Sample records for affect flowering time

  1. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa).

    PubMed

    Du, Yiwei; He, Wei; Deng, Changwang; Chen, Xi; Gou, Lanming; Zhu, Fugui; Guo, Wei; Zhang, Jianfu; Wang, Tao

    2016-01-01

    Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23-26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes.

  2. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa)

    PubMed Central

    Deng, Changwang; Chen, Xi; Gou, Lanming; Zhu, Fugui; Guo, Wei; Zhang, Jianfu; Wang, Tao

    2016-01-01

    Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23–26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes. PMID:26934377

  3. When can stress facilitate divergence by altering time to flowering?

    PubMed

    Jordan, Crispin Y; Ally, Dilara; Hodgins, Kathryn A

    2015-12-01

    Stressors and heterogeneity are ubiquitous features of natural environments, and theory suggests that when environmental qualities alter flowering schedules through phenotypic plasticity, assortative mating can result that promotes evolutionary divergence. Therefore, it is important to determine whether common ecological stressors induce similar changes in flowering time. We review previous studies to determine whether two important stressors, water restriction and herbivory, induce consistent flowering time responses among species; for example, how often do water restriction and herbivory both delay flowering? We focus on the direction of change in flowering time, which affects the potential for divergence in heterogeneous environments. We also tested whether these stressors influenced time to flowering and nonphenology traits using Mimulus guttatus. The literature review suggests that water restriction has variable effects on flowering time, whereas herbivory delays flowering with exceptional consistency. In the Mimulus experiment, low water and herbivory advanced and delayed flowering, respectively. Overall, our results temper theoretical predictions for evolutionary divergence due to habitat-induced changes in flowering time; in particular, we discuss how accounting for variation in the direction of change in flowering time can either increase or decrease the potential for divergence. In addition, we caution against adaptive interpretations of stress-induced phenology shifts.

  4. Pollinator effectiveness varies with experimental shifts in flowering time.

    PubMed

    Rafferty, Nicole E; Ives, Anthony R

    2012-04-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches.

  5. Pollinator effectiveness varies with experimental shifts in flowering time

    PubMed Central

    Rafferty, Nicole E.; Ives, Anthony R.

    2013-01-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches. PMID:22690631

  6. Global warming and flowering times in Thoreau's Concord: a community perspective.

    PubMed

    Miller-Rushing, Abraham J; Primack, Richard B

    2008-02-01

    As a result of climate change, many plants are now flowering measurably earlier than they did in the past. However, some species' flowering times have changed much more than others. Data at the community level can clarify the variation in flowering responses to climate change. In order to determine how North American species' flowering times respond to climate, we analyzed a series of previously unstudied records of the dates of first flowering for over 500 plant taxa in Concord, Massachusetts, USA. These records began with six years of observations by the famous naturalist Henry David Thoreau from 1852 to 1858, continued with 16 years of observations by the botanist Alfred Hosmer in 1878 and 1888-1902, and concluded with our own observations in 2004, 2005, and 2006. From 1852 through 2006, Concord warmed by 2.4 degrees C due to global climate change and urbanization. Using a subset of 43 common species, we determined that plants are now flowering seven days earlier on average than they did in Thoreau's times. Plant flowering times were most correlated with mean temperatures in the one or two months just before flowering and were also correlated with January temperatures. Summer-flowering species showed more interannual variation in flowering time than did spring-flowering species, but the flowering times of spring-flowering species correlated more strongly to mean monthly temperatures. In many cases, such as within the genera Betula and Solidago, closely related, co-occurring species responded to climate very differently from one another. The differences in flowering responses to warming could affect relationships in plant communities as warming continues. Common St. John's wort (Hypericum perforatum) and highbush blueberry (Vaccinium corymbosum) are particularly responsive to changes in climate, are common across much of the United States, and could serve as indicators of biological responses to climate change. We discuss the need for researchers to be aware

  7. Recent advancements to study flowering time in almond and other Prunus species

    PubMed Central

    Sánchez-Pérez, Raquel; Del Cueto, Jorge; Dicenta, Federico; Martínez-Gómez, Pedro

