Science.gov

Sample records for affect flowering time

  1. BRR2a Affects Flowering Time via FLC Splicing.

    PubMed

    Mahrez, Walid; Shin, Juhyun; Muñoz-Viana, Rafael; Figueiredo, Duarte D; Trejo-Arellano, Minerva S; Exner, Vivien; Siretskiy, Alexey; Gruissem, Wilhelm; Köhler, Claudia; Hennig, Lars

    2016-04-01

    Several pathways control time to flowering in Arabidopsis thaliana through transcriptional and posttranscriptional gene regulation. In recent years, mRNA processing has gained interest as a critical regulator of flowering time control in plants. However, the molecular mechanisms linking RNA splicing to flowering time are not well understood. In a screen for Arabidopsis early flowering mutants we identified an allele of BRR2a. BRR2 proteins are components of the spliceosome and highly conserved in eukaryotes. Arabidopsis BRR2a is ubiquitously expressed in all analyzed tissues and involved in the processing of flowering time gene transcripts, most notably FLC. A missense mutation of threonine 895 in BRR2a caused defects in FLC splicing and greatly reduced FLC transcript levels. Reduced FLC expression increased transcription of FT and SOC1 leading to early flowering in both short and long days. Genome-wide experiments established that only a small set of introns was not correctly spliced in the brr2a mutant. Compared to control introns, retained introns were often shorter and GC-poor, had low H3K4me1 and CG methylation levels, and were often derived from genes with a high-H3K27me3-low-H3K36me3 signature. We propose that BRR2a is specifically needed for efficient splicing of a subset of introns characterized by a combination of factors including intron size, sequence and chromatin, and that FLC is most sensitive to splicing defects. PMID:27100965

  2. BRR2a Affects Flowering Time via FLC Splicing

    PubMed Central

    Mahrez, Walid; Shin, Juhyun; Exner, Vivien; Siretskiy, Alexey; Köhler, Claudia

    2016-01-01

    Several pathways control time to flowering in Arabidopsis thaliana through transcriptional and posttranscriptional gene regulation. In recent years, mRNA processing has gained interest as a critical regulator of flowering time control in plants. However, the molecular mechanisms linking RNA splicing to flowering time are not well understood. In a screen for Arabidopsis early flowering mutants we identified an allele of BRR2a. BRR2 proteins are components of the spliceosome and highly conserved in eukaryotes. Arabidopsis BRR2a is ubiquitously expressed in all analyzed tissues and involved in the processing of flowering time gene transcripts, most notably FLC. A missense mutation of threonine 895 in BRR2a caused defects in FLC splicing and greatly reduced FLC transcript levels. Reduced FLC expression increased transcription of FT and SOC1 leading to early flowering in both short and long days. Genome-wide experiments established that only a small set of introns was not correctly spliced in the brr2a mutant. Compared to control introns, retained introns were often shorter and GC-poor, had low H3K4me1 and CG methylation levels, and were often derived from genes with a high-H3K27me3-low-H3K36me3 signature. We propose that BRR2a is specifically needed for efficient splicing of a subset of introns characterized by a combination of factors including intron size, sequence and chromatin, and that FLC is most sensitive to splicing defects. PMID:27100965

  3. Ozone pollution affects flower numbers and timing in a simulated BAP priority calcareous grassland community.

    PubMed

    Hayes, Felicity; Williamson, Jennifer; Mills, Gina

    2012-04-01

    Mesocosms representing the BAP Priority habitat 'Calcareous Grassland' were exposed to eight ozone profiles for twelve-weeks in two consecutive years. Half of the mesocosms received a reduced watering regime during the exposure periods. Numbers and timing of flowering in the second exposure period were related to ozone concentration and phytotoxic ozone dose (accumulated stomatal flux). For Lotus corniculatus, ozone accelerated the timing of the maximum number of flowers. An increase in mean ozone concentration from 30ppb to 70ppb corresponded with an advance in the timing of maximum flowering by six days. A significant reduction in flower numbers with increasing ozone was found for Campanula rotundifolia and Scabiosa columbaria and the relationship with ozone was stronger for those that were well-watered than for those with reduced watering. These changes in flowering timing and numbers could have large ecological impacts, affecting plant pollination and the food supply of nectar feeding insects.

  4. Timing of cotyledon damage affects growth and flowering in mature plants.

    PubMed

    Hanley, M E; Fegan, E L

    2007-07-01

    Although the effects of herbivory on plant fitness are strongly linked to age, we understand little about how the timing of herbivory at the seedling stage affects growth and reproduction for plants that survive attack. In this study, we subjected six north-western European, dicotyledonous grassland species (Leontodon autumnalis, Leontodon hispidus, Plantago lanceolata, Plantago major, Trifolium pratense and Trifolium repens) to cotyledon removal at 7, 14 and 21 d old. We monitored subsequent growth and flowering (number of inflorescences recorded, and time taken for first flowers to open) over a 107 d period. Cotyledon removal reduced growth during establishment (35 d) for all species, and a further three exhibited reduced growth at maturity. Four species developed fewer inflorescences, or had delayed flowering after cotyledon removal. Although early damage (7 d old) had the greatest long-term effect on plant performance, responses varied according to the age at which the damage occurred and the species involved. Our results illustrate how growth and flowering into the mature phase is affected by cotyledon damage during different stages of seedling ontogeny, and we highlight the ways in which ontogenetic variation in seedling tolerance of tissue loss might impact upon plant fitness in mature plant communities. PMID:17547653

  5. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa).

    PubMed

    Du, Yiwei; He, Wei; Deng, Changwang; Chen, Xi; Gou, Lanming; Zhu, Fugui; Guo, Wei; Zhang, Jianfu; Wang, Tao

    2016-01-01

    Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23-26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes.

  6. Whole Genome Duplication Affects Evolvability of Flowering Time in an Autotetraploid Plant

    PubMed Central

    Martin, Sara L.; Husband, Brian C.

    2012-01-01

    Whole genome duplications have occurred recurrently throughout the evolutionary history of eukaryotes. The resulting genetic and phenotypic changes can influence physiological and ecological responses to the environment; however, the impact of genome copy number on evolvability has rarely been examined experimentally. Here, we evaluate the effect of genome duplication on the ability to respond to selection for early flowering time in lines drawn from naturally occurring diploid and autotetraploid populations of the plant Chamerion angustifolium (fireweed). We contrast this with the result of four generations of selection on synthesized neoautotetraploids, whose genic variability is similar to diploids but genome copy number is similar to autotetraploids. In addition, we examine correlated responses to selection in all three groups. Diploid and both extant tetraploid and neoautotetraploid lines responded to selection with significant reductions in time to flowering. Evolvability, measured as realized heritability, was significantly lower in extant tetraploids ( = 0.31) than diploids ( = 0.40). Neotetraploids exhibited the highest evolutionary response ( = 0.55). The rapid shift in flowering time in neotetraploids was associated with an increase in phenotypic variability across generations, but not with change in genome size or phenotypic correlations among traits. Our results suggest that whole genome duplications, without hybridization, may initially alter evolutionary rate, and that the dynamic nature of neoautopolyploids may contribute to the prevalence of polyploidy throughout eukaryotes. PMID:23028620

  7. Whole genome duplication affects evolvability of flowering time in an autotetraploid plant.

    PubMed

    Martin, Sara L; Husband, Brian C

    2012-01-01

    Whole genome duplications have occurred recurrently throughout the evolutionary history of eukaryotes. The resulting genetic and phenotypic changes can influence physiological and ecological responses to the environment; however, the impact of genome copy number on evolvability has rarely been examined experimentally. Here, we evaluate the effect of genome duplication on the ability to respond to selection for early flowering time in lines drawn from naturally occurring diploid and autotetraploid populations of the plant Chamerion angustifolium (fireweed). We contrast this with the result of four generations of selection on synthesized neoautotetraploids, whose genic variability is similar to diploids but genome copy number is similar to autotetraploids. In addition, we examine correlated responses to selection in all three groups. Diploid and both extant tetraploid and neoautotetraploid lines responded to selection with significant reductions in time to flowering. Evolvability, measured as realized heritability, was significantly lower in extant tetraploids (^b(T) =  0.31) than diploids (^b(T) =  0.40). Neotetraploids exhibited the highest evolutionary response (^b(T)  =  0.55). The rapid shift in flowering time in neotetraploids was associated with an increase in phenotypic variability across generations, but not with change in genome size or phenotypic correlations among traits. Our results suggest that whole genome duplications, without hybridization, may initially alter evolutionary rate, and that the dynamic nature of neoautopolyploids may contribute to the prevalence of polyploidy throughout eukaryotes. PMID:23028620

  8. Characterization of tomato (Solanum lycopersicum L.) mutants affected in their flowering time and in the morphogenesis of their reproductive structure.

    PubMed

    Quinet, Muriel; Dubois, Céline; Goffin, Marie-Christine; Chao, Jaime; Dielen, Vincent; Batoko, Henri; Boutry, Marc; Kinet, Jean-Marie

    2006-01-01

    The impact of the season on flowering time and the organization and morphogenesis of the reproductive structures are described in three tomato mutants: compound inflorescence (s), single flower truss (sft), and jointless (j), respectively, compared with their wild-type cultivars Ailsa Craig (AC), Platense (Pl), and Heinz (Hz). In all environmental conditions, the sft mutant flowered significantly later than its corresponding Pl cultivar while flowering time in j was only marginally, but consistently, delayed compared with Hz. The SFT gene and, to a lesser extent, the J gene thus appear to be constitutive flowering promoters. Flowering in s was delayed in winter but not in summer compared with the AC cultivar, suggesting the existence of an environmentally regulated pathway for the control of floral transition. The reproductive structure of tomato is a raceme-like inflorescence and genes regulating its morphogenesis may thus be divided into inflorescence and floral meristem identity genes as in Arabidopsis. The s mutant developed highly branched inflorescences bearing up to 200 flowers due to the conversion of floral meristems into inflorescence meristems. The S gene appears to be a floral meristem identity gene. Both sft and j mutants formed reproductive structures containing flowers and leaves and reverting to a vegetative sympodial growth. The SFT gene appears to regulate the identity of the inflorescence meristem of tomato and is also involved, along with the J gene, in the maintenance of this identity, preventing reversion to a vegetative identity. These results are discussed in relation to knowledge accumulated in Arabidopsis and to domestication processes.

  9. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time.

    PubMed

    Wu, Rongmei; Wang, Tianchi; McGie, Tony; Voogd, Charlotte; Allan, Andrew C; Hellens, Roger P; Varkonyi-Gasic, Erika

    2014-09-01

    SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.

  10. Development and Seed Number in Indeterminate Soybean as Affected by Timing and Duration of Exposure to Long Photoperiods after Flowering

    PubMed Central

    Kantolic, Adriana G.; Slafer, Gustavo A.

    2007-01-01

    Background and Aims Long photoperiods from flowering to maturity have been found to delay reproductive development in soybean (Glycine max) and to increase the number of seeds per unit land area. This study was aimed to evaluate whether sensitivity to photoperiod after flowering (a) is quantitatively related to the length of exposure to long days and (b) persists throughout the whole pod-setting period. It was also evaluated whether seed number was related to changes in the duration of post-flowering phenophases. Methods Two field experiments were conducted with an indeterminate cultivar of soybean of maturity group V. In expt 1, photoperiods 2 h longer than natural daylength were applied during different numbers of days from the beginning pod stage (R3) onwards, while in expt 2 these photoperiod extensions were imposed during 9 consecutive days starting at different times between R3 and R6 (full seed) stages. Key Results There was a quantitative response of development to the number of cycles with a long photoperiod. The exposure to long photoperiods from R3 to R5 (beginning of seed growth) increased the duration of R3–R6 regardless of the timing of exposure. The stages of development comprised in the R3–R6 phase were delayed by current as well as by previous exposure to long days. A positive relationship was found between seed number and the duration of R3–R6, irrespective of the timing and length of exposure to the long photoperiod. Conclusions Sensitivity to photoperiod remained high during the reproductive period and was highly and positively coupled with the processes of generation of yield. PMID:17452381

  11. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening.

    PubMed

    Terfa, Meseret Tesema; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar; Olsen, Jorunn Elisabeth; Torre, Sissel

    2013-05-01

    Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance-dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light-emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS-grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax ) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED-grown leaves also displayed a more sun-type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower.

  12. Quantitative genetic analysis of flowering time in tomato.

    PubMed

    Jiménez-Gómez, José M; Alonso-Blanco, Carlos; Borja, Alicia; Anastasio, Germán; Angosto, Trinidad; Lozano, Rafael; Martínez-Zapater, José M

    2007-03-01

    Artificial selection of cultivated tomato (Solanum lycopersicum L.) has resulted in the generation of early-flowering, day-length-insensitive cultivars, despite its close relationship to other Solanum species that need more time and specific photoperiods to flower. To investigate the genetic mechanisms controlling flowering time in tomato and related species, we performed a quantitative trait locus (QTL) analysis for flowering time in an F2 mapping population derived from S. lycopersicum and its late-flowering wild relative S. chmielewskii. Flowering time was scored as the number of days from sowing to the opening of the first flower (days to flowering), and as the number of leaves under the first inflorescence (leaf number). QTL analyses detected 2 QTLs affecting days to flowering, which explained 55.3% of the total phenotypic variance, and 6 QTLs for leaf number, accounting for 66.7% of the corresponding phenotypic variance. Four of the leaf number QTLs had not previously been detected for this trait in tomato. Colocation of some QTLs with flowering-time genes included in the genetic map suggests PHYB2, FALSIFLORA, and a tomato FLC-like sequence as candidate genes that might have been targets of selection during the domestication of tomato.

  13. Pollinator effectiveness varies with experimental shifts in flowering time

    PubMed Central

    Rafferty, Nicole E.; Ives, Anthony R.

    2013-01-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches. PMID:22690631

  14. Analysis of soybean flowering-time genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control of soybean flowering time is important for geographic adaptation, and maximizing yield. RT-PCR analysis was performed using primers synthesized for a number of putative flowering-time genes based on homology of soybean EST and genomic sequences to Arabidopsis genes. RNA for cDNA synthesis ...

  15. Genetic control of flowering time in legumes

    PubMed Central

    Weller, James L.; Ortega, Raúl

    2015-01-01

    The timing of flowering, and in particular the degree to which it is responsive to the environment, is a key factor in the adaptation of a given species to various eco-geographic locations and agricultural practices. Flowering time variation has been documented in many crop legumes, and selection for specific variants has permitted significant expansion and improvement in cultivation, from prehistoric times to the present day. Recent advances in legume genomics have accelerated the process of gene identification and functional analysis, and opened up new prospects for a molecular understanding of flowering time adaptation in this important crop group. Within the legumes, two species have been prominent in flowering time studies; the vernalization-responsive long-day species pea (Pisum sativum) and the warm-season short-day plant soybean (Glycine max). Analysis of flowering in these species is now being complemented by reverse genetics capabilities in the model legumes Medicago truncatula and Lotus japonicus, and the emergence of genome-scale resources in a range of other legumes. This review will outline the insights gained from detailed forward genetic analysis of flowering time in pea and soybean, highlighting the importance of light perception, the circadian clock and the FT family of flowering integrators. It discusses the current state of knowledge on genetic mechanisms for photoperiod and vernalization response, and concludes with a broader discussion of flowering time adaptation across legumes generally. PMID:25914700

  16. Cranberry flowering times and climate change in southern Massachusetts.

    PubMed

    Ellwood, Elizabeth R; Playfair, Susan R; Polgar, Caroline A; Primack, Richard B

    2014-09-01

    Plants in wild and agricultural settings are being affected by the warmer temperatures associated with climate change. Here we examine the degree to which the iconic New England cranberry, Vaccinium macrocarpon, is exhibiting signs of altered flowering phenology. Using contemporary records from commercial cranberry bogs in southeastern Massachusetts in the United States, we found that cranberry plants are responsive to temperature. Flowering is approximately 2 days earlier for each 1 °C increase in May temperature. We also investigated the relationship between cranberry flowering and flight dates of the bog copper, Lycaena epixanthe-a butterfly dependent upon cranberry plants in its larval stage. Cranberry flowering and bog copper emergence were found to be changing disproportionately over time, suggesting a potential ecological mismatch. The pattern of advanced cranberry flowering over time coupled with increased temperature has implications not only for the relationship between cranberry plants and their insect associates but also for agricultural crops in general and for the commercial cranberry industry.

  17. Cranberry flowering times and climate change in southern Massachusetts

    NASA Astrophysics Data System (ADS)

    Ellwood, Elizabeth R.; Playfair, Susan R.; Polgar, Caroline A.; Primack, Richard B.

    2014-09-01

    Plants in wild and agricultural settings are being affected by the warmer temperatures associated with climate change. Here we examine the degree to which the iconic New England cranberry, Vaccinium macrocarpon, is exhibiting signs of altered flowering phenology. Using contemporary records from commercial cranberry bogs in southeastern Massachusetts in the United States, we found that cranberry plants are responsive to temperature. Flowering is approximately 2 days earlier for each 1 °C increase in May temperature. We also investigated the relationship between cranberry flowering and flight dates of the bog copper, Lycaena epixanthe—a butterfly dependent upon cranberry plants in its larval stage. Cranberry flowering and bog copper emergence were found to be changing disproportionately over time, suggesting a potential ecological mismatch. The pattern of advanced cranberry flowering over time coupled with increased temperature has implications not only for the relationship between cranberry plants and their insect associates but also for agricultural crops in general and for the commercial cranberry industry.

  18. The causes of selection on flowering time through male fitness in a hermaphroditic annual plant.

    PubMed

    Austen, Emily J; Weis, Arthur E

    2016-01-01

    Flowering is a key life-history event whose timing almost certainly affects both male and female fitness, but tests of selection on flowering time through male fitness are few. Such selection may arise from direct effects of flowering time, and indirect effects through covariance between flowering time and the environment experienced during reproduction. To isolate these intrinsically correlated associations, we staggered planting dates of Brassica rapa families with known flowering times, creating populations in which age at flowering (i.e., flowering time genotype) and Julian date of flowering (i.e., flowering time environment) were positively, negatively, or uncorrelated. Genetic paternity analysis revealed that male fitness was not strongly influenced by seasonal environmental changes. Instead, when age and date were uncorrelated, selection through male fitness strongly favored young age at flowering. Strategic sampling offspring for paternity analysis rejected covariance between sire age at flowering and dam quality as the cause of this selection. Results instead suggest a negative association between age at flowering and pollen competitive ability. The manipulation also revealed that, at least in B. rapa, the often-observed correlation between flowering time and flowering duration is environmental, not genetic, in origin.

  19. The causes of selection on flowering time through male fitness in a hermaphroditic annual plant.

    PubMed

    Austen, Emily J; Weis, Arthur E

    2016-01-01

    Flowering is a key life-history event whose timing almost certainly affects both male and female fitness, but tests of selection on flowering time through male fitness are few. Such selection may arise from direct effects of flowering time, and indirect effects through covariance between flowering time and the environment experienced during reproduction. To isolate these intrinsically correlated associations, we staggered planting dates of Brassica rapa families with known flowering times, creating populations in which age at flowering (i.e., flowering time genotype) and Julian date of flowering (i.e., flowering time environment) were positively, negatively, or uncorrelated. Genetic paternity analysis revealed that male fitness was not strongly influenced by seasonal environmental changes. Instead, when age and date were uncorrelated, selection through male fitness strongly favored young age at flowering. Strategic sampling offspring for paternity analysis rejected covariance between sire age at flowering and dam quality as the cause of this selection. Results instead suggest a negative association between age at flowering and pollen competitive ability. The manipulation also revealed that, at least in B. rapa, the often-observed correlation between flowering time and flowering duration is environmental, not genetic, in origin. PMID:26596860

  20. Difference in flowering time can initiate speciation of nocturnally flowering species.

    PubMed

    Matsumoto, Tomotaka; Yasumoto, Akiko A; Nitta, Kozue; Hirota, Shun K; Yahara, Tetsukazu; Tachida, Hidenori

    2015-04-01

    Isolation mechanisms that prevent gene flow between populations prezygotically play important roles in achieving speciation. In flowering plants, the nighttime flowering system provides a mechanism for isolation from diurnally flowering species. Although this system has long been of interest in evolutionary biology, the evolutionary process leading to this system has yet to be elucidated because of the lack of good model species. However, the genetic mechanisms underlying the differences in flowering times and the traits that attract pollinators between a pair of diurnally and nocturnally flowering species have recently been identified in a few cases. This identification enables us to build a realistic model for theoretically studying the evolution of a nocturnally flowering species. In this study, based on previous experimental data, we assumed a model in which two loci control the flowering time and one locus determines a trait that attracts pollinators. Using this model, we evaluated the possibility of the evolution of a nocturnally flowering species from a diurnally flowering ancestor through simulations. We found that a newly emerging nighttime flowering flower exhibited a sufficiently high fitness, and the evolution of a nocturnally flowering species from a diurnally flowering species could be achieved when hybrid viability was intermediate to low, even in a completely sympatric situation. Our results suggest that the difference in flowering time can act as a magic trait that induces both natural selection and assortative mating and would play an important role in speciation between diurnally and nocturnally flowering species pairs. PMID:25665720

  1. From retrograde signaling to flowering time.

    PubMed

    Wang, Changquan; Dehesh, Katayoon

    2015-01-01

    Plant's transition from vegetative to reproductive phase is balanced by intricate cascade of genes regulated by both endogenous and environmental inputs. Stress causes suppression of vegetative growth and acceleration of flowering as an emergency response for preservation of the species. Recently, we determined that expression levels of a transcription factor with 2 B-Box motifs, BBX19, is notably reduced in response to accumulation of high levels of Methylerythritol cyclodiphosphate (MEcPP), a plastidial produced isoprenoids intermediate that also functions as a stress-specific retrograde signaling metabolite. We now have identified BBX19 as a repressor of Flower locus T (FT) expression and the corresponding downstream genes, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), Leafy (LFY) and Fruitful (FUL), through competition with CONSTANS (CO). Collectively our finding identifies BBX19 as a link between the stress-specific retrograde signal MEcPP and regulation of flowering time by depleting the active CO pool required for transcription of FT.

  2. The Genetic Architecture of Maize Flowering Time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flowering time is the key trait controlling adaptation of plants to their local environment, and, in an outcrossing species like maize, it is a complex trait. Variation for this complex trait was dissected in maize using a novel set of 5000 recombinant inbred lines (maize Nested Association Mapping...

  3. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants.

    PubMed

    Jagadish, S V Krishna; Bahuguna, Rajeev N; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P V Vara; Craufurd, Peter Q

    2016-01-01

    Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation.

  4. Pollinator experience, neophobia and the evolution of flowering time

    PubMed Central

    Forrest, Jessica; Thomson, James D.

    2008-01-01

    Environmental changes, such as current climate warming, can exert directional selection on reproductive phenology. In plants, evolution of earlier flowering requires that the individuals bearing genes for early flowering successfully reproduce; for non-selfing, zoophilous species, this means that early flowering individuals must be visited by pollinators. In a laboratory experiment with artificial flowers, we presented captive bumble-bees (Bombus impatiens) with flower arrays representing stages in the phenological progression of a two-species plant community: Bees that had been foraging on flowers of one colour were confronted with increasing numbers of flowers of a second colour. Early flowering individuals of the second ‘species’ were significantly under-visited, because bees avoided unfamiliar flowers, particularly when these were rare. We incorporated these aspects of bee foraging behaviour (neophobia and positive frequency dependence) in a simulation model of flowering-time evolution for a plant population experiencing selection against late flowering. Unlike simple frequency dependence, a lag in pollinator visitation prevented the plant population from responding to selection and led to declines in population size. Pollinator behaviour thus has the potential to constrain evolutionary adjustments of flowering phenology. PMID:19129131

  5. The link between flowering time and stress tolerance.

    PubMed

    Kazan, Kemal; Lyons, Rebecca

    2016-01-01

    Evolutionary success in plants is largely dependent on the successful transition from vegetative to reproductive growth. In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. Exposure to stress during this period can cause substantial yield losses in seed-producing plants. However, it is becoming increasingly evident that altering flowering time is an evolutionary strategy adopted by plants to maximize the chances of reproduction under diverse stress conditions, ranging from pathogen infection to heat, salinity, and drought. Here, recent studies that have revealed new insights into how biotic and abiotic stress signals can be integrated into floral pathways are reviewed. A better understanding of how complex environmental variables affect plant phenology is important for future genetic manipulation of crops to increase productivity under the changing climate.

  6. Candidate Gene Association Mapping of Arabidopsis Flowering Time

    PubMed Central

    Ehrenreich, Ian M.; Hanzawa, Yoshie; Chou, Lucy; Roe, Judith L.; Kover, Paula X.; Purugganan, Michael D.

    2009-01-01

    The pathways responsible for flowering time in Arabidopsis thaliana comprise one of the best characterized genetic networks in plants. We harness this extensive molecular genetic knowledge to identify potential flowering time quantitative trait genes (QTGs) through candidate gene association mapping using 51 flowering time loci. We genotyped common single nucleotide polymorphisms (SNPs) at these genes in 275 A. thaliana accessions that were also phenotyped for flowering time and rosette leaf number in long and short days. Using structured association techniques, we find that haplotype-tagging SNPs in 27 flowering time genes show significant associations in various trait/environment combinations. After correction for multiple testing, between 2 and 10 genes remain significantly associated with flowering time, with CO arguably possessing the most promising associations. We also genotyped a subset of these flowering time gene SNPs in an independent recombinant inbred line population derived from the intercrossing of 19 accessions. Approximately one-third of significant polymorphisms that were associated with flowering time in the accessions and genotyped in the outbred population were replicated in both mapping populations, including SNPs at the CO, FLC, VIN3, PHYD, and GA1 loci, and coding region deletions at the FRI gene. We conservatively estimate that ∼4–14% of known flowering time genes may harbor common alleles that contribute to natural variation in this life history trait. PMID:19581446

  7. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants

    PubMed Central

    Jagadish, S. V. Krishna; Bahuguna, Rajeev N.; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P. V. Vara; Craufurd, Peter Q.

    2016-01-01

    Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation. PMID:27446143

  8. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants.

    PubMed

    Jagadish, S V Krishna; Bahuguna, Rajeev N; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P V Vara; Craufurd, Peter Q

    2016-01-01

    Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation. PMID:27446143

  9. Genome-wide associations with flowering time in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass is an emerging bioenergy crop and perennial grass native to North America. Improving biomass yields is critical for developing switchgrass into an economically viable crop. Flowering time has a major effect on biomass yields as delaying flowering time prolongs the period of vegetative gr...

  10. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses.

    PubMed

    Otagaki, S; Ogawa, Y; Hibrand-Saint Oyant, L; Foucher, F; Kawamura, K; Horibe, T; Matsumoto, S

    2015-07-01

    Rose flowers have long delighted humans as ornamental plants. To improve the ornamental value of roses it is necessary to understand the regulatory mechanisms of flowering. We previously found that flowering time is controlled by three minor quantitative trait loci (QTLs) and a major QTL co-localised with RoFT. In this study, we isolated three RoFT alleles encoding completely identical amino acid sequences from the parents of a mapping population. Correlation analysis of the RoFT genotypes and flowering time phenotypes in the mapping population showed that the RoFT_f and RoFT_g alleles contribute to the early-flowering phenotype, while the RoFT_e allele contributes to the late-flowering phenotype. We developed two novel cleaved amplified polymorphic sequence (CAPS) markers based on the genomic sequences of the RoFT alleles and clearly showed that the relationship between RoFT genotype and flowering time was applicable to 12 of 13 cultivated roses grown at the Higashiyama Botanical Gardens, Japan. Allele-specific expression analysis using a reverse transcription CAPS assay suggested that these RoFT alleles are regulated differentially at the transcription level. Furthermore, transgenic Arabidopsis thaliana plants ectopically expressing the RoFT gene showed an early-flowering phenotype. Conversely, in roses, RoFT was continuously expressed after floral bud formation, and RoFT transcript accumulation reached its peak after that of the floral meristem identity gene RoAP1b. These data suggest that RoFT may be essential not only for floral transition but also for normal floral development and flowering in roses. PMID:25545704

  11. Mapping loci controlling flowering time in Brassica oleracea.

    PubMed

    Camargo, L E; Osborn, T C

    1996-04-01

    The timing of the transition from vegetative to reproductive phase is a major determinant of the morphology and value of Brassica oleracea crops. Quantitative trait loci (QTLs) controlling flowering time in B. oleracea were mapped using restriction fragment length polymorphism (RFLP) loci and flowering data of F3 families derived from a cabbage by broccoli cross. Plants were grown in the field, and a total of 15 surveys were made throughout the experiment at 5-15 day intervals, in which plants were inspected for the presence of flower buds or open flowers. The flowering traits used for data analysis were the proportion of annual plants (PF) within each F3 family at the end of the experiment, and a flowering-time index (FT) that combined both qualitative (annual/biennial) and quantitative (days to flowering) information. Two QTLs on different linkage groups were found associated with both PF and FT and one additional QTL was found associated only with FT. When combined in a multi-locus model, all three QTLs explained 54.1% of the phenotypic variation in FT. Epistasis was found between two genomic regions associated with FT. Comparisons of map positions of QTLs in B. oleracea with those in B. napus and B. rapa provided no evidence for conservation of genomic regions associated with flowering time between these species.

  12. Interconnection between flowering time control and activation of systemic acquired resistance

    PubMed Central

    Banday, Zeeshan Z.; Nandi, Ashis K.

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants. PMID:25852723

  13. Interconnection between flowering time control and activation of systemic acquired resistance.

    PubMed

    Banday, Zeeshan Z; Nandi, Ashis K

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.

  14. Global warming and flowering times in Thoreau's Concord: a community perspective.

    PubMed

    Miller-Rushing, Abraham J; Primack, Richard B

    2008-02-01

    As a result of climate change, many plants are now flowering measurably earlier than they did in the past. However, some species' flowering times have changed much more than others. Data at the community level can clarify the variation in flowering responses to climate change. In order to determine how North American species' flowering times respond to climate, we analyzed a series of previously unstudied records of the dates of first flowering for over 500 plant taxa in Concord, Massachusetts, USA. These records began with six years of observations by the famous naturalist Henry David Thoreau from 1852 to 1858, continued with 16 years of observations by the botanist Alfred Hosmer in 1878 and 1888-1902, and concluded with our own observations in 2004, 2005, and 2006. From 1852 through 2006, Concord warmed by 2.4 degrees C due to global climate change and urbanization. Using a subset of 43 common species, we determined that plants are now flowering seven days earlier on average than they did in Thoreau's times. Plant flowering times were most correlated with mean temperatures in the one or two months just before flowering and were also correlated with January temperatures. Summer-flowering species showed more interannual variation in flowering time than did spring-flowering species, but the flowering times of spring-flowering species correlated more strongly to mean monthly temperatures. In many cases, such as within the genera Betula and Solidago, closely related, co-occurring species responded to climate very differently from one another. The differences in flowering responses to warming could affect relationships in plant communities as warming continues. Common St. John's wort (Hypericum perforatum) and highbush blueberry (Vaccinium corymbosum) are particularly responsive to changes in climate, are common across much of the United States, and could serve as indicators of biological responses to climate change. We discuss the need for researchers to be aware

  15. Recent advancements to study flowering time in almond and other Prunus species.

    PubMed

    Sánchez-Pérez, Raquel; Del Cueto, Jorge; Dicenta, Federico; Martínez-Gómez, Pedro

    2014-01-01

    Flowering time is an important agronomic trait in almond since it is decisive to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. Consequently, flowering time has to be studied for several years to have statistical significant results. This trait is the result of the interaction between chilling and heat requirements. Flowering time is a polygenic trait with high heritability, although a major gene Late blooming (Lb) was described in "Tardy Nonpareil." Molecular studies at DNA level confirmed this polygenic nature identifying several genome regions (Quantitative Trait Loci, QTL) involved. Studies about regulation of gene expression are scarcer although several transcription factors have been described as responsible for flowering time. From the metabolomic point of view, the integrated analysis of the mechanisms of accumulation of cyanogenic glucosides and flowering regulation through transcription factors open new possibilities in the analysis of this complex trait in almond and in other Prunus species (apricot, cherry, peach, plum). New opportunities are arising from the integration of recent advancements including phenotypic, genetic, genomic, transcriptomic, and metabolomics studies from the beginning of dormancy until flowering.

  16. Recent advancements to study flowering time in almond and other Prunus species

    PubMed Central

    Sánchez-Pérez, Raquel; Del Cueto, Jorge; Dicenta, Federico; Martínez-Gómez, Pedro

    2014-01-01

    Flowering time is an important agronomic trait in almond since it is decisive to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. Consequently, flowering time has to be studied for several years to have statistical significant results. This trait is the result of the interaction between chilling and heat requirements. Flowering time is a polygenic trait with high heritability, although a major gene Late blooming (Lb) was described in “Tardy Nonpareil.” Molecular studies at DNA level confirmed this polygenic nature identifying several genome regions (Quantitative Trait Loci, QTL) involved. Studies about regulation of gene expression are scarcer although several transcription factors have been described as responsible for flowering time. From the metabolomic point of view, the integrated analysis of the mechanisms of accumulation of cyanogenic glucosides and flowering regulation through transcription factors open new possibilities in the analysis of this complex trait in almond and in other Prunus species (apricot, cherry, peach, plum). New opportunities are arising from the integration of recent advancements including phenotypic, genetic, genomic, transcriptomic, and metabolomics studies from the beginning of dormancy until flowering. PMID:25071812

  17. What drives selection on flowering time? An experimental manipulation of the inherent correlation between genotype and environment.

    PubMed

    Austen, Emily J; Weis, Arthur E

    2015-08-01

    The optimal timing of the seasonal switch from somatic growth to reproduction can depend on an individual's condition at reproduction, the quality of the environment in which it will reproduce, or both. In annual plants, vegetative size (a function of age at flowering) affects resources available for seed production, whereas exposure to mutualists, antagonists, and abiotic stresses in the environment (functions of Julian date of flowering) influences success in converting resources into offspring. The inherent tight correlation between age, size, and environment obscures their independent fitness contributions. We isolated the fitness effects of these factors by experimentally manipulating the correlation between age at flowering and date of flowering in Brassica rapa. We staggered the planting dates of families with differing ages at flowering to produce experimental populations in which age at flowering and date of flowering were positively, negatively, or uncorrelated. In all populations, plants with an early date of flowering produced more seed than those flowering late, regardless of age or size at flowering onset. The temporal environment was thus the principal driver of selection on flowering time, but its importance relative to that of age and size varied with the presence/absence of herbivores and seed predators.

  18. What drives selection on flowering time? An experimental manipulation of the inherent correlation between genotype and environment.

    PubMed

    Austen, Emily J; Weis, Arthur E

    2015-08-01

    The optimal timing of the seasonal switch from somatic growth to reproduction can depend on an individual's condition at reproduction, the quality of the environment in which it will reproduce, or both. In annual plants, vegetative size (a function of age at flowering) affects resources available for seed production, whereas exposure to mutualists, antagonists, and abiotic stresses in the environment (functions of Julian date of flowering) influences success in converting resources into offspring. The inherent tight correlation between age, size, and environment obscures their independent fitness contributions. We isolated the fitness effects of these factors by experimentally manipulating the correlation between age at flowering and date of flowering in Brassica rapa. We staggered the planting dates of families with differing ages at flowering to produce experimental populations in which age at flowering and date of flowering were positively, negatively, or uncorrelated. In all populations, plants with an early date of flowering produced more seed than those flowering late, regardless of age or size at flowering onset. The temporal environment was thus the principal driver of selection on flowering time, but its importance relative to that of age and size varied with the presence/absence of herbivores and seed predators. PMID:26102569

  19. Time after time: flowering phenology and biotic interactions.

    PubMed

    Elzinga, Jelmer A; Atlan, Anne; Biere, Arjen; Gigord, Luc; Weis, Arthur E; Bernasconi, Giorgina

    2007-08-01

    The role of biotic interactions in shaping plant flowering phenology has long been controversial; plastic responses to the abiotic environment, limited precision of biological clocks and inconsistency of selection pressures have generally been emphasized to explain phenological variation. However, part of this variation is heritable and selection analyses show that biotic interactions can modulate selection on flowering phenology. Our review of the literature indicates that pollinators tend to favour peak or earlier flowering, whereas pre-dispersal seed predators tend to favour off-peak or later flowering. However, effects strongly vary among study systems. To understand such variation, future studies should address the impact of mutualist and antagonist dispersal ability, ecological specialization, and habitat and plant population characteristics. Here, we outline future directions to study how such interactions shape flowering phenology.

  20. Flowering time modulation by a vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana.

    PubMed

    Ebine, Kazuo; Uemura, Tomohiro; Nakano, Akihiko; Ueda, Takashi

    2012-01-01

    The transition of plant growth from vegetative to reproductive phases is one of the most important and dramatic events during the plant life cycle. In Arabidopsis thaliana, flowering promotion involves at least four genetically defined regulatory pathways, including the photoperiod-dependent, vernalization-dependent, gibberellin-dependent, and autonomous promotion pathways. Among these regulatory pathways, the vernalization-dependent and autonomous pathways are integrated by the expression of FLOWERING LOCUS C (FLC), a negative regulator of flowering; however, the upstream regulation of this locus has not been fully understood. The SYP22 gene encodes a vacuolar SNARE protein that acts in vacuolar and endocytic trafficking pathways. Loss of SYP22 function was reported to lead to late flowering in A. thaliana plants, but the mechanism has remained completely unknown. In this study, we demonstrated that the late flowering phenotype of syp22 was due to elevated expression of FLC caused by impairment of the autonomous pathway. In addition, we investigated the DOC1/BIG pathway, which is also suggested to regulate vacuolar/endosomal trafficking. We found that elevated levels of FLC transcripts accumulated in the doc1-1 mutant, and that syp22 phenotypes were exaggerated with a double syp22 doc1-1 mutation. We further demonstrated that the elevated expression of FLC was suppressed by ara6-1, a mutation in the gene encoding plant-unique Rab GTPase involved in endosomal trafficking. Our results indicated that vacuolar and/or endocytic trafficking is involved in the FLC regulation of flowering time in A. thaliana.

  1. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.

    PubMed

    Meir, Michal; Ransbotyn, Vanessa; Raveh, Eran; Barak, Simon; Tel-Zur, Noemi; Zaccai, Michele

    2016-03-15

    In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering. PMID:26949231

  2. Arabidopsis MSI1 functions in photoperiodic flowering time control

    PubMed Central

    Steinbach, Yvonne; Hennig, Lars

    2014-01-01

    Appropriate timing of flowering is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals such as photoperiod, vernalization or light quality, ambient temperature and biotic as well as abiotic stresses. The key florigenic signal FLOWERING LOCUS T (FT) is regulated by several flowering activators, such as CONSTANS (CO), and repressors, such as FLOWERING LOCUS C (FLC). Chromatin modifications are essential for regulated gene expression, which often involves the well conserved MULTICOPY SUPRESSOR OF IRA 1 (MSI1)-like protein family. MSI1-like proteins are ubiquitous partners of various complexes, such as POLYCOMB REPRESSIVE COMPLEX2 or CHROMATIN ASSEMBLY FACTOR 1. In Arabidopsis, one of the functions of MSI1 is to control the switch to flowering. Arabidopsis MSI1 is needed for the correct expression of the floral integrator gene SUPPRESSOR OF CO 1 (SOC1). Here, we show that the histone-binding protein MSI1 acts in the photoperiod pathway to regulate normal expression of CO in long day (LD) photoperiods. Reduced expression of CO in msi1-mutants leads to failure of FT and SOC1 activation and to delayed flowering. MSI1 is needed for normal sensitivity of Arabidopsis to photoperiod, because msi1-mutants responded less than wild type to an intermittent LD treatment of plants grown in short days. Finally, genetic analysis demonstrated that MSI1 acts upstream of the CO-FT pathway to enable an efficient photoperiodic response and to induce flowering. PMID:24639681

  3. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative.

    PubMed

    Wagner, Maggie R; Lundberg, Derek S; Coleman-Derr, Devin; Tringe, Susannah G; Dangl, Jeffery L; Mitchell-Olds, Thomas

    2014-06-01

    Plant phenology is known to depend on many different environmental variables, but soil microbial communities have rarely been acknowledged as possible drivers of flowering time. Here, we tested separately the effects of four naturally occurring soil microbiomes and their constituent soil chemistries on flowering phenology and reproductive fitness of Boechera stricta, a wild relative of Arabidopsis. Flowering time was sensitive to both microbes and the abiotic properties of different soils; varying soil microbiota also altered patterns of selection on flowering time. Thus, soil microbes potentially contribute to phenotypic plasticity of flowering time and to differential selection observed between habitats. We also describe a method to dissect the microbiome into single axes of variation that can help identify candidate organisms whose abundance in soil correlates with flowering time. This approach is broadly applicable to search for microbial community members that alter biological characteristics of interest.

  4. Relative abundance of an invasive alien plant affects insect-flower interaction networks in Ireland

    NASA Astrophysics Data System (ADS)

    Stout, Jane C.; Casey, Leanne M.

    2014-02-01

    Invasive alien flowering plants may affect native plant pollinator interactions and have knock on impacts on populations of native plants and animals. The magnitude of these impacts, however, may be modified by the relative abundance of the invasive plant and the number of flowers it presents.We tested this by examining the structure of insect-flower interaction networks in six sites with increasing levels of invasion by Rhododendron ponticum in Ireland.Neither flower-visiting insect abundance, species richness nor diversity were related to R. ponticum flower abundance, but the composition of insect communities was. The total number of flowers in a site increased with the relative abundance of R. ponticum flowers but the number of co-flowering native plant species in these sites was low (<6), making interaction networks relatively small.As a result, changes in interaction network properties (connectance, interaction evenness and network level specialisation), which correlated with R. ponticum flower abundance, were a result of the small network size rather than due to changes in the resilience of networks.Overall, we conclude that the impacts of invasive alien plants on native plant-pollinator interactions are not only species specific, but site specific, according to the abundance of flowers produced by both the invasive and the native plants.

  5. Genetic variation of flowering time and biomass in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The timing of phase change from juvenile (vegetative) to adult with reproductive competence is a key factor influencing biomass yield of switchgrass. A decline in biomass yield is typically observed in switchgrass immediately following completion of flowering. In temperate regions of the USA, if flo...

  6. Method for production of sorghum hybrids with selected flowering times

    DOEpatents

    Mullet, John E.; Rooney, William L.

    2016-08-30

    Methods and composition for the production of sorghum hybrids with selected and different flowering times are provided. In accordance with the invention, a substantially continual and high-yield harvest of sorghum is provided. Improved methods of seed production are also provided.

  7. Associations with flowering time, latitude, and climate in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass is a North American perennial grass and emerging bioenergy feedstock, and increasing biomass yields will improve the economic viability of switchgrass as a bioenergy crop. Flowering time is an important determinant of biomass yields in switchgrass because the majority of biomass accumula...

  8. Role of FRIGIDA and FLOWERING LOCUS C in Determining Variation in Flowering Time of Arabidopsis1[w

    PubMed Central

    Shindo, Chikako; Aranzana, Maria Jose; Lister, Clare; Baxter, Catherine; Nicholls, Colin; Nordborg, Magnus; Dean, Caroline

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) accessions provide an excellent resource to dissect the molecular basis of adaptation. We have selected 192 Arabidopsis accessions collected to represent worldwide and local variation and analyzed two adaptively important traits, flowering time and vernalization response. There was huge variation in the flowering habit of the different accessions, with no simple relationship to latitude of collection site and considerable diversity occurring within local regions. We explored the contribution to this variation from the two genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), previously shown to be important determinants in natural variation of flowering time. A correlation of FLC expression with flowering time and vernalization was observed, but it was not as strong as anticipated due to many late-flowering/vernalization-requiring accessions being associated with low FLC expression and early-flowering accessions with high FLC expression. Sequence analysis of FRI revealed which accessions were likely to carry functional alleles, and, from comparison of flowering time with allelic type, we estimate that approximately 70% of flowering time variation can be accounted for by allelic variation of FRI. The maintenance and propagation of 20 independent nonfunctional FRI haplotypes suggest that the loss-of-function mutations can confer a strong selective advantage. Accessions with a common FRI haplotype were, in some cases, associated with very different FLC levels and wide variation in flowering time, suggesting additional variation at FLC itself or other genes regulating FLC. These data reveal how useful these Arabidopsis accessions will be in dissecting the complex molecular variation that has led to the adaptive phenotypic variation in flowering time. PMID:15908596

  9. GmmiR156b overexpression delays flowering time in soybean.

    PubMed

    Cao, Dong; Li, Ying; Wang, Jialin; Nan, Haiyang; Wang, Youning; Lu, Sijia; Jiang, Qiong; Li, Xiaoming; Shi, Danning; Fang, Chao; Yuan, Xiaohui; Zhao, Xiaohui; Li, Xia; Liu, Baohui; Kong, Fanjiang

    2015-11-01

    Soybean [Glycine max (L.) Merr.] is an important crop used for human consumption, animal feed and biodiesel fuel. Wering time and maturity significantly affect soybean grain yield. In Arabidopsis thaliana, miR156 has been proposed to regulate the transition from the juvenile to the adult phase of shoot development, which is accompanied by changes in vegetative morphology and an increase in reproductive potential. However, the molecular mechanisms underlying miR156 function in soybean flowering remain unknown. Here, we report that the overexpression of GmmiR156b delays flowering time in soybean. GmmiR156b may target SPL orthologs and negatively regulate GmSPLs, thereby delaying flowering in soybean under LD and natural conditions. GmmiR156b down-regulates several known flowering time regulators in soybean, such as GmAP1 (a, b, c), GmLFY2, GmLFY2, GmFULs, GmSOC1s, GmFT5a, and GmmiR172. These data show that a similar miR156-SPL regulatory module was conserved in the soybean flowering pathway. However, GmFULs, GmSOC1a and GmSOC1b were significantly suppressed under LD conditions but not under SD conditions, which is different in Arabidopsis that these genes were down-regulated irrespective of photoperiod. In addition, GmmiR156b was up-regulated by E1, E2 (GmGI), E3 and E4, which control flowering time and maturity in soybean, and suppressed E1 (E1-Like) and E2 (E2-Like) genes under LD conditions. These data indicated that the miR156-SPL regulatory module was also with some degree of divergent in soybean flowering pathway.

  10. Novel flowering time variation in the resynthesized polyploid Brassica napus.

    PubMed

    Schranz, M E; Osborn, T C

    2000-01-01

    Recent molecular data using resynthesized polyploids of Brassica napus established that genome changes can occur rapidly after polyploid formation. In this study we present data that de novo phenotypic variation for flowering time also occurs rapidly after polyploidization. Two initial polyploid plants were developed by reciprocal crosses of B. rapa and B. oleracea followed by chromosome doubling to establish two lineages, each of which was expected to be homozygous and homogeneous. Several sublineages of each lineage were advanced by self-pollination. The range in days to flower of the sixth generation plants was 39-75 and 43-64 for the two lineages. Analysis of seventh generation progeny indicated that the variation was heritable. Lines were selected and self-pollinated to the eighth generation and also testcrossed to a natural B. napus cultivar; the testcross plants were then self-pollinated. Differences in flowering time were also inherited in these advanced generations. Days to flower was significantly correlated with leaf number in each generation. The rapid evolution of new phenotypic variation, like that observed in this model system, may have contributed to the success and diversification of natural polyploid organisms.

  11. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa.

    PubMed

    Schranz, M Eric; Quijada, Pablo; Sung, Si-Bum; Lukens, Lewis; Amasino, Richard; Osborn, Thomas C

    2002-11-01

    Functional genetic redundancy is widespread in plants and could have an important impact on phenotypic diversity if the multiple gene copies act in an additive or dosage-dependent manner. We have cloned four Brassica rapa homologs (BrFLC) of the MADS-box flowering-time regulator FLC, located at the top of chromosome 5 of Arabidopsis thaliana. Relative rate tests revealed no evidence for differential rates of evolution and the ratios of nonsynonymous-to-synonymous substitutions suggest BrFLC loci are not under strong purifying selection. BrFLC1, BrFLC2, and BrFLC3 map to genomic regions that are collinear with the top of At5, consistent with a polyploid origin. BrFLC5 maps near a junction of two collinear regions to Arabidopsis, one of which includes an FLC-like gene (AGL31). However, all BrFLC sequences are more closely related to FLC than to AGL31. BrFLC1, BrFLC2, and BrFLC5 cosegregate with flowering-time loci evaluated in populations derived by backcrossing late-flowering alleles from a biennial parent into an annual parent. Two loci segregating in a single backcross population affected flowering in a completely additive manner. Thus, replicated BrFLC genes appear to have a similar function and interact in an additive manner to modulate flowering time.

  12. Anthropogenic edges, isolation and the flowering time and fruit set of Anadenanthera peregrina, a cerrado savanna tree.

    PubMed

    Athayde, Eduardo Anversa; Morellato, Leonor Patrícia Cerdeira

    2014-05-01

    Fragmentation exposes plants to extreme environmental conditions with implications for species phenology and reproduction.We investigated whether isolation and edge effects influence size, flowering time, fruit set, and seedling establishment of Anadenanthera peregrina var. falcata. We compared trees in the interior (n =85), and on the edge (n =74) of a cerrado savanna fragment as well as in a pasture (n =26) with respect to size, flowering phenology, flower and fruit production, fruit and seed set, predispersal seed predation, and seedling establishment. Trees in the pasture were larger and produced a higher number of flowers and fruits than trees on the edge and interior, yet seed set did not differ across environments. The plant size structure explained the flower and fruit production, and the self-compatibility breeding system caused a similar seed set regardless of the environment. First flowering was later and fruit set higher in the interior. We argue that time of first flower influenced the fruit set of Anadenathera. Edge and isolated trees started to flower earlier as a response to microclimatic conditions--mainly temperature--reducing the fruit set. Predispersal seed predation was lower among pasture trees. Conversely, we found seedlings only on the edge and in the interior of cerrado, suggesting that the pasture was of poor quality habitat for Anadenanthera recruitment. Isolation affected the plant size structure and reproduction of Anadenanthera trees. Studies comparing plant phenology under contrasting environmental conditions may offer clues on how global change may affect plant reproduction in the tropics.

  13. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.

    PubMed

    Olesen, J E; Børgesen, C D; Elsgaard, L; Palosuo, T; Rötter, R P; Skjelvåg, A O; Peltonen-Sainio, P; Börjesson, T; Trnka, M; Ewert, F; Siebert, S; Brisson, N; Eitzinger, J; van Asselt, E D; Oberforster, M; van der Fels-Klerx, H J

    2012-01-01

    The phenological development of cereal crops from emergence through flowering to maturity is largely controlled by temperature, but also affected by day length and potential physiological stresses. Responses may vary between species and varieties. Climate change will affect the timing of cereal crop development, but exact changes will also depend on changes in varieties as affected by plant breeding and variety choices. This study aimed to assess changes in timing of major phenological stages of cereal crops in Northern and Central Europe under climate change. Records on dates of sowing, flowering, and maturity of wheat, oats and maize were collected from field experiments conducted during the period 1985-2009. Data for spring wheat and spring oats covered latitudes from 46 to 64°N, winter wheat from 46 to 61°N, and maize from 47 to 58°N. The number of observations (site-year-variety combinations) varied with phenological phase, but exceeded 2190, 227, 2076 and 1506 for winter wheat, spring wheat, spring oats and maize, respectively. The data were used to fit simple crop development models, assuming that the duration of the period until flowering depends on temperature and day length for wheat and oats, and on temperature for maize, and that the duration of the period from flowering to maturity in all species depends on temperature only. Species-specific base temperatures were used. Sowing date of spring cereals was estimated using a threshold temperature for the mean air temperature during 10 days prior to sowing. The mean estimated temperature thresholds for sowing were 6.1, 7.1 and 10.1°C for oats, wheat and maize, respectively. For spring oats and wheat the temperature threshold increased with latitude. The effective temperature sums required for both flowering and maturity increased with increasing mean annual temperature of the location, indicating that varieties are well adapted to given conditions. The responses of wheat and oats were largest for the

  14. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation.

    PubMed

    Franks, Steven J; Sim, Sheina; Weis, Arthur E

    2007-01-23

    Ongoing climate change has affected the ecological dynamics of many species and is expected to impose natural selection on ecologically important traits. Droughts and other anticipated changes in precipitation may be particularly potent selective factors, especially in arid regions. Here we demonstrate the evolutionary response of an annual plant, Brassica rapa, to a recent climate fluctuation resulting in a multiyear drought. Ancestral (predrought) genotypes were recovered from stored seed and raised under a set of common environments with descendant (postdrought) genotypes and with ancestorxdescendant hybrids. As predicted, the abbreviated growing seasons caused by drought led to the evolution of earlier onset of flowering. Descendants bloomed earlier than ancestors, advancing first flowering by 1.9 days in one study population and 8.6 days in another. The intermediate flowering time of ancestorxdescendant hybrids supports an additive genetic basis for divergence. Experiments confirmed that summer drought selected for early flowering, that flowering time was heritable, and that selection intensities in the field were more than sufficient to account for the observed evolutionary change. Natural selection for drought escape thus appears to have caused adaptive evolution in just a few generations. A systematic effort to collect and store propagules from suitable species would provide biologists with materials to detect and elucidate the genetic basis of further evolutionary shifts driven by climate change.

  15. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation.

    PubMed

    Franks, Steven J; Sim, Sheina; Weis, Arthur E

    2007-01-23

    Ongoing climate change has affected the ecological dynamics of many species and is expected to impose natural selection on ecologically important traits. Droughts and other anticipated changes in precipitation may be particularly potent selective factors, especially in arid regions. Here we demonstrate the evolutionary response of an annual plant, Brassica rapa, to a recent climate fluctuation resulting in a multiyear drought. Ancestral (predrought) genotypes were recovered from stored seed and raised under a set of common environments with descendant (postdrought) genotypes and with ancestorxdescendant hybrids. As predicted, the abbreviated growing seasons caused by drought led to the evolution of earlier onset of flowering. Descendants bloomed earlier than ancestors, advancing first flowering by 1.9 days in one study population and 8.6 days in another. The intermediate flowering time of ancestorxdescendant hybrids supports an additive genetic basis for divergence. Experiments confirmed that summer drought selected for early flowering, that flowering time was heritable, and that selection intensities in the field were more than sufficient to account for the observed evolutionary change. Natural selection for drought escape thus appears to have caused adaptive evolution in just a few generations. A systematic effort to collect and store propagules from suitable species would provide biologists with materials to detect and elucidate the genetic basis of further evolutionary shifts driven by climate change. PMID:17220273

  16. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation

    PubMed Central

    Franks, Steven J.; Sim, Sheina; Weis, Arthur E.

    2007-01-01

    Ongoing climate change has affected the ecological dynamics of many species and is expected to impose natural selection on ecologically important traits. Droughts and other anticipated changes in precipitation may be particularly potent selective factors, especially in arid regions. Here we demonstrate the evolutionary response of an annual plant, Brassica rapa, to a recent climate fluctuation resulting in a multiyear drought. Ancestral (predrought) genotypes were recovered from stored seed and raised under a set of common environments with descendant (postdrought) genotypes and with ancestor×descendant hybrids. As predicted, the abbreviated growing seasons caused by drought led to the evolution of earlier onset of flowering. Descendants bloomed earlier than ancestors, advancing first flowering by 1.9 days in one study population and 8.6 days in another. The intermediate flowering time of ancestor×descendant hybrids supports an additive genetic basis for divergence. Experiments confirmed that summer drought selected for early flowering, that flowering time was heritable, and that selection intensities in the field were more than sufficient to account for the observed evolutionary change. Natural selection for drought escape thus appears to have caused adaptive evolution in just a few generations. A systematic effort to collect and store propagules from suitable species would provide biologists with materials to detect and elucidate the genetic basis of further evolutionary shifts driven by climate change. PMID:17220273

  17. Nitrogen Recycling and Flowering Time in Perennial Bioenergy Crops

    PubMed Central

    Schwartz, Christopher; Amasino, Richard

    2013-01-01

    Perennials have a number of traits important for profitability and sustainability of a biofuel crop. Perennialism is generally defined as the ability to grow and reproduce in multiple years. In temperate climates, many perennial plants enter dormancy during winter and recycle nutrients, such as nitrogen, to below ground structures for the next growing season. Nitrogen is expensive to produce and application of nitrogen increases the potent greenhouse gas NOx. Perennial bioenergy crops have been evaluated for biomass yields with nitrogen fertilization, location, year, and genotype as variables. Flowering time and dormancy are closely related to the N recycling program. Substantial variation for flowering time and dormancy has been identified in the switchgrass (Panicum virgatum L.) species, which provides a source to identify the genetic components of N recycling, and for use in breeding programs. Some studies have addressed recycling specifically, but flowering time and developmental differences were largely ignored, complicating interpretation of the results. Future studies on recycling need to appreciate plant developmental stage to allow comparison between experiments. A perennial/annual model(s) and more environmentally controlled experiments would be useful to determine the genetic components of nitrogen recycling. Increasing biomass yield per unit of nitrogen by maximizing recycling might mean the difference for profitability of a biofuel crop and has the added benefit of minimizing negative environmental effects from agriculture. PMID:23626592

  18. Storage temperature affects the quality of cut flowers from the Asteraceae.

    PubMed

    Celikel, Fisun G; Reid, Michael S

    2002-02-01

    The respiration of cut flowers of gerbera (Gerbera jamesonii H. Bolus ex Hook.f. 'Vesuvio') and sunflower (Helianthus annuus L.) increased exponentially with increasing storage temperature. Poststorage vase life and negatively gravitropic bending of the neck of the flowers were both strongly affected by simulated transport at higher temperatures. Vase life and stem bending after dry storage showed highly significant linear relationships (negative and positive, respectively) with the rate of respiration during storage. The data indicate the importance of maintaining temperatures close to the freezing point during commercial handling and transport of these important commercial cut-flower crops for maximum vase life.

  19. The relationship between flowering time and growth responses to drought in the Arabidopsis Landsberg erecta x Antwerp-1 population

    PubMed Central

    Schmalenbach, Inga; Zhang, Lei; Reymond, Matthieu; Jiménez-Gómez, José M.

    2014-01-01

    Limited water availability is one of the most prominent abiotic constraints to plant survival and reproduction. Thus, plants have evolved different strategies to cope with water deficit, including modification of their growth and timing of developmental events such as flowering. In this work, we explore the link between flowering time and growth responses to moderate drought stress in Arabidopsis thaliana using natural variation for these traits found in the Landsberg erecta x Antwerp-1 recombinant inbred line population. We developed and phenotyped near isogenic lines containing different allelic combinations at three interacting quantitative trait loci (QTL) affecting both flowering time and growth in response to water deficit. We used these lines to confirm additive and epistatic effects of the three QTL and observed a strong association between late flowering and reduced sensitivity to drought. Analyses of growth responses to drought over time revealed that late flowering plants were able to recover their growth in the second half of their vegetative development. In contrast, early flowering, a common drought escape strategy that ensures plant survival under severe water deficit, was associated with strongly impaired plant fitness. The results presented here indicate that late flowering may be advantageous under continuous mild water deficit as it allows stress acclimatization over time. PMID:25426126

  20. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa.

    PubMed

    Lou, Ping; Zhao, Jianjun; Kim, Jung Sun; Shen, Shuxing; Del Carpio, Dunia Pino; Song, Xiaofei; Jin, Mina; Vreugdenhil, Dick; Wang, Xiaowu; Koornneef, Maarten; Bonnema, Guusje

    2007-01-01

    Wide variation for morphological traits exists in Brassica rapa and the genetic basis of this morphological variation is largely unknown. Here is a report on quantitative trait loci (QTL) analysis of flowering time, seed and pod traits, growth-related traits, leaf morphology, and turnip formation in B. rapa using multiple populations. The populations resulted from crosses between the following accessions: Rapid cycling, Chinese cabbage, Yellow sarson, Pak choi, and a Japanese vegetable turnip variety. A total of 27 QTL affecting 20 morphological traits were detected, including eight QTL for flowering time, six for seed traits, three for growth-related traits and 10 for leaf traits. One major QTL was found for turnip formation. Principal component analysis and co-localization of QTL indicated that some loci controlling leaf and seed-related traits and those for flowering time and turnip formation might be the same. The major flowering time QTL detected in all populations on linkage group R02 co-localized with BrFLC2. One major QTL, controlling turnip formation, was also mapped at this locus. The genes that may underly this QTL and comparative analyses between the four populations and with Arabidopsis thaliana are discussed.

  1. Natural variation for flowering time, perennialism, and nutrient recycling in bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have analyzed annual Brachypodium for flowering time and nitrogen content when grown under a nitrogen gradient. Flowering time is correlated to whole plant N content, likely due to greater leaf mass in later flowering accessions. We hope the easily transformable annuals can assist in gene charact...

