural (Datura wrightii leaves) diets containing varying levels of phosphorus (approximately 0.20, 0.55, or 1.2% phosphorus by dry weight). For both artificial and natural diets, increased dietary phosphorus significantly increased growth rates and body phosphorus contents, and shortened the time to the final instar molt. Caterpillars did not consistently exhibit compensatory feeding for phosphorus on either type of diet. The growth and body phosphorus responses were not explicable by changes in amounts of potassium or calcium, which co-varied with phosphorus in the diets. Concentrations of phosphorus in D. wrightii leaves collected in the field varied over a range in which leaf phosphorus is predicted to affect M. sexta's growth rates. These results suggest that natural variation in dietary phosphorus is likely to affect the growth rate and population dynamics of M. sexta, and perhaps larval insects more generally.

  6. Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice.

    PubMed

    Robertson, Sarah A; Care, Alison S; Skinner, Rebecca J

    2007-05-01

    Interleukin 10 (IL10) is a potent immune-regulating cytokine and inhibitor of inflammatory cytokine synthesis. To evaluate the anti-inflammatory role of IL10 in pregnancy, the response of genetically IL10-deficient mice to low-dose lipopolysaccharide (LPS)-induced abortion was examined. When IL10-null mutant C57Bl/6 (Il10(-/-)) and control (Il10(+/+)) mice were administered low-dose LPS on Day 9.5 of gestation, IL10 deficiency predisposed to fetal loss accompanied by growth restriction in remaining viable fetuses, with an approximately 10-fold reduction in the threshold dose for 100% abortion. After LPS administration, inflammatory cytokines tumor necrosis factor-alpha (TNFA) and IL6 were markedly increased in serum, uterine, and conceptus tissues in Il10(-/-) mice compared with Il10(+/+) mice, with elevated local synthesis of Tnfa and Il6 mRNAs in the gestational tissues. IL1A and IL12p40 were similarly elevated in serum and gestational tissues, whereas interferon gamma (IFNG) and soluble TNFRII content were unchanged in the absence of IL10. Recombinant IL10 rescued the increased susceptibility to LPS-induced fetal loss in Il10(-/-) mice but did not improve outcomes in Il10(+/+) mice. IL10 genotype also influenced the responsiveness of mice to a TNFA antagonist, etanercept. Fetal loss in Il10(-/-) mice was partly alleviated by moderate or high doses of etanercept, whereas Il10(+/+) mice were refractory to high-dose etanercept, consistent with attenuation by IL10 status of TNFA bioavailability after etanercept treatment. These data show that IL10 modulates resistance to inflammatory stimuli by downregulating expression of proinflammatory cytokines TNFA, IL6, IL1A, and IL12, acting to protect against inflammation-induced pathology in the implantation site.

  7. Spaceflight and age affect tibial epiphyseal growth plate histomorphometry

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.

    1992-01-01

    Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.

  8. Expression of Nerve Growth Factor (NGF), TrkA, and p75NTR in Developing Human Fetal Teeth

    PubMed Central

    Mitsiadis, Thimios A.; Pagella, Pierfrancesco

    2016-01-01

    Nerve growth factor (NGF) is important for the development and the differentiation of neuronal and non-neuronal cells. NGF binds to specific low- and high-affinity cell surface receptors, respectively, p75NTR and TrkA. In the present study, we examined by immunohistochemistry the expression patterns of the NGF, p75NTR, and TrkA proteins during human fetal tooth development, in order to better understand the mode of NGF signaling action in dental tissues. The results obtained show that these molecules are expressed in a wide range of dental cells of both epithelial and mesenchymal origin during early stages of odontogenesis, as well as in nerve fibers that surround the developing tooth germs. At more advanced developmental stages, NGF and TrkA are localized in differentiated cells with secretory capacities such as preameloblasts/ameloblasts secreting enamel matrix and odontoblasts secreting dentine matrix. In contrast, p75NTR expression is absent from these secretory cells and restricted in proliferating cells of the dental epithelium. The temporospatial distribution of NGF and p75NTR in fetal human teeth is similar, but not identical, with that observed previously in the developing rodent teeth, thus indicating that the genetic information is well-conserved during evolution. The expression patterns of NGF, p75NTR, and TrkA during odontogenesis suggest regulatory roles for NGF signaling in proliferation and differentiation of epithelial and mesenchymal cells, as well as in attraction and sprouting of nerve fibers within dental tissues. PMID:27536251

  9. Preliminary terrestrial based experiments on gravity-affected crystal growth

    NASA Technical Reports Server (NTRS)

    Johnston, M. H.

    1970-01-01

    Tin was melted in a heating assembly secured to the arm of a centrifuge. The furnace was allowed to pivot and reach its equilibrium angle of swing for the gravity force being experienced. The crucible was cooled during rotation to allow the growth of single crystals. The crystals were etched for the purpose of observing the growth striations. Slices were removed from some of the crystals to permit observation of the striations in the interior. Visual analyses were made with a scanning electron microscope. Preliminary conclusions relating the appearance of the striations to gravity forces and the affected growth mechanisms are presented. Further experiments that will verify these conclusions and determine other gravity effects are proposed.

  10. Alterations in mouse embryo intracellular pH by DMO during culture impair implantation and fetal growth.

    PubMed

    Zander-Fox, Deirdre L; Mitchell, Megan; Thompson, Jeremy G; Lane, Michelle

    2010-08-01

    The preimplantation embryo is highly susceptible to in-vitro stress, and although this does not necessarily perturb blastocyst development, it can significantly affect embryo physiology and the ability to form a viable pregnancy. This study determined that the preimplantation mouse embryo is highly sensitive to a small decrease in intracellular pH (<0.2 pH units). Embryos cultured in media containing a weak acid (5,5-dimethyl-2,4-oxazolidinedione; DMO) formed blastocysts with decreased cell number and inner cell mass number, as well as increased apoptosis, even though blastocyst development and morphology were unchanged. Interestingly, the effects were similar regardless of whether the pH stress was present for a short-term 'acute' exposure (during the zygote to 2-cell, or 2-cell to 8-cell division) or an extended 'chronic' period of time (continually from the zygote to the blastocyst stage). Exposure to DMO during the first cleavage division did not alter implantation; however, fetal weight and crown-rump length were significantly decreased (P<0.05). In contrast, continuous exposure to DMO throughout preimplantation development reduced not only implantation but also fetal weight and crown-rump length. This study highlights the importance of correct intracellular pH and demonstrates that slight deviations can significantly impact embryo development and viability.

  11. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  12. [The imbalance of metal-containing proteins and free metal ions in the amniotic fluid during fetal growth].

    PubMed

    Pogorelova, T N; Linde, V A; Gunko, V O; Selyutina, S N

    2016-01-01

    The levels of zinc, copper, iron, and magnesium ions, and some of their binding proteins have been investigated in an amniotic fluid under the fetal growth retardation (FGR). FGR, developed under conditions of placental insufficiency, is characterized by a decrease in the content of zinc, iron, and magnesium ions and by an increase in the copper content in the amniotic fluid in the II and III trimesters of pregnancy. During these trimesters the levels of ceruloplasmin, ferritin, and Ca2+,Mg2+-ATPase were lower in FGR, while the level of zinc-a-2-glycoprotein was higher than during the same periods of normal pregnancy. Changes in the parameters studied in the amniotic fluid were associated with developmental disorders of the newborns. These changes obviously have a pathogenetic importance in the development of FGR, and the levels of metal ions and their ratio in the amniotic fluid can be used as markers of the pre- and postnatal pathology.

  13. Biochemical properties of Na+/K(+)-ATPase in axonal growth cone particles isolated from fetal rat brain.

    PubMed

    Mercado, R; Hernández, J

    1994-08-01

    Axonal growth cones (AGC) isolated from fetal rat brain have an important specific activity of N+/K(+)-ATPase. Kinetic assays of the enzyme in AGC showed that Km values for ATP or K+ are similar to those reported for the adult brain enzyme. For Na+ the affinity (Km) was lower. Vmax for the three substrates was several times lower in AGC as compared to the adult value. We also observed two apparent inhibition constants of Na+/K(+)-ATPase by ouabain, one of low affinity, possibly corresponding to the alpha 1 isoform and another of high affinity which is different to that described for the alpha 2 isoform of the enzyme. These results support an important role for the sodium pump in the maintainance of volume and cationic balance in neuronal differentiating structures. The functional differences observed also suggest that the enzymatic complex of Na+/K(+)-ATPase in AGC is in a transitional state towards the adult configuration.

  14. Inhibition of placental ornithine decarboxylase by DL-alpha-difluoro-methyl ornithine causes fetal growth restriction in rat.

    PubMed

    Ishida, Makoto; Hiramatsu, Yuji; Masuyama, Hisashi; Mizutani, Yasushi; Kudo, Takafumi

    2002-02-08

    The roles of polyamines in intrauterine growth restriction (IUGR) is studied. The DL-alpha-difluoromethyl ornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC) which is a rate limiting enzyme of polyamine synthesis was administrated to pregnant rats so that we obtained rat fetuses with IUGR. The changes of maternal nutrition, damage of the placenta, and the direct effect of DFMO on the fetus were examined in this IUGR model. Administration of DFMO did not induced changes of maternal nutrition except for triglyceride and the fetal metabolic state. But the placental weight, ODC activity, and DNA in the placenta were decreased significantly. The ODC activity in the total placenta decreased to less than 10% of that of the control. Depression of ODC activity in the placenta may be the major cause of IUGR induced by DFMO administration, and polyamines play important roles to carry pregnancy.

  15. Factors affecting growth of foodborne pathogens on minimally processed apples.

    PubMed

    Alegre, Isabel; Abadias, Maribel; Anguera, Marina; Oliveira, Marcia; Viñas, Inmaculada

    2010-02-01

    Escherichia coli O157:H7, Salmonella and Listeria innocua increased by more than 2 log(10) units over a 24 h period on fresh-cut 'Golden Delicious' apple plugs stored at 25 and 20 degrees C. L. innocua reached the same final population level at 10 degrees C meanwhile E. coli and Salmonella only increased 1.3 log(10) units after 6 days. Only L. innocua was able to grow at 5 degrees C. No significant differences were observed between the growth of foodborne pathogens on fresh-cut 'Golden Delicious', 'Granny Smith' and 'Shampion' apples stored at 25 and 5 degrees C. The treatment of 'Golden Delicious' and 'Granny Smith' apple plugs with the antioxidants, ascorbic acid (2%) and NatureSeal (6%), did not affect pathogen growth. The effect of passive modified atmosphere packaging (MAP) on the growth of E. coli, Salmonella and L. innocua on 'Golden Delicious' apple slices was also tested. There were no significant differences in growth of pathogens in MAP conditions compared with air packaging of 'Golden Delicious' apple plugs, but the growth of mesophilic and psychrotrophic microorganisms was inhibited. These results highlight the importance of avoiding contamination of fresh-cut fruit with foodborne pathogens and the maintenance of the cold chain during storage until consumption.

  16. Spinal fusion with demineralized calf fetal growth plate as novel biomaterial in rat model: a preliminary study

    PubMed Central

    Karimi, Iraj; Oryan, Ahmad; Mahmoudi, Elena; Shafiei-Sarvestani, Zahra

    2014-01-01

    Background Spinal fusions are being performed for various pathologies of the spine such as degenerative diseases, deformities, tumors and fractures. Recently, other bone substitutes such as demineralized bone matrix (DBM) have been developed for spinal fusion. Therefore, this study was conducted to evaluate the intertransverse posterolateral fusion with the Bovine fetal growth plate (DCFGP) and compare it with commercial DBM in rat model. Methods A total of 16 mature male rats (aged 4 months and weighing 200-300 g) were randomly divided in two groups. After a skin incision on posterolateral site, two separate fascial incisions were made 3 mm from the midline. A muscle-splitting approach was used to expose the transverse processes of L4 and L5. Group I (n = 8) underwent with implanted Bovine fetal growth plate among decorticated transverse processes. In group II (n = 8) commercial DBM was placed in the same manner. Fusion was evaluated by manual palpation, radiographical, gross and histopathological analysis. Results The manual palpation, radiological, gross and histopathological findings indicate high potential of the DCFGP in spinal fusion. At the 42nd postoperative day, new bone formation as evidenced by a bridge between L4 and L5 was visualized in all rats implanted with DCFGP and commercial DBM. The newly formed bone tissue was observed in all implanted areas on the 42nd day after operation in the two groups. Conclusions The spinal fusion of the animals of both groups demonstrated more advanced osteogenic potential and resulted in proper fusion of the transverse process of lumbar vertebra. PMID:25694913

  17. Maternal dietary patterns in pregnancy and fetal growth in Japan: the Osaka Maternal and Child Health Study.

    PubMed

    Okubo, Hitomi; Miyake, Yoshihiro; Sasaki, Satoshi; Tanaka, Keiko; Murakami, Kentaro; Hirota, Yoshio; Kanzaki, Hideharu; Kitada, Mitsuyoshi; Horikoshi, Yorihiko; Ishiko, Osamu; Nakai, Yuichiro; Nishio, Junko; Yamamasu, Seiichi; Yasuda, Jinsuke; Kawai, Seigo; Yanagihara, Kazumi; Wakuda, Koji; Kawashima, Tokio; Narimoto, Katsuhiko; Iwasa, Yoshihiko; Orino, Katsuhiko; Tsunetoh, Itsuo; Yoshida, Junichi; Iito, Junichi; Kaneko, Takuzi; Kamiya, Takao; Kuribayashi, Hiroyuki; Taniguchi, Takeshi; Takemura, Hideo; Morimoto, Yasuhiko; Matsunaga, Ichiro; Oda, Hajime; Ohya, Yukihiro

    2012-05-01

    Maternal nutritional status during pregnancy is an important determinant of fetal growth. Although the effects of several nutrients and foods have been well examined, little is known about the relationship of overall maternal diet in pregnancy to fetal growth, particularly in non-Western populations. We prospectively examined the relationship of maternal dietary patterns in pregnancy to neonatal anthropometric measurements at birth and risk of small-for-gestational-age (SGA) birth among 803 Japanese women with live-born, singleton, term deliveries. Maternal diet in pregnancy was assessed using a validated, self-administered diet history questionnaire. Dietary patterns from thirty-three predefined food groups (g/4184 kJ) were extracted by cluster analysis. The following three dietary patterns were identified: the 'meat and eggs' (n 326), 'wheat products', with a relatively high intake of bread, confectioneries and soft drinks (n 303), and 'rice, fish and vegetables' (n 174) patterns. After adjustment for potential confounders, women in the 'wheat products' pattern had infants with the significantly lowest birth weight (P = 0·045) and head circumference (P = 0·036) among those in the three dietary patterns. Compared with women in the 'rice, fish and vegetables' pattern, women in the 'wheat products' pattern had higher odds of having a SGA infant for weight (multivariate OR 5·2, 95 % CI 1·1, 24·4), but this was not the case for birth length or head circumference. These results suggest that a diet high in bread, confectioneries, and soft drinks and low in fish and vegetables during pregnancy might be associated with a small birth weight and an increased risk of having a SGA infant.

  18. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population.

    PubMed

    Eskenazi, Brenda; Harley, Kim; Bradman, Asa; Weltzien, Erin; Jewell, Nicholas P; Barr, Dana B; Furlong, Clement E; Holland, Nina T

    2004-07-01

    Although pesticide use is widespread, little is known about potential adverse health effects of in utero exposure. We investigated the effects of organophosphate pesticide exposure during pregnancy on fetal growth and gestational duration in a cohort of low-income, Latina women living in an agricultural community in the Salinas Valley, California. We measured nonspecific metabolites of organophosphate pesticides (dimethyl and diethyl phosphates) and metabolites specific to malathion (malathion dicarboxylic acid), chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphoro-thioate], and parathion (4-nitrophenol) in maternal urine collected twice during pregnancy. We also measured levels of cholinesterase in whole blood and butyryl cholinesterase in plasma in maternal and umbilical cord blood. We failed to demonstrate an adverse relationship between fetal growth and any measure of in utero organophosphate pesticide exposure. In fact, we found increases in body length and head circumference associated with some exposure measures. However, we did find decreases in gestational duration associated with two measures of in utero pesticide exposure: urinary dimethyl phosphate metabolites [beta(adjusted) = -0.41 weeks per log10 unit increase; 95% confidence interval (CI), -0.75 -- -0.02; p = 0.02], which reflect exposure to dimethyl organophosphate compounds such as malathion, and umbilical cord cholinesterase (beta(adjusted) = 0.34 weeks per unit increase; 95% CI, 0.13-0.55; p = 0.001). Shortened gestational duration was most clearly related to increasing exposure levels in the latter part of pregnancy. These associations with gestational age may be biologically plausible given that organophosphate pesticides depress cholinesterase and acetylcholine stimulates contraction of the uterus. However, despite these observed associations, the rate of preterm delivery in this population (6.4%) was lower than in a U.S. reference population.

  19. Placental Weight Mediates the Effects of Prenatal Factors on Fetal Growth: the Extent Differs by Preterm Status

    PubMed Central

    Ouyang, Fengxiu; Parker, Margaret; Cerda, Sandra; Pearson, Colleen; Fu, Lingling; Gillman, Matthew W.; Zuckerman, Barry; Wang, Xiaobin

    2012-01-01

    Elevated pre-pregnancy body mass index (BMI), excessive gestational weight gain (GWG), and gestational diabetes (GDM) are known determinants of fetal growth. The role of placental weight is unclear. We aimed to examine the extent to which placental weight mediates the associations of pre-pregnancy BMI, GWG, and GDM with birthweight-for-gestational age, and whether the relationships differ by preterm status. We examined 1035 mother-infant pairs at birth from the Boston Birth Cohort. Data were collected by questionnaire and clinical measures. Placentas were weighed without membranes or umbilical cords. We performed sequential models excluding and including placental weight, stratified by preterm status. We found that 21% of mothers were obese, 42% had excessive GWG, and 5% had GDM. 41% were preterm. Among term births, after adjustment for sex, gestational age, maternal age, race, parity, education, smoking and stress during pregnancy, birthweight-for-gestational age z-score was 0.55 (0.30, 0.80) units higher for pre-pregnancy obesity vs. normal weight. It was 0.34 (0.13, 0.55) higher for excessive vs. adequate GWG, 0.67 (0.24, 1.10) for GDM vs. no DM, with additional adjustment for pre-pregnancy BMI. Adding placental weight to the models attenuated the estimates for pre-pregnancy obesity by 20%, excessive GWG by 32%, and GDM by 21%. Among preterm infants, GDM was associated with 0.67 (0.34, 1.00) higher birthweight-for-gestational age z-score, but pre-pregnancy obesity and excessive GWG were not. Attenuation by placental weight was 36% for GDM. These results suggest that placental weight partially mediates the effects of pre-pregnancy obesity, GDM and excessive GWG on fetal growth among term infants. PMID:23592670

  20. Influence of infection during pregnancy on fetal development.

    PubMed

    Adams Waldorf, Kristina M; McAdams, Ryan M

    2013-01-01

    Infection by bacteria, viruses, and parasites may lead to fetal death, organ injury, or limited sequelae depending on the pathogen. Here, we consider the role of infection during pregnancy in fetal development including placental development and function, which can lead to fetal growth restriction. The classical group of teratogenic pathogens is referred to as 'TORCH' (Toxoplasma gondii, others like Treponema pallidum, rubella virus, cytomegalovirus, and herpes simplex virus) but should include a much broader group of pathogens including Parvovirus B19, Varicella zoster virus, and Plasmodium falciparum to name a few. In this review, we describe the influence of different infections in utero on fetal development and the short- and long-term outcomes for the neonate. In some cases, the mechanisms used by these pathogens to disrupt fetal development are well known. Bacterial infection of the developing fetal lungs and brain begins with an inflammatory cascade resulting in cytokine injury and oxidative stress. For some pathogens like P. falciparum, the mechanisms involve oxidative stress and apoptosis to disrupt placental and fetal growth. An in utero infection may also affect the long-term health of the infant; in many cases, a viral infection in utero increases the risk of developing type 1 diabetes in childhood. Understanding the varied mechanisms employed by these pathogens may enable therapies to attenuate changes in fetal development, decrease preterm birth, and improve survival.

  1. Ovine Surgical Model of Uterine Space Restriction: Interactive Effects of Uterine Anomalies and Multifetal Gestations on Fetal and Placental Growth1

    PubMed Central

    Meyer, Katie M.; Koch, Jill M.; Ramadoss, Jayanth; Kling, Pamela J.; Magness, Ronald R.

    2010-01-01

    Intrauterine growth restriction (IUGR) is observed in conditions with limitations in uterine space (e.g., uterine anomalies and multifetal gestations). IUGR is associated with reduced fetal weight, organ growth, and a spectrum of adult-onset diseases. To examine the interaction of uterine anomalies and multifetal gestations, we developed a surgical uterine space restriction model with a unilateral uterine horn ligation before breeding (unilateral surgery). Placentas and fetuses were studied on Gestational Day (GD) 120 and GD 130 (term = 147 days). Unilateral surgery decreased placentome numbers in singleton and twin pregnancies (25% and 50%, respectively) but not unilateral triplets. Unilateral surgery decreased total placentome weight in twin pregnancies (decreased 24%). Fetuses categorized as uterine space restricted (unilateral twin and both groups of triplets) had 51% fewer placentomes per fetus and a 31% reduction in placentomal weight per fetus compared to the nonrestricted group (control singleton, unilateral singleton, and control twin). By GD 130, uterine space-restricted fetuses exhibited decreased weight, smaller crown-rump, abdominal girth, and thoracic girth as well as decreased fetal heart, kidney, liver, spleen, and thymus weights. Lung and brain weights were unaffected, demonstrating asymmetric IUGR. At GD 130, placental efficiency (fetal weight per total placentomal weight) was elevated in uterine space-restricted fetuses. However, fetal arterial creatinine, blood urea nitrogen, and cholesterol were elevated, suggesting insufficient placental clearance. Maternal-to-fetal glucose and triglycerides ratios were elevated in the uterine space-restricted pregnancies, suggesting placental nutrient transport insufficiency. This model allows for examination of interactive effects of uterine space restriction-induced IUGR on placental adaptation and fetal organ growth. PMID:20574052

  2. Fetal Research

    NASA Astrophysics Data System (ADS)

    Hansen, John T.; Sladek, John R.

    1989-11-01

    This article reviews some of the significant contributions of fetal research and fetal tissue research over the past 20 years. The benefits of fetal research include the development of vaccines, advances in prenatal diagnosis, detection of malformations, assessment of safe and effective medications, and the development of in utero surgical therapies. Fetal tissue research benefits vaccine development, assessment of risk factors and toxicity levels in drug production, development of cell lines, and provides a source of fetal cells for ongoing transplantation trials. Together, fetal research and fetal tissue research offer tremendous potential for the treatment of the fetus, neonate, and adult.

  3. How managed care growth affects where physicians locate their practices.

    PubMed

    Polsky, D; Escarce, J J

    2000-11-01

    Managed care has had a profound effect on physician practice. It has altered patterns in the use of physician services, and consequently, the practice and employment options available to physicians. But managed care growth has not been uniform across the United States, and has spawned wide geographic disparities in earning opportunities for generalists and specialists. This Issue Brief summarizes new information on how managed care has affected physicians' labor market decisions and the impact of managed care on the number and distribution of physicians across the country.

  4. Cord Blood Methylmercury and Fetal Growth Outcomes in Baltimore Newborns: Potential Confounding and Effect Modification by Omega-3 Fatty Acids, Selenium, and Sex

    PubMed Central

    Wells, Ellen M.; Herbstman, Julie B.; Lin, Yu Hong; Jarrett, Jeffery; Verdon, Carl P.; Ward, Cynthia; Caldwell, Kathleen L.; Hibbeln, Joseph R.; Witter, Frank R.; Halden, Rolf U.; Goldman, Lynn R.