    2014-01-01

    Flowering time is an important agronomic trait in almond since it is decisive to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. Consequently, flowering time has to be studied for several years to have statistical significant results. This trait is the result of the interaction between chilling and heat requirements. Flowering time is a polygenic trait with high heritability, although a major gene Late blooming (Lb) was described in “Tardy Nonpareil.” Molecular studies at DNA level confirmed this polygenic nature identifying several genome regions (Quantitative Trait Loci, QTL) involved. Studies about regulation of gene expression are scarcer although several transcription factors have been described as responsible for flowering time. From the metabolomic point of view, the integrated analysis of the mechanisms of accumulation of cyanogenic glucosides and flowering regulation through transcription factors open new possibilities in the analysis of this complex trait in almond and in other Prunus species (apricot, cherry, peach, plum). New opportunities are arising from the integration of recent advancements including phenotypic, genetic, genomic, transcriptomic, and metabolomics studies from the beginning of dormancy until flowering. PMID:25071812

  8. Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum)

    PubMed Central

    Isaac, Peter; Laurie, David A.

    2012-01-01

    The timing of flowering during the year is an important adaptive character affecting reproductive success in plants and is critical to crop yield. Flowering time has been extensively manipulated in crops such as wheat (Triticum aestivum L.) during domestication, and this enables them to grow productively in a wide range of environments. Several major genes controlling flowering time have been identified in wheat with mutant alleles having sequence changes such as insertions, deletions or point mutations. We investigated genetic variants in commercial varieties of wheat that regulate flowering by altering photoperiod response (Ppd-B1 alleles) or vernalization requirement (Vrn-A1 alleles) and for which no candidate mutation was found within the gene sequence. Genetic and genomic approaches showed that in both cases alleles conferring altered flowering time had an increased copy number of the gene and altered gene expression. Alleles with an increased copy number of Ppd-B1 confer an early flowering day neutral phenotype and have arisen independently at least twice. Plants with an increased copy number of Vrn-A1 have an increased requirement for vernalization so that longer periods of cold are required to potentiate flowering. The results suggest that copy number variation (CNV) plays a significant role in wheat adaptation. PMID:22457747

  9. Cranberry flowering times and climate change in southern Massachusetts

    NASA Astrophysics Data System (ADS)

    Ellwood, Elizabeth R.; Playfair, Susan R.; Polgar, Caroline A.; Primack, Richard B.

    2014-09-01

    Plants in wild and agricultural settings are being affected by the warmer temperatures associated with climate change. Here we examine the degree to which the iconic New England cranberry, Vaccinium macrocarpon, is exhibiting signs of altered flowering phenology. Using contemporary records from commercial cranberry bogs in southeastern Massachusetts in the United States, we found that cranberry plants are responsive to temperature. Flowering is approximately 2 days earlier for each 1 °C increase in May temperature. We also investigated the relationship between cranberry flowering and flight dates of the bog copper, Lycaena epixanthe—a butterfly dependent upon cranberry plants in its larval stage. Cranberry flowering and bog copper emergence were found to be changing disproportionately over time, suggesting a potential ecological mismatch. The pattern of advanced cranberry flowering over time coupled with increased temperature has implications not only for the relationship between cranberry plants and their insect associates but also for agricultural crops in general and for the commercial cranberry industry.

  10. Cranberry flowering times and climate change in southern Massachusetts.

    PubMed

    Ellwood, Elizabeth R; Playfair, Susan R; Polgar, Caroline A; Primack, Richard B

    2014-09-01

    Plants in wild and agricultural settings are being affected by the warmer temperatures associated with climate change. Here we examine the degree to which the iconic New England cranberry, Vaccinium macrocarpon, is exhibiting signs of altered flowering phenology. Using contemporary records from commercial cranberry bogs in southeastern Massachusetts in the United States, we found that cranberry plants are responsive to temperature. Flowering is approximately 2 days earlier for each 1 °C increase in May temperature. We also investigated the relationship between cranberry flowering and flight dates of the bog copper, Lycaena epixanthe-a butterfly dependent upon cranberry plants in its larval stage. Cranberry flowering and bog copper emergence were found to be changing disproportionately over time, suggesting a potential ecological mismatch. The pattern of advanced cranberry flowering over time coupled with increased temperature has implications not only for the relationship between cranberry plants and their insect associates but also for agricultural crops in general and for the commercial cranberry industry.

  11. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis.