  2. Abscission of pistachio flowers and fruits as affected by different pollinators.

    PubMed

    Acar, Izzet; Eti, Sinan

    2007-09-01

    This study was conducted in Ceylanpinar State Farm to determine influence of pollens of 9 different pollinators on the flower and fruit abscission of the pistachio. Comparison of pollinator effect on the abscission of flowers and fruits of 3 pistachio cultivars showed that pollens of Pistacia vera L. may increase or reduce flower and fruit abscission. Flower and fruit abscission occurred primarily during the flowering and small-fruit period, that the June and pre-harvest abscissions were low. Data collected for 3 consecutive years revealed that 83.4 to 88.2% of the flowers and fruits of Kirmizi pistachio cultivar abscised mainly during an initial 50 days after Full Blooming (FB). Siirt cultivar abscised during an initial 35 days after FB with a rate of 82.1 to 90.9%. Abscission rate of Ohadi cultivar were 84.5 to 88.6% that occurred during an initial 50 days after FB period. Males noted as 12 and 13 resulted the highest abscission in Siirt cultivar. Results demonstrated that pollinators affect flower and fruit abscission in pistachio.

  3. The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis.

    PubMed

    Li, Wei; Ahn, Il-Pyung; Ning, Yuese; Park, Chan-Ho; Zeng, Lirong; Whitehill, Justin G A; Lu, Haibin; Zhao, Qingzhen; Ding, Bo; Xie, Qi; Zhou, Jian-Min; Dai, Liangying; Wang, Guo-Liang

    2012-05-01

    The components in plant signal transduction pathways are intertwined and affect each other to coordinate plant growth, development, and defenses to stresses. The role of ubiquitination in connecting these pathways, particularly plant innate immunity and flowering, is largely unknown. Here, we report the dual roles for the Arabidopsis (Arabidopsis thaliana) Plant U-box protein13 (PUB13) in defense and flowering time control. In vitro ubiquitination assays indicated that PUB13 is an active E3 ubiquitin ligase and that the intact U-box domain is required for the E3 ligase activity. Disruption of the PUB13 gene by T-DNA insertion results in spontaneous cell death, the accumulation of hydrogen peroxide and salicylic acid (SA), and elevated resistance to biotrophic pathogens but increased susceptibility to necrotrophic pathogens. The cell death, hydrogen peroxide accumulation, and resistance to necrotrophic pathogens in pub13 are enhanced when plants are pretreated with high humidity. Importantly, pub13 also shows early flowering under middle- and long-day conditions, in which the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and FLOWERING LOCUS T is induced while FLOWERING LOCUS C expression is suppressed. Finally, we found that two components involved in the SA-mediated signaling pathway, SID2 and PAD4, are required for the defense and flowering-time phenotypes caused by the loss of function of PUB13. Taken together, our data demonstrate that PUB13 acts as an important node connecting SA-dependent defense signaling and flowering time regulation in Arabidopsis.

  4. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction

    PubMed Central

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M.; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects. PMID:26034991

  5. Oakleaf: an S locus-linked mutation of Primula vulgaris that affects leaf and flower development.

    PubMed

    Cocker, Jonathan M; Webster, Margaret A; Li, Jinhong; Wright, Jonathan; Kaithakottil, Gemy; Swarbreck, David; Gilmartin, Philip M

    2015-10-01

    In Primula vulgaris outcrossing is promoted through reciprocal herkogamy with insect-mediated cross-pollination between pin and thrum form flowers. Development of heteromorphic flowers is coordinated by genes at the S locus. To underpin construction of a genetic map facilitating isolation of these S locus genes, we have characterised Oakleaf, a novel S locus-linked mutant phenotype. We combine phenotypic observation of flower and leaf development, with classical genetic analysis and next-generation sequencing to address the molecular basis of Oakleaf. Oakleaf is a dominant mutation that affects both leaf and flower development; plants produce distinctive lobed leaves, with occasional ectopic meristems on the veins. This phenotype is reminiscent of overexpression of Class I KNOX-homeodomain transcription factors. We describe the structure and expression of all eight P. vulgaris PvKNOX genes in both wild-type and Oakleaf plants, and present comparative transcriptome analysis of leaves and flowers from Oakleaf and wild-type plants. Oakleaf provides a new phenotypic marker for genetic analysis of the Primula S locus. We show that none of the Class I PvKNOX genes are strongly upregulated in Oakleaf leaves and flowers, and identify cohorts of 507 upregulated and 314 downregulated genes in the Oakleaf mutant.

  6. Flower litters of alpine plants affect soil nitrogen and phosphorus rapidly in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jinniu; Xu, Bo; Wu, Yan; Gao, Jing; Shi, Fusun

    2016-10-01

    Litters of reproductive organs have rarely been studied despite their role in allocating nutrients for offspring reproduction. This study determines the mechanism through which flower litters efficiently increase the available soil nutrient pool. Field experiments were conducted to collect plant litters and calculate biomass production in an alpine meadow of the eastern Tibetan Plateau. C, N, P, lignin, cellulose content, and their relevant ratios of litters were analyzed to identify their decomposition features. A pot experiment was performed to determine the effects of litter addition on the soil nutrition pool by comparing the treated and control samples. The litter-bag method was used to verify decomposition rates. The flower litters of phanerophyte plants were comparable with non-flower litters. Biomass partitioning of other herbaceous species accounted for 10-40 % of the aboveground biomass. Flower litter possessed significantly higher N and P levels but less C / N, N / P, lignin / N, and lignin and cellulose concentrations than leaf litter. The litter-bag experiment confirmed that the flower litters of Rhododendron przewalskii and Meconopsis integrifolia decompose approximately 3 times faster than mixed litters within 50 days. Pot experiment findings indicated that flower litter addition significantly increased the available nutrient pool and soil microbial productivity. The time of litter fall significantly influenced soil available N and P, and soil microbial biomass. Flower litters fed the soil nutrition pool and influenced nutrition cycling in alpine ecosystems more efficiently because of their non-ignorable production, faster decomposition rate, and higher nutrient contents compared with non-flower litters. The underlying mechanism can enrich nutrients, which return to the soil, and non-structural carbohydrates, which feed and enhance the transitions of soil microorganisms.

  7. Climate change and the flowering time of annual crops.

    PubMed

    Craufurd, P Q; Wheeler, T R

    2009-01-01

    Crop production is inherently sensitive to variability in climate. Temperature is a major determinant of the rate of plant development and, under climate change, warmer temperatures that shorten development stages of determinate crops will most probably reduce the yield of a given variety. Earlier crop flowering and maturity have been observed and documented in recent decades, and these are often associated with warmer (spring) temperatures. However, farm management practices have also changed and the attribution of observed changes in phenology to climate change per se is difficult. Increases in atmospheric [CO(2)] often advance the time of flowering by a few days, but measurements in FACE (free air CO(2) enrichment) field-based experiments suggest that elevated [CO(2)] has little or no effect on the rate of development other than small advances in development associated with a warmer canopy temperature. The rate of development (inverse of the duration from sowing to flowering) is largely determined by responses to temperature and photoperiod, and the effects of temperature and of photoperiod at optimum and suboptimum temperatures can be quantified and predicted. However, responses to temperature, and more particularly photoperiod, at supraoptimal temperature are not well understood. Analysis of a comprehensive data set of time to tassel initiation in maize (Zea mays) with a wide range of photoperiods above and below the optimum suggests that photoperiod modulates the negative effects of temperature above the optimum. A simulation analysis of the effects of prescribed increases in temperature (0-6 degrees C in +1 degree C steps) and temperature variability (0% and +50%) on days to tassel initiation showed that tassel initiation occurs later, and variability was increased, as the temperature exceeds the optimum in models both with and without photoperiod sensitivity. However, the inclusion of photoperiod sensitivity above the optimum temperature resulted in a

  8. Suppression of Arabidopsis flowering by near-null magnetic field is affected by light.

    PubMed

    Xu, Chunxiao; Li, Yue; Yu, Yang; Zhang, Yuxia; Wei, Shufeng

    2015-09-01

    We previously reported that a near-null magnetic field suppressed Arabidopsis flowering in white light, which might be related to the function modification of cryptochrome (CRY). To further demonstrate that the effect of near-null magnetic field on Arabidopsis flowering is associated with CRY, Arabidopsis wild type and CRY mutant plants were grown in the near-null magnetic field under blue or red light with different light cycle and photosynthetic photon flux density. We found that Arabidopsis flowering was significantly suppressed by near-null magnetic field in blue light with lower intensity (10 µmol/m(2) /s) and shorter cycle (12 h period: 6 h light/6 h dark). However, flowering time of CRY1/CRY2 mutants did not show any difference between plants grown in near-null magnetic field and in local geomagnetic field under detected light conditions. In red light, no significant difference was shown in Arabidopsis flowering between plants in near-null magnetic field and local geomagnetic field under detected light cycles and intensities. These results suggest that changes of blue light cycle and intensity alter the effect of near-null magnetic field on Arabidopsis flowering, which is mediated by CRY.

  9. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis

    PubMed Central

    Coelho, Carla P.; Minow, Mark A. A.; Chalfun-Júnior, Antonio; Colasanti, Joseph

    2014-01-01

    Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members. PMID:24904616

  10. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis.

    PubMed

    Sun, Peiguang; Miao, Hongxia; Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  11. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis

    PubMed Central

    Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  12. Is 'peak N' key to understanding the timing of flowering in annual plants?

    PubMed

    Guilbaud, Camille S E; Dalchau, Neil; Purves, Drew W; Turnbull, Lindsay A

    2015-01-01

    Flowering time in annual plants has large fitness consequences and has been the focus of theoretical and empirical study. Previous theory has concluded that flowering time has evolved over evolutionary time to maximize fitness over a particular season length. We introduce a new model where flowering is cued by a growth-rate rule (peak nitrogen (N)). Flowering is therefore sensitive to physiological parameters and to current environmental conditions, including N availability and the presence of competitors. The model predicts that, when overall conditions are suitable for flowering, plants should never flower after 'peak N', the point during development when the whole-plant N uptake rate reaches its maximum. Our model further predicts correlations between flowering time and vegetative growth rates, and that the response to increased N depends heavily on how this extra N is made available. We compare our predictions to observations in the literature. We suggest that annual plants may have evolved to use growth-rate rules as part of the cue for flowering, allowing them to smoothly and optimally adjust their flowering time to a wide range of local conditions. If so, there are widespread implications for the study of the molecular biology behind flowering pathways.

  13. FRIGIDA-Independent Variation in Flowering Time of Natural Arabidopsis thaliana Accessions

    PubMed Central

    Werner, Jonathan D.; Borevitz, Justin O.; Uhlenhaut, N. Henriette; Ecker, Joseph R.; Chory, Joanne; Weigel, Detlef

    2005-01-01

    FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) are two genes that, unless plants are vernalized, greatly delay flowering time in Arabidopsis thaliana. Natural loss-of-function mutations in FRI cause the early flowering growth habits of many A. thaliana accessions. To quantify the variation among wild accessions due to FRI, and to identify additional genetic loci in wild accessions that influence flowering time, we surveyed the flowering times of 145 accessions in long-day photoperiods, with and without a 30-day vernalization treatment, and genotyped them for two common natural lesions in FRI. FRI is disrupted in at least 84 of the accessions, accounting for only ∼40% of the flowering-time variation in long days. During efforts to dissect the causes for variation that are independent of known dysfunctional FRI alleles, we found new loss-of-function alleles in FLC, as well as late-flowering alleles that do not map to FRI or FLC. An FLC nonsense mutation was found in the early flowering Van-0 accession, which has otherwise functional FRI. In contrast, Lz-0 flowers late because of high levels of FLC expression, even though it has a deletion in FRI. Finally, eXtreme array mapping identified genomic regions linked to the vernalization-independent, late-flowering habit of Bur-0, which has an alternatively spliced FLC allele that behaves as a null allele. PMID:15911588

  14. Genetic and physical mapping of flowering time loci in canola (Brassica napus L.).

    PubMed

    Raman, Harsh; Raman, Rosy; Eckermann, Paul; Coombes, Neil; Manoli, Sahana; Zou, Xiaoxiao; Edwards, David; Meng, Jinling; Prangnell, Roslyn; Stiller, Jiri; Batley, Jacqueline; Luckett, David; Wratten, Neil; Dennis, Elizabeth

    2013-01-01

    We identified quantitative trait loci (QTL) underlying variation for flowering time in a doubled haploid (DH) population of vernalisation-responsive canola (Brassica napus L.) cultivars Skipton and Ag-Spectrum and aligned them with physical map positions of predicted flowering genes from the Brassica rapa genome. Significant genetic variation in flowering time and response to vernalisation were observed among the DH lines from Skipton/Ag-Spectrum. A molecular linkage map was generated comprising 674 simple sequence repeat, sequence-related amplified polymorphism, sequence characterised amplified region, Diversity Array Technology, and candidate gene based markers loci. QTL analysis indicated that flowering time is a complex trait and is controlled by at least 20 loci, localised on ten different chromosomes. These loci each accounted for between 2.4 and 28.6% of the total genotypic variation for first flowering and response to vernalisation. However, identification of consistent QTL was found to be dependant upon growing environments. We compared the locations of QTL with the physical positions of predicted flowering time genes located on the sequenced genome of B. rapa. Some QTL associated with flowering time on A02, A03, A07, and C06 may represent homologues of known flowering time genes in Arabidopsis; VERNALISATION INSENSITIVE 3, APETALA1, CAULIFLOWER, FLOWERING LOCUS C, FLOWERING LOCUS T, CURLY LEAF, SHORT VEGETATIVE PHASE, GA3 OXIDASE, and LEAFY. Identification of the chromosomal location and effect of the genes influencing flowering time may hasten the development of canola varieties having an optimal time for flowering in target environments such as for low rainfall areas, via marker-assisted selection.

  15. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis.

    PubMed

    Kinmonth-Schultz, Hannah A; Tong, Xinran; Lee, Jae; Song, Young Hun; Ito, Shogo; Kim, Soo-Hyung; Imaizumi, Takato

    2016-07-01

    Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time.

  16. The effect of timing of growing season drought on flowering of a dominant C4 grass.

    PubMed

    Dietrich, John D; Smith, Melinda D

    2016-06-01

    Timing of precipitation is equally important as amount for determining ecosystem function, especially aboveground net primary productivity (ANPP), in a number of ecosystems. In tallgrass prairie of the Central Plains of North America, grass flowering stalks of dominant C4 grasses, such as Andropogon gerardii, can account for more than 70 % of ANPP, or almost none of it, as the number of flowering stalks produced is highly variable. Although growing season precipitation amount is important for driving variation in flowering stalk production, it remains unknown whether there are critical periods within the growing season in which sufficient rainfall must occur to allow for flowering. The effect of timing of rainfall deficit (drought) on flowering of A. gerardii, was tested by excluding rainfall during three periods within the growing season (starting in mid-April, mid-May and mid-June). Mid-summer drought (starting in mid-June) strongly reduced the flowering rate (e.g., density and biomass) of A. gerardii (e.g., as high as 94 % compared to the control), suggesting flowering is highly sensitive to precipitation at this time. This effect appeared to be related to plant water status at the time of flowering stalk initiation, rather than an indirect consequence of reduced C assimilation. Our results suggest that increased frequency of growing season drought forecast with climate change could reduce sexual reproduction in this dominant grass species, particularly if it coincides with timing of flowering stalk initiation, with important implications for ecosystem functioning.

  17. DAY NEUTRAL FLOWERING does not act through GIGANTEA and FKF1 to regulate CONSTANS expression and flowering time.

    PubMed

    Morris, Karl; Jackson, Stephen P

    2010-09-01

    The regulation of CONSTANS (CO) gene expression and protein levels is the critical factor in determining a plant's response to photoperiod, flowering is induced when high levels of CO protein are present in the light. The regulation of CO transcription is mediated in part by GIGANTEA (GI), FKF1 and the CYCLING DOF FACTORS (CDFs) and factors affecting the levels of these proteins will also affect CO expression. The DAY NEUTRAL FLOWERING (DNF) protein is an E3 ligase involved in repressing CO expression in the early part of the day. In this article we present evidence to support the argument that DNF is not acting through the GI/FKF1/CDF regulatory mechanism to repress CO expression, but that it acts on another transcriptional activator of CO.

  18. Association Mapping of Flowering Time QTLs and Insight into Their Contributions to Rapeseed Growth Habits

    PubMed Central

    Wang, Nian; Chen, Biyun; Xu, Kun; Gao, Guizhen; Li, Feng; Qiao, Jiangwei; Yan, Guixin; Li, Jun; Li, Hao; Wu, Xiaoming

    2016-01-01

    Plants have developed sophisticated systems to adapt to local conditions during evolution, domestication and natural or artificial selection. The selective pressures of these different growing conditions have caused significant genomic divergence within species. The flowering time trait is the most crucial factor because it helps plants to maintain sustainable development. Controlling flowering at appropriate times can also prevent plants from suffering from adverse growth conditions, such as drought, winter hardness, and disease. Hence, discovering the genome-wide genetic mechanisms that influence flowering time variations and understanding their contributions to adaptation should be a central goal of plant genetics and genomics. A global core collection panel with 448 inbred rapeseed lines was first planted in four independent environments, and their flowering time traits were evaluated. We then performed a genome-wide association mapping of flowering times with a 60 K SNP array for this core collection. With quality control and filtration, 20,342 SNP markers were ultimately used for further analyses. In total, 312 SNPs showed marker-trait associations in all four environments, and they were based on a threshold p-value of 4.06 × 10−4; the 40 QTLs showed significant association with flowering time variations. To explore flowering time QTLs and genes related to growth habits in rapeseed, selection signals related to divergent habits were screened at the genome-wide level and 117 genomic regions were found. Comparing locations of flowering time QTLs and genes with these selection regions revealed that 20 flowering time QTLs and 224 flowering time genes overlapped with 24 and 81 selected regions, respectively. Based on this study, a number of marker-trait associations and candidate genes for flowering time variations in rapeseed were revealed. Moreover, we also showed that both flowering time QTLs and genes play important roles in rapeseed growth habits. These

  19. Quantifying the Effects of Photoperiod, Temperature and Daily Irradiance on Flowering Time of Soybean Isolines

    PubMed Central

    Cober, Elroy R.; Curtis, Daniel F.; Stewart, Douglas W.; Morrison, Malcolm J.

    2014-01-01

    Soybean isolines with different combinations of photoperiod sensitivity alleles were planted in a greenhouse at different times during the year resulting in natural variation in daily incident irradiance and duration. The time from planting to first flower were observed. Mathematical models, using additive and multiplicative modes, were developed to quantify the effect of photoperiod, temperature, photoperiod-temperature interactions, rate of photoperiod change, and daily solar irradiance on flowering time. Observed flowering times correlated with predicted times (R2 = 0.92, Standard Error of the Estimate (SSE) = 2.84 d, multiplicative mode; R2 = 0.91, SSE = 2.88 d, additive mode). The addition of a rate of photoperiod change function and an irradiance function to the temperature and photoperiod functions improved the accuracy of flowering time prediction. The addition of a modified photoperiod function, which allowed for photoperiod sensitivity at shorter photoperiods, improved prediction of flowering time. Both increasing and decreasing rate of photoperiod change, as well as low levels of daily irradiance delayed flowering in soybean. The complete model, which included terms for the rate of photoperiod change, photoperiod, temperature and irradiance, predicted time to first flower in soybean across a range of environmental conditions with an SEE of 3.6 days when tested with independent data. PMID:27135515

  20. Quantifying the Effects of Photoperiod, Temperature and Daily Irradiance on Flowering Time of Soybean Isolines.

    PubMed

    Cober, Elroy R; Curtis, Daniel F; Stewart, Douglas W; Morrison, Malcolm J

    2014-01-01

    Soybean isolines with different combinations of photoperiod sensitivity alleles were planted in a greenhouse at different times during the year resulting in natural variation in daily incident irradiance and duration. The time from planting to first flower were observed. Mathematical models, using additive and multiplicative modes, were developed to quantify the effect of photoperiod, temperature, photoperiod-temperature interactions, rate of photoperiod change, and daily solar irradiance on flowering time. Observed flowering times correlated with predicted times (R² = 0.92, Standard Error of the Estimate (SSE) = 2.84 d, multiplicative mode; R² = 0.91, SSE = 2.88 d, additive mode). The addition of a rate of photoperiod change function and an irradiance function to the temperature and photoperiod functions improved the accuracy of flowering time prediction. The addition of a modified photoperiod function, which allowed for photoperiod sensitivity at shorter photoperiods, improved prediction of flowering time. Both increasing and decreasing rate of photoperiod change, as well as low levels of daily irradiance delayed flowering in soybean. The complete model, which included terms for the rate of photoperiod change, photoperiod, temperature and irradiance, predicted time to first flower in soybean across a range of environmental conditions with an SEE of 3.6 days when tested with independent data. PMID:27135515

  1. Ectopic Expression of a WRKY Homolog from Glycine soja Alters Flowering Time in Arabidopsis

    PubMed Central

    Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming

    2013-01-01

    Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time. PMID:23991184

  2. Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis.

    PubMed

    Luo, Xiao; Sun, Xiaoli; Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming

    2013-01-01

    Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time.

  3. Quantifying temporal isolation: a modelling approach assessing the effect of flowering time differences on crop-to-weed pollen flow in sunflower

    PubMed Central

    Roumet, Marie; Cayre, Adeline; Latreille, Muriel; Muller, Marie-Hélène

    2015-01-01

    Flowering time divergence can be a crucial component of reproductive isolation between sympatric populations, but few studies have quantified its actual contribution to the reduction of gene flow. In this study, we aimed at estimating pollen-mediated gene flow between cultivated sunflower and a weedy conspecific sunflower population growing in the same field and at quantifying, how it is affected by the weeds' flowering time. For that purpose, we extended an existing mating model by including a temporal distance (i.e. flowering time difference between potential parents) effect on mating probabilities. Using phenological and genotypic data gathered on the crop and on a sample of the weedy population and its offspring, we estimated an average hybridization rate of approximately 10%. This rate varied strongly from 30% on average for weeds flowering at the crop flowering peak to 0% when the crop finished flowering and was affected by the local density of weeds. Our result also suggested the occurrence of other factors limiting crop-to-weed gene flow. This level of gene flow and its dependence on flowering time might influence the evolutionary fate of weedy sunflower populations sympatric to their crop relative. PMID:25667603

  4. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.

    PubMed

    Carbognani, Michele; Bernareggi, Giulietta; Perucco, Francesco; Tomaselli, Marcello; Petraglia, Alessandro

    2016-10-01

    Alpine snowbed communities are among the habitats most threatened by climate change. The warmer temperature predicted, coupled with advanced snowmelt time, will influence flowering phenology, which is a key process in species adaptation to changing environmental conditions and plant population dynamics. However, we know little about the effects of changing micro-climate on flowering time in snowbeds and the mechanisms underlying such phenological responses. The flowering phenology of species inhabiting alpine snowbeds was assessed with weekly observations over five growing seasons. We analysed flowering time in relation to micro-climatic variation in snowmelt date, soil and air temperature, and experimental warming during the snow-free period. This approach allowed us to test hypotheses concerning the processes driving flowering phenology. The plants were finely tuned with inter-annual and intra-seasonal variations of their micro-climate, but species did not track the same micro-climatic feature to flower. At the growing-season time-scale, the air surrounding the plants was the most common trigger of the blooming period. However, at the annual time-scale, the snowmelt date was the main controlling factor for flowering time, even in warmer climate. Moreover, spatial patterns of the snowmelt influenced the developmental rate of the species because in later snowmelt sites the plants needed a lower level of heat accumulation to enter anthesis. Phenological responses to experimental warming differed among species, were proportional to the pre-flowering time-span of plants, and did not show consistent trends of change over time. Finally, warmer temperature produced an overall increase of flowering synchrony both within and among plant species.

  5. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.

    PubMed

    Carbognani, Michele; Bernareggi, Giulietta; Perucco, Francesco; Tomaselli, Marcello; Petraglia, Alessandro

    2016-10-01

    Alpine snowbed communities are among the habitats most threatened by climate change. The warmer temperature predicted, coupled with advanced snowmelt time, will influence flowering phenology, which is a key process in species adaptation to changing environmental conditions and plant population dynamics. However, we know little about the effects of changing micro-climate on flowering time in snowbeds and the mechanisms underlying such phenological responses. The flowering phenology of species inhabiting alpine snowbeds was assessed with weekly observations over five growing seasons. We analysed flowering time in relation to micro-climatic variation in snowmelt date, soil and air temperature, and experimental warming during the snow-free period. This approach allowed us to test hypotheses concerning the processes driving flowering phenology. The plants were finely tuned with inter-annual and intra-seasonal variations of their micro-climate, but species did not track the same micro-climatic feature to flower. At the growing-season time-scale, the air surrounding the plants was the most common trigger of the blooming period. However, at the annual time-scale, the snowmelt date was the main controlling factor for flowering time, even in warmer climate. Moreover, spatial patterns of the snowmelt influenced the developmental rate of the species because in later snowmelt sites the plants needed a lower level of heat accumulation to enter anthesis. Phenological responses to experimental warming differed among species, were proportional to the pre-flowering time-span of plants, and did not show consistent trends of change over time. Finally, warmer temperature produced an overall increase of flowering synchrony both within and among plant species. PMID:27299914

  6. Overexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago

    PubMed Central

    Jaudal, Mauren

    2014-01-01

    The MADS-domain transcription factor SHORT VEGETATIVE PHASE plays a key role as a repressor of the transition to flowering and as a regulator of early floral development in Arabidopsis thaliana (Arabidopsis). However, no flowering-time repressors have been functionally identified in the model legume Medicago truncatula (Medicago). In this study, phylogenetic analysis of two closely-related MtSVP-like sequences, MtSVP1 and MtSVP2, showed that their predicted proteins clustered together within the eudicot SVP clade. To determine if the MtSVP-like genes have a role in flowering, they were functionally characterized in Medicago and Arabidopsis. Transcripts of both MtSVP genes were abundant and broadly expressed in vegetative tissues but were detected at much lower levels in flowers in Medicago. Over-expression of the MtSVP genes in Arabidopsis resulted in delayed flowering and flowers with many abnormal phenotypes such as leafy sepals, changes to floral organ number and longer pedicels than the wild type. By contrast, in transgenic Medicago, over-expression of MtSVP1 resulted in alterations to flower development, but did not alter flowering time, suggesting that MtSVP1 may not function to repress the transition to flowering in Medicago. PMID:24249713

  7. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flowering time is one of the major adaptive traits in domestication of maize and an important selection criterion in breeding. To detect more maize flowering time variants we evaluated flowering time traits using an extremely large multi- genetic background population that contained more than 8000 l...

  8. Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (Wild radish).

    PubMed

    Ashworth, Michael B; Walsh, Michael J; Flower, Ken C; Vila-Aiub, Martin M; Powles, Stephen B

    2016-04-01

    Herbicides have been the primary tool for controlling large populations of yield depleting weeds from agro-ecosystems, resulting in the evolution of widespread herbicide resistance. In response, nonherbicidal techniques have been developed which intercept weed seeds at harvest before they enter the soil seed bank. However, the efficiency of these techniques allows an intense selection for any trait that enables weeds to evade collection, with early-flowering ecotypes considered likely to result in early seed shedding. Using a field-collected wild radish population, five recurrent generations were selected for early maturity and three generations for late maturity. Phenology associated with flowering time and growth traits were measured. Our results demonstrate the adaptive capacity of wild radish to halve its time to flowering following five generations of early-flowering selection. Early-maturing phenotypes had reduced height and biomass at maturity, leading to less competitive, more prostrate growth forms. Following three generations of late-flowering selection, wild radish doubled its time to flowering time leading to increased biomass and flowering height at maturity. This study demonstrates the potential for the rapid evolution in growth traits in response to highly effective seed collection techniques that imposed a selection on weed populations within agro-ecosystems at harvest. PMID:27099626

  9. Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (Wild radish).

    PubMed

    Ashworth, Michael B; Walsh, Michael J; Flower, Ken C; Vila-Aiub, Martin M; Powles, Stephen B

    2016-04-01

    Herbicides have been the primary tool for controlling large populations of yield depleting weeds from agro-ecosystems, resulting in the evolution of widespread herbicide resistance. In response, nonherbicidal techniques have been developed which intercept weed seeds at harvest before they enter the soil seed bank. However, the efficiency of these techniques allows an intense selection for any trait that enables weeds to evade collection, with early-flowering ecotypes considered likely to result in early seed shedding. Using a field-collected wild radish population, five recurrent generations were selected for early maturity and three generations for late maturity. Phenology associated with flowering time and growth traits were measured. Our results demonstrate the adaptive capacity of wild radish to halve its time to flowering following five generations of early-flowering selection. Early-maturing phenotypes had reduced height and biomass at maturity, leading to less competitive, more prostrate growth forms. Following three generations of late-flowering selection, wild radish doubled its time to flowering time leading to increased biomass and flowering height at maturity. This study demonstrates the potential for the rapid evolution in growth traits in response to highly effective seed collection techniques that imposed a selection on weed populations within agro-ecosystems at harvest.

  10. Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis[OPEN

    PubMed Central

    Zhang, Xin; Wu, Fangming; Feng, Hailong; Deng, Lei; Xu, Li; Zhang, Min

    2015-01-01

    Flowering time of plants must be tightly regulated to maximize reproductive success. Plants have evolved sophisticated signaling network to coordinate the timing of flowering in response to their ever-changing environmental conditions. Besides being a key immune signal, the lipid-derived plant hormone jasmonate (JA) also regulates a wide range of developmental processes including flowering time. Here, we report that the CORONATINE INSENSITIVE1 (COI1)-dependent signaling pathway delays the flowering time of Arabidopsis thaliana by inhibiting the expression of the florigen gene FLOWERING LOCUS T (FT). We provide genetic and biochemical evidence that the APETALA2 transcription factors (TFs) TARGET OF EAT1 (TOE1) and TOE2 interact with a subset of JAZ (jasmonate-ZIM domain) proteins and repress the transcription of FT. Our results support a scenario that, when plants encounter stress conditions, bioactive JA promotes COI1-dependent degradation of JAZs. Degradation of the JAZ repressors liberates the transcriptional function of the TOEs to repress the expression of FT and thereby triggers the signaling cascades to delay flowering. Our study identified interacting pairs of TF and JAZ transcriptional regulators that underlie JA-mediated regulation of flowering, suggesting that JA signals are converted into specific context-dependent responses by matching pairs of TF and JAZ proteins. PMID:26410299

  11. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens

    PubMed Central

    Ederli, Luisa; Dawe, Adam; Pasqualini, Stefania; Quaglia, Mara; Xiong, Liming; Gehring, Chris

    2015-01-01

    We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens. PMID:25750645

  12. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis

    PubMed Central

    Lee, Jeong Hwan; Yoo, Seong Jeon; Park, Soo Hyun; Hwang, Ildoo; Lee, Jong Seob; Ahn, Ji Hoon

    2007-01-01

    Plants must perceive and rapidly respond to changes in ambient temperature for their successful reproduction. Here we demonstrate that Arabidopsis SHORT VEGETATIVE PHASE (SVP) plays an important role in the response of plants to ambient temperature changes. The loss of SVP function elicited insensitivity to ambient temperature changes. SVP mediates the temperature-dependent functions of FCA and FVE within the thermosensory pathway. SVP controls flowering time by negatively regulating the expression of a floral integrator, FLOWERING LOCUS T (FT), via direct binding to the CArG motifs in the FT sequence. We propose that this is one of the molecular mechanisms that modulate flowering time under fluctuating temperature conditions. PMID:17322399

  13. Velocity of temperature and flowering time in wheat - assisting breeders to keep pace with climate change.

    PubMed

    Zheng, Bangyou; Chenu, Karine; Chapman, Scott C

    2016-02-01

    By accelerating crop development, warming climates may result in mismatches between key sensitive growth stages and extreme climate events, with severe consequences for crop yield and food security. Using recent estimates of gene responses to vernalization and photoperiod in wheat, we modelled the flowering times of all 'potential' genotypes as influenced by the velocity of climate change across the Australian wheatbelt. In the period 1957-2010, seasonal increases in temperature of 0.012 °C yr(-1) were recorded and changed flowering time of a mid-season wheat genotype by an average -0.074 day yr(-1) , with flowering 'velocity' of up to 0.95 km yr(-1) towards the coastal edges of the wheatbelt; this is an estimate of how quickly the given genotype would have to be 'moved' across the landscape to maintain its original flowering time. By 2030, these national changes are projected to accelerate by up to 3-fold for seasonal temperature and by up to 5-fold for flowering time between now and 2030, with average national shifts in flowering time of 0.33 and 0.41 day yr(-1) between baseline and the worst climate scenario tested for 2030 and 2050, respectively. Without new flowering alleles in commercial germplasm, the life cycle of wheat crops is predicted to shorten by 2 weeks by 2030 across the wheatbelt for the most pessimistic climate scenario. While current cultivars may be otherwise suitable for future conditions, they will flower earlier due to warmer temperatures. To allow earlier sowing to escape frost, heat and terminal drought, and to maintain current growing period of early-sown wheat crops in the future, breeders will need to develop and/or introduce new genetic sources for later flowering, more so in the eastern part of the wheatbelt.

  14. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus.

    PubMed

    Fletcher, Richard S; Mullen, Jack L; Heiliger, Annie; McKay, John K

    2015-01-01

    Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought.

  15. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus.

    PubMed

    Fletcher, Richard S; Mullen, Jack L; Heiliger, Annie; McKay, John K

    2015-01-01

    Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought. PMID:25371500

  16. Models to Predict Flowering Time in the Main Saffron Production Regions of Khorasan Province

    NASA Astrophysics Data System (ADS)

    Behdani, M. A.; Koocheki, A.; Nassiri, M.; Rezvani, P.

    The objective of this study was to develop a thermal model that can be used for prediction of saffron flowering time. For this purpose, existing data on saffron flower emergence time were collected in a wide range of temperature regimes over the saffron production regions of Khorasan province, Iran. Linear second-order polynomial and 5-parameter beta models were used and statistically compared for their ability in predicting saffron flowering time as a function of temperature. The results showed a significant delay in flowering date across the temperature gradient. While beta model had a better statistical performance but the simple linear model also showed a good predicting ability and therefore, can be used as a reliable model.

  17. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana.

    PubMed

    Osborn, T C; Kole, C; Parkin, I A; Sharpe, A G; Kuiper, M; Lydiate, D J; Trick, M

    1997-07-01

    The major difference between annual and biennial cultivars of oilseed Brassica napus and B. rapa is conferred by genes controlling vernalization-responsive flowering time. These genes were compared between the species by aligning the map positions of flowering time quantitative trait loci (QTLs) detected in a segregating population of each species. The results suggest that two major QTLs identified in B. rapa correspond to two major QTLs identified in B. napus. Since B. rapa is one of the hypothesized diploid parents of the amphidiploid B. napus, the vernalization requirement of B. napus probably originated from B. rapa. Brassica genes also were compared to flowering time genes in Arabidopsis thaliana by mapping RFLP loci with the same probes in both B. napus and Arabidopsis. The region containing one pair of Brassica QTLs was collinear with the top of chromosome 5 in A. thaliana where flowering time genes FLC, FY and CO are located. The region containing the second pair of QTLs showed fractured collinearity with several regions of the Arabidopsis genome, including the top of chromosome 4 where FRI is located. Thus, these Brassica genes may correspond to two genes (FLC and FRI) that regulate flowering time in the latest flowering ecotypes of Arabidopsis.

  18. Nonfunctional alleles of long‐day suppressor genes independently regulate flowering time

    PubMed Central

    Zheng, Xiao‐Ming; Feng, Li; Wang, Junrui; Qiao, Weihua; Zhang, Lifang; Cheng, Yunlian

    2015-01-01

    Abstract Due to the remarkable adaptability to various environments, rice varieties with diverse flowering times have been domesticated or improved from Oryza rufipogon. Detailed knowledge of the genetic factors controlling flowering time will facilitate understanding the adaptation mechanism in cultivated rice and enable breeders to design appropriate genotypes for distinct preferences. In this study, four genes (Hd1, DTH8, Ghd7 and OsPRR37) in a rice long‐day suppression pathway were collected and sequenced in 154, 74, 69 and 62 varieties of cultivated rice (Oryza sativa) respectively. Under long‐day conditions, varieties with nonfunctional alleles flowered significantly earlier than those with functional alleles. However, the four genes have different genetic effects in the regulation of flowering time: Hd1 and OsPRR37 are major genes that generally regulate rice flowering time for all varieties, while DTH8 and Ghd7 only regulate regional rice varieties. Geographic analysis and network studies suggested that the nonfunctional alleles of these suppression loci with regional adaptability were derived recently and independently. Alleles with regional adaptability should be taken into consideration for genetic improvement. The rich genetic variations in these four genes, which adapt rice to different environments, provide the flexibility needed for breeding rice varieties with diverse flowering times. PMID:26220807

  19. Transcriptional programs regulated by both LEAFY and APETALA1 at the time of flower formation.

    PubMed

    Winter, Cara M; Yamaguchi, Nobutoshi; Wu, Miin-Feng; Wagner, Doris

    2015-09-01

    Two key regulators of the switch to flower formation and of flower patterning in Arabidopsis are the plant-specific helix-turn-helix transcription factor LEAFY (LFY) and the MADS box transcription factor APETALA1 (AP1). The interactions between these two transcriptional regulators are complex. AP1 is both a direct target of LFY and can act in parallel with LFY. Available genetic and molecular evidence suggests that LFY and AP1 together orchestrate the switch to flower formation and early events during flower morphogenesis by altering transcriptional programs. However, very little is known about target genes regulated by both transcription factors. Here, we performed a meta-analysis of public datasets to identify genes that are likely to be regulated by both LFY and AP1. Our analyses uncovered known and novel direct LFY and AP1 targets with a role in the control of onset of flower formation. It also identified additional families of proteins and regulatory pathways that may be under transcriptional control by both transcription factors. In particular, several of these genes are linked to response to hormones, to transport and to development. Finally, we show that the gibberellin catabolism enzyme ELA1, which was recently shown to be important for the timing of the switch to flower formation, is positively feedback-regulated by AP1. Our study contributes to the elucidation of the regulatory network that leads to formation of a vital plant organ system, the flower.

  20. Expression of the poplar Flowering Locus T1 (FT1) gene reduces the generation time in plum (Prunus domestica L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plums normally begin to flower and fruit three to seven years from seed. To shorten this generation time, early flowering plum genotypes were produced by transforming plum hypocotyls with the poplar (Populus trichocarpa) Flowering Locus T1 (PtFT1) gene. Ectopic expression of 35S::PtFT1 induced ear...

  1. Flowering time in wild beet ( Beta vulgaris ssp. maritima) along a latitudinal cline

    NASA Astrophysics Data System (ADS)

    Dijk, Henk Van; Boudry, Pierre; McCombre, Helen; Vernet, Philippe

    The wild beet ( Beta vulgaris ssp. maritima, a perennial species from the Mediterranean and the European Atlantic coasts) shows marked variation in flowering time in terms of both the year of first flowering and flowering date in a given year. Much of this variability is related to latitude. Beta vulgaris plants flower either in the same year as they germinate or in their second year. This is mainly due to differences in their requirement for vernalization, which is determined by a single gene B/b and by quantitative trait loci. The more southern the origin of the plants, the less vernalization is required. Also the B allele, which cancels vernalization requirement completely, has a high frequency in the Mediterranean region, but is completely absent in the northern part of the distribution of this species. We found that flowering date variation in relation to the latitude of origin is maintained under greenhouse conditions but does not follow a simple clinal relationship. From the Mediterranean northwards to the west coast of Brittany, flowering occurs progressively earlier, but from Brittany northwards to south-east England and The Netherlands it is progressively later. A possible explanation for this difference is that in the southern part of the range sensitivity to daylength and warmth control flowering time, whereas further north vernalization requirement is also a key factor. A substantial part of all differences in flowering time was heritable: heritability within populations was measured as 0.33 under greenhouse conditions. The high heritability implies evolutionary change may occur in this character.

  2. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana.

    PubMed

    Bouché, Frédéric; Lobet, Guillaume; Tocquin, Pierre; Périlleux, Claire

    2016-01-01

    Flowering is a hot topic in Plant Biology and important progress has been made in Arabidopsis thaliana toward unraveling the genetic networks involved. The increasing complexity and the explosion of literature however require development of new tools for information management and update. We therefore created an evolutive and interactive database of flowering time genes, named FLOR-ID (Flowering-Interactive Database), which is freely accessible at http://www.flor-id.org. The hand-curated database contains information on 306 genes and links to 1595 publications gathering the work of >4500 authors. Gene/protein functions and interactions within the flowering pathways were inferred from the analysis of related publications, included in the database and translated into interactive manually drawn snapshots. PMID:26476447

  3. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana

    PubMed Central

    Bouché, Frédéric; Lobet, Guillaume; Tocquin, Pierre; Périlleux, Claire

    2016-01-01

    Flowering is a hot topic in Plant Biology and important progress has been made in Arabidopsis thaliana toward unraveling the genetic networks involved. The increasing complexity and the explosion of literature however require development of new tools for information management and update. We therefore created an evolutive and interactive database of flowering time genes, named FLOR-ID (Flowering-Interactive Database), which is freely accessible at http://www.flor-id.org. The hand-curated database contains information on 306 genes and links to 1595 publications gathering the work of >4500 authors. Gene/protein functions and interactions within the flowering pathways were inferred from the analysis of related publications, included in the database and translated into interactive manually drawn snapshots. PMID:26476447

  4. OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B.

    PubMed

    Lee, Yang-Seok; Yi, Jakyung; An, Gynheung

    2016-07-01

    Phytochromes recognize light signals and control diverse developmental processes. In rice, all three phytochrome genes-OsphyA, OsphyB, and OsphyC-are involved in regulating flowering time. We investigated the role of OsPhyA by comparing the osphyA osphyB double mutant to an osphyB single mutant. Plants of the double mutant flowered later than the single under short days (SD) but bolted earlier under long days (LD). Under SD, this delayed-flowering phenotype was primarily due to the decreased expression of Oryza sativa GIGANTEA (OsGI), which controls three flowering activators: Heading date 1 (Hd1), OsMADS51, and Oryza sativa Indeterminate 1 (OsId1). Under LD, although the expression of several repressors, e.g., Hd1, Oryza sativa CONSTANS-like 4 (OsCOL4), and AP2 genes, was affected in the double mutant, that of Grain number, plant height and heading date 7 (Ghd7) was the most significantly reduced. These results indicated that OsPhyA influences flowering time mainly by affecting the expression of OsGI under SD and Ghd7 under LD when phytochrome B is absent. We also demonstrated that far-red light delays flowering time via both OsPhyA and OsPhyB. PMID:27039184

  5. Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana

    PubMed Central

    Bouché, Frédéric; D’Aloia, Maria; Tocquin, Pierre; Lobet, Guillaume; Detry, Nathalie; Périlleux, Claire

    2016-01-01

    Molecular data concerning the involvement of roots in the genetic pathways regulating floral transition are lacking. In this study, we performed global analyses of the root transcriptome in Arabidopsis in order to identify flowering time genes that are expressed in the roots and genes that are differentially expressed in the roots during the induction of flowering. Data mining of public microarray experiments uncovered that about 200 genes whose mutations are reported to alter flowering time are expressed in the roots (i.e. were detected in more than 50% of the microarrays). However, only a few flowering integrator genes passed the analysis cutoff. Comparison of root transcriptome in short days and during synchronized induction of flowering by a single 22-h long day revealed that 595 genes were differentially expressed. Enrichment analyses of differentially expressed genes in root tissues, gene ontology categories, and cis-regulatory elements converged towards sugar signaling. We concluded that roots are integrated in systemic signaling, whereby carbon supply coordinates growth at the whole plant level during the induction of flowering. This coordination could involve the root circadian clock and cytokinin biosynthesis as a feed forward loop towards the shoot. PMID:27352932

  6. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues.

    PubMed

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts.

  7. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues

    PubMed Central

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts. PMID:26445216

  8. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues.

    PubMed

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts. PMID:26445216

  9. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions

    PubMed Central

    Ré, Delfina A.; Dezar, Carlos A.; Chan, Raquel L.; Baldwin, Ian T.; Bonaventure, Gustavo

    2011-01-01

    Homeodomain-leucine zipper type I (HD-Zip I) proteins are plant-specific transcription factors associated with the regulation of growth and development in response to changes in the environment. Nicotiana attenuata NaHD20 was identified as an HD-Zip I-coding gene whose expression was induced by multiple stress-associated stimuli including drought and wounding. To study the role of NaHD20 in the integration of stress responses with changes in growth and development, its expression was silenced by virus-induced gene silencing (VIGS), and control and silenced plants were metabolically and developmentally characterized. Phytohormone profiling showed that NaHD20 plays a positive role in abscisic acid (ABA) accumulation in leaves during water stress and in the expression of some dehydration-responsive genes including ABA biosynthetic genes. Moreover, consistent with the high levels of NaHD20 expression in corollas, the emission of benzylacetone from flowers was reduced in NaHD20-silenced plants. Additionally, bolting time and the opening of the inflorescence buds was decelerated in these plants in a specific developmental stage without affecting the total number of flowers produced. Water stress potentiated these effects; however, after plants recovered from this condition, the opening of the inflorescence buds was accelerated in NaHD20-silenced plants. In summary, NaHD20 plays multiple roles in N. attenuata and among these are the coordination of responses to dehydration and its integration with changes in flower transitions. PMID:20713465

  10. Life history QTLs and natural selection on flowering time in Boechera stricta, a perennial relative of Arabidopsis

    PubMed Central

    Anderson, Jill T.; Lee, Cheng-Ruei; Mitchell-Olds, Thomas

    2011-01-01

    Plants must precisely time flowering to capitalize on favorable conditions. Although we know a great deal about the genetic basis of flowering phenology in model species under controlled conditions, the genetic architecture of this ecologically-important trait is poorly understood in non-model organisms. Here, we evaluated the transition from vegetative growth to flowering in Boechera stricta, a perennial relative of Arabidopsis thaliana. We examined flowering time QTLs using 7,920 recombinant inbred individuals, across seven lab and field environments differing in vernalization, temperature, and photoperiod. Genetic and environmental factors strongly influenced the transition to reproduction. We found directional selection for earlier flowering in the field. In the growth chamber experiment, longer winters accelerated flowering, whereas elevated ambient temperatures delayed flowering. Our analyses identified one large effect QTL (nFT), which influenced flowering time in both experiments and the probability of flowering in the field. In Montana, homozygotes for the native allele at nFT showed a selective advantage of 6.6%. Nevertheless, we found relatively low correlations between flowering times in the field and the growth chambers. Additionally, we detected flowering-related QTLs in the field which were absent across the full range of laboratory conditions, thus emphasizing the need to conduct experiments in natural environments. PMID:21083662

  11. Quantitative trait loci analysis of flowering time related traits identified in recombinant inbred lines of cowpea (Vigna unguiculata).

    PubMed

    Andargie, Mebeasealassie; Pasquet, Remy S; Muluvi, Geoffrey M; Timko, Michael P

    2013-05-01

    Flowering time is a major adaptive trait in plants and an important selection criterion in the breeding for genetic improvement of crop species. QTLs for the time of flower opening and days to flower were identified in a cross between a short duration domesticated cowpea (Vigna unguiculata (L.) Walp.) variety, 524B, and a relatively long duration wild accession, 219-01. A set of 159 F7 lines was grown under greenhouse conditions and scored for the flowering time associated phenotypes of time of flower opening and days to flower. Using a LOD threshold of 2.0, putative QTLs were identified and placed on a linkage map consisting of 202 SSR markers and four morphological loci. A total of five QTLs related to the time of flower opening were identified, accounting for 8.8%-29.8% of the phenotypic variation. Three QTLs for days to flower were detected, accounting for 5.7%-18.5% of the phenotypic variation. The major QTL of days to flower and time of flower opening were both mapped on linkage group 1. The QTLs identified in this study provide a strong foundation for further validation and fine mapping for developing an efficient way to restrain the gene flow between the cultivated and wild plants.

  12. Bacillus subtilis FZB24® Affects Flower Quantity and Quality of Saffron (Crocus sativus)

    PubMed Central

    Sharaf-Eldin, Mahmoud; Elkholy, Shereen; Fernández, José-Antonio; Junge, Helmut; Cheetham, Ronald; Guardiola, José; Weathers, Pamela

    2014-01-01

    The effect of Bacillus subtilis FZB24® on saffron (Crocus sativus L.) was studied using saffron corms from Spain and the powdered form of B. subtilis FZB24®. Corms were soaked in water or in B. subtilis FZB24 spore solution for 15min before sowing. Some corms were further soil drenched with the spore solution 6, 10 or 14 weeks after sowing. Growth and saffron stigma chemical composition were measured. Compared to untreated controls, application of B. subtilis FZB24 significantly increased leaf length, flowers per corm, weight of the first flower stigma, total stigma biomass; microbe addition also significantly decreased the time required for corms to sprout and the number of shoot sprouts. Compared to the controls, picrocrocin, crocetin and safranal compounds were significantly increased when the plants were soil drenched with the spore solution 14 weeks after sowing; in contrast crocin was highest in untreated controls. Results of this study suggest that application of B. subtilis FZB24® may provide some benefit to saffron growers by speeding corm growth (earlier shoot emergence) and increasing stigma biomass yield by 12%. While some treatment conditions also increased saffron chemical composition, these were generally not the same treatments that simultaneously improved growth yields and thus, more study is required. PMID:18622904

  13. The effect of flowering time and distance between pollen source and recipient on maize

    PubMed Central

    Nieh, Shuo-Cheng; Lin, Wen-Shin; Hsu, Yung-Heng; Shieh, Guang-Jauh; Kuo, Bo-Jein

    2014-01-01

    Field experiments were conducted in Central Taiwan for 2 crop seasons to examine the effect of non-coincidence flowering on the cross-pollination (CP) rate of maize at various distances. Four local maize hybrid varieties with different flowering dates and one local maize variety were sown as the pollen sources and recipient, respectively. All varieties were sown on the same day to simulate the real situation of coexistence in which adjacent fields are sown with different genetically modified (GM) and non-GM varieties of maize. The CP rate was <0.2% at a distance of 3 m for the first crop season when the flowering time for the recipient was 5 d later than that of the pollen source variety. The CP rate was <0.02% at all distances for the second season when the flowering time for the recipient was 7 d later than that of the pollen source variety. The CP rate was <1% at a distance of 0.75 m when the flowering time was 3 d later. However, varieties with closer synchrony may result in a CP rate of >1% at a distance of 1.5 m and <1% at 2.25 m. Temporal separation and isolation distances can work together in Taiwan with fragmented landscapes to minimize the adventitious presence of one crop with another. PMID:25523174

  14. The effect of flowering time and distance between pollen source and recipient on maize.

    PubMed

    Nieh, Shuo-Cheng; Lin, Wen-Shin; Hsu, Yung-Heng; Shieh, Guang-Jauh; Kuo, Bo-Jein

    2014-01-01

    Field experiments were conducted in Central Taiwan for 2 crop seasons to examine the effect of non-coincidence flowering on the cross-pollination (CP) rate of maize at various distances. Four local maize hybrid varieties with different flowering dates and one local maize variety were sown as the pollen sources and recipient, respectively. All varieties were sown on the same day to simulate the real situation of coexistence in which adjacent fields are sown with different genetically modified (GM) and non-GM varieties of maize. The CP rate was <0.2% at a distance of 3 m for the first crop season when the flowering time for the recipient was 5 d later than that of the pollen source variety. The CP rate was <0.02% at all distances for the second season when the flowering time for the recipient was 7 d later than that of the pollen source variety. The CP rate was <1% at a distance of 0.75 m when the flowering time was 3 d later. However, varieties with closer synchrony may result in a CP rate of >1% at a distance of 1.5 m and <1% at 2.25 m. Temporal separation and isolation distances can work together in Taiwan with fragmented landscapes to minimize the adventitious presence of one crop with another.

  15. Quantitative trait loci for flowering time and inflorescence architecture in rose.

    PubMed

    Kawamura, Koji; Hibrand-Saint Oyant, Laurence; Crespel, Laurent; Thouroude, Tatiana; Lalanne, David; Foucher, Fabrice

    2011-03-01

    The pattern of development of the inflorescence is an important characteristic in ornamental plants, where the economic value is in the flower. The genetic determinism of inflorescence architecture is poorly understood, especially in woody perennial plants with long life cycles. Our objective was to study the genetic determinism of this characteristic in rose. The genetic architectures of 10 traits associated with the developmental timing and architecture of the inflorescence, and with flower production were investigated in a F(1) diploid garden rose population, based on intensive measurements of phenological and morphological traits in a field. There were substantial genetic variations in inflorescence development traits, with broad-sense heritabilities ranging from 0.82 to 0.93. Genotypic correlations were significant for most (87%) pairs of traits, suggesting either pleiotropy or tight linkage among loci. However, non-significant and low correlations between some pairs of traits revealed two independent developmental pathways controlling inflorescence architecture: (1) the production of inflorescence nodes increased the number of branches and the production of flowers; (2) internode elongation connected with frequent branching increased the number of branches and the production of flowers. QTL mapping identified six common QTL regions (cQTL) for inflorescence developmental traits. A QTL for flowering time and many inflorescence traits were mapped to the same cQTL. Several candidate genes that are known to control inflorescence developmental traits and gibberellin signaling in Arabidopsis thaliana were mapped in rose. Rose orthologues of FLOWERING LOCUS T (RoFT), TERMINAL FLOWER 1 (RoKSN), SPINDLY (RoSPINDLY), DELLA (RoDELLA), and SLEEPY (RoSLEEPY) co-localized with cQTL for relevant traits. This is the first report on the genetic basis of complex inflorescence developmental traits in rose.

  16. Water availability as an agent of selection in introduced populations of Arabidopsis thaliana: impacts on flowering time evolution

    PubMed Central

    Stock, Amanda J.; McGoey, Brechann V.

    2015-01-01

    Flowering is one of the most influential events in the life history of a plant and one of the main determinants of reproductive investment and lifetime fitness. It is also a highly complex trait controlled by dozens of genes. Understanding the selective pressures influencing time to flowering, and being able to reliably predict how it will evolve in novel environments, are unsolved challenges for plant evolutionary geneticists. Using the model plant species, Arabidopsis thaliana, we examined the impact of simulated high and low winter precipitation levels on the flowering time of naturalized lines from across the eastern portion of the introduced North American range, and the fitness consequences of early versus late flowering. Flowering time order was significantly correlated across two environments—in a previous common garden experiment and in environmental chambers set to mimic mid-range photoperiod and temperature conditions. Plants in low water flowered earlier, had fewer basal branches and produced fewer fruits. Selection in both treatments favored earlier flowering and more basal branches. Our analyses revealed an interaction between flowering time and water treatment for fitness, where flowering later was more deleterious for fitness in the low water treatment. Our results are consistent with the hypothesis that differences in winter precipitation levels are one of the selective agents underlying a flowering time cline in introduced A. thaliana populations. PMID:25909038

  17. The Medicago FLOWERING LOCUS T Homolog, MtFTa1, Is a Key Regulator of Flowering Time1[C][W][OA

    PubMed Central

    Laurie, Rebecca E.; Diwadkar, Payal; Jaudal, Mauren; Zhang, Lulu; Hecht, Valérie; Wen, Jiangqi; Tadege, Million; Mysore, Kirankumar S.; Putterill, Joanna; Weller, James L.; Macknight, Richard C.

    2011-01-01

    FLOWERING LOCUS T (FT) genes encode proteins that function as the mobile floral signal, florigen. In this study, we characterized five FT-like genes from the model legume, Medicago (Medicago truncatula). The different FT genes showed distinct patterns of expression and responses to environmental cues. Three of the FT genes (MtFTa1, MtFTb1, and MtFTc) were able to complement the Arabidopsis (Arabidopsis thaliana) ft-1 mutant, suggesting that they are capable of functioning as florigen. MtFTa1 is the only one of the FT genes that is up-regulated by both long days (LDs) and vernalization, conditions that promote Medicago flowering, and transgenic Medicago plants overexpressing the MtFTa1 gene flowered very rapidly. The key role MtFTa1 plays in regulating flowering was demonstrated by the identification of fta1 mutants that flowered significantly later in all conditions examined. fta1 mutants do not respond to vernalization but are still responsive to LDs, indicating that the induction of flowering by prolonged cold acts solely through MtFTa1, whereas photoperiodic induction of flowering involves other genes, possibly MtFTb1, which is only expressed in leaves under LD conditions and therefore might contribute to the photoperiodic regulation of flowering. The role of the MtFTc gene is unclear, as the ftc mutants did not have any obvious flowering-time or other phenotypes. Overall, this work reveals the diversity of the regulation and function of the Medicago FT family. PMID:21685176

  18. Constraints to obtaining consistent annual yields in perennials. II: Environment and fruit load affect induction of flowering.

    PubMed

    Samach, Alon; Smith, Harley M

    2013-06-01

    In many commercial fruit crop species, high fruit load inhibits vegetative growth and floral induction. As a result, trees that had a high fruit load will bear few flowers and fruit the following year, along with abundant vegetative growth. We previously discussed how high fruit load interferes with concurrent shoot growth. Here we focus on how high fruit load impacts the process of flowering. Ascertaining the precise time at which specific buds begin the floral transition in each species is challenging. The use of indirect approaches to determine time of floral induction or evocation may lead to questionable conclusions. Annual and perennial plants appear to use conserved proteins for flowering induction and initiation. The accumulation or reduction of transcripts encoding proteins similar to Arabidopsis (annual) FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1), respectively, correlates well with flower induction in several diverse species. The recent use of such markers provides a means to formulate an accurate timeframe for floral induction in different species and holds promise in providing new insight into this important developmental event. A role for hormones in modulating the inhibitory effect of fruit load on floral induction is also discussed.

  19. Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L.: ssp. pekinensis).

    PubMed

    Kim, Soo-Yun; Park, Beom-Seok; Kwon, Soo-Jin; Kim, Jungsun; Lim, Myung-Ho; Park, Young-Doo; Kim, Dool Yi; Suh, Seok-Chul; Jin, Yong-Moon; Ahn, Ji Hoon; Lee, Yeon-Hee

    2007-03-01

    Chinese cabbage plants remain in the vegetative growth phase until they have experienced prolonged exposure to cold temperature, known as vernalization. This inhibition of flowering is caused by the high levels of FLOWERING LOCUS C (FLC) expression. To increase the product value of Chinese cabbage by inhibiting the floral transition, three genes (BrFLC1, BrFLC2, and BrFLC3) homologous to the AtFLC gene, which encodes a floral repressor, were isolated from the Chinese cabbage 'Chiifu'. These genes showed high similarity to AtFLC, although the putative BrFLC1 protein contained ten more residues than AtFLC. The BrFLC genes were expressed ubiquitously, except that BrFLC3 was not expressed in roots. BrFLC1 and BrFLC2 showed stronger expression than BrFLC3 in unvernalized and vernalized Chinese cabbage. The expression levels of the three BrFLC genes were lower in an early-flowering Chinese cabbage, suggesting that the BrFLC transcript level was associated with flowering time. Constitutive expression of the BrFLC genes in Arabidopsis significantly delayed flowering, which was also observed in transgenic Chinese cabbage overexpressing BrFLC3. These results suggest that the BrFLC genes act similarly to AtFLC. Our results provide a technique for controlling flowering time in Chinese cabbage and other crops to produce high yields of vegetative tissues.

  20. Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea.

    PubMed

    Okazaki, K; Sakamoto, K; Kikuchi, R; Saito, A; Togashi, E; Kuginuki, Y; Matsumoto, S; Hirai, M

    2007-02-01

    The FLC gene product is an inhibitor of flowering in Arabidopsis. FLC homologs in Brassica species are thought to control vernalization. We cloned four FLC homologs (BoFLCs) from Brassica oleracea. Three of these, BoFLC1, BoFLC3 and BoFLC5, have been previously characterized. The fourth novel sequence displayed 98% sequence homology to the previously identified gene BoFLC4, but also showed 91% homology to BrFLC2 from Brassica rapa. Phylogenetic analysis showed that this clone belongs to the FLC2 clade. Therefore, we designated this gene BoFLC2. Based on the segregation of RFLP, SRAP, CAPS, SSR and AFLP loci, a detailed linkage map of B. oleracea was constructed in the F(2) progeny obtained from a cross of B. oleracea cv. Green Comet (broccoli; non-vernalization type) and B. oleracea cv. Reiho (cabbage; vernalization type), which covered 540 cM, 9 major linkage groups. Six quantitative trait loci (QTL) controlling flowering time were detected. BoFLC1, BoFLC3 and BoFLC5 were not linked to the QTLs controlling flowering time. However, the largest QTL effect was located in the region where BoFLC2 was mapped. Genotyping of F(2 )plants at the BoFLC2 locus showed that most of the early flowering plants were homozygotes of BoFLC-GC, whereas most of the late- and non-flowering plants were homozygotes of BoFLC-Rei. The BoFLC2 homologs present in plants of the non-vernalization type were non-functional, due to a frameshift in exon 4. Moreover, duplications and deletions of BoFLC2 were detected in broccoli and a rapid cycling line, respectively. These results suggest that BoFLC2 contributes to the control of flowering time in B. oleracea.