    2015-01-01

    Background Methylmercury (MeHg) may affect fetal growth; however, prior research often lacked assessment of mercury speciation, confounders, and interactions. Objective Our objective was to assess the relationship between MeHg and fetal growth as well as the potential for confounding or interaction of this relationship from speciated mercury, fatty acids, selenium, and sex. Methods This cross-sectional study includes 271 singletons born in Baltimore, Maryland, 2004–2005. Umbilical cord blood was analyzed for speciated mercury, serum omega-3 highly unsaturated fatty acids (n-3 HUFAs), and selenium. Multivariable linear regression models controlled for gestational age, birth weight, maternal age, parity, prepregnancy body mass index, smoking, hypertension, diabetes, selenium, n-3 HUFAs, and inorganic mercury (IHg). Results Geometric mean cord blood MeHg was 0.94 μg/L (95% CI: 0.84, 1.07). In adjusted models for ponderal index, βln(MeHg) = –0.045 (g/cm3) × 100 (95% CI: –0.084, –0.005). There was no evidence of a MeHg × sex interaction with ponderal index. Contrastingly, there was evidence of a MeHg × n-3 HUFAs interaction with birth length [among low n-3 HUFAs, βln(MeHg) = 0.40 cm, 95% CI: –0.02, 0.81; among high n-3 HUFAs, βln(MeHg) = –0.15, 95% CI: –0.54, 0.25; p-interaction = 0.048] and head circumference [among low n-3 HUFAs, βln(MeHg) = 0.01 cm, 95% CI: –0.27, 0.29; among high n-3 HUFAs, βln(MeHg) = –0.37, 95% CI: –0.63, –0.10; p-interaction = 0.042]. The association of MeHg with birth weight and ponderal index was affected by n-3 HUFAs, selenium, and IHg. For birth weight, βln(MeHg) without these variables was –16.8 g (95% CI: –75.0, 41.3) versus –29.7 (95% CI: –93.9, 34.6) with all covariates. Corresponding values for ponderal index were –0.030 (g/cm3) × 100 (95% CI: –0.065, 0.005) and –0.045 (95% CI: –0.084, –0005). Conclusion We observed an association of increased MeHg with decreased ponderal index. There is

  5. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  6. How maternal malnutrition affects linear growth and development in the offspring.

    PubMed

    Papathakis, Peggy C; Singh, Lauren N; Manary, Mark J

    2016-11-05

    Maternal malnutrition is common in the developing world and has detrimental effects on both the mother and infant. Pre-pregnancy nutritional status and weight gain during pregnancy are positively related to fetal growth and development. Internationally, there is no agreement on the method of diagnosis or treatment of moderate or severe malnutrition during pregnancy. Establishing clear guidelines for diagnosis and treatment will be essential in elevating the problem. Possible anthropometric measurements used to detect and monitor maternal malnutrition include pre-pregnancy BMI, weight gain, and mid upper arm circumference. Food supplements have the potential to increase gestational weight gain and energy intake which are positively associated with fetal growth and development. Overall more studies are needed to conclude the impact of food/nutrient supplements on infant growth in undernourished pregnant women in developing countries. Currently, a study underway may provide much needed documentation of the benefits of treating malnutrition in pregnancy.

  7. Fetal growth and blood pressure in a Danish population aged 31-51 years.

    PubMed

    Sørensen, H T; Thulstrup, A M; Nørgdård, B; Engberg, M; Madsen, K M; Johnsen, S P; Olsen, J; Lauritzen, T

    2000-08-01

    During the past decade, studies have shown an inverse association between birth weight and blood pressure and risk of coronary heart disease in adult life. From old public archives we were able to trace the birth records of 545 out of 905 persons (60.2%) aged 31-51 years who participated in the Ebeltoft Health Promotion Project in Denmark. We examined the associations between birth weight, length at birth, Ponderal Index and systolic and diastolic blood pressure. No associations were found for women. For men, the mean systolic blood pressure fell from 131.1 mmHg with a birth weight of less than 3300 g to 129.6 mmHg with a birth weight of more than 4000 g, and for diastolic blood pressure 81.6 mmHg to 80.3 mmHg, respectively. For men, the mean systolic blood pressure fell from 135.7 mm Hg with a birth length of 30-51 cm to 131.6 with a birth length of 55-62 cm, and for diastolic blood pressure 83.0 mmHg to 78.8 mmHg, respectively. The associations may reflect organ programming in fetal life.

  8. Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene.

    PubMed

    Kalbacova, Marie; Broz, Antonin; Kalbac, Martin

    2012-11-01

    The influence of single-layer graphene produced by chemical vapor deposition on human osteoblast cells under different conditions was studied. Measurements probed the ability of cells to adhere and proliferate on graphene compared with SiO(2)/Si substrates and standard tissue culture plastic when cells were incubated for the first 2 h in the presence or the absence of fetal bovine serum (FBS), thus influencing the initial, direct interaction of cells with the substrate. It was found that after 48 h of human osteoblast incubation on graphene films, there were a comparable number of cells of a similar size irrespective of the presence or the absence of serum proteins. On the other hand, a strong initial influence through the presence of FBS proteins on cell number and cell size was observed in the case of the SiO(2)/Si substrate and control plastic. Thus, our study showed that the initial presence/absence of FBS in the medium does not determine cell fate in the case of a graphene substrate, which is very unusual and different from the behavior of cells on other materials.

  9. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors.

    PubMed

    Karamitros, Dimitris; Patmanidi, Alexandra L; Kotantaki, Panoraia; Potocnik, Alexandre J; Bähr-Ivacevic, Tomi; Benes, Vladimir; Lygerou, Zoi; Kioussis, Dimitris; Taraviras, Stavros

    2015-01-01

    Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system.

  10. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy.

    PubMed

    Goga, Michal; Antreich, Sebastian J; Bačkor, Martin; Weckwerth, Wolfram; Lang, Ingeborg

    2016-09-19

    Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.

  11. The effect of maternal undernutrition in early gestation on gestation length and fetal and postnatal growth in sheep.

    PubMed

    Cleal, Jane K; Poore, Kirsten R; Newman, James P; Noakes, David E; Hanson, Mark A; Green, Lucy R

    2007-10-01

    In utero undernutrition in humans may result in cardiovascular (CV), metabolic, and growth adaptations. In sheep, maternal nutrient restriction during pregnancy, without effects on fetal or birth weight, results in altered CV control in the offspring. Adjustment of gestation length after undernutrition could be a strategy to enhance postnatal health/survival. The aim of this study was to determine in sheep the effect of a 50% reduction in maternal nutrient intake [undernutrition group (U) versus 100%, control group (C)] during 1-31 d of gestation (dGA) on gestation length and offspring size. By 28 dGA, U ewes had gained less weight than C, and twin-bearing ewes had gained less weight than singleton-bearing ewes regardless of group (p<0.05). In different-sex twin pairs, maternal undernutrition resulted in longer gestation compared with C (146.5+/-0.6 versus 144.6+/-0.6 d, p<0.05). Increased weight gain by weaning (20.8+/-0.8 versus 17.9+/-0.8 kg, p<0.05) was observed in U male twins. These findings suggest that the strategy (i.e. growth rate or length of time in utero) adopted by the fetus to enhance immediate survival depends on offspring number and sex. This is likely to reflect the degree of constraint imposed on the fetus.

  12. Indoor Exposure and Adverse Birth Outcomes Related to Fetal Growth, Miscarriage and Prematurity—A Systematic Review

    PubMed Central

    Patelarou, Evridiki; Kelly, Frank J.

    2014-01-01

    The purpose of this review was to summarize existing epidemiological evidence of the association between quantitative estimates of indoor air pollution and all-day personal exposure with adverse birth outcomes including fetal growth, prematurity and miscarriage. We carried out a systematic literature search of MEDLINE and EMBASE databases with the aim of summarizing and evaluating the results of peer-reviewed epidemiological studies undertaken in “westernized” countries that have assessed indoor air pollution and all-day personal exposure with specific quantitative methods. This comprehensive literature search identified 16 independent studies which were deemed relevant for further review and two additional studies were added through searching the reference lists of all included studies. Two reviewers independently and critically appraised all eligible articles using the Critical Appraisal Skills Programme (CASP) tool. Of the 18 selected studies, 14 adopted a prospective cohort design, three were case-controls and one was a retrospective cohort study. In terms of pollutants of interest, seven studies assessed exposure to electro-magnetic fields, four studies assessed exposure to polycyclic aromatic hydrocarbons, four studies assessed PM2.5 exposure and three studies assessed benzene, phthalates and noise exposure respectively. Furthermore, 12 studies examined infant growth as the main birth outcome of interest, six examined spontaneous abortion and three studies assessed gestational age at birth and preterm delivery. This survey demonstrates that there is insufficient research on the possible association of indoor exposure and early life effects and that further research is needed. PMID:24896737

  13. mRNA Quantification of NIPBL Isoforms A and B in Adult and Fetal Human Tissues, and a Potentially Pathological Variant Affecting Only Isoform A in Two Patients with Cornelia de Lange Syndrome

    PubMed Central

    Puisac, Beatriz; Teresa-Rodrigo, María-Esperanza; Hernández-Marcos, María; Baquero-Montoya, Carolina; Gil-Rodríguez, María-Concepción; Visnes, Torkild; Bot, Christopher; Gómez-Puertas, Paulino; Kaiser, Frank J.; Ramos, Feliciano J.; Ström, Lena; Pié, Juan

    2017-01-01

    Cornelia de Lange syndrome (CdLS) is a congenital developmental disorder characterized by craniofacial dysmorphia, growth retardation, limb malformations, and intellectual disability. Approximately 60% of patients with CdLS carry a recognizable pathological variant in the NIPBL gene, of which two isoforms, A and B, have been identified, and which only differ in the C-terminal segment. In this work, we describe the distribution pattern of the isoforms A and B mRNAs in tissues of adult and fetal origin, by qPCR (quantitative polymerase chain reaction). Our results show a higher gene expression of the isoform A, even though both seem to have the same tissue distribution. Interestingly, the expression in fetal tissues is higher than that of adults, especially in brain and skeletal muscle. Curiously, the study of fibroblasts of two siblings with a mild CdLS phenotype and a pathological variant specific of the isoform A of NIPBL (c.8387A > G; P.Tyr2796Cys), showed a similar reduction in both isoforms, and a normal sensitivity to DNA damage. Overall, these results suggest that the position of the pathological variant at the 3´ end of the NIPBL gene affecting only isoform A, is likely to be the cause of the atypical mild phenotype of the two brothers. PMID:28241484

  14. mRNA Quantification of NIPBL Isoforms A and B in Adult and Fetal Human Tissues, and a Potentially Pathological Variant Affecting Only Isoform A in Two Patients with Cornelia de Lange Syndrome.

    PubMed

    Puisac, Beatriz; Teresa-Rodrigo, María-Esperanza; Hernández-Marcos, María; Baquero-Montoya, Carolina; Gil-Rodríguez, María-Concepción; Visnes, Torkild; Bot, Christopher; Gómez-Puertas, Paulino; Kaiser, Frank J; Ramos, Feliciano J; Ström, Lena; Pié, Juan

    2017-02-23

    Cornelia de Lange syndrome (CdLS) is a congenital developmental disorder characterized by craniofacial dysmorphia, growth retardation, limb malformations, and intellectual disability. Approximately 60% of patients with CdLS carry a recognizable pathological variant in the NIPBL gene, of which two isoforms, A and B, have been identified, and which only differ in the C-terminal segment. In this work, we describe the distribution pattern of the isoforms A and B mRNAs in tissues of adult and fetal origin, by qPCR (quantitative polymerase chain reaction). Our results show a higher gene expression of the isoform A, even though both seem to have the same tissue distribution. Interestingly, the expression in fetal tissues is higher than that of adults, especially in brain and skeletal muscle. Curiously, the study of fibroblasts of two siblings with a mild CdLS phenotype and a pathological variant specific of the isoform A of NIPBL (c.8387A > G; P.Tyr2796Cys), showed a similar reduction in both isoforms, and a normal sensitivity to DNA damage. Overall, these results suggest that the position of the pathological variant at the 3´ end of the NIPBL gene affecting only isoform A, is likely to be the cause of the atypical mild phenotype of the two brothers.

  15. Preimplantation Exposure of Mouse Embryos to Palmitic Acid Results in Fetal Growth Restriction Followed by Catch-Up Growth in the Offspring1

    PubMed Central

    Jungheim, Emily S.; Louden, Erica D.; Chi, Maggie M.-Y.; Frolova, Antonina I.; Riley, Joan K.; Moley, Kelle H.

    2011-01-01

    Free fatty acids (FFAs) are energy substrates for many cell types, but in excess, some FFAs can accumulate in nonadipose cells, inducing apoptosis. Also known as lipotoxicity, this phenomenon may play a role in the development of obesity-related disease. Obesity is common among reproductive age women and is associated with adverse pregnancy and fetal outcomes; however, little is known about the effects of excess FFAs on embryos and subsequent fetal development. To address this knowledge gap, murine blastocysts were cultured in excess palmitic acid (PA), the most abundant saturated FFA in human serum, and ovarian follicular fluid. Targets susceptible to aberrations in maternal physiology, including embryonic IGF1 receptor (IGF1R) expression, glutamic pyruvate transaminase (GPT2) activity, and nuclei count, were measured. PA-exposed blastocysts demonstrated altered IGF1R expression, increased GPT2 activity, and decreased nuclei count. Trophoblast stem cells derived from preimplantation embryos were also cultured in PA. Cells exposed to increasing doses of PA demonstrated increased apoptosis and decreased proliferation. To demonstrate long-term effects of brief PA exposure, blastocysts cultured for 30 h in PA were transferred into foster mice, and pregnancies followed through Embryonic Day (ED)14.5 or delivery. Fetuses resulting from PA-exposed blastocysts were smaller than controls at ED14.5. Delivered pups were also smaller but demonstrated catch-up growth and ultimately surpassed control pups in weight. Altogether, our data suggest brief PA exposure results in altered embryonic metabolism and growth, with lasting adverse effects on offspring, providing further insight into the pathophysiology of maternal obesity. PMID:21653893

  16. Improving metabolic health in obese male mice via diet and exercise restores embryo development and fetal growth.

    PubMed

    McPherson, Nicole O; Bakos, Hassan W; Owens, Julie A; Setchell, Brian P; Lane, Michelle

    2013-01-01

    Paternal obesity is now clearly associated with or causal of impaired embryo and fetal development and reduced pregnancy rates in humans and rodents. This appears to be a result of reduced blastocyst potential. Whether these adverse embryo and fetal outcomes can be ameliorated by interventions to reduce paternal obesity has not been established. Here, male mice fed a high fat diet (HFD) to induce obesity were used, to determine if early embryo and fetal development is improved by interventions of diet (CD) and/or exercise to reduce adiposity and improve metabolism. Exercise and to a lesser extent CD in obese males improved embryo development rates, with increased cell to cell contacts in the compacting embryo measured by E-cadherin in exercise interventions and subsequently, increased blastocyst trophectoderm (TE), inner cell mass (ICM) and epiblast cell numbers. Implantation rates and fetal development from resulting blastocysts were also improved by exercise in obese males. Additionally, all interventions to obese males increased fetal weight, with CD alone and exercise alone, also increasing fetal crown-rump length. Measures of embryo and fetal development correlated with paternal measures of glycaemia, insulin action and serum lipids regardless of paternal adiposity or intervention, suggesting a link between paternal metabolic health and subsequent embryo and fetal development. This is the first study to show that improvements to metabolic health of obese males through diet and exercise can improve embryo and fetal development, suggesting such interventions are likely to improve offspring health.

  17. Regulated release of serotonin from axonal growth cones isolated from the fetal rat brain.

    PubMed

    Mercado, R; Floran, B; Hernandez, J

    1998-01-01

    In the present work we propose an hypothetical model related to a molecular recognizing system for serotonin in isolated growth cone particles. This model is supported by previous results from our laboratory plus new ones which show that growth cones release serotonin tonically and such release can be stimulated by potassium in a calcium-dependent manner. The present results, together with other author's data, suggest a physiological basis for the putative role of serotonin as a trophic factor during nervous system development.

  18. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches.

    PubMed

    Jansson, Thomas; Powell, Theresa L

    2007-07-01

    Adverse influences during fetal life alter the structure and function of distinct cells, organ systems or homoeostatic pathways, thereby 'programming' the individual for an increased risk of developing cardiovascular disease and diabetes in adult life. Fetal programming can be caused by a number of different perturbations in the maternal compartment, such as altered maternal nutrition and reduced utero-placental blood flow; however, the underlying mechanisms remain to be fully established. Perturbations in the maternal environment must be transmitted across the placenta in order to affect the fetus. Here, we review recent insights into how the placenta responds to changes in the maternal environment and discuss possible mechanisms by which the placenta mediates fetal programming. In IUGR (intrauterine growth restriction) pregnancies, the increased placental vascular resistance subjects the fetal heart to increased work load, representing a possible direct link between altered placental structure and fetal programming of cardiovascular disease. A decreased activity of placental 11beta-HSD-2 (type 2 isoform of 11beta-hydroxysteroid dehydrogenase) activity can increase fetal exposure to maternal cortisol, which programmes the fetus for later hypertension and metabolic disease. The placenta appears to function as a nutrient sensor regulating nutrient transport according to the ability of the maternal supply line to deliver nutrients. By directly regulating fetal nutrient supply and fetal growth, the placenta plays a central role in fetal programming. Furthermore, perturbations in the maternal compartment may affect the methylation status of placental genes and increase placental oxidative/nitrative stress, resulting in changes in placental function. Intervention strategies targeting the placenta in order to prevent or alleviate altered fetal growth and/or fetal programming include altering placental growth and nutrient transport by maternally administered IGFs (insulin

  19. Fetal growth trajectories in pregnancies of European and South Asian mothers with and without gestational diabetes, a population-based cohort study

    PubMed Central

    Jenum, Anne Karen; Yajnik, Chittaranjan S.; Mørkrid, Kjersti; Nakstad, Britt; Rognerud-Jensen, Odd Harald; Birkeland, Kåre I.; Vangen, Siri

    2017-01-01

    Objective Our aim was to examine the impact of gestational diabetes (GDM), from before the GDM-diagnosis is made, on fetal growth trajectories, and to compare it in Europeans and South Asians; two ethnic groups with dissimilar fetal growth patterns. Methods We studied European (n = 349) and South Asian (n = 184) pregnant women, from the population-based STORK-Groruddalen cohort in Oslo, Norway. Mothers were enrolled in early pregnancy, screened for GDM in gestational week 28 ±2, and classified as “non-GDM”, “mild GDM” or “moderate/severe GDM”. We measured fetal head circumference, abdominal circumference and femur length by ultrasound, and estimated fetal weight in gestational week 24, 32 and 37, and performed corresponding measurements at birth. Results In non-GDM pregnancies, South Asian fetuses (n = 156) had a slower growth from gestational week 24, compared with Europeans (n = 310). More than two thirds of the European mothers later diagnosed with GDM were overweight or obese in early pregnancy, while this was not observed in South Asians. Fetuses of GDM mothers tended to be smaller than fetuses of non-GDM mothers in week 24, but thereafter grew faster until birth. This pattern was especially pronounced in fetuses of South Asian mothers with moderate/severe GDM. In week 24 these fetuses had a -0.95 SD (95% CI: -1.53, -0.36) lower estimated fetal weight than their non-GDM counterparts. In contrast, at birth they were 0.45 SD (0.09, 0.81) larger. Conclusions Offspring of GDM mothers were smaller in mid pregnancy, but subsequently grew faster until birth, compared with offspring of non-GDM mothers. This pattern was most prominent in South Asian mothers with moderate to severe GDM. However, the most remarkable characteristic of these fetuses was not a large size at birth, but the small size in mid pregnancy, before the GDM diagnosis was set. PMID:28253366

  20. Influence of gestational salt restriction in fetal growth and in development of diseases in adulthood.

    PubMed

    Sakuyama, Hiroe; Katoh, Minami; Wakabayashi, Honoka; Zulli, Anthony; Kruzliak, Peter; Uehara, Yoshio

    2016-01-20

    Recent studies reported the critical role of the intrauterine environment of a fetus in growth or the development of disease in adulthood. In this article we discussed the implications of salt restriction in growth of a fetus and the development of growth-related disease in adulthood. Salt restriction causes retardation of fatal growth or intrauterine death thereby leading to low birth weight or decreased birth rate. Such retardation of growth along with the upregulation of the renin angiotensin system due to salt restriction results in the underdevelopment of cardiovascular organs or decreases the number of the nephron in the kidney and is responsible for onset of hypertension in adulthood. In addition, gestational salt restriction is associated with salt craving after weaning. Moreover, salt restriction is associated with a decrease in insulin sensitivity. A series of alterations in metabolism due to salt restriction are probably mediated by the upregulation of the renin angiotensin system and an epigenetic mechanism including proinflammatory substances or histone methylation. Part of the metabolic disease in adulthood may be programmed through such epigenetic changes. The modification of gene in a fetus may be switched on through environment factors or life style after birth. The benefits of salt restriction have been assumed thus far; however, more precise investigation is required of its influence on the health of fetuses and the onset of various diseases in adulthood.

  1. STUDIES IN FETAL BEHAVIOR: REVISITED, RENEWED, AND REIMAGINED.

    PubMed

    DiPietro, Janet A; Costigan, Kathleen A; Voegtline, Kristin M

    2015-09-01

    Among the earliest volumes of this monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodrmal activity and fetal heartrate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include:within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physio-logical processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship.We pose a number of open questions for future research. Although the human fetus remains just out of reach, new

  2. Studies in Fetal Behavior: Revisited, Renewed, and Reimagined

    PubMed Central

    DiPietro, Janet A.; Costigan, Kathleen A.; Voegtline, Kristin M.

    2016-01-01

    Among the earliest volumes of this Monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodermal activity and fetal heart rate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include: within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physiological processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship. We pose a number of open questions for future research. Although the human fetus remains just out of reach, new

  3. Do plastic particles affect microalgal photosynthesis and growth?

    PubMed

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size.

  4. Family poverty affects the rate of human infant brain growth.

    PubMed

    Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.

  5. Family Poverty Affects the Rate of Human Infant Brain Growth

    PubMed Central

    Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  6. Similar photoperiod-related birth seasonalities among professional baseball players and lesbian women with an opposite seasonality among gay men: Maternal melatonin may affect fetal sexual dimorphism.

    PubMed

    Marzullo, Giovanni

    2014-05-30

    Based on pre-mid-20th-century data, the same photoperiod-related birth seasonality previously observed in schizophrenia was also recently found in neural-tube defects and in extreme left-handedness among professional baseball players. This led to a hypothesis implicating maternal melatonin and other mediators of sunlight actions capable of affecting 4th-embryonic-week developments including neural-tube closure and left-right differentiation of the brain. Here, new studies of baseball players suggest that the same sunlight actions could also affect testosterone-dependent male-female differentiation in the 4-month-old fetus. Independently of hand-preferences, baseball players (n=6829), and particularly the stronger hitters among them, showed a unique birth seasonality with an excess around early-November and an equally significant deficit 6 months later around early-May. In two smaller studies, north-American and other northern-hemisphere born lesbians showed the same strong-hitter birth seasonality while gay men showed the opposite seasonality. The sexual dimorphism-critical 4th-fetal-month testosterone surge coincides with the summer-solstice in early-November births and the winter-solstice in early-May births. These coincidences are discussed and a "melatonin mechanism" is proposed based on evidence that in seasonal breeders maternal melatonin imparts "photoperiodic history" to the newborn by direct inhibition of fetal testicular testosterone synthesis. The present effects could represent a vestige of this same phenomenon in man.

  7. Myosin helical pitch angle as a quantitative imaging biomarker for characterization of cardiac programming in fetal growth restriction measured by polarization second harmonic microscopy

    NASA Astrophysics Data System (ADS)

    Amat-Roldan, I.; Psilodimitrakopoulos, S.,; Eixarch, E.,; Torre, I.; Wotjas, B.; Crispi, F.; Figueras, F.; Artigas, D.,; Loza-Alvarez, P.; Gratacos, E.,

    2009-07-01

    Fetal growth restriction (FGR) has recently shown a strong association with cardiac programming which predisposes to cardiovascular mortality in adulthood. Polarization Second Harmonic Microscopy can quantify molecular architecture changes with high sensitivity in cardiac myofibrils. In this work, we use myosin helical pitch angle as an example to quantify such alterations related to this high risk population. Importantly, this shows a potential use of the technique as an early diagnostic tool and an alternative method to understand pathophysiological processes.