    PubMed

    Yoo, So Yeon; Kim, Yunhee; Kim, Soo Young; Lee, Jong Seob; Ahn, Ji Hoon

    2007-07-25

    Plants must integrate complex signals from environmental and endogenous cues to fine-tune the timing of flowering. Low temperature is one of the most common environmental stresses that affect flowering time; however, molecular mechanisms underlying the cold temperature regulation of flowering time are not fully understood. We report the identification of a novel regulator, LONG VEGETATIVE PHASE 1 (LOV1), that controls flowering time and cold response. An Arabidopsis mutant, longvegetative phase 1-1D (lov1-1D) showing the late-flowering phenotype, was isolated by activation tagging screening. Subsequent analyses demonstrated that the phenotype of the mutant resulted from the overexpression of a NAC-domain protein gene (At2g02450). Both gain- and loss-of-function alleles of LOV1 affected flowering time predominantly under long-day but not short-day conditions, suggesting that LOV1 may act within the photoperiod pathway. The expression of CONSTANS (CO), a floral promoter, was affected by LOV1 level, suggesting that LOV1 controls flowering time by negatively regulating CO expression. The epistatic relationship between CO and LOV1 was consistent with this proposed regulatory pathway. Physiological analyses to elucidate upstream signalling pathways revealed that LOV1 regulates the cold response in plants. Loss of LOV1 function resulted in hypersensitivity to cold temperature, whereas a gain-of-function allele conferred cold tolerance. The freezing tolerance was accompanied by upregulation of cold response genes, COLD-REGULATED 15A (COR15A) and COLD INDUCED 1 (KIN1) without affecting expression of the C-repeat-binding factor/dehydration responsive element-binding factor 1 (CBF/DREB1) family of genes. Our study shows that LOV1 functions as a floral repressor that negatively regulates CO expression under long-day conditions and acts as a common regulator of two intersecting pathways that regulate flowering time and the cold response, respectively. Our results suggest an

  12. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants

    PubMed Central

    Jagadish, S. V. Krishna; Bahuguna, Rajeev N.; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P. V. Vara; Craufurd, Peter Q.

    2016-01-01

    Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation. PMID:27446143

  13. Additive QTLs on three chromosomes control flowering time in woodland strawberry (Fragaria vesca L.)

    PubMed Central

    Samad, Samia; Kurokura, Takeshi; Koskela, Elli; Toivainen, Tuomas; Patel, Vipul; Mouhu, Katriina; Sargent, Daniel James; Hytönen, Timo

    2017-01-01

    Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry. PMID:28580150

  14. Transcriptional Analysis of Flowering Time in Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon

    Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in

  15. Transcriptional Analysis of Flowering Time in Switchgrass

    DOE PAGES

    Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon; ...

    2017-04-27

    Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in

  16. Genetic Architecture of Flowering-Time Variation in Brachypodium distachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Daniel P.; Bednarek, Ryland; Bouché, Frédéric

    The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time.more » A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.« less

  17. Genetic Architecture of Flowering-Time Variation in Brachypodium distachyon

    DOE PAGES

    Woods, Daniel P.; Bednarek, Ryland; Bouché, Frédéric; ...

    2016-10-14

    The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time.more » A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.« less

  18. Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata.

    PubMed

    Sandring, Saskia; Agren, Jon

    2009-05-01

    The evolution of floral display and flowering time in animal-pollinated plants is commonly attributed to pollinator-mediated selection. Yet, the causes of selection on flowering phenology and traits contributing to floral display have rarely been tested experimentally in natural populations. We quantified phenotypic selection on morphological and phenological characters in the perennial, outcrossing herb Arabidopsis lyrata in two years using female reproductive success as a proxy of fitness. To determine whether selection on floral display and flowering phenology can be attributed to interactions with pollinators, selection was quantified both for open-pollinated controls and for plants receiving supplemental hand-pollination. We documented directional selection for many flowers, large petals, late start of flowering, and early end of flowering. Seed output was pollen-limited in both years and supplemental hand-pollination reduced the magnitude of selection on number of flowers, and reversed the direction of selection on end of flowering. The results demonstrate that interactions with pollinators may affect the strength of selection on floral display and the direction of selection on phenology of flowering in natural plant populations. They thus support the contention that pollinators can drive the evolution of both floral display and flowering time.