  1. Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS11[OPEN

    PubMed Central

    Alter, Philipp; Bircheneder, Susanne; Schlüter, Urte; Gahrtz, Manfred

    2016-01-01

    Flowering time (FTi) control is well examined in the long-day plant Arabidopsis (Arabidopsis thaliana), and increasing knowledge is available for the short-day plant rice (Oryza sativa). In contrast, little is known in the day-neutral and agronomically important crop plant maize (Zea mays). To learn more about FTi and to identify novel regulators in this species, we first compared the time points of floral transition of almost 30 maize inbred lines and show that tropical lines exhibit a delay in flowering transition of more than 3 weeks under long-day conditions compared with European flint lines adapted to temperate climate zones. We further analyzed the leaf transcriptomes of four lines that exhibit strong differences in flowering transition to identify new key players of the flowering control network in maize. We found strong differences among regulated genes between these lines and thus assume that the regulation of FTi is very complex in maize. Especially genes encoding MADS box transcriptional regulators are up-regulated in leaves during the meristem transition. ZmMADS1 was selected for functional studies. We demonstrate that it represents a functional ortholog of the central FTi integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) of Arabidopsis. RNA interference-mediated down-regulation of ZmMADS1 resulted in a delay of FTi in maize, while strong overexpression caused an early-flowering phenotype, indicating its role as a flowering activator. Taken together, we report that ZmMADS1 represents a positive FTi regulator that shares an evolutionarily conserved function with SOC1 and may now serve as an ideal stating point to study the integration and variation of FTi pathways also in maize. PMID:27457125

  2. Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1.

    PubMed

    Alter, Philipp; Bircheneder, Susanne; Zhou, Liang-Zi; Schlüter, Urte; Gahrtz, Manfred; Sonnewald, Uwe; Dresselhaus, Thomas

    2016-09-01

    Flowering time (FTi) control is well examined in the long-day plant Arabidopsis (Arabidopsis thaliana), and increasing knowledge is available for the short-day plant rice (Oryza sativa). In contrast, little is known in the day-neutral and agronomically important crop plant maize (Zea mays). To learn more about FTi and to identify novel regulators in this species, we first compared the time points of floral transition of almost 30 maize inbred lines and show that tropical lines exhibit a delay in flowering transition of more than 3 weeks under long-day conditions compared with European flint lines adapted to temperate climate zones. We further analyzed the leaf transcriptomes of four lines that exhibit strong differences in flowering transition to identify new key players of the flowering control network in maize. We found strong differences among regulated genes between these lines and thus assume that the regulation of FTi is very complex in maize. Especially genes encoding MADS box transcriptional regulators are up-regulated in leaves during the meristem transition. ZmMADS1 was selected for functional studies. We demonstrate that it represents a functional ortholog of the central FTi integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) of Arabidopsis. RNA interference-mediated down-regulation of ZmMADS1 resulted in a delay of FTi in maize, while strong overexpression caused an early-flowering phenotype, indicating its role as a flowering activator. Taken together, we report that ZmMADS1 represents a positive FTi regulator that shares an evolutionarily conserved function with SOC1 and may now serve as an ideal stating point to study the integration and variation of FTi pathways also in maize. PMID:27457125

  3. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium)

    PubMed Central

    Le Dantec, Loïck; Quero-García, José; Barreneche, Teresa; Wenden, Bénédicte; Dirlewanger, Elisabeth

    2015-01-01

    The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies ‘Regina’ × ‘Garnet’ and ‘Regina’ × ‘Lapins’, and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions. PMID:26587668

  4. New methods for regulating flowering time in short-day strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher percentages of transplants of short-day cultivars 'Chandler', 'Carmine', 'Strawberry Festival', and 'Sweet Charlie' from runner tips plugged in early July rather than the standard time (early August) bloomed in the fall. Nearly 100% of the transplants produced in early July flowered in the f...

  5. Phenology and Phenotypic Natural Selection on the Flowering Time of a Deceit-pollinated Tropical Orchid, Myrmecophila christinae

    PubMed Central

    PARRA-TABLA, VÍCTOR; VARGAS, CARLOS F.

    2004-01-01

    • Background and aims. Flowering phenology is described and the effect of flowering time on pollination success is evaluated in the deceit-pollinated tropical orchid, Myrmecophila christinae. It was expected that, due to this species' deceit pollination strategy and low observed pollinator visit rate, there would be a higher probability of natural selection events favouring individuals flowering away from the population flowering peak. • Methods. The study covers two consecutive years and four populations of M. christinae located along the north coast of the Yucatán Peninsula. For phenological and pollination success data, a total of 110 individuals were monitored weekly in 1998, and 83 individuals in 1999, during all the flowering and fruiting season. • Key results. The results showed significant differences in the probability of donating and receiving pollen throughout the flowering season. The probability of receiving or donating pollen increased the further an individual flowering was from the flowering peak. Regression analysis showed directional and disruptive phenotypic natural selection gradients, suggesting the presence of selection events unfavourable to flowering during flowering peak, for both male success (pollen removal) and female success (fruit production). However, the intensity and significance of the natural selection events varied between populations from year to year. The variation between seasons and populations was apparently due to variations in the density of reproductive individuals in each population and each season. • Conclusions. As in other deceit-pollinated orchids, natural selection in M. christinae favours individuals flowering early or late in relation to population peak flowering. However, results also suggested a fluctuating regime of selective events act on flowering time of M. christinae. PMID:15205176

  6. A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea.

    PubMed

    Upadhyaya, Hari D; Bajaj, Deepak; Das, Shouvik; Saxena, Maneesha S; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2015-11-01

    A combinatorial approach of candidate gene-based association analysis and genome-wide association study (GWAS) integrated with QTL mapping, differential gene expression profiling and molecular haplotyping was deployed in the present study for quantitative dissection of complex flowering time trait in chickpea. Candidate gene-based association mapping in a flowering time association panel (92 diverse desi and kabuli accessions) was performed by employing the genotyping information of 5724 SNPs discovered from 82 known flowering chickpea gene orthologs of Arabidopsis and legumes as well as 832 gene-encoding transcripts that are differentially expressed during flower development in chickpea. GWAS using both genome-wide GBS- and candidate gene-based genotyping data of 30,129 SNPs in a structured population of 92 sequenced accessions (with 200-250 kb LD decay) detected eight maximum effect genomic SNP loci (genes) associated (34% combined PVE) with flowering time. Six flowering time-associated major genomic loci harbouring five robust QTLs mapped on a high-resolution intra-specific genetic linkage map were validated (11.6-27.3% PVE at 5.4-11.7 LOD) further by traditional QTL mapping. The flower-specific expression, including differential up- and down-regulation (>three folds) of eight flowering time-associated genes (including six genes validated by QTL mapping) especially in early flowering than late flowering contrasting chickpea accessions/mapping individuals during flower development was evident. The gene haplotype-based LD mapping discovered diverse novel natural allelic variants and haplotypes in eight genes with high trait association potential (41% combined PVE) for flowering time differentiation in cultivated and wild chickpea. Taken together, eight potential known/candidate flowering time-regulating genes [efl1 (early flowering 1), FLD (Flowering locus D), GI (GIGANTEA), Myb (Myeloblastosis), SFH3 (SEC14-like 3), bZIP (basic-leucine zipper), bHLH (basic helix

  7. A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea.

    PubMed

    Upadhyaya, Hari D; Bajaj, Deepak; Das, Shouvik; Saxena, Maneesha S; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2015-11-01

    A combinatorial approach of candidate gene-based association analysis and genome-wide association study (GWAS) integrated with QTL mapping, differential gene expression profiling and molecular haplotyping was deployed in the present study for quantitative dissection of complex flowering time trait in chickpea. Candidate gene-based association mapping in a flowering time association panel (92 diverse desi and kabuli accessions) was performed by employing the genotyping information of 5724 SNPs discovered from 82 known flowering chickpea gene orthologs of Arabidopsis and legumes as well as 832 gene-encoding transcripts that are differentially expressed during flower development in chickpea. GWAS using both genome-wide GBS- and candidate gene-based genotyping data of 30,129 SNPs in a structured population of 92 sequenced accessions (with 200-250 kb LD decay) detected eight maximum effect genomic SNP loci (genes) associated (34% combined PVE) with flowering time. Six flowering time-associated major genomic loci harbouring five robust QTLs mapped on a high-resolution intra-specific genetic linkage map were validated (11.6-27.3% PVE at 5.4-11.7 LOD) further by traditional QTL mapping. The flower-specific expression, including differential up- and down-regulation (>three folds) of eight flowering time-associated genes (including six genes validated by QTL mapping) especially in early flowering than late flowering contrasting chickpea accessions/mapping individuals during flower development was evident. The gene haplotype-based LD mapping discovered diverse novel natural allelic variants and haplotypes in eight genes with high trait association potential (41% combined PVE) for flowering time differentiation in cultivated and wild chickpea. Taken together, eight potential known/candidate flowering time-regulating genes [efl1 (early flowering 1), FLD (Flowering locus D), GI (GIGANTEA), Myb (Myeloblastosis), SFH3 (SEC14-like 3), bZIP (basic-leucine zipper), bHLH (basic helix

  8. Flowering time and seed dormancy control use external coincidence to generate life history strategy

    PubMed Central

    Springthorpe, Vicki; Penfield, Steven

    2015-01-01

    Climate change is accelerating plant developmental transitions coordinated with the seasons in temperate environments. To understand the importance of these timing advances for a stable life history strategy, we constructed a full life cycle model of Arabidopsis thaliana. Modelling and field data reveal that a cryptic function of flowering time control is to limit seed set of winter annuals to an ambient temperature window which coincides with a temperature-sensitive switch in seed dormancy state. This coincidence is predicted to be conserved independent of climate at the expense of flowering date, suggesting that temperature control of flowering time has evolved to constrain seed set environment and therefore frequency of dormant and non-dormant seed states. We show that late flowering can disrupt this bet-hedging germination strategy. Our analysis shows that life history modelling can reveal hidden fitness constraints and identify non-obvious selection pressures as emergent features. DOI: http://dx.doi.org/10.7554/eLife.05557.001 PMID:25824056

  9. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population.

    PubMed

    Li, Yong-Xiang; Li, Chunhui; Bradbury, Peter J; Liu, Xiaolei; Lu, Fei; Romay, Cinta M; Glaubitz, Jeffrey C; Wu, Xun; Peng, Bo; Shi, Yunsu; Song, Yanchun; Zhang, Dengfeng; Buckler, Edward S; Zhang, Zhiwu; Li, Yu; Wang, Tianyu

    2016-06-01

    Flowering time is one of the major adaptive traits in domestication of maize and an important selection criterion in breeding. To detect more maize flowering time variants we evaluated flowering time traits using an extremely large multi- genetic background population that contained more than 8000 lines under multiple Sino-United States environments. The population included two nested association mapping (NAM) panels and a natural association panel. Nearly 1 million single-nucleotide polymorphisms (SNPs) were used in the analyses. Through the parallel linkage analysis of the two NAM panels, both common and unique flowering time regions were detected. Genome wide, a total of 90 flowering time regions were identified. One-third of these regions were connected to traits associated with the environmental sensitivity of maize flowering time. The genome-wide association study of the three panels identified nearly 1000 flowering time-associated SNPs, mainly distributed around 220 candidate genes (within a distance of 1 Mb). Interestingly, two types of regions were significantly enriched for these associated SNPs - one was the candidate gene regions and the other was the approximately 5 kb regions away from the candidate genes. Moreover, the associated SNPs exhibited high accuracy for predicting flowering time. PMID:27012534

  10. Separation in flowering time contributes to the maintenance of sympatric cryptic plant lineages

    PubMed Central

    Michalski, Stefan G; Durka, Walter

    2015-01-01

    Sympatric cryptic lineages are a challenge for the understanding of species coexistence and lineage diversification as well as for management, conservation, and utilization of plant genetic resources. In higher plants studies providing insights into the mechanisms creating and maintaining sympatric cryptic lineages are rare. Here, using microsatellites and chloroplast sequence data, morphometric analyses, and phenological observations, we ask whether sympatrically coexisting lineages in the common wetland plant Juncus effusus are ecologically differentiated and reproductively isolated. Our results show two genetically highly differentiated, homoploid lineages within J. effusus that are morphologically cryptic and have similar preference for soil moisture content. However, flowering time differed significantly between the lineages contributing to reproductive isolation and the maintenance of these lineages. Furthermore, the later flowering lineage suffered less from predispersal seed predation by a Coleophora moth species. Still, we detected viable and reproducing hybrids between both lineages and the earlier flowering lineage and J. conglomeratus, a coexisting close relative. Flowering time differentiation between the lineages can be explained by neutral divergence alone and together with a lack of postzygotic isolation mechanisms; the sympatric coexistence of these lineages is most likely the result of an allopatric origin with secondary contact. PMID:26078854

  11. Methods for altering the flowering time in strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main strawberry (Fragaria x ananassa Duch.) harvest season in the mid-Atlantic coast region is from May to July. Out-of-season fruit production in the region is low. Producing strawberry transplants from runner tips that were plugged in early July rather than the standard time (early August) p...

  12. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.).

    PubMed

    Xu, Liping; Hu, Kaining; Zhang, Zhenqian; Guan, Chunyun; Chen, Song; Hua, Wei; Li, Jiana; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2016-02-01

    Flowering time adaptation is a major breeding goal in the allopolyploid species Brassica napus. To investigate the genetic architecture of flowering time, a genome-wide association study (GWAS) of flowering time was conducted with a diversity panel comprising 523 B. napus cultivars and inbred lines grown in eight different environments. Genotyping was performed with a Brassica 60K Illumina Infinium SNP array. A total of 41 single-nucleotide polymorphisms (SNPs) distributed on 14 chromosomes were found to be associated with flowering time, and 12 SNPs located in the confidence intervals of quantitative trait loci (QTL) identified in previous researches based on linkage analyses. Twenty-five candidate genes were orthologous to Arabidopsis thaliana flowering genes. To further our understanding of the genetic factors influencing flowering time in different environments, GWAS was performed on two derived traits, environment sensitivity and temperature sensitivity. The most significant SNPs were found near Bn-scaff_16362_1-p380982, just 13 kb away from BnaC09g41990D, which is orthologous to A. thaliana CONSTANS (CO), an important gene in the photoperiod flowering pathway. These results provide new insights into the genetic control of flowering time in B. napus and indicate that GWAS is an effective method by which to reveal natural variations of complex traits in B. napus.

  13. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.)

    PubMed Central

    Xu, Liping; Hu, Kaining; Zhang, Zhenqian; Guan, Chunyun; Chen, Song; Hua, Wei; Li, Jiana; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2016-01-01

    Flowering time adaptation is a major breeding goal in the allopolyploid species Brassica napus. To investigate the genetic architecture of flowering time, a genome-wide association study (GWAS) of flowering time was conducted with a diversity panel comprising 523 B. napus cultivars and inbred lines grown in eight different environments. Genotyping was performed with a Brassica 60K Illumina Infinium SNP array. A total of 41 single-nucleotide polymorphisms (SNPs) distributed on 14 chromosomes were found to be associated with flowering time, and 12 SNPs located in the confidence intervals of quantitative trait loci (QTL) identified in previous researches based on linkage analyses. Twenty-five candidate genes were orthologous to Arabidopsis thaliana flowering genes. To further our understanding of the genetic factors influencing flowering time in different environments, GWAS was performed on two derived traits, environment sensitivity and temperature sensitivity. The most significant SNPs were found near Bn-scaff_16362_1-p380982, just 13 kb away from BnaC09g41990D, which is orthologous to A. thaliana CONSTANS (CO), an important gene in the photoperiod flowering pathway. These results provide new insights into the genetic control of flowering time in B. napus and indicate that GWAS is an effective method by which to reveal natural variations of complex traits in B. napus. PMID:26659471

  14. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice.

    PubMed

    Takahashi, Yasuyuki; Shimamoto, Ko

    2011-01-01

    During the domestication of rice (Oryza sativa L.), diversification of flowering time was important in expanding the areas of cultivation. Rice is a facultative short day (SD) plant and requires certain periods of dark to induce flowering. Heading date 1 (Hd1), a regulator of the florigen gene Hd3a, is one of the main factors used to generate diversity in flowering. Loss-of-function alleles of Hd1 are common in cultivated rice and cause the diversity of flowering time. However, it is unclear how these functional nucleotide polymorphisms of Hd1 accumulated in the course of evolution. Nucleotide polymorphisms within Hd1 and Hd3a were analyzed in 38 accessions of ancestral wild rice Oryza rufipogon and compared with those of cultivated rice. In contrast to cultivated rice, no nucleotide changes affecting Hd1 function were found in 38 accessions of wild rice ancestors. No functional changes were found in Hd3a in either cultivated or ancestral rice. A phylogenetic analysis indicated that evolution of the Hd1 alleles may have occurred independently in cultivars descended from various accessions of ancestral rice. The non-functional Hd1 alleles found in cultivated rice may be selected during domestication, because they were not found or very rare in wild ancestral rice. In contrast with Hd3a, which has been highly conserved, Hd1 may have undergone human selection to diversify the flowering times of rice during domestication or the early stage of the cultivation period.

  15. On the potential strength and consequences for nonrandom gene flow caused by local adaptation in flowering time.

    PubMed

    Weis, A E

    2015-03-01

    Gene flow is generally considered a random process, that is the loci under consideration have no effect on dispersal success. Edelaar and Bolnick (Trends Ecol Evol, 27, 2012 659) recently argued that nonrandom gene flow could exert a significant evolutionary force. It can, for instance, ameliorate the maladaptive effects of immigration into locally adapted populations. I examined the potential strength for nonrandom gene flow for flowering time genes, a trait frequently found to be locally adapted. The idea is that plants that successfully export pollen into a locally adapted resident population will be a genetically biased subset of their natal population - they will have resident-like flowering times. Reciprocally, recipients will be more migrant-like than the resident population average. I quantified the potential for biased pollen exchange among three populations along a flowering time cline in Brassica rapa from southern California. A two-generation line cross experiment demonstrated genetic variance in flowering time, both within and among populations. Calculations based on the variation in individual flowering schedules showed that resident plants with the most migrant-like flowering times could expect to have up to 10 times more of the their flowers pollinated by immigrant pollen than the least migrant-like. Further, the mean flowering time of the pollen exporters that have access to resident mates differs by up to 4 weeks from the mean in the exporters' natal population. The data from these three populations suggest that the bias in gene flow for flowering time cuts the impact on the resident population by as much as half. This implies that when selection is divergent between populations, migrants with the highest mating success tend to be resident-like in their flowering times, and so, fewer maladaptive alleles will be introduced into the locally adapting gene pool.

  16. A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Xu, Chunxiao; Yin, Xiao; Lv, Yan; Wu, Changzhe; Zhang, Yuxia; Song, Tao

    2012-03-01

    The blue light receptor, cryptochrome, has been suggested to act as a magnetoreceptor based on the proposition that photochemical reactions are involved in sensing the geomagnetic field. But the effects of the geomagnetic field on cryptochrome remain unclear. Although the functions of cryptochrome have been well demonstrated for Arabidopsis, the effect of the geomagnetic field on the growth of Arabidopsis and its mechanism of action are poorly understood. We eliminated the local geomagnetic field to grow Arabidopsis in a near-null magnetic field and found that the inhibition of Arabidopsis hypocotyl growth by white light was weakened, and flowering time was delayed. The expressions of three cryptochrome-signaling-related genes, PHYB, CO and FT also changed; the transcript level of PHYB was elevated ca. 40%, and that of CO and FT was reduced ca. 40% and 50%, respectively. These data suggest that the effects of a near-null magnetic field on Arabidopsis are cryptochrome-related, which may be revealed by a modification of the active state of cryptochrome and the subsequent signaling cascade.

  17. Multiple Roles of WIN3 in Regulating Disease Resistance, Cell Death, and Flowering Time in Arabidopsis1[C][W][OA

    PubMed Central

    Wang, Guan-Feng; Seabolt, Savanna; Hamdoun, Safae; Ng, Gina; Park, Jin; Lu, Hua

    2011-01-01

    The salicylic acid (SA) regulatory gene HOPW1-1-INTERACTING3 (WIN3) was previously shown to confer resistance to the biotrophic pathogen Pseudomonas syringae. Here, we report that WIN3 controls broad-spectrum disease resistance to the necrotrophic pathogen Botrytis cinerea and contributes to basal defense induced by flg22, a 22-amino acid peptide derived from the conserved region of bacterial flagellin proteins. Genetic analysis indicates that WIN3 acts additively with several known SA regulators, including PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1 (NPR1), and SA INDUCTION-DEFICIENT2, in regulating SA accumulation, cell death, and/or disease resistance in the Arabidopsis (Arabidopsis thaliana) mutant acd6-1. Interestingly, expression of WIN3 is also dependent on these SA regulators and can be activated by cell death, suggesting that WIN3-mediated signaling is interconnected with those derived from other SA regulators and cell death. Surprisingly, we found that WIN3 and NPR1 synergistically affect flowering time via influencing the expression of flowering regulatory genes FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, our data reveal that WIN3 represents a novel node in the SA signaling networks to regulate plant defense and flowering time. They also highlight that plant innate immunity and development are closely connected processes, precise regulation of which should be important for the fitness of plants. PMID:21543726

  18. Analysis and stability of carotenoids in the flowers of daylily (Hemerocallis disticha) as affected by various treatments.

    PubMed

    Tai, C Y; Chen, B H

    2000-12-01

    The analysis and stability of carotenoids in the flowers of daylily (Hemerocallis disticha) as affected by soaking and drying treatments were studied. The various carotenoids in the flowers of daylily were analyzed using a reversed-phase C(30) HPLC column and a mobile phase of methanol/methylene chloride/2-propanol (89:1:10, v/v/v) with methanol/methylene chloride (45:55, v/v) as sample solvent. Twenty-one pigments were resolved, of which 14 carotenoids were identified, including neoxanthin, violaxanthin, violeoxanthin, lutein-5,6-epoxide, lutein, zeaxanthin, beta-cryptoxanthin, all-trans-beta-carotene, and their cis isomers, based on spectral characteristics and Q ratios. Prior to hot-air-drying (50 degrees C) or freeze-drying, some of the daylily flowers were subjected to soaking in a sodium sulfite solution (1%) for 4 h. Under either the hot-air- or the freeze-drying treatment, the amounts of most carotenoids were higher in the soaked daylily flowers than in those that were not soaked. With hot-air-drying, the amount of cis carotenoids showed a higher yield in soaked samples than in nonsoaked samples. However, with freeze-drying, only a minor change of each carotenoid was observed for both soaked and nonsoaked samples. Also, air-drying resulted in a higher loss of carotenoids than freeze-drying. PMID:11312769

  19. Incipient allochronic speciation due to non-selective assortative mating by flowering time, mutation and genetic drift

    PubMed Central

    Devaux, Céline; Lande, Russell

    2008-01-01

    We model the evolution of flowering time using a multilocus quantitative genetic model with non-selective assortative mating and mutation to investigate incipient allochronic speciation in a finite population. For quantitative characters with evolutionary parameters satisfying empirical observations and two approximate inequalities that we derived, disjunct clusters in the population flowering phenology originated within a few thousand generations in the absence of disruptive natural or sexual selection. Our simulations and the conditions we derived showed that cluster formation was promoted by limited population size, high mutational variance of flowering time, short individual flowering phenology and a long flowering season. By contrast, cluster formation was hindered by inbreeding depression, stabilizing selection and pollinator limitation. Our results suggest that incipient allochronic speciation in populations of limited size (satisfying two inequalities) could be a common phenomenon. PMID:18700202

  20. Bimodal distribution of flowering time in a natural hybrid population of daylily (Hemerocallis fulva) and nightlily (Hemerocallis citrina).

    PubMed

    Hasegawa, Masahiro; Yahara, Tetsukazu; Yasumoto, Akiko; Hotta, Mitsuru

    2006-01-01

    Time of flower anthesis in a day is thought to evolve in response to the time of pollinator activities. We studied blooming and withering time in natural populations of daylily (Hemerocallis fulva), nightlily (Hemerocallis citrina) and their hybrids, and also in an artificially obtained array of the F1 hybrids. Blooming time of H. fulva varied from 4:30 to 7:30 and H. citrina varied from 16:30 to 20:30. In a natural hybrid population, blooming time and withering time showed discontinuous bimodal distribution in spite that morphological traits of flowers showed continuous unimodal variation. Most F1 hybrids showed diurnal flowering. These findings indicate that only a few genes have strong phenotypic effect on the determination of flowering time in Hemerocallis, and suggest that the evolution from a H. fulva-like ancestor to H. citrina was not a continuous process by accumulation of minute mutations. PMID:16365787

  1. Separate elements of the TERMINAL FLOWER 1 cis-regulatory region integrate pathways to control flowering time and shoot meristem identity.

    PubMed

    Serrano-Mislata, Antonio; Fernández-Nohales, Pedro; Doménech, María J; Hanzawa, Yoshie; Bradley, Desmond; Madueño, Francisco

    2016-09-15

    TERMINAL FLOWER 1 (TFL1) is a key regulator of Arabidopsis plant architecture that responds to developmental and environmental signals to control flowering time and the fate of shoot meristems. TFL1 expression is dynamic, being found in all shoot meristems, but not in floral meristems, with the level and distribution changing throughout development. Using a variety of experimental approaches we have analysed the TFL1 promoter to elucidate its functional structure. TFL1 expression is based on distinct cis-regulatory regions, the most important being located 3' of the coding sequence. Our results indicate that TFL1 expression in the shoot apical versus lateral inflorescence meristems is controlled through distinct cis-regulatory elements, suggesting that different signals control expression in these meristem types. Moreover, we identified a cis-regulatory region necessary for TFL1 expression in the vegetative shoot and required for a wild-type flowering time, supporting that TFL1 expression in the vegetative meristem controls flowering time. Our study provides a model for the functional organisation of TFL1 cis-regulatory regions, contributing to our understanding of how developmental pathways are integrated at the genomic level of a key regulator to control plant architecture. PMID:27385013

  2. Separate elements of the TERMINAL FLOWER 1 cis-regulatory region integrate pathways to control flowering time and shoot meristem identity.

    PubMed

    Serrano-Mislata, Antonio; Fernández-Nohales, Pedro; Doménech, María J; Hanzawa, Yoshie; Bradley, Desmond; Madueño, Francisco

    2016-09-15

    TERMINAL FLOWER 1 (TFL1) is a key regulator of Arabidopsis plant architecture that responds to developmental and environmental signals to control flowering time and the fate of shoot meristems. TFL1 expression is dynamic, being found in all shoot meristems, but not in floral meristems, with the level and distribution changing throughout development. Using a variety of experimental approaches we have analysed the TFL1 promoter to elucidate its functional structure. TFL1 expression is based on distinct cis-regulatory regions, the most important being located 3' of the coding sequence. Our results indicate that TFL1 expression in the shoot apical versus lateral inflorescence meristems is controlled through distinct cis-regulatory elements, suggesting that different signals control expression in these meristem types. Moreover, we identified a cis-regulatory region necessary for TFL1 expression in the vegetative shoot and required for a wild-type flowering time, supporting that TFL1 expression in the vegetative meristem controls flowering time. Our study provides a model for the functional organisation of TFL1 cis-regulatory regions, contributing to our understanding of how developmental pathways are integrated at the genomic level of a key regulator to control plant architecture.

  3. Genetic architecture of the circadian clock and flowering time in Brassica rapa.

    PubMed

    Lou, P; Xie, Q; Xu, X; Edwards, C E; Brock, M T; Weinig, C; McClung, C R

    2011-08-01

    The circadian clock serves to coordinate physiology and behavior with the diurnal cycles derived from the daily rotation of the earth. In plants, circadian rhythms contribute to growth and yield and, hence, to both agricultural productivity and evolutionary fitness. Arabidopsis thaliana has served as a tractable model species in which to dissect clock mechanism and function, but it now becomes important to define the extent to which the Arabidopsis model can be extrapolated to other species, including crops. Accordingly, we have extended our studies to the close Arabidopsis relative and crop species, Brassica rapa. We have investigated natural variation in circadian function and flowering time among multiple B. rapa collections. There is wide variation in clock function, based on a robust rhythm in cotyledon movement, within a collection of B. rapa accessions, wild populations and recombinant inbred lines (RILs) derived from a cross between parents from two distinct subspecies, a rapid cycling Chinese cabbage (ssp. pekinensis) and a Yellow Sarson oilseed (ssp. trilocularis). We further analyzed the RILs to identify the quantitative trait loci (QTL) responsible for this natural variation in clock period and temperature compensation, as well as for flowering time under different temperature and day length settings. Most clock and flowering-time QTL mapped to overlapping chromosomal loci. We have exploited micro-synteny between the Arabidopsis and B. rapa genomes to identify candidate genes for these QTL.

  4. Multiparental Mapping of Plant Height and Flowering Time QTL in Partially Isogenic Sorghum Families

    PubMed Central

    Higgins, R. H.; Thurber, C. S.; Assaranurak, I.; Brown, P. J.

    2014-01-01

    Sorghum varieties suitable for grain production at temperate latitudes show dwarfism and photoperiod insensitivity, both of which are controlled by a small number of loci with large effects. We studied the genetic control of plant height and flowering time in five sorghum families (A–E), each derived from a cross between a tropical line and a partially isogenic line carrying introgressions derived from a common, temperate-adapted donor. A total of 724 F2:3 lines were phenotyped in temperate and tropical environments for plant height and flowering time and scored at 9139 SNPs using genotyping-by-sequencing. Biparental mapping was compared with multiparental mapping in different subsets of families (AB, ABC, ABCD, and ABCDE) using both a GWAS approach, which fit each QTL as a single effect across all families, and using a joint linkage approach, which fit QTL effects as nested within families. GWAS using all families (ABCDE) performed best at the cloned Dw3 locus, whereas joint linkage using all families performed best at the cloned Ma1 locus. Both multiparental approaches yielded apparently synthetic associations due to genetic heterogeneity and were highly dependent on the subset of families used. Comparison of all mapping approaches suggests that a GA2-oxidase underlies Dw1, and that a mir172a gene underlies a Dw1-linked flowering time QTL. PMID:25237111

  5. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families.

    PubMed

    Higgins, R H; Thurber, C S; Assaranurak, I; Brown, P J

    2014-09-01

    Sorghum varieties suitable for grain production at temperate latitudes show dwarfism and photoperiod insensitivity, both of which are controlled by a small number of loci with large effects. We studied the genetic control of plant height and flowering time in five sorghum families (A-E), each derived from a cross between a tropical line and a partially isogenic line carrying introgressions derived from a common, temperate-adapted donor. A total of 724 F2:3 lines were phenotyped in temperate and tropical environments for plant height and flowering time and scored at 9139 SNPs using genotyping-by-sequencing. Biparental mapping was compared with multiparental mapping in different subsets of families (AB, ABC, ABCD, and ABCDE) using both a GWAS approach, which fit each QTL as a single effect across all families, and using a joint linkage approach, which fit QTL effects as nested within families. GWAS using all families (ABCDE) performed best at the cloned Dw3 locus, whereas joint linkage using all families performed best at the cloned Ma1 locus. Both multiparental approaches yielded apparently synthetic associations due to genetic heterogeneity and were highly dependent on the subset of families used. Comparison of all mapping approaches suggests that a GA2-oxidase underlies Dw1, and that a mir172a gene underlies a Dw1-linked flowering time QTL. PMID:25237111

  6. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families.

    PubMed

    Higgins, R H; Thurber, C S; Assaranurak, I; Brown, P J

    2014-09-18

    Sorghum varieties suitable for grain production at temperate latitudes show dwarfism and photoperiod insensitivity, both of which are controlled by a small number of loci with large effects. We studied the genetic control of plant height and flowering time in five sorghum families (A-E), each derived from a cross between a tropical line and a partially isogenic line carrying introgressions derived from a common, temperate-adapted donor. A total of 724 F2:3 lines were phenotyped in temperate and tropical environments for plant height and flowering time and scored at 9139 SNPs using genotyping-by-sequencing. Biparental mapping was compared with multiparental mapping in different subsets of families (AB, ABC, ABCD, and ABCDE) using both a GWAS approach, which fit each QTL as a single effect across all families, and using a joint linkage approach, which fit QTL effects as nested within families. GWAS using all families (ABCDE) performed best at the cloned Dw3 locus, whereas joint linkage using all families performed best at the cloned Ma1 locus. Both multiparental approaches yielded apparently synthetic associations due to genetic heterogeneity and were highly dependent on the subset of families used. Comparison of all mapping approaches suggests that a GA2-oxidase underlies Dw1, and that a mir172a gene underlies a Dw1-linked flowering time QTL.

  7. Genetic control of flowering and biomass in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early flowering can negatively affect biomass yield of switchgrass. In temperate regions of the USA, flowering occurs in switchgrass around the time of peak biomass yield (about 5 to 8 weeks prior to killing frost), effectively reducing the length of the growing season. The use of late-flowering swi...

  8. Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae).

    PubMed

    Montague, J L; Barrett, S C H; Eckert, C G

    2008-01-01

    Range expansion during biological invasion requires that invaders adapt to geographical variation in climate, which should yield latitudinal clines in reproductive phenology. We investigated geographic variation in life history among 25 introduced populations of Lythrum salicaria, a widespread European invader of North American wetlands. We detected a strong latitudinal cline in initiation of flowering and size at flowering, which paralleled that reported among native populations. Plants from higher latitudes flowered earlier and at a smaller size than those from lower latitudes, even when raised in a uniform glasshouse. Early flowering was associated with greatly reduced reproductive output, but this was not associated with latitudinal variation in abundance, and probably did not result from a genetic correlation between time to and size at flowering. As introduction to North America c. 200 years ago, L. salicaria has re-established latitudinal clines in life history, probably as an evolutionary response to climatic selection.

  9. Genetic variation in flowering time induces phenological assortative mating: quantitative genetic methods applied to Brassica rapa.

    PubMed

    Weis, Arthur E; Kossler, Tanya M

    2004-06-01

    It has been argued from first principles that plants mate assortatively by flowering time. However, there have been very few studies of phenological assortative mating, perhaps because current methods to infer paternal phenotype are difficult to apply to natural populations. Two methods are presented to estimate the phenotypic correlation between mates-the quantitative genetic metric for assortative mating-for phenological traits. The first method uses individual flowering schedules to estimate mating probabilities for every potential pairing in a sample. These probabilities are then incorporated into a weighted phenotypic correlation between all potential mates and thus yield a prospective estimate based on mating opportunities. The correlation between mates can also be estimated retrospectively by comparing the regression of offspring phenotype over one parent, which is inflated by assortative mating, to the regression over mid-parent, which is not. In a demonstration experiment with Brassica rapa, the prospective correlation between flowering times (days from germination to anthesis) of pollen recipients and their potential donors was 0.58. The retrospective estimate of this correlation strongly agreed with the prospective estimate. The prospective method is easily employed in field studies that explore the effect of phenological assortative mating on selection response and population differentiation.

  10. Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach.

    PubMed

    Silva, C; Garcia-Mas, J; Sánchez, A M; Arús, P; Oliveira, M M

    2005-03-01

    Blooming time is one of the most important agronomic traits in almond. Biochemical and molecular events underlying flowering regulation must be understood before methods to stimulate late flowering can be developed. Attempts to elucidate the genetic control of this process have led to the identification of a major gene (Lb) and quantitative trait loci (QTLs) linked to observed phenotypic differences, but although this gene and these QTLs have been placed on the Prunus reference genetic map, their sequences and specific functions remain unknown. The aim of our investigation was to associate these loci with known genes using a candidate gene approach. Two almond cDNAs and eight Prunus expressed sequence tags were selected as candidate genes (CGs) since their sequences were highly identical to those of flowering regulatory genes characterized in other species. The CGs were amplified from both parental lines of the mapping population using specific primers. Sequence comparison revealed DNA polymorphisms between the parental lines, mainly of the single nucleotide type. Polymorphisms were used to develop co-dominant cleaved amplified polymorphic sequence markers or length polymorphisms based on insertion/deletion events for mapping the candidate genes on the Prunus reference map. Ten candidate genes were assigned to six linkage groups in the Prunus genome. The positions of two of these were compatible with the regions where two QTLs for blooming time were detected. One additional candidate was localized close to the position of the Evergrowing gene, which determines a non-deciduous behaviour in peach.

  11. A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time.

    PubMed

    Yuan, Yu-Xiang; Wu, Jian; Sun, Ri-Fei; Zhang, Xiao-Wei; Xu, Dong-Hui; Bonnema, Guusje; Wang, Xiao-Wu

    2009-01-01

    FLOWERING LOCUS C (FLC), encoding a MADS-domain transcription factor in Arabidopsis, is a repressor of flowering involved in the vernalization pathway. This provides a good reference for Brassica species. Genomes of Brassica species contain several FLC homologues and several of these colocalize with flowering-time QTL. Here the analysis of sequence variation of BrFLC1 in Brassica rapa and its association with the flowering-time phenotype is reported. The analysis revealed that a G-->A polymorphism at the 5' splice site in intron 6 of BrFLC1 is associated with flowering phenotype. Three BrFLC1 alleles with alternative splicing patterns, including two with different parts of intron 6 retained and one with the entire exon 6 excluded from the transcript, were identified in addition to alleles with normal splicing. It was inferred that aberrant splicing of the pre-mRNA leads to loss-of-function of BrFLC1. A CAPS marker was developed for this locus to distinguish Pi6+1(G) and Pi6+1(A). The polymorphism detected with this marker was significantly associated with flowering time in a collection of 121 B. rapa accessions and in a segregating Chinese cabbage doubled-haploid population. These findings suggest that a naturally occurring splicing mutation in the BrFLC1 gene contributes greatly to flowering-time variation in B. rapa.

  12. Apomixis does not affect visitation to flowers of Melastomataceae, but pollen sterility does.

    PubMed

    Maia, F R; Varassin, I G; Goldenberg, R

    2016-01-01

    Apomixis is an asexual seed reproduction mechanism thorough which embryos are originated from material tissues inside the ovules, without precedent fertilisation. It allows plants to colonise new habitats, even in places where flower visitors are scarce or where plants are isolate. Apomixis seems to be related to pollen sterility and, in species with flowers that offer pollen as a reward for pollinators, the amount or quality of the pollen offered by these species may influence the amount of the visits and specific composition of the visitors. In order to test this hypothesis, we studied breeding systems of 16 species of Melastomataceae and their flower visitors, evaluating composition and abundance of the visits to apomictic and sexual species. Apomictic plants with no viable pollen or with pollen with low viability did not receive visits from pollinators, and consequently probably produce strictly apomictic fruits. On the other hand, apomictic and sexual plants with high pollen viability do receive visits; in this case, apomictic plants may produce fruits and seeds through both sexual and apomictic methods. The species composition of insects visiting Melastomataceae with high pollen viability was similar, regardless of whether the plants were apomictic or not. It seems that pollen viability levels are important to determine visits to the flowers irrespective of breeding system. PMID:26152277

  13. Apomixis does not affect visitation to flowers of Melastomataceae, but pollen sterility does.

    PubMed

    Maia, F R; Varassin, I G; Goldenberg, R

    2016-01-01

    Apomixis is an asexual seed reproduction mechanism thorough which embryos are originated from material tissues inside the ovules, without precedent fertilisation. It allows plants to colonise new habitats, even in places where flower visitors are scarce or where plants are isolate. Apomixis seems to be related to pollen sterility and, in species with flowers that offer pollen as a reward for pollinators, the amount or quality of the pollen offered by these species may influence the amount of the visits and specific composition of the visitors. In order to test this hypothesis, we studied breeding systems of 16 species of Melastomataceae and their flower visitors, evaluating composition and abundance of the visits to apomictic and sexual species. Apomictic plants with no viable pollen or with pollen with low viability did not receive visits from pollinators, and consequently probably produce strictly apomictic fruits. On the other hand, apomictic and sexual plants with high pollen viability do receive visits; in this case, apomictic plants may produce fruits and seeds through both sexual and apomictic methods. The species composition of insects visiting Melastomataceae with high pollen viability was similar, regardless of whether the plants were apomictic or not. It seems that pollen viability levels are important to determine visits to the flowers irrespective of breeding system.

  14. Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L.

    PubMed

    Nelson, Matthew N; Rajasekaran, Ravikesavan; Smith, Alison; Chen, Sheng; Beeck, Cameron P; Siddique, Kadambot H M; Cowling, Wallace A

    2014-01-01

    Time of flowering is a key adaptive trait in plants and is conditioned by the interaction of genes and environmental cues including length of photoperiod, ambient temperature and vernalisation. Here we investigated the photoperiod responsiveness of summer annual-types of Brassica napus (rapeseed, canola). A population of 131 doubled haploid lines derived from a cross between European and Australian parents was evaluated for days to flowering, thermal time to flowering (measured in degree-days) and the number of leaf nodes at flowering in a compact and efficient glasshouse-based experiment with replicated short and long day treatments. All three traits were under strong genetic control with heritability estimates ranging from 0.85-0.93. There was a very strong photoperiod effect with flowering in the population accelerated by 765 degree-days in the long day versus short day treatments. However, there was a strong genetic correlation of line effects (0.91) between the long and short day treatments and relatively low genotype x treatment interaction indicating that photoperiod had a similar effect across the population. Bivariate analysis of thermal time to flowering in short and long days revealed three main effect quantitative trait loci (QTLs) that accounted for 57.7% of the variation in the population and no significant interaction QTLs. These results provided insight into the contrasting adaptations of Australian and European varieties. Both parents responded to photoperiod and their alleles shifted the population to earlier flowering under long days. In addition, segregation of QTLs in the population caused wide transgressive segregation in thermal time to flowering. Potential candidate flowering time homologues located near QTLs were identified with the aid of the Brassica rapa reference genome sequence. We discuss how these results will help to guide the breeding of summer annual types of B. napus adapted to new and changing environments.

  15. Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy.

    PubMed

    Voogd, Charlotte; Wang, Tianchi; Varkonyi-Gasic, Erika

    2015-08-01

    The MADS-domain transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is one of the key integrators of endogenous and environmental signals that promote flowering in the annual species Arabidopsis thaliana. In the deciduous woody perennial vine kiwifruit (Actinidia spp.), environmental signals are integrated to regulate annual cycles of growth and dormancy. Accumulation of chilling during winter is required for dormancy break and flowering in spring. In order to understand the regulation of dormancy and flowering in kiwifruit, nine kiwifruit SOC1-like genes were identified and characterized. All genes affected flowering time of A. thaliana Col-0 and were able to rescue the late flowering phenotype of the soc1-2 mutant when ectopically expressed. A differential capacity for homodimerization was observed, but all proteins were capable of strong interactions with SHORT VEGETATIVE PHASE (SVP) MADS-domain proteins. Largely overlapping spatial domains but distinct expression profiles in buds were identified between the SOC1-like gene family members. Ectopic expression of AcSOC1e, AcSOC1i, and AcSOC1f in Actinidia chinensis had no impact on establishment of winter dormancy and failed to induce precocious flowering, but AcSOC1i reduced the duration of dormancy in the absence of winter chilling. These findings add to our understanding of the SOC1-like gene family and the potential diversification of SOC1 function in woody perennials.

  16. Flowering synchrony and floral display size affect pollination success in a deceit-pollinated tropical orchid

    NASA Astrophysics Data System (ADS)

    Parra-Tabla, Victor; Vargas, Carlos F.

    2007-07-01

    ue to frequency-dependent negative selection, a strong relationship between reproductive phenology traits and pollination success is expected in deceit-pollinated species. This paper assesses the effects of floral display size on both female (fruit production) and male (pollen removal) pollination success in a population of the deceit-pollinated tropical orchid Myrmecophila christinae during two consecutive years (1998-1999). Low pollen removal (˜9% of total flowers) and fruit production values (˜3% of total flowers) were recorded during both years. As expected, binary logistic regressions showed a significant negative effect of floral synchrony, and a positive effect of floral display size on both male and female success, although these effects varied across years. Pollination rates in the field and in hand pollinations suggest a doubling in pollinator abundance between years. Results suggest that floral display size and flowering synchrony are of adaptive value for M. christinae. However, between-year fluctuations might indicate that reproductive phenology traits in deceit-pollinated species undergo fluctuating selection regimes among years and are probably linked to short-term changes in environmental (abiotic and biotic) conditions.

  17. Construction of an Interspecific Genetic Map Based on InDel and SSR for Mapping the QTLs Affecting the Initiation of Flower Primordia in Pepper (Capsicum spp.)

    PubMed Central

    Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin

    2015-01-01

    Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper. PMID:25781878

  18. Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper (Capsicum spp.).

    PubMed

    Tan, Shu; Cheng, Jiao-Wen; Zhang, Li; Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin

    2015-01-01

    Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper.

  19. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit.

    PubMed

    Varkonyi-Gasic, Erika; Moss, Sarah M A; Voogd, Charlotte; Wang, Tianchi; Putterill, Joanna; Hellens, Roger P

    2013-05-01

    FLOWERING LOCUS T (FT) and CENTRORADIALIS (CEN) homologs have been implicated in regulation of growth, determinacy and flowering. The roles of kiwifruit FT and CEN were explored using a combination of expression analysis, protein interactions, response to temperature in high-chill and low-chill kiwifruit cultivars and ectopic expression in Arabidopsis and Actinidia. The expression and activity of FT was opposite from that of CEN and incorporated an interaction with a FLOWERING LOCUS D (FD)-like bZIP transcription factor. Accumulation of FT transcript was associated with plant maturity and particular stages of leaf, flower and fruit development, but could be detected irrespective of the flowering process and failed to induce precocious flowering in transgenic kiwifruit. Instead, transgenic plants demonstrated reduced growth and survival rate. Accumulation of FT transcript was detected in dormant buds and stem in response to winter chilling. In contrast, FD in buds was reduced by exposure to cold. CEN transcript accumulated in developing latent buds, but declined before the onset of dormancy and delayed flowering when ectopically expressed in kiwifruit. Our results suggest roles for FT, CEN and FD in integration of developmental and environmental cues that affect dormancy, budbreak and flowering in kiwifruit.

  20. PUB13, a U-box/ARM E3 ligase, regulates plant defense, cell death, and flowering time.

    PubMed

    Li, Wei; Dai, Liangying; Wang, Guo-Liang

    2012-08-01

    The ubiquitination pathway is involved in a variety of cellular processes in plant growth, development, and immune responses. However, the function of this pathway in connecting plant development and innate immunity is still largely unknown. Recently, we characterized the U-box/ARM E3 ubiquitin ligase PUB13, which regulates both immune responses and flowering time in Arabidopsis. Here, we show that the rice Spl11 gene can complement the cell death and flowering functions of PUB13 in the pub13 mutant. In addition, HFR1, which functions mainly in photomorphogenesis, was identified as one of the PUB13-interacting proteins through yeast two-hybrid screening and pull-down assays. Because the flowering phenotype of pub13 depends on photoperiod, we propose that PUB13 may regulate HFR1 to fine-tune photomorphogenesis and flowering time in Arabidopsis.

  1. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    PubMed

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data.

  2. Variability in bumblebee pollination buzzes affects the quantity of pollen released from flowers.

    PubMed

    De Luca, Paul A; Bussière, Luc F; Souto-Vilaros, Daniel; Goulson, Dave; Mason, Andrew C; Vallejo-Marín, Mario

    2013-07-01

    Buzz-pollination is a plant strategy that promotes gamete transfer by requiring a pollinator, typically bees (Hymenoptera: Apoidea), to vibrate a flower's anthers in order to extract pollen. Although buzz-pollination is widespread in angiosperms with over 20,000 species using it, little is known about the functional connection between natural variation in buzzing vibrations and the amount of pollen that can be extracted from anthers. We characterized variability in the vibrations produced by Bombus terrestris bumblebees while collecting pollen from Solanum rostratum (Solanaceae), a buzz-pollinated plant. We found substantial variation in several buzzing properties both within and among workers from a single colony. As expected, some of this variation was predicted by the physical attributes of individual bumblebees: heavier workers produced buzzes of greater amplitude. We then constructed artificial "pollination buzzes" that varied in three parameters (peak frequency, peak amplitude, and duration), and stimulated S. rostratum flowers with these synthetic buzzes to quantify the relationship between buzz properties and pollen removal. We found that greater amplitude and longer duration buzzes ejected substantially more pollen, while frequency had no directional effect and only a weak quadratic effect on the amount of pollen removed. These findings suggest that foraging bumblebees may improve pollen collection by increasing the duration or amplitude of their buzzes. Moreover, given that amplitude is positively correlated with mass, preferential foraging by heavier workers is likely to result in the largest pollen yields per bee, and this could have significant consequences for the success of a colony foraging on buzz-pollinated flowers.

  3. Impact of Interspecific Hybridization between Crops and Weedy Relatives on the Evolution of Flowering Time in Weedy Phenotypes

    PubMed Central

    Vacher, Corinne; Kossler, Tanya M.; Hochberg, Michael E.; Weis, Arthur E.

    2011-01-01

    Background Like conventional crops, some GM cultivars may readily hybridize with their wild or weedy relatives. The progressive introgression of transgenes into wild or weedy populations thus appears inevitable, and we are now faced with the challenge of determining the possible evolutionary effects of these transgenes. The aim of this study was to gain insight into the impact of interspecific hybridization between transgenic plants and weedy relatives on the evolution of the weedy phenotype. Methodology/Principal Findings Experimental populations of weedy birdseed rape (Brassica rapa) and transgenic rapeseed (B. napus) were grown under glasshouse conditions. Hybridization opportunities with transgenic plants and phenotypic traits (including phenological, morphological and reproductive traits) were measured for each weedy individual. We show that weedy individuals that flowered later and for longer periods were more likely to receive transgenic pollen from crops and weed×crop hybrids. Because stem diameter is correlated with flowering time, plants with wider stems were also more likely to be pollinated by transgenic plants. We also show that the weedy plants with the highest probability of hybridization had the lowest fecundity. Conclusion/Significance Our results suggest that weeds flowering late and for long periods are less fit because they have a higher probability of hybridizing with crops or weed×crop hybrids. This may result in counter-selection against this subset of weed phenotypes, and a shorter earlier flowering period. It is noteworthy that this potential evolution in flowering time does not depend on the presence of the transgene in the crop. Evolution in flowering time may even be counter-balanced by positive selection acting on the transgene if the latter was positively associated with maternal genes promoting late flowering and long flowering periods. Unfortunately, we could not verify this association in the present experiment. PMID:21304909

  4. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation.

    PubMed

    Martin-Tryon, Ellen L; Kreps, Joel A; Harmer, Stacey L

    2007-01-01

    Circadian clocks are widespread in nature. In higher plants, they confer a selective advantage, providing information regarding not only time of day but also time of year. Forward genetic screens in Arabidopsis (Arabidopsis thaliana) have led to the identification of many clock components, but the functions of most of these genes remain obscure. To identify both new constituents of the circadian clock and new alleles of known clock-associated genes, we performed a mutant screen. Using a clock-regulated luciferase reporter, we isolated new alleles of ZEITLUPE, LATE ELONGATED HYPOCOTYL, and GIGANTEA (GI). GI has previously been reported to function in red light signaling, central clock function, and flowering time regulation. Characterization of this and other GI alleles has helped us to further define GI function in the circadian system. We found that GI acts in photomorphogenic and circadian blue light signaling pathways and is differentially required for clock function in constant red versus blue light. Gene expression and epistasis analyses show that TIMING OF CHLOROPHYLL A/B BINDING PROTEIN1 (TOC1) expression is not solely dependent upon GI and that GI expression is only indirectly affected by TOC1, suggesting that GI acts both in series with and in parallel to TOC1 within the central circadian oscillator. Finally, we found that the GI-dependent promotion of CONSTANS expression and flowering is intact in a gi mutant with altered circadian regulation. Thus GI function in the regulation of a clock output can be biochemically separated from its role within the circadian clock.

  5. Flowers, Beautiful Flowers

    ERIC Educational Resources Information Center

    School Arts: The Art Education Magazine for Teachers, 2005

    2005-01-01

    In the lesson described, the middle school students had been studying the artist Georgia O'Keeffe and the history of her work. Students enhanced their flower portraits by adding a matching border and connecting the lesson to other subject areas. Students dissected a flower and drew a small diagram of the flower and labeled the parts. This is an…

  6. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development.

    PubMed

    Pabón-Mora, Natalia; Ambrose, Barbara A; Litt, Amy

    2012-04-01

    Several MADS box gene lineages involved in flower development have undergone duplications that correlate with the diversification of large groups of flowering plants. In the APETALA1 gene lineage, a major duplication coincides with the origin of the core eudicots, resulting in the euFUL and the euAP1 clades. Arabidopsis FRUITFULL (FUL) and APETALA1 (AP1) function redundantly in specifying floral meristem identity but function independently in sepal and petal identity (AP1) and in proper fruit development and determinacy (FUL). Many of these functions are largely conserved in other core eudicot euAP1 and euFUL genes, but notably, the role of APETALA1 as an "A-function" (sepal and petal identity) gene is thought to be Brassicaceae specific. Understanding how functional divergence of the core eudicot duplicates occurred requires a careful examination of the function of preduplication (FUL-like) genes. Using virus-induced gene silencing, we show that FUL-like genes in opium poppy (Papaver somniferum) and California poppy (Eschscholzia californica) function in axillary meristem growth and in floral meristem and sepal identity and that they also play a key role in fruit development. Interestingly, in opium poppy, these genes also control flowering time and petal identity, suggesting that AP1/FUL homologs might have been independently recruited in petal identity. Because the FUL-like gene functional repertoire encompasses all roles previously described for the core eudicot euAP1 and euFUL genes, we postulate subfunctionalization as the functional outcome after the major AP1/FUL gene lineage duplication event.

  7. Flowering phenology in subalpine meadows: does climate variation influence community co-flowering patterns?

    PubMed

    Forrest, Jessica; Inouye, David W; Thomson, James D

    2010-02-01

    Climate change is expected to alter patterns of species co-occurrence, in both space and time. Species-specific shifts in reproductive phenology may alter the assemblages of plant species in flower at any given time during the growing season. Temporal overlap in the flowering periods (co-flowering) of animal-pollinated species may influence reproductive success if competitive or facilitative interactions between plant species affect pollinator services. We used a 33-year data set on flowering phenology in subalpine meadows in Colorado, USA, to determine whether interannual variation in snowmelt date, which marks the start of the growing season, affected co-flowering patterns. For two of four species considered, we found a significant relationship between snowmelt timing and composition of the assemblage of co-flowering plants. In years of early snowmelt, Lathyrus lanszwertii var. leucanthus (Fabaceae), the species we investigated in most detail, tended to overlap with earlier-flowering species and with fewer species overall. In particular, overlap with the flowering period of Lupinus polyphyllus var. prunophilus, with which Lathyrus leucanthus shares pollinators, was significantly reduced in early-snowmelt years. The observed association between timing of snowmelt and patterns of flowering overlap could not have been predicted simply by examining temporal trends in the dates of peak flowering of the dominant species in the community, as peak flowering dates have largely shifted in parallel with respect to snowmelt date. However, subtle interspecific differences in responsiveness of flowering time, duration, and intensity to interannual climate variation have likely contributed to the observed relationship. Although much of the year-to-year variation in flowering overlap remains unexplained by snowmelt date, our finding of a measurable signal of climate variation suggests that future climate change may lead to altered competitive environments for these wildflower

  8. "Missing" G x E Variation Controls Flowering Time in Arabidopsis thaliana.

    PubMed

    Sasaki, Eriko; Zhang, Pei; Atwell, Susanna; Meng, Dazhe; Nordborg, Magnus

    2015-10-01

    Understanding how genetic variation interacts with the environment is essential for understanding adaptation. In particular, the life cycle of plants is tightly coordinated with local environmental signals through complex interactions with the genetic variation (G x E). The mechanistic basis for G x E is almost completely unknown. We collected flowering time data for 173 natural inbred lines of Arabidopsis thaliana from Sweden under two growth temperatures (10°C and 16°C), and observed massive G x E variation. To identify the genetic polymorphisms underlying this variation, we conducted genome-wide scans using both SNPs and local variance components. The SNP-based scan identified several variants that had common effects in both environments, but found no trace of G x E effects, whereas the scan using local variance components found both. Furthermore, the G x E effects appears to be concentrated in a small fraction of the genome (0.5%). Our conclusion is that G x E effects in this study are mostly due to large numbers of allele or haplotypes at a small number of loci, many of which correspond to previously identified flowering time genes. PMID:26473359

  9. Sexual dimorphism of staminate- and pistillate-phase flowers of Saponaria officinalis (bouncing bet) affects pollinator behavior and seed set.

    PubMed

    Davis, Sandra L; Dudle, Dana A; Nawrocki, Jenna R; Freestone, Leah M; Konieczny, Peter; Tobin, Michael B; Britton, Michael M

    2014-01-01

    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual

  10. Sexual Dimorphism of Staminate- and Pistillate-Phase Flowers of Saponaria officinalis (Bouncing Bet) Affects Pollinator Behavior and Seed Set

    PubMed Central

    Davis, Sandra L.; Dudle, Dana A.; Nawrocki, Jenna R.; Freestone, Leah M.; Konieczny, Peter; Tobin, Michael B.; Britton, Michael M.

    2014-01-01

    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual

  11. Genetic components of variation in Nemophila menziesii undergoing inbreeding: morphology and flowering time.

    PubMed

    Shaw, R G; Byers, D L; Shaw, F H

    1998-12-01

    The standard approaches to estimation of quantitative genetic parameters and prediction of response to selection on quantitative traits are based on theory derived for populations undergoing random mating. Many studies demonstrate, however, that mating systems in natural populations often involve inbreeding in various degrees (i.e. , self matings and matings between relatives). Here we apply theory developed for estimating quantitative genetic parameters for partially inbreeding populations to a population of Nemophila menziesii recently obtained from nature and experimentally inbred. Two measures of overall plant size and two of floral size expressed highly significant inbreeding depression. Of three dominance components of phenotypic variance that are defined under partial inbreeding, one was found to contribute significantly to phenotypic variance in flower size and flowering time, while the remaining two components contributed only negligibly to variation in each of the five traits considered. Computer simulations investigating selection response under the more complete genetic model for populations undergoing mixed mating indicate that, for parameter values estimated in this study, selection response can be substantially slowed relative to predictions for a random mating population. Moreover, inbreeding depression alone does not generally account for the reduction in selection response. PMID:9832540

  12. Genetic components of variation in Nemophila menziesii undergoing inbreeding: morphology and flowering time.

    PubMed Central

    Shaw, R G; Byers, D L; Shaw, F H

    1998-01-01

    The standard approaches to estimation of quantitative genetic parameters and prediction of response to selection on quantitative traits are based on theory derived for populations undergoing random mating. Many studies demonstrate, however, that mating systems in natural populations often involve inbreeding in various degrees (i.e. , self matings and matings between relatives). Here we apply theory developed for estimating quantitative genetic parameters for partially inbreeding populations to a population of Nemophila menziesii recently obtained from nature and experimentally inbred. Two measures of overall plant size and two of floral size expressed highly significant inbreeding depression. Of three dominance components of phenotypic variance that are defined under partial inbreeding, one was found to contribute significantly to phenotypic variance in flower size and flowering time, while the remaining two components contributed only negligibly to variation in each of the five traits considered. Computer simulations investigating selection response under the more complete genetic model for populations undergoing mixed mating indicate that, for parameter values estimated in this study, selection response can be substantially slowed relative to predictions for a random mating population. Moreover, inbreeding depression alone does not generally account for the reduction in selection response. PMID:9832540

  13. Estimating selection through male fitness: three complementary methods illuminate the nature and causes of selection on flowering time.

    PubMed

    Austen, Emily J; Weis, Arthur E

    2016-02-24

    Our understanding of selection through male fitness is limited by the resource demands and indirect nature of the best available genetic techniques. Applying complementary, independent approaches to this problem can help clarify evolution through male function. We applied three methods to estimate selection on flowering time through male fitness in experimental populations of the annual plant Brassica rapa: (i) an analysis of mating opportunity based on flower production schedules, (ii) genetic paternity analysis, and (iii) a novel approach based on principles of experimental evolution. Selection differentials estimated by the first method disagreed with those estimated by the other two, indicating that mating opportunity was not the principal driver of selection on flowering time. The genetic and experimental evolution methods exhibited striking agreement overall, but a slight discrepancy between the two suggested that negative environmental covariance between age at flowering and male fitness may have contributed to phenotypic selection. Together, the three methods enriched our understanding of selection on flowering time, from mating opportunity to phenotypic selection to evolutionary response. The novel experimental evolution method may provide a means of examining selection through male fitness when genetic paternity analysis is not possible.

  14. Estimating selection through male fitness: three complementary methods illuminate the nature and causes of selection on flowering time.