  8. Nerve growth cones isolated from fetal rat brain. IV. Preparation of a membrane subfraction and identification of a membrane glycoprotein expressed on sprouting neurons

    PubMed Central

    1985-01-01

    This study describes the preparation of a membrane subfraction from isolated nerve growth cone particles (GCPs) (see Pfenninger, K. H., L. Ellis, M. P. Johnson, L. B. Friedman, and S. Somlo, 1983, Cell, 35:573- 584) and the identification in this fraction of a glycoprotein expressed during neurite growth. While approximately 40 major polypeptides are visible in Coomassie Blue-stained SDS polyacrylamide gels of pelleted (partially disrupted) GCPs, a salt-washed membrane fraction prepared from lysed, detergent-permeabilized GCPs contains only 14% of this protein and has an unusually simple polypeptide pattern of seven major bands. Monoclonal antibodies have been generated to GCP membranes isolated from fetal rat brain. These antibodies have been screened differentially with synaptosomes from adult rat brain in order to identify those which recognize antigens expressed selectively during neurite growth. One such antibody (termed 5B4) recognizes a developmentally regulated membrane glycoprotein that is enriched in GCP membranes and expressed in fetal neurons sprouting in vitro. The 5B4 antigen in fetal brain migrates in SDS polyacrylamide gels as a diffuse band of approximately 185-255 kD, is rich in sialic acid, and consists of a small family of isoelectric variants. Freezing-thawing and neuraminidase digestion result in the cleavage of the native antigen into two new species migrating diffusely around 200 and 160 kD. Prolonged neuraminidase digestion sharpens these bands at about 180 and 135 kD, respectively. In the mature brain, antibody 5B4 recognizes a sparse polypeptide migrating at approximately 140 kD. As shown in the following paper (Wallis, I., L. Ellis, K. Suh, and K. H. Pfenninger, 1985, J. Cell Biol., 101:1990-1998), the fetal antigen is specifically associated with regions of neuronal sprouting and, therefore, can be used as a molecular marker of neurite growth. PMID:3902858

  9. Effects of insulin and insulin-like growth factors I and II on the growth of equine fetal and neonatal chondrocytes.

    PubMed

    Henson, F M; Davenport, C; Butler, L; Moran, I; Shingleton, W D; Jeffcott, L B; Schofield, P N

    1997-11-01

    The effects of insulin and insulin-like growth factors (IGFs) I and II on fetal and foal chondrocytes were investigated in vitro. Chondrocytes from the lateral trochlear ridge of the distal femur were obtained from 2 fetuses (280 and 320 days gestation) and one 4-day-old foal and cultured. Membrane proteins consistent with type 1 and type 2 IGF receptors were demonstrated by radioligand cross linking and equilibrium binding analysis. It was demonstrated that both IGF-I and IGF-II acted as mitogens for isolated equine chondrocytes when present as the sole mitogenic factor in monolayer culture. It was further shown that whereas insulin was able to promote the survival and expansion of cell populations of chondrocytes in culture there was significantly reduced mitogenic stimulation compared to the IGFs. These results suggest that the role of insulin in growth cartilage may be to promote chondrocyte survival, or to suppress differentiation/apoptosis. This supports the hypothesis that relative hyperinsulinaemia may be a contributory factor to equine dyschondroplasia (osteochondrosis). Understanding of contributory, and possibly triggering factors such as this may allow the development of modified methods of husbandry which minimise the risk of disease in populations with a known predisposition.

  10. Fetal endocrinology

    PubMed Central

    Kota, Sunil Kumar; Gayatri, Kotni; Jammula, Sruti; Meher, Lalit Kumar; Kota, Siva Krishna; Krishna, S. V. S.; Modi, Kirtikumar D.

    2013-01-01

    Successful outcome of pregnancy depends upon genetic, cellular, and hormonal interactions, which lead to implantation, placentation, embryonic, and fetal development, parturition and fetal adaptation to extrauterine life. The fetal endocrine system commences development early in gestation and plays a modulating role on the various physiological organ systems and prepares the fetus for life after birth. Our current article provides an overview of the current knowledge of several aspects of this vast field of fetal endocrinology and the role of endocrine system on transition to extrauterine life. We also provide an insight into fetal endocrine adaptations pertinent to various clinically important situations like placental insufficiency and maternal malnutrition. PMID:23961471

  11. Increased endoplasmic reticulum stress in decidual tissue from pregnancies complicated by fetal growth restriction with and without pre-eclampsia

    PubMed Central

    Lian, I.A.; Løset, M.; Mundal, S.B.; Fenstad, M.H.; Johnson, M.P.; Eide, I.P.; Bjørge, L.; Freed, K.A.; Moses, E.K.; Austgulen, R.

    2011-01-01

    Objectives Endoplasmic reticulum (ER) stress has been implicated in both pre-eclampsia (PE) and fetal growth restriction (FGR), and is characterised by activation of three signalling branches: 1) PERK-pEIF2α, 2) ATF6 and 3) splicing of XBP1(U) into XBP1(S). To evaluate the contribution of ER stress in the pathogenesis of PE relative to FGR, we compared levels of ER stress markers in decidual tissue from pregnancies complicated by PE and/or FGR. Study design Whole-genome transcriptional profiling was performed on decidual tissue from women with PE (n = 13), FGR (n = 9), PE+FGR (n = 24) and controls (n = 58), and used for pathway- and targeted transcriptional analyses of ER stress markers. The expression and cellular localisation of ER stress markers was assesses by Western blot and immunofluorescence analyses. Results Increased ER stress was observed in FGR and PE+FGR, including both the PERK-pEIF2α and ATF6 signalling branches, whereas ER stress was less evident in isolated PE. However, these cases demonstrated elevated levels of XBP1(U) protein. ATF6 and XBP1 immunoreactivity was detected in most (> 80%) extravillous trophoblasts, decidual cells and macrophages. No difference in the proportion of immunopositive cells or staining pattern was observed between study groups. Conclusions Increased PERK-pEIF2α and ATF6 signalling have been associated with decreased cellular proliferation and may contribute to the impaired placental growth characterising pregnancies with FGR and PE+FGR. XBP1(U) has been proposed as a negative regulator of ER stress, and increased levels in PE may reflect a protective mechanism against the detrimental effects of ER stress. PMID:21907405

  12. Experimental bone defect healing with xenogenic demineralized bone matrix and bovine fetal growth plate as a new xenograft: radiological, histopathological and biomechanical evaluation.

    PubMed

    Bigham, A S; Dehghani, S N; Shafiei, Z; Nezhad, S Torabi

    2009-02-01

    The following study was designed to evaluate xenogenic bovine demineralized bone matrix (DBM) and new xenograft (Bovine fetal growth plate) effects on bone healing process. Twenty male White New Zealand rabbits were used in this study. In group I (n = 10) the defect was filled by xenogenic DBM and in group II (n = 10) the defect was filled by a segment of bovine fetal growth plate and was fixed by cercelage wire. Radiological, histopathological, and biomechanical evaluations were performed blindly and results scored and analyzed statistically. Statistical tests did not support significant differences between two groups radiographically (P > 0.05). There was a significant difference for union at the 28th postoperative radiologically (P < 0.05). Xenograft was superior to DBM group at the 28th postoperative day for radiological union (P < 0.03). Histopathological and biomechanical evaluation revealed no significant differences between two groups. In conclusion, the results of this study indicate that satisfactory healing occurred in rabbit radius defect filled with xenogenic bovine DBM and xenogenic bovine fetal growth plate. Complications were not identified and healing was faster in two grafting groups.

  13. Exposure to an environmentally relevant mixture of brominated flame retardants affects fetal development in Sprague-Dawley rats.

    PubMed

    Berger, Robert G; Lefèvre, Pavine L C; Ernest, Sheila R; Wade, Michael G; Ma, Yi-Qian; Rawn, Dorothea F K; Gaertner, Dean W; Robaire, Bernard; Hales, Barbara F

    2014-06-05

    Brominated flame retardants are incorporated into a wide variety of consumer products and are known to enter into the surrounding environment, leading to human exposure. There is accumulating evidence that these compounds have adverse effects on reproduction and development in humans and animal models. Animal studies have generally characterized the outcome of exposure to a single technical mixture or congener. Here, we determined the impact of exposure of rats prior to mating and during gestation to a mixture representative of congener levels found in North American household dust. Adult female Sprague-Dawley rats were fed a diet containing 0, 0.75, 250 or 750mg/kg of a mixture of flame retardants (polybrominated diphenyl ethers, hexabromocyclododecane) from two weeks prior to mating to gestation day 20. This formulation delivered nominal doses of 0, 0.06, 20 and 60mg/kg body weight/day. The lowest dose approximates high human exposures based on house dust levels and the dust ingestion rates of toddlers. Litter size and resorption sites were counted and fetal development evaluated. No effects on maternal health, litter size, fetal viability, weights, crown rump lengths or sex ratios were detected. The proportion of litters with fetuses with anomalies of the digits (soft tissue syndactyly or malposition of the distal phalanges) was increased significantly in the low (0.06mg/kg/day) dose group. Skeletal analysis revealed a decreased ossification of the sixth sternebra at all exposure levels. Thus, exposure to an environmentally relevant mixture of brominated flame retardants results in developmental abnormalities in the absence of apparent maternal toxicity. The relevance of these findings for predicting human risk is yet to be determined.

  14. Uric Acid Crystals Induce Placental Inflammation and Alter Trophoblast Function via an IL-1-Dependent Pathway: Implications for Fetal Growth Restriction.

    PubMed

    Brien, Marie-Eve; Duval, Cyntia; Palacios, Julia; Boufaied, Ines; Hudon-Thibeault, Andrée-Anne; Nadeau-Vallée, Mathieu; Vaillancourt, Cathy; Sibley, Colin P; Abrahams, Vikki M; Jones, Rebecca L; Girard, Sylvie

    2017-01-01

    Excessive placental inflammation is associated with several pathological conditions, including stillbirth and fetal growth restriction. Although infection is a known cause of inflammation, a significant proportion of pregnancies have evidence of inflammation without any detectable infection. Inflammation can also be triggered by endogenous mediators, called damage associated molecular patterns or alarmins. One of these damage-associated molecular patterns, uric acid, is increased in the maternal circulation in pathological pregnancies and is a known agonist of the Nlrp3 inflammasome and inducer of inflammation. However, its effects within the placenta and on pregnancy outcomes remain largely unknown. We found that uric acid (monosodium urate [MSU]) crystals induce a proinflammatory profile in isolated human term cytotrophoblast cells, with a predominant secretion of IL-1β and IL-6, a result confirmed in human term placental explants. The proinflammatory effects of MSU crystals were shown to be IL-1-dependent using a caspase-1 inhibitor (inhibits IL-1 maturation) and IL-1Ra (inhibits IL-1 signaling). The proinflammatory effect of MSU crystals was accompanied by trophoblast apoptosis and decreased syncytialization. Correspondingly, administration of MSU crystals to rats during late gestation induced placental inflammation and was associated with fetal growth restriction. These results make a strong case for an active proinflammatory role of MSU crystals at the maternal-fetal interface in pathological pregnancies, and highlight a key mediating role of IL-1. Furthermore, our study describes a novel in vivo animal model of noninfectious inflammation during pregnancy, which is triggered by MSU crystals and leads to reduced fetal growth.

  15. Potential Effects of Chlorpyrifos on Fetal Growth Outcomes: Implications for Risk Assessment

    PubMed Central

    Mink, Pamela J.; Kimmel, Carole A.; Li, Abby A.

    2012-01-01

    Chlorpyrifos (CPF) is one of the most widely used organophosphate insecticides in the United States. By December 2000, nearly all residential uses were voluntarily canceled, so that today, CPF is only used to control insect pests on a variety of crops. Periodic review of the potential effects of CPF on all developmental outcomes is necessary in the United States because the Food Quality Protection Act mandates special consideration of risk assessments for infants and children. This article reviews epidemiologic studies examining the association of potential CPF exposure with growth indices, including birth weight, birth length, and head circumference, and animal studies focusing on related somatic developmental endpoints. It differs from earlier reviews by including an additional cohort study and providing in-depth systematic evaluation of the patterns of association across different studies with respect to specificity of biomarkers for CPF, consistency, dose response, strength of association, temporality, and biological plausibility (Hill 1965), as well as consideration of the potential role of effect modification and bias. The review did not identify any strong associations exhibiting consistent exposure-response patterns that were observed in more than one of the four cohort studies evaluated. In addition, the animal data indicate that developmental effects occur at doses that produce substantial maternal toxicity and red blood cell (RBC) acetylcholinesterase (AChE) inhibition. Based on consideration of both the epidemiologic and animal data, maternal RBC AChE inhibition is a more sensitive endpoint for risk assessment than somatic developmental effects reviewed in this article. PMID:22571222

  16. Human imprinting anomalies in fetal and childhood growth disorders: clinical implications and molecular mechanisms.

    PubMed

    Azzi, Salah; Brioude, Fréderic; Le Bouc, Yves; Netchine, Irène

    2014-01-01

    Genomic imprinting is among the most important epigenetic mechanisms whereby expression of a subset of genes is restricted to a single parental allele. Loss of imprinting (LOI) through hypo or hyper methylation is involved in various human syndromes. These LOI occur early during development and usually impair growth. Some imprinting syndromes are the consequences of genetic anomalies, such as uniparental disomies (UPD) or copy number variations (deletion or duplications) involving the imprinted domains; others are due to LOI at the imprinting control regions (ICR) regulating each domain. Imprinting disorders are phenotypically heterogeneous, although some share various common clinical features such that diagnosis may be difficult. Multilocus imprinting defects associated with several syndromes have been increasingly reported in recent years, although there are no obvious clinical differences between monolocus and multilocus LOI patients. Subsequently, some rare mutations of transacting factors have been identified in patients with multilocus imprinting defects but they do not explain the majority of the cases; this therefore implies that other factors are involved. By contrast, no mutation of a transacting factor has yet been identified in monolocus LOI. The effect of the environment on the regulation of imprinting is clearly illustrated by studies of assisted reproductive technology (ART). The regulation of imprinting is complex and involves a huge range of genetic and environmental factors; the identification of these factors will undoubtedly help to elucidate the regulation of imprinting and contribute to the understanding of imprinting disorders. This would be beneficial for diagnostics, clinical follow up and the development of treatment guidelines.

  17. NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy.

    PubMed

    Shirasuna, Koumei; Karasawa, Tadayoshi; Usui, Fumitake; Kobayashi, Motoi; Komada, Tadanori; Kimura, Hiroaki; Kawashima, Akira; Ohkuchi, Akihide; Taniguchi, Shun'ichiro; Takahashi, Masafumi

    2015-11-01

    Preeclampsia is a pregnancy-specific syndrome characterized by elevated blood pressure, proteinuria, and intrauterine growth restriction (IUGR). Although sterile inflammation appears to be involved, its pathogenesis remains unclear. Recent evidence indicates that sterile inflammation is mediated through the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes, composed of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1. Here we investigated the role of the NLRP3 inflammasomes in the pathogenesis of preeclampsia using Nlrp3(-/-) and Asc(-/-) (Nlrp3 and Asc deficient) pregnant mice. During pregnancy in mice, continuous infusion of high-dose angiotensin II (AngII) induced hypertension, proteinuria, and IUGR, whereas infusion of low-dose AngII caused hypertension alone. AngII-induced hypertension was prevented in Nlrp3(-/-) mice but not in Asc(-/-), indicating that NLRP3 contributes to gestational hypertension independently of ASC-mediated inflammasomes. Although NLRP3 deficiency had no effect on IUGR, it restored the IL-6 up-regulation in the placenta and kidney of AngII-infused mice. Furthermore, treatment with hydralazine prevented the development of gestational hypertension but not IUGR or IL-6 expression in the placenta and kidney. These findings demonstrate that NLRP3 contributes to the development of gestational hypertension independently of the inflammasomes and that IUGR and kidney injury can occur independent of blood pressure elevation during pregnancy.

  18. Maternal Inflammation Disrupts Fetal Neurodevelopment via Increased Placental Output of Serotonin to the Fetal Brain

    PubMed Central

    Goeden, Nick; Velasquez, Juan; Arnold, Kathryn A.; Chan, Yen; Lund, Brett T.; Anderson, George M.

    2016-01-01

    Maternal inflammation during pregnancy affects placental function and is associated with increased risk of neurodevelopmental disorders in the offspring. The molecular mechanisms linking placental dysfunction to abnormal fetal neurodevelopment remain unclear. During typical development, serotonin (5-HT) synthesized in the placenta from maternal l-tryptophan (TRP) reaches the fetal brain. There, 5-HT modulates critical neurodevelopmental processes. We investigated the effects of maternal inflammation triggered in midpregnancy in mice by the immunostimulant polyriboinosinic-polyribocytidylic acid [poly(I:C)] on TRP metabolism in the placenta and its impact on fetal neurodevelopment. We show that a moderate maternal immune challenge upregulates placental TRP conversion rapidly to 5-HT through successively transient increases in substrate availability and TRP hydroxylase (TPH) enzymatic activity, leading to accumulation of exogenous 5-HT and blunting of endogenous 5-HT axonal outgrowth specifically within the fetal forebrain. The pharmacological inhibition of TPH activity blocked these effects. These results establish altered placental TRP conversion to 5-HT as a new mechanism by which maternal inflammation disrupts 5-HT-dependent neurogenic processes during fetal neurodevelopment. SIGNIFICANCE STATEMENT The mechanisms linking maternal inflammation during pregnancy with increased risk of neurodevelopmental disorders in the offspring are poorly understood. In this study, we show that maternal inflammation in midpregnancy results in an upregulation of tryptophan conversion to serotonin (5-HT) within the placenta. Remarkably, this leads to exposure of the fetal forebrain to increased concentrations of this biogenic amine and to specific alterations of crucially important 5-HT-dependent neurogenic processes. More specifically, we found altered serotonergic axon growth resulting from increased 5-HT in the fetal forebrain. The data provide a new understanding of placental

  19. Maternal high-fat diet is associated with impaired fetal lung development.

    PubMed

    Mayor, Reina S; Finch, Katelyn E; Zehr, Jordan; Morselli, Eugenia; Neinast, Michael D; Frank, Aaron P; Hahner, Lisa D; Wang, Jason; Rakheja, Dinesh; Palmer, Biff F; Rosenfeld, Charles R; Savani, Rashmin C; Clegg, Deborah J

    2015-08-15

    Maternal nutrition has a profound long-term impact on infant health. Poor maternal nutrition influences placental development and fetal growth, resulting in low birth weight, which is strongly associated with the risk of developing chronic diseases, including heart disease, hypertension, asthma, and type 2 diabetes, later in life. Few studies have delineated the mechanisms by which maternal nutrition affects fetal lung development. Here, we report that maternal exposure to a diet high in fat (HFD) causes placental inflammation, resulting in placental insufficiency, fetal growth restriction (FGR), and inhibition of fetal lung development. Notably, pre- and postnatal exposure to maternal HFD also results in persistent alveolar simplification in the postnatal period. Our novel findings provide a strong association between maternal diet and fetal lung development.

  20. Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy.

    PubMed

    Cooke, Gerard M

    2014-01-01

    The first trimester of human fetal life, a period of extremely rapid development of physiological systems, represents the most rapid growth phase in human life. Interference in the establishment of organ systems may result in abnormal development that may be manifest immediately or programmed for later abnormal function. Exposure to environmental chemicals may be affecting development at these early stages, and yet there is limited knowledge of the quantities and identities of the chemicals to which the fetus is exposed during early pregnancy. Clearly, opportunities for assessing fetal chemical exposure directly are extremely limited. Hence, this review describes indirect means of assessing fetal exposure in early pregnancy to chemicals that are considered disrupters of development. Consideration is given to such matrices as maternal hair, fingernails, urine, saliva, sweat, breast milk, amniotic fluid and blood, and fetal matrices such as cord blood, cord tissue, meconium, placenta, and fetal liver. More than 150 articles that presented data from chemical analysis of human maternal and fetal tissues and fluids were reviewed. Priority was given to articles where chemical analysis was conducted in more than one matrix. Where correlations between maternal and fetal matrices were determined, these articles were included and are highlighted, as these may provide the basis for future investigations of early fetal exposure. The determination of fetal chemical exposure, at the time of rapid human growth and development, will greatly assist regulatory agencies in risk assessments and establishment of advisories for risk management concerning environmental chemicals.

  1. Does Training Affect Growth? Answers to Common Questions.

    ERIC Educational Resources Information Center

    Daly, Robin M.; Bass, Shona; Caine, Dennis; Howe, Warren

    2002-01-01

    Adolescent athletes may be at risk of restricted growth and delayed maturation when combining intense training with insufficient energy intake. Because catch-up growth commonly occurs with reduced training, final adult stature is generally not compromised. However, in athletes with long-term, clinically delayed maturation, catch-up growth may be…

  2. Changes in the Expression of Vascular Endothelial Growth Factor after Fetal Tracheal Occlusion in an Experimental Model of Congenital Diaphragmatic Hernia

    PubMed Central

    Sanz-López, E.; Maderuelo, E.; Peláez, D.; Chimenti, P.; Lorente, R.; Muñoz, M. A.; Sánchez-Luna, M.

    2013-01-01

    Introduction. Vascular endothelial growth factor (VEGF), an angiogenic factor secreted by type II pneumocytes, could play a role in congenital diaphragmatic hernia (CDH) pathogenesis. Animal studies suggest that VEGF accelerates lung growth. Aim. To quantify VEGF on fetal lungs in a nitrofen rat model for CDH and to analyze the effect of tracheal occlusion (TO) in VEGF in fetal lung rats after nitrofen and in control rats not exposed to nitrofen. Methods. Pregnant rats received nitrofen on day 9.5 of gestation. Fetuses were divided into 2 groups: those that underwent TO on day 20 and those that did not. On day 21, fetuses were delivered, and the lungs were dissected for subsequent VEGF quantification. Results. CDH was detected in 43% of the fetuses that received nitrofen. Fetuses with CDH showed significantly reduced lung weight/fetal weight ratio and lower VEGF levels than the remainder. A higher VEGF value was observed after TO. Conclusions. VEGF protein was significantly lower in fetuses with CDH. TO induced a significant increase in VEGF compared to the fetuses that did not undergo TO. Although not statistically significant, we observed higher VEGF levels in fetuses with CDH and TO compared to fetuses with CDH and no further intervention. PMID:23424681

  3. Color Doppler monitoring of changes of utero-placental-fetal circulation in normal pregnancy and intrauterine growth retardation.

    PubMed

    Xu, J; Wen, L; Ma, T; Zhang, Y; Zhang, Q; Gao, S; Zhao, M; Wu, H; Hu, J

    1997-01-01

    The utero-placental-fetal circulation (UPFC) of 150 subjects during second and third trimester was examined by using color Doppler. Of them 89 were normal woman and 58 were patients with intrauterine growth retardation IUGR). Our results showed that UPFC was increased gradually during normal pregnant period. In IUGR patients it was revealed that TAV and Q of UmA, UmV and UtA decreased at 20th week of gestation, especially after 30th week. PI, RI and S/D ratio of UmA were increased, but TAV, Q of UmA and UmV were markly reduced, so was UtA. PI were increased, but the changes of RI, S/D ratio in UtA were not significant. Hemodynamical findings of UmA, UmV and UtA were abnormal in 92.53% of IUGR patients. Only 81.03% present abnormal S/D ratio of UmA (P < 0.01) and the difference was statistically significant. Maternal serum E3, HPL level in IUGR were significantly lower than that of the normal. 6KP level was reduced, TXB2/6KP ratio was significantly increased. TXB2/6KP ratio was markedly related with TAV, Q of UmA, UmV and UtA. Our results suggested that using color doppler ultrasound for examination of hemodynamical changes of UmA, UmV and UtA could revealed UPFC function directly. It is one of the best methods for monitoring IUGR and might be used for early diagnosis of IUGR. The main pathophysiological changes of IUGR were UPFC obstruction and placental disfunction.

  4. Growth and development of rabbit oocytes in vitro: effect of fetal bovine serum concentration on culture medium.

    PubMed

    Sugimoto, H; Kida, Y; Miyamoto, Y; Kitada, K; Matsumoto, K; Saeki, K; Taniguchi, T; Hosoi, Y

    2012-09-15

    The objective was to develop a culture system that produced blastocyst stage embryos from rabbit oocytes grown in vitro. Two experiments were performed. First, various concentrations of fetal bovine serum (FBS, 0, 0.05, 0.5 and 5%) were used in the culture medium for in vitro growth (IVG) of oocytes recovered from follicles 200 to 299 μm in diameter. Intracytoplasmic sperm injection (ICSI) was performed on mature oocytes obtained after IVG for 8 days and in vitro maturation for 14 to 16 h. Rates of survival and pronuclear formation after ICSI were higher for oocytes grown in a medium with 0.05% FBS compared to oocytes grown in a medium lacking FBS (97.6 vs. 76.9%, 97.5 vs. 70%, P < 0.1). The rate of development to the blastocyst stage was also higher in the medium containing 0.05% FBS than in the medium lacking FBS (9.5 vs. 17.9%, P < 0.05). Next, using oocytes recovered from follicles 200 to 399 μm in diameter which were cultured in 0.05% FBS, oxygen consumption and the number of cells were analyzed. Blastocysts from oocytes grown in vitro with 0.05% FBS had reduced oxygen consumption and number of cells compared with those from ovulated oocytes (21.66 ± 4.54 × 10(14) vs. 50.19 ± 4.61 × 10(14) mol/sec, 244 ± 25 vs. 398 ± 24, P < 0.05). Rabbit oocytes grown in vitro with 0.05% FBS achieved pregnancy, but pregnancies were not maintained to term. In conclusion, the addition of 0.05% FBS to the culture medium for IVG improved developmental competence of rabbit oocytes grown in vitro.