    PubMed

    Austen, Emily J; Weis, Arthur E

    2016-02-24

    Our understanding of selection through male fitness is limited by the resource demands and indirect nature of the best available genetic techniques. Applying complementary, independent approaches to this problem can help clarify evolution through male function. We applied three methods to estimate selection on flowering time through male fitness in experimental populations of the annual plant Brassica rapa: (i) an analysis of mating opportunity based on flower production schedules, (ii) genetic paternity analysis, and (iii) a novel approach based on principles of experimental evolution. Selection differentials estimated by the first method disagreed with those estimated by the other two, indicating that mating opportunity was not the principal driver of selection on flowering time. The genetic and experimental evolution methods exhibited striking agreement overall, but a slight discrepancy between the two suggested that negative environmental covariance between age at flowering and male fitness may have contributed to phenotypic selection. Together, the three methods enriched our understanding of selection on flowering time, from mating opportunity to phenotypic selection to evolutionary response. The novel experimental evolution method may provide a means of examining selection through male fitness when genetic paternity analysis is not possible. PMID:26911957

  15. Document Retrieval Systems; Factors Affecting Search Time.

    ERIC Educational Resources Information Center

    Montgomery, K. Leon, Ed.

    An experiment was conducted to identify some of the important parameters affecting search time, a critical cost factor in retrieval systems. Using actual computer searches of Chemical Abstracts Condensate, a comparison was made between the effectiveness of linear and inverted filing systems. Since the results indicated that it was the type and…

  16. Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.

    PubMed

    Shi, Y; Zhang, X; Xu, Z-Y; Li, L; Zhang, C; Schläppi, M; Xu, Z-Q

    2011-09-01

    EARLI1 encodes a 14.7 kDa protein in the cell wall, is a member of the PRP (proline-rich protein) family and has multiple functions, including resistance to low temperature and fungal infection. RNA gel blot analyses in the present work indicated that expression of EARLI1-like genes, EARLI1, At4G12470 and At4G12490, was down-regulated in Col-FRI-Sf2 RNAi plants derived from transformation with Agrobacterium strain ABI, which contains a construct encoding a double-strand RNA targeting 8CM of EARLI1. Phenotype analyses revealed that Col-FRI-Sf2 RNAi plants of EARLI1 flowered earlier than Col-FRI-Sf2 wild-type plants. The average bolting time of Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants was 39.7 and 19.4 days, respectively, under a long-day photoperiod. In addition, there were significant differences in main stem length, internode number and rosette leaf number between Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants. RT-PCR showed that EARLI1-like genes might delay flowering time through the autonomous and long-day photoperiod pathways by maintaining the abundance of FLC transcripts. In Col-FRI-Sf2 RNAi plants, transcription of FLC was repressed, while expression of SOC1 and FT was activated. Microscopy observations showed that EARLI1-like genes were also associated with morphogenesis of leaf cells in Arabidopsis. Using histochemical staining, EARLI1-like genes were found to be involved in regulation of lignin synthesis in inflorescence stems, and Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants had 9.67% and 8.76% dry weight lignin, respectively. Expression analysis revealed that cinnamoyl-CoA reductase, a key enzyme in lignin synthesis, was influenced by EARLI1-like genes. These data all suggest that EARLI1-like genes could control the flowering process and lignin synthesis in Arabidopsis.

  17. Leaf damage and gender but not flower damage affect female fitness in Nemophila menziesii (Hydrophyllaceae).

    PubMed

    McCall, Andrew C

    2007-03-01

    Researchers can answer questions about the evolution or maintenance of separate sexes using dioecious plant systems. Because females in these species typically put more resources into reproductive effort than male plants, researchers have hypothesized that females may be less tolerant of the stresses found in marginal habitats. Herbivory can act as a biotic stressor that reduces resources in plants much like a marginal habitat can. Females may be limited by resources, and may thus be less tolerant to herbivory than males. Here, I explore the relationships between florivory, leaf herbivory, and gender in a gynodioecious, annual plant, Nemophila menziesii (Hydrophyllaceae, senso lato). I performed a crossed design experiment examining the main effects and interactions of plant gender, artificial leaf damage, and artificial flower damage on components of female plant fitness. Leaf damage decreased fruit set and females made significantly more fruit than hermaphrodites. However, contrary to theory, I found little evidence for a gender by damage interaction for either type of artificial herbivory. Based on these results, I propose more work exploring the effects of both source and sink damage in dioecious species to help elucidate where and when different sexual morphs are favored by natural selection. PMID:21636414

  18. BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus.

    PubMed

    Ying, Lu; Chen, Haiying; Cai, Weiming

    2014-06-01

    NAC domain proteins are plant-specific transcription factors that play important roles in plant growth and development. In this present study, we isolated BnNAC485 from Brassica napus L. (cv. HuYou15) and found that it showed high homology (84% at the amino acid level) with a NAC protein called AtRD26/ANAC072. BnNAC485 was specifically expressed in cotyledons and leaves of young seedlings, and expression was induced by abiotic stress and abscisic acid (ABA) treatment. The BnNAC485 protein localized to the nucleus. Over-expression of BnNAC485 enhanced tolerance to abiotic stress compared with wild-type plants in both B. napus and Arabidopsis thaliana. Furthermore, under exogenous ABA stress, BnNAC485 over-expression lines showed hypersensitivity to this treatment compared with wild-type B. napus and A. thaliana plants. Moreover, exogenous ABA treatment enhanced stomatal closing in B. napus plants over-expressing BnNAC485. Real-time RT-PCR assays showed that some abiotic- or ABA-responsive genes were up-regulated in A. thaliana plants over-expressing BnNAC485. Additionally, the transgenic lines flowered earlier than the wild-type B. napus and A. thaliana plants and the expression patterns of certain circadian clock genes were found to have changed. These results suggest that BnNAC485 acts in response to abiotic stress in plants via an ABA-mediated pathway and this gene can also alter plant flowering time.

  19. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways

    PubMed Central

    Huo, Heqiang; Wei, Shouhui; Bradford, Kent J.

    2016-01-01

    Seed germination and flowering, two critical developmental transitions in plant life cycles, are coordinately regulated by genetic and environmental factors to match plant establishment and reproduction to seasonal cues. The DELAY OF GERMINATION1 (DOG1) gene is involved in regulating seed dormancy in response to temperature and has also been associated genetically with pleiotropic flowering phenotypes across diverse Arabidopsis thaliana accessions and locations. Here we show that DOG1 can regulate seed dormancy and flowering times in lettuce (Lactuca sativa, Ls) and Arabidopsis through an influence on levels of microRNAs (miRNAs) miR156 and miR172. In lettuce, suppression of LsDOG1 expression enabled seed germination at high temperature and promoted early flowering in association with reduced miR156 and increased miR172 levels. In Arabidopsis, higher miR156 levels resulting from overexpression of the MIR156 gene enhanced seed dormancy and delayed flowering. These phenotypic effects, as well as conversion of MIR156 transcripts to miR156, were compromised in DOG1 loss-of-function mutant plants, especially in seeds. Overexpression of MIR172 reduced seed dormancy and promoted early flowering in Arabidopsis, and the effect on flowering required functional DOG1. Transcript levels of several genes associated with miRNA processing were consistently lower in dry seeds of Arabidopsis and lettuce when DOG1 was mutated or its expression was reduced; in contrast, transcript levels of these genes were elevated in a DOG1 gain-of-function mutant. Our results reveal a previously unknown linkage between two critical developmental phase transitions in the plant life cycle through a DOG1–miR156–miR172 interaction. PMID:27035986

  20. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways.

    PubMed

    Huo, Heqiang; Wei, Shouhui; Bradford, Kent J

    2016-04-12

    Seed germination and flowering, two critical developmental transitions in plant life cycles, are coordinately regulated by genetic and environmental factors to match plant establishment and reproduction to seasonal cues. The DELAY OF GERMINATION1 (DOG1) gene is involved in regulating seed dormancy in response to temperature and has also been associated genetically with pleiotropic flowering phenotypes across diverse Arabidopsis thaliana accessions and locations. Here we show that DOG1 can regulate seed dormancy and flowering times in lettuce (Lactuca sativa, Ls) and Arabidopsis through an influence on levels of microRNAs (miRNAs) miR156 and miR172. In lettuce, suppression of LsDOG1 expression enabled seed germination at high temperature and promoted early flowering in association with reduced miR156 and increased miR172 levels. In Arabidopsis, higher miR156 levels resulting from overexpression of the MIR156 gene enhanced seed dormancy and delayed flowering. These phenotypic effects, as well as conversion of MIR156 transcripts to miR156, were compromised in DOG1 loss-of-function mutant plants, especially in seeds. Overexpression of MIR172 reduced seed dormancy and promoted early flowering in Arabidopsis, and the effect on flowering required functional DOG1 Transcript levels of several genes associated with miRNA processing were consistently lower in dry seeds of Arabidopsis and lettuce when DOG1 was mutated or its expression was reduced; in contrast, transcript levels of these genes were elevated in a DOG1 gain-of-function mutant. Our results reveal a previously unknown linkage between two critical developmental phase transitions in the plant life cycle through a DOG1-miR156-miR172 interaction. PMID:27035986

  1. WEREWOLF, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability.

    PubMed

    Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha

    2011-08-01

    A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous.

  2. Questions of time and affect: a person's affectivity profile, time perspective, and well-being.

    PubMed

    Garcia, Danilo; Sailer, Uta; Nima, Ali Al; Archer, Trevor

    2016-01-01

    Background. A "balanced" time perspective has been suggested to have a positive influence on well-being: a sentimental and positive view of the past (high Past Positive), a less pessimistic attitude toward the past (low Past Negative), the desire of experiencing pleasure with slight concern for future consequences (high Present Hedonistic), a less fatalistic and hopeless view of the future (low Present Fatalistic), and the ability to find reward in achieving specific long-term goals (high Future). We used the affective profiles model (i.e., combinations of individuals' experience of high/low positive/negative affectivity) to investigate differences between individuals in time perspective dimensions and to investigate if the influence of time perspective dimensions on well-being was moderated by the individual's type of profile. Method. Participants (N = 720) answered to the Positive Affect Negative Affect Schedule, the Zimbardo Time Perspective Inventory and two measures of well-being: the Temporal Satisfaction with Life Scale and Ryff's Scales of Psychological Well-Being-short version. A Multivariate Analysis of Variance (MANOVA) was conducted to identify differences in time perspective dimensions and well-being among individuals with distinct affective profiles. Four structural equation models (SEM) were used to investigate which time perspective dimensions predicted well-being for individuals in each profile. Results. Comparisons between individuals at the extreme of the affective profiles model suggested that individuals with a self-fulfilling profile (high positive/low negative affect) were characterized by a "balanced" time perspective and higher well-being compared to individuals with a self-destructive profile (low positive/high negative affect). However, a different pattern emerged when individuals who differed in one affect dimension but matched in the other were compared to each other. For instance, decreases in the past negative time perspective

  3. Questions of time and affect: a person's affectivity profile, time perspective, and well-being.

    PubMed

    Garcia, Danilo; Sailer, Uta; Nima, Ali Al; Archer, Trevor

    2016-01-01

    Background. A "balanced" time perspective has been suggested to have a positive influence on well-being: a sentimental and positive view of the past (high Past Positive), a less pessimistic attitude toward the past (low Past Negative), the desire of experiencing pleasure with slight concern for future consequences (high Present Hedonistic), a less fatalistic and hopeless view of the future (low Present Fatalistic), and the ability to find reward in achieving specific long-term goals (high Future). We used the affective profiles model (i.e., combinations of individuals' experience of high/low positive/negative affectivity) to investigate differences between individuals in time perspective dimensions and to investigate if the influence of time perspective dimensions on well-being was moderated by the individual's type of profile. Method. Participants (N = 720) answered to the Positive Affect Negative Affect Schedule, the Zimbardo Time Perspective Inventory and two measures of well-being: the Temporal Satisfaction with Life Scale and Ryff's Scales of Psychological Well-Being-short version. A Multivariate Analysis of Variance (MANOVA) was conducted to identify differences in time perspective dimensions and well-being among individuals with distinct affective profiles. Four structural equation models (SEM) were used to investigate which time perspective dimensions predicted well-being for individuals in each profile. Results. Comparisons between individuals at the extreme of the affective profiles model suggested that individuals with a self-fulfilling profile (high positive/low negative affect) were characterized by a "balanced" time perspective and higher well-being compared to individuals with a self-destructive profile (low positive/high negative affect). However, a different pattern emerged when individuals who differed in one affect dimension but matched in the other were compared to each other. For instance, decreases in the past negative time perspective

  4. Variation of flower opening and closing times in F1 and F2 hybrids of daylily (Hemerocallis fulva; Hemerocallidaceae) and nightlily (H. citrina).

    PubMed

    Nitta, Kozue; Yasumoto, Akiko A; Yahara, Tetsukazu

    2010-02-01

    In flowering plants, pollination success is strongly dependent on the timing of when flowers start to bloom and when they start to close. To elucidate the genetic mechanism influencing the timing of flower opening and closing, we obtained F1 and F2 hybrids of Hemerocallis fulva (a diurnally blooming species, pollinated by swallowtail butterflies) and H. citrina (a nocturnally blooming species, pollinated by nocturnal hawkmoths) and observed their flowering behavior from blooming to closing with the use of digital cameras. For flower opening times, F1 hybrids were highly variable, and F2 hybrids showed a bimodal distribution of flower opening times with peaks in both the morning and evening. The ratio of morning flowering and evening flowering among F2 hybrids did not deviate from 1:1. For the start to close time, both F1 and F2 hybrids were similar in showing the major peak in the evening. The ratio of evening closing and morning closing among F2 hybrids did not deviate from 3:1. These results suggest that the time of flower opening and the start of closing are regulated by different major genes. PMID:21622386

  5. Co-variation between seed dormancy, growth rate and flowering time changes with latitude in Arabidopsis thaliana.

    PubMed

    Debieu, Marilyne; Tang, Chunlao; Stich, Benjamin; Sikosek, Tobias; Effgen, Sigi; Josephs, Emily; Schmitt, Johanna; Nordborg, Magnus; Koornneef, Maarten; de Meaux, Juliette

    2013-01-01

    Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis. PMID:23717385

  6. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ 13C), and WUE plasticity to drought in Arabidopsis thaliana

    PubMed Central

    Kenney, Amanda M; McKay, John K; Richards, James H; Juenger, Thomas E

    2014-01-01

    Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought. PMID:25512847

  7. Upland Cotton Gene GhFPF1 Confers Promotion of Flowering Time and Shade-Avoidance Responses in Arabidopsis thaliana

    PubMed Central

    Wang, Xiaoyan; Fan, Shuli; Song, Meizhen; Pang, Chaoyou; Wei, Hengling; Yu, Jiwen; Ma, Qifeng; Yu, Shuxun

    2014-01-01

    Extensive studies on floral transition in model species have revealed a network of regulatory interactions between proteins that transduce and integrate developmental and environmental signals to promote or inhibit the transition to flowering. Previous studies indicated FLOWERING PROMOTING FACTOR 1 (FPF1) gene was involved in the promotion of flowering, but the molecular mechanism was still unclear. Here, FPF1 homologous sequences were screened from diploid Gossypium raimondii L. (D-genome, n = 13) and Gossypium arboreum L. genome (A-genome, n = 13) databases. Orthologous genes from the two species were compared, suggesting that distinctions at nucleic acid and amino acid levels were not equivalent because of codon degeneracy. Six FPF1 homologous genes were identified from the cultivated allotetraploid Gossypium hirsutum L. (AD-genome, n = 26). Analysis of relative transcripts of the six genes in different tissues revealed that this gene family displayed strong tissue-specific expression. GhFPF1, encoding a 12.0-kDa protein (Accession No: KC832319) exerted more transcripts in floral apices of short-season cotton, hinting that it could be involved in floral regulation. Significantly activated APETALA 1 and suppressed FLOWERING LOCUS C expression were induced by over-expression of GhFPF1 in the Arabidopsis Columbia-0 ecotype. In addition, transgenic Arabidopsis displayed a constitutive shade-avoiding phenotype that is characterized by long hypocotyls and petioles, reduced chlorophyll content, and early flowering. We propose that GhFPF1 may be involved in flowering time control and shade-avoidance responses. PMID:24626476

  8. A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature.

    PubMed

    Strasser, Bárbara; Alvarez, Mariano J; Califano, Andrea; Cerdán, Pablo D

    2009-05-01

    Plants regulate their time to flowering by gathering information from the environment. Photoperiod and temperature are among the most important environmental variables. Sub-optimal, but not near-freezing, temperatures regulate flowering through the thermosensory pathway, which overlaps with the autonomous pathway. Here we show that ambient temperature regulates flowering by two genetically distinguishable pathways, one requiring TFL1 and another requiring ELF3. The delay in flowering time observed at lower temperatures was partially suppressed in single elf3 and tfl1 mutants, whereas double elf3 tfl1 mutants were insensitive to temperature. tfl1 mutations abolished the temperature response in cryptochrome mutants that are deficient in photoperiod perception, but not in phyB mutants, which have a constitutive photoperiodic response. In contrast to tfl1, elf3 mutations were able to suppress the temperature response in phyB mutants, but not in cryptochrome mutants. Gene expression profiles revealed that the tfl1 and elf3 effects are due to the activation of different sets of genes, and identified CCA1 and SOC1/AGL20 as being important cross-talk points. Finally, genome-wide gene expression analysis strongly suggests a general and complementary role for ELF3 and TFL1 in temperature signalling.

  9. Parental age affects somatic mutation rates in the progeny of flowering plants.

    PubMed

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-05-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  10. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    PubMed Central

    2008-01-01

    Background The Wuschel related homeobox (WOX) family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG) using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most likely by preventing premature

  11. Carbon dioxide exchange of a pepperweed (Lepidium latifolium L.) infestation: How do flowering and mowing affect canopy photosynthesis and autotrophic respiration?

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Detto, M.; Runkle, B. R. K.; Teh, Y. A.; Silver, W. L.; Kelly, M.; Baldocchi, D. D.

    2011-03-01

    The net ecosystem carbon dioxide (CO2) exchange of invasive plant infestations, such as perennial pepperweed (Lepidium latifolium L.), is not well understood. A characteristic feature of pepperweed's phenological cycle is its small white flowers during secondary inflorescence. Pepperweed flowering causes uniform reflectance over the visible range of the electromagnetic spectrum, thus decreasing the amount of energy absorbed by the canopy and available for photosynthesis. Little is known about how pepperweed flowering and control measures such as mowing affect canopy photosynthesis and autotrophic respiration (FAR) and thus ecosystem respiration. To examine this question, we analyzed CO2 flux measurements made with eddy covariance over a pepperweed infestation in California, covering three growing seasons. Unmowed pepperweed caused the site to be almost CO2 neutral (2007: -28 g C m-2 period-1) or a net source (2009: 129 g C m-2 period-1), mostly because of reduced maximum photosynthetic capacity by 13 (2007) and 17 μmol m-2 s-1 (2009) due to flowering during the plant's prime photosynthetic period. Reference FAR at 10°C was reduced by 2 μmol m-2 s-1 in 2007 and 2009. Mowing during early flowering reversed the attenuating effects of pepperweed flowering, causing the site to act as a net CO2 sink (2008: -174 g C m-2 period-1) mainly due to prolonged photosynthetic CO2 uptake over the plant's early vegetative growth phase. Our results highlight the tight link between pepperweed's prominent key phenological phase and applied control measures, which together exert dominant control over the infestation's CO2 source-sink strength.

  12. JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Jun; Li, Chunhua; Xu, Shujuan; Xing, Lijing; Xu, Yunyuan; Chong, Kang

    2015-01-01

    Lectins selectively recognize sugars or glycans for defense in living cells, but less is known about their roles in the development process and the functional network with other factors. Here, we show that Arabidopsis (Arabidopsis thaliana) JACALIN-LECTIN LIKE1 (AtJAC1) functions in flowering time control. Loss of function of AtJAC1 leads to precocious flowering, whereas overexpression of AtJAC1 causes delayed flowering. AtJAC1 influences flowering through regulation of the key flowering repressor gene FLOWERING LOCUS C (FLC). Genetic analysis revealed that AtJAC1’s function is mostly dependent on GLYCINE-RICH RNA-BINDING PROTEIN7 (GRP7), an upstream regulator of FLC. Biochemical and cell biological data indicated that AtJAC1 interacted physically with GRP7 specifically in the cytoplasm. AtJAC1 influences the nucleocytoplasmic distribution of GRP7, with predominant nuclear localization of GRP7 when AtJAC1 function is lost but retention of GRP7 in the cytoplasm when AtJAC1 is overexpressed. A temporal inducible assay suggested that AtJAC1’s regulation of flowering could be compromised by the nuclear accumulation of GRP7. In addition, GRP7 binds to the antisense precursor messenger RNA of FLC through a conserved RNA motif. Loss of GRP7 function leads to the elevation of total FLC antisense transcripts and reduced proximal-distal polyadenylation ratio, as well as histone methylation changes in the FLC gene body region and increased total functional sense FLC transcript. Attenuating the direct binding of GRP7 with competing artificial RNAs leads to changes of FLC antisense precursor messenger RNA processing and flowering transition. Taken together, our study indicates that AtJAC1 coordinates with GRP7 in shaping plant development through the regulation of RNA processing in Arabidopsis. PMID:26392261

  13. Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa.

    PubMed

    Franks, Steven J; Perez-Sweeney, Beatriz; Strahl, Maya; Nowogrodzki, Anna; Weber, Jennifer J; Lalchan, Rebecca; Jordan, Kevin P; Litt, Amy

    2015-01-01

    Understanding the genetic basis of natural phenotypic variation is of great importance, particularly since selection can act on this variation to cause evolution. We examined expression and allelic variation in candidate flowering time loci in Brassica rapa plants derived from a natural population and showing a broad range in the timing of first flowering. The loci of interest were orthologs of the Arabidopsis genes FLC and SOC1 (BrFLC and BrSOC1, respectively), which in Arabidopsis play a central role in the flowering time regulatory network, with FLC repressing and SOC1 promoting flowering. In B. rapa, there are four copies of FLC and three of SOC1. Plants were grown in controlled conditions in the lab. Comparisons were made between plants that flowered the earliest and latest, with the difference in average flowering time between these groups ∼30 days. As expected, we found that total expression of BrSOC1 paralogs was significantly greater in early than in late flowering plants. Paralog-specific primers showed that expression was greater in early flowering plants in the BrSOC1 paralogs Br004928, Br00393 and Br009324, although the difference was not significant in Br009324. Thus expression of at least 2 of the 3 BrSOC1 orthologs is consistent with their predicted role in flowering time in this natural population. Sequences of the promoter regions of the BrSOC1 orthologs were variable, but there was no association between allelic variation at these loci and flowering time variation. For the BrFLC orthologs, expression varied over time, but did not differ between the early and late flowering plants. The coding regions, promoter regions and introns of these genes were generally invariant. Thus the BrFLC orthologs do not appear to influence flowering time in this population. Overall, the results suggest that even for a trait like flowering time that is controlled by a very well described genetic regulatory network, understanding the underlying genetic basis of

  14. Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa

    PubMed Central

    Perez-Sweeney, Beatriz; Strahl, Maya; Nowogrodzki, Anna; Weber, Jennifer J.; Lalchan, Rebecca; Jordan, Kevin P.; Litt, Amy

    2015-01-01

    Understanding the genetic basis of natural phenotypic variation is of great importance, particularly since selection can act on this variation to cause evolution. We examined expression and allelic variation in candidate flowering time loci in Brassica rapa plants derived from a natural population and showing a broad range in the timing of first flowering. The loci of interest were orthologs of the Arabidopsis genes FLC and SOC1 (BrFLC and BrSOC1, respectively), which in Arabidopsis play a central role in the flowering time regulatory network, with FLC repressing and SOC1 promoting flowering. In B. rapa, there are four copies of FLC and three of SOC1. Plants were grown in controlled conditions in the lab. Comparisons were made between plants that flowered the earliest and latest, with the difference in average flowering time between these groups ∼30 days. As expected, we found that total expression of BrSOC1 paralogs was significantly greater in early than in late flowering plants. Paralog-specific primers showed that expression was greater in early flowering plants in the BrSOC1 paralogs Br004928, Br00393 and Br009324, although the difference was not significant in Br009324. Thus expression of at least 2 of the 3 BrSOC1 orthologs is consistent with their predicted role in flowering time in this natural population. Sequences of the promoter regions of the BrSOC1 orthologs were variable, but there was no association between allelic variation at these loci and flowering time variation. For the BrFLC orthologs, expression varied over time, but did not differ between the early and late flowering plants. The coding regions, promoter regions and introns of these genes were generally invariant. Thus the BrFLC orthologs do not appear to influence flowering time in this population. Overall, the results suggest that even for a trait like flowering time that is controlled by a very well described genetic regulatory network, understanding the underlying genetic basis of

  15. Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa.

    PubMed

    Franks, Steven J; Perez-Sweeney, Beatriz; Strahl, Maya; Nowogrodzki, Anna; Weber, Jennifer J; Lalchan, Rebecca; Jordan, Kevin P; Litt, Amy

    2015-01-01

    Understanding the genetic basis of natural phenotypic variation is of great importance, particularly since selection can act on this variation to cause evolution. We examined expression and allelic variation in candidate flowering time loci in Brassica rapa plants derived from a natural population and showing a broad range in the timing of first flowering. The loci of interest were orthologs of the Arabidopsis genes FLC and SOC1 (BrFLC and BrSOC1, respectively), which in Arabidopsis play a central role in the flowering time regulatory network, with FLC repressing and SOC1 promoting flowering. In B. rapa, there are four copies of FLC and three of SOC1. Plants were grown in controlled conditions in the lab. Comparisons were made between plants that flowered the earliest and latest, with the difference in average flowering time between these groups ∼30 days. As expected, we found that total expression of BrSOC1 paralogs was significantly greater in early than in late flowering plants. Paralog-specific primers showed that expression was greater in early flowering plants in the BrSOC1 paralogs Br004928, Br00393 and Br009324, although the difference was not significant in Br009324. Thus expression of at least 2 of the 3 BrSOC1 orthologs is consistent with their predicted role in flowering time in this natural population. Sequences of the promoter regions of the BrSOC1 orthologs were variable, but there was no association between allelic variation at these loci and flowering time variation. For the BrFLC orthologs, expression varied over time, but did not differ between the early and late flowering plants. The coding regions, promoter regions and introns of these genes were generally invariant. Thus the BrFLC orthologs do not appear to influence flowering time in this population. Overall, the results suggest that even for a trait like flowering time that is controlled by a very well described genetic regulatory network, understanding the underlying genetic basis of

  16. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L.

    PubMed

    Keller, Stephen R; Levsen, Nicholas; Olson, Matthew S; Tiffin, Peter

    2012-10-01

    Identifying the signature and targets of local adaptation is an increasingly important goal in empirical population genetics. Using data from 443 balsam poplar Populus balsamifera trees sampled from 31 populations, we tested for evidence of geographically variable selection shaping diversity at 27 homologues of the Arabidopsis flowering-time network. These genes are implicated in the control of seasonal phenology, an important determinant of fitness. Using 335 candidate and 412 reference single nucleotide polymorphisms (SNPs), we tested for evidence of local adaptation by searching for elevated population differentiation using F(ST)-based outlier analyses implemented in BayeScan or a Hierarchical Model in Arelquin and by testing for significant associations between allele frequency and environmental variables using BAYENV. A total of 46 SNPs from 14 candidate genes had signatures of local adaptation-either significantly greater population differentiation or significant covariance with one or more environmental variable relative to reference SNP distributions. Only 11 SNPs from two genes exhibited both elevated population differentiation and covariance with one or more environmental variables. Several genes including the abscisic acid gene ABI1B and the circadian clock genes ELF3 and GI5 harbored a large number of SNPs with signatures of local adaptation-with SNPs in GI5 strongly covarying with both latitude and precipitation and SNPs in ABI1B strongly covarying with temperature. In contrast to several other systems, we find little evidence that photoreceptors, including phytochromes, play an important role in local adaptation. Our results additionally show that detecting local adaptation is sensitive to the analytical approaches used and that model-based significance thresholds should be viewed with caution.

  17. Cultural techniques for altering the flowering time and double-cropping short-day varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    July-plugged transplants of short-day cv. Strawberry Festival (Fragaria x ananassa), flowered in October and November even though they were grown under long photoperiods and warm temperatures (greater than 21 degrees C) in July and August. These unexpected results were attributed to a high plant de...

  18. Flowering times in genetically modified Brassica hybrids in the absence of selection

    EPA Science Inventory

    Changes in days to flowering (DTF) were observed among reciprocal F1 progeny of Brassica napus ‘RaideRR’ with other B. napus and also with weedy B. rapa. Changes in DTF are presented as factors to consider in evaluating the potential of crop to weed gene flow in different geograp...

  19. Responses of flowering time to elevated carbon dioxide among soybean photoperiod isolines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work indicated that changes in the phenology of flowering in soybeans caused by long-term growth at elevated carbon dioxide may be important to the responses of seed yield to elevated carbon dioxide. In this study we utilized near-isogenic lines of soybeans differing in three genes influen...

  20. Tree size and its relationship with flowering phenology and reproductive output in Wild Nutmeg trees.

    PubMed

    Otárola, Mauricio Fernández; Sazima, Marlies; Solferini, Vera N

    2013-09-01

    Reproductive strategies, sexual selection, and their relationship with the phenotype of individuals are topics widely studied in animals, but this information is less abundant for plants. Variability in flowering phenology among individuals has direct impact on their fitness, but how reproductive phenology is affected by the size of the individuals needs further study. We quantified the flowering intensity, length, and reproductive synchronization of two sympatric dioecious Wild Nutmeg tree species (Virola, Myristicaceae) in the Brazilian Atlantic forest, and analyzed its relationships with tree size. Two distinct strategies in flowering timing and intensity were found between species (annual versus biennial flowering), and among individuals in the annual flowering species (extended versus peak flowering). Only for the annual flowering species the reproductive output is related to tree size and large trees present proportionally higher flower coverage, and lower synchronization than smaller ones. Flowering is massive and highly synchronized in the biennial species. Sex ratios are not different from 1:1 in the two species, and in the two segregated reproductive subgroups in the biennial flowering species. The biennial flowering at individual level is a novelty among reproductive patterns in plants, separating the population in two reproductive subgroups. A proportional increase in the reproductive output with size exists only for the annual flowering species. A biennial flowering can allow resource storage favouring massive flowering for all the individuals diluting their relationship with size. PMID:24223288

  1. Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca)

    NASA Astrophysics Data System (ADS)

    Karolyi, Florian; Morawetz, Linde; Colville, Jonathan F.; Handschuh, Stephan; Metscher, Brian D.; Krenn, Harald W.

    2013-11-01

    A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts.

  2. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time.

    PubMed

    Ivandic, Victor; Hackett, Christine A; Nevo, Eviatar; Keith, Richard; Thomas, William T B; Forster, Brian P

    2002-01-01

    Wild barley, Hordeum spontaneum C. Koch, is the progenitor of cultivated barley, Hordeum vulgare. The centre of diversity is in the Fertile Crescent of the Near East, where wild barley grows in a wide range of conditions (temperature, water availability, day length, etc.). The genetic diversity of 39 wild barley genotypes collected from Israel, Turkey and Iran was studied with 33 SSRs of known map location. Analysis of molecular variance (AMOVA) was performed to partition the genetic variation present within from the variation between the three countries of origin. Using classification tree analysis, two (or three) specific SSRs were identified which could correctly classify most of the wild barley genotypes according to country of origin. Associations of SSR variation with flowering time and adaptation to site-of-origin ecology and geography were investigated by two contrasting statistical approaches, linear regression based on SSR length variation and linear regression based on SSR allele class differences. A number of SSRs were significantly associated with flowering time under four different growing regimes (short days, long days, unvernalised and vernalised). Most of the associations observed could be accounted for by close linkage of the SSR loci to earliness per se genes. No associations were found with photoperiodic and vernalisation response genes known to control flowering in cultivated barley suggesting that different genetic factors may be active in wild barley. Novel genomic regions controlling flowering time in wild barley were detected on chromosomes 1HS, 2HL, 3HS and 4HS. Associations of SSRs with site-of-origin ecological and geographic data were found primarily in genomic regions determining plant development. This study shows that the analyses of SSR variation by allele class and repeat length are complementary, and that some SSRs are not necessarily selectively neutral. PMID:11999832

  3. Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components.

    PubMed

    Guo, Yuan; Hans, Harloff; Christian, Jung; Molina, Carlos

    2014-01-01

    Rapeseed (Brassica napus L.) is grown in different geographical regions of the world. It is adapted to different environments by modification of flowering time and requirement for cold. A broad variation exists from very early-flowering spring-type to late-flowering winter cultivars which only flower after exposure to an extended cold period. B. napus is an allopolyploid species which resulted from the hybridization between B. rapa and B. oleracea. In Arabidopsis thaliana, the PEBP-domain genes FLOWERING LOCUS-T (FT) and TERMINAL FLOWER-1 (TFL1) are important integrators of different flowering pathways. Six FT and four TFL1 paralogs have been identified in B. napus. However, their role in flowering time control is unknown. We identified EMS mutants of the B. napus winter-type inbreed line Express 617. In total, 103 mutant alleles have been determined for BnC6FTb, BnC6FTa, and BnTFL1-2 paralogs. We chose three non-sense and 15 missense mutant lines (M3) which were grown in the greenhouse. Although only two out of 6 FT paralogs were mutated, 6 out of 8 BnC6FTb mutant lines flowered later as the control, whereas all five BnC6FTa mutant lines started flowering as the non-mutated parent. Mutations within the BnTFL1-2 paralog had no large effects on flowering time but on yield components. F1 hybrids between BnTFL1-2 mutants and non-mutated parents had increased seed number per pod and total seeds per plant suggesting that heterozygous mutations in a TFL1 paralog may impact heterosis in rapeseed. We demonstrate that single point-mutations in BnFT and BnTFL1 paralogs have effects on flowering time despite the redundancy of the rapeseed genome. Moreover, our results suggest pleiotropic effects of BnTFL1 paralogs beyond the regulation of flowering time.

  4. Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components.

    PubMed

    Guo, Yuan; Hans, Harloff; Christian, Jung; Molina, Carlos

    2014-01-01

    Rapeseed (Brassica napus L.) is grown in different geographical regions of the world. It is adapted to different environments by modification of flowering time and requirement for cold. A broad variation exists from very early-flowering spring-type to late-flowering winter cultivars which only flower after exposure to an extended cold period. B. napus is an allopolyploid species which resulted from the hybridization between B. rapa and B. oleracea. In Arabidopsis thaliana, the PEBP-domain genes FLOWERING LOCUS-T (FT) and TERMINAL FLOWER-1 (TFL1) are important integrators of different flowering pathways. Six FT and four TFL1 paralogs have been identified in B. napus. However, their role in flowering time control is unknown. We identified EMS mutants of the B. napus winter-type inbreed line Express 617. In total, 103 mutant alleles have been determined for BnC6FTb, BnC6FTa, and BnTFL1-2 paralogs. We chose three non-sense and 15 missense mutant lines (M3) which were grown in the greenhouse. Although only two out of 6 FT paralogs were mutated, 6 out of 8 BnC6FTb mutant lines flowered later as the control, whereas all five BnC6FTa mutant lines started flowering as the non-mutated parent. Mutations within the BnTFL1-2 paralog had no large effects on flowering time but on yield components. F1 hybrids between BnTFL1-2 mutants and non-mutated parents had increased seed number per pod and total seeds per plant suggesting that heterozygous mutations in a TFL1 paralog may impact heterosis in rapeseed. We demonstrate that single point-mutations in BnFT and BnTFL1 paralogs have effects on flowering time despite the redundancy of the rapeseed genome. Moreover, our results suggest pleiotropic effects of BnTFL1 paralogs beyond the regulation of flowering time. PMID:24987398

  5. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.

    PubMed

    Wheeler, Helen C; Høye, Toke T; Schmidt, Niels Martin; Svenning, Jens-Christian; Forchhammer, Mads C

    2015-03-01

    Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long-term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre-flowering exposure to freezing temperatures and to the temperatures-experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing 'damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results

  6. RNA Recognition Motif-Containing Protein ORRM4 Broadly Affects Mitochondrial RNA Editing and Impacts Plant Development and Flowering1[OPEN

    PubMed Central

    Germain, Arnaud

    2016-01-01

    Plant RNA editosomes modify cytidines (C) to uridines (U) at specific sites in plastid and mitochondrial transcripts. Members of the RNA-editing factor interacting protein (RIP) family and Organelle RNA Recognition Motif-containing (ORRM) family are essential components of the Arabidopsis (Arabidopsis thaliana) editosome. ORRM2 and ORRM3 have been recently identified as minor mitochondrial editing factors whose silencing reduces editing efficiency at ∼6% of the mitochondrial C targets. Here we report the identification of ORRM4 (for organelle RRM protein 4) as a novel, major mitochondrial editing factor that controls ∼44% of the mitochondrial editing sites. C-to-U conversion is reduced, but not eliminated completely, at the affected sites. The orrm4 mutant exhibits slower growth and delayed flowering time. ORRM4 affects editing in a site-specific way, though orrm4 mutation affects editing of the entire transcript of certain genes. ORRM4 contains an RRM domain at the N terminus and a Gly-rich domain at the C terminus. The RRM domain provides the editing activity of ORRM4, whereas the Gly-rich domain is required for its interaction with ORRM3 and with itself. The presence of ORRM4 in the editosome is further supported by its interaction with RIP1 in a bimolecular fluorescence complementation assay. The identification of ORRM4 as a major mitochondrial editing factor further expands our knowledge of the composition of the RNA editosome and reveals that adequate mitochondrial editing is necessary for normal plant development. PMID:26578708

  7. Adaptation to climate through flowering phenology: a case study in Medicago truncatula.

    PubMed

    Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle

    2016-07-01

    Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset. PMID:27144929

  8. Adaptation to climate through flowering phenology: a case study in Medicago truncatula.

    PubMed

    Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle

    2016-07-01

    Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset.

  9. Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida.

    PubMed

    Oliva, Moran; Ovadia, Rinat; Perl, Avichai; Bar, Einat; Lewinsohn, Efraim; Galili, Gad; Oren-Shamir, Michal

    2015-01-01

    Purple Petunia × hybrida V26 plants accumulate fragrant benzenoid-phenylpropanoid molecules and anthocyanin pigments in their petals. These specialized metabolites are synthesized mainly from the aromatic amino acids phenylalanine. Here, we studied the profile of secondary metabolites of petunia plants, expressing a feedback-insensitive bacterial form of 3-deoxy-di-arabino-heptulosonate 7-phosphate synthase enzyme (AroG*) of the shikimate pathway, as a tool to stimulate the conversion of primary to secondary metabolism via the aromatic amino acids. We focused on specialized metabolites contributing to flower showy traits. The presence of AroG* protein led to increased aromatic amino acid levels in the leaves and high phenylalanine levels in the petals. In addition, the AroG* petals accumulated significantly higher levels of fragrant benzenoid-phenylpropanoid volatiles, without affecting the flowers' lifetime. In contrast, AroG* abundance had no effect on flavonoids and anthocyanins levels. The metabolic profile of all five AroG* lines was comparable, even though two lines produced the transgene in the leaves, but not in the petals. This implies that phenylalanine produced in leaves can be transported through the stem to the flowers and serve as a precursor for formation of fragrant metabolites. Dipping cut petunia stems in labelled phenylalanine solution resulted in production of labelled fragrant volatiles in the flowers. This study emphasizes further the potential of this metabolic engineering approach to stimulate the production of specialized metabolites and enhance the quality of various plant organs. Furthermore, transformation of vegetative tissues with AroG* is sufficient for induced production of specialized metabolites in organs such as the flowers. PMID:25283446

  10. Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida.

    PubMed

    Oliva, Moran; Ovadia, Rinat; Perl, Avichai; Bar, Einat; Lewinsohn, Efraim; Galili, Gad; Oren-Shamir, Michal

    2015-01-01

    Purple Petunia × hybrida V26 plants accumulate fragrant benzenoid-phenylpropanoid molecules and anthocyanin pigments in their petals. These specialized metabolites are synthesized mainly from the aromatic amino acids phenylalanine. Here, we studied the profile of secondary metabolites of petunia plants, expressing a feedback-insensitive bacterial form of 3-deoxy-di-arabino-heptulosonate 7-phosphate synthase enzyme (AroG*) of the shikimate pathway, as a tool to stimulate the conversion of primary to secondary metabolism via the aromatic amino acids. We focused on specialized metabolites contributing to flower showy traits. The presence of AroG* protein led to increased aromatic amino acid levels in the leaves and high phenylalanine levels in the petals. In addition, the AroG* petals accumulated significantly higher levels of fragrant benzenoid-phenylpropanoid volatiles, without affecting the flowers' lifetime. In contrast, AroG* abundance had no effect on flavonoids and anthocyanins levels. The metabolic profile of all five AroG* lines was comparable, even though two lines produced the transgene in the leaves, but not in the petals. This implies that phenylalanine produced in leaves can be transported through the stem to the flowers and serve as a precursor for formation of fragrant metabolites. Dipping cut petunia stems in labelled phenylalanine solution resulted in production of labelled fragrant volatiles in the flowers. This study emphasizes further the potential of this metabolic engineering approach to stimulate the production of specialized metabolites and enhance the quality of various plant organs. Furthermore, transformation of vegetative tissues with AroG* is sufficient for induced production of specialized metabolites in organs such as the flowers.

  11. Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome

    PubMed Central

    2012-01-01

    Background Plants adopt different reproductive strategies as an adaptation to growth in a range of climates. In Arabidopsis thaliana FRIGIDA (FRI) confers a vernalization requirement and thus winter annual habit by increasing the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC). Variation at FRI plays a major role in A. thaliana life history strategy, as independent loss-of-function alleles that result in a rapid-cycling habit in different accessions, appear to have evolved many times. The aim of this study was to identify and characterize orthologues of FRI in Brassica oleracea. Results We describe the characterization of FRI from Brassica oleracea and identify the two B. oleracea FRI orthologues (BolC.FRI.a and BolC.FRI.b). These show extensive amino acid conservation in the central and C-terminal regions to FRI from other Brassicaceae, including A. thaliana, but have a diverged N-terminus. The genes map to two of the three regions of B. oleracea chromosomes syntenic to part of A. thaliana chromosome 5 suggesting that one of the FRI copies has been lost since the ancient triplication event that formed the B. oleracea genome. This genomic position is not syntenic with FRI in A. thaliana and comparative analysis revealed a recombination event within the A. thaliana FRI promoter. This relocated A. thaliana FRI to chromosome 4, very close to the nucleolar organizer region, leaving a fragment of FRI in the syntenic location on A. thaliana chromosome 5. Our data show this rearrangement occurred after the divergence from A. lyrata. We explored the allelic variation at BolC.FRI.a within cultivated B. oleracea germplasm and identified two major alleles, which appear equally functional both to each other and A. thaliana FRI, when expressed as fusions in A. thaliana. Conclusions We identify the two Brassica oleracea FRI genes, one of which we show through A. thaliana complementation experiments is functional, and show their genomic location is

  12. Relationship between time to flowering and stalk and ear damage by second generation corn borers.

    PubMed

    Ordas, B; Alvarez, A; Revilla, P; Butron, A; Malvar, R A

    2013-06-01

    In the Mediterranean area, the main corn borer species are Sesamia nonagrioides Lefebvre (Mediterranean corn borer) and Ostrinia nubilalis Hübner (European corn borer). In the overall context of integrated pest control, it is possible to reduce the effect of a pest without having a negative effect on the environment by varying the sowing date. Benefits are possible if the most susceptible stages of the crop no longer coincide with the peak of the pest. We used different cycles of selection (0, 6, 8, 10, and 12) of two populations (Purdue A and Purdue B) of maize selected for early flowering to get a more precise estimation of the relationship between maturity of plant tissues and corn borer damage. We found a relationship between the damage produced by corn borers and the number of days from flowering to infestation. We conclude that, after flowering, a later stage of plant development at the moment of the infestation by corn borers reduces the damage caused by the larvae. Based on our results, we recommend to plant as early as possible so the tissues would be as mature as possible at the moment of insect attack.

  13. Strawberry homologue of terminal flower1 integrates photoperiod and temperature signals to inhibit flowering.

    PubMed

    Rantanen, Marja; Kurokura, Takeshi; Jiang, Panpan; Mouhu, Katriina; Hytönen, Timo

    2015-04-01

    Photoperiod and temperature are major environmental signals affecting flowering in plants. Although molecular pathways mediating these signals have been well characterized in the annual model plant Arabidopsis, much less information is known in perennials. Many perennials including the woodland strawberry (Fragaria vesca L.) are induced to flower in response to decreasing photoperiod and temperature in autumn and they flower following spring. We showed earlier that, in contrast with Arabidopsis, the photoperiodic induction of flowering in strawberry occurs in short days (SD) when the decrease in FvFT1 (flowering locus T) and FvSOC1 (suppressor of the overexpression of constans1) expression leads to lower mRNA levels of the floral repressor, FvTFL1 (terminal flower1). By using transgenic lines and gene expression analyses, we show evidence that the temperature-mediated changes in the FvTFL1 mRNA expression set critical temperature limits for the photoperiodic flowering in strawberry. At temperatures below 13 °C, low expression level of FvTFL1 in both SD and long days (LD) allows flower induction to occur independently of the photoperiod. Rising temperature gradually increases FvTFL1 mRNA levels under LD, and at temperatures above 13 °C, SD is required for the flower induction that depends on the deactivation of FvSOC1 and FvTFL1. However, an unknown transcriptional activator, which functions independently of FvSOC1, enhances the expression of FvTFL1 at 23 °C preventing photoperiodic flowering. We suggest that the observed effect of the photoperiod × temperature interaction on FvTFL1 mRNA expression may allow strawberry to induce flowers in correct time in different climates.

  14. Abscisic Acid content of senescing petals on cut rose flowers as affected by sucrose and water stress.

    PubMed

    Borohov, A; Tirosh, T; Halevy, A H

    1976-08-01

    Leafless cut Superstar roses (Rosa hyb.) were kept in a 1% sucrose solution. During the first few days of treatment, the abscisic acid content and the water deficit in the petals was higher in treated flowers than in controls kept in water. Later and up to the termination of the flower's life, ABA content and water deficit values were lower in petals of sucrose-treated flowers than in controls. Water stress treatments resulted in higher water deficit values and higher ABA content of petals. An 8-day sucrose treatment following temporary water stress improved the quality of flowers and reduced the level of ABA in the petals. We conclude that the effect which sucrose has on the ABA content of rose petals is at least partly due to its effect on changes in water deficit in the petals. This happens in spite of the fact that rose petals have no stomata, and therefore, ABA is not involved in regulating water balance via the stomata.

  15. Reading? Does Television Viewing Time Affect It?

    ERIC Educational Resources Information Center

    Starkey, John D.; Swinford, Helen Lee

    Two hundred twenty-six 5th and 6th graders were the subjects of this study to correlate amount of television viewing and reading scores. It was found that the average viewing time per week for girls was 28 hours and for boys 30 hours. A slight relationship was reported between reading ability and amount of leisure time spent watching television.…

  16. The innate responses of bumble bees to flower patterns: separating the nectar guide from the nectary changes bee movements and search time

    NASA Astrophysics Data System (ADS)

    Goodale, Eben; Kim, Edward; Nabors, Annika; Henrichon, Sara; Nieh, James C.

    2014-06-01

    Nectar guides can enhance pollinator efficiency and plant fitness by allowing pollinators to more rapidly find and remember the location of floral nectar. We tested if a radiating nectar guide around a nectary would enhance the ability of naïve bumble bee foragers to find nectar. Most experiments that test nectar guide efficacy, specifically radiating linear guides, have used guides positioned around the center of a radially symmetric flower, where nectaries are often found. However, the flower center may be intrinsically attractive. We therefore used an off-center guide and nectary and compared "conjunct" feeders with a nectar guide surrounding the nectary to "disjunct" feeders with a nectar guide separated from the nectary. We focused on the innate response of novice bee foragers that had never previously visited such feeders. We hypothesized that a disjunct nectar guide would conflict with the visual information provided by the nectary and negatively affect foraging. Approximately, equal numbers of bumble bees ( Bombus impatiens) found nectar on both feeder types. On disjunct feeders, however, unsuccessful foragers spent significantly more time (on average 1.6-fold longer) searching for nectar than any other forager group. Successful foragers on disjunct feeders approached these feeders from random directions unlike successful foragers on conjunct feeders, which preferentially approached the combined nectary and nectar guide. Thus, the nectary and a surrounding nectar guide can be considered a combination of two signals that attract naïve foragers even when not in the floral center.

  17. Comparative Study of the Volatile Components of Fresh and Fermented Flowers of Alnus sieboldiana (Betulaceae).

    PubMed

    Ab Ghani, Nurunajah; Ismail, Nor Hadiani; Asakawa, Yoshinori

    2016-02-01

    Analysis of the volatile components present in the fresh male and female flowers and young leaves shows that 2-phenylethanol is the major component in all these three organs, which play a significant role in the strong resinous aromatic odor. The male flowers contained styrene as a second major compound. The level of styrene does not affect the male flowers odor concentration. The level of β-phenylethyl cinnamate and trans-methyl cinnamate in the fermented male flowers decreased as the fermentation time increased. This was due to the Penicillium enzymatic action on the fermented male flowers.

  18. Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a.

    PubMed

    Wang, Nian; Qian, Wei; Suppanz, Ida; Wei, Lijuan; Mao, Bizeng; Long, Yan; Meng, Jinling; Müller, Andreas E; Jung, Christian

    2011-11-01

    Oilseed rape (Brassica napus L.) is a major oil crop which is grown worldwide. Adaptation to different environments and regional climatic conditions involves variation in the regulation of flowering time. Winter types have a strong vernalization requirement whereas semi-winter and spring types have a low vernalization requirement or flower without exposure to cold, respectively. In Arabidopsis thaliana, FRIGIDA (FRI) is a key regulator which inhibits floral transition through activation of FLOWERING LOCUS C (FLC), a central repressor of flowering which controls vernalization requirement and response. Here, four FRI homologues in B. napus were identified by BAC library screening and PCR-based cloning. While all homologues are expressed, two genes were found to be differentially expressed in aerial plant organs. One of these, BnaA.FRI.a, was mapped to a region on chromosome A03 which co-localizes with a major flowering time quantitative trait locus in multiple environments in a doubled-haploid mapping population. Association analysis of BnaA.FRI.a revealed that six SNPs, including at least one at a putative functional site, and one haplotype block, respectively, are associated with flowering time variation in 248 accessions, with flowering times differing by 13-19 d between extreme haplotypes. The results from both linkage analysis and association mapping indicate that BnaA.FRI.a is a major determinant of flowering time in oilseed rape, and suggest further that this gene also contributes to the differentiation between growth types. The putative functional polymorphisms identified here may facilitate adaptation of this crop to specific environments through marker-assisted breeding. PMID:21862478

  19. How snowpack heterogeneity affects diurnal streamflow timing

    USGS Publications Warehouse

    Lundquist, J.D.; Dettinger, M.D.

    2005-01-01

    Diurnal cycles of streamflow in snow-fed rivers can be used to infer the average time a water parcel spends in transit from the top of the snowpack to a stream gauge in the river channel. This travel time, which is measured as the difference between the hour of peak snowmelt in the afternoon and the hour of maximum discharge each day, ranges from a few hours to almost a full day later. Travel times increase with longer percolation times through deeper snowpacks, and prior studies of small basins have related the timing of a stream's diurnal peak to the amount of snow stored in a basin. However, in many larger basins the time of peak flow is nearly constant during the first half of the melt season, with little or no variation between years. This apparent self-organization at larger scales can be reproduced by employing heterogeneous observations of snow depths and melt rates in a model that couples porous medium flow through an evolving snowpack with free surface flow in a channel. Copyright 2005 by the American Geophysical Union.

  20. Blob Flowers.

    ERIC Educational Resources Information Center

    Canfield, Elaine

    2003-01-01

    Describes an art project called blob flowers in which fifth-grade students created pictures of flowers using watercolor and markers. Explains that the lesson incorporates ideas from art and science. Discusses in detail how the students created their flowers. (CMK)

  1. Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine

    PubMed Central

    Huang, K. S.; Lee, S. E.; Yeh, Y.; Shen, G. S.; Mei, E.; Chang, C. M.

    2010-01-01

    Western flower thrip (Frankliniella occidentalis) is a major global pest of agricultural products. It directly damages crops through feeding, oviposition activity or transmission of several plant viruses. We describe a Taqman real-time quantitative PCR detection system, which can rapidly identify F. occidentalis from thrips larvae to complement the traditional morphological identification. The data showed that our detection system targeted on the ribosomal RNA gene regions of F. occidentalis has high sensitivity and specificity. The rapid method can be used for on-site testing of samples at ports-of-entry in the future. PMID:20129946

  2. Conservation of Arabidopsis thaliana photoperiodic flowering time genes in onion (Allium cepa L.).

    PubMed

    Taylor, Andrew; Massiah, Andrea Juliet; Thomas, Brian

    2010-10-01

    The genetics underlying onion development are poorly understood. Here the characterization of onion homologs of Arabidopsis photoperiodic flowering pathway genes is reported with the end goal of accelerating onion breeding programs by understanding the genetic basis of adaptation to different latitudes. The expression of onion GI, FKF1 and ZTL homologs under short day (SD) and long day (LD) conditions was examined using quantitative reverse transcription-PCR (qRT-PCR). The expression of AcGI and AcFKF1 was examined in onion varieties which exhibit different daylength responses. Phylogenetic trees were constructed to confirm the identity of the homologs. AcGI and AcFKF1 showed diurnal expression patterns similar to their Arabidopsis counterparts, while AcZTL was found to be constitutively expressed. AcGI showed similar expression patterns in varieties which exhibit different daylength responses, whereas AcFKF1 showed differences. It is proposed that these differences could contribute to the different daylength responses in these varieties. Phylogenetic analyses showed that all the genes isolated are very closely related to their proposed homologs. The results presented here show that key genes controlling photoperiodic flowering in Arabidopsis are conserved in onion, and a role for these genes in the photoperiodic control of bulb initiation is predicted. This theory is supported by expression and phylogenetic data.

  3. The movement and distribution of Helicoverpa armigera (Hübner) larvae on pea plants is affected by egg placement and flowering.

    PubMed

    Perkins, L E; Cribb, B W; Hanan, J; Zalucki, M P

    2010-10-01

    The distribution and movement of 1st instar Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae on whole garden pea (Pisum sativum L.) plants were determined in glasshouse trials. This economically-important herbivore attacks a wide variety of agricultural, horticultural and indigenous plants. To investigate the mechanisms underlying larval intra-plant movement, we used early-flowering and wild-type plant genotypes and placed eggs at different vertical heights within the plants, one egg per plant. Leaf water and nitrogen content and cuticle hardness were measured at the different plant heights. Of 92 individual larvae, 41% did not move from the node of eclosion, 49% moved upwards and 10% moved downwards with the distance moved being between zero and ten plant nodes. Larvae from eggs placed on the lower third of the plant left the natal leaf more often and moved further than larvae from eggs placed in the middle or upper thirds. The low nutritive value of leaves was the most likely explanation for more movement away from lower plant regions. Although larvae on flowering plants did not move further up or down than larvae on non-flowering plants, they more often departed the leaflet (within a leaf) where they eclosed. The final distribution of larvae was affected by plant genotype, with larvae on flowering plants found less often on leaflets and more often on stipules, tendrils and reproductive structures. Understanding intra-plant movement by herbivorous insects under natural conditions is important because such movement determines the value of economic loss to host crops. Knowing the behaviour underlying the spatial distribution of herbivores on plants will assist us to interpret field data and should lead to better informed pest management decisions.

  4. Some Factors Affecting Time Reversal Signal Reconstruction

    NASA Astrophysics Data System (ADS)

    Prevorovsky, Z.; Kober, J.

    Time reversal (TR) ultrasonic signal processing is now broadly used in a variety of applications, and also in NDE/NDT field. TR processing is used e.g. for S/N ratio enhancement, reciprocal transducer calibration, location, identification, and reconstruction of unknown sources, etc. TR procedure in con-junction with nonlinear elastic wave spectroscopy NEWS is also useful for sensitive detection of defects (nonlinearity presence). To enlarge possibilities of acoustic emission (AE) method, we proposed the use of TR signal reconstruction ability for detected AE signals transfer from a structure with AE source onto a similar remote model of the structure (real or numerical), which allows easier source analysis under laboratory conditions. Though the TR signal reconstruction is robust regarding the system variations, some small differences and changes influence space-time TR focus and reconstruction quality. Experiments were performed on metallic parts of both simple and complicated geometry to examine effects of small changes of temperature or configuration (body shape, dimensions, transducers placement, etc.) on TR reconstruction quality. Results of experiments are discussed in this paper. Considering mathematical similarity between TR and Coda Wave Interferometry (CWI), prediction of signal reconstruction quality was possible using only the direct propagation. The results show how some factors like temperature or stress changes may deteriorate the TR reconstruction quality. It is also shown that sometimes the reconstruction quality is not enhanced using longer TR signal (S/N ratio may decrease).

  5. Poppy APETALA1/FRUITFULL Orthologs Control Flowering Time, Branching, Perianth Identity, and Fruit Development1[W][OA

    PubMed Central

    Pabón-Mora, Natalia; Ambrose, Barbara A.; Litt, Amy

    2012-01-01

    Several MADS box gene lineages involved in flower development have undergone duplications that correlate with the diversification of large groups of flowering plants. In the APETALA1 gene lineage, a major duplication coincides with the origin of the core eudicots, resulting in the euFUL and the euAP1 clades. Arabidopsis FRUITFULL (FUL) and APETALA1 (AP1) function redundantly in specifying floral meristem identity but function independently in sepal and petal identity (AP1) and in proper fruit development and determinacy (FUL). Many of these functions are largely conserved in other core eudicot euAP1 and euFUL genes, but notably, the role of APETALA1 as an “A-function” (sepal and petal identity) gene is thought to be Brassicaceae specific. Understanding how functional divergence of the core eudicot duplicates occurred requires a careful examination of the function of preduplication (FUL-like) genes. Using virus-induced gene silencing, we show that FUL-like genes in opium poppy (Papaver somniferum) and California poppy (Eschscholzia californica) function in axillary meristem growth and in floral meristem and sepal identity and that they also play a key role in fruit development. Interestingly, in opium poppy, these genes also control flowering time and petal identity, suggesting that AP1/FUL homologs might have been independently recruited in petal identity. Because the FUL-like gene functional repertoire encompasses all roles previously described for the core eudicot euAP1 and euFUL genes, we postulate subfunctionalization as the functional outcome after the major AP1/FUL gene lineage duplication event. PMID:22286183

  6. Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population.

    PubMed

    Allard, Alix; Bink, Marco C A M; Martinez, Sébastien; Kelner, Jean-Jacques; Legave, Jean-Michel; di Guardo, Mario; Di Pierro, Erica A; Laurens, François; van de Weg, Eric W; Costes, Evelyne

    2016-04-01

    In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6-21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase.

  7. Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population

    PubMed Central

    Allard, Alix; Bink, Marco C.A.M.; Martinez, Sébastien; Kelner, Jean-Jacques; Legave, Jean-Michel; di Guardo, Mario; Di Pierro, Erica A.; Laurens, François; van de Weg, Eric W.; Costes, Evelyne

    2016-01-01

    In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6–21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase. PMID:27034326

  8. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 Gene Affects Branch Production and Plays a Role in Leaf Senescence, Root Growth, and Flower Development

    PubMed Central

    Snowden, Kimberley C.; Simkin, Andrew J.; Janssen, Bart J.; Templeton, Kerry R.; Loucas, Holly M.; Simons, Joanne L.; Karunairetnam, Sakuntala; Gleave, Andrew P.; Clark, David G.; Klee, Harry J.

    2005-01-01

    Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development. PMID:15705953

  9. Timing Conception Might Help Reduce Zika Risk in Affected Areas

    MedlinePlus

    ... fullstory_160127.html Timing Conception Might Help Reduce Zika Risk in Affected Areas Researcher suggests attempting pregnancy ... THURSDAY, July 28, 2016 (HealthDay News) -- Women in Zika-affected countries might reduce their risk of infection ...

  10. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks

    PubMed Central

    Xiao, Dong; Zhao, Jian J.; Bonnema, Guusje

    2013-01-01

    The role of many genes and interactions among genes involved in flowering time have been studied extensively in Arabidopsis, and the purpose of this study was to investigate how effectively results obtained with the model species Arabidopsis can be applied to the Brassicacea with often larger and more complex genomes. Brassica rapa represents a very close relative, with its triplicated genome, with subgenomes having evolved by genome fractionation. The question of whether this genome fractionation is a random process, or whether specific genes are preferentially retained, such as flowering time (Ft) genes that play a role in the extreme morphological variation within the B. rapa species (displayed by the diverse morphotypes), is addressed. Data are presented showing that indeed Ft genes are preferentially retained, so the next intriguing question is whether these different orthologues of Arabidopsis Ft genes play similar roles compared with Arabidopsis, and what is the role of these different orthologues in B. rapa. Using a genetical–genomics approach, co-location of flowering quantitative trait loci (QTLs) and expression QTLs (eQTLs) resulted in identification of candidate genes for flowering QTLs and visualization of co-expression networks of Ft genes and flowering time. A major flowering QTL on A02 at the BrFLC2 locus co-localized with cis eQTLs for BrFLC2, BrSSR1, and BrTCP11, and trans eQTLs for the photoperiod gene BrCO and two paralogues of the floral integrator genes BrSOC1 and BrFT. It is concluded that the BrFLC2 Ft gene is a major regulator of flowering time in the studied doubled haploid population. PMID:24078668

  11. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks.

    PubMed

    Xiao, Dong; Zhao, Jian J; Hou, Xi L; Basnet, Ram K; Carpio, Dunia P D; Zhang, Ning W; Bucher, Johan; Lin, Ke; Cheng, Feng; Wang, Xiao W; Bonnema, Guusje

    2013-11-01

    The role of many genes and interactions among genes involved in flowering time have been studied extensively in Arabidopsis, and the purpose of this study was to investigate how effectively results obtained with the model species Arabidopsis can be applied to the Brassicacea with often larger and more complex genomes. Brassica rapa represents a very close relative, with its triplicated genome, with subgenomes having evolved by genome fractionation. The question of whether this genome fractionation is a random process, or whether specific genes are preferentially retained, such as flowering time (Ft) genes that play a role in the extreme morphological variation within the B. rapa species (displayed by the diverse morphotypes), is addressed. Data are presented showing that indeed Ft genes are preferentially retained, so the next intriguing question is whether these different orthologues of Arabidopsis Ft genes play similar roles compared with Arabidopsis, and what is the role of these different orthologues in B. rapa. Using a genetical-genomics approach, co-location of flowering quantitative trait loci (QTLs) and expression QTLs (eQTLs) resulted in identification of candidate genes for flowering QTLs and visualization of co-expression networks of Ft genes and flowering time. A major flowering QTL on A02 at the BrFLC2 locus co-localized with cis eQTLs for BrFLC2, BrSSR1, and BrTCP11, and trans eQTLs for the photoperiod gene BrCO and two paralogues of the floral integrator genes BrSOC1 and BrFT. It is concluded that the BrFLC2 Ft gene is a major regulator of flowering time in the studied doubled haploid population.

  12. Essential oil composition and antifungal activity of aerial parts of Ballota nigra ssp foetida collected at flowering and fruiting times.

    PubMed

    Fraternale, Daniele; Ricci, Donata

    2014-07-01

    The present study reports the results of gas chromatographic-mass spectrometric (GC/MS) analyses of the essential oils from the aerial parts of Ballota nigra L. ssp foetida (Lamiaceae) collected at flowering and fruiting times, as well as their in vitro antifungal activity against nine plant pathogenic fungi. Moreover, the essential oils were evaluated for their antifungal activity using the agar dilution method, and also MICs (minimum inhibitory concentrations) and MFCs (minimum fungicidal concentrations) were determined. The major compounds identified in the flowering and fruiting aerial parts oils respectively were beta-caryophyllene (22.6% and 21.8%), caryophyllene oxide (18.0% and 20.5%) and germacrene-D (16.5 and 13.1%). The oils showed in vitro antifungal activity against some species of Fusarium, Botrytis cinerea, and Alternaria solani. Our study indicates that the oil of B. nigra ssp foetida could be used as a control agent for plant pathogenic fungi in natural formulations. PMID:25230517

  13. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response.

    PubMed

    Hori, Kiyosumi; Ogiso-Tanaka, Eri; Matsubara, Kazuki; Yamanouchi, Utako; Ebana, Kaworu; Yano, Masahiro

    2013-10-01

    The alteration of photoperiod sensitivity has let breeders diversify flowering time in Oryza sativa (rice) and develop cultivars adjusted to a range of growing season periods. Map-based cloning revealed that the rice flowering-time quantitative trait locus (QTL) Heading date 16 (Hd16) encodes a casein kinase-I protein. One non-synonymous substitution in Hd16 resulted in decreased photoperiod sensitivity in rice, and this substitution occurred naturally in an old rice cultivar. By using near-isogenic lines with functional or deficient alleles of several rice flowering-time genes, we observed significant digenetic interactions between Hd16 and four other flowering-time genes (Ghd7, Hd1, DTH8 and Hd2). In a near-isogenic line with the weak-photoperiod-sensitivity allele of Hd16, transcription levels of Ehd1, Hd3a, and RFT1 increased under long-day conditions, and transcription levels of Hd3a and RFT1 decreased under short-day conditions. Expression analysis under continuous light and dark conditions showed that Hd16 was not likely to be associated with circadian clock regulation. Biochemical characterization indicated that the functional Hd16 recombinant protein specifically phosphorylated Ghd7. These results demonstrate that Hd16 acts as an inhibitor in the rice flowering pathway by enhancing the photoperiod response as a result of the phosphorylation of Ghd7.

  14. Impact of global warming on a group of related species and their hybrids: cherry tree (Rosaceae) flowering at Mt. Takao, Japan.

    PubMed

    Miller-Rushing, Abraham J; Katsuki, Toshio; Primack, Richard B; Ishii, Yukio; Lee, Sang Don; Higuchi, Hiroyoshi

    2007-09-01

    Climate change is affecting plant phenology worldwide. Phenological responses vary among species, but it is not clear how responses differ among closely related species. We examined a 25-yr record (1981-2005) of flowering times for 97 trees, representing 17 species and hybrids of cherry (Cerasus sp. or Prunus sp.) grown at Mt. Takao, in Tokyo, Japan. The cherry trees flowered earlier over time, by an average of 5.5 d over the 25-yr study. Earlier flowering was explained largely by a 1.8°C increase in February-March mean monthly temperatures. Most species and hybrids flowered 3-5 d earlier for each 1°C increase in temperature, but early-flowering taxa flowered as much as 9 d earlier for each 1°C increase in temperature. Flowering durations and differences in flowering times among species were greater in warm years than in cold years. Species and individual trees also flowered longer in warm years. These results show that the flowering times of closely related species may change similarly in response to climate change, but that early-flowering species may diverge from the overall trend in a predictable way. Such changes in flowering may affect gene flow and pollination as the length of the flowering season increases. PMID:21636514

  15. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice

    PubMed Central

    Ren, Deyong; Rao, Yuchun; Wu, Liwen; Xu, Qiankun; Li, Zizhuang; Yu, Haiping; Zhang, Yu; Leng, Yujia; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Dong, Guojun; Zhang, Guangheng; Guo, Longbiao

    2016-01-01

    Abstract Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull‐like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1‐green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes. PMID:26486996

  16. Say it with flowers

    PubMed Central

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings. PMID:24598343

  17. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant

    PubMed Central

    2010-01-01

    Background Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). Results We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. Conclusions This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites. PMID:20482889

  18. Flower Development

    PubMed Central

    Alvarez-Buylla, Elena R.; Benítez, Mariana; Corvera-Poiré, Adriana; Chaos Cador, Álvaro; de Folter, Stefan; Gamboa de Buen, Alicia; Garay-Arroyo, Adriana; García-Ponce, Berenice; Jaimes-Miranda, Fabiola; Pérez-Ruiz, Rigoberto V.; Piñeyro-Nelson, Alma; Sánchez-Corrales, Yara E.

    2010-01-01

    Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies. PMID:22303253

  19. Flower development.

    PubMed

    Alvarez-Buylla, Elena R; Benítez, Mariana; Corvera-Poiré, Adriana; Chaos Cador, Alvaro; de Folter, Stefan; Gamboa de Buen, Alicia; Garay-Arroyo, Adriana; García-Ponce, Berenice; Jaimes-Miranda, Fabiola; Pérez-Ruiz, Rigoberto V; Piñeyro-Nelson, Alma; Sánchez-Corrales, Yara E

    2010-01-01

    Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies. PMID:22303253

  20. Transposon-mediated mutation of CYP76AD3 affects betalain synthesis and produces variegated flowers in four o'clock (Mirabilis jalapa).

    PubMed

    Suzuki, Mariko; Miyahara, Taira; Tokumoto, Hiroko; Hakamatsuka, Takashi; Goda, Yukihiro; Ozeki, Yoshihiro; Sasaki, Nobuhiro

    2014-11-01

    The variegated flower colors of many plant species have been shown to result from the insertion or excision of transposable elements into genes that encode enzymes involved in anthocyanin synthesis. To date, however, it has not been established whether this phenomenon is responsible for the variegation produced by other pigments such as betalains. During betalain synthesis in red beet, the enzyme CYP76AD1 catalyzes the conversion of L-dihydroxyphenylalanine (DOPA) to cyclo-DOPA. RNA sequencing (RNA-seq) analysis indicated that the homologous gene in four o'clock (Mirabilis jalapa) is CYP76AD3. Here, we show that in four o'clock with red perianths, the CYP76AD3 gene consists of one intron and two exons; however, in a mutant with a perianth showing red variegation on a yellow background, a transposable element, dTmj1, had been excised from the intron. This is the first report that a transposition event affecting a gene encoding an enzyme for betalain synthesis can result in a variegated flower phenotype. PMID:25151127

  1. Transposon-mediated mutation of CYP76AD3 affects betalain synthesis and produces variegated flowers in four o'clock (Mirabilis jalapa).

    PubMed

    Suzuki, Mariko; Miyahara, Taira; Tokumoto, Hiroko; Hakamatsuka, Takashi; Goda, Yukihiro; Ozeki, Yoshihiro; Sasaki, Nobuhiro

    2014-11-01

    The variegated flower colors of many plant species have been shown to result from the insertion or excision of transposable elements into genes that encode enzymes involved in anthocyanin synthesis. To date, however, it has not been established whether this phenomenon is responsible for the variegation produced by other pigments such as betalains. During betalain synthesis in red beet, the enzyme CYP76AD1 catalyzes the conversion of L-dihydroxyphenylalanine (DOPA) to cyclo-DOPA. RNA sequencing (RNA-seq) analysis indicated that the homologous gene in four o'clock (Mirabilis jalapa) is CYP76AD3. Here, we show that in four o'clock with red perianths, the CYP76AD3 gene consists of one intron and two exons; however, in a mutant with a perianth showing red variegation on a yellow background, a transposable element, dTmj1, had been excised from the intron. This is the first report that a transposition event affecting a gene encoding an enzyme for betalain synthesis can result in a variegated flower phenotype.

  2. Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L.

    PubMed Central

    Dalton-Morgan, Jessica; Batley, Jacqueline; Yu, Longjiang; Meng, Jinling; Li, Maoteng

    2015-01-01

    The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the low density and mixture of biomarkers used obstructed genomic selection in B. napus and comprehensive mapping of FT related loci. In this study, a high-density genome-wide SNP set was genotyped from a double-haploid population of B. napus. We first performed genomic prediction of FT traits in B. napus using SNPs across the genome under ten environments of three geographic regions via eight existing genomic predictive models. The results showed that all the models achieved comparably high accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a large-scale mapping of FT related loci among three regions, and found 437 associated SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes tagged by the associated SNPs were enriched in biological processes involved in the formation of flowers. Epistasis analysis showed that significant interactions were found between detected loci, even among some known FT related genes. All the results showed that our large scale and high-density genotype data are of great practical and scientific values for B. napus. To our best knowledge, this is the first evaluation of genomic selection models in B. napus based on a high-density SNP dataset and large-scale mapping of FT loci. PMID:25790019

  3. Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L.

    PubMed

    Li, Lun; Long, Yan; Zhang, Libin; Dalton-Morgan, Jessica; Batley, Jacqueline; Yu, Longjiang; Meng, Jinling; Li, Maoteng

    2015-01-01

    The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the low density and mixture of biomarkers used obstructed genomic selection in B. napus and comprehensive mapping of FT related loci. In this study, a high-density genome-wide SNP set was genotyped from a double-haploid population of B. napus. We first performed genomic prediction of FT traits in B. napus using SNPs across the genome under ten environments of three geographic regions via eight existing genomic predictive models. The results showed that all the models achieved comparably high accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a large-scale mapping of FT related loci among three regions, and found 437 associated SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes tagged by the associated SNPs were enriched in biological processes involved in the formation of flowers. Epistasis analysis showed that significant interactions were found between detected loci, even among some known FT related genes. All the results showed that our large scale and high-density genotype data are of great practical and scientific values for B. napus. To our best knowledge, this is the first evaluation of genomic selection models in B. napus based on a high-density SNP dataset and large-scale mapping of FT loci.

  4. Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.)

    PubMed Central

    Nie, Shanshan; Xu, Liang; Wang, Yan; Huang, Danqiong; Muleke, Everlyne M.; Sun, Xiaochuan; Wang, Ronghua; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-01-01

    MicroRNAs (miRNAs) play vital regulatory roles in plant growth and development. The phase transition from vegetative growth to flowering is crucial in the life cycle of plants. To date, miRNA-mediated flowering regulatory networks remain largely unexplored in radish. In this study, two small RNA libraries from radish leaves at vegetative and reproductive stages were constructed and sequenced by Solexa sequencing. A total of 94 known miRNAs representing 21 conserved and 13 non-conserved miRNA families, and 44 potential novel miRNAs, were identified from the two libraries. In addition, 42 known and 17 novel miRNAs were significantly differentially expressed and identified as bolting-related miRNAs. RT-qPCR analysis revealed that some miRNAs exhibited tissue- or developmental stage-specific expression patterns. Moreover, 154 target transcripts were identified for 50 bolting-related miRNAs, which were predominately involved in plant development, signal transduction and transcriptional regulation. Based on the characterization of bolting-related miRNAs and their target genes, a putative schematic model of miRNA-mediated bolting and flowering regulatory network was proposed. These results could provide insights into bolting and flowering regulatory networks in radish, and facilitate dissecting the molecular mechanisms underlying bolting and flowering time regulation in vegetable crops. PMID:26369897

  5. Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.).

    PubMed

    Nie, Shanshan; Xu, Liang; Wang, Yan; Huang, Danqiong; Muleke, Everlyne M; Sun, Xiaochuan; Wang, Ronghua; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-09-15

    MicroRNAs (miRNAs) play vital regulatory roles in plant growth and development. The phase transition from vegetative growth to flowering is crucial in the life cycle of plants. To date, miRNA-mediated flowering regulatory networks remain largely unexplored in radish. In this study, two small RNA libraries from radish leaves at vegetative and reproductive stages were constructed and sequenced by Solexa sequencing. A total of 94 known miRNAs representing 21 conserved and 13 non-conserved miRNA families, and 44 potential novel miRNAs, were identified from the two libraries. In addition, 42 known and 17 novel miRNAs were significantly differentially expressed and identified as bolting-related miRNAs. RT-qPCR analysis revealed that some miRNAs exhibited tissue- or developmental stage-specific expression patterns. Moreover, 154 target transcripts were identified for 50 bolting-related miRNAs, which were predominately involved in plant development, signal transduction and transcriptional regulation. Based on the characterization of bolting-related miRNAs and their target genes, a putative schematic model of miRNA-mediated bolting and flowering regulatory network was proposed. These results could provide insights into bolting and flowering regulatory networks in radish, and facilitate dissecting the molecular mechanisms underlying bolting and flowering time regulation in vegetable crops.

  6. Bumble-bee learning selects for both early and long flowering in food-deceptive plants

    PubMed Central

    Internicola, Antonina I.; Harder, Lawrence D.

    2012-01-01

    Most rewardless orchids engage in generalized food-deception, exhibiting floral traits typical of rewarding species and exploiting the instinctive foraging of pollinators. Generalized food-deceptive (GFD) orchids compete poorly with rewarding species for pollinator services, which may be overcome by flowering early in the growing season when relatively more pollinators are naive and fewer competing plant species are flowering, and/or flowering for extended periods to enhance the chance of pollinator visits. We tested these hypotheses by manipulating flowering time and duration in a natural population of Calypso bulbosa and quantifying pollinator visitation based on pollen removal. Both early and long flowering increased bumble-bee visitation compared with late and brief flowering, respectively. To identify the cause of reduced visitation during late flowering, we tested whether negative experience with C. bulbosa (avoidance learning) and positive experience with a rewarding species, Arctostaphylos uva-ursi, (associative learning) by captive bumble-bees could reduce C. bulbosa's competitiveness. Avoidance learning explained the higher visitation of early- compared with late-flowering C. bulbosa. The resulting pollinator-mediated selection for early flowering may commonly affect GFD orchids, explaining their tendency to flower earlier than rewarding orchids. For dissimilar deceptive and rewarding sympatric species, associative learning may additionally favour early flowering by GFD species. PMID:22090384

  7. Questions of time and affect: a person’s affectivity profile, time perspective, and well-being

    PubMed Central

    Sailer, Uta; Nima, Ali Al; Archer, Trevor

    2016-01-01

    Background. A “balanced” time perspective has been suggested to have a positive influence on well-being: a sentimental and positive view of the past (high Past Positive), a less pessimistic attitude toward the past (low Past Negative), the desire of experiencing pleasure with slight concern for future consequences (high Present Hedonistic), a less fatalistic and hopeless view of the future (low Present Fatalistic), and the ability to find reward in achieving specific long-term goals (high Future). We used the affective profiles model (i.e., combinations of individuals’ experience of high/low positive/negative affectivity) to investigate differences between individuals in time perspective dimensions and to investigate if the influence of time perspective dimensions on well-being was moderated by the individual’s type of profile. Method. Participants (N = 720) answered to the Positive Affect Negative Affect Schedule, the Zimbardo Time Perspective Inventory and two measures of well-being: the Temporal Satisfaction with Life Scale and Ryff’s Scales of Psychological Well-Being-short version. A Multivariate Analysis of Variance (MANOVA) was conducted to identify differences in time perspective dimensions and well-being among individuals with distinct affective profiles. Four structural equation models (SEM) were used to investigate which time perspective dimensions predicted well-being for individuals in each profile. Results. Comparisons between individuals at the extreme of the affective profiles model suggested that individuals with a self-fulfilling profile (high positive/low negative affect) were characterized by a “balanced” time perspective and higher well-being compared to individuals with a self-destructive profile (low positive/high negative affect). However, a different pattern emerged when individuals who differed in one affect dimension but matched in the other were compared to each other. For instance, decreases in the past negative time

  8. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits.

    PubMed

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-12-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits.

  9. A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits

    PubMed Central

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-01-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits. PMID:19884167

  10. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana.

    PubMed

    Yu, Yanchong; Liu, Zhenhua; Wang, Long; Kim, Sang-Gyu; Seo, Pil J; Qiao, Meng; Wang, Nan; Li, Shuo; Cao, Xiaofeng; Park, Chung-Mo; Xiang, Fengning

    2016-01-01

    Flowering is crucial for achieving reproductive success. A large number of well-delineated factors affecting flowering are involved in complex genetic networks in Arabidopsis thaliana. However, the underlying part played by the WRKY transcription factors in this process is not yet clear. Here, we report that WRKY71 is able to accelerate flowering in Arabidopsis. An activation-tagged mutant WRKY71-1D and a constitutive over-expresser of WRKY71 both flowered earlier than the wild type (WT). In contrast, both the RNA interference-based multiple WRKY knock-out mutant (w71w8 + 28RNAi) and the dominant repression line (W71-SRDX) flowered later. Gene expression analysis showed that the transcript abundance of the flowering time integrator gene FLOWERING LOCUS T (FT) and the floral meristem identity genes LEAFY (LFY), APETALA1 (AP1) and FRUITFULL (FUL) were greater in WRKY71-1D than in the WT, but lower in w71w8 + 28RNAi and W71-SRDX. Further, WRKY71 was shown to bind to the W-boxes in the FT and LFY promoters in vitro and in vivo. The suggestion is that WRKY71 activity hastens flowering via the direct activation of FT and LFY.

  11. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana.

    PubMed

    Galvão, Vinicius C; Horrer, Daniel; Küttner, Frank; Schmid, Markus

    2012-11-01

    The transition from vegetative to reproductive development is a central event in the plant life cycle. To time the induction of flowering correctly, plants integrate environmental and endogenous signals such as photoperiod, temperature and hormonal status. The hormone gibberellic acid (GA) has long been known to regulate flowering. However, the spatial contribution of GA signaling in flowering time control is poorly understood. Here we have analyzed the effect of tissue-specific misexpression of wild-type and GA-insensitive (dellaΔ17) DELLA proteins on the floral transition in Arabidopsis thaliana. We demonstrate that under long days, GA affects the floral transition by promoting the expression of flowering time integrator genes such as FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) in leaves independently of CONSTANS (CO) and GIGANTEA (GI). In addition, GA signaling promotes flowering independently of photoperiod through the regulation of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in both the leaves and at the shoot meristem. Our data suggest that GA regulates flowering by controlling the spatial expression of floral regulatory genes throughout the plant in a day-length-specific manner. PMID:22992955

  12. Flowers & Weeds.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1996-01-01

    Describes the topics and teaching strategies employed in an Issues in Biology course. Discusses flowers, plant breeding, potatoes and tomatoes, the chocolate tree, weeds, Arabidopis, gene transfers, and plant genes/human genes. Contains 22 references. (JRH)

  13. Effects of Plant Size and Weather on the Flowering Phenology of the Organ Pipe Cactus (Stenocereus thurberi)

    PubMed Central

    Bustamante, Enriquena; Búrquez, Alberto

    2008-01-01

    Background and Aims Flowering phenology is a critical life-history trait that influences reproductive success. It has been shown that genetic, climatic and other factors such as plant size affect the timing of flowering and its duration. The spatial and temporal variation in the reproductive phenology of the columnar cactus Stenocereus thurberi and its association with plant size and environmental cues was studied. Methods Flowering was monitored during 3 years in three populations of S. thurberi along a latitudinal gradient. Plant size was related to phenological parameters. The actual and past weather were used for each site and year to investigate the environmental correlates of flowering. Key Results There was significant variation in the timing of flowering within and among populations. Flowering lasted 4 months in the southern population and only 2 months in the northern population. A single flowering peak was evident in each population, but ocurred at different times. Large plants produced more flowers, and bloomed earlier and for a longer period than small plants. Population synchrony increased as the mean duration of flowering per individual decreased. The onset of flowering is primarily related to the variance in winter minimum temperatures and the duration to the autumn–winter mean maximum temperature, whereas spring mean maximum temperature is best correlated with synchrony. Conclusions Plant size affects individual plant fecundity as well as flowering time. Thus the population structure strongly affects flowering phenology. Indications of clinal variation in the timing of flowering and reproductive effort suggest selection pressures related to the arrival of migrating pollinators, climate and resource economy in a desert environment. These pressures are likely to be relaxed in populations where individual plants can attain large sizes. PMID:18854374

  14. Phytochrome B in the Mesophyll Delays Flowering by Suppressing FLOWERING LOCUS T Expression in Arabidopsis Vascular Bundles

    PubMed Central

    Endo, Motomu; Nakamura, Satoshi; Araki, Takashi; Mochizuki, Nobuyoshi; Nagatani, Akira

    2005-01-01

    Light is one of the most important environmental factors that determine the timing of a plant's transition from the vegetative to reproductive, or flowering, phase. Not only daylength but also the spectrum of light greatly affect flowering. The shade of nearby vegetation reduces the ratio of red to far-red light and can trigger shade avoidance responses, including stem elongation and the acceleration of flowering. Phytochrome B (phyB) acts as a photoreceptor for this response. Physiological studies have suggested that leaves can perceive and respond to shade. However, little is known about the mechanisms involved in the processing of light signals within leaves. In this study, we used an enhancer-trap system to establish Arabidopsis thaliana transgenic lines that express phyB–green fluorescent protein (GFP) fusion protein in tissue-specific manners. The analysis of these lines demonstrated that phyB-GFP in mesophyll cells affected flowering, whereas phyB-GFP in vascular bundles did not. Furthermore, mesophyll phyB-GFP suppressed the expression of a key flowering regulator, FLOWERING LOCUS T, in the vascular bundles of cotyledons. Hence, a novel intertissue signaling from mesophyll to vascular bundles is revealed as a critical step for the regulation of flowering by phyB. PMID:15965119

  15. Daffodil flowers delay senescence in cut Iris flowers.

    PubMed

    van Doorn, Wouter G; Sinz, Andrea; Tomassen, Monic M

    2004-03-01

    Visible symptoms of tepal senescence in cut Iris x hollandica (cv. Blue Magic) flowers were delayed by placing one cut daffodil flower (Narcissus pseudonarcissus, cv. Carlton) in the same vase. Addition of mucilage, exuded by daffodil stems, to the vase water had the same effect as the flowering daffodil stem. The active compound in the mucilage was identified as narciclasine (using LC/MS, GC/MS, 1H and 13C-NMR, and comparison with an authentic sample of narciclasine). The delay of senescence, either by mucilage or purified narciclasine, was correlated with a delayed increase in protease activity, and with a considerable reduction of maximum protease activity. Narciclasine did not affect in vitro protease activity, but is known to inhibit protein synthesis at the ribosomal level. Its effects on senescence and protease activity were similar to those of cycloheximide (CHX), another inhibitor of protein synthesis, but the effective narciclasine concentration was about 100 times lower than that of CHX. It is concluded that the delay of Iris tepal senescence by daffodil stems is due to narciclasine in daffodil mucilage, which apparently inhibits the synthesis of proteins involved in senescence.

  16. Vulnerability of the northern Mongolian steppe to climate change: insights from flower production and phenology.

    PubMed

    Liancourt, Pierre; Spence, Laura A; Boldgiv, Bazartseren; Lkhagva, Ariuntsetseg; Helliker, Brent R; Casper, Brenda B; Petraitis, Peter S

    2012-04-01

    The semiarid, northern Mongolian steppe, which still supports pastoral nomads who have used the steppe for millennia, has experienced an average 1.7 degrees C temperature rise over the past 40 years. Continuing climate change is likely to affect flowering phenology and flower numbers with potentially important consequences for plant community composition, ecosystem services, and herder livelihoods. Over the growing seasons of 2009 and 2010, we examined flowering responses to climate manipulation using open-top passive warming chambers (OTCs) at two locations on a south-facing slope: one on the moister, cooler lower slope and the other on the drier, warmer upper slope, where a watering treatment was added in a factorial design with warming. Canonical analysis of principal coordinates (CAP) revealed that OTCs reduced flower production and delayed peak flowering in graminoids as a whole but only affected forbs on the upper slope, where peak flowering was also delayed. OTCs affected flowering phenology in seven of eight species, which were examined individually, either by altering the time of peak flowering and/or the onset and/or cessation of flowering, as revealed by survival analysis. In 2010, which was the drier year, OTCs reduced flower production in two grasses but increased production in an annual forb found only on the upper slope. The particular effects of OTCs on phenology, and whether they caused an extension or contraction of the flowering season, differed among species, and often depended on year, or slope, or watering treatment; however, a relatively strong pattern emerged for 2010 when four species showed a contraction of the flowering season in OTCs. Watering increased flower production in two species in 2010, but slope location more often affected flowering phenology than did watering. Our results show the importance of taking landscape-scale variation into account in climate change studies and also contrasted with those of several studies set in cold

  17. Vulnerability of the northern Mongolian steppe to climate change: insights from flower production and phenology.

    PubMed

    Liancourt, Pierre; Spence, Laura A; Boldgiv, Bazartseren; Lkhagva, Ariuntsetseg; Helliker, Brent R; Casper, Brenda B; Petraitis, Peter S

    2012-04-01

    The semiarid, northern Mongolian steppe, which still supports pastoral nomads who have used the steppe for millennia, has experienced an average 1.7 degrees C temperature rise over the past 40 years. Continuing climate change is likely to affect flowering phenology and flower numbers with potentially important consequences for plant community composition, ecosystem services, and herder livelihoods. Over the growing seasons of 2009 and 2010, we examined flowering responses to climate manipulation using open-top passive warming chambers (OTCs) at two locations on a south-facing slope: one on the moister, cooler lower slope and the other on the drier, warmer upper slope, where a watering treatment was added in a factorial design with warming. Canonical analysis of principal coordinates (CAP) revealed that OTCs reduced flower production and delayed peak flowering in graminoids as a whole but only affected forbs on the upper slope, where peak flowering was also delayed. OTCs affected flowering phenology in seven of eight species, which were examined individually, either by altering the time of peak flowering and/or the onset and/or cessation of flowering, as revealed by survival analysis. In 2010, which was the drier year, OTCs reduced flower production in two grasses but increased production in an annual forb found only on the upper slope. The particular effects of OTCs on phenology, and whether they caused an extension or contraction of the flowering season, differed among species, and often depended on year, or slope, or watering treatment; however, a relatively strong pattern emerged for 2010 when four species showed a contraction of the flowering season in OTCs. Watering increased flower production in two species in 2010, but slope location more often affected flowering phenology than did watering. Our results show the importance of taking landscape-scale variation into account in climate change studies and also contrasted with those of several studies set in cold

  18. Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate

    PubMed Central

    Smallegange, R. C.; Blatt, S. E.; Harvey, J. A.; Agerbirk, N.; Dicke, M.

    2007-01-01

    Interactions between butterflies and caterpillars in the genus Pieris and plants in the family Brassicaceae are among the best explored in the field of insect–plant biology. However, we report here for the first time that Pieris brassicae, commonly assumed to be a typical folivore, actually prefers to feed on flowers of three Brassica nigra genotypes rather than on their leaves. First- and second-instar caterpillars were observed to feed primarily on leaves, whereas late second and early third instars migrated via the small leaves of the flower branches to the flower buds and flowers. Once flower feeding began, no further leaf feeding was observed. We investigated growth rates of caterpillars having access exclusively to either leaves of flowering plants or flowers. In addition, we analyzed glucosinolate concentrations in leaves and flowers. Late-second- and early-third-instar P. brassicae caterpillars moved upward into the inflorescences of B. nigra and fed on buds and flowers until the end of the final (fifth) instar, after which they entered into the wandering stage, leaving the plant in search of a pupation site. Flower feeding sustained a significantly higher growth rate than leaf feeding. Flowers contained levels of glucosinolates up to five times higher than those of leaves. Five glucosinolates were identified: the aliphatic sinigrin, the aromatic phenyethylglucosinolate, and three indole glucosinolates: glucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Tissue type and genotype were the most important factors affecting levels of identified glucosinolates. Sinigrin was by far the most abundant compound in all three genotypes. Sinigrin, 4-hydroxyglucobrassicin, and phenylethylglucosinolate were present at significantly higher levels in flowers than in leaves. In response to caterpillar feeding, sinigrin levels in both leaves and flowers were significantly higher than in undamaged plants, whereas 4-hydroxyglucobrassicin leaf levels were

  19. Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene.

    PubMed

    Axeisson, T; Shavorskaya, O; Lagercrantz, U

    2001-10-01

    Quantitative trait locus (QTL) analysis was used to study the evolution of genes controlling the timing of flowering in four Brassica genomes that are all extensively replicated. Comparative mapping showed that a chromosomal region from the top of Arabidopsis thaliana chromosome 5 corresponded to three homoeologous copies in each of the diploid species Brassica nigra, B. oleracea, and B. rapa and six copies in the amphidiploid B. juncea. QTLs were detected in two of the three replicated segments in each diploid genome and in three of the six replicated segments in B. juncea. These results indicate that, for the studied trait, multiple QTLs resulting from genome duplication is the rule rather than the exception. Brassica homologues to two candidate genes (CO and FLC) identified from the corresponding A. thaliana region were mapped. CO homologues mapped close to the QTL peaks in eight of nine QTLs, while FLC homologues mapped farther away in those cases where the mapping resolution allowed a comparison. Thus, our data are consistent with the hypothesis that all the major QTLs we detected in the different species of Brassica could be the result of duplicated copies of the same ancestral gene, possibly the ancestor of CO.

  20. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity.

    PubMed

    Magallón, Susana; Gómez-Acevedo, Sandra; Sánchez-Reyes, Luna L; Hernández-Hernández, Tania

    2015-07-01

    The establishment of modern terrestrial life is indissociable from angiosperm evolution. While available molecular clock estimates of angiosperm age range from the Paleozoic to the Late Cretaceous, the fossil record is consistent with angiosperm diversification in the Early Cretaceous. The time-frame of angiosperm evolution is here estimated using a sample representing 87% of families and sequences of five plastid and nuclear markers, implementing penalized likelihood and Bayesian relaxed clocks. A literature-based review of the palaeontological record yielded calibrations for 137 phylogenetic nodes. The angiosperm crown age was bound within a confidence interval calculated with a method that considers the fossil record of the group. An Early Cretaceous crown angiosperm age was estimated with high confidence. Magnoliidae, Monocotyledoneae and Eudicotyledoneae diversified synchronously 135-130 million yr ago (Ma); Pentapetalae is 126-121 Ma; and Rosidae (123-115 Ma) preceded Asteridae (119-110 Ma). Family stem ages are continuously distributed between c. 140 and 20 Ma. This time-frame documents an early phylogenetic proliferation that led to the establishment of major angiosperm lineages, and the origin of over half of extant families, in the Cretaceous. While substantial amounts of angiosperm morphological and functional diversity have deep evolutionary roots, extant species richness was probably acquired later. PMID:25615647

  1. Impacts of climate change on spring flower tourism in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Huanjiong

    2016-04-01

    The beauty of blooming flowers causes spring to be one of the most picturesque and pleasant seasons in which to travel. However, the blooming time of plant species are very sensitive to small changes in climate. Therefore, recent climate change may shift flowering time and, as a result, may affect timing of spring tourism for tourists. In order to prove this assumption, we gathered data of first flowering date and end of flowering date (1963-2014) for 49 common ornamental plants in Beijing, China. In addition, we used the number of messages (2010-2014) posted on Sina Weibo (one of the most popular microblogs sites in China, in use by well over 30% of internet users, with a market penetration similar to the United States' Twitter) to indicate the tourist numbers of five scenic spots in Beijing. These spots are most famous places for seeing spring flowers, including the Summer Palace, Yuyuantan Park, Beijing Botanical Garden, Jingshan Park, Dadu City Wall Relics Park. The results showed that the number of species in flower starts to increase in early spring and peaks in middle spring, and then begins to decrease from late spring. The date when the number of species in flower peaks can be defined as best date of spring flower tourism, because on this day people can see blooming flowers of most plant species. The best date of spring flower tourism varied from March 31 to May 1 among years with a mean of April 20. At above scenic spots characterized by the beauty of blooming flowers, tourist numbers also had a peak value during spring. Furthermore, peak time of tourist numbers derived from Weibo varied among different years and was related to best date of spring flower tour derived from phenological data. This suggests that the time of spring outing for tourists is remarkably attracted by flowering phenology. From 1963 to 2014, the best date of spring flower tour became earlier at a rate of 1.6 days decade-1, but the duration for spring flower tour (defined as width at

  2. Arabidopsis CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and Flowering Time[C][W

    PubMed Central

    Chen, Haodong; Huang, Xi; Gusmaroli, Giuliana; Terzaghi, William; Lau, On Sun; Yanagawa, Yuki; Zhang, Yu; Li, Jigang; Lee, Jae-Hoon; Zhu, Danmeng; Deng, Xing Wang

    2010-01-01

    CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) possesses E3 ligase activity and promotes degradation of key factors involved in the light regulation of plant development. The finding that CULLIN4 (CUL4)-Damaged DNA Binding Protein1 (DDB1) interacts with DDB1 binding WD40 (DWD) proteins to act as E3 ligases implied that CUL4-DDB1 may associate with COP1-SUPPRESSOR OF PHYA (SPA) protein complexes, since COP1 and SPAs are DWD proteins. Here, we demonstrate that CUL4-DDB1 physically associates with COP1-SPA complexes in vitro and in vivo, likely via direct interaction of DDB1 with COP1 and SPAs. The interactions between DDB1 and COP1, SPA1, and SPA3 were disrupted by mutations in the WDXR motifs of MBP-COP1, His-SPA1, and His-SPA3. CUL4 cosuppression mutants enhanced weak cop1 photomorphogenesis and flowered early under short days. Early flowering of short day–grown cul4 mutants correlated with increased FLOWERING LOCUS T transcript levels, whereas CONSTANS transcript levels were not altered. De-etiolated1 and COP1 can bind DDB1 and may work with CUL4-DDB1 in distinct complexes, but they mediate photomorphogenesis in concert. Thus, a series of CUL4-DDB1-COP1-SPA E3 ligase complexes may mediate the repression of photomorphogenesis and, possibly, of flowering time. PMID:20061554

  3. Synchronous Pulsed Flowering: Analysis of the Flowering Phenology in Juncus (Juncaceae)

    PubMed Central

    Michalski, Stefan G.; Durka, Walter

    2007-01-01

    Background and Aims The timing of flowering within and among individuals is of fundamental biological importance because of its influence on total seed production and, ultimately, fitness. Traditional descriptive parameters of flowering phenology focus on onset and duration of flowering and on synchrony among individuals. These parameters do not adequately account for variability in flowering across the flowering duration at individual and population level. This study aims to analyse the flowering phenology of wind-pollinated Juncus species that has been described as temporally highly variable (‘pulsed flowering’). Additionally, an attempt is made to identify proximate environmental factors that may cue the flowering, and ultimate causes for the flowering patterns are discussed. Methods Flowering phenology was examined in populations of nine Juncus species by estimating flowering synchrony and by using the coefficient of variation (CV) to describe the temporal variation in flowering on individual and population levels. Phenologies were compared with null models to test which patterns deviate from random flowering. All parameters assessed were compared with each other and the performance of the parameters in response to randomization and varying synchrony was evaluated using a model population. Flowering patterns were correlated with temperature and humidity. Key Results Most flowering patterns of Juncus were best described as synchronous pulsed flowering, characterized as population-wide concerted flowering events separated by days with no or few open flowers. Flowering synchrony and variability differed from a random pattern in most cases. CV values in combination with a measure of synchrony differentiated among flowering patterns found. Synchrony varied among species and was independent from variability in flowering. Neither temperature nor humidity could be determined as potential cues for the flowering pulses. Conclusions The results indicate that selection

  4. Flower scents from the Pacific.

    PubMed

    Joulain, Daniel

    2008-06-01

    For a long time, exotic scents from the islands of the South Pacific have universally been appreciated. Most frequently, fragrant flowers (e.g., frangipani, jasmine sambac, tiaré, pua kenikeni) are used locally for ornamental purposes such as flower garlands (leis). Despite their powerful and delightful fragrance, very few of these flowers have been commercially employed in this part of the world for perfume manufacturing. Creative perfumers are nevertheless strongly interested to better understand these fragrances and to use them, either genuine or artificially reconstituted. Analytical results on the fragrance of these flowers are reported, together with some economical considerations.

  5. Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis.

    PubMed

    Segarra, Silvia; Mir, Ricardo; Martínez, Cristina; León, José

    2010-01-01

    Salicylic acid (SA) has been characterized as an activator of pathogen-triggered resistance of plants. SA also regulates developmental processes such as thermogenesis in floral organs and stress-induced flowering. To deepen our knowledge of the mechanism underlying SA regulation of flowering time in Arabidopsis, we compared the transcriptomes of SA-deficient late flowering genotypes with wild-type plants. Down- or up-regulated genes in SA-deficient plants were screened for responsiveness to ultraviolet (UV)-C light, which accelerates flowering in Arabidopsis. Among them, only Pathogen and Circadian Controlled 1 (PCC1) was up-regulated by UV-C light through a SA-dependent process. Moreover, UV-C light-activated expression of PCC1 was also dependent on the flowering activator CONSTANS (CO). PCC1 gene has a circadian-regulated developmental pattern of expression with low transcript levels after germination that increased abruptly by day 10. RNAi plants with very low expression of PCC1 gene were late flowering, defective in UV-C light acceleration of flowering and contained FLOWERING LOCUS T (FT) transcript levels below 5% of that detected in wild-type plants. Although PCC1 seems to function between CO and FT in the photoperiod-dependent flowering pathway, transgenic plants overexpressing a Glucocorticoid Receptor (GR)-fused version of CO strongly activated FT but not PCC1 after dexamethasone treatment.

  6. Comparison of Genomic Selection Models to Predict Flowering Time and Spike Grain Number in Two Hexaploid Wheat Doubled Haploid Populations.

    PubMed

    Thavamanikumar, Saravanan; Dolferus, Rudy; Thumma, Bala R

    2015-10-01

    Genomic selection (GS) is becoming an important selection tool in crop breeding. In this study, we compared the ability of different GS models to predict time to young microspore (TYM), a flowering time-related trait, spike grain number under control conditions (SGNC) and spike grain number under osmotic stress conditions (SGNO) in two wheat biparental doubled haploid populations with unrelated parents. Prediction accuracies were compared using BayesB, Bayesian least absolute shrinkage and selection operator (Bayesian LASSO / BL), ridge regression best linear unbiased prediction (RR-BLUP), partial least square regression (PLS), and sparse partial least square regression (SPLS) models. Prediction accuracy was tested with 10-fold cross-validation within a population and with independent validation in which marker effects from one population were used to predict traits in the other population. High prediction accuracies were obtained for TYM (0.51-0.84), whereas moderate to low accuracies were observed for SGNC (0.10-0.42) and SGNO (0.27-0.46) using cross-validation. Prediction accuracies based on independent validation are generally lower than those based on cross-validation. BayesB and SPLS outperformed all other models in predicting TYM with both cross-validation and independent validation. Although the accuracies of all models are similar in predicting SGNC and SGNO with cross-validation, BayesB and SPLS had the highest accuracy in predicting SGNC with independent validation. In independent validation, accuracies of all the models increased by using only the QTL-linked markers. Results from this study indicate that BayesB and SPLS capture the linkage disequilibrium between markers and traits effectively leading to higher accuracies. Excluding markers from QTL studies reduces prediction accuracies. PMID:26206349

  7. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs.

    PubMed

    Bogard, Matthieu; Jourdan, Matthieu; Allard, Vincent; Martre, Pierre; Perretant, Marie Reine; Ravel, Catherine; Heumez, Emmanuel; Orford, Simon; Snape, John; Griffiths, Simon; Gaju, Oorbessy; Foulkes, John; Le Gouis, Jacques

    2011-06-01

    The genetic variability of the duration of leaf senescence during grain filling has been shown to affect both carbon and nitrogen acquisition. In particular, maintaining green leaves during grain filling possibly leads to increased grain yield, but its associated effect on grain protein concentration has not been studied. The aim of this study was to dissect the genetic factors contributing to correlations observed at the phenotypic level between leaf senescence during grain filling, grain protein concentration, and grain yield in winter wheat. With this aim in view, an analysis of quantitative trait locus (QTL) co-locations for these traits was carried out on a doubled haploid mapping population grown in a large multienvironment trial network. Pleiotropic QTLs affecting leaf senescence and grain yield and/or grain protein concentration were identified on chromosomes 2D, 2A, and 7D. These were associated with QTLs for anthesis date, showing that the phenotypic correlations with leaf senescence were mainly explained by flowering time in this wheat population. Study of the allelic effects of these pleiotropic QTLs showed that delaying leaf senescence was associated with increased grain yield or grain protein concentration depending on the environments considered. It is proposed that this differential effect of delaying leaf senescence on grain yield and grain protein concentration might be related to the nitrogen availability during the post-anthesis period. It is concluded that the benefit of using leaf senescence as a selection criterion to improve grain protein concentration in wheat cultivars may be limited and would largely depend on the targeted environments, particularly on their nitrogen availability during the post-anthesis period.

  8. The impact of plant and flower age on mating patterns

    PubMed Central

    Marshall, Diane L.; Avritt, Joy J.; Maliakal-Witt, Satya; Medeiros, Juliana S.; Shaner, Marieken G. M.

    2010-01-01

    Background Over a season, plant condition, amount of ongoing reproduction and biotic and abiotic environmental factors vary. As flowers age, flower condition and amount of pollen donated and received also vary. These internal and external changes are significant for fitness if they result in changes in reproduction and mating. Scope Literature from several fields was reviewed to provide a picture of the changes that occur in plants and flowers that can affect mating over a season. As flowers age, both the entire flower and individual floral whorls show changes in appearance and function. Over a season, changes in mating often appear as alteration in seed production vs. pollen donation. In several species, older, unpollinated flowers are more likely to self. If flowers are receiving pollen, staying open longer may increase the number of mates. In wild radish, for which there is considerable information on seed paternity, older flowers produce fewer seeds and appear to discriminate less among pollen donors. Pollen donor performance can also be linked to maternal plant age. Different pollinators and mates are available across the season. Also in wild radish, maternal plants appear to exert the most control over paternity when they are of intermediate age. Conclusions Although much is known about the characters of plants and flowers that can change over a season, there is less information on the effects of age on mating. Several studies document changes in self-pollination over time, but very few, other than those on wild radish, consider more subtle aspects of differential success of pollen donors over time. PMID:19875519

  9. The Relationship of Negative Affect and Thought: Time Series Analyses.

    ERIC Educational Resources Information Center

    Rubin, Amy; And Others

    In recent years, the relationship between moods and thoughts has been the focus of much theorizing and some empirical work. A study was undertaken to examine the intraindividual relationship between negative affect and negative thoughts using a Box-Jenkins time series analysis. College students (N=33) completed a measure of negative mood and…

  10. How Does Calibration Timing and Seasonality Affect Item Parameter Estimates?

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Babcock, Ben

    2016-01-01

    Continuously administered examination programs, particularly credentialing programs that require graduation from educational programs, often experience seasonality where distributions of examine ability may differ over time. Such seasonality may affect the quality of important statistical processes, such as item response theory (IRT) item…

  11. Identification of successive flowering phases highlights a new genetic control of the flowering pattern in strawberry

    PubMed Central

    Perrotte, Justine; Guédon, Yann; Gaston, Amèlia; Denoyes, Béatrice

    2016-01-01

    The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years. PMID:27664957

  12. Perceived smoking availability differentially affects mood and reaction time

    PubMed Central

    Ross, Kathryn C.; Juliano, Laura M.

    2015-01-01

    Introduction This between subjects study explored the relationship between smoking availability and smoking motivation and is the first study to include three smoking availability time points. This allowed for an examination of an extended period of smoking unavailability, and a test of the linearity of the relationships between smoking availability and smoking motivation measures. Methods Ninety 3-hour abstinent smokers (mean ∼15 cigarettes per day) were randomly assigned to one of three availability manipulations while being exposed to smoking stimuli (i.e., pack of cigarettes): smoke in 20 min, smoke in 3 h, or smoke in 24 h. Participants completed pre- and post-manipulation measures of urge, positive affect and negative affect, and simple reaction time. Results The belief that smoking would next be available in 24 h resulted in a significant decrease in positive affect and increase in negative affect relative to the 3 h and 20 min conditions. A Lack of Fit test suggested a linear relationship between smoking availability and affect. A quadratic model appeared to be a better fit for the relationship between smoking availability and simple reaction time with participants in the 24 h and 20 min conditions showing a greater slowing of reaction time relative to the 3 h condition. There were no effects of the manipulations on self-reported urge, but baseline ceiling effects were noted. Conclusions Future investigations that manipulate three or more periods of time before smoking is available will help to better elucidate the nature of the relationship between smoking availability and smoking motivation. PMID:25727393

  13. Genetic Architecture of Flowering Time in Maize As Inferred From Quantitative Trait Loci Meta-analysis and Synteny Conservation With the Rice Genome

    PubMed Central

    Chardon, Fabien; Virlon, Bérangère; Moreau, Laurence; Falque, Matthieu; Joets, Johann; Decousset, Laurent; Murigneux, Alain; Charcosset, Alain

    2004-01-01

    Genetic architecture of flowering time in maize was addressed by synthesizing a total of 313 quantitative trait loci (QTL) available for this trait. These were analyzed first with an overview statistic that highlighted regions of key importance and then with a meta-analysis method that yielded a synthetic genetic model with 62 consensus QTL. Six of these displayed a major effect. Meta-analysis led in this case to a twofold increase in the precision in QTL position estimation, when compared to the most precise initial QTL position within the corresponding region. The 62 consensus QTL were compared first to the positions of the few flowering-time candidate genes that have been mapped in maize. We then projected rice candidate genes onto the maize genome using a synteny conservation approach based on comparative mapping between the maize genetic map and japonica rice physical map. This yielded 19 associations between maize QTL and genes involved in flowering time in rice and in Arabidopsis. Results suggest that the combination of meta-analysis within a species of interest and synteny-based projections from a related model plant can be an efficient strategy for identifying new candidate genes for trait variation. PMID:15611184

  14. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome.

    PubMed

    Chardon, Fabien; Virlon, Bérangère; Moreau, Laurence; Falque, Matthieu; Joets, Johann; Decousset, Laurent; Murigneux, Alain; Charcosset, Alain

    2004-12-01

    Genetic architecture of flowering time in maize was addressed by synthesizing a total of 313 quantitative trait loci (QTL) available for this trait. These were analyzed first with an overview statistic that highlighted regions of key importance and then with a meta-analysis method that yielded a synthetic genetic model with 62 consensus QTL. Six of these displayed a major effect. Meta-analysis led in this case to a twofold increase in the precision in QTL position estimation, when compared to the most precise initial QTL position within the corresponding region. The 62 consensus QTL were compared first to the positions of the few flowering-time candidate genes that have been mapped in maize. We then projected rice candidate genes onto the maize genome using a synteny conservation approach based on comparative mapping between the maize genetic map and japonica rice physical map. This yielded 19 associations between maize QTL and genes involved in flowering time in rice and in Arabidopsis. Results suggest that the combination of meta-analysis within a species of interest and synteny-based projections from a related model plant can be an efficient strategy for identifying new candidate genes for trait variation.

  15. The Genetic Architecture of Reproductive Isolation in Louisiana Irises: Flowering Phenology

    PubMed Central

    Martin, Noland H.; Bouck, Amy C.; Arnold, Michael L.

    2007-01-01

    Despite the potential importance of divergent reproductive phenologies as a barrier to gene flow, we know less about the genetics of this factor than we do about any other isolating barrier. Here, we report on the genetic architecture of divergent flowering phenologies that result in substantial reproductive isolation between the naturally hybridizing plant species Iris fulva and I. brevicaulis. I. fulva initiates and terminates flowering significantly earlier than I. brevicaulis. We examined line crosses of reciprocal F1 and backcross (BC1) hybrids and determined that flowering time was polygenic in nature. We further defined quantitative trait loci (QTL) that affect the initiation of flowering in each of these species. QTL analyses were performed separately for two different growing seasons in the greenhouse, as well as in two field plots where experimental plants were placed into nature. For BCIF hybrids (BC1 toward I. fulva), 14 of 17 detected QTL caused flowering to occur later in the season when I. brevicaulis alleles were present, while the remaining 3 caused flowering to occur earlier. In BCIB hybrids (BC1 toward I. brevicaulis), 11 of 15 detected QTL caused flowering to occur earlier in the season when introgressed I. fulva alleles were present, while the remaining 4 caused flowering to occur later. These ratios are consistent with expectations of selection (as opposed to drift) promoting flowering divergence in the evolutionary history of these species. Furthermore, epistatic interactions among the QTL also reflected the same trends, with the majority of epistatic effects causing later flowering than expected in BCIF hybrids and earlier flowering in BCIB hybrids. Overlapping QTL that influenced flowering time across all four habitat/treatment types were not detected, indicating that increasing the sample size of genotyped plants would likely increase the number of significant QTL found in this study. PMID:17237511

  16. A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic

    NASA Astrophysics Data System (ADS)

    Lessard-Therrien, Malie; Davies, T. Jonathan; Bolmgren, Kjell

    2014-05-01

    Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54°90'N, 67°16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.

  17. Elements affecting wound healing time: An evidence based analysis.

    PubMed

    Khalil, Hanan; Cullen, Marianne; Chambers, Helen; Carroll, Matthew; Walker, Judi

    2015-01-01

    The purpose of this study was to identify the predominant client factors and comorbidities that affected the time taken for wounds to heal. A prospective study design used the Mobile Wound Care (MWC) database to capture and collate detailed medical histories, comorbidities, healing times and consumable costs for clients with wounds in Gippsland, Victoria. There were 3,726 wounds documented from 2,350 clients, so an average of 1.6 wounds per client. Half (49.6%) of all clients were females, indicating that there were no gender differences in terms of wound prevalence. The clients were primarily older people, with an average age of 64.3 years (ranging between 0.7 and 102.9 years). The majority of the wounds (56%) were acute and described as surgical, crush and trauma. The MWC database categorized the elements that influenced wound healing into 3 groups--factors affecting healing (FAH), comorbidities, and medications known to affect wound healing. While there were a multitude of significant associations, multiple linear regression identified the following key elements: age over 65 years, obesity, nonadherence to treatment plan, peripheral vascular disease, specific wounds associated with pressure/friction/shear, confirmed infection, and cerebrovascular accident (stroke). Wound healing is a complex process that requires a thorough understanding of influencing elements to improve healing times.© 2015 by the Wound Healing Society.

  18. Molecular evolution and phylogenetic analysis of eight COL superfamily genes in group I related to photoperiodic regulation of flowering time in wild and domesticated cotton (Gossypium) species.

    PubMed

    Zhang, Rui; Ding, Jian; Liu, Chunxiao; Cai, Caiping; Zhou, Baoliang; Zhang, Tianzhen; Guo, Wangzhen

    2015-01-01

    Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T) module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL) in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson's correlation coefficient (r) of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes/traits during cotton

  19. Writing Direction Affects How People Map Space Onto Time

    PubMed Central

    Bergen, Benjamin K.; Chan Lau, Ting Ting

    2012-01-01

    What determines which spatial axis people use to represent time? We investigate effects of writing direction. English, like Mandarin Chinese in mainland China, is written left to right and then top to bottom. But in Taiwan, characters are written predominantly top to bottom and then right to left. Because being a fluent reader–writer entails thousands of hours of experience with eye and hand movement in the direction dictated by one’s writing system, it could be that writing system direction affects the axis used to represent time in terms of space. In a behavioral experiment, we had native speakers of English, Mandarin Chinese from mainland China, and Mandarin Chinese from Taiwan place sets of cards in temporal order. These cards depicted stages of development of plants and animals, for instance: tadpole, froglet, frog. Results showed that English speakers always represented time as moving from left to right (LR). Mainland Chinese participants trended in the same direction, but a small portion laid the cards out from top to bottom. Taiwanese participants were just as likely to depict time as moving from LR as from top to bottom, with a large minority depicting it as moving from right to left. Native writing system affects how people represent time spatially. PMID:22514546

  20. Unifying genetic canalization, genetic constraint, and genotype-by-environment interaction: QTL by genomic background by environment interaction of flowering time in Boechera stricta.

    PubMed

    Lee, Cheng-Ruei; Anderson, Jill T; Mitchell-Olds, Thomas

    2014-10-01

    Natural populations exhibit substantial variation in quantitative traits. A quantitative trait is typically defined by its mean and variance, and to date most genetic mapping studies focus on loci altering trait means but not (co)variances. For single traits, the control of trait variance across genetic backgrounds is referred to as genetic canalization. With multiple traits, the genetic covariance among different traits in the same environment indicates the magnitude of potential genetic constraint, while genotype-by-environment interaction (GxE) concerns the same trait across different environments. While some have suggested that these three attributes of quantitative traits are different views of similar concepts, it is not yet clear, however, whether they have the same underlying genetic mechanism. Here, we detect quantitative trait loci (QTL) influencing the (co)variance of phenological traits in six distinct environments in Boechera stricta, a close relative of Arabidopsis. We identified nFT as the QTL altering the magnitude of phenological trait canalization, genetic constraint, and GxE. Both the magnitude and direction of nFT's canalization effects depend on the environment, and to our knowledge, this reversibility of canalization across environments has not been reported previously. nFT's effects on trait covariance structure (genetic constraint and GxE) likely result from the variable and reversible canalization effects across different traits and environments, which can be explained by the interaction among nFT, genomic backgrounds, and environmental stimuli. This view is supported by experiments demonstrating significant nFT by genomic background epistatic interactions affecting phenological traits and expression of the candidate gene, FT. In contrast to the well-known canalization gene Hsp90, the case of nFT may exemplify an alternative mechanism: Our results suggest that (at least in traits with major signal integrators such as flowering time) genetic

  1. Cis-regulatory Changes at FLOWERING LOCUS T Mediate Natural Variation in Flowering Responses of Arabidopsis thaliana

    PubMed Central

    Schwartz, Christopher; Balasubramanian, Sureshkumar; Warthmann, Norman; Michael, Todd P.; Lempe, Janne; Sureshkumar, Sridevi; Kobayashi, Yasushi; Maloof, Julin N.; Borevitz, Justin O.; Chory, Joanne; Weigel, Detlef

    2009-01-01

    Flowering time, a critical adaptive trait, is modulated by several environmental cues. These external signals converge on a small set of genes that in turn mediate the flowering response. Mutant analysis and subsequent molecular studies have revealed that one of these integrator genes, FLOWERING LOCUS T (FT), responds to photoperiod and temperature cues, two environmental parameters that greatly influence flowering time. As the central player in the transition to flowering, the protein coding sequence of FT and its function are highly conserved across species. Using QTL mapping with a new advanced intercross-recombinant inbred line (AI-RIL) population, we show that a QTL tightly linked to FT contributes to natural variation in the flowering response to the combined effects of photoperiod and ambient temperature. Using heterogeneous inbred families (HIF) and introgression lines, we fine map the QTL to a 6.7 kb fragment in the FT promoter. We confirm by quantitative complementation that FT has differential activity in the two parental strains. Further support for FT underlying the QTL comes from a new approach, quantitative knockdown with artificial microRNAs (amiRNAs). Consistent with the causal sequence polymorphism being in the promoter, we find that the QTL affects FT expression. Taken together, these results indicate that allelic variation at pathway integrator genes such as FT can underlie phenotypic variability and that this may be achieved through cis-regulatory changes. PMID:19652183

  2. Herbivory and relative growth rates of Pieris rapae are correlated with host constitutive salicylic acid and flowering time.

    PubMed

    Lariviere, Andrew; Limeri, Lisa B; Meindl, George A; Traw, M Brian

    2015-04-01

    Treatment of plants with exogenous salicylic acid (SA) improves resistance to many bacterial pathogens, but can suppress resistance to insect herbivores. While plants vary naturally in constitutive SA, whether such differences are predictive of resistance to insect herbivores has not been studied previously. We examined the possible role of this endogenous SA in structuring the interactions between the cabbage white butterfly, Pieris rapae, and ten hosts in the mustard family (Brassicaceae). Because P. rapae has multiple generations that utilize different hosts across the year, we included five spring-flowering mustards and five summer-flowering mustards that co-occur in ruderal habitats in upstate New York. Under common garden conditions, the spring flowering mustards (Capsella bursa-pastoris, Draba verna, Cardamine impatiens, Barbarea vulgaris, and Arabidopsis thaliana) were significantly more resistant to P. rapae, supporting 42 % less herbivory (P = 0.015) and 64 % lower relative growth rates (P = 0.007), relative to the summer flowering mustards (Sisymbrium altissimum, Brassica nigra, Sinapis arvense, Lepidium campestre, and Arabis canadensis). Leaf total constitutive SA explained significant variation in larval herbivory (R (2)  = 75.3 %, P = 0.007) and relative growth rates (R (2)  = 59.4 %, P = 0.043). The three species with the lowest levels of constitutive SA (Capsella bursa-pastoris, Draba verna, and Cardamine impatiens) were the most resistant to larvae. Barbarea vulgaris and Arabis canadensis were notable exceptions, exhibiting high SA concentrations and intermediate resistance to P. rapae. These results suggest a curvilinear relationship between leaf constitutive SA and the herbivory by P. rapae, and they provide some insight into the ecology and possible management of this economically important crop pest.

  3. Herbivory and relative growth rates of Pieris rapae are correlated with host constitutive salicylic acid and flowering time.