  5. Impact of Restricted Maternal Weight Gain on Fetal Growth and Perinatal Morbidity in Obese Women With Type 2 Diabetes

    PubMed Central

    Ásbjörnsdóttir, Björg; Rasmussen, Signe S.; Kelstrup, Louise; Damm, Peter; Mathiesen, Elisabeth R.

    2013-01-01

    OBJECTIVE Since January 2008, obese women with type 2 diabetes were advised to gain 0–5 kg during pregnancy. The aim with this study was to evaluate fetal growth and perinatal morbidity in relation to gestational weight gain in these women. RESEARCH DESIGN AND METHODS A retrospective cohort comprised the records of 58 singleton pregnancies in obese women (BMI ≥30 kg/m2) with type 2 diabetes giving birth between 2008 and 2011. Birth weight was evaluated by SD z score to adjust for gestational age and sex. RESULTS Seventeen women (29%) gained ≤5 kg, and the remaining 41 gained >5 kg. The median (range) gestational weight gains were 3.7 kg (−4.7 to 5 kg) and 12.1 kg (5.5–25.5 kg), respectively. Prepregnancy BMI was 33.5 kg/m2 (30–53 kg/m2) vs. 36.8 kg/m2 (30–48 kg/m2), P = 0.037, and median HbA1c was 6.7% at first visit in both groups and decreased to 5.7 and 6.0%, P = 0.620, in late pregnancy, respectively. Gestational weight gain ≤5 kg was associated with lower birth weight z score (P = 0.008), lower rates of large-for-gestational-age (LGA) infants (12 vs. 39%, P = 0.041), delivery closer to term (268 vs. 262 days, P = 0.039), and less perinatal morbidity (35 vs. 71%, P = 0.024) compared with pregnancies with maternal weight gain >5 kg. CONCLUSIONS In this pilot study in obese women with type 2 diabetes, maternal gestational weight gain ≤5 kg was associated with a more proportionate birth weight and less perinatal morbidity. PMID:23248191

  6. Expression of growth differentiation factor 6 in the human developing fetal spine retreats from vertebral ossifying regions and is restricted to cartilaginous tissues.

    PubMed

    Wei, Aiqun; Shen, Bojiang; Williams, Lisa A; Bhargav, Divya; Gulati, Twishi; Fang, Zhimin; Pathmanandavel, Sarennya; Diwan, Ashish D

    2016-02-01

    During embryogenesis vertebral segmentation is initiated by sclerotomal cell migration and condensation around the notochord, forming anlagen of vertebral bodies and intervertebral discs. The factors that govern the segmentation are not clear. Previous research demonstrated that mutations in growth differentiation factor 6 resulted in congenital vertebral fusion, suggesting this factor plays a role in development of vertebral column. In this study, we detected expression and localization of growth differentiation factor 6 in human fetal spinal column, especially in the period of early ossification of vertebrae and the developing intervertebral discs. The extracellular matrix proteins were also examined. Results showed that high levels of growth differentiation factor 6 were expressed in the nucleus pulposus of intervertebral discs and the hypertrophic chondrocytes adjacent to the ossification centre in vertebral bodies, where strong expression of proteoglycan and collagens was also detected. As fetal age increased, the expression of growth differentiation factor 6 was decreased correspondingly with the progress of ossification in vertebral bodies and restricted to cartilaginous regions. This expression pattern and the genetic link to vertebral fusion suggest that growth differentiation factor 6 may play an important role in suppression of ossification to ensure proper vertebral segmentation during spinal development.

  7. Diagnosis of twin-to-twin transfusion syndrome, selective fetal growth restriction, twin anaemia-polycythaemia sequence, and twin reversed arterial perfusion sequence.

    PubMed

    Sueters, Marieke; Oepkes, Dick

    2014-02-01

    Monochorionic twin pregnancies are well known to be at risk for a variety of severe complications, a true challenge for the maternal-fetal medicine specialist. With current standards of care, monochorionicity should be established in the first trimester. Subsequently, frequent monitoring using the appropriate diagnostic tools, and in-depth knowledge about the pathophysiology of all possible clinical presentations of monochorionic twin abnormalities, should lead to timely recognition, and appropriate management. Virtually all unique diseases found in monochorionic twins are directly related to placental angio-architecture. This, however, cannot be established reliably before birth. The clinician needs to be aware of the definitions and symptoms of twin-to twin transfusion syndrome, selective fetal growth restriction, twin anaemia-polycythaemia sequence, and twin reversed arterial perfusion sequence, to be able to recognise each disease and take the required action. In this chapter, we address current standards on correct and timely diagnoses of severe complications of monochorionic twin pregnancies.

  8. Fetal Alcohol Syndrome and Fetal Alcohol Effects in Child Development.

    ERIC Educational Resources Information Center

    Pancratz, Diane R.

    This literature review defines Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) and considers their causes, diagnoses, prevalence, and educational ramifications. Effects of alcohol during each of the trimesters of pregnancy are summarized. Specific diagnostic characteristics of FAS are listed: (1) growth deficiency, (2) a…

  9. PRENATAL NICOTINE EXPOSURE SELECTIVELY AFFECTS NICOTINIC RECEPTOR EXPRESSION IN PRIMARY AND ASSOCIATIVE VISUAL CORTICES OF THE FETAL BABOON

    PubMed Central

    Duncan, Jhodie R.; Garland, Marianne; Stark, Raymond I.; Myers, Michael M.; Fifer, William P.; Mokler, David J.; Kinney, Hannah C.

    2014-01-01

    Exposure to nicotine during pregnancy via maternal cigarette smoking is associated with visual deficits in children. This is possibly due to activation of nicotinic acetylcholine receptors (nAChRs) in the occipital cortex which are important in the development of visual mapping. Using a baboon model we explored the effects of prenatal nicotine on parameters in the primary and associated visual cortices. Pregnant baboons were infused with nicotine (0.5 mg/hr, i.v.) or saline from 86 days gestation. At 161 days gestation fetal brains were collected (n=5/group) and the occipital lobe assessed for nAChRs and markers of the serotonergic and catecholaminergic systems using tissue autoradiography and/or high performance liquid chromatography. Neuronal nAChRs and serotonergic markers were expressed in a region and subunit dependent manner. Prenatal nicotine exposure was associated with increased binding for 3H-epibatidine sensitive nAChRs in the primary visual cortex (BA 17) and BA 18, but not BA 19, of the associative visual cortex (p<0.05). Markers of the serotonergic or catecholaminergic systems were not significantly altered. Thus, prenatal nicotine exposure is associated with alterations in the cholinergic system in the occipital lobe which may aid in the explanation of the appearance of visual deficits in children from mothers who smoke during pregnancy. PMID:24903536

  10. Prenatal nicotine exposure selectively affects nicotinic receptor expression in primary and associative visual cortices of the fetal baboon.

    PubMed

    Duncan, Jhodie R; Garland, Marianne; Stark, Raymond I; Myers, Michael M; Fifer, William P; Mokler, David J; Kinney, Hannah C

    2015-03-01

    Exposure to nicotine during pregnancy via maternal cigarette smoking is associated with visual deficits in children. This is possibly due to the activation of nicotinic acetylcholine receptors (nAChRs) in the occipital cortex, which are important in the development of visual mapping. Using a baboon model, we explored the effects of prenatal nicotine on parameters in the primary and associated visual cortices. Pregnant baboons were infused with nicotine (0.5 mg/h, intravenous) or saline from 86 days gestation. At 161 days gestation, fetal brains were collected (n = 5 per group) and the occipital lobe assessed for nAChRs and markers of the serotonergic and catecholaminergic systems using tissue autoradiography and/or high-performance liquid chromatography. Neuronal nAChRs and serotonergic markers were expressed in a region- and subunit-dependent manner. Prenatal nicotine exposure was associated with increased binding for (3) H-epibatidine sensitive nAChRs in the primary visual cortex [Brodmann areas (BA) 17] and BA 18, but not BA 19, of the associative visual cortex (P < 0.05). Markers of the serotonergic or catecholaminergic systems were not significantly altered. Thus, prenatal nicotine exposure is associated with alterations in the cholinergic system in the occipital lobe, which may aid in the explanation of the appearance of visual deficits in children from mothers who smoke during pregnancy.

  11. [Fetal magnetocardiography].

    PubMed

    Hosono, Takayoshi

    2006-05-01

    The electrical activities of the heart causes weak changes of the magnetic field, which can be recorded as magnetocardiogram (MCG). Fetal cardiac magnetic activity is measured in the order of less than 10 pT. An advance of the novel technology of a superconducting quantum interference device enabled the first recording of fetal MCG (FMCG) in 1974. In Japan, FMCG instrument (MC6400, Hitachi High-Technologies Ltd) was approved as a diagnostic tool by Japanese Government in 2003 owing to the cooperative studies of Tsukuba University, National Cardiovascular Center and Hitachi Ltd. FMCG offers similar information to a fetal electrocardiogram, which is difficult to be recorded because the fetal skin is covered with fatty caseous vernix of weak electrical conductivity in the second and third trimester of pregnancy. Magnetic flux can pass through the fat layer, and thus FMCG can measure the electrical activity of the fetal heart. Besides FMCG has far higher resolutions in time domain than echocardiography does. The amplitude of FMCG signals depends on the size of fetal heart and the distance between the sensors and the fetal heart. The amplitudes of the QRS, P and T waves increases with gestational age. Since the amplitudes of P and T waves are often weak, averaging of FMCG signals is needed to improve the signal-to-noise ratio. Current-arrow map is a useful mapping technique even in FMCG. FMCG has been applied in the prenatal diagnosis of fetal arrhythmias such as bradyarrhythmia (atrioventricular block, long QT syndrome, etc), tachyarrhythmia (supraventricular tachycardia, atrial flutter, atrial fibrillation and WPW syndrome, etc) and extrasystoles. Fetal cardiomegaly with myocardial abnormalities can be also diagnosed by FMCG. Applications of FMCG for fetal heart rate monitoring using beat-to-beat variability have been also studied to obtain better information on fetal well-beings.

  12. Organizational Career Growth, Affective Occupational Commitment and Turnover Intentions

    ERIC Educational Resources Information Center

    Weng, Qingxiong; McElroy, James C.

    2012-01-01

    Survey data, collected from the People's Republic of China, were used to test Weng's (2010) four facet model of career growth and to examine its effect on occupational commitment and turnover intentions. Weng conceptualized career growth as consisting of four factors: career goal progress, professional ability development, promotion speed, and…

  13. Prenatal Intestinal Obstruction Affects the Myenteric Plexus and Causes Functional Bowel Impairment in Fetal Rat Experimental Model of Intestinal Atresia

    PubMed Central

    Khen-Dunlop, Naziha; Sarnacki, Sabine; Victor, Anais; Grosos, Celine; Menard, Sandrine; Soret, Rodolphe; Goudin, Nicolas; Pousset, Maud; Sauvat, Frederique; Revillon, Yann; Cerf-Bensussan, Nadine; Neunlist, Michel

    2013-01-01

    Background Intestinal atresia is a rare congenital disorder with an incidence of 3/10 000 birth. About one-third of patients have severe intestinal dysfunction after surgical repair. We examined whether prenatal gastrointestinal obstruction might effect on the myenteric plexus and account for subsequent functional disorders. Methodology/Principal Findings We studied a rat model of surgically induced antenatal atresia, comparing intestinal samples from both sides of the obstruction and with healthy rat pups controls. Whole-mount preparations of the myenteric plexus were stained for choline acetyltransferase (ChAT) and nitric oxide synthase (nNOS). Quantitative reverse transcription PCR was used to analyze mRNAs for inflammatory markers. Functional motility and permeability analyses were performed in vitro. Phenotypic studies were also performed in 8 newborns with intestinal atresia. In the experimental model, the proportion of nNOS-immunoreactive neurons was similar in proximal and distal segments (6.7±4.6% vs 5.6±4.2%, p = 0.25), but proximal segments contained a higher proportion of ChAT-immunoreactive neurons (13.2±6.2% vs 7.5±4.3%, p = 0.005). Phenotypic changes were associated with a 100-fold lower concentration-dependent contractile response to carbachol and a 1.6-fold higher EFS-induced contractile response in proximal compared to distal segments. Transcellular (p = 0.002) but not paracellular permeability was increased. Comparison with controls showed that modifications involved not only proximal but also distal segments. Phenotypic studies in human atresia confirmed the changes in ChAT expression. Conclusion Experimental atresia in fetal rat induces differential myenteric plexus phenotypical as well as functional changes (motility and permeability) between the two sides of the obstruction. Delineating these changes might help to identify markers predictive of motility dysfunction and to define guidelines for post-surgical care. PMID:23667464

  14. The effects of alcohol on fetal development.

    PubMed

    Jones, Kenneth Lyons

    2011-03-01

    Prenatal exposure to alcohol has profound effects on many aspects of fetal development. Although alterations of somatic growth and specific minor malformations of facial structure are most characteristic, the effects of alcohol on brain development are most significant in that they lead to substantial problems with neurobehavioral development. Since the initial recognition of the fetal alcohol syndrome (FAS), a number of important observations have been made from studies involving both humans and animals. Of particular importance, a number of maternal risk factors have been identified, which may well be of relevance relative to the development of strategies for prevention of the FAS as well as intervention for those who have been affected. These include maternal age >30 years, ethnic group, lower socioeconomic status, having had a previously affected child, maternal under-nutrition, and genetic background. The purpose of this review is to discuss these issues as well as to set forth a number of questions that have not adequately been addressed relative to alcohol's effect on fetal development. Of particular importance is the critical need to identify the full spectrum of structural defects associated with the prenatal effects of alcohol as well as to establish a neurobehavioral phenotype. Appreciation of both of these issues is necessary to understand the full impact of alcohol on fetal development.

  15. Fetal ultrasonography.

    PubMed Central

    Garmel, S H; D'Alton, M E

    1993-01-01

    Since its introduction in the 1950s, ultrasonography in pregnancy has been helpful in determining gestational age, detecting multiple pregnancies, locating placentas, diagnosing fetal anomalies, evaluating fetal well-being, and guiding obstetricians with in utero treatment. We review current standards and controversies regarding the indications, safety, accuracy, and limitations of ultrasonography in pregnancy. Images PMID:8236969

  16. Fetal Circulation

    MedlinePlus

    ... Echocardiography/Your Unborn Baby's Heart - Fetal Echocardiogram Test - Detection of a Heart Defect - Fetal Circulation • Care & Treatment • Tools & Resources Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Target Heart Rates 4 Heart Attack Symptoms in Women ...

  17. Fetal Abuse.

    ERIC Educational Resources Information Center

    Kent, Lindsey; And Others

    1997-01-01

    Five cases of fetal abuse by mothers suffering from depression are discussed. Four of the women had unplanned pregnancies and had considered termination of the pregnancy. Other factors associated with fetal abuse include pregnancy denial, pregnancy ambivalence, previous postpartum depression, and difficulties in relationships. Vigilance for…

  18. The relationship between transplacental O2 diffusion and placental expression of PlGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction.

    PubMed

    Regnault, Timothy R H; de Vrijer, Barbra; Galan, Henry L; Davidsen, Meredith L; Trembler, Karen A; Battaglia, Frederick C; Wilkening, Randall B; Anthony, Russell V

    2003-07-15

    Placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) are involved in placental angiogenesis through interactions with the VEGFR-1 and VEGFR-2 receptors. The placenta of pregnancies whose outcome is fetal growth restriction (FGR) are characterized by abnormal angiogenic development, classically associated with hypoxia. The present study evaluated the near-term expression of this growth factor family in an ovine model of placental insufficiency-FGR, in relationship to uteroplacental oxygenation. Compared to controls, FGR pregnancies demonstrated a 37% increase in uterine blood flow (FGR vs. control, 610.86+/-48.48 vs. 443.17+/-37.39 ml min(-1) (kg fetus)(-1); P<0.04), which was associated with an increased maternal uterine venous PO2 (58.13+/-1.00 vs. 52.89+/-1.26 mmHg; P<0.02), increased umbilical artery systolic/diastolic ratio (3.90+/-0.33 vs. 2.12+/-0.26, P<0.05), and fetal hypoxia (arterial PO2; 12.79+/-0.97 vs. 18.65+/-1.6 mmHg, P<0.005). Maternal caruncle PlGF mRNA was increased in FGR (P<0.02), while fetal cotyledon VEGF mRNA was reduced (P<0.02). VEGFR-1 mRNA was also reduced in FGR fetal cotyledon (P<0.001) but was not altered in caruncle tissue. Immunoblot analysis of PlGF and VEGF demonstrated single bands at 19,000 and 18,600 Mr, respectively. Caruncle PlGF concentration was increased (P<0.04), while cotyledon VEGF was decreased (P<0.05) in FGR placentae. The data establish that uterine blood flow is not reduced in relationship to metabolic demands in this FGR model and that the transplacental PO2 gradient is increased, maintaining umbilical oxygen uptake per unit of tissue. Furthermore, these data suggest that an increased transplacental gradient of oxygen generates changes in angiogenic growth factors, which may underline the pathophysiology of the post-placental hypoxic FGR.

  19. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol

    PubMed Central

    Sawant, Onkar B.; Ramadoss, Jayanth; Hankins, Gary D.; Wu, Guoyao

    2014-01-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid–base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid–base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy. PMID:24810329

  20. Elsevier Trophoblast Research Award Lecture: Searching for an early pregnancy 3-D morphometric ultrasound marker to predict fetal growth restriction.

    PubMed

    Collins, S L; Stevenson, G N; Noble, J A; Impey, L

    2013-03-01

    Fetal growth restriction (FGR) is a major cause of perinatal morbidity and mortality, even in term babies. An effective screening test to identify pregnancies at risk of FGR, leading to increased antenatal surveillance with timely delivery, could decrease perinatal mortality and morbidity. Placental volume, measured with commercially available packages and a novel, semi-automated technique, has been shown to predict small for gestational age babies. Placental morphology measured in 2-D in the second trimester and ex-vivo post delivery, correlates with FGR. This has also been investigated using 2-D estimates of diameter and site of cord insertion obtained using the Virtual Organ Computer-aided AnaLysis (VOCAL) software. Data is presented describing a pilot study of a novel 3-D method for defining compactness of placental shape. We prospectively recruited women with a singleton pregnancy and BMI of <35. A 3-D ultrasound scan was performed between 11 and 13 + 6 weeks' gestation. The placental volume, total placental surface area and the area of the utero-placental interface were calculated using our validated technique. From these we generated dimensionless indices including sphericity (ψ), standardised placental volume (sPlaV) and standardised functional area (sFA) using Buckingham π theorem. The marker for FGR used was small for gestational age, defined as <10th customised birth weight centile (cSGA). Regression analysis examined which of the morphometric indices were independent predictors of cSGA. Data were collected for 143 women, 20 had cSGA babies. Only sPlaV and sFA were significantly correlated to birth weight (p < 0.001). Regression demonstrated all dimensionless indices were inter-dependent co-factors. ROC curves showed no advantage for using sFA over the simpler sPlaV. The generated placental indices are not independent of placental volume this early in gestation. It is hoped that another placental ultrasound marker based on vascularity can improve the

  1. Effect of nebivolol treatment during pregnancy on the intrauterine fetal growth, mortality and pup postnatal development in the l-NAME-induced hypertensive rats.

    PubMed

    Altoama, Kassem; Mallem, Mohamed Yassine; Thorin, Chantal; Betti, Eric; Desfontis, Jean-Claude

    2016-11-15

    The present study was carried out to evaluate the effect of nebivolol vs. bisoprolol treatment on the intrauterine fetal growth, mortality and postnatal development in N(ω)-Nitro-l-arginine methyl ester hydrochloride (l-NAME)-induced hypertensive rats. Hypertension was induced in normotensive pregnant Wistar rats by daily administration of l-NAME (100mg/kg/day, in the drinking water) for the period of pregnancy. After 9 days of l-NAME treatment, rats with systolic and diastolic blood pressure (SBP and DBP) more than 140/90mmHg were considered hypertensive. Then, some of them were treated from day 11 to day 18 of pregnancy with nebivolol (8mg/kg/day) or bisoprolol (10mg/kg/day) via oral gavage. SBP, DBP and heart rate (HR) were re-evaluated by tail cuff method on day 19 of pregnancy and morphometrical or histological studies were performed on day 20. In addition, the mortality and postnatal development of newborn pups were assessed in all groups. The l-NAME administration during pregnancy induced an increase in SBP and DBP while HR did not change. Nebivolol or bisoprolol treatment completely prevented the elevation of SBP and DBP induced by l-NAME with a reduction in HR in pregnant and non-pregnant rats. The intra-uterine fetal growth and the postnatal development of newborn rats in nebivolol-treated hypertensive group were significantly lower vs. control and higher vs. bisoprolol-treated group with a higher mortality in the both types of treatments vs. control rats. The nebivolol and bisoprolol administration produce adverse effects on fetal growth and postnatal development, that limits their therapeutic use in females during pregnancy.

  2. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies.

  3. The Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Umbreit, John; Ostrow, Lisa S.

    1980-01-01

    Fetal alcohol syndrome is a pattern of altered growth and morphogenesis found in about half the offspring of severely and chronically alcoholic women who continue drinking throughout their pregnancy. Of children studied, mild to moderate mental retardation was the most common disorder, occurring in 44 percent of the cases. (PHR)

  4. Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Zerrer, Peggy

    The paper reviews Fetal Alcohol Syndrome (FAS), a series of effects seen in children whose mothers drink alcohol to excess during pregnancy. The identification of FAS and its recognition as a major health problem in need of prevention are traced. Characteristics of children with FAS are described and resultant growth retardation, abnormal physical…

  5. Fetal pain?

    PubMed

    Vanhatalo, S; van Nieuwenhuizen, O

    2000-05-01

    During the last few years a vivid debate, both scientifically and emotionally, has risen in the medical literature as to whether a fetus is able to feel pain during abortion or intrauterine surgery. This debate has mainly been inspired by the demonstration of various hormonal or motor reactions to noxious stimuli at very early stages of fetal development. The aims of this paper are to review the literature on development of the pain system in the fetus, and to speculate about the relationship between "sensing" as opposed to "feeling" pain and the number of reactions associated with painful stimuli. While a cortical processing of pain theoretically becomes possible after development of the thalamo-cortical connections in the 26th week of gestation, noxious stimuli may trigger complex reflex reactions much earlier. However, more important than possible painfulness is the fact that the noxious stimuli, by triggering stress responses, most likely affect the development of an individual at very early stages. Hence, it is not reasonable to speculate on the possible emotional experiences of pain in fetuses or premature babies. A clinically relevant aim is rather to avoid and/or treat any possibly noxious stimuli, and thereby prevent their potential adverse effects on the subsequent development.

  6. Minesoil grading and ripping affect black walnut growth and survival

    SciTech Connect

    Josiah, S.J.

    1986-07-01

    In 1980 and 1981, the Botany Department of Southern Illinois University and Sahara Coal Company, Inc. of Harrisburg, Illinois established a series of experimental tree plantings, including black walnut, on a variety of minesoils to explore the effects of different intensities of grading on tree growth. Subsequent walnut stem and root growth were examined during 1985 on five different mine sites: unmined former agricultural land, graded minespoil, replaced (with pan scrapers) topsoil over graded spoil, ripped-graded spoil, and ungraded spoil. Soil bulk density, resistance to penetration, and spoil/soil fertility levels were also measured. The most vigorous trees were found on sites having the lowest soil bulk density and soil strength and lacking horizontal barriers to root growth - the ungraded and ripped sites. Topsoiled sites had the poorest growth and survival, and the greatest stem dieback of any site measured, probably attributable to the confinement of root growth to the upper 15 cm of friable soil above the severely compacted zone. The overall results indicate that most of the minesoil construction techniques examined in this study, which are representative of techniques commonly used in the midwestern US, cause severe minesoil compaction and do not create the proper soil conditions necessary for the survival and vigorous growth of black walnut. Ripping compacted spoil in this and other studies proved to be very effective in alleviating the negative impacts of minesoil compaction. When planning surface mine reclamation activities, ripping should be considered as a possible ameliorative technique when compaction of mined lands is unavoidable and trees are the desired vegetative cover. 4 figures.

  7. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  8. Dissolved oxygen concentration affects hybrid striped bass growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. Three studies were conducted to quantify performance traits and metabolic responses of hybrid striped b...

  9. Shade periodicity affects growth of container grown dogwoods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Container-grown dogwoods rank third in the US in nursery sales of ornamental trees. However, Dogwoods are a challenging crop to produce in container culture, especially when bare root liners are used as the initial transplant into containers due unacceptable levels of mortality and poor growth. This...

  10. Fetal cardiac time intervals estimated on fetal magnetocardiograms: single cycle analysis versus average beat inspection.

    PubMed

    Comani, Silvia; Alleva, Giovanna

    2007-01-01

    Fetal cardiac time intervals (fCTI) are dependent on fetal growth and development, and may reveal useful information for fetuses affected by growth retardation, structural cardiac defects or long QT syndrome. Fetal cardiac signals with a signal-to-noise ratio (SNR) of at least 15 dB were retrieved from fetal magnetocardiography (fMCG) datasets with a system based on independent component analysis (ICA). An automatic method was used to detect the onset and offset of the cardiac waves on single cardiac cycles of each signal, and the fCTI were quantified for each heartbeat; long rhythm strips were used to calculate average fCTI and their variability for single fetal cardiac signals. The aim of this work was to compare the outcomes of this system with the estimates of fCTI obtained with a classical method based on the visual inspection of averaged beats. No fCTI variability can be measured from averaged beats. A total of 25 fMCG datasets (fetal age from 22 to 37 weeks) were evaluated, and 1768 cardiac cycles were used to compute fCTI. The real differences between the values obtained with a single cycle analysis and visual inspection of averaged beats were very small for all fCTI. They were comparable with signal resolution (+/-1 ms) for QRS complex and QT interval, and always <5 ms for the PR interval, ST segment and T wave. The coefficients of determination between the fCTI estimated with the two methods ranged between 0.743 and 0.917. Conversely, inter-observer differences were larger, and the related coefficients of determination ranged between 0.463 and 0.807, assessing the high performance of the automated single cycle analysis, which is also rapid and unaffected by observer-dependent bias.

  11. Phasic temperature change patterns affect growth and tuberization in potatoes

    SciTech Connect

    Cao, W.; Tibbitts, T.W. . Dept. of Horticulture)

    1994-07-01

    This study determined the response of potato (Solanum tuberosum L., cv. Norland) plants to various patterns of air temperature changes over different growth periods. In each of two experiments under controlled environments, eight treatments of temperature changes were carried out in two growth rooms maintained at 17 and 22 C and a constant vapor pressure deficit of 0.60 kPa and 14-hour photoperiod. Plants were grown for 63 days after transplanting of tissue culture plantlets in 20-liter pots containing peat-vermiculite mix. Temperature changes were imposed on days 21 and 42, which were essentially at the beginning of tuber initiation and tuber enlargement, respectively, for this cultivar. Plants were moved between two temperature rooms to obtain eight temperature change patterns: 17-17-17, 17-17-22, 17-22-17, 22-17-17, 17-22-22, 22-17-22, 22-22-17, and 22-22-22C over three 21-day growth periods. At harvest on day 63, total plant dry weight was higher for the treatments beginning with 22 C than for those beginning with 17C, with highest biomass obtained at 22-22-17 and 22-17-17C. Shoot dry weight increased with temperature increased from 17-17-17 to 22-22-22C during the three growth periods. Tuber dry weight was highest with 22-17-17C, and lowest with 17-17-22 and 17-22-22C. With 22-17-17C, both dry weights of stolons and roots were lowest. Total tuber number and number of small tubers were highest with 17-17-17 and 17-17-22C, and lowest with 17-22-22 and 22-22-22C, whereas number of medium tubers was highest with 22-17-22C, and number of large tubers was highest with 22-17-17C. This study indicates that tuber development of potatoes is optimized with a phasic pattern of high temperature during early growth and low temperature during later growth.

  12. In vitro characteristics of pulmonary neuroendocrine cells isolated from rabbit fetal lung. I. Effects of culture media and nerve growth factor.

    PubMed

    Cutz, E; Yeger, H; Wong, V; Bienkowski, E; Chan, W

    1985-12-01

    Pulmonary neuroendocrine (NE) cells, dispersed throughout the airway mucosa as single cells and as innervated clusters (neuroepithelial bodies), were isolated from rabbit fetal lung and studied in short-term culture. The effects of culture media and nerve growth factor (NGF) on in vitro maintenance, differentation, and cell kinetics of isolated NE cells were examined. For demonstration of NE cells in intact lung, during cell separation and after culture, immunostaining for serotonin, formaldehyde-induced fluorescence method, histochemical reaction for acetylcholinesterase, and electron microscopy were used. The isolation procedure consisted of mechanical and enzymatic dissociation of lung tissue followed by separation of isolated cells on a discontinuous gradient of Percoll, resulting in 5- to 10-fold enrichment in NE cells. Cell fractions enriched in NE cells were cultured up to 7 days either in supplemented alpha-minimal essential medium with fetal bovine serum or in defined, hormone-supplemented, serum-free medium. NGF (2.5 S 5 to 50 ng/ml) was added to both serum-supplemented and serum-free media; cultures without NGF served as control. The number of serotonin-immunoreactive NE cells maintained in serum-supplemented medium (0.5% fetal bovine serum) increased significantly (p less than 0.05) on days 4 and 7 compared with cultures grown in serum-free medium. NE cells maintained in serum-supplemented medium incorporated [3H]thymidine and their labeling index was significantly increased (p less than 0.01) on day 7, whereas few or no NE cells were labeled in cultures grown in serum-free medium. NGF had no effect on the maintenance or kinetics of NE cells. Cultured NE cells formed elongated (unipolar or bipolar) neurite-like cytoplasmic processes with a button-like ending, regardless of the presence of NGF. Amine accumulated in perinuclear cytoplasm and in button-like endings. Staining for acetylcholinesterase (strongly positive in intact neuroepithelial bodies) was

  13. Fetal Ultrasound

    MedlinePlus

    ... needle placement during certain prenatal tests, such as amniocentesis or chorionic villus sampling. Determine fetal position before ... home. Accessed Aug. 11, 2015. Ghidini A. Diagnostic amniocentesis. http://www.uptodate.com/home. Accessed Aug. 11, ...

  14. Fetal echocardiography

    MedlinePlus

    ... JavaScript. Fetal echocardiography is a test that uses sound waves ( ultrasound ) to evaluate the baby's heart for ... moved over the area. The probe sends out sound waves, which bounce off the baby's heart and ...

  15. Steps in Cu(111) thin films affect graphene growth kinetics

    NASA Astrophysics Data System (ADS)

    Miller, David L.; Gannett, Will; Keller, Mark W.

    2014-03-01

    The kinetics of chemical vapor deposition of graphene on Cu substrates depend on the relative rates of C diffusion on the surface, C attachment to graphene islands, and removal of C from the surface or from graphene islands by etching processes involving H atoms. Using Cu(111) thin films with centimeter-sized grains, we have grown graphene under a variety of conditions and examined the edges of graphene islands with SEM and AFM. The Cu surface shows a series of regular steps, roughly 2 nm in height, and the graphene islands are diamond-shaped with faster growth along the edges of Cu steps. In contrast, growth on polycrystalline Cu foils under the same conditions shows hexagonal graphene islands with smooth edges.

  16. Organic matter loading affects lodgepole pine seedling growth.

    PubMed

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M J; Armleder, H M

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  17. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  18. Antenatal management of recurrent fetal goitrous hyperthyroidism associated with fetal cardiac failure in a pregnant woman with persistent high levels of thyroid-stimulating hormone receptor antibody after ablative therapy.

    PubMed

    Matsumoto, Tadashi; Miyakoshi, Kei; Saisho, Yoshifumi; Ishii, Tomohiro; Ikenoue, Satoru; Kasuga, Yoshifumi; Kadohira, Ikuko; Sato, Seiji; Momotani, Naoko; Minegishi, Kazuhiro; Yoshimura, Yasunori

    2013-01-01

    High titer of maternal thyroid-stimulating hormone receptor antibody (TRAb) in patients with Graves' disease could cause fetal hyperthyroidism during pregnancy. Clinical features of fetal hyperthyroidism include tachycardia, goiter, growth restriction, advanced bone maturation, cardiomegaly, and fetal death. The recognition and treatment of fetal hyperthyroidism are believed to be important to optimize growth and intellectual development in affected fetuses. We herein report a case of fetal treatment in two successive siblings showing in utero hyperthyroid status in a woman with a history of ablative treatment for Graves' disease. The fetuses were considered in hyperthyroid status based on high levels of maternal TRAb, a goiter, and persistent tachycardia. In particular, cardiac failure was observed in the second fetus. With intrauterine treatment using potassium iodine and propylthiouracil, fetal cardiac function improved. A high level of TRAb was detected in the both neonates. To the best of our knowledge, this is the first report on the changes of fetal cardiac function in response to fetal treatment in two siblings showing in utero hyperthyroid status. This case report illustrates the impact of prenatal medication via the maternal circulation for fetal hyperthyroidism and cardiac failure.

  19. Clinical grade cultivation of human Schwann cell, by the using of human autologous serum instead of fetal bovine serum and without growth factors.

    PubMed

    Aghayan, Hamid-Reza; Arjmand, Babak; Norouzi-Javidan, Abbas; Saberi, Hooshang; Soleimani, Masoud; Tavakoli, Seyed Amir-Hossein; Khodadadi, Abbas; Tirgar, Niloufar; Mohammadi-Jahani, Fereshteh

    2012-06-01

    Clinical grade cultivation of human schwann cell by the utilization of human autologous serum instead of fetal bovine serum, and also avoiding any growth factors, can increase safety level of this procedure in cases of clinical cell transplantation. The aim of this study was demonstration of the feasibility of clinical grade schwann cell cultivation. In this experimental study after obtaining consent from close relatives we harvested 10 sural nerves from brain death donors and then cultured in 10 seperated culture media plus autologous serum. We also prepared autologous serum from donor's whole blood. Then cultured cells were evaluated by S100 antibody staining for both morphology and purity. Cell purity range was from 97% to 99% (mean=98.11 ± 0.782%). Mean of the cell count was 14,055.56 ± 2,480.479 per micro liter. There was not significant correlation between cell purity and either the culture period or the age of donors (P>0.05). The spearman correlation coefficient for the cell purity with the period or the age of donors was 0.21 and 0.09, respectively. We demonstrated the feasibility of clinical grade schwann cell cultivation by the using of human autologous serum instead of fetal bovine serum and also without the using of growth factors. We also recommended all cell preparation facilities to adhere to the GMP and other similar quality disciplines especially in the preparation of clinically-used cell products.

  20. Ultrasound assessment of fetal cardiac function

    PubMed Central

    Crispi, Fàtima; Valenzuela‐Alcaraz, Brenda; Cruz‐Lemini, Monica

    2015-01-01

    Abstract Introduction: Fetal heart evaluation with US is feasible and reproducible, although challenging due to the smallness of the heart, the high heart rate and limited access to the fetus. However, some cardiac parameters have already shown a strong correlation with outcomes and may soon be incorporated into clinical practice. Materials and Methods: Cardiac function assessment has proven utility in the differential diagnosis of cardiomyopathies or prediction of perinatal mortality in congenital heart disease. In addition, some cardiac parameters with high sensitivity such as MPI or annular peak velocities have shown promising results in monitoring and predicting outcome in intrauterine growth restriction or congenital diaphragmatic hernia. Conclusion: Cardiac function can be adequately evaluated in most fetuses when appropriate expertise, equipment and time are available. Fetal cardiac function assessment is a promising tool that may soon be incorporated into clinical practice to diagnose, monitor or predict outcome in some fetal conditions. Thus, more research is warranted to further define specific protocols for each fetal condition that may affect cardiac function. PMID:28191192

  1. Fetal stroke.

    PubMed

    Ozduman, Koray; Pober, Barbara R; Barnes, Patrick; Copel, Joshua A; Ogle, Eileen A; Duncan, Charles C; Ment, Laura R

    2004-03-01

    Fetal stroke, or that which occurs between 14 weeks of gestation and the onset of labor resulting in delivery, has been associated with postnatal epilepsy, mental retardation, and cerebral palsy. The entity is caused by antenatal ischemic, thrombotic, or hemorrhagic injury. We present seven new cases of fetal stroke diagnosed in utero and review the 47 cases reported in the literature. Although risk factors could not be assigned to 50% of the fetuses with stroke, the most common maternal conditions associated with fetal stroke were alloimmune thrombocytopenia and trauma. Magnetic resonance imaging was optimal for identifying fetal stroke, and prenatal imaging revealed hemorrhagic lesions in over 90% of studies; porencephalies were identified in just 13%. Seventy-eight percent of cases with reported outcome resulted in either death or adverse neurodevelopmental outcome at ages 3 months to 6 years. Fetal stroke appears to have different risk factors, clinical characteristics, and outcomes than other perinatal or childhood stroke syndromes. A better understanding of those risk factors predisposing a fetus to cerebral infarction may provide a basis for future therapeutic intervention trials. Ozduman K, Pober BR, Barnes P, Copel JA, Ogle EA, Duncan CC, Ment LR. Fetal stroke.

  2. Endotoxin-induced nitric oxide production rescues airway growth and maturation in atrophic fetal rat lung explants

    SciTech Connect

    Rae, C.; Cherry, J.I.; Land, F.M.; Land, S.C. . E-mail: s.c.land@dundee.ac.uk

    2006-10-13

    Inflammation induces premature maturation of the fetal lung but the signals causing this effect remain unclear. We determined if nitric oxide (NO) synthesis, evoked by Escherichia coli lipopolysaccharide (LPS, 2 {mu}g ml{sup -1}), participated in this process. Fetal rat lung airway surface complexity rose 2.5-fold over 96 h in response to LPS and was associated with increased iNOS protein expression and activity. iNOS inhibition by N6-(1-iminoethyl)-L-lysine-2HCl (L-NIL) abolished this and induced airway atrophy similar to untreated explants. Surfactant protein-C (SP-C) expression was also induced by LPS and abolished by L-NIL. As TGF{beta} suppresses iNOS activity, we determined if feedback regulation modulated NO-dependent maturation. LPS induced TGF{beta}1 release and SMAD4 nuclear translocation 96 h after treatment. Treatment of explants with a blocking antibody against TGF{beta}1 sustained NO production and airway morphogenesis whereas recombinant TGF{beta}1 antagonized these effects. Feedback regulation of NO synthesis by TGF{beta} may, thus, modulate airway branching and maturation of the fetal lung.

  3. Artificial oxygen carriers rescue placental hypoxia and improve fetal development in the rat pre-eclampsia model.

    PubMed

    Li, Heng; Ohta, Hidenobu; Tahara, Yu; Nakamura, Sakiko; Taguchi, Kazuaki; Nakagawa, Machiko; Oishi, Yoshihisa; Goto, Yu-Ichi; Wada, Keiji; Kaga, Makiko; Inagaki, Masumi; Otagiri, Masaki; Yokota, Hideo; Shibata, Shigenobu; Sakai, Hiromi; Okamura, Kunihiro; Yaegashi, Nobuo

    2015-10-16

    Pre-eclampsia affects approximately 5% of all pregnant women and remains a major cause of maternal and fetal morbidity and mortality. The hypertension associated with pre-eclampsia develops during pregnancy and remits after delivery, suggesting that the placenta is the most likely origin of this disease. The pathophysiology involves insufficient trophoblast invasion, resulting in incomplete narrow placental spiral artery remodeling. Placental insufficiency, which limits the maternal-fetal exchange of gas and nutrients, leads to fetal intrauterine growth restriction. In this study, in our attempt to develop a new therapy for pre-eclampsia, we directly rescued placental and fetal hypoxia with nano-scale size artificial oxygen carriers (hemoglobin vesicles). The present study is the first to demonstrate that artificial oxygen carriers successfully treat placental hypoxia, decrease maternal plasma levels of anti-angiogenic proteins and ameliorate fetal growth restriction in the pre-eclampsia rat model.

  4. Artificial oxygen carriers rescue placental hypoxia and improve fetal development in the rat pre-eclampsia model

    PubMed Central

    Li, Heng; Ohta, Hidenobu; Tahara, Yu; Nakamura, Sakiko; Taguchi, Kazuaki; Nakagawa, Machiko; Oishi, Yoshihisa; Goto, Yu-ichi; Wada, Keiji; Kaga, Makiko; Inagaki, Masumi; Otagiri, Masaki; Yokota, Hideo; Shibata, Shigenobu; Sakai, Hiromi; Okamura, Kunihiro; Yaegashi, Nobuo

    2015-01-01

    Pre-eclampsia affects approximately 5% of all pregnant women and remains a major cause of maternal and fetal morbidity and mortality. The hypertension associated with pre-eclampsia develops during pregnancy and remits after delivery, suggesting that the placenta is the most likely origin of this disease. The pathophysiology involves insufficient trophoblast invasion, resulting in incomplete narrow placental spiral artery remodeling. Placental insufficiency, which limits the maternal-fetal exchange of gas and nutrients, leads to fetal intrauterine growth restriction. In this study, in our attempt to develop a new therapy for pre-eclampsia, we directly rescued placental and fetal hypoxia with nano-scale size artificial oxygen carriers (hemoglobin vesicles). The present study is the first to demonstrate that artificial oxygen carriers successfully treat placental hypoxia, decrease maternal plasma levels of anti-angiogenic proteins and ameliorate fetal growth restriction in the pre-eclampsia rat model. PMID:26471339

  5. Mexican propolis flavonoids affect photosynthesis and seedling growth.

    PubMed

    King-Díaz, Beatriz; Granados-Pineda, Jessica; Bah, Mustapha; Rivero-Cruz, J Fausto; Lotina-Hennsen, Blas

    2015-10-01

    As a continuous effort to find new natural products with potential herbicide activity, flavonoids acacetin (1), chrysin (2) and 4',7-dimethylnarangenin (3) were isolated from a propolis sample collected in the rural area of Mexico City and their effects on the photosynthesis light reactions and on the growth of Lolium perenne, Echinochloa crus-galli and Physalis ixocarpa seedlings were investigated. Acacetin (1) acted as an uncoupler by enhancing the electron transport under basal and phosphorylating conditions and the Mg(2+)-ATPase. Chrysin (2) at low concentrations behaved as an uncoupler and at concentrations up to 100 μM its behavior was as a Hill reaction inhibitor. Finally, 4',7-dimethylnarangenin (3) in a concentration-dependent manner behaved as a Hill reaction inhibitor. Flavonoids 2 and 3 inhibited the uncoupled photosystem II reaction measured from water to 2,5-dichloro-1,4-benzoquinone (DCBQ), and they did not inhibit the uncoupled partial reactions measured from water to sodium silicomolybdate (SiMo) and from diphenylcarbazide (DPC) to diclorophenol indophenol (DCPIP). These results indicated that chrysin and 4',7-dimethylnarangenin inhibited the acceptor side of PS II. The results were corroborated with fluorescence of chlorophyll a measurements. Flavonoids also showed activity on the growth of seedlings of Lolium perenne and Echinochloa crus-galli.

  6. Fetal movement and fetal presentation.

    PubMed

    Suzuki, S; Yamamuro, T

    1985-09-01

    Fetal movements were analyzed by means of ultrasonography in an attempt to clarify the causative factor of frank breech presentation. Fetal posture, position, presentation and movements, as well as posture of the extremities and the volume of amniotic cavity were analyzed by ultrasonography in 112 fetuses ranging from 12 to 42 weeks of gestation. There existed three different fetal states: inactivity; slow sporadic movements without changes of presentations; active whole body movements with changes of presentations. It appears likely that version of fetal presentation from breech to cephalic occurs as the fetus tries to accommodate itself to the shape of the uterus during the state of active whole body movements, and the frank breech presentation of the fetus might result when the whole body movements are weak or absent.

  7. Prolonged oral treatment with an essential amino acid L-leucine does not affect female reproductive function and embryo-fetal development in rats.

    PubMed

    Mawatari, Kazunori; Katsumata, Toyohisa; Uematsu, Masanobu; Katsumata, Tomoyoshi; Yoshida, Junichi; Smriga, Miro; Kimura, Takeshi

    2004-09-01

    L-leucine, an essential amino acid, is one of the most popular ingredients in dietary supplements. To investigate a possibility of its embryo-fetal toxicity in rats, 11- to 12-week old dams were orally administered an aqueous solution of L-leucine at doses of 300 or 1000 mg/kg body weight on gestational days 7-17. Body weight and feed intake was evaluated throughout the whole course of pregnancy (days 0-20). L-Leucine did not influence body weight, but at a dose of 1000 mg/kg, slightly enhanced feed intake on days 14 and 18 of pregnancy. Caesarean section (day 20) revealed no influences on the litter size and weight of live-born fetuses, the number of corpora lutea, implantation index or the quality of placenta, and the minor increase in feed intake was considered irrelevant to the pregnancy outcomes. Fetuses were evaluated in a battery of external, visceral and skeletal examinations. No effects of L-leucine on gender ratio and external abnormalities, and no significant treatment-related variations in visceral and skeletal pathologies were observed. These results suggested that L-leucine, administered orally during organogenesis at doses up to 1000 mg/kg body weight, did not affect the outcome of pregnancy and did not cause fetotoxicity in rats.

  8. Fetal radiofrequency radiation exposure from 800-1900 mhz-rated cellular telephones affects neurodevelopment and behavior in mice.

    PubMed

    Aldad, Tamir S; Gan, Geliang; Gao, Xiao-Bing; Taylor, Hugh S

    2012-01-01

    Neurobehavioral disorders are increasingly prevalent in children, however their etiology is not well understood. An association between prenatal cellular telephone use and hyperactivity in children has been postulated, yet the direct effects of radiofrequency radiation exposure on neurodevelopment remain unknown. Here we used a mouse model to demonstrate that in-utero radiofrequency exposure from cellular telephones does affect adult behavior. Mice exposed in-utero were hyperactive and had impaired memory as determined using the object recognition, light/dark box and step-down assays. Whole cell patch clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) revealed that these behavioral changes were due to altered neuronal developmental programming. Exposed mice had dose-responsive impaired glutamatergic synaptic transmission onto layer V pyramidal neurons of the prefrontal cortex. We present the first experimental evidence of neuropathology due to in-utero cellular telephone radiation. Further experiments are needed in humans or non-human primates to determine the risk of exposure during pregnancy.

  9. Fetal Radiofrequency Radiation Exposure From 800-1900 Mhz-Rated Cellular Telephones Affects Neurodevelopment and Behavior in Mice

    PubMed Central

    Aldad, Tamir S.; Gan, Geliang; Gao, Xiao-Bing; Taylor, Hugh S.

    2012-01-01

    Neurobehavioral disorders are increasingly prevalent in children, however their etiology is not well understood. An association between prenatal cellular telephone use and hyperactivity in children has been postulated, yet the direct effects of radiofrequency radiation exposure on neurodevelopment remain unknown. Here we used a mouse model to demonstrate that in-utero radiofrequency exposure from cellular telephones does affect adult behavior. Mice exposed in-utero were hyperactive and had impaired memory as determined using the object recognition, light/dark box and step-down assays. Whole cell patch clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) revealed that these behavioral changes were due to altered neuronal developmental programming. Exposed mice had dose-responsive impaired glutamatergic synaptic transmission onto layer V pyramidal neurons of the prefrontal cortex. We present the first experimental evidence of neuropathology due to in-utero cellular telephone radiation. Further experiments are needed in humans or non-human primates to determine the risk of exposure during pregnancy. PMID:22428084

  10. Formaldehyde exposure affects growth and metabolism of common bean

    SciTech Connect

    Mutters, R.G.; Madore, M. ); Bytnerowicz, A. )

    1993-01-01

    Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design and build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.

  11. The timing of "catch-up growth" affects metabolism and appetite regulation in male rats born with intrauterine growth restriction.