    PubMed

    Lariviere, Andrew; Limeri, Lisa B; Meindl, George A; Traw, M Brian

    2015-04-01

    Treatment of plants with exogenous salicylic acid (SA) improves resistance to many bacterial pathogens, but can suppress resistance to insect herbivores. While plants vary naturally in constitutive SA, whether such differences are predictive of resistance to insect herbivores has not been studied previously. We examined the possible role of this endogenous SA in structuring the interactions between the cabbage white butterfly, Pieris rapae, and ten hosts in the mustard family (Brassicaceae). Because P. rapae has multiple generations that utilize different hosts across the year, we included five spring-flowering mustards and five summer-flowering mustards that co-occur in ruderal habitats in upstate New York. Under common garden conditions, the spring flowering mustards (Capsella bursa-pastoris, Draba verna, Cardamine impatiens, Barbarea vulgaris, and Arabidopsis thaliana) were significantly more resistant to P. rapae, supporting 42 % less herbivory (P = 0.015) and 64 % lower relative growth rates (P = 0.007), relative to the summer flowering mustards (Sisymbrium altissimum, Brassica nigra, Sinapis arvense, Lepidium campestre, and Arabis canadensis). Leaf total constitutive SA explained significant variation in larval herbivory (R (2)  = 75.3 %, P = 0.007) and relative growth rates (R (2)  = 59.4 %, P = 0.043). The three species with the lowest levels of constitutive SA (Capsella bursa-pastoris, Draba verna, and Cardamine impatiens) were the most resistant to larvae. Barbarea vulgaris and Arabis canadensis were notable exceptions, exhibiting high SA concentrations and intermediate resistance to P. rapae. These results suggest a curvilinear relationship between leaf constitutive SA and the herbivory by P. rapae, and they provide some insight into the ecology and possible management of this economically important crop pest. PMID:25893789

  4. Chloroplast retrograde signal regulates flowering.

    PubMed

    Feng, Peiqiang; Guo, Hailong; Chi, Wei; Chai, Xin; Sun, Xuwu; Xu, Xiumei; Ma, Jinfang; Rochaix, Jean-David; Leister, Dario; Wang, Haiyang; Lu, Congming; Zhang, Lixin

    2016-09-20

    Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level. PMID:27601637

  5. Flowers in Their Variety.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2002-01-01

    Describes the diversity of flowers with regard to the flower paintings of Pierre-Joseph Redoute, books about flowers, and research in genetic studies. Discusses gardening flowers and flowering strategies and criticizes the fact that biology education has moved steadily away from plants. (KHR)

  6. Flower size and longevity influence florivory in the large-flowered shrub Cistus ladanifer

    NASA Astrophysics Data System (ADS)

    Teixido, Alberto L.; Méndez, Marcos; Valladares, Fernando

    2011-09-01

    Plants with larger and longer-lived flowers receive more pollinator visits and increase reproductive success, though may also suffer more from antagonistic interactions with animals. Florivores can reduce fruit and seed production, so selection on flower size, floral longevity and/or number of flowers may thus be determined by the relative effects of both pollinators and florivores. In this study flowers of Cistus ladanifer, a large-flowered Mediterranean shrub, were monitored to evaluate the effects of flower size, floral longevity and number of flowers on levels of florivory in four populations. Number of flowers was variable but did not differ among populations. Both flower size and floral longevity of C. ladanifer showed broad variation and significantly differed among populations. Overall, 7% of flowers suffered attack by florivores, which were mainly ants picking the stamens and beetles consuming petals and pollen. Within-populations, larger and longer-lived flowers tended to be affected by florivores more frequently. The low overall incidence of florivores and its lack of between-population variation suggest that florivory may not influence intraspecific variation of these floral traits. However, moderate florivory levels on the largest and longest-lived flowers open the possibility of exerting selection towards smaller and shorter-lived flowers in some of the populations studied.

  7. Say it with flowers: Flowering acceleration by root communication.

    PubMed

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings.

  8. Say it with flowers: flowering acceleration by root communication.

    PubMed

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings.

  9. Say it with flowers: Flowering acceleration by root communication.

    PubMed

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings. PMID:25764422

  10. Say it with flowers: flowering acceleration by root communication.

    PubMed

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings. PMID:24598343

  11. Composition of Carotenoids and Flavonoids in Narcissus Cultivars and their Relationship with Flower Color

    PubMed Central

    Li, Xin; Lu, Min; Tang, Dongqin; Shi, Yimin

    2015-01-01

    Narcissus is widely used for cut flowers and potted plants, and is one of the most important commercial bulbous flowers in the floricultural industry. In this study, ten carotenoid and eighteen flavonoid compounds from the perianths and coronas of fifteen narcissus cultivars were measured by HPLC–APCI-MS/MS and UPLC-Q-TOF-MS/MS. Among these, six carotenoids, a total of seventeen flavonols and chlorogenic acid were identified in narcissus for the first time. A multivariate analysis was used to explore the relationship between flower color and pigment composition. We found that all-trans-violaxanthin and total carotenoid content were the main factors that affected flower color. These investigations could provide a global view of flower color formation and a theoretical basis for hybridization breeding in narcissus. PMID:26536625

  12. Composition of Carotenoids and Flavonoids in Narcissus Cultivars and their Relationship with Flower Color.

    PubMed

    Li, Xin; Lu, Min; Tang, Dongqin; Shi, Yimin

    2015-01-01

    Narcissus is widely used for cut flowers and potted plants, and is one of the most important commercial bulbous flowers in the floricultural industry. In this study, ten carotenoid and eighteen flavonoid compounds from the perianths and coronas of fifteen narcissus cultivars were measured by HPLC-APCI-MS/MS and UPLC-Q-TOF-MS/MS. Among these, six carotenoids, a total of seventeen flavonols and chlorogenic acid were identified in narcissus for the first time. A multivariate analysis was used to explore the relationship between flower color and pigment composition. We found that all-trans-violaxanthin and total carotenoid content were the main factors that affected flower color. These investigations could provide a global view of flower color formation and a theoretical basis for hybridization breeding in narcissus.

  13. The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana.

    PubMed

    Qian, Haifeng; Han, Xiao; Peng, Xiaofeng; Lu, Tao; Liu, Weiping; Fu, Zhengwei

    2014-03-01

    Plant growth and development are strongly affected by environmental pollutants, such as herbicides. Widely used herbicides can remain in soil or aquatic systems for long periods of time. Herbicide pollutants have been reported to heavily affect global plant growth and pose a significant challenge to agriculture. However, it is unclear whether herbicides affect plant flowering. Here, we demonstrated that imazethapyr (IM), a chiral herbicide, can enantioselectively promote flowering in Arabidopsis thaliana. We clarified the possible mechanism by which IM promotes flowering and found that the photoperiod pathway may play an important role in propagating the IM stress signal. IM enantiomers decreased the amplitude of core oscillators (CIRCADIAN CLOCK ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL) and utilized the up-regulation of the GIGANTEA-(CONSTANS)-FLOWERING LOCUS T pathway to induce floral gene, APETALA1 over-expression enantioselectively; this treatment ultimately caused early flowering. Our findings provide new insight into the method by which plants control reproductive timing in response to herbicide stress. Flowering time is an important trait in crops and affects the life cycles of pollinator species. The persistence of herbicides in the biosphere will alter plant life cycles and diversity. PMID:24484962

  14. Quantitative Trait Loci for Salinity Tolerance Identified under Drained and Waterlogged Conditions and Their Association with Flowering Time in Barley (Hordeum vulgare. L)

    PubMed Central

    Ma, Yanling; Shabala, Sergey; Li, Chengdao; Liu, Chunji; Zhang, Wenying; Zhou, Meixue

    2015-01-01

    Introduction Salinity is one of the major abiotic stresses affecting crop production via adverse effects of osmotic stress, specific ion toxicity, and stress-related nutritional disorders. Detrimental effects of salinity are also often exacerbated by low oxygen availability when plants are grown under waterlogged conditions. Developing salinity-tolerant varieties is critical to overcome these problems, and molecular marker assisted selection can make breeding programs more effective. Methods In this study, a double haploid (DH) population consisting of 175 lines, derived from a cross between a Chinese barley variety Yangsimai 1 (YSM1) and an Australian malting barley variety Gairdner, was used to construct a high density molecular map which contained more than 8,000 Diversity Arrays Technology (DArT) markers and single nucleotide polymorphism (SNP) markers. Salinity tolerance of parental and DH lines was evaluated under drained (SalinityD) and waterlogged (SalinityW) conditions at two different sowing times. Results Three quantitative trait loci (QTL) located on chromosome 1H, single QTL located on chromosomes 1H, 2H, 4H, 5H and 7H, were identified to be responsible for salinity tolerance under different environments. Waterlogging stress, daylight length and temperature showed significant effects on barley salinity tolerance. The QTL for salinity tolerance mapped on chromosomes 4H and 7H, QSlwd.YG.4H, QSlwd.YG.7H and QSlww.YG.7H were only identified in winter trials, while the QTL on chromosome 2H QSlsd.YG.2H and QSlsw.YG.2H were only detected in summer trials. Genes associated with flowering time were found to pose significant effects on the salinity QTL mapped on chromosomes 2H and 5H in summer trials. Given the fact that the QTL for salinity tolerance QSlsd.YG.1H and QSlww.YG.1H-1 reported here have never been considered in the literature, this warrants further investigation and evaluation for suitability to be used in breeding programs. PMID:26247774

  15. Clinical factors affecting the timing of delivery in twin pregnancies

    PubMed Central

    Lee, Chae Min; Yang, Sun Hye; Lee, Sun Pyo; Hwang, Byung Chul

    2014-01-01

    Objective To investigate clinical factors affecting the timing of delivery in twin pregnancies in order to minimize perinatal complications. Methods A retrospective study involved 163 twin pregnancies delivered from January 2006 to September 2011 at Gachon University Gil Medical Center. These cases were divided into three groups based on the delivery timing: less than 32 weeks' gestation (group A), between 32 and 35+6 weeks' gestation (group B), and over 36 weeks' gestation (group C). Clinical factors including maternal age, parity, presence of premature uterine contraction, presence of premature rupture of membrane, white blood cell, high sensitive C-reactive protein level, cervical dilatation, maternal complication, chorionicity, twin specific complication, and perinatal complication were analyzed for each group. Results In group B, the timing of delivery was postponed for 14 days or more from the time of admission, and there were fewer numbers of babies with low Apgar score at birth compared with other groups. The frequency of uterine contraction (P<0.001), presence of premature rupture of membranes (P=0.017), dilatation of cervix (P<0.001), increased white blood cell and high sensitive C-reactive protein levels (P=0.002, P<0.001) were important clinical factors during decision making process of delivery timing in twin pregnancies. Twin specific fetal conditions, such as twin-twin transfusion syndrome and discordant growth (over 25% or more) were shown more frequently in group A. However, there were no significant statistical differences among three groups (P=0.06, P=0.14). Conclusion Proper management for preventing premature contraction and inflammation can be essential in twin pregnancies until 32 weeks' gestation, and may decrease maternal and perinatal complications. PMID:25469330

  16. Do Flower Color and Floral Scent of Silene Species affect Host Preference of Hadena bicruris, a Seed-Eating Pollinator, under Field Conditions?

    PubMed Central

    Page, Paul; Favre, Adrien; Schiestl, Florian P.; Karrenberg, Sophie

    2014-01-01

    Specialization in plant–insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization. PMID:24905986

  17. Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR.

    PubMed

    Happyana, Nizar; Kayser, Oliver

    2016-08-01

    Cannabis sativa trichomes are glandular structures predominantly responsible for the biosynthesis of cannabinoids, the biologically active compounds unique to this plant. To the best of our knowledge, most metabolomic works on C. sativa that have been reported previously focused their investigations on the flowers and leaves of this plant. In this study, (1)H NMR-based metabolomics and real-time PCR analysis were applied for monitoring the metabolite profiles of C. sativa trichomes, variety Bediol, during the last 4 weeks of the flowering period. Partial least squares discriminant analysis models successfully classified metabolites of the trichomes based on the harvest time. Δ (9)-Tetrahydrocannabinolic acid (1) and cannabidiolic acid (2) constituted the vital differential components of the organic preparations, while asparagine, glutamine, fructose, and glucose proved to be their water-extracted counterparts. According to RT-PCR analysis, gene expression levels of olivetol synthase and olivetolic acid cyclase influenced the accumulation of cannabinoids in the Cannabis trichomes during the monitoring time. Moreover, quantitative (1)H NMR and RT-PCR analysis of the Cannabis trichomes suggested that the gene regulation of cannabinoid biosynthesis in the C. sativa variety Bediol is unique when compared with other C. sativa varieties. PMID:27336318

  18. Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR.

    PubMed

    Happyana, Nizar; Kayser, Oliver

    2016-08-01

    Cannabis sativa trichomes are glandular structures predominantly responsible for the biosynthesis of cannabinoids, the biologically active compounds unique to this plant. To the best of our knowledge, most metabolomic works on C. sativa that have been reported previously focused their investigations on the flowers and leaves of this plant. In this study, (1)H NMR-based metabolomics and real-time PCR analysis were applied for monitoring the metabolite profiles of C. sativa trichomes, variety Bediol, during the last 4 weeks of the flowering period. Partial least squares discriminant analysis models successfully classified metabolites of the trichomes based on the harvest time. Δ (9)-Tetrahydrocannabinolic acid (1) and cannabidiolic acid (2) constituted the vital differential components of the organic preparations, while asparagine, glutamine, fructose, and glucose proved to be their water-extracted counterparts. According to RT-PCR analysis, gene expression levels of olivetol synthase and olivetolic acid cyclase influenced the accumulation of cannabinoids in the Cannabis trichomes during the monitoring time. Moreover, quantitative (1)H NMR and RT-PCR analysis of the Cannabis trichomes suggested that the gene regulation of cannabinoid biosynthesis in the C. sativa variety Bediol is unique when compared with other C. sativa varieties.

  19. Do ELF magnetic fields affect human reaction time?

    SciTech Connect

    Podd, J.V.; Whittington, C.J.; Barnes, G.R.G.; Page, W.H.; Rapley, B.I.

    1995-12-01

    Two double-blind studies were run in an attempt to confirm the finding that a 0.2 Hz magnetic field affects simple reaction time (RT) in humans, whereas a 0.1 Hz field does not. In the first experiment, 12 volunteer subjects were exposed to a continuous 0.2 Hz, 0.1 Hz, or sham field in a fully counter-balanced, within-subjects design. Subjects were run singly for one condition each day over 3 consecutive days with a field strength of 1.1 mT and a daily expose duration of 5 min. Neither magnetic field had any effect on RT at any time during the exposure. One condition of a second study, using a new group of 24 volunteer subjects, also failed to find any field effects at 0.2 Hz. Additionally, the second study failed to show any effects when the frequency, flux density, and field orientation were set according to parameter resonance theory. It is suggested that, although ELF magnetic field effects on human behavior may be elusive, future research can improve detection rates by paying greater attention to reducing error variance and increasing statistical power.

  20. Molecular Evolution and Phylogenetic Analysis of Eight COL Superfamily Genes in Group I Related to Photoperiodic Regulation of Flowering Time in Wild and Domesticated Cotton (Gossypium) Species

    PubMed Central

    Zhang, Rui; Ding, Jian; Liu, Chunxiao; Cai, Caiping; Zhou, Baoliang; Zhang, Tianzhen; Guo, Wangzhen

    2015-01-01

    Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T) module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL) in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson’s correlation coefficient (r) of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes/traits during cotton

  1. The Cytosolic Iron-Sulfur Cluster Assembly Protein MMS19 Regulates Transcriptional Gene Silencing, DNA Repair, and Flowering Time in Arabidopsis.

    PubMed

    Han, Yong-Feng; Huang, Huan-Wei; Li, Lin; Cai, Tao; Chen, She; He, Xin-Jian

    2015-01-01

    MMS19 is an essential component of the cytoplasmic iron-sulfur (Fe-S) cluster assembly complex in fungi and mammals; the mms19 null mutant alleles are lethal. Our study demonstrates that MMS19/MET18 in Arabidopsis thaliana interacts with the cytoplasmic Fe-S cluster assembly complex but is not an essential component of the complex. We find that MMS19 also interacts with the catalytic subunits of DNA polymerases, which have been demonstrated to be involved in transcriptional gene silencing (TGS), DNA repair, and flowering time regulation. Our results indicate that MMS19 has a similar biological function, suggesting a functional link between MMS19 and DNA polymerases. In the mms19 null mutant, the assembly of Fe-S clusters on the catalytic subunit of DNA polymerase α is reduced but not blocked, which is consistent with the viability of the mutant. Our study suggests that MMS19 assists the assembly of Fe-S clusters on DNA polymerases in the cytosol, thereby facilitating transcriptional gene silencing, DNA repair, and flowering time control.

  2. Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq

    PubMed Central

    Zhao, Xinxin; Huang, Linkai; Zhang, Xinquan; Wang, Jianping; Yan, Defei; Li, Ji; Tang, Lu; Li, Xiaolong; Shi, Tongwei

    2016-01-01

    Orchardgrass (Dactylis glomerata L.) is one of the most economically important perennial, cool-season forage species grown and pastured worldwide. High-density genetic linkage mapping is a valuable and effective method for exploring complex quantitative traits. In this study, we developed 447,177 markers based on SLAF-seq and used them to perform a comparative genomics analysis. Perennial ryegrass sequences were the most similar (5.02%) to orchardgrass sequences. A high-density linkage map of orchardgrass was constructed using 2,467 SLAF markers and 43 SSRs, which were distributed on seven linkage groups spanning 715.77 cM. The average distance between adjacent markers was 0.37 cM. Based on phenotyping in four environments, 11 potentially significant quantitative trait loci (QTLs) for two target traits–heading date (HD) and flowering time (FT)–were identified and positioned on linkage groups LG1, LG3, and LG5. Significant QTLs explained 8.20–27.00% of the total phenotypic variation, with the LOD ranging from 3.85–12.21. Marker167780 and Marker139469 were associated with FT and HD at the same location (Ya’an) over two different years. The utility of SLAF markers for rapid generation of genetic maps and QTL analysis has been demonstrated for heading date and flowering time in a global forage grass. PMID:27389619

  3. Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia).

    PubMed

    Ito, Akiko; Saito, Takanori; Nishijima, Takaaki; Moriguchi, Takaya

    2014-05-01

    To investigate the effects of light quality (wavelength) on shoot elongation and flower-bud formation in Japanese pear (Pyrus pyrifolia (Burm. f.) Nakai), we treated 1-year-old trees with the following: (i) 8 h sunlight + 16 h dark (SD); (ii) 8 h sunlight + 16 h red light (LD(SD + R)); or (iii) 8 h sunlight + 16 h far-red (FR) light (LD(SD + FR)) daily for 4 months from early April (before the spring flush) until early August in 2009 and 2010. In both years, shoot elongation stopped earlier in the LD(SD + FR) treatment than in the SD and LD(SD + R) treatments. After 4 months of treatments, 21% (2009) or 40% (2010) of LD(SD + FR)-treated trees formed flower buds in the shoot apices, whereas all the shoot apices from SD or LD(SD + R)-treated plants remained vegetative. With an additional experiment conducted in 2012, we confirmed that FR light at 730 nm was the most efficacious wavelength to induce flower-bud formation. Reverse transcription-quantitative polymerase chain reaction revealed that the expression of two floral meristem identity gene orthologues, LEAFY (PpLFY2a) and APETALA1 (PpMADS2-1a), were up-regulated in the shoot apex of LD(SD + FR). In contrast, the expression of a flowering repressor gene, TERMINAL FLOWER 1 (PpTFL1-1a, PpTFL1-2a), was down-regulated. In addition, expression of an orthologue of the flower-promoting gene FLOWERING LOCUS T (PpFT1a) was positively correlated with flower-bud formation, although the expression of another orthologue, PpFT2a, was negatively correlated with shoot growth. Biologically active cytokinin and gibberellic acid concentrations in shoot apices were reduced with LD(SD + FR) treatment. Taken together, our results indicate that pear plants are able to regulate flowering in response to the R : FR ratio. Furthermore, LD(SD + FR) treatment terminated shoot elongation and subsequent flower-bud formation in the shoot apex at an earlier time, possibly by influencing the expression of flowering-related genes and modifying

  4. Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia).

    PubMed

    Ito, Akiko; Saito, Takanori; Nishijima, Takaaki; Moriguchi, Takaya

    2014-05-01

    To investigate the effects of light quality (wavelength) on shoot elongation and flower-bud formation in Japanese pear (Pyrus pyrifolia (Burm. f.) Nakai), we treated 1-year-old trees with the following: (i) 8 h sunlight + 16 h dark (SD); (ii) 8 h sunlight + 16 h red light (LD(SD + R)); or (iii) 8 h sunlight + 16 h far-red (FR) light (LD(SD + FR)) daily for 4 months from early April (before the spring flush) until early August in 2009 and 2010. In both years, shoot elongation stopped earlier in the LD(SD + FR) treatment than in the SD and LD(SD + R) treatments. After 4 months of treatments, 21% (2009) or 40% (2010) of LD(SD + FR)-treated trees formed flower buds in the shoot apices, whereas all the shoot apices from SD or LD(SD + R)-treated plants remained vegetative. With an additional experiment conducted in 2012, we confirmed that FR light at 730 nm was the most efficacious wavelength to induce flower-bud formation. Reverse transcription-quantitative polymerase chain reaction revealed that the expression of two floral meristem identity gene orthologues, LEAFY (PpLFY2a) and APETALA1 (PpMADS2-1a), were up-regulated in the shoot apex of LD(SD + FR). In contrast, the expression of a flowering repressor gene, TERMINAL FLOWER 1 (PpTFL1-1a, PpTFL1-2a), was down-regulated. In addition, expression of an orthologue of the flower-promoting gene FLOWERING LOCUS T (PpFT1a) was positively correlated with flower-bud formation, although the expression of another orthologue, PpFT2a, was negatively correlated with shoot growth. Biologically active cytokinin and gibberellic acid concentrations in shoot apices were reduced with LD(SD + FR) treatment. Taken together, our results indicate that pear plants are able to regulate flowering in response to the R : FR ratio. Furthermore, LD(SD + FR) treatment terminated shoot elongation and subsequent flower-bud formation in the shoot apex at an earlier time, possibly by influencing the expression of flowering-related genes and modifying

  5. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured.

    PubMed

    Munguía-Rosas, Miguel A; Ollerton, Jeff; Parra-Tabla, Victor; De-Nova, J Arturo

    2011-05-01

    Flowering times of plants are important life-history components and it has previously been hypothesized that flowering phenologies may be currently subject to natural selection or be selectively neutral. In this study we reviewed the evidence for phenotypic selection acting on flowering phenology using ordinary and phylogenetic meta-analysis. Phenotypic selection exists when a phenotypic trait co-varies with fitness; therefore, we looked for studies reporting an association between two components of flowering phenology (flowering time or flowering synchrony) with fitness. Data sets comprising 87 and 18 plant species were then used to assess the incidence and strength of phenotypic selection on flowering time and flowering synchrony, respectively. The influence of dependence on pollinators, the duration of the reproductive event, latitude and plant longevity as moderators of selection were also explored. Our results suggest that selection favours early flowering plants, but the strength of selection is influenced by latitude, with selection being stronger in temperate environments. However, there is no consistent pattern of selection on flowering synchrony. Our study demonstrates that phenotypic selection on flowering time is consistent and relatively strong, in contrast to previous hypotheses of selective neutrality, and has implications for the evolution of temperate floras under global climate change. PMID:21332621

  6. Selection of Reference Genes for Quantitative Real-Time PCR during Flower Development in Tree Peony (Paeonia suffruticosa Andr.).

    PubMed

    Li, Jian; Han, Jigang; Hu, Yonghong; Yang, Ji

    2016-01-01

    Tree peony (Paeonia suffruticosa) is a perennial plant indigenous to China known for its elegant and vibrantly colorful flowers. A few genes involved in petal pigmentation have been cloned in tree peony. However, to date, there have been few studies on the comparison and selection of stable reference genes for gene expression analysis by quantitative reverse-transcription PCR (qRT-PCR) in this species. In this study, 10 candidate reference genes were evaluated for the normalization of qRT-PCR in three tree peony cultivars. GAPDH and UBC were identified as the top two most stable reference genes in 'Feng Dan' and 'Xi Shi,' and EF-1α/UBC was recommended to be the best combination for 'Que Hao.' The expression stability of various reference genes differed across cultivars, suggesting that selection and validation of reliable reference genes for quantitative gene expression analysis was necessary not only for different species but also for different cultivars. The results provided a list of reference genes for further study on gene expression in P. suffruticosa. However, in any case, a preliminary check on the accuracy of the best performing reference genes is requested for each qRT-PCR experiment.

  7. Selection of Reference Genes for Quantitative Real-Time PCR during Flower Development in Tree Peony (Paeonia suffruticosa Andr.)

    PubMed Central

    Li, Jian; Han, Jigang; Hu, Yonghong; Yang, Ji

    2016-01-01

    Tree peony (Paeonia suffruticosa) is a perennial plant indigenous to China known for its elegant and vibrantly colorful flowers. A few genes involved in petal pigmentation have been cloned in tree peony. However, to date, there have been few studies on the comparison and selection of stable reference genes for gene expression analysis by quantitative reverse-transcription PCR (qRT-PCR) in this species. In this study, 10 candidate reference genes were evaluated for the normalization of qRT-PCR in three tree peony cultivars. GAPDH and UBC were identified as the top two most stable reference genes in ‘Feng Dan’ and ‘Xi Shi,’ and EF-1α/UBC was recommended to be the best combination for ‘Que Hao.’ The expression stability of various reference genes differed across cultivars, suggesting that selection and validation of reliable reference genes for quantitative gene expression analysis was necessary not only for different species but also for different cultivars. The results provided a list of reference genes for further study on gene expression in P. suffruticosa. However, in any case, a preliminary check on the accuracy of the best performing reference genes is requested for each qRT-PCR experiment. PMID:27148337

  8. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida

    PubMed Central

    2010-01-01

    Background Identification of genes with invariant levels of gene expression is a prerequisite for validating transcriptomic changes accompanying development. Ideally expression of these genes should be independent of the morphogenetic process or environmental condition tested as well as the methods used for RNA purification and analysis. Results In an effort to identify endogenous genes meeting these criteria nine reference genes (RG) were tested in two Petunia lines (Mitchell and V30). Growth conditions differed in Mitchell and V30, and different methods were used for RNA isolation and analysis. Four different software tools were employed to analyze the data. We merged the four outputs by means of a non-weighted unsupervised rank aggregation method. The genes identified as optimal for transcriptomic analysis of Mitchell and V30 were EF1α in Mitchell and CYP in V30, whereas the least suitable gene was GAPDH in both lines. Conclusions The least adequate gene turned out to be GAPDH indicating that it should be rejected as reference gene in Petunia. The absence of correspondence of the best-suited genes suggests that assessing reference gene stability is needed when performing normalization of data from transcriptomic analysis of flower and leaf development. PMID:20056000

  9. Growth and flowering responses of cut chrysanthemum grown under restricted root volume to irrigation frequency.

    PubMed

    Taweesak, Viyachai; Lee Abdullah, Thohirah; Hassan, Siti Aishah; Kamarulzaman, Nitty Hirawaty; Wan Yusoff, Wan Abdullah

    2014-01-01

    Influences of irrigation frequency on the growth and flowering of chrysanthemum grown under restricted root volume were tested. Chrysanthemum cuttings (Chrysanthemum morifolium "Reagan White") were grown in seedling tray which contained coconut peat in volumes of 73 and 140 cm(3). Plants were irrigated with drip irrigation at irrigation frequencies of 4 (266 mL), 6 (400 mL), and 8 (533 mL) times/day to observe their growth and flowering performances. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. Plants grown in 140 cm(3) substrates and irrigated 6 times/day produced the tallest plant of 109.25 cm. Plants irrigated 6 and 8 times/day had significantly higher level of phosphorus content in their leaves than those plants irrigated 4 times/day. The total leaf area, number of internodes, leaf length, and leaf width of chrysanthemums grown in 140 cm(3) substrate were significantly higher than those grown in 73 cm(3) substrate. The numbers of flowers were affected by both irrigation frequencies and substrate volumes. Chrysanthemums irrigated 8 times/day had an average of 19.56 flowers while those irrigated 4 times/day had an average of 16.63 flowers. Increasing irrigation frequency can improve the growth and flowering of chrysanthemums in small substrate volumes.

  10. Does Leisure Time as a Stress Coping Resource Increase Affective Complexity? Applying the Dynamic Model of Affect (DMA).

    PubMed

    Qian, Xinyi Lisa; Yarnal, Careen M; Almeida, David M

    2013-01-01

    Affective complexity, a manifestation of psychological well-being, refers to the relative independence between positive and negative affect (PA, NA). According to the Dynamic Model of Affect (DMA), stressful situations lead to highly inverse PA-NA relationship, reducing affective complexity. Meanwhile, positive events can sustain affective complexity by restoring PA-NA independence. Leisure, a type of positive events, has been identified as a coping resource. This study used the DMA to assess whether leisure time helps restore affective complexity on stressful days. We found that on days with more leisure time than usual, an individual experienced less negative PA-NA relationship after daily stressful events. The finding demonstrates the value of leisure time as a coping resource and the DMA's contribution to coping research. PMID:24659826

  11. Does Leisure Time as a Stress Coping Resource Increase Affective Complexity? Applying the Dynamic Model of Affect (DMA)

    PubMed Central

    Qian, Xinyi (Lisa); Yarnal, Careen M.; Almeida, David M.

    2013-01-01

    Affective complexity, a manifestation of psychological well-being, refers to the relative independence between positive and negative affect (PA, NA). According to the Dynamic Model of Affect (DMA), stressful situations lead to highly inverse PA-NA relationship, reducing affective complexity. Meanwhile, positive events can sustain affective complexity by restoring PA-NA independence. Leisure, a type of positive events, has been identified as a coping resource. This study used the DMA to assess whether leisure time helps restore affective complexity on stressful days. We found that on days with more leisure time than usual, an individual experienced less negative PA-NA relationship after daily stressful events. The finding demonstrates the value of leisure time as a coping resource and the DMA’s contribution to coping research. PMID:24659826

  12. A time dependent behavior of radiocesium from the Fukushima-fallout in litterfalls of Japanese flowering cherry trees.

    PubMed

    Yoshihara, Toshihiro; Hashida, Shin-nosuke; Abe, Kazuhiro; Ajito, Hiroyuki

    2014-01-01

    Radiocesium ((134)Cs + (137)Cs) concentrations, primarily derived from the Fukushima accident in March 2011, were measured in litterfalls and green leaves of Japanese flowering cherry trees (Prunus x yedoensis cv. Somei-Yoshino). The sampling was performed mainly during the defoliation season in 2011 and 2012 using traps to collect litterfalls before contact with the ground. The average radiocesium concentration in litterfalls in 2012 fell to one-third of that in 2011 (0.43 and 1.2 kBq kg-DW(-1), respectively). Interestingly, the concentrations in litterfalls collected in late autumn in both 2011 and 2012 (0.68 and 0.19 kBq kg-DW(-1), respectively) were significantly lower than those in litterfalls collected in the early autumn (1.7 and 1.1 kBq kg-DW(-1), respectively). In addition, the reductions in radiocesium concentrations in the litterfall were nearly synchronous with those in potassium concentrations (p ≤ 0.05). On the contrary, radiocesium concentrations in green leaves were also correlated with potassium concentrations; however, the slopes of the regression lines between the radiocesium and potassium concentrations were very similar in the 2011 litterfalls and the 2012 litterfalls, while the slopes were significantly different between these litterfalls and the green leaves. Consequently, the correlation between potassium and radiocesium was clear but independently observable in each of the litterfalls and the green leaves. It is possible that the reduction in radiocesium concentration occurred as a part of physiological demand, a translocation of potassium from the leaves to the body/twigs.

  13. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin

    PubMed Central

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; Carmen González-Mas, M.; Primo-Millo, Eduardo; Agustí, Manuel; Iglesias, Domingo J.

    2011-01-01

    Background and Aims The presence of fruit has been widely reported to act as an inhibitor of flowering in fruit trees. This study is an investigation into the effect of fruit load on flowering of ‘Moncada’ mandarin and on the expression of putative orthologues of genes involved in flowering pathways to provide insight into the molecular mechanisms underlying alternate bearing in citrus. Methods The relationship between fruit load and flowering intensity was examined first. Defruiting experiments were further conducted to demonstrate the causal effect of fruit removal upon flowering. Finally, the activity of flowering-related genes was investigated to determine the extent to which their seasonal expression is affected by fruit yield. Key Results First observations and defruiting experiments indicated a significant inverse relationship between preceding fruit load and flowering intensity. Moreover, data indicated that when fruit remained on the tree from November onwards, a dramatic inhibition of flowering occurred the following spring. The study of the expression pattern of flowering-genes of on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (FT), SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), APETALA1 (AP1) and LEAFY (LFY) were negatively affected by fruit load. Thus, CiFT expression showed a progressive increase in leaves from off trees through the study period, the highest differences found from December onwards (10-fold). Whereas differences in the relative expression of SOC1 only reached significance from September to mid-December, CsAP1 expression was constantly higher in those trees through the whole study period. Significant variations in CsLFY expression only were found in late February (close to 20 %). On the other hand, the expression of the homologues of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS C (FLC) did not appear to be related to fruit load. Conclusions These results suggest for the first time

  14. Flowering responses of insect-pollinated plants to elevated CO{sub 2} levels

    SciTech Connect

    Cushman, J.H.; Koch, G.W.; Chiariello, N.R. ||

    1995-06-01

    Elevated atmospheric CO{sub 2} concentrations have been predicted or shown to substantially influence plants, communities and ecosystems in a variety of ways. Here, we examined the effects of elevated CO{sub 2} levels on the timing and magnitude of flowering for two insect-pollinated annual plant species in a serpentine grassland. We focused on Lasthenia californica and Linanthus parviflorus and addressed three questions: (1) Do elevated CO{sub 2} levels influence flowering phenologies and is this species specific? (2) Do elevated CO{sub 2} levels affect flower production and is this due to altered numbers of individuals, flowers per plant, or both? and (3) Are effects on flowering due to elevated CO{sub 2} levels per se or changes in environmental conditions associated with methods used to manipulate CO{sub 2} levels? To address these questions, we used the ecosystem experiment at Stanford University`s Jasper Ridge Biological Preserve (San Mateo Co., CA). This system consists of 20 open-topped chambers - half receiving ambient CO{sub 2} (360 ppm) and half receiving elevated CO{sub 2} (720 ppm) - and 10 untreated plots serving as chamber controls. Results from the 1994 season demonstrated that there were species-specific responses to elevated CO{sub 2} levels and the field chambers. For Lasthenia californica, elevated CO{sub 2} per se did not affect relative abundance, inflorescence production, or phenology, but chambers did significantly increase inflorescence production and extend the duration of flowering. For Linanthus parviflorus, elevated CO{sub 2} levels significantly increased relative abundance and flower production, and extended the flowering period slightly, while the chambers significantly decreased flower production early in the season and increased it later in the season.

  15. Recognition of flowers by pollinators.

    PubMed

    Chittka, Lars; Raine, Nigel E

    2006-08-01

    The flowers of angiosperm plants present us with a staggering diversity of signal designs, but how did this diversity evolve? Answering this question requires us to understand how pollinators analyze these signals with their visual and olfactory sense organs, and how the sensory systems work together with post-receptor neural wiring to produce a coherent percept of the world around them. Recent research on the dynamics with which bees store, manage and retrieve memories all have fundamental implications for how pollinators choose between flowers, and in turn for floral evolution. New findings regarding how attention, peak-shift phenomena, and speed-accuracy tradeoffs affect pollinator choice between flower species show that analyzing the evolutionary ecology of signal-receiver relationships can substantially benefit from knowledge about the neural mechanisms of visual and olfactory information processing.

  16. Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage.

    PubMed

    Wilschut, Rutger A; Oplaat, Carla; Snoek, L Basten; Kirschner, Jan; Verhoeven, Koen J F

    2016-04-01

    Epigenetic variation has been proposed to contribute to the success of asexual plants, either as a contributor to phenotypic plasticity or by enabling transient adaptation via selection on transgenerationally stable, but reversible, epialleles. While recent studies in experimental plant populations have shown the potential for epigenetic mechanisms to contribute to adaptive phenotypes, it remains unknown whether heritable variation in ecologically relevant traits is at least partially epigenetically determined in natural populations. Here, we tested the hypothesis that DNA methylation variation contributes to heritable differences in flowering time within a single widespread apomictic clonal lineage of the common dandelion (Taraxacum officinale s. lat.). Apomictic clone members of the same apomictic lineage collected from different field sites showed heritable differences in flowering time, which was correlated with inherited differences in methylation-sensitive AFLP marker profiles. Differences in flowering between apomictic clone members were significantly reduced after in vivo demethylation using the DNA methyltransferase inhibitor zebularine. This synchronization of flowering times suggests that flowering time divergence within an apomictic lineage was mediated by differences in DNA methylation. While the underlying basis of the methylation polymorphism at functional flowering time-affecting loci remains to be demonstrated, our study shows that epigenetic variation contributes to heritable phenotypic divergence in ecologically relevant traits in natural plant populations. This result also suggests that epigenetic mechanisms can facilitate adaptive divergence within genetically uniform asexual lineages. PMID:26615058

  17. Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage.

    PubMed

    Wilschut, Rutger A; Oplaat, Carla; Snoek, L Basten; Kirschner, Jan; Verhoeven, Koen J F

    2016-04-01

    Epigenetic variation has been proposed to contribute to the success of asexual plants, either as a contributor to phenotypic plasticity or by enabling transient adaptation via selection on transgenerationally stable, but reversible, epialleles. While recent studies in experimental plant populations have shown the potential for epigenetic mechanisms to contribute to adaptive phenotypes, it remains unknown whether heritable variation in ecologically relevant traits is at least partially epigenetically determined in natural populations. Here, we tested the hypothesis that DNA methylation variation contributes to heritable differences in flowering time within a single widespread apomictic clonal lineage of the common dandelion (Taraxacum officinale s. lat.). Apomictic clone members of the same apomictic lineage collected from different field sites showed heritable differences in flowering time, which was correlated with inherited differences in methylation-sensitive AFLP marker profiles. Differences in flowering between apomictic clone members were significantly reduced after in vivo demethylation using the DNA methyltransferase inhibitor zebularine. This synchronization of flowering times suggests that flowering time divergence within an apomictic lineage was mediated by differences in DNA methylation. While the underlying basis of the methylation polymorphism at functional flowering time-affecting loci remains to be demonstrated, our study shows that epigenetic variation contributes to heritable phenotypic divergence in ecologically relevant traits in natural plant populations. This result also suggests that epigenetic mechanisms can facilitate adaptive divergence within genetically uniform asexual lineages.

  18. Different Starting Distances Affect 5-m Sprint Times.

    PubMed

    Altmann, Stefan; Hoffmann, Marian; Kurz, Gunther; Neumann, Rainer; Woll, Alexander; Haertel, Sascha

    2015-08-01

    The purpose of this study was to quantify the effect of different starting distances on 5-m sprint time and the accuracy of the initial timing gate. A single-beam timing gate system (1 m high) was used to measure 5-m sprint time in 13 male sports students. Each subject performed 3 valid trials for 3 starting distances: 0.3, 0.5, and 1.0 m from the initial timing lights, respectively. A high-speed video camera was used to track a reflective marker placed on the subjects' hip within a field of view around the initial timing gate. Accuracy of the initial timing gate was defined as the time between the initial timing light trigger and passing of the reflective marker by the initial timing gate. Sprint times were significantly faster for the 1.0-m starting distance (0.98 ± 0.06 seconds) than for the 0.5-m (1.05 ± 0.07 seconds) and the 0.3-m (1.09 ± 0.08 seconds) starting distances (p < 0.001). There were no differences in initial timing gate error between starting distances (p = 0.078). Hence, starting distance influenced sprint times but not the accuracy of the initial timing gate. Researchers and coaches should consider the effect of starting distance on 5-m sprint time and ensure consistent testing protocols. Based on the results of this study, we recommend a starting distance of 0.3 m that should be used for all sprint performance tests.

  19. Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte

    PubMed Central

    Thomson, James D.

    2010-01-01

    Spatio-temporal patterns of snowmelt and flowering times affect fruiting success in Erythronium grandiflorum Pursh (Liliaceae) in subalpine western Colorado, USA. From 1990 to 1995, I measured the consistency across years of snowmelt patterns and flowering times along a permanent transect. In most years since 1993, I have monitored fruit set in temporal cohorts (early- to late-flowering groups of plants) at one site. To assess ‘pollination limitation’, I have also conducted supplemental hand-pollination experiments at various times through the blooming season. The onset of blooming is determined by snowmelt, with the earliest years starting a month before the latest years owing to variation in winter snowpack accumulation. Fruit set is diminished or prevented entirely by killing frosts in some years, most frequently but not exclusively for the earlier cohorts. When frosts do not limit fruit set, pollination limitation is frequent, especially in the earlier cohorts. Pollination limitation is strongest for middle cohorts: it tends to be negated by frost in early cohorts and ameliorated by continuing emergence of bumble-bee queens in later cohorts. This lily appears to be poorly synchronized with its pollinators. Across the years of the study, pollination limitation appears to be increasing, perhaps because the synchronization is getting worse. PMID:20819812

  20. Evidence of genetic influence on the flowering pattern of Ficus microcarpa

    NASA Astrophysics Data System (ADS)

    Yang, Hui-Wen; Bain, Anthony; Garcia, Marjorie; Chou, Lien-Siang; Kjellberg, Finn

    2014-05-01

    Flowering patterns result from the interactions between genetic and environmental factors. While the genetic basis for flowering time variation in commercial plants is often well understood, few studies have been conducted to investigate these patterns in plants without economic importance. Ficus microcarpa is a commonly introduced horticultural fig tree. Asynchrony in syconium development and the initiation, frequency, and size of crops may affect its fitness as well as the success of mutualism with its pollinating wasps. In order to identify genetically determined patterns in the flowering traits in F. microcarpa, a 14-month census was taken on the flowering characteristics of 28 trees growing in close proximity along an urban street in Taipei, Taiwan. Weekly surveys were taken on 7 characteristics: crop number, syconia per branch, crop asynchrony, as well as flowering onset and seed development duration for both the spring and summer crops. Post-census genotyping at microsatellite loci distinguished 16 genetic groups (5 clonal groups and 11 non-clone trees). All crop characteristics presented higher variation across different genotype groups than within groups except for seed development duration. We found no evidence of adjacency effects or spatial auto-correlation of flowering traits. The study offers the first evidence of genetic variations in the flowering patterns in a species of Ficus. These findings lend insight into the adaptive characteristics that potentially facilitate the local establishment of F. microcarpa in new locations.

  1. The evolution of flowering strategies in US weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Local adaptation in plants often involves changes in flowering time in response to day length and temperature differences. Many crop varieties have been selected for uniformity in flowering time. In contrast, variable flowering may be important for increased competitiveness in weed species invading ...

  2. Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis.

    PubMed

    Jaudal, Mauren; Zhang, Lulu; Che, Chong; Putterill, Joanna

    2015-01-01

    The timing of the transition to flowering is carefully controlled by plants in order to optimize sexual reproduction and the ensuing production of seeds, grains, and fruits. The genetic networks that regulate floral induction are best characterized in the temperate eudicot Arabidopsis in which the florigen gene FT plays a major role in promoting the transition to flowering. Legumes are an important plant group, but less is known about the regulation of their flowering time. In the model legume Medicago truncatula (Medicago), a temperate annual plant like Arabidopsis, flowering is induced by prolonged cold (vernalization) followed by long day lengths (LD). Recent molecular-genetic experiments have revealed that a FT-like gene, MtFTa1, is a central regulator of flowering time in Medicago. Here, we characterize the three Medicago FRUITFULL (FUL) MADS transcription factors, MtFULa, MtFULb, and MtFULc using phylogenetic analyses, gene expression profiling through developmental time courses, and functional analyses in transgenic plants. MtFULa and MtFULb have similarity in sequence and expression profiles under inductive environmental conditions during both vegetative and reproductive development while MtFULc is only up regulated in the apex after flowering in LD conditions. Sustained up regulation of MtFULs requires functional MtFTa1 but their transcript levels are not affected during cold treatment. Overexpression of MtFULa and MtFULb promotes flowering in transgenic Arabidopsis plants with an additional terminal flower phenotype on some 35S:MtFULb plants. An increase in transcript levels of the MtFULs was also observed in Medicago plants overexpressing MtFTa1. Our results suggest that the MtFULs are targets of MtFTa1. Overall, this work highlights the conserved functions of FUL-like genes in promoting flowering and other roles in plant development and thus contributes to our understanding of the genetic control of the flowering process in Medicago.

  3. How Bad Receiver Coordinates Can Affect GPS Timing

    NASA Technical Reports Server (NTRS)

    Chadsey, H.

    1996-01-01

    Many sources of error are possible when the Global Positioning System (GPS) is used for time comparisons. Some of these errors have been listed by Lewandowski. Because of the complexity of the system, an error source could have more than one effect. This paper will present theoretical and observational results by offsetting a receiver's coordinates. The calculations show how an error as small as three meters in any direction can result in a timing error of more than 10 nanoseconds. The GPS receiver must be surveyed to better than 0.2 meter accuracy for the timing error to be sub-nanosecond.

  4. Design a Hummingbird Flower.

    ERIC Educational Resources Information Center

    Bailey, Kim

    2002-01-01

    Presents an activity that engages students in designing and making an artificial flower adapted for pollination by hummingbirds. Students work in teams to design flowers that maximize the benefit from attracting hummingbirds. Examines characteristics of real flowers adapted to pollination by hummingbirds. (DLH)

  5. Flowers that threaten Funza.

    PubMed

    Kendall, S

    1993-01-01

    Water shortages have resulted from agricultural development in a rural area outside Bogota, Colombia. These shortages have increased women's work load and caused problems in managing households because the water must be boiled before ingestion. In the community of Funza, women must obtain clean water in buckets at night from the main valve, which has insufficient water pressure and a slow stream. Some barrios collect water on a weekly basis. The local restaurant in town obtains water once a week from a tanker; the town is lucky to receive water three times a week. Men assume that women will take care of the problem. The mayor says that the piped water from Bogota will soon be connected and that each barrio will have its own valve. Women are concerned that the supply, even with new valves, will be limited and mixed with dirty lagoon water. Experts are saying that the water shortage and quality problems that began seven years ago will lead to rationing within three to six years. The flower companies, that came to the area 22 years age, are blamed for the water problems. People say that the flower companies have piped clean water from the area's supply in the San Patricia and that underground sources of water have been used up as well. The industry provides jobs and income, which have improved the standard of living, but there is little consideration given to the water supply. The community shifted water sources to the lagoon at a time when the water was being contaminated by sewage and pesticides and chemicals from the flower companies.

  6. Time-related predictors of suicide in major affective disorder.

    PubMed

    Fawcett, J; Scheftner, W A; Fogg, L; Clark, D C; Young, M A; Hedeker, D; Gibbons, R

    1990-09-01

    The authors studied 954 psychiatric patients with major affective disorders and found that nine clinical features were associated with suicide. Six of these--panic attacks, severe psychic anxiety, diminished concentration, global insomnia, moderate alcohol abuse, and severe loss of interest or pleasure (anhedonia)--were associated with suicide within 1 year, and three others--severe hopelessness, suicidal ideation, and history of previous suicide attempts--were associated with suicide occurring after 1 year. These findings draw attention to the importance of 1) standardized prospective data for studies of suicide, 2) assessment of short-term suicide risk factors, and 3) anxiety symptoms as modifiable suicide risk factors within a clinically relevant period. PMID:2104515

  7. Cognitive Factors Affecting Student Understanding of Geologic Time.

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    Presents a model that describes how students reconstruct geological transformations over time. Defines the critical factors influencing reconstructive thinking: (1) the transformation scheme, which influences the other diachronic schemes; (2) knowledge of geological processes; and (3) extracognitive factors. (Author/KHR)

  8. Processing Time Shifts Affects the Execution of Motor Responses

    ERIC Educational Resources Information Center

    Sell, Andrea J.; Kaschak, Michael P.

    2011-01-01

    We explore whether time shifts in text comprehension are represented spatially. Participants read sentences involving past or future events and made sensibility judgment responses in one of two ways: (1) moving toward or away from their body and (2) pressing the toward or away buttons without moving. Previous work suggests that spatial…

  9. Perceptual Grouping Affects Pitch Judgments across Time and Frequency

    ERIC Educational Resources Information Center

    Borchert, Elizabeth M. O.; Micheyl, Christophe; Oxenham, Andrew J.

    2011-01-01

    Pitch, the perceptual correlate of fundamental frequency (F0), plays an important role in speech, music, and animal vocalizations. Changes in F0 over time help define musical melodies and speech prosody, while comparisons of simultaneous F0 are important for musical harmony, and for segregating competing sound sources. This study compared…

  10. Does the Timing of Tracking Affect Higher Education Completion?

    ERIC Educational Resources Information Center

    van Elk, Roel; van der Steeg, Marc; Webbink, Dinand

    2011-01-01

    This paper investigates the effect of the timing of tracking on completion of higher education by exploiting unique variation from the Dutch education system. At the age of 12 Dutch students can enrol in tracked schools or in comprehensive schools. The comprehensive schools postpone enrolment into tracked classes by one or two years. OLS- and…

  11. Irrigation timing and volume affects growth of container grown maples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Container nursery production requires large inputs of water and nutrients but frequently irrigation inputs exceed plant demand and lack application precision or are not applied at optimal times for plant production. The results from this research can assist producers in developing irrigation manage...

  12. Reaction time in gait initiation depends on the time available for affective processing.

    PubMed

    Gélat, Thierry; Chapus, Carole Ferrel

    2015-11-16

    Previous studies have reported that reaction time in gait initiation was affected by emotion eliciting pictures. This study examined the effect of a change in the delay between image onset and the imperative "go" on reaction time. From a standing posture, 19 young adults had to walk (several steps) toward pleasant or unpleasant images in two conditions. In the short condition, the word "go" appeared 500ms after image onset and participants were instructed to initiate gait as soon as possible after the word go appeared. In the long condition, the same procedure was used but the word "go" appeared 3000ms after image onset. Results demonstrated that motor responses were faster for pleasant pictures than unpleasant ones in the short condition. In contrast, no significant difference was found between both categories of pictures in the long condition. Moreover, we found that self ratings of valence of unpleasant pictures were less unpleasant in the long condition than in the short one whereas there was no difference for pleasant pictures between both conditions. This result reflected a change in the affective significance of unpleasant pictures in the long condition. We also found in the long condition, that the body was inclined forward and to the stance limb during the standing posture and importantly with a similar extent for pleasant and unpleasant pictures. This change clearly reflected a facilitation of the gait initiation process. Overall, results suggested that this gait facilitation when confronted to unpleasant pictures resulted from emotional regulation processes enabling to reappraise these pictures and to override the initial avoidance tendency that they caused. PMID:26455865

  13. Flowering phenological changes in relation to climate change in Hungary

    NASA Astrophysics Data System (ADS)

    Szabó, Barbara; Vincze, Enikő; Czúcz, Bálint

    2016-01-01

    The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species (Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9-4.4 days per decade. We found that it was the mean temperature of the 2-3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January-March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February-April) has some effect on Tilia flowering.

  14. Flowering phenological changes in relation to climate change in Hungary.

    PubMed

    Szabó, Barbara; Vincze, Enikő; Czúcz, Bálint

    2016-09-01

    The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species (Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9-4.4 days per decade. We found that it was the mean temperature of the 2-3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January-March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February-April) has some effect on Tilia flowering. PMID:26768142

  15. Flowering phenological changes in relation to climate change in Hungary

    NASA Astrophysics Data System (ADS)

    Szabó, Barbara; Vincze, Enikő; Czúcz, Bálint

    2016-09-01

    The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species ( Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9-4.4 days per decade. We found that it was the mean temperature of the 2-3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January-March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February-April) has some effect on Tilia flowering.

  16. The Arabidopsis repressor of light signaling SPA1 acts in the phloem to regulate seedling de-etiolation, leaf expansion and flowering time.

    PubMed

    Ranjan, Aashish; Fiene, Gabriele; Fackendahl, Petra; Hoecker, Ute

    2011-05-01

    Plants adjust their growth and development in response to the ambient light environment. These light responses involve systemic signals that coordinate differentiation of different tissues and organs. Here, we have investigated the function of the key repressor of photomorphogenesis SPA1 in different tissues of the plant by expressing GUS-SPA1 under the control of tissue-specific promoters in a spa mutant background. We show that SPA1 expression in the phloem vasculature is sufficient to rescue the spa1 mutant phenotype in dark-grown spa mutant seedlings. Expression of SPA1 in mesophyll, epidermis or root tissues of the seedling, by contrast, has no or only slight effects. In the leaf, SPA1 expression in both the phloem and the mesophyll is required for full complementation of the defect in leaf expansion. SPA1 in phloem and mesophyll tissues affected division and expansion of cells in the epidermal layer, indicating that SPA1 induces non-cell-autonomous responses also in the leaf. Photoperiodic flowering is exclusively controlled by SPA1 expression in the phloem, which is consistent with previous results showing that the direct substrate of the COP1/SPA complex, CONSTANS, also acts in the phloem. Taken together, our results highlight the importance of phloem vascular tissue in coordinating growth and development. Because the SPA1 protein itself is incapable of moving from cell to cell, we suggest that SPA1 regulates the activity of downstream component(s) of light signaling that subsequently act in a non-cell-autonomous manner. SPA1 action in the phloem may also result in mechanical stimuli that affect cell elongation and cell division in other tissues.

  17. Cognitive factors affecting student understanding of geologic time

    NASA Astrophysics Data System (ADS)

    Dodick, Jeff; Orion, Nir

    2003-04-01

    A critical element of the earth sciences is reconstructing geological structures and systems that have developed over time. A survey of the science education literature shows that there has been little attention given to this concept. In this study, we present a model, based on Montagnero's ([1996]) model of diachronic thinking, which describes how students reconstruct geological transformations over time. For geology, three schemes of diachronic thinking are relevant: 1. Transformation, which is a principle of change; in geology it is understood through actualistic thinking (the idea that present proceeses can be used to model the past). 2. Temporal organization, which defines the sequential order of a transformation; in geology it is based on the three-dimensional relationship among strata. 3. Interstage linkage, which is the connections between successive stages of a transformation; in geology it is based on both actualism and causal reasoning. Three specialized instruments were designed to determine the factors which influence reconstructive thinking: (a) the GeoTAT which tests diachronic thinking skills, (b) the TST which tests the relationship between spatial thinking and temporal thinking, and (c) the SFT which tests the influence of dimensional factors on temporal awareness. Based on the model constructed in this study we define the critical factors influencing reconstructive thinking: (a) the transformation scheme which influences the other diachronic schemes, (b) knowledge of geological processes, and (c) extracognitive factors. Among the students tested, there was a significant difference between Grade 9-12 students and Grade 7-8 students in their ability to reconstruct geological phenomena using diachronic thinking. This suggests that somewhere between Grades 7 and 8 it is possible to start teaching some of the logical principles used in geology to reconstruct geological structures.

  18. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard.

    PubMed

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-08-01

    The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring

  19. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    PubMed Central

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-01-01

    Abstract The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often

  20. The E3 ubiquitin ligase HOS1 regulates low ambient temperature-responsive flowering in Arabidopsis thaliana.

    PubMed

    Lee, Jeong Hwan; Kim, Jae Joon; Kim, Soo Hyun; Cho, Hyun Jung; Kim, Joonki; Ahn, Ji Hoon

    2012-10-01

    Ubiquitin-dependent proteolysis regulates multiple aspects of plant growth and development, but little is known about its role in ambient temperature-responsive flowering. In addition to being regulated by daylength, the onset of flowering in many plants can also be delayed by low ambient temperatures. Here, we show that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1), which encodes an E3 ubiquitin ligase, controls flowering time in response to ambient temperatures (16 and 23°C) and intermittent cold. hos1 mutants flowered early, and were insensitive to ambient temperature, but responded normally to vernalization and gibberellic acid. Genetic analyses suggested that this ambient temperature-insensitive flowering was independent of FLOWERING LOCUS C (FLC). Also, FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) expression was up-regulated in hos1 mutants at both temperatures. The ft tsf mutation almost completely suppressed the early flowering of hos1 mutants at different temperatures, suggesting that FT and TSF are downstream of HOS1 in the ambient temperature response. A lesion in CONSTANS (CO) did not affect the ambient temperature-insensitive flowering phenotype of hos1-3 mutants. In silico analysis showed that FVE was spatiotemporally co-expressed with HOS1. A HOS1-green fluorescent protein (GFP) fusion co-localized with FVE-GFP in the nucleus at both 16 and 23°C. HOS1 physically interacted with FVE and FLK in yeast two-hybrid and co-immunoprecipitation assays. Moreover, hos1 mutants were insensitive to intermittent cold. Collectively, our results suggest that HOS1 acts as a common regulator in the signaling pathways that control flowering time in response to low ambient temperature.

  1. Perceptual Grouping Affects Pitch Judgments Across Time and Frequency

    PubMed Central

    Borchert, Elizabeth M. O.; Micheyl, Christophe; Oxenham, Andrew J.

    2010-01-01

    Pitch, the perceptual correlate of fundamental frequency (F0), plays an important role in speech, music and animal vocalizations. Changes in F0 over time help define musical melodies and speech prosody, while comparisons of simultaneous F0 are important for musical harmony, and for segregating competing sound sources. This study compared listeners’ ability to detect differences in F0 between pairs of sequential or simultaneous tones that were filtered into separate, non-overlapping spectral regions. The timbre differences induced by filtering led to poor F0 discrimination in the sequential, but not the simultaneous, conditions. Temporal overlap of the two tones was not sufficient to produce good performance; instead performance appeared to depend on the two tones being integrated into the same perceptual object. The results confirm the difficulty of comparing the pitches of sequential sounds with different timbres and suggest that, for simultaneous sounds, pitch differences may be detected through a decrease in perceptual fusion rather than an explicit coding and comparison of the underlying F0s. PMID:21077719

  2. Perceptual grouping affects pitch judgments across time and frequency.

    PubMed

    Borchert, Elizabeth M O; Micheyl, Christophe; Oxenham, Andrew J

    2011-02-01

    Pitch, the perceptual correlate of fundamental frequency (F0), plays an important role in speech, music, and animal vocalizations. Changes in F0 over time help define musical melodies and speech prosody, while comparisons of simultaneous F0 are important for musical harmony, and for segregating competing sound sources. This study compared listeners' ability to detect differences in F0 between pairs of sequential or simultaneous tones that were filtered into separate, nonoverlapping spectral regions. The timbre differences induced by filtering led to poor F0 discrimination in the sequential, but not the simultaneous, conditions. Temporal overlap of the two tones was not sufficient to produce good performance; instead performance appeared to depend on the two tones being integrated into the same perceptual object. The results confirm the difficulty of comparing the pitches of sequential sounds with different timbres and suggest that, for simultaneous sounds, pitch differences may be detected through a decrease in perceptual fusion rather than an explicit coding and comparison of the underlying F0s.

  3. Effect of Moringa oleifera flower extract on larval trypsin and acetylcholinesterase activities in Aedes aegypti.

    PubMed

    Pontual, Emmanuel Viana; Napoleão, Thiago Henrique; Dias de Assis, Caio Rodrigo; de Souza Bezerra, Ranilson; Xavier, Haroudo Satiro; Navarro, Daniela Maria do Amaral Ferraz; Coelho, Luana Cassandra Breitenbach Barroso; Paiva, Patrícia Maria Guedes

    2012-03-01

    Aedes aegypti control is crucial to reducing dengue fever. Aedes aegypti larvae have developed resistance to organophosporous insecticides and the use of natural larvicides may help manage larval resistance by increasing elements in insecticide rotation programs. Here, we report on larvicidal activity of Moringa oleifera flower extract against A. aegypti L(1), L(2), L(3), and L(4) as well as the effect of flower extract on gut trypsin and whole-larval acetylcholinesterase from L(4.) In addition, the heated flower extract was investigated for larvicidal activity against L(4) and effect on larval gut trypsin. Moringa oleifera flower extract contains a proteinaceous trypsin inhibitor (M. oleifera flower trypsin inhibitor, MoFTI), triterpene (β-amyrin), sterol (β-sitosterol) as well as flavonoids (kaempferol and quercetin). Larvicidal activity was detected against L(2), L(3), and L(4) (LC(50) of 1.72%, 1.67%, and 0.92%, respectively). Flower extract inhibited L(4) gut trypsin (MoFTI K(i) = 0.6 nM) and did not affect acetylcholinesterase activity. In vivo assay showed that gut trypsin activity from L(4) treated with M. oleifera flower extract decreased over time (0-1,440 min) and was strongly inhibited (98.6%) after 310 min incubation; acetylcholinesterase activity was not affected. Thermal treatment resulted in a loss of trypsin inhibitor and larvicidal activities, supporting the hypothesis that flower extract contains a proteinaceous trypsin inhibitor that may be responsible for the deleterious effects on larval mortality. PMID:22392801

  4. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering.

    PubMed

    Yuan, Shu; Zhang, Zhong-Wei; Zheng, Chong; Zhao, Zhong-Yi; Wang, Yu; Feng, Ling-Yang; Niu, Guoqi; Wang, Chang-Quan; Wang, Jian-Hui; Feng, Hong; Xu, Fei; Bao, Fang; Hu, Yong; Cao, Ying; Ma, Ligeng; Wang, Haiyang; Kong, Dong-Dong; Xiao, Wei; Lin, Hong-Hui; He, Yikun

    2016-07-01

    The phenomenon of delayed flowering after the application of nitrogen (N) fertilizer has long been known in agriculture, but the detailed molecular basis for this phenomenon is largely unclear. Here we used a modified method of suppression-subtractive hybridization to identify two key factors involved in N-regulated flowering time control in Arabidopsis thaliana, namely ferredoxin-NADP(+)-oxidoreductase and the blue-light receptor cryptochrome 1 (CRY1). The expression of both genes is induced by low N levels, and their loss-of-function mutants are insensitive to altered N concentration. Low-N conditions increase both NADPH/NADP(+) and ATP/AMP ratios, which in turn affect adenosine monophosphate-activated protein kinase (AMPK) activity. Moreover, our results show that the AMPK activity and nuclear localization are rhythmic and inversely correlated with nuclear CRY1 protein abundance. Low-N conditions increase but high-N conditions decrease the expression of several key components of the central oscillator (e.g., CCA1, LHY, and TOC1) and the flowering output genes (e.g., GI and CO). Taken together, our results suggest that N signaling functions as a modulator of nuclear CRY1 protein abundance, as well as the input signal for the central circadian clock to interfere with the normal flowering process. PMID:27325772

  5. Developmental stages of cultivated strawberry flowers in relation to chilling sensitivity

    PubMed Central

    Ariza, Maria Teresa; Soria, Carmen; Martínez-Ferri, Elsa

    2015-01-01

    Environmental factors affecting flower development may limit the yields of fruiting crops worldwide. In temperate regions, chilling temperatures during flower development can compromise fruit production, but their negative effects vary depending on the differing susceptibilities of each developmental stage. The cultivated strawberry (Fragaria× ananassa Duch.) is widely grown worldwide but financial returns are influenced by sudden shifts to chilling temperatures occurring during the cropping cycle. Despite this important limitation, knowledge of F.× ananassa flower development is lacking, in contrast to the diploid wild-type strawberry (F. vesca). In this study we describe steps in floral development of cultivated strawberry and define their vulnerability to chilling temperatures. To achieve this, flower buds from strawberry plants of cv. ‘Camarosa’ were labelled and monitored from bud initiation until anthesis. Description of morphological and functional changes during flower development was based on histological sections and scanning electron microscopy. To determine the impact of low temperatures at different developmental stages, plants carrying buds of different sizes were chilled at 2 °C for 24 h. Several parameters related to male and female gametophyte development were later evaluated in flowers as they approached anthesis. Fragaria× ananassa flower development was divided into 16 stages according to landmark events. These stages were similar to those documented for F. vesca but three new additional intermediate stages were described. Timing of developmental processes was achieved by correlating developmental staging with specific bud sizes and days before anthesis. Time to reach anthesis from early bud stages was 17–18 days. During this period, we detected four critical periods vulnerable to low temperatures. These were mostly related to male gametophyte development but also to injury to female organs at late developmental stages. These results

  6. Developmental stages of cultivated strawberry flowers in relation to chilling sensitivity.

    PubMed

    Ariza, Maria Teresa; Soria, Carmen; Martínez-Ferri, Elsa

    2015-01-01

    Environmental factors affecting flower development may limit the yields of fruiting crops worldwide. In temperate regions, chilling temperatures during flower development can compromise fruit production, but their negative effects vary depending on the differing susceptibilities of each developmental stage. The cultivated strawberry (Fragaria× ananassa Duch.) is widely grown worldwide but financial returns are influenced by sudden shifts to chilling temperatures occurring during the cropping cycle. Despite this important limitation, knowledge of F.× ananassa flower development is lacking, in contrast to the diploid wild-type strawberry (F. vesca). In this study we describe steps in floral development of cultivated strawberry and define their vulnerability to chilling temperatures. To achieve this, flower buds from strawberry plants of cv. 'Camarosa' were labelled and monitored from bud initiation until anthesis. Description of morphological and functional changes during flower development was based on histological sections and scanning electron microscopy. To determine the impact of low temperatures at different developmental stages, plants carrying buds of different sizes were chilled at 2 °C for 24 h. Several parameters related to male and female gametophyte development were later evaluated in flowers as they approached anthesis. Fragaria× ananassa flower development was divided into 16 stages according to landmark events. These stages were similar to those documented for F. vesca but three new additional intermediate stages were described. Timing of developmental processes was achieved by correlating developmental staging with specific bud sizes and days before anthesis. Time to reach anthesis from early bud stages was 17-18 days. During this period, we detected four critical periods vulnerable to low temperatures. These were mostly related to male gametophyte development but also to injury to female organs at late developmental stages. These results provide

  7. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns.

    PubMed

    Papiorek, S; Junker, R R; Alves-Dos-Santos, I; Melo, G A R; Amaral-Neto, L P; Sazima, M; Wolowski, M; Freitas, L; Lunau, K

    2016-01-01

    Colour is one of the most obvious advertisements of flowers, and occurs in a huge diversity among the angiosperms. Flower colour is responsible for attraction from a distance, whereas contrasting colour patterns within flowers aid orientation of flower visitors after approaching the flowers. Due to the striking differences in colour vision systems and neural processing across animal taxa, flower colours evoke specific behavioural responses by different flower visitors. We tested whether and how yellow flowers differ in their spectral reflectance depending on the main pollinator. We focused on bees and birds and examined whether the presence or absence of the widespread UV reflectance pattern of yellow flowers predicts the main pollinator. Most bee-pollinated flowers displayed a pattern with UV-absorbing centres and UV-reflecting peripheries, whereas the majority of bird-pollinated flowers are entirely UV- absorbing. In choice experiments we found that bees did not show consistent preferences for any colour or pattern types. However, all tested bee species made their first antennal contact preferably at the UV-absorbing area of the artificial flower, irrespective of its spatial position within the flower. The appearance of UV patterns within flowers is the main difference in spectral reflectance between yellow bee- and bird-pollinated flowers, and affects the foraging behaviour of flower visitors. The results support the hypothesis that flower colours and the visual capabilities of their efficient pollinators are adapted to each other.

  8. MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice.

    PubMed

    Jin, Jing; Shi, Jinlei; Liu, Bing; Liu, Yanchao; Huang, Ying; Yu, Yu; Dong, Aiwu

    2015-08-01

    The methylation of histone H3 lysine 36 (H3K36) plays critical roles in brassinosteroid (BR)-related processes and is involved in controlling flowering time in rice (Oryza sativa). Although enzymes that catalyze this methylation reaction have been described, little is known about the recognition mechanisms to decipher H3K36 methylation information in rice. In this study, biochemical characterizations showed that MORF-RELATED GENE702 (MRG702) binds to trimethylated H3K4 and H3K36 (H3K4me3 and H3K36me3) in vitro. Similar to the loss-of-function mutants of the rice H3K36 methyltransferase gene SET DOMAIN GROUP725 (SDG725), the MRG702 knockdown mutants displayed typical BR-deficient mutant and late-flowering phenotypes. Gene transcription analyses showed that MRG702 knockdown resulted in the down-regulation of BR-related genes, including DWARF11, BRASSINOSTEROD INSENSITIVE1, and BRASSINOSTEROID UPREGULATED1, and several flowering genes, including Early heading date1 (Ehd1), Ehd2, Ehd3, OsMADS50, Heading date 3a, and RICE FLOWERING LOCUS T1. A binding analysis showed that MRG702 directly binds to the chromatin at target gene loci. This binding is dependent on the level of trimethylated H3K36, which is mediated by SDG725. Together, our results demonstrate that MRG702 acts as a reader protein of H3K4me3 and H3K36me3 and deciphers the H3K36 methylation information set by SDG725. Therefore, the role of MRG702 in the BR pathway and in controlling flowering time in rice is to function as a reader protein to decipher methylation information. PMID:25855537

  9. MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice.

    PubMed

    Jin, Jing; Shi, Jinlei; Liu, Bing; Liu, Yanchao; Huang, Ying; Yu, Yu; Dong, Aiwu

    2015-08-01

    The methylation of histone H3 lysine 36 (H3K36) plays critical roles in brassinosteroid (BR)-related processes and is involved in controlling flowering time in rice (Oryza sativa). Although enzymes that catalyze this methylation reaction have been described, little is known about the recognition mechanisms to decipher H3K36 methylation information in rice. In this study, biochemical characterizations showed that MORF-RELATED GENE702 (MRG702) binds to trimethylated H3K4 and H3K36 (H3K4me3 and H3K36me3) in vitro. Similar to the loss-of-function mutants of the rice H3K36 methyltransferase gene SET DOMAIN GROUP725 (SDG725), the MRG702 knockdown mutants displayed typical BR-deficient mutant and late-flowering phenotypes. Gene transcription analyses showed that MRG702 knockdown resulted in the down-regulation of BR-related genes, including DWARF11, BRASSINOSTEROD INSENSITIVE1, and BRASSINOSTEROID UPREGULATED1, and several flowering genes, including Early heading date1 (Ehd1), Ehd2, Ehd3, OsMADS50, Heading date 3a, and RICE FLOWERING LOCUS T1. A binding analysis showed that MRG702 directly binds to the chromatin at target gene loci. This binding is dependent on the level of trimethylated H3K36, which is mediated by SDG725. Together, our results demonstrate that MRG702 acts as a reader protein of H3K4me3 and H3K36me3 and deciphers the H3K36 methylation information set by SDG725. Therefore, the role of MRG702 in the BR pathway and in controlling flowering time in rice is to function as a reader protein to decipher methylation information.

  10. MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice1[OPEN

    PubMed Central

    Jin, Jing; Shi, Jinlei; Liu, Bing; Liu, Yanchao; Huang, Ying; Yu, Yu; Dong, Aiwu

    2015-01-01

    The methylation of histone H3 lysine 36 (H3K36) plays critical roles in brassinosteroid (BR)-related processes and is involved in controlling flowering time in rice (Oryza sativa). Although enzymes that catalyze this methylation reaction have been described, little is known about the recognition mechanisms to decipher H3K36 methylation information in rice. In this study, biochemical characterizations showed that MORF-RELATED GENE702 (MRG702) binds to trimethylated H3K4 and H3K36 (H3K4me3 and H3K36me3) in vitro. Similar to the loss-of-function mutants of the rice H3K36 methyltransferase gene SET DOMAIN GROUP725 (SDG725), the MRG702 knockdown mutants displayed typical BR-deficient mutant and late-flowering phenotypes. Gene transcription analyses showed that MRG702 knockdown resulted in the down-regulation of BR-related genes, including DWARF11, BRASSINOSTEROD INSENSITIVE1, and BRASSINOSTEROID UPREGULATED1, and several flowering genes, including Early heading date1 (Ehd1), Ehd2, Ehd3, OsMADS50, Heading date 3a, and RICE FLOWERING LOCUS T1. A binding analysis showed that MRG702 directly binds to the chromatin at target gene loci. This binding is dependent on the level of trimethylated H3K36, which is mediated by SDG725. Together, our results demonstrate that MRG702 acts as a reader protein of H3K4me3 and H3K36me3 and deciphers the H3K36 methylation information set by SDG725. Therefore, the role of MRG702 in the BR pathway and in controlling flowering time in rice is to function as a reader protein to decipher methylation information. PMID:25855537

  11. Photoperiodic flowering regulation in Arabidopsis thaliana

    PubMed Central

    Golembeski, Greg S.; Kinmonth-Schultz, Hannah A.; Song, Young Hun; Imaizumi, Takato

    2015-01-01

    Photoperiod, or the duration of light in a given day, is a critical cue that flowering plants utilize to effectively assess seasonal information and coordinate their reproductive development in synchrony with the external environment. The use of the model plant, Arabidopsis thaliana, has greatly improved our understanding of the molecular mechanisms that determine how plants process and utilize photoperiodic information to coordinate a flowering response. This mechanism is typified by the transcriptional activation of FLOWERING LOCUS T (FT) gene by the transcription factor CONSTANS (CO) under inductive long-day conditions in Arabidopsis. FT protein then moves from the leaves to the shoot apex, where floral meristem development can be initiated. As a point of integration from a variety of environmental factors in the context of a larger system of regulatory pathways that affect flowering, the importance of photoreceptors and the circadian clock in CO regulation throughout the day has been a key feature of the photoperiodic flowering pathway. In addition to these established mechanisms, the recent discovery of a photosynthate derivative trehalose-6-phosphate as an activator of FT in leaves has interesting implications for the involvement of photosynthesis in the photoperiodic flowering response that were suggested from previous physiological experiments in flowering induction. PMID:25684830

  12. Ubiquitination in the control of photoperiodic flowering.

    PubMed

    Piñeiro, Manuel; Jarillo, José A

    2013-01-01

    Triggering flowering at the appropriate time is a key factor for the successful reproduction of plants. Daylength perception allows plants to synchronize flowering with seasonal changes, a process systematically analyzed in the model species Arabidopsis thaliana. Characterization of molecular components that participate in the photoperiodic control of floral induction has revealed that photoreceptors and the circadian oscillator interact in a complex manner to modulate the floral transition in response to daylength and in fact, photoperiodic flowering can be regarded as an output pathway of the circadian oscillator. Recent observations indicate that besides transcriptional regulation, the promotion of flowering in response to photoperiod appears to be also regulated by modulation of protein stability and degradation. Therefore, the ubiquitin/26S proteasome system for targeted protein degradation has emerged as a key element in photoperiodic flowering regulation. Different E3 ubiquitin ligases are involved in the proteolysis of a variety of photoperiod-regulated pathway components including photoreceptors, clock elements and flowering time proteins, all of which participate in the control of this developmental process. Given the large variety of plant ubiquitin ligase complexes, it is likely that new factors involved in mechanisms of protein-targeted degradation will soon be ascribed to various aspects of flowering time control.

  13. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination.

    PubMed

    Holzschuh, Andrea; Dormann, Carsten F; Tscharntke, Teja; Steffan-Dewenter, Ingolf

    2011-11-22

    Agricultural land use results in direct biodiversity decline through loss of natural habitat, but may also cause indirect cross-habitat effects on conservation areas. We conducted three landscape-scale field studies on 67 sites to test the hypothesis that mass flowering of oilseed rape (Brassica napus) results in a transient dilution of bees in crop fields, and in increased competition between crop plants and grassland plants for pollinators. Abundances of bumble-bees, which are the main pollinators of the grassland plant Primula veris, but also pollinate oilseed rape (OSR), decreased with increasing amount of OSR. This landscape-scale dilution affected bumble-bee abundances strongly in OSR fields and marginally in grasslands, where bumble-bee abundances were generally low at the time of Primula flowering. Seed set of Primula veris, which flowers during OSR bloom, was reduced by 20 per cent when the amount of OSR within 1 km radius increased from 0 to 15 per cent. Hence, the current expansion of bee-attractive biofuel crops results in transient dilution of crop pollinators, which means an increased competition for pollinators between crops and wild plants. In conclusion, mass-flowering crops potentially threaten fitness of concurrently flowering wild plants in conservation areas, despite the fact that, in the long run, mass-flowering crops can enhance abundances of generalist pollinators and their pollination service.

  14. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination

    PubMed Central

    Holzschuh, Andrea; Dormann, Carsten F.; Tscharntke, Teja; Steffan-Dewenter, Ingolf

    2011-01-01

    Agricultural land use results in direct biodiversity decline through loss of natural habitat, but may also cause indirect cross-habitat effects on conservation areas. We conducted three landscape-scale field studies on 67 sites to test the hypothesis that mass flowering of oilseed rape (Brassica napus) results in a transient dilution of bees in crop fields, and in increased competition between crop plants and grassland plants for pollinators. Abundances of bumble-bees, which are the main pollinators of the grassland plant Primula veris, but also pollinate oilseed rape (OSR), decreased with increasing amount of OSR. This landscape-scale dilution affected bumble-bee abundances strongly in OSR fields and marginally in grasslands, where bumble-bee abundances were generally low at the time of Primula flowering. Seed set of Primula veris, which flowers during OSR bloom, was reduced by 20 per cent when the amount of OSR within 1 km radius increased from 0 to 15 per cent. Hence, the current expansion of bee-attractive biofuel crops results in transient dilution of crop pollinators, which means an increased competition for pollinators between crops and wild plants. In conclusion, mass-flowering crops potentially threaten fitness of concurrently flowering wild plants in conservation areas, despite the fact that, in the long run, mass-flowering crops can enhance abundances of generalist pollinators and their pollination service. PMID:21471115

  15. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination.

    PubMed

    Holzschuh, Andrea; Dormann, Carsten F; Tscharntke, Teja; Steffan-Dewenter, Ingolf

    2011-11-22

    Agricultural land use results in direct biodiversity decline through loss of natural habitat, but may also cause indirect cross-habitat effects on conservation areas. We conducted three landscape-scale field studies on 67 sites to test the hypothesis that mass flowering of oilseed rape (Brassica napus) results in a transient dilution of bees in crop fields, and in increased competition between crop plants and grassland plants for pollinators. Abundances of bumble-bees, which are the main pollinators of the grassland plant Primula veris, but also pollinate oilseed rape (OSR), decreased with increasing amount of OSR. This landscape-scale dilution affected bumble-bee abundances strongly in OSR fields and marginally in grasslands, where bumble-bee abundances were generally low at the time of Primula flowering. Seed set of Primula veris, which flowers during OSR bloom, was reduced by 20 per cent when the amount of OSR within 1 km radius increased from 0 to 15 per cent. Hence, the current expansion of bee-attractive biofuel crops results in transient dilution of crop pollinators, which means an increased competition for pollinators between crops and wild plants. In conclusion, mass-flowering crops potentially threaten fitness of concurrently flowering wild plants in conservation areas, despite the fact that, in the long run, mass-flowering crops can enhance abundances of generalist pollinators and their pollination service. PMID:21471115

  16. Large and abundant flowers increase indirect costs of corollas: a study of coflowering sympatric Mediterranean species of contrasting flower size.

    PubMed

    Teixido, Alberto L; Valladares, Fernando

    2013-09-01

    Large floral displays receive more pollinator visits but involve higher production and maintenance costs. This can result in indirect costs which may negatively affect functions like reproductive output. In this study, we explored the relationship between floral display and indirect costs in two pairs of coflowering sympatric Mediterranean Cistus of contrasting flower size. We hypothesized that: (1) corolla production entails direct costs in dry mass, N and P, (2) corollas entail significant indirect costs in terms of fruit set and seed production, (3) indirect costs increase with floral display, (4) indirect costs are greater in larger-flowered sympatric species, and (5) local climatic conditions influence indirect costs. We compared fruit set and seed production of petal-removed flowers and unmanipulated control flowers and evaluated the influence of mean flower number and mean flower size on relative fruit and seed gain of petal-removed and control flowers. Fruit set and seed production were significantly higher in petal-removed flowers in all the studied species. A positive relationship was found between relative fruit gain and mean individual flower size within species. In one pair of species, fruit gain was higher in the large-flowered species, as was the correlation between fruit gain and mean number of open flowers. In the other pair, the correlation between fruit gain and mean flower size was also higher in the large-flowered species. These results reveal that Mediterranean environments impose significant constraints on floral display, counteracting advantages of large flowers from the pollination point of view with increased indirect costs of such flowers.

  17. Variable flowering phenology and pollinator use in a community suggest future phenological mismatch

    NASA Astrophysics Data System (ADS)

    Petanidou, Theodora; Kallimanis, Athanasios S.; Sgardelis, Stefanos P.; Mazaris, Antonios D.; Pantis, John D.; Waser, Nickolas M.

    2014-08-01

    Recent anthropogenic climate change is strongly associated with average shifts toward earlier seasonal timing of activity (phenology) in temperate-zone species. Shifts in phenology have the potential to alter ecological interactions, to the detriment of one or more interacting species. Recent models predict that detrimental phenological mismatch may increasingly occur between plants and their pollinators. One way to test this prediction is to examine data from ecological communities that experience large annual weather fluctuations. Taking this approach, we analyzed interactions over a four-year period among 132 plant species and 665 pollinating insect species within a Mediterranean community. For each plant species we recorded onset and duration of flowering and number of pollinator species. Flowering onset varied among years, and a year of earlier flowering of a species tended to be a year of fewer species pollinating its flowers. This relationship was attributable principally to early-flowering species, suggesting that shifts toward earlier phenology driven by climate change may reduce pollination services due to phenological mismatch. Earlier flowering onset of a species also was associated with prolonged flowering duration, but it is not certain that this will counterbalance any negative effects of lower pollinator species richness on plant reproductive success. Among plants with different life histories, annuals were more severely affected by flowering-pollinator mismatches than perennials. Specialized plant species (those attracting a smaller number of pollinator species) did not experience disproportionate interannual fluctuations in phenology. Thus they do not appear to be faced with disproportionate fluctuations in pollinator species richness, contrary to the expectation that specialists are at greatest risk of losing mutualistic interactions because of climate change.

  18. FLOWERING LOCUS C -dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways

    PubMed Central

    Salathia, Neeraj; Davis, Seth J; Lynn, James R; Michaels, Scott D; Amasino, Richard M; Millar, Andrew J

    2006-01-01

    Background The circadian system drives pervasive biological rhythms in plants. Circadian clocks integrate endogenous timing information with environmental signals, in order to match rhythmic outputs to the local day/night cycle. Multiple signaling pathways affect the circadian system, in ways that are likely to be adaptively significant. Our previous studies of natural genetic variation in Arabidopsis thaliana accessions implicated FLOWERING LOCUS C (FLC) as a circadian-clock regulator. The MADS-box transcription factor FLC is best known as a regulator of flowering time. Its activity is regulated by many regulatory genes in the "autonomous" and vernalization-dependent flowering pathways. We tested whether these same pathways affect the circadian system. Results Genes in the autonomous flowering pathway, including FLC, were found to regulate circadian period in Arabidopsis. The mechanisms involved are similar, but not identical, to the control of flowering time. By mutant analyses, we demonstrate a graded effect of FLC expression upon circadian period. Related MADS-box genes had less effect on clock function. We also reveal an unexpected vernalization-dependent alteration of periodicity. Conclusion This study has aided in the understanding of FLC's role in the clock, as it reveals that the network affecting circadian timing is partially overlapping with the floral-regulatory network. We also show a link between vernalization and circadian period. This finding may be of ecological relevance for developmental programing in other plant species. PMID:16737527

  19. Delayed Flowering in Bamboo: Evidence from Fargesia qinlingensis in the Qinling Mountains of China.

    PubMed

    Wang, Wei; Franklin, Scott B; Lu, Zhijun; Rude, Brian J

    2016-01-01

    Gregarious flowering of bamboo species impacts ecosystem properties and conservation, but documentation of these periodic events is difficult. Here, we compare the characteristics of flowering sites and un-flowered patches of an arrow bamboo (Fargesia qinlingensis) in the Qinling Mountains, China, over a 5-year period (2003-2007) after a mast flowering event (2003). We examined flowering culm and seedling characteristics in relation to questions regarding the evolution of delayed flowering. Density of live culms decreased over the 5 years in both flowering sites and un-flowered patches. New shoots regenerated only in un-flowered patches. Chemical constituent allocation varied among culm parts (stems, branches, and leaves). Crude protein and extract ether in branches and leaves were less in flowering culms than in un-flowered culms. Seedling density was lower than expected based on floret counts, suggesting predation of seeds. Seedling density was significantly greater in flowering sites than in un-flowered patches and decreased over time. Seedlings performed better in flowering sites than in un-flowered patches based on their height, leaf number per seedling, and average leaf length, while fertilization on flowering sites had no significant effect on seedling growth, suggesting a saturation of resources. This study suggested that the characteristics of bamboos and bamboo stands were dramatically altered during this flowering event, enhancing seedling establishment and growth, and supporting mostly the habitat modification hypothesis of delayed reproduction. PMID:26909094

  20. Delayed Flowering in Bamboo: Evidence from Fargesia qinlingensis in the Qinling Mountains of China

    PubMed Central

    Wang, Wei; Franklin, Scott B.; Lu, Zhijun; Rude, Brian J.

    2016-01-01

    Gregarious flowering of bamboo species impacts ecosystem properties and conservation, but documentation of these periodic events is difficult. Here, we compare the characteristics of flowering sites and un-flowered patches of an arrow bamboo (Fargesia qinlingensis) in the Qinling Mountains, China, over a 5-year period (2003–2007) after a mast flowering event (2003). We examined flowering culm and seedling characteristics in relation to questions regarding the evolution of delayed flowering. Density of live culms decreased over the 5 years in both flowering sites and un-flowered patches. New shoots regenerated only in un-flowered patches. Chemical constituent allocation varied among culm parts (stems, branches, and leaves). Crude protein and extract ether in branches and leaves were less in flowering culms than in un-flowered culms. Seedling density was lower than expected based on floret counts, suggesting predation of seeds. Seedling density was significantly greater in flowering sites than in un-flowered patches and decreased over time. Seedlings performed better in flowering sites than in un-flowered patches based on their height, leaf number per seedling, and average leaf length, while fertilization on flowering sites had no significant effect on seedling growth, suggesting a saturation of resources. This study suggested that the characteristics of bamboos and bamboo stands were dramatically altered during this flowering event, enhancing seedling establishment and growth, and supporting mostly the habitat modification hypothesis of delayed reproduction. PMID:26909094

  1. Stress-induced flowering: the third category of flowering response.

    PubMed

    Takeno, Kiyotoshi

    2016-09-01

    The switch from vegetative growth to reproductive growth, i.e. flowering, is the critical event in a plant's life. Flowering is regulated either autonomously or by environmental factors; photoperiodic flowering, which is regulated by the duration of the day and night periods, and vernalization, which is regulated by low temperature, have been well studied. Additionally, it has become clear that stress also regulates flowering. Diverse stress factors can induce or accelerate flowering, or inhibit or delay it, in a wide range of plant species. This article focuses on the positive regulation of flowering via stress, i.e. the induction or acceleration of flowering in response to stress that is known as stress-induced flowering - a new category of flowering response. This review aims to clarify the concept of stress-induced flowering and to summarize the full range of characteristics of stress-induced flowering from a predominately physiological perspective. PMID:27382113

  2. Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum).

    PubMed

    Jamalabadi, Javad Ghorbani; Saidi, Abbas; Karami, Ezzat; Kharkesh, Mehrab; Talebi, Reza

    2013-06-01

    Drought is the major constraint to chickpea productivity worldwide. Utilizing early flowering genotypes and larger seed size have been suggested as strategies for breeding in drought zones. Therefore, this study aimed to identify potential markers linked to days-to-flowering, 100-seed weight, and plant height in a chickpea intraspecific F(2:3) population derived from the cross ILC3279 × ICCV2. A closely linked marker (TA117) on linkage group LG3 was identified for the days-to-flowering trait, explaining 33% of the variation. In relation to plant height, a quantitative trait loci (QTL) was located in LG3, close to the Ts5 marker, that explained 29% of phenotypic variation. A QTL for 100-seed weight located in LG4, close to TA176, explained 51% of variation. The identification of a locus linked both to high 100-seed weight and days-to-flowering may account for the correlation observed between these traits in this and other breeding attempts.

  3. Flower opening and closure: an update.

    PubMed

    van Doorn, Wouter G; Kamdee, Chanattika

    2014-11-01

    This review is an update of a 2003 review (Journal of Experimental Botany 54,1801-1812) by the same corresponding author. Many examples of flower opening have been recorded using time-lapse photography, showing its velocity and the required elongation growth. Ethylene regulates flower opening, together with at least gibberellins and auxin. Ethylene and gibberellic acid often promote and inhibit, respectively, the expression of DELLA genes and the stability of DELLA proteins. DELLA results in growth inhibition. Both hormones also inhibited and promoted, respectively, the expression of aquaporin genes required for cell elongation. Arabidopsis miRNA319a mutants exhibited narrow and short petals, whereby miRNA319a indirectly regulates auxin effects. Flower opening in roses was controlled by a NAC transcription factor, acting through miRNA164. The regulatory role of light and temperature, in interaction with the circadian clock, has been further elucidated. The end of the life span in many flowers is determined by floral closure. In some species pollination resulted in earlier closure of turgid flowers, compared with unpollinated flowers. It is hypothesized that this pollination-induced effect is only found in flowers in which closure is regulated by ethylene.

  4. Flower opening and closure: an update.

    PubMed

    van Doorn, Wouter G; Kamdee, Chanattika

    2014-11-01

    This review is an update of a 2003 review (Journal of Experimental Botany 54,1801-1812) by the same corresponding author. Many examples of flower opening have been recorded using time-lapse photography, showing its velocity and the required elongation growth. Ethylene regulates flower opening, together with at least gibberellins and auxin. Ethylene and gibberellic acid often promote and inhibit, respectively, the expression of DELLA genes and the stability of DELLA proteins. DELLA results in growth inhibition. Both hormones also inhibited and promoted, respectively, the expression of aquaporin genes required for cell elongation. Arabidopsis miRNA319a mutants exhibited narrow and short petals, whereby miRNA319a indirectly regulates auxin effects. Flower opening in roses was controlled by a NAC transcription factor, acting through miRNA164. The regulatory role of light and temperature, in interaction with the circadian clock, has been further elucidated. The end of the life span in many flowers is determined by floral closure. In some species pollination resulted in earlier closure of turgid flowers, compared with unpollinated flowers. It is hypothesized that this pollination-induced effect is only found in flowers in which closure is regulated by ethylene. PMID:25135521

  5. Developmental morphology of branching flowers in Nymphaea prolifera.

    PubMed

    Grob, Valentin; Moline, Philip; Pfeifer, Evelin; Novelo, Alejandro R; Rutishauser, Rolf

    2006-11-01

    Nymphaea and Nuphar (Nymphaeaceae) share an extra-axillary mode of floral inception in the shoot apical meristem (SAM). Some leaf sites along the ontogenetic spiral are occupied by floral primordia lacking a subtending bract. This pattern of flower initiation in leaf sites is repeated inside branching flowers of Nymphaea prolifera (Central and South America). Instead of fertile flowers this species usually produces sterile tuberiferous flowers that act as vegetative propagules. N. prolifera changes the meristem identity from reproductive to vegetative or vice versa repeatedly. Each branching flower first produces some perianth-like leaves, then it switches back to the vegetative meristem identity of the SAM with the formation of foliage leaves and another set of branching flowers. This process is repeated up to three times giving rise to more than 100 vegetative propagules. The developmental morphology of the branching flowers of N. prolifera is described using both microtome sections and scanning electron microscopy.

  6. Using daily temperature to predict phenology trends in spring flowers

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hee; Kim, Soo-Ock; Kim, Dae-Jun; Moon, Kyung Hwan; Yun, Jin I.

    2015-05-01

    The spring season in Korea features a dynamic landscape with a variety of flowers blooming sequentially one after another. This enables local governments to earn substantial sightseeing revenues by hosting festivals featuring spring flowers. Furthermore, beekeepers move from the southern tip of the Korean Peninsula all the way northward in a quest to secure spring flowers as nectar sources for a sustained period of time. However, areal differences in flowering dates of flower species are narrowing, which has economic consequences. Analysis of data on flowering dates of forsythia ( Forsythia koreana) and cherry blossom ( Prunus serrulata), two typical spring flower species, as observed for the past 60 years at six weather stations of the Korea Meteorological Administration (KMA) indicated that the difference between the flowering date of forsythia, the earliest blooming flower in spring, and cherry blossom, which flowers later than forsythia, was 14 days on average in the climatological normal year for the period 1951-1980, compared with 11 days for the period 1981-2010. In 2014, the gap narrowed further to 7 days, making it possible in some locations to see forsythias and cherry blossoms blooming at the same time. Synchronized flowering of these two flower species is due to acceleration of flowering due to an abnormally high spring temperature, and this was more pronounced in the later-blooming cherry blossom than forsythia. While cherry blossom flowering dates across the nation ranged from March 31 to April 19 (an areal difference of 20 days) for the 1951-1980 normal year, the difference ranged from March 29 to April 12 (an areal difference of 16 days) for the 1981-2010 normal year, and in 2014, the flowering dates spanned March 25 and March 30 (an areal difference of 6 days). In the case of forsythia, the gap was narrower than in cherry blossoms. Climate change in the Korean Peninsula, reflected by rapid temperature hikes in late spring in contrast to a slow

  7. When Time Flies: How Abstract and Concrete Mental Construal Affect the Perception of Time

    ERIC Educational Resources Information Center

    Hansen, Jochim; Trope, Yaacov

    2013-01-01

    Time is experienced as passing more quickly the more changes happen in a situation. The present research tested the idea that time perception depends on the level of construal of the situation. Building on previous research showing that concrete rather than abstract mental construal causes people to perceive more variations in a given situation,…

  8. DAY NEUTRAL FLOWERING represses CONSTANS to prevent Arabidopsis flowering early in short days.

    PubMed

    Morris, Karl; Thornber, Sarah; Codrai, Lesley; Richardson, Christine; Craig, Adam; Sadanandom, Ari; Thomas, Brian; Jackson, Stephen

    2010-04-01

    The photoperiodic response in Arabidopsis thaliana requires the precise regulation of CONSTANS (CO) expression in relation to the light period during the day. In short days (SDs) levels of CO expression are normally low during the light period, and this results in delayed flowering compared with long days (LDs) when CO expression rises to high levels before the end of the light period. We identified a novel flowering time gene called DAY NEUTRAL FLOWERING (DNF) that acts in the same flowering pathway as CO. DNF is a membrane-bound E3 ligase that represses CO expression and plays an important role in maintaining low levels of CO expression in SDs. The effect of DNF on the rhythm of CO expression is essential for the photoperiodic response of Arabidopsis, enabling it to have a different flowering response in LDs and SDs.

  9. Kaempferol glycosides in the flowers of carnation and their contribution to the creamy white flower color.

    PubMed

    Iwashina, Tsukasa; Yamaguchi, Masa-atsu; Nakayama, Masayoshi; Onozaki, Takashi; Yoshida, Hiroyuki; Kawanobu, Shuji; Onoe, Hiroshi; Okamura, Masachika

    2010-12-01

    Three flavonol glycosides were isolated from the flowers of carnation cultivars 'White Wink' and 'Honey Moon'. They were identified from their UV, MS, 1H and 13C NMR spectra as kaempferol 3-O-neohesperidoside, kaempferol 3-O-sophoroside and kaempferol 3-O-glucosyl-(1 --> 2)-[rhamnosyl-(1 --> 6)-glucoside]. Referring to previous reports, flavonols occurring in carnation flowers are characterized as kaempferol 3-O-glucosides with additional sugars binding at the 2 and/or 6-positions of the glucose. The kaempferol glycoside contents of a nearly pure white flower and some creamy white flower lines were compared. Although the major glycoside was different in each line, the total kaempferol contents of the creamy white lines were from 5.9 to 20.9 times higher than the pure white line. Thus, in carnations, kaempferol glycosides surely contribute to the creamy tone of white flowers. PMID:21299117

  10. Changes of flowering phenology and flower size in rosaceous plants from a biodiversity hotspot in the past century

    PubMed Central

    Yu, Qin; Jia, Dong-Rui; Tian, Bin; Yang, Yong-Ping; Duan, Yuan-Wen

    2016-01-01

    Responses of plant traits to climate changes are complex, which could be mirrored by the investigations of herbarium specimens. By examining specimens of Rosa and Cotoneaster species collected since 1920s in Hengduan Mountains, we analyzed the changes of flowering phenology and flower size in the past century when climate changes were considered to be intensified. We found that flowering phenology of Rosa showed no significant change, but flowering phenology of Cotoneaster was delayed in recent years. Flower size of Rosa species showed a marginally significant decrease over the past century. The results suggested that responses of flowering time to global changes and pollinator mediated selection on floral traits might be more complex than what were expected. Our results indicated that future researches based on investigations of herbarium specimens should be carried out on multiple plant species with different flower structures and life histories to better understand the effects of climate changes on plant traits. PMID:27312838

  11. Changes of flowering phenology and flower size in rosaceous plants from a biodiversity hotspot in the past century.

    PubMed

    Yu, Qin; Jia, Dong-Rui; Tian, Bin; Yang, Yong-Ping; Duan, Yuan-Wen

    2016-01-01

    Responses of plant traits to climate changes are complex, which could be mirrored by the investigations of herbarium specimens. By examining specimens of Rosa and Cotoneaster species collected since 1920s in Hengduan Mountains, we analyzed the changes of flowering phenology and flower size in the past century when climate changes were considered to be intensified. We found that flowering phenology of Rosa showed no significant change, but flowering phenology of Cotoneaster was delayed in recent years. Flower size of Rosa species showed a marginally significant decrease over the past century. The results suggested that responses of flowering time to global changes and pollinator mediated selection on floral traits might be more complex than what were expected. Our results indicated that future researches based on investigations of herbarium specimens should be carried out on multiple plant species with different flower structures and life histories to better understand the effects of climate changes on plant traits. PMID:27312838

  12. A Stochastic Flowering Model Describing an Asynchronically Flowering Set of Trees

    PubMed Central

    NORMAND, F.; HABIB, R.; CHADŒUF, J.

    2002-01-01

    A general stochastic model is presented that simulates the time course of flowering of individual trees and populations, integrating the synchronization of flowering both between and within trees. Making some hypotheses, a simplified expression of the model, called the ‘shoot’ model, is proposed, in which the synchronization of flowering both between and within trees is characterized by specific parameters. Two derived models, the ‘tree’ model and the ‘population’ model, are presented. They neglect the asynchrony of flowering, respectively, within trees, and between and within trees. Models were fitted and tested using data on flowering of Psidium cattleianum observed at study sites at elevations of 200, 520 and 890 m in Réunion Island. The ‘shoot’ model fitted the data best and reproduced the strong irregularities in flowering shown by empirical data. The asynchrony of flowering in P. cattleianum was more pronounced within than between trees. Simulations showed that various flowering patterns can be reproduced by the ‘shoot’ model. The use of different levels of organization of the general model is discussed. PMID:12234153

  13. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato.

    PubMed

    Molinero-Rosales, Nuria; Latorre, Antonio; Jamilena, Manuel; Lozano, Rafael

    2004-01-01

    The characterisation of the single flower truss ( sft) mutant phenotype of tomato ( Lycopersicon esculentum Mill.), as well as its genetic interactions with other mutations affecting FALSIFLORA ( FA) and SELF PRUNING ( SP) genes, has revealed that SFT is a key gene in the control of floral transition and floral meristem identity. The single sft mutation produces a late-flowering phenotype in both long-day and short-day conditions. In combination with fa, a mutation affecting the tomato gene orthologous to LFY, sft completely blocks the transition to flowering in this species. Thus, the phenotype of the sft fa double mutants indicates that SFT and FA participate in two parallel pathways that regulate the switch from vegetative to reproductive phase in tomato, and that both genes are indispensable for flowering. On the other hand, the replacement of flowers by vegetative shoots observed in the sft inflorescence suggests that SFT regulates flower meristem identity during inflorescence development of tomato. In addition to these two main functions, SFT is involved in the development of both flowers and sympodial shoots of tomato. First, the mutation produces a partial conversion of sepals into leaves in the first floral whorl, and a reduction in the number of floral organs, particularly carpels. Secondly, the sympodial development in the mutant plants is altered, which can be related to the interaction between SFT and SP, a gene controlling the number of nodes in sympodial shoots. In fact, we have found that the sft phenotype is epistatic to that of sp, and that the level of SP mRNA in the apical buds of sft around flowering is reduced. SFT can therefore co-ordinate the regulation of two simultaneous developmental processes in the tomato apical shoot, the promotion of flowering in one sympodial segment and the vegetative development of the next segment.

  14. Young People's Time-of-Day Preferences Affect Their School Performance

    ERIC Educational Resources Information Center

    Randler, Christoph; Frech, Daniela

    2009-01-01

    During puberty, young people shift their time-of-day preferences from morningness to eveningness. One of the main problems seems to be early school-start times, which force adolescents to start working at a given time that may be too early for them; and this, in turn, negatively affects school functioning. Here, we ask whether…

  15. The evolutionary root of flowering plants.

    PubMed

    Goremykin, Vadim V; Nikiforova, Svetlana V; Biggs, Patrick J; Zhong, Bojian; Delange, Peter; Martin, William; Woetzel, Stefan; Atherton, Robin A; McLenachan, Patricia A; Lockhart, Peter J

    2013-01-01

    Correct rooting of the angiosperm radiation is both challenging and necessary for understanding the origins and evolution of physiological and phenotypic traits in flowering plants. The problem is known to be difficult due to the large genetic distance separating flowering plants from other seed plants and the sparse taxon sampling among basal angiosperms. Here, we provide further evidence for concern over substitution model misspecification in analyses of chloroplast DNA sequences. We show that support for Amborella as the sole representative of the most basal angiosperm lineage is founded on sequence site patterns poorly described by time-reversible substitution models. Improving the fit between sequence data and substitution model identifies Trithuria, Nymphaeaceae, and Amborella as surviving relatives of the most basal lineage of flowering plants. This finding indicates that aquatic and herbaceous species dominate the earliest extant lineage of flowering plants. [; ; ; ; ; .].

  16. The evolutionary root of flowering plants.

    PubMed

    Goremykin, Vadim V; Nikiforova, Svetlana V; Biggs, Patrick J; Zhong, Bojian; Delange, Peter; Martin, William; Woetzel, Stefan; Atherton, Robin A; McLenachan, Patricia A; Lockhart, Peter J

    2013-01-01

    Correct rooting of the angiosperm radiation is both challenging and necessary for understanding the origins and evolution of physiological and phenotypic traits in flowering plants. The problem is known to be difficult due to the large genetic distance separating flowering plants from other seed plants and the sparse taxon sampling among basal angiosperms. Here, we provide further evidence for concern over substitution model misspecification in analyses of chloroplast DNA sequences. We show that support for Amborella as the sole representative of the most basal angiosperm lineage is founded on sequence site patterns poorly described by time-reversible substitution models. Improving the fit between sequence data and substitution model identifies Trithuria, Nymphaeaceae, and Amborella as surviving relatives of the most basal lineage of flowering plants. This finding indicates that aquatic and herbaceous species dominate the earliest extant lineage of flowering plants. [; ; ; ; ; .]. PMID:22851550

  17. Irreversible commitment to flowering in two mango cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, the state of Nayarit, Mexico has experienced variations in rainfall distribution and warmer temperatures during the autumn-winter season which have caused erratic flowering of mango. The early-flowering cultivars, such as ‘Ataulfo’, have been less affected than tardy ones such as ‘T...

  18. Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism.

    PubMed

    Mahjoub, Ali; Hernould, Michel; Joubès, Jérôme; Decendit, Alain; Mars, Mohamed; Barrieu, François; Hamdi, Saïd; Delrot, Serge

    2009-07-01

    Although the terpenoid pathway constitutes, with the phenylpropanoid metabolism, the major pathway of secondary metabolism in plants, little is known about its regulation. Overexpression of a Vitis vinifera R2R3-MYB transcription factor (VvMYB5b) in tomato induced pleiotropic changes including dwarfism, modified leaf structure, alterations of floral morphology, pigmented and glossy fruits at the "green-mature" stage and impaired seed germination. Two main branches of secondary metabolism, which profoundly influence the organoleptic properties of the fruit, were affected in the opposite way by VvMYB5b overexpression. Phenylpropanoid metabolism was down regulated whereas the amount of beta-carotene was up regulated. This is the first example of the independent regulation of phenylpropanoid and carotenoid metabolism. The strongest modification concerns a decrease in beta-amyrin, the precursor of the oleanolic acid, which is the major component of grape waxes. Scanning electron microscopy analysis of fruits and leaves confirms the alteration of wax metabolism and a modification of cell size and shape. This may potentially impact resistance/tolerance to biotic and abiotic stresses. The results are compared with a similar approach using heterologous expression of VvMYB5b in tobacco. PMID:19375343

  19. Functional homogenization of flower visitor communities with urbanization.

    PubMed

    Deguines, Nicolas; Julliard, Romain; de Flores, Mathieu; Fontaine, Colin

    2016-04-01

    Land-use intensification and resulting habitat loss are put forward as the main causes of flower visitor decline. However, the impact of urbanization, the prime driver of land-use intensification in Europe, is poorly studied. In particular, our understanding of whether and how it affects the composition and functioning of flower visitor assemblages is scant, yet required to cope with increasing urbanization worldwide. Here, we use a nation-wide dataset of plant-flower visitor (Coleoptera, Diptera, Hymenoptera, Lepidoptera) interactions sampled by citizen scientists following a standardized protocol to assess macroecological changes in richness and composition of flower visitor communities with urbanization. We measured the community composition by quantifying the relative occurrence of generalist and specialist flower visitors based on their specialisation on flowering plant families. We show that urbanization is associated with reduced flower visitor richness and a shift in community composition toward generalist insects, indicating a modification of the functional composition of communities. These results suggest that urbanization affects not only the richness of flower visitor assemblages but may also cause their large-scale functional homogenization. Future research should focus on designing measures to reconcile urban development with flower visitor conservation. PMID:27066219

  20. Functional homogenization of flower visitor communities with urbanization.

    PubMed

    Deguines, Nicolas; Julliard, Romain; de Flores, Mathieu; Fontaine, Colin

    2016-04-01

    Land-use intensification and resulting habitat loss are put forward as the main causes of flower visitor decline. However, the impact of urbanization, the prime driver of land-use intensification in Europe, is poorly studied. In particular, our understanding of whether and how it affects the composition and functioning of flower visitor assemblages is scant, yet required to cope with increasing urbanization worldwide. Here, we use a nation-wide dataset of plant-flower visitor (Coleoptera, Diptera, Hymenoptera, Lepidoptera) interactions sampled by citizen scientists following a standardized protocol to assess macroecological changes in richness and composition of flower visitor communities with urbanization. We measured the community composition by quantifying the relative occurrence of generalist and specialist flower visitors based on their specialisation on flowering plant families. We show that urbanization is associated with reduced flower visitor richness and a shift in community composition toward generalist insects, indicating a modification of the functional composition of communities. These results suggest that urbanization affects not only the richness of flower visitor assemblages but may also cause their large-scale functional homogenization. Future research should focus on designing measures to reconcile urban development with flower visitor conservation.

  1. Climatic Variability Leads to Later Seasonal Flowering of Floridian Plants

    PubMed Central

    Von Holle, Betsy; Wei, Yun; Nickerson, David

    2010-01-01

    Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses. PMID:20657765

  2. Quality time: how parents' schooling affects child health through its interaction with childcare time in Bangladesh.

    PubMed

    Bishai, D

    1996-01-01

    A child health production function is presented with the key feature being an interaction term between a caregiver's schooling and their exposure time to the child. The production function is estimated using a 2SLS fixed effects model with lagged childcare time, resource allocation and child health as instruments for the first differences of these same endogenous variables. The 1978 Intrafamily Food Distribution and Feeding Practices Survey dataset from Bangladesh is used together with census data. The production function estimates indicate that part of the salutary effects of parental education on child health require that the child actually be exposed to the educated parent. Given the demographic makeup of the study sample and the assumption that age education and gender completely account for productivity, teenage brothers and fathers would have the highest marginal productivity for child health and mothers and grandmothers the least. If economic opportunity draws mothers away from childcare, the presence of other household members with higher schooling levels offers the potential for an improvement in the overall quality of childcare time. In the present study the households failed to set the marginal labour product of child health for each of the caregivers equal. Thus, the quality of childcare may not be the household's sole concern in determining time allocation. PMID:8922968

  3. Quality time: how parents' schooling affects child health through its interaction with childcare time in Bangladesh.

    PubMed

    Bishai, D

    1996-01-01

    A child health production function is presented with the key feature being an interaction term between a caregiver's schooling and their exposure time to the child. The production function is estimated using a 2SLS fixed effects model with lagged childcare time, resource allocation and child health as instruments for the first differences of these same endogenous variables. The 1978 Intrafamily Food Distribution and Feeding Practices Survey dataset from Bangladesh is used together with census data. The production function estimates indicate that part of the salutary effects of parental education on child health require that the child actually be exposed to the educated parent. Given the demographic makeup of the study sample and the assumption that age education and gender completely account for productivity, teenage brothers and fathers would have the highest marginal productivity for child health and mothers and grandmothers the least. If economic opportunity draws mothers away from childcare, the presence of other household members with higher schooling levels offers the potential for an improvement in the overall quality of childcare time. In the present study the households failed to set the marginal labour product of child health for each of the caregivers equal. Thus, the quality of childcare may not be the household's sole concern in determining time allocation.

  4. Spirit Has Flower Power

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this image with its hazard-avoidance camera on sol 86 (March 31, 2004), after the rover's rock abrasion tool had brushed for three minutes on each of six locations on the rock named 'Mazatzal' to create a flower-shaped mosaic.

    The goal for this operation was to create a brushed area big enough for the miniature thermal emission spectrometer to capture within one of its pixels, which are 11 centimeters (4.3 inches) in diameter at the distance between the rock and the instrument. Because the rock abrasion tool creates individual brushed areas only about 5 centimeters (2 inches) in diameter, the team designed this six-location series of tool placements in order to brush 92 percent to 95 percent of the spectrometer's pixel size.

    This operation was only the second time the rock abrasion tool has created a brushing mosaic. The first time was a three-spot brushing on the rock called 'Humphrey.' The brush was originally designed to be used as an aide during full grinding operations, however it has been very effective in brushing the top layer off of dusty martian rocks to allow scientists a multi-depth look into the rocks on Mars.

  5. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight.

    PubMed

    Kuai, Jie; Liu, Zhaowei; Wang, Youhua; Meng, Yali; Chen, Binglin; Zhao, Wenqing; Zhou, Zhiguo; Oosterhuis, Derrick M

    2014-06-01

    The work explored sucrose metabolism in the leaves subtending the cotton boll (SBL) and its role in boll weight after waterlogging in cotton. Results showed that net photosynthesis rate (Pn), relative water content, contents of Chlorophyll a and Chlorophyll b, initial ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) activity and cytosolic fructose-1, 6-bisphosphatase (cy-FBPase) activity decreased with waterlogging in the SBL on fruiting branches 2-3 (FB2-3) and FB6-7. Activities of sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) increased to the maximum up to 6 days of waterlogging then decreased with prolonged waterlogging. Rubisco activation and specific leaf weight increased and gene expressions of SuSy, SPS and rubisco activase (RCA) were all up-regulated with the duration of waterlogging, especially for the SBL on FB6-7. The induction of activity and gene expression of SuSy was most significant indicating its crucial role in sucrose metabolism after waterlogging. For the SBL in the later period of boll development on upper FB10-11 and FB14-15, the pattern seemed opposite to that of FB2-3 and FB6c7 as compensation effect in vegetative growth existed. Correlation analysis revealed that initial Rubisco activity and cy-FBPase activity were the main limitation to Pn reduction after waterlogging. Reduction in Pn, sucrose transformation rate and initial Rubisco activity directly decrease boll weight in waterlogged cotton. Besides the role in sucrose metabolism after waterlogging, SuSy also had a positive significant correlation with the duration of rapid-accumulation period for seed fiber weight (P<0.05). These findings elucidated mechanisms to waterlogging that affected seed fiber weight, which resulted from alteration in carbohydrates, enzymes and genes.

  6. Stars and Flowers, Flowers and Stars

    NASA Astrophysics Data System (ADS)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  7. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea

    PubMed Central

    Thairu, Margaret W.; Brunet, Johanne

    2015-01-01

    Background and Aims Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Methods Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Key Results Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Conclusions Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. PMID:25808657

  8. Endogenous ethylene does not regulate opening of unstressed Iris flowers but strongly inhibits it in water-stressed flowers.

    PubMed

    Çelikel, Fisun G; van Doorn, Wouter G

    2012-09-15

    The floral buds of Iris flowers (Iris x hollandica) are enclosed by two sheath leaves. Flower opening depends on lifting the flower up to a position whereby the tepals can move laterally. This upward movement is carried out by elongation of the subtending pedicel and ovary. In the pedicels and ovaries of unstressed control flowers, the concentration of ACC (1-aminocyclopropane-1-carboxylic acid) and the rate of ethylene production increased during d 0-1 of flower opening, and then decreased. Exposure to ≥200 nL L(-1) ethylene for 24 h at 20°C inhibited elongation of the pedicel+ovary, and inhibited flower opening. However, pulsing of unstressed flowers with solutions containing inhibitors of ethylene synthesis (AOA, AVG), or an inhibitor of ethylene action (STS), did not affect pedicel+ovary elongation or flower opening. When the flowers were dehydrated for 2 d at 20°C and 60% RH, they did not open when subsequently placed in water, and showed inhibited elongation in the pedicel+ovary. This dehydration treatment resulted in elevated pedicel+ovary ACC levels and in increased ethylene production. Treatment with STS prevented the increase in ACC levels and ethylene production, overcame the effect of dehydration on elongation of the pedicel+ovary, and resulted in full flower opening. It is concluded that flower opening in unstressed Iris flowers is not regulated by endogenous ethylene. An increase in endogenous ethylene above normal levels during stress, by contrast, strongly inhibited flower opening, due to its inhibitory effect on elongation of the pedicel+ovary.

  9. Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis

    PubMed Central

    Jensen, Lea M.; Jepsen, Henriette S. K.; Halkier, Barbara A.; Kliebenstein, Daniel J.; Burow, Meike

    2015-01-01

    Naturally variable regulatory networks control different biological processes including reproduction and defense. This variation within regulatory networks enables plants to optimize defense and reproduction in different environments. In this study we investigate the ability of two enzyme-encoding genes in the glucosinolate pathway, AOP2 and AOP3, to affect glucosinolate accumulation and flowering time. We have introduced the two highly similar enzymes into two different AOPnull accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions. This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes. While the changes in glucosinolate levels were similar in both accessions, the effect on flowering time was dependent on the genetic background pointing to natural variation in cross-talk between defense chemistry and onset of flowering. This variation likely reflects an adaptation to survival in different environments. PMID:26442014

  10. Time Devours Things: How Impulsivity and Time Affect Temporal Decisions in Pathological Gamblers

    PubMed Central

    Grecucci, Alessandro; Giorgetta, Cinzia; Rattin, Andrea; Guerreschi, Cesare; Sanfey, Alan G.; Bonini, Nicolao

    2014-01-01

    Impulsivity is associated with several psychiatric disorders in which the loss of control of a specific behavior determines the syndrome itself. One particularly interesting population characterized by reported high impulsivity and problematic decision-making are those diagnosed with pathological gambling. However the association between impulsivity and decision making in pathological gambling has been only partially confirmed until now. We tested 23 normal controls and 23 diagnosed pathological gamblers in an intertemporal choice task, as well as other personality trait measurements. Results showed that gamblers scored higher on impulsivity questionnaires, and selected a higher percentage of impatient choices (higher percentage of smaller, sooner rewards), when compared to normal controls. Moreover, gamblers were faster in terms of reaction times at selecting the smaller, sooner options and discounted rewards more rapidly over time. Importantly, regression analyses clarified that self-reported measures of impulsivity played a significant role in biasing decisions towards small but more rapidly available rewards. In the present study we found evidence for impulsivity in personality traits and decisions in pathological gamblers relative to controls. We conclude by speculating on the need to incorporate impulsivity and decision biases in the conceptualization of pathological gambling for a better understanding and treatment of this pathology. PMID:25296184

  11. Short-term effects of burn season on flowering phenology of savanna plants

    USGS Publications Warehouse

    Pavlovic, N.B.; Leicht-Young, S. A.; Grundel, R.

    2011-01-01

    We examined the effect of season of burn on flowering phenology of groundlayer species, in the year following burns, in a mesic-sand Midwestern oak savanna. Burn treatments were fall, early-season, growing-season, late-season, and 1 or 5 years after a prior early-season wildfire. For these treatments, we compared the number of flowering stems and of flowers for species overall, for the 20 most prolifically flowering species, as well as for species grouped by flowering phenoperiods, and by growth form. Growing-season burn had a significant negative effect on number of flowering stems and total number of flowers. This effect occurred when either the burn occurred during the flowering season or during the season prior to the flowering phenoperiod. Tradescantia ohiensis showed expedited flowering and Phlox pilosa showed delayed flowering in response to early-season burning. Flowering of early shrubs was reduced by the previous fall and early-spring fires, while flowering of mid-season blooming shrubs was reduced by the early- and growing-season burns. Vaccinium and Gaylussacia, early-flowering shrubs, produced fewer flowers 1 year after than 5 years after an early-season burn. Arabis lyrata showed reduced flowering from the early-season burn. We also found four instances where the early-spring burn effect on flowering was more severe than the fall burn effect, suggesting that many frequent early-season burns may be deleterious to flowering and reproduction of some species. Burns occurring too frequently in the same season could negatively affect future flowering and reproduction of these plant species.

  12. A Low Glutathione Redox State Couples with a Decreased Ascorbate Redox Ratio to Accelerate Flowering in Oncidium Orchid.

    PubMed

    Chin, Dan-Chu; Hsieh, Chia-Chi; Lin, Hsin-Yi; Yeh, Kai-Wun

    2016-02-01

    Glutathione (GSH) plays multiple roles in plants, including stress defense and regulation of growth/development. Previous studies have demonstrated that the ascorbate (AsA) redox state is involved in flowering initiation in Oncidium orchid. In this study, we discovered that a significantly decreased GSH content and GSH redox ratio are correlated with a decline in the AsA redox state during flowering initiation and high ambient temperature-induced flowering. At the same time, the expression level and enzymatic activity of GSH redox-regulated genes, glutathione reductase (GR1), and the GSH biosynthesis genes γ-glutamylcysteine synthetase (GSH1) and glutathione synthase (GSH2), are down-regulated. Elevating dehydroascorbate (DHA) content in Oncidium by artificial addition of DHA resulted in a decreased AsA and GSH redox ratio, and enhanced dehydroascorbate reductase (DHAR) activity. This demonstrated that the lower GSH redox state could be influenced by the lower AsA redox ratio. Moreover, exogenous application of buthionine sulfoximine (BSO), to inhibit GSH biosynthesis, and glutathione disulfide (GSSG), to decrease the GSH redox ratio, also caused early flowering. However, spraying plants with GSH increased the GSH redox ratio and delayed flowering. Furthermore, transgenic Arabidopsis overexpressing Oncidium GSH1, GSH2 and GR1 displayed a high GSH redox ratio as well as delayed flowering under high ambient temperature treatment, while pad2, cad2 and gr1 mutants exhibited early flowering and a low GSH redox ratio. In conclusion, our results provide evidence that the decreased GSH redox state is linked to the decline in the AsA redox ratio and mediated by down-regulated expression of GSH metabolism-related genes to affect flowering time in Oncidium orchid.

  13. Record-Breaking Early Flowering in the Eastern United States

    PubMed Central

    Ellwood, Elizabeth R.; Temple, Stanley A.; Primack, Richard B.; Davis, Charles C.

    2013-01-01

    Flowering times are well-documented indicators of the ecological effects of climate change and are linked to numerous ecosystem processes and trophic interactions. Dozens of studies have shown that flowering times for many spring-flowering plants have become earlier as a result of recent climate change, but it is uncertain if flowering times will continue to advance as temperatures rise. Here, we used long-term flowering records initiated by Henry David Thoreau in 1852 and Aldo Leopold in 1935 to investigate this question. Our analyses demonstrate that record-breaking spring temperatures in 2010 and 2012 in Massachusetts, USA, and 2012 in Wisconsin, USA, resulted in the earliest flowering times in recorded history for dozens of spring-flowering plants of the eastern United States. These dramatic advances in spring flowering were successfully predicted by historical relationships between flowering and spring temperature spanning up to 161 years of ecological change. These results demonstrate that numerous temperate plant species have yet to show obvious signs of physiological constraints on phenological advancement in the face of climate change. PMID:23342001

  14. Towards Real-Time Speech Emotion Recognition for Affective E-Learning

    ERIC Educational Resources Information Center

    Bahreini, Kiavash; Nadolski, Rob; Westera, Wim

    2016-01-01

    This paper presents the voice emotion recognition part of the FILTWAM framework for real-time emotion recognition in affective e-learning settings. FILTWAM (Framework for Improving Learning Through Webcams And Microphones) intends to offer timely and appropriate online feedback based upon learner's vocal intonations and facial expressions in order…

  15. Examining Correlates of Part-Time Faculty Affective Commitment and Job Satisfaction

    ERIC Educational Resources Information Center

    Duhn, Samantha Tiffany

    2013-01-01

    Changes in a multitude of factors including the economy, student enrollment, university goals and policies, and the available talent pool have created an imbalance in the supply and demand for qualified part-time faculty. The unmet demand has prompted university leaders to seek an understanding of part-time faculty affective commitment, job…

  16. A perfect flower from the Jurassic of China

    PubMed Central

    Liu, Zhong-Jian; Wang, Xin

    2016-01-01

    Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus panii gen. et sp. nov., from the Middle–Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers. PMID:27134345

  17. Pollinator-Mediated Selection on Flower Color, Flower Scent and Flower Morphology of Hemerocallis: Evidence from Genotyping Individual Pollen Grains On the Stigma

    PubMed Central

    Hirota, Shun K.; Nitta, Kozue; Suyama, Yoshihisa; Kawakubo, Nobumitsu; Yasumoto, Akiko A.; Yahara, Tetsukazu

    2013-01-01

    To trace the fate of individual pollen grains through pollination processes, we determined genotypes of single pollen grains deposited on Hemerocallis stigmas in an experimental mixed-species array. Hemerocallis fulva, pollinated by butterflies, has diurnal, reddish and unscented flowers, and H. citrina, pollinated by hawkmoths, has nocturnal, yellowish and sweet scent flowers. We observed pollinator visits to an experimental array of 24 H. fulva and 12 F2 hybrids between the two species (H. fulva and H. citrina) and collected stigmas after every trip bout of swallowtail butterflies or hawkmoths. We then measured selection by swallowtail butterflies or hawkmoths through male and female components of pollination success as determined by single pollen genotyping. As expected, swallowtail butterflies imposed selection on reddish color and weak scent: the number of outcross pollen grains acquired is a quadratic function of flower color with the maximum at reddish color, and the combined pollination success was maximal at weak scent (almost unrecognizable for human). This explains why H. fulva, with reddish flowers and no recognizable scent, is mainly pollinated by swallowtail butterflies. However, we found no evidence of hawkmoths-mediated selection on flower color or scent. Our findings do not support a hypothesis that yellow flower color and strong scent intensity, the distinctive floral characteristics of H. citrina, having evolved in adaptations to hawkmoths. We suggest that the key trait that triggers the evolution of nocturnal flowers is flowering time rather than flower color and scent. PMID:24376890

  18. Pollinator-mediated selection on flower color, flower scent and flower morphology of Hemerocallis: evidence from genotyping individual pollen grains on the stigma.