    PubMed

    Coupé, Bérengère; Grit, Isabelle; Darmaun, Dominique; Parnet, Patricia

    2009-09-01

    Epidemiological studies demonstrated a relationship between low birth weight mainly caused by intrauterine growth restriction (IUGR) and adult metabolic disorders. The concept of metabolic programming centers on the idea that nutritional and hormonal status during the key period of development determines the long-term control of energy balance by programming future feeding behavior and energy expenditure. The present study examined the consequence of early or late "catch-up growth" after IUGR on feeding behavior and metabolic cues of male offspring of rat dams exposed to protein restriction during gestation and/or lactation. Our results suggest that early catch-up growth may be favorable for fasting metabolic parameters at weaning, as no differences were observed on plasma leptin, triglyceride, glucose, and insulin levels compared with controls. In contrast, if pups remained malnourished until weaning, low insulin concentration was detected and was accompanied by hyperphagia associated with a large increase in hypothalamic NPY and AgRP mRNA expression. At adult age, on a regular chow diet, only the meal structure was modified by fetal programming. The two IUGR groups demonstrated a reduced meal duration that enhanced the speed of food ingestion and consequently increased the rest period associated to the satiety state without changes in the hypothalamic expression of appetite neuropeptides. Our findings demonstrate that in IUGR, regardless of postnatal growth magnitude, metabolic programming occurred in utero and was responsible for both feeding behavior alteration and postprandial higher insulin level in adults. Additionally, catch-up growth immediately after early malnutrition could be a key point for the programming of postprandial hyperleptinemia.

  12. A Comparative Study of Growth Kinetics, In Vitro Differentiation Potential and Molecular Characterization of Fetal Adnexa Derived Caprine Mesenchymal Stem Cells

    PubMed Central

    Somal, Anjali; Bhat, Irfan A.; B., Indu; Pandey, Sriti; Panda, Bibhudatta S. K.; Thakur, Nipuna; Sarkar, Mihir; Chandra, Vikash; Saikumar, G.; Sharma, G. Taru

    2016-01-01

    The present study was conducted with an objective of isolation, in vitro expansion, growth kinetics, molecular characterization and in vitro differentiation of fetal adnexa derived caprine mesenchymal stem cells. Mid-gestation gravid caprine uteri (2–3 months) were collected from abattoir to derive mesenchymal stem cells (MSCs) from fetal adnexa {amniotic fluid (cAF), amniotic sac (cAS), Wharton’s jelly (cWJ) and cord blood (cCB)} and expanded in vitro. These cultured MSCs were used at the 3rd passage (P3) to study growth kinetics, localization as well as molecular expression of specific surface antigens, pluripotency markers and mesenchymal tri-lineage differentiation. In comparison to cAF and cAS MSCs, cWJ and cCB MSCs showed significantly (P<0.05) higher clonogenic potency, faster growth rate and low population doubling (PDT) time. All the four types of MSCs were positive for alkaline phosphatase (AP) and differentiated into chondrogenic, osteogenic, and adipogenic lineages. These stem cells expressed MSC surface antigens (CD73, CD90 and CD105) and pluripotency markers (Oct4, Sox2, Nanog, KLF, cMyc, FoxD3) but did not express CD34, a hematopoietic stem cell marker (HSC) as confirmed by RT-PCR, immunocytochemistry and flow cytometric analysis. The relative mRNA expression of MSC surface antigens (CD73, CD90 and CD105) was significantly (P<0.05) higher in cWJ MSCs compared to the other cell lines. The mRNA expression of Oct4 was significantly (P<0.05) higher in cWJ, whereas mRNA expression of KLF and cMyc was significantly (P<0.05) higher in cWJ and cAF than that of cAS and cCB. The comparative assessment revealed that cWJ MSCs outperformed MSCs from other sources of fetal adnexa in terms of growth kinetics, relative mRNA expression of surface antigens, pluripotency markers and tri-lineage differentiation potential, hence, these MSCs could be used as a preferred source for regenerative medicine. PMID:27257959

  13. Comparison of ceftiofur hydrochloride and estradiol cypionate for metritis prevention and reproductive performance in dairy cows affected with retained fetal membranes.

    PubMed

    Risco, C A; Hernandez, J

    2003-06-01

    The objective of this study was to compare the effect of ceftiofur hydrochloride and estradiol cypionate (ECP) administration for metritis prevention and reproductive performance in dairy cows affected with retained fetal membranes (RFMs). After parturition, 97 dairy cows affected with RFM from a single dairy herd were randomly allocated to 1 of 3 treatment groups. Cows in-group 1 (n=31) were treated daily for 5 days with ceftiofur hydrochloride (2.2mg/kg, i.m.); cows in group 2 (n=33) were treated once with ECP (4 mg, i.m.); and cows in group 3 (n=33) were not treated. The proportion of cows with metritis, uterine involution patterns and the calving-to-conception interval were compared between groups. The proportion of cows that developed metritis was significantly different (P<0.05) in cows treated with ceftiofur hydrochloride (13%), compared with cows treated with ECP (42%) or cows that received no treatment (42%). Uterine involution patterns (i.e. median time to complete retraction of the uterus and mean diameter measure of cervix and uterine horns) were not significantly different between groups. Cows treated with ECP were 0.40 times as likely to conceive as control cows (P=0.05); median time to conception in cows treated with ECP (192 days) was longer, compared to control cows (124 days). We conclude that systemic administration of ceftioufur hydrochloride is beneficial for prevention of metritis, but its effect on reproductive performance was not significantly different to that of ECP or no treatment. In addition, administration of ECP did not have beneficial effects on metritis prevention and reproductive performance.

  14. Timed Maternal Melatonin Treatment Reverses Circadian Disruption of the Fetal Adrenal Clock Imposed by Exposure to Constant Light

    PubMed Central

    Mendez, Natalia; Abarzua-Catalan, Lorena; Vilches, Nelson; Galdames, Hugo A.; Spichiger, Carlos; Richter, Hans G.; Valenzuela, Guillermo J.; Seron-Ferre, Maria; Torres-Farfan, Claudia

    2012-01-01

    Surprisingly, in our modern 24/7 society, there is scant information on the impact of developmental chronodisruption like the one experienced by shift worker pregnant women on fetal and postnatal physiology. There are important differences between the maternal and fetal circadian systems; for instance, the suprachiasmatic nucleus is the master clock in the mother but not in the fetus. Despite this, several tissues/organs display circadian oscillations in the fetus. Our hypothesis is that the maternal plasma melatonin rhythm drives the fetal circadian system, which in turn relies this information to other fetal tissues through corticosterone rhythmic signaling. The present data show that suppression of the maternal plasma melatonin circadian rhythm, secondary to exposure of pregnant rats to constant light along the second half of gestation, had several effects on fetal development. First, it induced intrauterine growth retardation. Second, in the fetal adrenal in vivo it markedly affected the mRNA expression level of clock genes and clock-controlled genes as well as it lowered the content and precluded the rhythm of corticosterone. Third, an altered in vitro fetal adrenal response to ACTH of both, corticosterone production and relative expression of clock genes and steroidogenic genes was observed. All these changes were reversed when the mother received a daily dose of melatonin during the subjective night; supporting a role of melatonin on overall fetal development and pointing to it as a ‘time giver’ for the fetal adrenal gland. Thus, the present results collectively support that the maternal circadian rhythm of melatonin is a key signal for the generation and/or synchronization of the circadian rhythms in the fetal adrenal gland. In turn, low levels and lack of a circadian rhythm of fetal corticosterone may be responsible of fetal growth restriction; potentially inducing long term effects in the offspring, possibility that warrants further research. PMID

  15. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  16. Effects of maternal subtotal nephrectomy on the development of the fetal kidney: A morphometric study.

    PubMed

    Kondo, Tomohiro; Kitano-Amahori, Yoko; Nagai, Hiroaki; Mino, Masaki; Takeshita, Ai; Kusakabe, Ken Takeshi; Okada, Toshiya

    2015-11-01

    The present study was designed to explore if maternal subtotal (5/6) nephrectomy affects the development of fetal rat kidneys using morphometric methods and examining whether there are any apoptotic changes in the fetal kidney. To generate 5/6 nephrectomized model rats, animals underwent 2/3 left nephrectomy on gestation day (GD) 5 and total right nephrectomy on GD 12. The fetal kidneys were examined on GDs 16 and 22. A significant decrease in fetal body weight resulting from maternal 5/6 nephrectomy was observed on GD 16, and a significant decrease in fetal renal weight and fetal body weight caused by maternal nephrectomy was observed on GD 22. Maternal 5/6 nephrectomy induced a significant increase in glomerular number, proximal tubular length, and total proximal tubular volume of fetuses on GD 22. Maternal 5/6 nephrectomy resulted in an increase in the number of apoptotic cells in the metanephric mesenchyme of the kidney on GD 16, and in the collecting tubules on GD 22. These findings suggest that maternal 5/6 nephrectomy stimulates the development of the fetal kidney while suppressing fetal growth.

  17. Combined fetal neural transplantation and nerve growth factor infusion: effects on neurological outcome following fluid-percussion brain injury in the rat.

    PubMed

    Sinson, G; Voddi, M; McIntosh, T K

    1996-04-01

    This study was designed to evaluate the histological and behavioral impact of fetal neural transplantation with and without neurotrophin infusion in rats subjected to traumatic brain injury using a clinically relevant model of lateral fluid-percussion brain injury. Adult male Sprague-Dawley rats received lateral fluid-percussion brain injury of moderate severity (2.1-2.3 atm). Twenty-four hours after injury, minced fetal cortical grafts (E16) were stereotactically transplanted into the site of injury cavity formation (in 32 rats). Ten control animals received injections of saline. A third group of 29 animals that received transplants also underwent placement of a miniosmotic pump (immediately after transplantation) to continuously infuse nerve growth factor (NGF) directly into the region of graft placement for the duration of the experiment. A fourth group of eight animals underwent transplantation of fetal cortical cells that had been dissociated and placed in suspension. Animals were evaluated at 72 hours, 1 week, and 2 weeks after injury for cognitive function (using the Morris water maze), posttraumatic motor dysfunction, and transplant survival and morphology (using Nissl and modified Palmgren's silver staining techniques). Robust survival of whole-tissue transplants was seen in 65.5% of animals and was not increased in animals receiving NGF infusion. Animals receiving transplants of cell suspension had no surviving grafts. Brain-injured animals receiving transplants showed significant cognitive improvements compared with controls at the 2-week evaluation. Significantly improved memory scores were seen at all evaluation times in animals receiving both NGF and transplants compared with injured controls and compared with animals receiving transplants alone at the 72-hour and 1-week evaluations. Neurological motor function scores were significantly improved in animals receiving transplants alone and those receiving transplants with NGF infusion. Histological

  18. Temperature affects insulin-like growth factor I and growth of juvenile southern flounder, Paralichthys lethostigma.

    PubMed

    Luckenbach, J Adam; Murashige, Ryan; Daniels, Harry V; Godwin, John; Borski, Russell J

    2007-01-01

    Temperature profoundly influences growth of heterothermic vertebrates. However, few studies have investigated the effects of temperature on growth and insulin-like growth factor I (IGF-I) in fishes. The aim of this study was to examine effects of temperature on growth and establish whether IGF-I may mediate growth at different temperatures in southern flounder, Paralichthys lethostigma. In two experiments, juvenile flounder were reared at 23 and 28 degrees C and growth was monitored for either 117 or 197 days. Growth was similar across treatments in both experiments until fish reached approximately 100 mm total length. Body size then diverged with fish at 23 degrees C ultimately growing 65-83% larger than those at 28 degrees C. Muscle IGF-I mRNA, plasma IGF-I, and hepatosomatic index (HSI) were significantly higher in flounder at 23 degrees C, whereas hepatic IGF-I mRNA abundance did not differ with treatment. Muscle IGF-I mRNA was correlated with HSI, while plasma IGF-I was correlated with body size, hepatic IGF-I mRNA, and HSI. These results demonstrate a strong effect of temperature on flounder growth and show that temperature-induced variation in growth is associated with differences in systemic IGF-I and local (i.e., muscle) IGF-I mRNA levels. The results also support the use of plasma IGF-I and HSI as indicators of flounder growth status.

  19. Alteration of proteoglycan sulfation affects bone growth and remodeling.

    PubMed

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-05-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis.

  20. Alteration of proteoglycan sulfation affects bone growth and remodeling

    PubMed Central

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-01-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis. PMID:23369989

  1. Abnormal fetal-maternal interactions: an evolutionary value?

    PubMed

    Espinoza, Jimmy

    2012-08-01

    There is clinical and ultrasonographic evidence that "abnormal fetal-maternal interactions" or "fetal-maternal conflicts" may be central to the mechanisms of injury in pregnancy complications such as fetal growth restriction, preeclampsia, fetal death, gestational diabetes, and a subset of patients with preterm parturition. This conceptual framework integrates abnormalities in the placental bed, placental vasculature, and other areas of fetal-maternal interactions with pregnancy complications in light of their possible evolutionary value.

  2. Heritable bovine fetal abnormalities.

    PubMed

    Whitlock, B K; Kaiser, L; Maxwell, H S

    2008-08-01

    The etiologies for congenital bovine fetal anomalies can be divided into heritable, toxic, nutritional, and infectious categories. Although uncommon in most herds, inherited congenital anomalies are probably present in all breeds of cattle and propagated as a result of specific trait selection that inadvertently results in propagation of the defect. In some herds, the occurrence of inherited anomalies has become frequent, and economically important. Anomalous traits can affect animals in a range of ways, some being lethal or requiring euthanasia on humane grounds, others altering structure, function, or performance of affected animals. Veterinary practitioners should be aware of the potential for inherited defects, and be prepared to investigate and report animals exhibiting abnormal characteristics. This review will discuss the morphologic characteristics, mode of inheritance, breeding lines affected, and the availability of genetic testing for selected heritable bovine fetal abnormalities.

  3. Gestational dexamethasone alters fetal neuroendocrine axis.

    PubMed

    Ahmed, R G

    2016-09-06

    This study tested whether the maternal transport of dexamethasone (DEXA) may affect the development of the neuroendocrine system. DEXA (0.2mg/kg b.w., subcutaneous injection) was administered to pregnant rats from gestation day (GD) 1-20. In the DEXA-treated group, a decrease in maternal serum thyroxine (T4), triiodothyronine (T3), and increase in thyrotropin (TSH) levels (hypothyroid status) were observed at GDs 15 & 20 with respect to control group. The reverse pattern (hyperthyroid status) was observed in their fetuses at embryonic days (EDs) 15 & 20. Although the maternal body weight was diminished, the weight of the thyroid gland was increased at studied GDs as compared to the control group. The fetal growth retardation, hyperleptinemia, hyperinsulinism, and cytokines distortions (transforming growth factor-beta; TGF-β, tumor necrosis factor-alpha; TNF-α, and interferon-γ; IFN-γ) were noticed at examined EDs if compared to the control group. Alternatively, the maternofetal thyroid dysfunctions due to the maternal DEXA administration attenuated the levels of fetal cerebral norepinephrine (NE) and epinephrine (E), and elevated the levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) at considered days. These alterations were age-dependent and might damage the nerve transmission. Finally, maternal DEXA might act as neuroendocrine disruptor causing dyshormonogenesis and fetal cerebral dysfunction.

  4. Drosophila melanogaster Natural Variation Affects Growth Dynamics of Infecting Listeria monocytogenes

    PubMed Central

    Hotson, Alejandra Guzmán; Schneider, David S.

    2015-01-01

    We find that in a Listeria monocytogenes/Drosophila melanogaster infection model, L. monocytogenes grows according to logistic kinetics, which means we can measure both a maximal growth rate and growth plateau for the microbe. Genetic variation of the host affects both of the pathogen growth parameters, and they can vary independently. Because growth rates and ceilings both correlate with host survival, both properties could drive evolution of the host. We find that growth rates and ceilings are sensitive to the initial infectious dose in a host genotype–dependent manner, implying that experimental results differ as we change the original challenge dose within a single strain of host. PMID:26438294

  5. Amniotic fluid as a vital sign for fetal wellbeing.

    PubMed

    Dubil, Elizabeth A; Magann, Everett F

    2013-05-01

    Introduction: Amniotic fluid, once thought to merely provide protection and room for necessary movement and growth for the fetus, is now understood to be a highly complex and dynamic system that is studied as a data point to interpret fetal wellbeing. Methods: Assessment of amniotic fluid volume is now routine when performing a sonographic evaluation of fetal status and is an important consideration in the assessment and management of perinatal morbidity and mortality.(1)(,)(2) In this review, we will cover the dynamics that affect amniotic fluid volume, review methods for measurement and quantification of volume, review definitions for normative data as related to neonatal outcomes, and provide evidence based guidance on the workup and management options for oligoydramnios and polyhydramnios in singleton and twin pregnancies. Conclusions: When abnormalities of fluid exist, appropriate workup to uncover the underlying etiology should be initiated as adverse fetal outcomes are sometimes associated with these variations from normalcy.

  6. Progestin treatment does not affect expression of cytokines, steroid receptors, oxytocin receptor, and cyclooxygenase 2 in fetal membranes and endometrium from pony mares at parturition.

    PubMed

    Palm, F; Walter, I; Nowotny, N; Budik, S; Helmreich, M; Aurich, C

    2013-01-01

    In most mammalian species, progestins have a major function in maintaining pregnancy. In humans, the physiologic initiation of parturition bears similarities with inflammatory processes and anti-inflammatory effects of progestins have been suggested to postpone birth until term. To examine if comparable effects exist in the horse, mares were treated with the synthetic progestin altrenogest from day 280 of gestation until parturition (N = 5) or were left untreated as controls (N = 7). Tissue from the amnion (AMN), allantochorion (AC), and endometrium (EM) was collected at foaling and mRNA expression of interleukin (IL)-6 and -8, cyclooxygenase 2 (COX2), estrogen receptor (ER) α, progesterone receptor, and oxytocin receptor (OTR) was analyzed. Leukocytes, steroid receptors, COX2, and OTR were also investigated by histology and immunohistochemistry. Expression of mRNA for IL-6 was higher in AMN and EM versus AC (P < 0.01). Expression of IL-8 was higher in AMN than AC and EM (P < 0.001). Steroid receptors and OTR were highly expressed in EM but not in AMN and AC (P < 0.001). Expression of COX2 was most pronounced in AC whereas IL expression was not upregulated in AC. No differences in mRNA expression existed between altrenogest-treated and control animals. Endometrial polymorphonuclear leukocytes were increased in altrenogest-treated mares. Epithelial cells of all tissues, except AC chorionic villi stained progesterone receptor-positive. Staining for ER was more pronounced in the amnion facing epithelium of the AC in altrenogest-treated versus control animals (P < 0.01). In conclusion, COX2 is highly expressed in the AC. The fetal membranes thus might play a role in the onset of labor in the horse. Altrenogest did not affect gene expression in the AMN, AC, and EM but had localized effects on inflammatory cells and ER expression. No anti-inflammatory effects of altrenogest in healthy, late pregnant pony mares could be detected.

  7. Fetal Macrosomia

    MedlinePlus

    ... previously been diagnosed with diabetes, after childbirth your health care provider will test you for the condition. During future pregnancies, you'll be closely monitored for signs and symptoms of gestational diabetes — a type ... health care provider suspects fetal macrosomia during your pregnancy, you ...

  8. IFPA meeting 2014 workshop report: Animal models to study pregnancy pathologies; new approaches to study human placental exposure to xenobiotics; biomarkers of pregnancy pathologies; placental genetics and epigenetics; the placenta and stillbirth and fetal growth restriction.

    PubMed

    Barbaux, S; Erwich, J J H M; Favaron, P O; Gil, S; Gallot, D; Golos, T G; Gonzalez-Bulnes, A; Guibourdenche, J; Heazell, A E P; Jansson, T; Laprévote, O; Lewis, R M; Miller, R K; Monk, D; Novakovic, B; Oudejans, C; Parast, M; Peugnet, P; Pfarrer, C; Pinar, H; Roberts, C T; Robinson, W; Saffery, R; Salomon, C; Sexton, A; Staff, A C; Suter, M; Tarrade, A; Wallace, J; Vaillancourt, C; Vaiman, D; Worton, S A; Lash, G E

    2015-04-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2014 there were six themed workshops, five of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of animal models, xenobiotics, pathological biomarkers, genetics and epigenetics, and stillbirth and fetal growth restriction.

  9. Fetal MRI: A pictorial essay

    PubMed Central

    Rathee, Sapna; Joshi, Priscilla; Kelkar, Abhimanyu; Seth, Nagesh

    2016-01-01

    Ultrasonography (USG) is the primary method for antenatal fetal evaluation. However, fetal magnetic resonance imaging (MRI) has now become a valuable adjunct to USG in confirming/excluding suspected abnormalities and in the detection of additional abnormalities, thus changing the outcome of pregnancy and optimizing perinatal management. With the development of ultrafast sequences, fetal MRI has made remarkable progress in recent times. In this pictorial essay, we illustrate a spectrum of structural abnormalities affecting the central nervous system, thorax, genitourinary and gastrointestinal tract, as well as miscellaneous anomalies. Anomalies in twin gestations and placental abnormalities have also been included. PMID:27081224

  10. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    SciTech Connect

    Haghighi Poodeh, Saeid; Alhonen, Leena; Salonurmi, Tuire; Savolainen, Markku J.

    2014-03-28

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  11. Sildenafil treatment ameliorates the maternal syndrome of preeclampsia and rescues fetal growth in the Dahl Salt Sensitive rat

    PubMed Central

    Gillis, Ellen E.; Mooney, Jennifer N.; Garrett, Michael R.; Granger, Joey P.; Sasser, Jennifer M.

    2015-01-01

    Preeclampsia, a hypertensive disorder of pregnancy, is detrimental to both mother and fetus. There is currently no effective treatment, but sildenafil, a phosphodiesterase-5 inhibitor, has been proposed as a potential therapy to reduce blood pressure and improve utero-placental perfusion in preeclamptic patients. We hypothesized that sildenafil would improve the maternal syndrome and fetal outcomes in the Dahl S rat model of superimposed preeclampsia. Dahl S rats were mated, and half received sildenafil (50 mg/kg/day, via food) from day 10 through day 20 of pregnancy. The untreated Dahl S rats had a significant rise in blood pressure and a 2-fold increase in urinary protein excretion from baseline to late pregnancy; however, sildenafil-treated Dahl S rats exhibited ~40 mmHg drops in blood pressure with no rise in protein excretion. Sildenafil also increased creatinine clearance and reduced nephrinuria and glomerulomegaly. Sildenafil treatment reduced the uterine artery resistance index during late pregnancy in the Dahl S rat and improved fetal outcomes (survival, weight, and litter size). Additionally, 19% of all pups were resorbed in untreated rats, with no incidence of resorptions observed in the treated group. Furthermore, TNF-α, endothelin-1, and oxidative stress, which are characteristically increased in women with preeclampsia and in experimental models of the disease, were reduced in treated rats. These data suggest that sildenafil improves the maternal syndrome of preeclampsia and blood flow to the fetoplacental unit, providing preclinical evidence to support the hypothesis that PDE-5 inhibition may be an important therapeutic target for the treatment of preeclampsia. PMID:26729752

  12. Nutrition during mid to late gestation affects growth, adipose tissue deposition, and tenderness in cross-bred beef steers.

    PubMed

    Underwood, K R; Tong, J F; Price, P L; Roberts, A J; Grings, E E; Hess, B W; Means, W J; Du, M

    2010-11-01

    The objective of this study was to examine whether the plane of nutrition of cows at a critical time for fetal skeletal muscle and adipose tissue development would affect meat quality and carcass composition of offspring. To alter maternal nutrition, beef cows were placed on improved pasture (IP) or native range (NR) pasture from 120 to 150 through 180 to 210days of gestation. Esophageal extrusa samples collected from cows grazing IP varied from 11.1% crude protein of organic matter early in the test period to 6.0% crude protein of organic matter at the end of the grazing period; whereas, extrusa samples of cows grazing NR ranged from 6.5% crude protein of organic matter during early grazing to 5.4% crude protein of organic matter at the end of the grazing period. Steers were slaughtered and carcass characteristics were collected. Warner-Bratzler shear force was performed on longissumus steaks, western blotting was used to measure proteolysis, and myosin isoform typing was performed. Improved pasture steers had heavier live and hot carcass weights. Tenderness was greater in IP compared to NR steers. No difference in calpastatin content and troponin-T degradation was observed between treatments. The 12th rib fat thickness was greater for IP than for NR steers. Subcutaneous adipose tissue of IP steers tended to have a greater number of cells per field of view than NR steers. Data show improving nutritional status of cows during mid to late gestation affects tenderness, adipose tissue deposition and growth in steers.

  13. Climatic conditions, twining and frequency of milking as factors affecting the risk of fetal losses in high-yielding Holstein cows in a hot environment.

    PubMed

    Mellado, Miguel; López, Ricardo; de Santiago, Ángeles; Veliz, Francisco G; Macías-Cruz, Ulises; Avendaño-Reyes, Leonel; García, José Eduardo

    An epidemiological study of risk factors for fetal losses was carried out on 62,403 high-yielding Holstein cows in 29 large highly technified dairy herds in northern Mexico (25° N; 23.5 °C mean annual temperature). Multivariate multiple-group response model indicated that fetal losses between 43 and 260 days of pregnancy were 23 %. Heat-stressed cows at conception (temperature-humidity index, THI >82) were 14 times more likely (P < 0.01) to present fetal losses than not heat-stressed cows (27 vs. 18 %). Heat-stressed cows at 60 days of pregnancy (THI >82) were 4.5 times more likely (P < 0.01) to present fetal losses than cows suffering heat stress in early gestation (29.1 vs. 17.7 %). The proportion of cows experiencing fetal loss was lower for multiparous than primiparous cows (odds ratio; OR = 0.7). Cows with twin pregnancies had significantly increased chances of losing their fetuses than cows with a single fetus (33.6 vs. 20.7 %; P < 0.01). Cows with three milkings per day were 30 % more likely (P < 0.01) to lose their fetuses than cows milked twice daily. Cows calving in winter and spring had significantly increased chances of losing their fetuses than cows calving in summer and fall (30-35 vs. 4-5 %; P < 0.01). It was concluded that, in this particular environment, heat stress exert a great influence on fetal losses in high producing Holstein cows.

  14. Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings.

    PubMed

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-05-01

    Plant growth-promoting rhizobacteria (PGPR) are important catalysts that regulate the functional properties of agricultural systems. However, there is little information on the effect of PGPR inoculation on the growth and nutrient accumulation of forest container seedlings. This study determined the effects of a growth medium inoculated with PGPR on the nutrient uptake, nutrient accumulation, and growth of Fraxinus americana container seedlings. PGPR inoculation with fertilizer increased the dry matter accumulation of the F. americana aerial parts with delayed seedling emergence time. Under fertilized conditions, the accumulation time of phosphorous (P) and potassium (K) in the F. americana aerial parts was 13 days longer due to PGPR inoculation. PGPR increased the maximum daily P and K accumulations in fertilized seedlings by 9.31 and 10.44 %, respectively, but had little impact on unfertilized ones. Regardless of fertilizer application, the root exudates, namely sugars, amino acids, and organic acids significantly increased because of PGPR inoculation. PGPR inoculation with fertilizer increased the root, shoot, and leaf yields by 19.65, 22.94, and 19.44 %, respectively, as well as the P and K contents by 8.33 and 10.60 %, respectively. Consequently, the N, P, and K uptakes increased by 19.85, 31.97, and 33.95 %, respectively. Hence, PGPR inoculation with fertilizer can be used as a bioenhancer for plant growth and nutrient uptake in forest container seedling nurseries.

  15. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    PubMed

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  16. Reproducibility and reliability of fetal cardiac time intervals using magnetocardiography.

    PubMed

    van Leeuwen, P; Lange, S; Klein, A; Geue, D; Zhang, Y; Krause, H J; Grönemeyer, D

    2004-04-01

    We investigated several factors which may affect the accuracy of fetal cardiac time intervals (CTI) determined in magnetocardiographic (MCG) recordings: observer differences, the number of available recording sites and the type of sensor used in acquisition. In 253 fetal MCG recordings, acquired using different biomagnetometer devices between the 15th and 42nd weeks of gestation, P-wave, QRS complex and T-wave onsets and ends were identified in signal averaged data sets independently by different observers. Using a defined procedure for setting signal events, interobserver reliability was high. Increasing the number of registration sites led to more accurate identification of the events. The differences in wave morphology between magnetometer and gradiometer configurations led to deviations in timing whereas the differences between low and high temperature devices seemed to be primarily due to noise. Signal-to-noise ratio played an important overall role in the accurate determination of CTI and changes in signal amplitude associated with fetal maturation may largely explain the effects of gestational age on reproducibility. As fetal CTI may be of value in the identification of pathologies such as intrauterine growth retardation or fetal cardiac hypertrophy, their reliable estimation will be enhanced by strategies which take these factors into account.

  17. Calf and disease factors affecting growth in female Holstein calves in Florida, USA.

    PubMed

    Donovan, G A; Dohoo, I R; Montgomery, D M; Bennett, F L

    1998-01-01

    A prospective cohort study was undertaken to determine calf-level factors that affect performance (growth) between birth and 14 months of age in a convenience sample of approximately 3300 female Holstein calves born in 1991 on two large Florida dairy farms. Data collected on each calf at birth included farm of origin, birth date, weight, height at the pelvis, and serum total protein (a measure of colostral immunoglobulin absorption). Birth season was dichotomized into summer and winter using meteorological data collected by University of Florida Agricultural Research Stations. Data collected at approximately 6 and 14 months of age included age, weight, height at the pelvis, and height at the withers. Growth in weight and stature (height) was calculated for each growth period; growth period 1 (GP1) = birth to 6 months, and growth period 2 (GP2) = 6 to 14 months. Health data collected included data of initial treatment and number of treatments for the diseases diarrhea, omphalitis, septicemia, pneumonia and keratoconjunctivitis. After adjusting for disease occurrence, passive transfer of colostral immunoglobulins had no significant effect on body weight gain or pelvic height growth. Season of birth and occurrence of diarrhea, septicemia and respiratory disease were significant variables decreasing heifer growth (height and weight) in GP1. These variables plus farm, birth weight and exact age when '6 month' data were collected explained 20% and 31% of the variation in body weight gain and pelvic height growth, respectively, in GP1. The number of days treated for pneumonia before 6 months of age significantly decreased average daily weight gain in GP2 (P < 0.025), but did not affect stature growth. Treatment for pneumonia after 6 months of age did not significantly affect weight or height gain after age 6 months. Neither omphalitis nor keratoconjunctivitis explained variability in growth in either of the growth periods.

  18. Complete Biallelic Insulation at the H19/Igf2 Imprinting Control Region Position Results in Fetal Growth Retardation and Perinatal Lethality

    PubMed Central

    Lee, Dong-Hoon; Singh, Purnima; Tsark, Walter M. K.; Szabó, Piroska E.

    2010-01-01

    Background The H19/Igf2 imprinting control region (ICR) functions as an insulator exclusively in the unmethylated maternal allele, where enhancer-blocking by CTCF protein prevents the interaction between the Igf2 promoter and the distant enhancers. DNA methylation inhibits CTCF binding in the paternal ICR allele. Two copies of the chicken β-globin insulator (ChβGI)2 are capable of substituting for the enhancer blocking function of the ICR. Insulation, however, now also occurs upon paternal inheritance, because unlike the H19 ICR, the (ChβGI)2 does not become methylated in fetal male germ cells. The (ChβGI)2 is a composite insulator, exhibiting enhancer blocking by CTCF and chromatin barrier functions by USF1 and VEZF1. We asked the question whether these barrier proteins protected the (ChβGI)2 sequences from methylation in the male germ line. Methodology/Principal Findings We genetically dissected the ChβGI in the mouse by deleting the binding sites USF1 and VEZF1. The methylation of the mutant versus normal (ChβGI)2 significantly increased from 11% to 32% in perinatal male germ cells, suggesting that the barrier proteins did have a role in protecting the (ChβGI)2 from methylation in the male germ line. Contrary to the H19 ICR, however, the mutant (mChβGI)2 lacked the potential to attain full de novo methylation in the germ line and to maintain methylation in the paternal allele in the soma, where it consequently functioned as a biallelic insulator. Unexpectedly, a stricter enhancer blocking was achieved by CTCF alone than by a combination of the CTCF, USF1 and VEZF1 sites, illustrated by undetectable Igf2 expression upon paternal transmission. Conclusions/Significance In this in vivo model, hypomethylation at the ICR position together with fetal growth retardation mimicked the human Silver-Russell syndrome. Importantly, late fetal/perinatal death occurred arguing that strict biallelic insulation at the H19/Igf2 ICR position is not tolerated in development

  19. Fetal Programming and Cardiovascular Pathology

    PubMed Central

    Alexander, Barbara T.; Dasinger, John Henry; Intapad, Suttira

    2016-01-01

    Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology. PMID:25880521

  20. Fetal electrocardiograph

    NASA Astrophysics Data System (ADS)

    Rios, Heriberto; Andrade, Armando; Puente, Ernestina; Lizana, Pablo R.; Mendoza, Diego

    2002-11-01

    The high intra-uterine death rate is due to failure in appropriately diagnosing some problems in the cardiobreathing system of the fetus during pregnancy. The electrocardiograph is one apparatus which might detect problems at an early stage. With electrodes located near the womb and uterus, in a way similar to the normal technique, the detection of so-called biopotential differences, caused by concentrations of ions, can be achieved. The fetal electrocardiograph is based on an ultrasound technique aimed at detecting intrauterine problems in pregnant women, because it is a noninvasive technique due to the very low level of ultrasound power used. With this system, the following tests can be done: Heart movements from the ninth week onwards; Rapid and safe diagnosis of intrauterine fetal death; Location and size of the placenta. The construction of the fetal electrocardiograph requires instrument level components directly mounted on the printed circuit board, in order to avoid stray capacitance in the cabling which prevents the detection of the E.C.G. activity. The low cost of the system makes it affordable to low budget institutions; in contrast, available commercial systems are priced in U.S. Dollars. (To be presented in Spanish.)

  1. Doppler ultrasonography in obstetrics: from the diagnosis of fetal anemia to the treatment of intrauterine growth-restricted fetuses.

    PubMed

    Mari, Giancarlo

    2009-06-01

    After the adoption of the use of umbilical artery and middle cerebral artery peak systolic velocity in high-risk pregnancies and in pregnancies that are at risk of having an anemic fetus, the main focus of Doppler ultrasonography in obstetrics today is intrauterine growth-restricted fetuses. What is most needed at this time are (1) training of sonographers and sonologists on how to perform a Doppler study, (2) an international classification of intrauterine growth-restricted fetuses, and (3) a study of the natural history of intrauterine growth-restricted fetuses that might contribute to a better understanding of the intrauterine growth-restriction process and to standard treatment of intrauterine growth-restricted fetuses. Future investigations, which would include randomized studies, could be designed from the results of such studies.

  2. Association of In Utero Organochlorine Pesticide Exposure and Fetal Growth and Length of Gestation in an Agricultural Population

    PubMed Central

    Fenster, Laura; Eskenazi, Brenda; Anderson, Meredith; Bradman, Asa; Harley, Kim; Hernandez, Hedy; Hubbard, Alan; Barr, Dana B.

    2006-01-01

    From 1940 through the 1970s, organochlorine compounds were widely used as insecticides in the United States. Thereafter, their use was severely restricted after recognition of their persistence in the environment, their toxicity in animals, and their potential for endocrine disruption. Although substantial evidence exists for the fetal toxicity of organochlorines in animals, information on human reproductive effects is conflicting. We investigated whether infants’ length of gestation, birth weight, and crown–heel length were associated with maternal serum levels of 11 different organochlorine pesticides: p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT), p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), o,p′-dichlorodiphenyltrichloroethane (o,p′-DDT), hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCCH), γ-hexachlorocyclohexane (γ-HCCH), dieldrin, heptachlor epoxide, oxychlordane, trans-nonachlor, and mirex. Our subjects were a birth cohort of 385 low-income Latinas living in the Salinas Valley, an agricultural community in California. We observed no adverse associations between maternal serum organochlorine levels and birth weight or crown–heel length. We found decreased length of gestation with increasing levels of lipid-adjusted HCB (adjusted β= −0.47 weeks; p = 0.05). We did not find reductions in gestational duration associated with any of the other organochlorine pesticides. Our finding of decreased length of gestation related to HCB does not seem to have had clinical implications for this population, given its relatively low rate of preterm delivery (6.5%). PMID:16581552

  3. Chinese hamster ovary cells cultured in low concentrations of fetal bovine serum: cloning efficiency, growth in suspension, and selection of drug-resistant mutant phenotypes

    SciTech Connect

    Carver, J.H.; Salazar, E.P.; Knize, M.G.

    1983-09-01

    Reducing serum concentrations in media provides a potential cost advantage. To determine whether such media could be used for applied mutagenesis assays, cloning efficiency and growth parameters in suspension of Chinese hamster ovary cells cultured were measured in reduced serum with or without additives (1 ..mu..g/ml insulin, 3 x 10/sup -7/ M linoleic acid, 1 x 10/sup -8/ M H/sub 2/SeO/sub 3/) or bovine serum albumin (BSA, 1% wt/vol). With the additives and less than or equal to 0.5% fetal bovine serum (FBS), Ham's F12 medium (without hypoxanthine and thymidine) was more optimal than alpha Eagle's minimum essential medium (MEM) (without ribosides and deoxyribosides) for low density cloning and high density suspension growth. The spontaneous frequency of azaadenine-resistant phenotypes (mutant at the aprt locus) in 1% FBS plus BSA was significantly lower than the frequency observed in 2% FBS plus BSA or 10% DFBS. Frequencies of spontaneous mutants resistant to thioguanine (hgprt locus) or fluorodeoxy-uridine (tk locus) were similar with 10% DFBS, 1% FBS plus BSA, or 2% FBS plus BSA. Compared to alpha MEM with 10% DFBS, frequencies of drug-resistant mutants induced by ethyl methanesulfonate or mitomycin C (MMC) were not significantly lower in alpha MEM with 2% FBS plus BSA; observed mutant frequencies induced by dimethylnitrosamine or benzo(a)pyrene seemed to be decreased at lower survival levels.

  4. Parathyroid hormone blocks the stimulatory effect of insulin-like growth factor-I on collagen synthesis in cultured 21-day fetal rat calvariae

    SciTech Connect

    Kream, B.E.; Petersen, D.N.; Raisz, L.G. )

    1990-01-01

    We examined the interaction of parathyroid hormone (PTH) and recombinant human insulin-like growth factor I (IGF-I) on collagen synthesis in 21-day fetal rat calvariae as assessed by measuring the incorporation of ({sup 3}H)proline into collagenase-digestible protein. After 96 hours of culture, 10 nM PTH antagonized the stimulation of collagen synthesis and partially blocked the increase in dry weight produced by 10 nM IGF-I. The effect of PTH to block IGF-I stimulated collagen synthesis was observed in the central bone of calvariae and was mimicked by forskolin and phorbol 12-myristate 13-acetate, but not by 1,25-dihydroxyvitamin D3, transforming growth factor-alpha or dexamethasone. Our data are consistent with the concept that the direct effect of PTH is to inhibit basal CDP labeling and fully oppose IGF-I stimulated CDP labeling. The finding that this effect of PTH is mimicked by forskolin and PMA suggests that this block in IGF-I stimulation of CDP labeling involves both cAMP and protein kinase C mediated pathways.

  5. Fetal origins of cardiovascular disease.

    PubMed

    Barker, D J

    1999-04-01

    Low birthweight, thinness and short body length at birth are now known to be associated with increased rates of cardiovascular disease and non-insulin dependent diabetes in adult life. The fetal origins hypothesis proposes that these diseases originate through adaptations which the fetus makes when it is undernourished. These adaptations may be cardiovascular, metabolic or endocrine. They permanently change the structure and function of the body. Prevention of the diseases may depend on prevention of imbalances in fetal growth or imbalances between prenatal and postnatal growth, or imbalances in nutrient supply to the fetus.

  6. Multiparity increases trophoblast invasion and vascular endothelial growth factor expression at the maternal-fetal interface in mice.

    PubMed

    Litwin, Silvana; Cortina, María E; Barrientos, Gabriela L; Prados, María B; Roux, María E; Miranda, Silvia E

    2010-06-01

    To analyze immunomodulating effects related to parity status, we studied trophoblast invasion grade, placental expression and systemic concentration of VEGF and its receptor Flt-1 in normal fertile (CBA/JxBALB/c) mice and abortion-prone (CBA/JxDBA/2) H-2(d)xH-2(k) mice. BALB/c or DBA/2 mated CBA/J females were, respectively, divided into the following groups: primiparous young (3.0+/-0.5 months old); primiparous old (8.5+/-0.5 months old) and multiparous old (8.5+/-0.5 months old, with 4 pregnancies). Immunohistochemical analysis of term placentae from both multiparous groups revealed various layers of invasive trophoblast tissue, identified as cytokeratin+/vimentin- cells, in contrast to the single layer detected in the placentae of primiparous animals, indicating that multiparity increases trophoblast invasion regardless of the success of the pregnancy outcome. Invasive trophoblast tissue from primiparous CBA/JxDBA/2 placentae showed diminished VEGF expression in comparison with the normal fertile group, while both multiparous groups demonstrated high expression of VEGF in the invasive trophoblast tissue. Placental expression of Flt-1 was similar in all groups. However, the primiparous CBA/JxBALB/c group showed the highest plasma concentration of sFlt-1 at term, while both multiparous groups demonstrated low circulating levels. No differences in circulating VEGF levels were observed among the groups. These results demonstrate an increase in trophoblast invasion tissue and expression of VEGF in the maternal-fetal interface in multiparous mice compared to primiparous mice. Moreover, the placenta appears to be able to regulate the circulating levels of VEGF by releasing sFlt-1.

  7. Repeated ethanol exposure during late gestation decreases nephron endowment in fetal sheep.

    PubMed

    Gray, Stephen P; Kenna, Kelly; Bertram, John F; Hoy, Wendy E; Yan, Edwin B; Bocking, Alan D; Brien, James F; Walker, David W; Harding, Richard; Moritz, Karen M

    2008-08-01

    Maternal alcohol consumption during pregnancy can affect fetal development, but little is known about the effects on the developing kidney. Our objectives were to determine the effects of repeated ethanol exposure during the latter half of gestation on glomerular (nephron) number and expression of key genes involved in renal development or function in the ovine fetal kidney. Pregnant ewes received daily intravenous infusion of ethanol (0.75 g/kg, n=5) or saline (control, n=5) over 1 h from 95 to 133 days of gestational age (DGA; term is approximately 147 DGA). Maternal and fetal arterial blood samples were taken before and after the start of the daily ethanol infusions for determination of blood ethanol concentration (BEC). Necropsy was performed at 134 DGA, and fetal kidneys were collected for determination of total glomerular number using the physical disector/fractionator technique; at this gestational age nephrogenesis is completed in sheep. Maximal maternal and fetal BECs of 0.12+/-0.01 g/dl (mean+/-SE) and 0.11+/-0.01 g/dl, respectively, were reached 1 h after starting maternal ethanol infusions. Ethanol exposure had no effect on fetal body weight, kidney weight, or the gene expression of members of the renin-angiotensin system, insulin-like growth factors, and sodium channels. However, fetal glomerular number was lower after ethanol exposure (377,585+/-8,325) than in controls (423,177+/-17,178, P<0.001). The data demonstrate that our regimen of fetal ethanol exposure during the latter half of gestation results in an 11% reduction in nephron endowment without affecting the overall growth of the kidney or fetus or the expression of key genes involved in renal development or function. A reduced nephron endowment of this magnitude could have important implications for the cardiovascular health of offspring during postnatal life.

  8. Fetal Alcohol Syndrome

    MedlinePlus

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Fetal Alcohol Syndrome Read in Chinese What is Fetal Alcohol Syndrome (FAS)? Fetal Alcohol Syndrome (FAS) describes changes in ...

  9. Sonography in Fetal Birth Weight Estimation

    ERIC Educational Resources Information Center

    Akinola, R. A.; Akinola, O. I.; Oyekan, O. O.

    2009-01-01

    The estimation of fetal birth weight is an important factor in the management of high risk pregnancies. The information and knowledge gained through this study, comparing a combination of various fetal parameters using computer assisted analysis, will help the obstetrician to screen the high risk pregnancies, monitor the growth and development,…

  10. Uteroplacental circulation and fetal vascular function and development.

    PubMed

    Thornburg, Kent L; Louey, Samantha

    2013-09-01

    Although blood flow in the placental vasculature is governed by the same physiological forces of shear, pressure and resistance as in other organs, it is also uniquely specialized on the maternal and fetal sides. At the materno-fetal interface, the independent uteroplacental and umbilicoplacental circulations must coordinate sufficiently to supply the fetus with the nutrients and substrates it needs to grow and develop. Uterine arterial flow must increase dramatically to accommodate the growing fetus. Recent evidence delineates the hormonal and endothelial mechanisms by which maternal vessels dilate and remodel during pregnancy. The umbilical circulation is established de novo during embryonic development but blood does not flow through the placenta until late in the first trimester. The umbilical circulation operates in the interest of maintaining fetal oxygenation over the course of pregnancy, and is affected differently by mechanical and chemical regulators of vascular tone compared to other organs. The processes that match placental vascular growth and fetal tissue growth are not understood, but studies of compromised pregnancies provide clues. The subtle changes that cause the failure of the normally regulated vascular processes during pregnancy have not been thoroughly identified. Likewise, practical and effective therapeutic strategies to reverse detrimental placental perfusion patterns have yet to be investigated.

  11. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments1

    PubMed Central

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    • Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578

  12. Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions.

    PubMed

    Wang, Yan; Fu, Wei; Liu, Jing

    2016-01-01

    Intrauterine growth restriction (IUGR) is associated with higher rates of fetal, perinatal, and neonatal morbidity and mortality. The consequences of IUGR include short-term metabolic, hematological and thermal disturbances that lead to metabolic syndrome in children and adults. Additionally, IUGR severely affects short- and long-term fetal brain development and brain function (including motor, cognitive and executive function) and neurobehavior, especially neuropsychology. This review details the adverse effects of IUGR on fetal brain development and discusses intervention strategies.

  13. Disruption of the lower food web in Lake Ontario: Did it affect alewife growth or condition?

    USGS Publications Warehouse

    O'Gorman, R.; Prindle, S.E.; Lantry, J.R.; Lantry, B.F.

    2008-01-01

    From the early 1980s to the late 1990s, a succession of non-native invertebrates colonized Lake Ontario and the suite of consequences caused by their colonization became known as "food web disruption". For example, the native burrowing amphipod Diporeia spp., a key link in the profundal food web, declined to near absence, exotic predaceous cladocerans with long spines proliferated, altering the zooplankton community, and depth distributions of fishes shifted. These changes had the potential to affect growth and condition of planktivorous alewife Alosa pseudoharengus, the most abundant fish in the lake. To determine if food web disruption affected alewife, we used change-point analysis to examine alewife growth and adult alewife condition during 1976-2006 and analysis-of-variance to determine if values between change points differed significantly. There were no change points in growth during the first year of life. Of three change points in growth during the second year of life, one coincided with the shift in springtime distribution of alewife to deeper water but it was not associated with a significant change in growth. After the second year of life, no change points in growth were evident, although growth in the third year of life spiked in those years when Bythotrephes, the largest of the exotic cladocerans, was abundant suggesting that it was a profitable prey item for age-2 fish. We detected two change points in condition of adult alewife in fall, but the first occurred in 1981, well before disruption began. A second change point occurred in 2003, well after disruption began. After the springtime distribution of alewife shifted deeper during 1992-1994, growth in the first two years of life became more variable, and growth in years of life two and older became correlated (P < 0.05). In conclusion, food web disruption had no negative affect on growth and condition of alewife in Lake Ontario although it appears to have resulted in growth in the first two years of

  14. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    PubMed Central

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  15. Differential effects of transforming growth factor-beta on the synthesis of extracellular matrix proteins by normal fetal rat calvarial bone cell populations

    PubMed Central

    1988-01-01

    To determine the effects of transforming growth factor-beta (TGF-beta) on the different cell types that exist in bone, cell populations (I- IV), progressively enriched in osteoblastic cells relative to fibroblastic cells, were prepared from fetal rat calvaria using timed collagenase digestions. TGF-beta did not induce anchorage-independent growth of these cells, nor was anchorage-dependent growth stimulated in most populations studied, despite a two- to threefold increase in the synthesis of cellular proteins. In all populations the synthesis of secreted proteins increased 2-3.5-fold. In particular, collagen, fibronectin, and plasminogen activator inhibitor synthesis was stimulated. However, different degrees of stimulation of individual proteins were observed both within and between cell populations. A marked preferential stimulation of plasminogen activator inhibitor was observed in each population, together with a slight preferential stimulation of collagen; the effect on collagen expression being directed primarily at type I collagen. In contrast, the synthesis of SPARC (secreted protein acidic rich in cysteine/osteonectin was stimulated approximately two-fold by TGF-beta, but only in fibroblastic populations. Collectively, these results demonstrate that TGF-beta stimulates matrix production by bone cells and, through differential effects on individual matrix components, may also influence the nature of the matrix formed by different bone cell populations. In the presence of TGF-beta, osteoblastic cells lost their polygonal morphology and alkaline phosphatase activity was decreased, reflecting a suppression of osteoblastic features. The differential effects of TGF- beta on bone cell populations are likely to be important in bone remodeling and fracture repair. PMID:3162238

  16. Maternal omega-3 fatty acid intake increases placental labyrinthine antioxidant capacity but does not protect against fetal growth restriction induced by placental ischaemia-reperfusion injury.