    PubMed

    Hirota, Shun K; Nitta, Kozue; Suyama, Yoshihisa; Kawakubo, Nobumitsu; Yasumoto, Akiko A; Yahara, Tetsukazu

    2013-01-01

    To trace the fate of individual pollen grains through pollination processes, we determined genotypes of single pollen grains deposited on Hemerocallis stigmas in an experimental mixed-species array. Hemerocallis fulva, pollinated by butterflies, has diurnal, reddish and unscented flowers, and H. citrina, pollinated by hawkmoths, has nocturnal, yellowish and sweet scent flowers. We observed pollinator visits to an experimental array of 24 H. fulva and 12 F2 hybrids between the two species (H. fulva and H. citrina) and collected stigmas after every trip bout of swallowtail butterflies or hawkmoths. We then measured selection by swallowtail butterflies or hawkmoths through male and female components of pollination success as determined by single pollen genotyping. As expected, swallowtail butterflies imposed selection on reddish color and weak scent: the number of outcross pollen grains acquired is a quadratic function of flower color with the maximum at reddish color, and the combined pollination success was maximal at weak scent (almost unrecognizable for human). This explains why H. fulva, with reddish flowers and no recognizable scent, is mainly pollinated by swallowtail butterflies. However, we found no evidence of hawkmoths-mediated selection on flower color or scent. Our findings do not support a hypothesis that yellow flower color and strong scent intensity, the distinctive floral characteristics of H. citrina, having evolved in adaptations to hawkmoths. We suggest that the key trait that triggers the evolution of nocturnal flowers is flowering time rather than flower color and scent. PMID:24376890

  19. The rise of global warming skepticism: exploring affective image associations in the United States over time.

    PubMed

    Smith, Nicholas; Leiserowitz, Anthony

    2012-06-01

    This article explores how affective image associations to global warming have changed over time. Four nationally representative surveys of the American public were conducted between 2002 and 2010 to assess public global warming risk perceptions, policy preferences, and behavior. Affective images (positive or negative feelings and cognitive representations) were collected and content analyzed. The results demonstrate a large increase in "naysayer" associations, indicating extreme skepticism about the issue of climate change. Multiple regression analyses found that holistic affect and "naysayer" associations were more significant predictors of global warming risk perceptions than cultural worldviews or sociodemographic variables, including political party and ideology. The results demonstrate the important role affective imagery plays in judgment and decision-making processes, how these variables change over time, and how global warming is currently perceived by the American public.

  20. Fruitful factors: what limits seed production of flowering plants in the alpine?

    PubMed

    Straka, Jason R; Starzomski, Brian M

    2015-05-01

    Predicting demographic consequences of climate change for plant communities requires understanding which factors influence seed set, and how climate change may alter those factors. To determine the effects of pollen availability, temperature, and pollinators on seed production in the alpine, we combined pollen-manipulation experiments with measurements of variation in temperature, and abundance and diversity of potential pollinators along a 400-m elevation gradient. We did this for seven dominant species of flowering plants in the Coast Range Mountains, British Columbia, Canada. The number of viable seeds set by plants was influenced by pollen limitation (quantity of pollen received), mate limitation (quality of pollen), temperature, abundance of potential pollinators, seed predation, and combinations of these factors. Early flowering species (n = 3) had higher seed set at high elevation and late-flowering species (n = 4) had higher seed set at low elevation. Degree-days >15 °C were good predictors of seed set, particularly in bee-pollinated species, but had inconsistent effects among species. Seed production in one species, Arnica latifolia, was negatively affected by seed-predators (Tephritidae) at mid elevation, where there were fewer frost-hours during the flowering season. Anemone occidentalis, a fly-pollinated, self-compatible species had high seed set at all elevations, likely due to abundant potential pollinators. Simultaneously measuring multiple factors affecting reproductive success of flowering plants helped identify which factors were most important, providing focus for future studies. Our work suggests that responses of plant communities to climate change may be mediated by flowering time, pollination syndrome, and susceptibility to seed predators. PMID:25447635

  1. Fruitful factors: what limits seed production of flowering plants in the alpine?

    PubMed

    Straka, Jason R; Starzomski, Brian M

    2015-05-01

    Predicting demographic consequences of climate change for plant communities requires understanding which factors influence seed set, and how climate change may alter those factors. To determine the effects of pollen availability, temperature, and pollinators on seed production in the alpine, we combined pollen-manipulation experiments with measurements of variation in temperature, and abundance and diversity of potential pollinators along a 400-m elevation gradient. We did this for seven dominant species of flowering plants in the Coast Range Mountains, British Columbia, Canada. The number of viable seeds set by plants was influenced by pollen limitation (quantity of pollen received), mate limitation (quality of pollen), temperature, abundance of potential pollinators, seed predation, and combinations of these factors. Early flowering species (n = 3) had higher seed set at high elevation and late-flowering species (n = 4) had higher seed set at low elevation. Degree-days >15 °C were good predictors of seed set, particularly in bee-pollinated species, but had inconsistent effects among species. Seed production in one species, Arnica latifolia, was negatively affected by seed-predators (Tephritidae) at mid elevation, where there were fewer frost-hours during the flowering season. Anemone occidentalis, a fly-pollinated, self-compatible species had high seed set at all elevations, likely due to abundant potential pollinators. Simultaneously measuring multiple factors affecting reproductive success of flowering plants helped identify which factors were most important, providing focus for future studies. Our work suggests that responses of plant communities to climate change may be mediated by flowering time, pollination syndrome, and susceptibility to seed predators.

  2. A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa.

    PubMed

    Zhang, Xueming; Meng, Lin; Liu, Bo; Hu, Yunyan; Cheng, Feng; Liang, Jianli; Aarts, Mark G M; Wang, Xiaowu; Wu, Jian

    2015-12-01

    Long days and vernalization accelerate the transition from vegetative growth to reproductive growth in Brassica rapa. Bolting before plants reach the harvesting stage is a serious problem in B. rapa vegetable crop cultivation. The genetic dissection of flowering time is important for breeding of premature bolting-resistant B. rapa crops. Using a recombinant inbred line (RIL) population, we twice detected two major quantitative trait loci (QTLs) for flowering time in two different growing seasons that were located on chromosomes A02 and A07, respectively. We hypothesized that an orthologue of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, named as BrFT2, was the candidate gene underlying the QTL localized to A07. A transposon insertion in the second intron of BrFT2 was detected in one of the parental lines, which was predicted to generate a loss-of-function allele. Transcription analysis revealed that the BrFT2 transcript was not present in the parental line that harbored the mutated allele. RILs carrying only the mutated BrFT2 allele showed delayed flowering regardless of growing seasons when compared to RILs carrying the wild-type BrFT2 allele. These data suggest that BrFT2 is involved in flowering time regulation in controlling flowering time in B. rapa. PMID:26706072

  3. A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa.

    PubMed

    Zhang, Xueming; Meng, Lin; Liu, Bo; Hu, Yunyan; Cheng, Feng; Liang, Jianli; Aarts, Mark G M; Wang, Xiaowu; Wu, Jian

    2015-12-01

    Long days and vernalization accelerate the transition from vegetative growth to reproductive growth in Brassica rapa. Bolting before plants reach the harvesting stage is a serious problem in B. rapa vegetable crop cultivation. The genetic dissection of flowering time is important for breeding of premature bolting-resistant B. rapa crops. Using a recombinant inbred line (RIL) population, we twice detected two major quantitative trait loci (QTLs) for flowering time in two different growing seasons that were located on chromosomes A02 and A07, respectively. We hypothesized that an orthologue of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, named as BrFT2, was the candidate gene underlying the QTL localized to A07. A transposon insertion in the second intron of BrFT2 was detected in one of the parental lines, which was predicted to generate a loss-of-function allele. Transcription analysis revealed that the BrFT2 transcript was not present in the parental line that harbored the mutated allele. RILs carrying only the mutated BrFT2 allele showed delayed flowering regardless of growing seasons when compared to RILs carrying the wild-type BrFT2 allele. These data suggest that BrFT2 is involved in flowering time regulation in controlling flowering time in B. rapa.

  4. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley.

    PubMed

    Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-07-01

    Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development.

  5. Volatile organic compound emissions from different stages of Cananga odorata flower development.

    PubMed

    Qin, Xiao-Wei; Hao, Chao-Yun; He, Shu-Zhen; Wu, Gang; Tan, Le-He; Xu, Fei; Hu, Rong-Suo

    2014-01-01

    Headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to identify the volatile organic compounds (VOCs) of the different flower development stages of Cananga odorata for the evaluation of floral volatile polymorphism as a basis to determine the best time of harvest. Electronic nose results, coupled with discriminant factor analysis, suggested that emitted odors varied in different C. odorata flower development stages, including the bud, display-petal, initial-flowering, full-flowering, end-flowering, wilted-flower, and dried flower stages. The first two discriminant factors explained 97.52% of total system variance. Ninety-two compounds were detected over the flower life, and the mean Bray-Curtis similarity value was 52.45% among different flower development stages. A high level of volatile polymorphism was observed during flower development. The VOCs were largely grouped as hydrocarbons, esters, alcohols, aldehydes, phenols, acids, ketones, and ethers, and the main compound was β-caryophyllene (15.05%-33.30%). Other identified compounds were β-cubebene, D-germacrene, benzyl benzoate, and α-cubebene. Moreover, large numbers of VOCs were detected at intermediate times of flower development, and more hydrocarbons, esters, and alcohols were identified in the full-flowering stage. The full-flowering stage may be the most suitable period for C. odorata flower harvest. PMID:24979401

  6. FLOWER IPv4/IPv6 Network Flow Summarization software

    SciTech Connect

    Nickless, Bill; Curtis, Darren; Christy, Jason; Younkin, Chance; Mount, Jason; Richard Griswold, Joe Lenaeus

    2011-04-04

    FLOWER was written as a refactoring/reimplementation of the existing Flo software used by the Cooperative Protection Program (CPP) to provide network flow summaries for analysis by the Operational Analysis Center (OAC) and other US Department of Energy cyber security elements. FLOWER is designed and tested to operate at 10 gigabits/second, nearly 10 times faster than competing solutions. FLOWER output is optimized for importation into SQL databases for categorization and analysis. FLOWER is written in C++ using current best software engineering practices.

  7. The Evergreen gene is essential for flower initiation in carnation.

    PubMed

    Scovel, G; Altshuler, T; Liu, Z; Vainstein, A

    2000-01-01

    One of the leading cut-flower crops in the world, the greenhouse carnation (Dianthus caryophyllus), has been subjected to intense breeding efforts for the past few hundred years. As an ornamental crop, flowering and flower architecture are major breeding targets that are constantly in demand. In an ongoing breeding program aimed at improving these characteristics, two mutants heterozygous for a mutation in a gene termed evergreen (e) were identified. In these mutants, spike-like clusters of bracteoles subtend each flower. Genetic analysis of the mutants confirmed the semidominant nature of this nuclear mutation and that the two original mutants were allelic at the evergreen locus. In homozygous mutant plants, a more severe phenotype was observed. Flower formation was completely blocked and spikelike clusters of bracteoles did not subtend any flowers. Morphological characterization of mutant plants revealed that vegetative growth and inflorescence structure are not affected by the mutant allele. In plants heterozygous for the evergreen mutation, fertility, petal and pistil length, calyx diameter, and stamen number were not affected. However, flowers from these heterozygous plants had a reduced number of petals, suggesting an intriguing link between evergreen and the double flower (d) gene that determines petal number in carnation. The control by evergreen of bracteole formation, floral meristem initiation, and petal number in carnation is discussed in comparison to the recessive leafy (lfy) and floricaula (flo) mutants of Arabidopsis and Antirrhinum, respectively.

  8. Delay of iris flower senescence by cytokinins and jasmonates.

    PubMed

    van Doorn, Wouter G; Çelikel, Fisun G; Pak, Caroline; Harkema, Harmannus

    2013-05-01

    It is not known whether tepal senescence in Iris flowers is regulated by hormones. We applied hormones and hormone inhibitors to cut flowers and isolated tepals of Iris × hollandica cv. Blue Magic. Treatments with ethylene or ethylene antagonists indicated lack of ethylene involvement. Auxins or auxin inhibitors also did not change the time to senescence. Abscisic acid (ABA) hastened senescence, but an inhibitor of ABA synthesis (norflurazon) had no effect. Gibberellic acid (GA3 ) slightly delayed senescence in some experiments, but in other experiments it was without effect, and gibberellin inhibitors [ancymidol or 4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate (AMO-1618)] were ineffective as well. Salicylic acid (SA) also had no effect. Ethylene, auxins, GA3 and SA affected flower opening, therefore did reach the flower cells. Jasmonates delayed senescence by about 2.0 days. Similarly, cytokinins delayed senescence by about 1.5-2.0 days. Antagonists of the phosphatidylinositol signal transduction pathway (lithium), calcium channels (niguldipine and verapamil), calmodulin action [fluphenazine, trifluoroperazine, phenoxybenzamide and N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide hydrochloride (W-7)] or protein kinase activity [1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride (H-7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-8) and N-(2-aminoethyl)-5-isoquinolinesulfonamide dihydrochloride (H-9)] had no effect on senescence, indicating no role of a few common signal transduction pathways relating to hormone effects on senescence. The results indicate that tepal senescence in Iris cv. Blue Magic is not regulated by endogenous ethylene, auxin, gibberellins or SA. A role of ABA can at present not be excluded. The data suggest the hypothesis that cytokinins and jasmonates are among the natural regulators. PMID:22974423

  9. Delay of iris flower senescence by cytokinins and jasmonates.

    PubMed

    van Doorn, Wouter G; Çelikel, Fisun G; Pak, Caroline; Harkema, Harmannus

    2013-05-01

    It is not known whether tepal senescence in Iris flowers is regulated by hormones. We applied hormones and hormone inhibitors to cut flowers and isolated tepals of Iris × hollandica cv. Blue Magic. Treatments with ethylene or ethylene antagonists indicated lack of ethylene involvement. Auxins or auxin inhibitors also did not change the time to senescence. Abscisic acid (ABA) hastened senescence, but an inhibitor of ABA synthesis (norflurazon) had no effect. Gibberellic acid (GA3 ) slightly delayed senescence in some experiments, but in other experiments it was without effect, and gibberellin inhibitors [ancymidol or 4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate (AMO-1618)] were ineffective as well. Salicylic acid (SA) also had no effect. Ethylene, auxins, GA3 and SA affected flower opening, therefore did reach the flower cells. Jasmonates delayed senescence by about 2.0 days. Similarly, cytokinins delayed senescence by about 1.5-2.0 days. Antagonists of the phosphatidylinositol signal transduction pathway (lithium), calcium channels (niguldipine and verapamil), calmodulin action [fluphenazine, trifluoroperazine, phenoxybenzamide and N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide hydrochloride (W-7)] or protein kinase activity [1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride (H-7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-8) and N-(2-aminoethyl)-5-isoquinolinesulfonamide dihydrochloride (H-9)] had no effect on senescence, indicating no role of a few common signal transduction pathways relating to hormone effects on senescence. The results indicate that tepal senescence in Iris cv. Blue Magic is not regulated by endogenous ethylene, auxin, gibberellins or SA. A role of ABA can at present not be excluded. The data suggest the hypothesis that cytokinins and jasmonates are among the natural regulators.

  10. Novel coloured flowers.

    PubMed

    Mol, J; Cornish, E; Mason, J; Koes, R

    1999-04-01

    The floricultural industry has focused its attention primarily on the development of novel coloured and longer living cut flowers. The basis for this was laid down some years ago through the isolation of 'blue' genes and ethylene biosynthesis genes. Recently, a novel 'blue' gene has been discovered and yellow pigments were produced in petunias by addition of a new branch to the phenylpropanoid pathway. More insight was obtained into the sequestration of anthocyanin pigments into storage vacuoles. Significant progress has been achieved in the commercialisation of genetically modified flower varieties.

  11. Shifts in flowering phenology reshape a subalpine plant community.

    PubMed

    CaraDonna, Paul J; Iler, Amy M; Inouye, David W

    2014-04-01

    Phenology--the timing of biological events--is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky Mountains that contains more than 2 million flower counts, we reveal a diversity of species-level phenological shifts that bring into question the accuracy of previous estimates of long-term phenological change. For 60 species, we show that first, peak, and last flowering rarely shift uniformly and instead usually shift independently of one another, resulting in a diversity of phenological changes through time. Shifts in the timing of first flowering on average overestimate the magnitude of shifts in the timing of peak flowering, fail to predict shifts in the timing of last flowering, and underrepresent the number of species changing phenology in this plant community. Ultimately, this diversity of species-level phenological shifts contributes to altered coflowering patterns within the community, a redistribution of floral abundance across the season, and an expansion of the flowering season by more than I mo during the course of our study period. These results demonstrate the substantial reshaping of ecological communities that can be attributed to shifts in phenology.

  12. Shifts in flowering phenology reshape a subalpine plant community

    PubMed Central

    CaraDonna, Paul J.; Iler, Amy M.; Inouye, David W.

    2014-01-01

    Phenology—the timing of biological events—is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky Mountains that contains more than 2 million flower counts, we reveal a diversity of species-level phenological shifts that bring into question the accuracy of previous estimates of long-term phenological change. For 60 species, we show that first, peak, and last flowering rarely shift uniformly and instead usually shift independently of one another, resulting in a diversity of phenological changes through time. Shifts in the timing of first flowering on average overestimate the magnitude of shifts in the timing of peak flowering, fail to predict shifts in the timing of last flowering, and underrepresent the number of species changing phenology in this plant community. Ultimately, this diversity of species-level phenological shifts contributes to altered coflowering patterns within the community, a redistribution of floral abundance across the season, and an expansion of the flowering season by more than I mo during the course of our study period. These results demonstrate the substantial reshaping of ecological communities that can be attributed to shifts in phenology. PMID:24639544

  13. Shifts in flowering phenology reshape a subalpine plant community.

    PubMed

    CaraDonna, Paul J; Iler, Amy M; Inouye, David W

    2014-04-01

    Phenology--the timing of biological events--is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky Mountains that contains more than 2 million flower counts, we reveal a diversity of species-level phenological shifts that bring into question the accuracy of previous estimates of long-term phenological change. For 60 species, we show that first, peak, and last flowering rarely shift uniformly and instead usually shift independently of one another, resulting in a diversity of phenological changes through time. Shifts in the timing of first flowering on average overestimate the magnitude of shifts in the timing of peak flowering, fail to predict shifts in the timing of last flowering, and underrepresent the number of species changing phenology in this plant community. Ultimately, this diversity of species-level phenological shifts contributes to altered coflowering patterns within the community, a redistribution of floral abundance across the season, and an expansion of the flowering season by more than I mo during the course of our study period. These results demonstrate the substantial reshaping of ecological communities that can be attributed to shifts in phenology. PMID:24639544

  14. Direct observations of parenting and real-time negative affect among adolescent smokers and nonsmokers.

    PubMed

    Richmond, Melanie J; Mermelstein, Robin J; Wakschlag, Lauren S

    2013-01-01

    This longitudinal study examined how observations of parental general communication style and control with their adolescents predicted changes in negative affect over time for adolescent smokers and nonsmokers. Participants were 9th- and 10th-grade adolescents (N = 111; 56.8% female) who had all experimented with cigarettes and were thus at risk for continued smoking and escalation; 36% of these adolescents (n = 40) had smoked in the past month at baseline and were considered smokers in the present analyses. Adolescents participated separately with mothers and fathers in observed parent-adolescent problem-solving discussions to assess parenting at baseline. Adolescent negative affect was assessed at baseline, 6 months, and 24 months via ecological momentary assessment. Among both smoking and nonsmoking adolescents, escalating negative affect significantly increased risk for future smoking. Higher quality maternal and paternal communication predicted a decline in negative affect over 1.5 years for adolescent smokers but was not related to negative affect for nonsmokers. Controlling maternal, but not paternal, parenting predicted escalation in negative affect for all adolescents. Findings suggest that reducing negative affect among experimenting youth can reduce risk for smoking escalation. Therefore, family-based prevention efforts for adolescent smoking escalation might consider parental general communication style and control as intervention targets. However, adolescent smoking status and parent gender may moderate these effects.

  15. Multilevel factor analysis of smokers' real-time negative affect ratings while quitting.

    PubMed

    Bold, Krysten W; Witkiewitz, Katie; McCarthy, Danielle E

    2016-09-01

    Smoking is a serious public health problem, and accurate real-time assessment of risk factors associated with smoking is critical to understanding smoking relapse. Negative affect is often described as a critical risk factor related to smoking relapse, and ecological momentary assessment (EMA) methods have been widely used to study real-time relations between negative affect and smoking. However, the factor structure of momentary negative affect ratings is unknown. The current investigation examined the multilevel factor structure and internal consistency of an EMA measure of negative affect. Daily assessments were collected for 1 week prequit and 3 weeks postquit from 113 adult daily smokers receiving nicotine replacement therapy and counseling to quit smoking. Results supported a 2-factor model with correlated but distinct agitation and distress factors, rather than a single-factor model of negative affect. The agitation factor was indicated by these items: impatient, tense/anxious, restless. The distress factor was indicated by these items: sad/depressed, upset, distressed. The 2-factor model had acceptable model fit and consistent factor loadings across 3 separate cessation phases: prequit, postquit with recent smoking, and postquit without recent smoking. The 2 factors were highly correlated, showed good internal consistency, and showed strong associations with theoretically relevant smoking and affect variables. Agitation was more strongly related to urge to smoke, and distress was more strongly related to recent stress. This study provides support for a 2-factor model of an EMA measure of negative affect and highlights distinct facets that may be useful for future investigations of affect and smoking. (PsycINFO Database Record PMID:27536999

  16. Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio.

    PubMed

    Rolauffs, Sebastian; Fackendahl, Petra; Sahm, Jan; Fiene, Gabriele; Hoecker, Ute

    2012-12-01

    Plants sense vegetative shade as a reduction in the ratio of red light to far-red light (R:FR). Arabidopsis (Arabidopsis thaliana) responds to a reduced R:FR with increased elongation of the hypocotyl and the leaf petioles as well as with an acceleration of flowering time. The repressor of light signaling, CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), has been shown previously to be essential for the shade-avoidance response in seedlings. Here, we have investigated the roles of COP1 and the COP1-interacting SUPPRESSOR OF PHYA-105 (SPA) proteins in seedling and adult facets of the shade-avoidance response. We show that COP1 and the four SPA genes are essential for hypocotyl and leaf petiole elongation in response to low R:FR, in a fashion that involves the COP1/SPA ubiquitination target LONG HYPOCOTYL IN FR LIGHT1 but not ELONGATED HYPOCOTYL5. In contrast, the acceleration of flowering in response to a low R:FR was normal in cop1 and spa mutants, thus demonstrating that the COP1/SPA complex is only required for elongation responses to vegetative shade and not for shade-induced early flowering. We further show that spa mutant seedlings fail to exhibit an increase in the transcript levels of the auxin biosynthesis genes YUCCA2 (YUC2), YUC8, and YUC9 in response to low R:FR, suggesting that an increase in auxin biosynthesis in vegetative shade requires SPA function. Consistent with this finding, expression of the auxin-response marker gene DR5::GUS did not increase in spa mutant seedlings exposed to low R:FR. We propose that COP1/SPA activity, via LONG HYPOCOTYL IN FR LIGHT1, is required for shade-induced modulation of the auxin biosynthesis pathway and thereby enhances cell elongation in low R:FR.

  17. Transcriptomic Analysis of Flower Development in Wintersweet (Chimonanthus praecox)

    PubMed Central

    Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang

    2014-01-01

    Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data

  18. Genetics and genomics of flower initiation and development in roses

    PubMed Central

    Bendahmane, Mohammed

    2013-01-01

    Roses hold high symbolic value and great cultural importance in different societies throughout human history. They are widely used as garden ornamental plants, as cut flowers, and for the production of essential oils for the perfume and cosmetic industries. Domestication of roses has a long and complex history, and the rose species have been hybridized across vast geographic areas such as Europe, Asia, and the Middle East. The domestication processes selected several flower characters affecting floral quality, such as recurrent flowering, double flowers, petal colours, and fragrance. The molecular and genetic events that determine some of these flower characters cannot be studied using model species such as Arabidopsis thaliana, or at least only in a limited manner. In this review, we comment on the recent development of genetic, genomic, and transcriptomic tools for roses, and then focus on recent advances that have helped unravel the molecular mechanisms underlying several rose floral traits. PMID:23364936

  19. Genetics and genomics of flower initiation and development in roses.

    PubMed

    Bendahmane, Mohammed; Dubois, Annick; Raymond, Olivier; Bris, Manuel Le

    2013-02-01

    Roses hold high symbolic value and great cultural importance in different societies throughout human history. They are widely used as garden ornamental plants, as cut flowers, and for the production of essential oils for the perfume and cosmetic industries. Domestication of roses has a long and complex history, and the rose species have been hybridized across vast geographic areas such as Europe, Asia, and the Middle East. The domestication processes selected several flower characters affecting floral quality, such as recurrent flowering, double flowers, petal colours, and fragrance. The molecular and genetic events that determine some of these flower characters cannot be studied using model species such as Arabidopsis thaliana, or at least only in a limited manner. In this review, we comment on the recent development of genetic, genomic, and transcriptomic tools for roses, and then focus on recent advances that have helped unravel the molecular mechanisms underlying several rose floral traits.

  20. Mapping emotions through time: how affective trajectories inform the language of emotion.

    PubMed

    Kirkland, Tabitha; Cunningham, William A

    2012-04-01

    The words used to describe emotions can provide insight into the basic processes that contribute to emotional experience. We propose that emotions arise partly from interacting evaluations of one's current affective state, previous affective state, predictions for how these may change in the future, and the experienced outcomes following these predictions. These states can be represented and inferred from neural systems that encode shifts in outcomes and make predictions. In two studies, we demonstrate that emotion labels are reliably differentiated from one another using only simple cues about these affective trajectories through time. For example, when a worse-than-expected outcome follows the prediction that something good will happen, that situation is labeled as causing anger, whereas when a worse-than-expected outcome follows the prediction that something bad will happen, that situation is labeled as causing sadness. Emotion categories are more differentiated when participants are required to think categorically than when participants have the option to consider multiple emotions and degrees of emotions. This work indicates that information about affective movement through time and changes in affective trajectory may be a fundamental aspect of emotion categories. Future studies of emotion must account for the dynamic way that we absorb and process information.

  1. The strength of assortative mating for flowering date and its basis in individual variation in flowering schedule.

    PubMed

    Weis, A E; Nardone, E; Fox, G A

    2014-10-01

    Although it has been widely asserted that plants mate assortatively by flowering time, there is virtually no published information on the strength or causes of phenological assortment in natural populations. When strong, assortative mating can accelerate the evolution of plant reproductive phenology through its inflationary effect on genetic variance. We estimated potential assortative mating for flowering date in 31 old-field species in Ontario, Canada. For each species, we constructed a matrix of pairwise mating probabilities from the individual flowering schedules, that is the number of flower deployed on successive dates. The matrix was used to estimate the phenotypic correlation between mates, ρ, for flowering date. We also developed a measure of flowering synchrony within species, S, based upon the eigenstructure of the mating matrix. The mean correlation between pollen recipients and potential donors for flowering date was ρ=0.31 (range: 0.05-0.63). A strong potential for assortative mating was found among species with high variance in flowering date, flowering schedules of short duration and skew towards early flower deployment. Flowering synchrony, S, was negatively correlated with potential assortment (r= -0.49), but we go on to show that although low synchrony is a necessary condition for phenological assortative mating, it may not be sufficient to induce assortment for a given phenological trait. The potential correlation between mates showed no seasonal trend; thus, as climate change imposes selection on phenology through longer growing seasons, spring-flowering species are no more likely to experience an accelerated evolutionary response than summer species.

  2. Flower Constellations as rigid objects in space

    NASA Astrophysics Data System (ADS)

    Mortari, Daniele

    2006-08-01

    This paper summarizes the findings and the research status on Flower Constellations, a novel and revolutionary way to design satellite constellations that has been discovered and proposed at Texas A&M University. The theory of Flower Constellations is a natural consequence of the theory of compatible (or resonant) orbits. The most surprising aspect of the Flower Constellations is that the satellite distribution identifies the edges of rotating figures whose shapes are time invariant. The complex synchronized dynamics of the satellites preserves the shape of a space object. The whole Flower Constellation is an axial-symmetric rigid object in space that is spinning with prescribed angular velocity. The shape of this object can be deformed by playing with the Flower Constellation design parameters, and the object's axis of symmetry can be set to point to any inertial direction. In particular, when the axis of symmetry is aligned with the Earth's spin axis, the J2 linear-dominant effect is identical for all the orbits. In this case, the J2 effect deforms the object shape while preserving the axial-symmetry.

  3. Flower Constancy, Insect Psychology, and Plant Evolution

    NASA Astrophysics Data System (ADS)

    Chittka, Lars; Thomson, James D.; Waser, Nickolas M.

    Individuals of some species of pollinating insects tend to restrict their visits to only a few of the available plant species, in the process bypassing valuable food sources. The question of why this flower constancy exists is a rich and important one with implications for the organization of natural communities of plants, floral evolution, and our understanding of the learning processes involved in finding food. Some scientists have assumed that flower constancy is adaptive per se. Others argued that constancy occurs because memory capacity for floral features in insects is limited, but attempts to identify the limitations often remained rather simplistic. We elucidate now different sensory and motor memories from natural foraging tasks are stored and retrieved, using concepts from modern learning science and visual search, and conclude that flower constancy is likely to have multiple causes. Possible constraints favoring constancy are interference sensitivity of short-term memory, and temporal limitations on retrieving information from long-term memory as rapidly as from short-term memory, but further empirical evidence is needed to substantiate these possibilities. In addition, retrieving memories may be slower and more prone to errors when there are several options than when an insect copes with only a single task. In addition to memory limitations, we also point out alternative explanations for flower constancy. We then consider the way in which floral parameters, such as interplant distances, nectar rewards, flower morphology, and floral color (as seen through bees' eyes) affect constancy. Finally, we discuss the implications of pollinator constancy for plant evolution. To date there is no evidence that flowers have diverged to favor constancy, although the appropriate tests may not have yet been conducted. However, there is good evidence against the notion that pollinator constancy is involved in speciation or maintenance of plant species integrity.

  4. CONSTANS is a photoperiod regulated activator of flowering in sorghum

    PubMed Central

    2014-01-01

    Background Sorghum genotypes used for grain production in temperate regions are photoperiod insensitive and flower early avoiding adverse environments during the reproductive phase. In contrast, energy sorghum hybrids are highly photoperiod sensitive with extended vegetative phases in long days, resulting in enhanced biomass accumulation. SbPRR37 and SbGHD7 contribute to photoperiod sensitivity in sorghum by repressing expression of SbEHD1 and FT-like genes, thereby delaying flowering in long days with minimal influence in short days (PNAS_108:16469-16474, 2011; Plant Genome_in press, 2014). The GIGANTEA (GI)-CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway regulates flowering time in Arabidopsis and the grasses (J Exp Bot_62:2453-2463, 2011). In long day flowering plants, such as Arabidopsis and barley, CONSTANS activates FT expression and flowering in long days. In rice, a short day flowering plant, Hd1, the ortholog of CONSTANS, activates flowering in short days and represses flowering in long days. Results Quantitative trait loci (QTL) that modify flowering time in sorghum were identified by screening Recombinant Inbred Lines (RILs) derived from BTx642 and Tx7000 in long days, short days, and under field conditions. Analysis of the flowering time QTL on SBI-10 revealed that BTx642 encodes a recessive CONSTANS allele containing a His106Tyr substitution in B-box 2 known to inactivate CONSTANS in Arabidopsis thaliana. Genetic analysis characterized sorghum CONSTANS as a floral activator that promotes flowering by inducing the expression of EARLY HEADING DATE 1 (SbEHD1) and sorghum orthologs of the maize FT genes ZCN8 (SbCN8) and ZCN12 (SbCN12). The floral repressor PSEUDORESPONSE REGULATOR PROTEIN 37 (PRR37) inhibits sorghum CONSTANS activity and flowering in long days. Conclusion Sorghum CONSTANS is an activator of flowering that is repressed post-transcriptionally in long days by the floral inhibitor PRR37, contributing to photoperiod sensitive flowering in Sorghum

  5. Factors Affecting the Timing of Signal Detection of Adverse Drug Reactions.

    PubMed

    Hashiguchi, Masayuki; Imai, Shungo; Uehara, Keiko; Maruyama, Junya; Shimizu, Mikiko; Mochizuki, Mayumi

    2015-01-01

    We investigated factors affecting the timing of signal detection by comparing variations in reporting time of known and unknown ADRs after initial drug release in the USA. Data on adverse event reactions (AERs) submitted to U.S. FDA was used. Six ADRs associated with 6 drugs (rosuvastatin, aripiprazole, teriparatide, telithromycin, exenatide, varenicline) were investigated: Changes in the proportional reporting ratio, reporting odds ratio, and information component as indexes of signal detection were followed every 3 months after each drugs release, and the time for detection of signals was investigated. The time for the detection of signal to be detected after drug release in the USA was 2-10 months for known ADRs and 19-44 months for unknown ones. The median lag time for known and unknown ADRs was 99.0-122.5 days and 185.5-306.0 days, respectively. When the FDA released advisory information on rare but potentially serious health risks of an unknown ADR, the time lag to report from the onset of ADRs to the FDA was shorter. This study suggested that one factor affecting signal detection time is whether an ADR was known or unknown at release. PMID:26641634

  6. Emission of volatile chemicals from flowering dogwood (cornus Florida L.) flowers.

    PubMed

    Zhuang, Xiaofeng; Klingeman, William E; Hu, Jun; Chen, Feng

    2008-10-22

    Reproduction of flowering dogwood trees occurs via obligate out-crossing, and U.S. native bees have been suggested to be primary pollinators of this ecologically and economically important deciduous tree. Whether floral volatiles play a role in reproduction of the dogwood remains unclear. Objectives of this study were to identify principal volatile chemicals emitted from dogwood flowers and to assess a temporal volatile emission profile and volatile consistency across four cultivars. Inflorescences with intact bracts and 5 cm flower pedicel were removed from dogwood trees and subjected to headspace volatile collection. Six principal volatile compounds were detected from the flowers of the cultivar 'World's Fair' with 3-formylpyridine as the most abundant constituent. Subsequent headspace analyses performed using inflorescences without bracts or floral pedicels alone indicated that 3-formylpyridine, E-beta-ocimene, S-linalool, and ketoisophorone were mainly emitted from inflorescences. Experiments were also conducted to determine whether volatile emissions differed across time and between different cultivars of flowering dogwood. When volatile emission was analyzed for 48 h using 12 h light/dark cycles, the emission of several volatile compounds displayed diurnal patterns. Finally, whereas florets in inflorescences of four different dogwood cultivars emitted similar levels of the six principal floral volatile chemicals, 'Cherokee Brave' flowers alone yielded 4-methoxybenzaldehyde and germacrene-D. The implications of the findings of this study to dogwood breeding programs are discussed. PMID:18811168

  7. Nonrandom Composition of Flower Colors in a Plant Community: Mutually Different Co-Flowering Natives and Disturbance by Aliens.

    PubMed

    Makino, Takashi T; Yokoyama, Jun

    2015-01-01

    When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies), and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant-pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly.

  8. Nonrandom Composition of Flower Colors in a Plant Community: Mutually Different Co-Flowering Natives and Disturbance by Aliens

    PubMed Central

    Makino, Takashi T.; Yokoyama, Jun

    2015-01-01

    When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies), and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant–pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly. PMID:26650121

  9. Increasing frost risk associated with advanced citrus flowering dates in Kerman and Shiraz, Iran: 1960-2010.

    PubMed

    Fitchett, Jennifer M; Grab, Stefan W; Thompson, Dave I; Roshan, Gholamreza

    2014-10-01

    Flowering dates and the timing of late season frost are both driven by local ambient temperatures. However, under climatic warming observed over the past century, it remains uncertain how such impacts affect frost risk associated with plant phenophase shifts. Any increase in frost frequency or severity has the potential to damage flowers and their resultant yields and, in more extreme cases, the survival of the plant. An accurate assessment of the relationship between the timing of last frost events and phenological shifts associated with warmer climate is thus imperative. We investigate spring advances in citrus flowering dates (orange, tangerine, sweet lemon, sour lemon and sour orange) for Kerman and Shiraz, Iran from 1960 to 2010. These cities have experienced increases in both T max and T min, advances in peak flowering dates and changes in last frost dates over the study period. Based on daily instrumental climate records, the last frost dates for each year are compared with the peak flowering dates. For both cities, the rate of last frost advance lags behind the phenological advance, thus increasing frost risk. Increased frost risk will likely have considerable direct impacts on crop yields and on the associated capacity to adapt, given future climatic uncertainty.

  10. Increasing frost risk associated with advanced citrus flowering dates in Kerman and Shiraz, Iran: 1960-2010

    NASA Astrophysics Data System (ADS)

    Fitchett, Jennifer M.; Grab, Stefan W.; Thompson, Dave I.; Roshan, Gholamreza

    2014-10-01

    Flowering dates and the timing of late season frost are both driven by local ambient temperatures. However, under climatic warming observed over the past century, it remains uncertain how such impacts affect frost risk associated with plant phenophase shifts. Any increase in frost frequency or severity has the potential to damage flowers and their resultant yields and, in more extreme cases, the survival of the plant. An accurate assessment of the relationship between the timing of last frost events and phenological shifts associated with warmer climate is thus imperative. We investigate spring advances in citrus flowering dates (orange, tangerine, sweet lemon, sour lemon and sour orange) for Kerman and Shiraz, Iran from 1960 to 2010. These cities have experienced increases in both T max and T min, advances in peak flowering dates and changes in last frost dates over the study period. Based on daily instrumental climate records, the last frost dates for each year are compared with the peak flowering dates. For both cities, the rate of last frost advance lags behind the phenological advance, thus increasing frost risk. Increased frost risk will likely have considerable direct impacts on crop yields and on the associated capacity to adapt, given future climatic uncertainty.

  11. Sublethal imidacloprid effects on honey bee flower choices when foraging.

    PubMed

    Karahan, Ahmed; Çakmak, Ibrahim; Hranitz, John M; Karaca, Ismail; Wells, Harrington

    2015-11-01

    Neonicotinoids, systemic neuro-active pesticides similar to nicotine, are widely used in agriculture and are being investigated for a role in honey bee colony losses. We examined one neonicotinoid pesticide, imidacloprid, for its effects on the foraging behavior of free-flying honey bees (Apis mellifera anatoliaca) visiting artificial blue and white flowers. Imidacloprid doses, ranging from 1/5 to 1/50 of the reported LD50, were fed to bees orally. The study consisted of three experimental parts performed sequentially without interruption. In Part 1, both flower colors contained a 4 μL 1 M sucrose solution reward. Part 2 offered bees 4 μL of 1.5 M sucrose solution in blue flowers and a 4 μL 0.5 M sucrose solution reward in white flowers. In Part 3 we reversed the sugar solution rewards, while keeping the flower color consistent. Each experiment began 30 min after administration of the pesticide. We recorded the percentage of experimental bees that returned to forage after treatment. We also recorded the visitation rate, number of flowers visited, and floral reward choices of the bees that foraged after treatment. The forager return rate declined linearly with increasing imidacloprid dose. The number of foraging trips by returning bees was also affected adversely. However, flower fidelity was not affected by imidacloprid dose. Foragers visited both blue and white flowers extensively in Part 1, and showed greater fidelity for the flower color offering the higher sugar solution reward in Parts 2 and 3. Although larger samples sizes are needed, our study suggests that imidacloprid may not affect the ability to select the higher nectar reward when rewards were reversed. We observed acute, mild effects on foraging by honey bees, so mild that storage of imidacloprid tainted-honey is very plausible and likely to be found in honey bee colonies. PMID:26415950

  12. Sublethal imidacloprid effects on honey bee flower choices when foraging.

    PubMed

    Karahan, Ahmed; Çakmak, Ibrahim; Hranitz, John M; Karaca, Ismail; Wells, Harrington

    2015-11-01

    Neonicotinoids, systemic neuro-active pesticides similar to nicotine, are widely used in agriculture and are being investigated for a role in honey bee colony losses. We examined one neonicotinoid pesticide, imidacloprid, for its effects on the foraging behavior of free-flying honey bees (Apis mellifera anatoliaca) visiting artificial blue and white flowers. Imidacloprid doses, ranging from 1/5 to 1/50 of the reported LD50, were fed to bees orally. The study consisted of three experimental parts performed sequentially without interruption. In Part 1, both flower colors contained a 4 μL 1 M sucrose solution reward. Part 2 offered bees 4 μL of 1.5 M sucrose solution in blue flowers and a 4 μL 0.5 M sucrose solution reward in white flowers. In Part 3 we reversed the sugar solution rewards, while keeping the flower color consistent. Each experiment began 30 min after administration of the pesticide. We recorded the percentage of experimental bees that returned to forage after treatment. We also recorded the visitation rate, number of flowers visited, and floral reward choices of the bees that foraged after treatment. The forager return rate declined linearly with increasing imidacloprid dose. The number of foraging trips by returning bees was also affected adversely. However, flower fidelity was not affected by imidacloprid dose. Foragers visited both blue and white flowers extensively in Part 1, and showed greater fidelity for the flower color offering the higher sugar solution reward in Parts 2 and 3. Although larger samples sizes are needed, our study suggests that imidacloprid may not affect the ability to select the higher nectar reward when rewards were reversed. We observed acute, mild effects on foraging by honey bees, so mild that storage of imidacloprid tainted-honey is very plausible and likely to be found in honey bee colonies.

  13. An anatomy of old-age disability: Time use, affect and experienced utility.

    PubMed

    Flores, Gabriela; Ingenhaag, Michael; Maurer, Jürgen

    2015-12-01

    Complementing the commonly used concepts of evaluative wellbeing and decision utility, emotional wellbeing and experienced utility are important welfare criteria to assess individuals' subjective wellbeing, especially for valuing health and disability. Yet, almost all empirical evidences on the link between disability and experienced wellbeing come from developed countries. This paper studies the relationship between old-age disability and experienced utility in five low- and middle-income countries. Using data on individual time use and activity-specific affective experiences from an abbreviated version of the Day Reconstruction Method, we document a strong negative association between disability and experienced utility. These differences in experienced utility by disability status are exclusively due to worse activity-specific affective experiences among persons with disabilities. By contrast, disability-related differences in time use provide small compensating effects. Interventions or technologies that facilitate daily life hold most promise to improve experienced utility among persons with disabilities in the developing world.

  14. [Nutritional content, functional properties and conservation of edible flowers. Review].

    PubMed

    Lara-Cortés, Estrella; Osorio-Díaz, Perla; Jiménez-Aparicio, Antonio; Bautista-Bañios, Silvia

    2013-09-01

    The floriphagia that is the consumption of flowers as a food, is an old practice not widespread among consumers until some decades ago. Edible flowers contribute to increasing the appearance of food. They can provide biologically active substances including vitamin A, C, riboflavins, niacin, minerals such as calcium, phosphorous, iron and potassium that are eventually beneficial to consumers' health. This review includes some examples of edible flowers including roses, violets and nasturtium among others, uses and applications, sensorial characteristics and nutritional values that lead them to be considered as functional food: An important factor that affects the quality of edible flowers is the form in which they are preserved since it may affect their sensorial and nutritional characteristics. However, not all flowers can be eaten as food since there are some of them that can be toxic or even mortal. Finally, although the consumption of flowers is an ancient practice, there is little regulation in this regard. Of the review on edible flowers, it is concluded that there are still numerous aspects about them to evaluate such as nutritional and functional characteristics, conservation and regulation with the aim to extend its consumption.

  15. The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress.

    PubMed

    Blée, Elizabeth; Boachon, Benoît; Burcklen, Michel; Le Guédard, Marina; Hanano, Abdulsamie; Heintz, Dimitri; Ehlting, Jürgen; Herrfurth, Cornelia; Feussner, Ivo; Bessoule, Jean-Jacques

    2014-09-01

    Contrasting with the wealth of information available on the multiple roles of jasmonates in plant development and defense, knowledge about the functions and the biosynthesis of hydroxylated oxylipins remains scarce. By expressing the caleosin RESPONSIVE TO DESSICATION20 (RD20) in Saccharomyces cerevisiae, we show that the recombinant protein possesses an unusual peroxygenase activity with restricted specificity toward hydroperoxides of unsaturated fatty acid. Accordingly, Arabidopsis (Arabidopsis thaliana) plants overexpressing RD20 accumulate the product 13-hydroxy-9,11,15-octadecatrienoic acid, a linolenate-derived hydroxide. These plants exhibit elevated levels of reactive oxygen species (ROS) associated with early gibberellin-dependent flowering and abscisic acid hypersensitivity at seed germination. These phenotypes are dependent on the presence of active RD20, since they are abolished in the rd20 null mutant and in lines overexpressing RD20, in which peroxygenase was inactivated by a point mutation of a catalytic histidine residue. RD20 also confers tolerance against stress induced by Paraquat, Rose Bengal, heavy metal, and the synthetic auxins 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid. Under oxidative stress, 13-hydroxy-9,11,15-octadecatrienoic acid still accumulates in RD20-overexpressing lines, but this lipid oxidation is associated with reduced ROS levels, minor cell death, and delayed floral transition. A model is discussed where the interplay between fatty acid hydroxides generated by RD20 and ROS is counteracted by ethylene during development in unstressed environments. PMID:25056921

  16. The Reductase Activity of the Arabidopsis Caleosin RESPONSIVE TO DESSICATION20 Mediates Gibberellin-Dependent Flowering Time, Abscisic Acid Sensitivity, and Tolerance to Oxidative Stress1[W

    PubMed Central

    Blée, Elizabeth; Boachon, Benoît; Burcklen, Michel; Le Guédard, Marina; Hanano, Abdulsamie; Heintz, Dimitri; Ehlting, Jürgen; Herrfurth, Cornelia; Feussner, Ivo; Bessoule, Jean-Jacques

    2014-01-01

    Contrasting with the wealth of information available on the multiple roles of jasmonates in plant development and defense, knowledge about the functions and the biosynthesis of hydroxylated oxylipins remains scarce. By expressing the caleosin RESPONSIVE TO DESSICATION20 (RD20) in Saccharomyces cerevisiae, we show that the recombinant protein possesses an unusual peroxygenase activity with restricted specificity toward hydroperoxides of unsaturated fatty acid. Accordingly, Arabidopsis (Arabidopsis thaliana) plants overexpressing RD20 accumulate the product 13-hydroxy-9,11,15-octadecatrienoic acid, a linolenate-derived hydroxide. These plants exhibit elevated levels of reactive oxygen species (ROS) associated with early gibberellin-dependent flowering and abscisic acid hypersensitivity at seed germination. These phenotypes are dependent on the presence of active RD20, since they are abolished in the rd20 null mutant and in lines overexpressing RD20, in which peroxygenase was inactivated by a point mutation of a catalytic histidine residue. RD20 also confers tolerance against stress induced by Paraquat, Rose Bengal, heavy metal, and the synthetic auxins 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid. Under oxidative stress, 13-hydroxy-9,11,15-octadecatrienoic acid still accumulates in RD20-overexpressing lines, but this lipid oxidation is associated with reduced ROS levels, minor cell death, and delayed floral transition. A model is discussed where the interplay between fatty acid hydroxides generated by RD20 and ROS is counteracted by ethylene during development in unstressed environments. PMID:25056921

  17. Synthesis of flower-like silver nanoarchitectures at room temperature

    SciTech Connect

    Hong Lijun; Li Qing; Lin Hua; Li Yuan

    2009-06-03

    Novel flower-like silver nanoarchitectures were synthesized via a facile and environmentally benign route in the presence of citric acid and ascorbic acid. The flower-like structures are composed of nano-petals of ca. 20 nm in thickness. The products were characterized with X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The growth mechanism of flower-like silver nanoarchitectures involves a film-fold process. Some crucial factors affect the nanocrchitectures growth, such as, pH, the concentration of citric acid, and the concentration of ascorbic acid, have also been discussed.

  18. Giant Flowers of Southern Magnolia Are Hydrated by the Xylem1[OA

    PubMed Central

    Feild, Taylor S.; Chatelet, David S.; Brodribb, Tim J.

    2009-01-01

    Flowering depends upon long-distance transport to supply water for reproductive mechanisms to function. Previous physiological studies suggested that flowers operated uncoupled from stem xylem transport and received water primarily from the phloem. We demonstrate that the water balance of Southern magnolia (Magnolia grandiflora) flowers is regulated in a manner opposite from that of previously examined flowers. We show that flowers of Southern magnolia rely upon relatively efficient xylem hydraulic transport to support high water demand during anthesis. We measured rapid rates of perianth transpiration ranging from twice to 100 times greater than previous studies. We found that relatively efficient xylem pathways existed between the xylem and flower. Perianth hydraulic conductance and the amount of xylem to transpirational surface area ratios of flowers were both approximately one-third those measured for leafy shoots. Furthermore, we observed that perianth tissues underwent significant diurnal depressions in water status during transpiring conditions. Decreases in water potential observed between flowers and vegetative tissues were consistent with water moving from the stem xylem into the flower during anthesis. Xylem hydraulic coupling of flowers to the stem was supported by experiments showing that transpiring flowers were unaffected by bark girdling. With Southern magnolia being a member of a nearly basal evolutionary lineage, our results suggest that flower water balance represents an important functional dimension that influenced early flower evolution. PMID:19403730

  19. Warming Contracts Flowering Phenology in an Alpine Ecosystem

    NASA Astrophysics Data System (ADS)

    Jabis, M. D.; Winkler, D. E.; Kueppers, L. M.

    2015-12-01

    In alpine ecosystems where temperature increases associated with anthropogenic climate change are likely to be amplified, the flowering phenology of plants may be particularly sensitive to changes in environmental signals. For example, earlier snowmelt and higher temperature have been found to be important factors driving plant emergence and onset of flowering. However, few studies have examined the interactive role of soil moisture in response to warming. Using infrared heating to actively warm plots crossed with manual watering over the growing season in a moist alpine meadow at Niwot Ridge, Colorado, our preliminary results indicate that community-level phenology (length of flowering time across all species) was contracted with heating but was unaffected by watering. At the species level, additional water extended the length of the flowering season by one week for almost half (43%) of species. Heating, which raised plant and surface soil temperatures (+1.5 C) advanced snowmelt by ~7.6 days days and reduced soil moisture by ~2%, advanced flowering phenology for 86% of species. The response of flowering phenology to combined heating and watering was predominantly a heating effect. However, watering did appear to mitigate advances in end of flowering for 22% of species. The length of flowering season, for some species, appears to be tied, in part, to moisture availability as alleviating ambient soil moisture stress delayed phenology in unheated plots. Therefore, we conclude that both temperature and moisture appear to be important factors driving flowering phenology in this alpine ecosystem. The relationship between flowering phenology and species- or community-level productivity is not well established, but heating advanced community peak productivity by 5.4 days, and also reduced peak productivity unless additional water was provided, indicating some consistency between drivers of productivity and drivers of flowering phenology.

  20. Time frames and the distinction between affective and cognitive well-being.

    PubMed

    Luhmann, Maike; Hawkley, Louise C; Eid, Michael; Cacioppo, John T

    2012-08-01

    We examined whether the empirical differences between affective well-being (AWB) and cognitive well-being (CWB) might be due to (a) the use of different time frames in measures of AWB and CWB or (b) structural differences. In Study 1, a multitrait-multimethod (MTMM) analysis indicated that levels of different components are more similar but do not converge completely when the same time frame is used. In Study 2, we found that people are more likely to consider global life circumstances (as opposed to specific events and activities) when they evaluate their CWB, regardless of the specific time frame. In both studies, the time frame did not moderate the associations between AWB and CWB and important correlates (personality, life circumstances).

  1. Design Factors Affecting the Reaction Time for Identifying Toilet Signs: A Preliminary Study.

    PubMed

    Chen, Yi-Lang; Sie, Cai-Cin

    2016-04-01

    This study focused on the manner in which design factors affect the reaction time for identifying toilet signs. Taiwanese university students and staff members (50 men, 50 women; M age = 23.5 year, SD = 5.7) participated in the study. The 36 toilet signs were modified on three factors (six presenting styles, two figure-ground exchanges, and three colors), and the reaction time data of all participants were collected when the signs were presented in a simulation onscreen. Participants were quickest when reading Chinese text, followed by graphics and English texts. The findings also showed that men and women had different reaction times across various design combinations. These findings can serve as a reference for practically designing toilet signs, since design factors can lead to difficulties with comprehension based on reaction time measurements.

  2. An offspring signal of quality affects the timing of future parental reproduction

    PubMed Central

    Mas, Flore; Kölliker, Mathias

    2011-01-01

    Solicitation signals by offspring are well known to influence parental behaviour, and it is commonly assumed that this behavioural effect translates into an effect on residual reproduction of parents. However, this equivalence assumption concerning behavioural and reproductive effects caused by offspring signals remains largely untested. Here, we tested the effect of a chemical offspring signal of quality on the relative timing and amount of future reproduction in the European earwig (Forficula auricularia). We manipulated the nutritional condition of earwig nymphs and exposed females to their extract, or to solvent as a control. There were no significant main effects of exposure treatment on 2nd clutch production, but exposure to extracts of well-fed nymphs induced predictable timing of the 2nd relative to the 1st clutch. This result demonstrates for the first time that an offspring signal per se, in the absence of any maternal behaviour, affects maternal reproductive timing, possibly through an effect on maternal reproductive physiology. PMID:21208942

  3. Spatial variation in the community of insects associated with the flowers of Pachycereus weberi (Caryophyllales: Cactaceae).

    PubMed

    Figueroa-Castro, Dulce María; Valverde, Pedro Luis; Vite, Fernando; Carrillo-Ruiz, Hortensia

    2014-08-01

    The positive relationship between productivity and species diversity is well-known. Insect communities associated with the flowers of Cactaceae species represent an interesting system to explore the productivity-diversity relationship because branches facing the equator receive more photosynthetically active radiation and have higher productivity. Thus, flowers with contrasting orientations within an individual, and even within a single branch, might differ in productivity. Therefore, higher abundance, species richness, and diversity are expected for the insect communities associated with south-facing flowers. This hypothesis was tested in Pachycereus weberi (J.M. Coulter) Backeberg (Cactaceae). Insects within flowers with contrasting orientations were collected and its abundance, richness, and diversity were estimated. We also asked if insects prefer big flowers. Thus, flower volume was estimated and regression analyses were conducted to test if there is a positive relationship between flower size and insect abundance. Flower orientation did not affect species richness. However, species abundance and diversity were different in flowers with contrasting orientations. In general, species abundance was higher in flowers facing southwards than in north-facing flowers. On the contrary, species diversity was higher in north-facing flowers. Abundance of Coleoptera was explained by flower volume in south-facing flowers. Contrary to our hypothesis, total diversity was greater in the less productive oriented flowers. Three possible explanations are discussed to explain the low diversity found in the highly productive, south-facing flowers. Our study provides evidence for the effects of productivity on the structure of insect communities at a very small-scale.

  4. Refuges, flower strips, biodiversity and agronomic interest.

    PubMed

    Roy, Grégory; Wateau, Karine; Legrand, Mickaël; Oste, Sandrine

    2008-01-01

    Several arthropods are natural predators of pests, and they are able to reduce and control their population development. FREDON Nord Pas-de-Calais (Federation Regionate de Defense contre les Organismes Nuisibles = Regional Federation for Pest Control) has begun for a long time to form farmers to the recognition of beneficial arthropods and to show them their usefulness. These beneficial insects or arachnids are present everywhere, in orchards and even in fields which are areas relatively poor in biodiversity. Adults feed in the flower strips instead larvae and some adults feed on preys such as aphids or caterpillars. Most of the time, beneficial insects can regulate pest but sometimes, in agricultural area, they can't make it early enough and efficiently. Their action begin too late and there biodiversity and number are too low. It's possible to enhance their action by manipulating the ecological infrastructures, like sewing flower strips or installing refuges. Flower strips increase the density of natural enemies and make them be present earlier in the field in order to control pests. Refuges permit beneficial's to spend winter on the spot. So they're able to be active and to grow in number earlier. From 2004 to 2007, on the one hand, FREDON Nord Pas-de-Calais has developed a research program. Its purpose was to inventory practices and also tools and means available and to judge the advisability of using such or such beneficial refuge in orchards. On the second hand, it studied the impact in orchard of refuges on population of beneficial's and the difference there were between manufactured refuges and homemade refuges. Interesting prospects were obtained with some of them. Otherwise, since 2003, FREDON has studied flower strips influence on beneficial population and their impact on pest control. In cabbage fields, results of trials have shown that flower strips lead to a reduction of aphid number under acceptable economic level, up to 50 meters from flower strips

  5. Evaluation of factors affecting the timing capabilities of the MC3858 sprytron

    SciTech Connect

    Lee, S.R.; Barclay, C.J.

    1992-04-01

    The switch delay time of the MC3858 sprytron was measured using a test matrix consisting of 36 different trigger circuit configurations. The test matrix allowed the measurement of switch delay times for peak trigger voltages ranging from 47 V to 1340 V and for stored trigger energies ranging from 0.023 mJ to 2.7 mJ. The average switch delay time was independent of peak trigger voltage above approximately 800 V. Similarly, the average switch delay was independent of trigger stored energy above approximately 0.5 mJ. Below these saturation values, the average switch delay increases rapidly with decreasing trigger voltage or esergy. In contrast to the average switch delay time, the shot-to-shot variability in switch delay time does not appear to be strongly affected by peak trigger voltage as long as the trigger voltage is groater than 100 V. Below 100 V, the variability in switch delay time rises rapidly due to failure of the trigger to undergo immediate high voltage breakdown when trigger voltage is applied. The effect of an abnormally-high-resistance trigger probe on switch delay time was also investigated. It was found that a high-resistance probe behaved as a second overvoltage gap in the trigger circuit. Operation with a peak trigger voltage greater than the breakdown voltage of this second gap yielded delay times comparable to operation with a normal trigger. Operation with a peak trigger voltage less than the breakdown voltage of this second gap increased the switch delay time by an amount comparable to the time required to ramp the trigger circuit output up to the breakdown voltage of the second gap. Finally, the effect that varying the bias voltage applied to the sprytron has on switch delay time was measured. The switch delay time did not appear to depend on bias voltage for bias voltages between 725 V and 2420 V.

  6. Hearts and flowers: Bryophyllum poisoning of cattle.

    PubMed

    McKenzie, R A; Dunster, P J

    1986-07-01

    Findings from natural cases and experiments with cattle emphasise that flowering plants are the most important form of Bryophyllum (Kalanchoe) spp in poisonings in Australia. The main life-threatening lesion is myocardial. The effects on the alimentary tract are less important than was believed previously. B. tubiflorum, B. daigremontianum x B. tubiflorum, B. pinnatum and B. proliferum caused 41 recorded poisoning incidents affecting 379 cattle in Queensland between 1960 and 1984. Poisoning occurred between May and October--the flowering season of these plants. Experimental B. tubiflorum poisoning and natural poisonings produced anorexia, depression, ruminal atony, diarrhoea, heart rate and rhythm abnormalities, dyspnoea and death. Increased plasma concentrations of urea, creatinine and glucose and decreased chloride were measured experimentally. Both natural and experimental cases had myocardial degeneration and necrosis with haemorrhages of the heart and alimentary tract. Cattle with severe dyspnoea had atelectasis and emphysema of the lungs. Some cattle had mild nephrosis. The median lethal doses of B. tubiflorum flowers, roots and leaf plus stem were 0.7, 2.3 and 5.0 g dry matter/kg liveweight respectively (7, 7 and 40 g wet weight/kg). Bufadienolides have been isolated recently from B. tubiflorum flowers and the syndrome is consistent with cardiac glycoside poisoning. PMID:3778371

  7. The expression level of Rosa Terminal Flower 1 (RTFL1) is related with recurrent flowering in roses.

    PubMed

    Wang, Li-Na; Liu, Yun-Feng; Zhang, Yu-Man; Fang, Rong-Xiang; Liu, Qing-Lin

    2012-04-01

    We examined the relationship between the recurrent flowering character and the expression patterns of TERMINAL FLOWER 1 (TFL1) homologs in ros