    PubMed

    Jones, Megan L; Mark, Peter J; Waddell, Brendan J

    2013-12-01

    Placental oxidative stress plays a key role in the pathophysiology of several placenta-related disorders. Oxidative stress occurs when excess reactive oxygen species (ROS) damages cellular components, an outcome limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) also limits ROS production. We recently reported that maternal dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation reduced placental oxidative damage and enhanced fetal and placental growth in the rats. Here, we examined the effect of n-3 PUFAs on placental antioxidant defences and whether n-3 PUFA supplementation could prevent growth restriction induced by placental ischaemia-reperfusion (IR), a known inducer of oxidative stress. Rats were fed either standard or high-n-3 PUFA diets from day 1 of pregnancy. Placentas were collected on days 17 and 22 in untreated pregnancies (term=day 23) and at day 22 following IR treatment on day 17. Expression of several antioxidant enzyme genes (Sod1, Sod2, Sod3, Cat, Txn1 and Gpx3) and Ucp2 was measured by quantitative RT-PCR in the placental labyrinth zone (LZ) and junctional zone (JZ). Cytosolic superoxide dismutase (SOD), mitochondrial SOD and catalase (CAT) activities were also analyzed. Maternal n-3 PUFA supplementation increased LZ mRNA expression of Cat at both gestational days (2- and 1.5-fold respectively; P<0.01) and female Sod2 at day 22 (1.4-fold, P<0.01). Cytosolic SOD activity increased with n-3 PUFA supplementation at day 22 (1.3-fold, P<0.05). Sod1 and Txn1 expression decreased marginally (30 and 22%, P<0.05). JZ antioxidant defences were largely unaffected by diet. Despite increased LZ antioxidant defences, maternal n-3 PUFA supplementation did not protect against placental IR-induced growth restriction of the fetus and placental LZ.

  17. Distinct developmental changes in the distribution of calcium, phosphorus and sulphur during fetal growth-plate development

    PubMed Central

    van Donkelaar, C C; Janssen, X J A; de Jong, A M

    2007-01-01

    Gradients in the concentrations of free phosphate (Pi) and calcium (Ca) exist in fully developed growth zones of long bones and ribs, with the highest concentrations closest to the site of mineralization. As high concentrations of Pi and Ca induce chondrocyte maturation and apoptosis, it has been hypothesized that Ca and Pi drive chondrocyte differentiation in growth plates. This study aimed to determine whether gradients in the important spectral elements phosphorus (P), Ca and sulphur (S) are already present in early stages of development, or whether they gradually develop with maturation of the growth zone. We quantified the concentration profiles of Ca, P, S, chloride and potassium at four different stages of early development of the distal growth plates of the porcine femurs, using particle-induced X-ray emission and forward- and backward-scattering spectrometry with a nuclear microprobe. A Ca concentration gradient towards the mineralized area and a stepwise increase in S was found to develop slowly with tissue maturation. The increase in S co-localizes with the onset of proliferation. A P gradient was not detected in the earliest developmental stages. High Ca levels, which may induce chondrocyte maturation, are present near the mineralization front. As total P concentrations do not correspond with former free Pi measurements, we hypothesize that the increase of free Pi towards the bone-forming site results from enzymatic cleavage of bound phosphate. PMID:17261139

  18. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  19. Cortisol, growth hormone, free fatty acids, and experimentally evoked affective arousal.

    PubMed

    Brown, W A; Heninger, G

    1975-11-01

    Eight male volunteers who viewed selected control, suspense, and erotic films experienced significant changes in affect that were limited to fatigue, anxiety, and sexual arousal, respectively. All subjects showed free fatty acid elevations with the suspense and erotic films and those subjects with the most anxiety and sexual arousal showed cortisol elevation with the suspense and erotic films, respectively. Growth hormone elevations occurred independently of cortisol elevations and were not clearly related to film or affect. Thus, activation of the pituitary-adrenocortical and sympathetic nervous systems appears to occur not in relation to a specific dysphoric state but rather with nonspecific affective arousal.

  20. Fetal nutrition

    PubMed Central

    Rosa, Franz W.; Turshen, Meredeth

    1970-01-01

    The extensive literature on nutrition in pregnancy is reviewed with special reference to international experience, including observations on nutritional trials in pregnancy, pregnancy during famines caused by war, and studies of birth-weight in relation to pregnancy interval, parity and multiple pregnancies. Recent research on the significance of fetal nutrition suggests that ”small-for-dates” infants, i.e., those that are developmentally retarded in utero, suffer long-term developmental sequelae. A high world-wide incidence of small-for-dates births was reported by the World Health Organization in 1960. Although a definite correlation has been found between socio-economic status and birth-weight, it is not known to what extent the smaller birth-weights observed in the lower socio-economic groups can be improved by specific nutritional measures. In addition to the general advice given on maternal nutrition and family-planning, further studies are needed to determine the precise means of achieving improvement in fetal nutrition and a better outcome of pregnancy. PMID:5314013

  1. Fetal yawning.

    PubMed

    Walusinski, Olivier

    2010-01-01

    Fetal neurobehavioral patterns have been considered as indicators of nervous system development. Moreover, the capacity of 4-dimensional sonography to evaluate complex facial expressions allows recognition of common behaviors with which one can appreciate the prenatal functional development of the central nervous system. Using yawning as an example, we review this interpretation on the basis of knowledge derived from phylogeny and ontogeny. As a flip-flop switch, the reciprocal interactions between sleep- and wake-promoting brain regions allow the emergence of distinct states of arousal. By its ontogenic links with REM sleep, yawning appears to be a behavior which causes arousal reinforcement through the powerful stretching and the neuromuscular connections induced. Yawning indicates a harmonious progress in the development of both the brainstem and the peripheral neuromuscular function, testifying to the induction of an ultradian rhythm of vigilance. The lack of fetal yawn, frequently associated with lack of swallowing (associated or not with retrognathia), may be a key to predicting brainstem dysfunction after birth.

  2. Fetal nutrition.

    PubMed

    Rosa, F W; Turshen, M

    1970-01-01

    The extensive literature on nutrition in pregnancy is reviewed with special reference to international experience, including observations on nutritional trials in pregnancy, pregnancy during famines caused by war, and studies of birth-weight in relation to pregnancy interval, parity and multiple pregnancies. Recent research on the significance of fetal nutrition suggests that "small-for-dates" infants, i.e., those that are developmentally retarded in utero, suffer long-term developmental sequelae. A high world-wide incidence of small-for-dates births was reported by the World Health Organization in 1960.Although a definite correlation has been found between socio-economic status and birth-weight, it is not known to what extent the smaller birth-weights observed in the lower socio-economic groups can be improved by specific nutritional measures. In addition to the general advice given on maternal nutrition and family-planning, further studies are needed to determine the precise means of achieving improvement in fetal nutrition and a better outcome of pregnancy.

  3. Secondary Work Force Movement into Energy Industry Employment in Areas Affected by "Boom Town" Growth.

    ERIC Educational Resources Information Center

    Jurado, Eugene A.

    A labor market study of implications of rapid energy development in the West examined the dimensions of work force movement from secondary occupations to primary energy occupations in areas affected by "boom town" growth. (Secondary occupations were defined as those in all industries not categorized as primary energy industries.) Focus…

  4. Fetal skin wound healing.

    PubMed

    Buchanan, Edward P; Longaker, Michael T; Lorenz, H Peter

    2009-01-01

    The developing fetus has the ability to heal wounds by regenerating normal epidermis and dermis with restoration of the extracellular matrix (ECM) architecture, strength, and function. In contrast, adult wounds heal with fibrosis and scar. Scar tissue remains weaker than normal skin with an altered ECM composition. Despite extensive investigation, the mechanism of fetal wound healing remains largely unknown. We do know that early in gestation, fetal skin is developing at a rapid pace and the ECM is a loose network facilitating cellular migration. Wounding in this unique environment triggers a complex cascade of tightly controlled events culminating in a scarless wound phenotype of fine reticular collagen and abundant hyaluronic acid. Comparison between postnatal and fetal wound healing has revealed differences in inflammatory response, cellular mediators, cytokines, growth factors, and ECM modulators. Investigation into cell signaling pathways and transcription factors has demonstrated differences in secondary messenger phosphorylation patterns and homeobox gene expression. Further research may reveal novel genes essential to scarless repair that can be manipulated in the adult wound and thus ameliorate scar.

  5. Removal of the local geomagnetic field affects reproductive growth in Arabidopsis.

    PubMed

    Xu, Chunxiao; Wei, Shufeng; Lu, Yan; Zhang, Yuxia; Chen, Chuanfang; Song, Tao

    2013-09-01

    The influence of the geomagnetic field-removed environment on Arabidopsis growth was investigated by cultivation of the plants in a near-null magnetic field and local geomagnetic field (45 µT) for the whole growth period under laboratory conditions. The biomass accumulation of plants in the near-null magnetic field was significantly suppressed at the time when plants were switching from vegetative growth to reproductive growth compared with that of plants grown in the local geomagnetic field, which was caused by a delay in the flowering of plants in the near-null magnetic field. At the early or later growth stage, no significant difference was shown in the biomass accumulation between the plants in the near-null magnetic field and local geomagnetic field. The average number of siliques and the production of seeds per plant in the near-null magnetic field was significantly lower by about 22% and 19%, respectively, than those of control plants. These resulted in a significant reduction of about 20% in the harvest index of plants in the near-null magnetic field compared with that of the controls. These results suggest that the removal of the local geomagnetic field negatively affects the reproductive growth of Arabidopsis, which thus affects the yield and harvest index.

  6. Segmented independent component analysis for improved separation of fetal cardiac signals from nonstationary fetal magnetocardiograms

    PubMed Central

    Murta, Luiz O.; Guzo, Mauro G.; Moraes, Eder R.; Baffa, Oswaldo; Wakai, Ronald T.; Comani, Silvia

    2015-01-01

    Fetal magnetocardiograms (fMCGs) have been successfully processed with independent component analysis (ICA) to separate the fetal cardiac signals, but ICA effectiveness can be limited by signal nonstation-arities due to fetal movements. We propose an ICA-based method to improve the quality of fetal signals separated from fMCG affected by fetal movements. This technique (SegICA) includes a procedure to detect signal nonstationarities, according to which the fMCG recordings are divided in stationary segments that are then processed with ICA. The first and second statistical moments and the signal polarity reversal were used at different threshold levels to detect signal transients. SegICA effectiveness was assessed in two fMCG datasets (with and without fetal movements) by comparing the signal-to-noise ratio (SNR) of the signals extracted with ICA and with SegICA. Results showed that the SNR of fetal signals affected by fetal movements improved with SegICA, whereas the SNR gain was negligible elsewhere. The best measure to detect signal nonstationarities of physiological origin was signal polarity reversal at threshold level 0.9. The first statistical moment also provided good results at threshold level 0.6. SegICA seems a promising method to separate fetal cardiac signals of improved quality from nonstationary fMCG recordings affected by fetal movements. PMID:25781658

  7. Activation of the Hedgehog Pathway in the Mouse Fetal Ovary Leads to Ectopic Appearance of Fetal Leydig Cells and Female Pseudohermaphroditism

    PubMed Central

    Barsoum, Ivraym B.; Bingham, Nathan C.; Parker, Keith L.; Jorgensen, Joan S.; Yao, Humphrey H-C

    2009-01-01

    Proper cell fate determination in mammalian gonads is critical for the establishment of sexual identity. The Hedgehog (Hh) pathway has been implicated in cell fate decision for various organs, including gonads. Desert Hedgehog (Dhh), one of the three mammalian Hh genes, has been implicated with other genes in the establishment of mouse fetal Leydig cells. To investigate whether Hh alone is sufficient to induce fetal Leydig cell differentiation, we ectopically activated the Hh pathway in Steroidogenic factor 1 (SF1)-positive somatic cell precursors of fetal ovaries. Hh activation transformed SF1-positive somatic ovarian cells into functional fetal Leydig cells. These ectopic fetal Leydig cells produced androgens and insulin-like growth factor 3 (INLS3) that cause virilization of female embryos and ovarian descent. However, the female reproductive system remained intact, indicating a typical example of female pseudohermaphroditism. The appearance of fetal Leydig cells was a direct consequence of Hh activation as evident by the absence of other testicular components in the affected ovary. This study provides not only insights into mechanisms of cell lineage specification in gonads, but also a model to understand defects in sexual differentiation. PMID:19268447

  8. Salinity fluctuation of the brine discharge affects growth and survival of the seagrass Cymodocea nodosa.

    PubMed

    Garrote-Moreno, A; Fernández-Torquemada, Y; Sánchez-Lizaso, J L

    2014-04-15

    The increase of seawater desalination plants may affect seagrasses as a result of its hypersaline effluents. There are some studies on the salinity tolerance of seagrasses under controlled laboratory conditions, but few have been done in situ. To this end, Cymodocea nodosa shoots were placed during one month at four localities: two close to a brine discharge; and the other two not affected by the discharge, and this experiment was repeated four times. The results obtained showed a decrease in growth and an increased mortality at the localities affected by the brine discharge. An increase was detected in the percentage of horizontal shoots in respect to vertical shoots at the impacted localities. It is probably that not only the average salinity, but also the constant salinity fluctuations and slightly higher temperatures associated with the brine that may have caused physiological stress thus reducing C. nodosa growth and survival.

  9. Fetal alcohol exposure: consequences, diagnosis, and treatment.

    PubMed

    Pruett, Dawn; Waterman, Emily Hubbard; Caughey, Aaron B

    2013-01-01

    Maternal alcohol use during pregnancy is prevalent, with as many as 12% of pregnant women consuming alcohol. Alcohol intake may vary from an occasional drink, to weekly binge drinking, to chronic alcohol use throughout pregnancy. Whereas there are certain known consequences from fetal alcohol exposure, such as fetal alcohol syndrome, other effects are less well defined. Craniofacial dysmorphologies, abnormalities of organ systems, behavioral and intellectual deficits, and fetal death have all been attributed to maternal alcohol consumption. This review article considers the theoretical mechanisms of how alcohol affects the fetus, including the variable susceptibility to fetal alcohol exposure and the implications of ethanol dose and timing of exposure. Criteria for diagnosis of fetal alcohol syndrome are discussed, as well as new methods for early detection of maternal alcohol use and fetal alcohol exposure, such as the use of fatty acid ethyl esters. Finally, current and novel treatment strategies, both in utero and post utero, are reviewed.

  10. A molecular recognizing system of serotonin in rat fetal axonal growth cones: uptake and high affinity binding.

    PubMed

    Mercado, R; Hernández, J

    1992-09-18

    Axonal growth cone particles (AGCP) isolated from prenatal and postnatal rat brain had different high-affinity 5-HT uptake characteristics. In postnatal AGCP the uptake behaves as in the adult rat brain, while in the prenatal AGCP the uptake characteristics seem to be in a transitional stage. Also in prenatal AGCP we observed specific, high-affinity 5-HT binding sites. These results support the idea of an important role for 5-HT during axogenesis.

  11. H19 long noncoding RNA alters trophoblast cell migration and invasion by regulating TβR3 in placentae with fetal growth restriction

    PubMed Central

    Lu, Lingeng; Men, Yi; Geng, Tingting; Buhimschi, Catalin S.; Buhimschi, Irina A.; Bukowski, Radek; Guller, Seth; Paidas, Michael; Huang, Yingqun

    2016-01-01

    Fetal growth restriction (FGR) is a well-recognized risk factor for perinatal mortality and morbidity, as well as neurodevelopmental impairment and adulthood onset disorders. Here we report that the H19 long noncoding RNA (lncRNA) is significantly decreased in placentae from pregnancies with FGR. Downregulation of H19 leads to reduced migration and invasion of extravillous trophoblast (EVT) cells in vitro. This is consistent with reduced trophoblast invasion that has been observed in FGR. Genome-scale transcriptome profiling of EVT cells reveals significantly decreased expression of the type III TGF-β receptor (TβR3) following H19 knockdown. Decreased TβR3 expression is also seen in FGR placentae. TβR3 repression decreases EVT cell migration and invasion, owing to impaired TGF-β signaling through a non-canonical TGF-β signaling pathway. Further, we identify TβR3 as a novel regulatory target of microRNA let-7. We propose that dysregulation of this newly identified H19/TβR3-mediated regulatory pathway may contribute to the molecular mechanism of FGR. Our findings are the first to show a lncRNA-based mechanism of FGR, holding promise for the development of novel predictive, diagnostic, and therapeutic modalities for FGR. PMID:27223264

  12. H19 long noncoding RNA alters trophoblast cell migration and invasion by regulating TβR3 in placentae with fetal growth restriction.

    PubMed

    Zuckerwise, Lisa; Li, Jing; Lu, Lingeng; Men, Yi; Geng, Tingting; Buhimschi, Catalin S; Buhimschi, Irina A; Bukowski, Radek; Guller, Seth; Paidas, Michael; Huang, Yingqun

    2016-06-21

    Fetal growth restriction (FGR) is a well-recognized risk factor for perinatal mortality and morbidity, as well as neurodevelopmental impairment and adulthood onset disorders. Here we report that the H19 long noncoding RNA (lncRNA) is significantly decreased in placentae from pregnancies with FGR. Downregulation of H19 leads to reduced migration and invasion of extravillous trophoblast (EVT) cells in vitro. This is consistent with reduced trophoblast invasion that has been observed in FGR. Genome-scale transcriptome profiling of EVT cells reveals significantly decreased expression of the type III TGF-β receptor (TβR3) following H19 knockdown. Decreased TβR3 expression is also seen in FGR placentae. TβR3 repression decreases EVT cell migration and invasion, owing to impaired TGF-β signaling through a non-canonical TGF-β signaling pathway. Further, we identify TβR3 as a novel regulatory target of microRNA let-7. We propose that dysregulation of this newly identified H19/TβR3-mediated regulatory pathway may contribute to the molecular mechanism of FGR. Our findings are the first to show a lncRNA-based mechanism of FGR, holding promise for the development of novel predictive, diagnostic, and therapeutic modalities for FGR.

  13. Characterization of fetal arrhythmias by means of fetal magnetocardiography in three cases of difficult ultrasonographic imaging.

    PubMed

    Comani, Silvia; Liberati, Marco; Mantini, Dante; Gabriele, Elisabetta; Brisinda, Donatella; Di Luzio, Silvano; Fenici, Riccardo; Romani, Gian Luca

    2004-12-01

    Characterization of ultrasound detected fetal arrhythmias is generally performed by means of M-mode and pulsed Doppler echocardiography (fECHO), sonographic techniques that allow only indirect and approximate reconstruction of the true electrophysiological events that occur in the fetal heart. Several studies demonstrated the ability of fetal magnetocardiography (fMCG) to identify fetal arrhythmias. We report on three women, studied after the 32nd gestational week, who were referred for fMCG because of unsatisfying fetal cardiac visualization with fECHO due to maternal obesity, fetus in constant dorsal position hiding the fetal heart, intrauterine growth retardation, and oligohydramnios. Minor pericardial effusion was present in the third patient and digoxin therapy was given. FMCG were recorded with a 77-channel MCG system working in a shielded room. Independent Component Analysis (FastICA algorithm) was used to reconstruct fetal signals. The good quality of the retrieved fetal signals allowed real-time detection of arrhythmias and their classification as supraventricular extrasystoles (SVE), with/without aberrant ventricular conduction and/or atrioventricular block. The time course of the fetal cardiac rhythm was reconstructed for the entire recording duration; hence, fetal heart rate variability could be studied in time and frequency. Since isolated extrasystoles may progress to more hazardous supraventricular tachycardias, the noninvasive antenatal characterization of, even transient, fetal arrhythmias and their monitoring during pregnancy can be of great clinical impact.

  14. IFPA Meeting 2012 Workshop Report II: epigenetics and imprinting in the placenta, growth factors and villous trophoblast differentiation, role of the placenta in regulating fetal exposure to xenobiotics during pregnancy, infection and the placenta.

    PubMed

    Ahmed, M S; Aleksunes, L M; Boeuf, P; Chung, M K; Daoud, G; Desoye, G; Díaz, P; Golos, T G; Illsley, N P; Kikuchi, K; Komatsu, R; Lao, T; Morales-Prieto, D M; Nanovskaya, T; Nobuzane, T; Roberts, C T; Saffery, R; Tamura, I; Tamura, K; Than, N G; Tomi, M; Umbers, A; Wang, B; Weedon-Fekjaer, M S; Yamada, S; Yamazaki, K; Yoshie, M; Lash, G E

    2013-03-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2012 there were twelve themed workshops, four of which are summarized in this report. These workshops related to various aspects of placental biology: 1) epigenetics and imprinting in the placenta; 2) growth factors and villous trophoblast differentiation; 3) role of the placenta in regulating fetal exposure to xenobiotics during pregnancy; 4) infection and the placenta.

  15. IFPA Meeting 2012 Workshop Report II: Epigenetics and imprinting in the placenta, growth factors and villous trophoblast differentiation, role of the placenta in regulating fetal exposure to xenobiotics during pregnancy, infection and the placenta

    PubMed Central

    Ahmed, M.S.; Aleksunes, L.M.; Boeuf, P.; Chung, M.K.; Daoud, G.; Desoye, G.; Díaz, P.; Golos, T.G.; Illsley, N.P.; Kikuchi, K.; Komatsu, R.; Lao, T.; Morales-Prieto, D.M.; Nanovskaya, T.; Nobuzane, T.; Roberts, C.T.; Saffery, R.; Tamura, I.; Tamura, K.; Than, N.G.; Tomi, M.; Umbers, A.; Wang, B.; Weedon-Fekjaer, M.S.; Yamada, S.; Yamazaki, K.; Yoshie, M.; Lash, G.E.

    2015-01-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2012 there were twelve themed workshops, four of which are summarized in this report. These workshops related to various aspects of placental biology: 1) epigenetics and imprinting in the placenta; 2) growth factors and villous trophoblast differentiation; 3) role of the placenta in regulating fetal exposure to xenobiotics during pregnancy; 4) infection and the placenta. PMID:23253784

  16. [Fetal alcohol syndrome (author's transl)].

    PubMed

    Cahuana, A; Krauel, J; Molina, V; Lizárraga, I; Alfonso, H

    1977-01-01

    A case of fetal alcohol syndrome is reported in a intrauterine growth retarded female newborn with dysmorphic features and congenital cardiopathy whose mother suffered from a chronic ethylism during pregnancy. Authors compare this case findings with the reported revisions of other authors.

  17. Fetal pain.

    PubMed

    Rokyta, Richard

    2008-12-01

    The fetus reacts to nociceptive stimulations through different motor, autonomic, vegetative, hormonal, and metabolic changes relatively early in the gestation period. With respect to the fact that the modulatory system does not yet exist, the first reactions are purely reflexive and without connection to the type of stimulus. While the fetal nervous system is able to react through protective reflexes to potentially harmful stimuli, there is no accurate evidence concerning pain sensations in this early period. Cortical processes occur only after thalamocortical connections and pathways have been completed at the 26th gestational week. Harmful (painful) stimuli, especially in fetuses have an adverse effect on the development of humans regardless of the processes in brain. Moreover, pain activates a number of subcortical mechanisms and a wide spectrum of stress responses influence the maturation of thalamocortical pathways and other cortical activation which are very important in pain processing.

  18. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    PubMed

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  19. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  20. Placental and fetal growth restriction, size at birth and neonatal growth alter cognitive function and behaviour in sheep in an age- and sex-specific manner.

    PubMed

    Hunter, Damien S; Hazel, Susan J; Kind, Karen L; Liu, Hong; Marini, Danila; Giles, Lynne C; De Blasio, Miles