  19. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening.

    PubMed

    Terfa, Meseret Tesema; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar; Olsen, Jorunn Elisabeth; Torre, Sissel

    2013-05-01

    Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance-dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light-emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS-grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax ) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED-grown leaves also displayed a more sun-type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower. Copyright © Physiologia Plantarum 2012.

  20. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?

    PubMed

    Richardson, Bryce A; Chaney, Lindsay; Shaw, Nancy L; Still, Shannon M

    2017-06-01

    Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R 2  = 0.79, marginal R 2  = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree-days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13-day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower-latitude populations have greater plasticity (+16 days) compared to higher-latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change. Published 2016. This article is a U.S. Government work and is in the

  1. Pollination increases ethylene production in Lilium hybrida cv. Brindisi flowers but does not affect the time to tepal senescence or tepal abscission.

    PubMed

    Pacifici, Silvia; Prisa, Domenico; Burchi, Gianluca; van Doorn, Wouter G

    2015-01-15

    In many species, pollination induces a rapid increase in ethylene production, which induces early petal senescence, petal abscission, or flower closure. Cross-pollination in Lilium hybrida cv. Brindisi resulted in a small increase in flower ethylene production. In intact plants and in isolated flowers, pollination had no effect on the time to tepal senescence or tepal abscission. When applied to closed buds of unpollinated flowers, exogenous ethylene slightly hastened the time to tepal senescence and abscission. However, exogenous ethylene had no effect when the flowers had just opened, i.e. at the time of pollination. Experiments with silver thiosulphate, which blocks the ethylene receptor, indicated that endogenous ethylene had a slight effect on the regulation of tepal senescence and tepal abscission, although only at the time the tepals were still inside buds and not in open flowers. Low ethylene-sensitivity after anthesis therefore explains why pollination had no effect on the processes studied. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus

    PubMed Central

    Bennett, Rick A.; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola–whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity. PMID:29320498

  3. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus.

    PubMed

    Rahman, Habibur; Bennett, Rick A; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola-whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity.

  4. Phloem-mobile signals affecting flowers: applications for crop breeding.

    PubMed

    McGarry, Roisin C; Kragler, Friedrich

    2013-04-01

    Transport of endogenous macromolecules within and between tissues serves as a signaling pathway to regulate numerous aspects of plant growth. The florigenic FT gene product moves via the phloem from leaves to apical tissues and induces the flowering program in meristems. Similarly, short interfering RNA (siRNA) signals produced in source or sink tissues move cell-to-cell and long distance via the phloem to apical tissues. Recent advances in identifying these mobile signals regulating flowering or the epigenetic status of targeted tissues can be applicable to crop-breeding programs. In this review, we address the identity of florigen, the mechanism of allocation, and how virus-induced flowering and grafting of transgenes producing siRNA signals affecting meiosis can produce transgene-free progenies useful for agriculture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis.

    PubMed

    Kinmonth-Schultz, Hannah A; Tong, Xinran; Lee, Jae; Song, Young Hun; Ito, Shogo; Kim, Soo-Hyung; Imaizumi, Takato

    2016-07-01

    Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Quantifying temporal isolation: a modelling approach assessing the effect of flowering time differences on crop-to-weed pollen flow in sunflower

    PubMed Central

    Roumet, Marie; Cayre, Adeline; Latreille, Muriel; Muller, Marie-Hélène

    2015-01-01

    Flowering time divergence can be a crucial component of reproductive isolation between sympatric populations, but few studies have quantified its actual contribution to the reduction of gene flow. In this study, we aimed at estimating pollen-mediated gene flow between cultivated sunflower and a weedy conspecific sunflower population growing in the same field and at quantifying, how it is affected by the weeds' flowering time. For that purpose, we extended an existing mating model by including a temporal distance (i.e. flowering time difference between potential parents) effect on mating probabilities. Using phenological and genotypic data gathered on the crop and on a sample of the weedy population and its offspring, we estimated an average hybridization rate of approximately 10%. This rate varied strongly from 30% on average for weeds flowering at the crop flowering peak to 0% when the crop finished flowering and was affected by the local density of weeds. Our result also suggested the occurrence of other factors limiting crop-to-weed gene flow. This level of gene flow and its dependence on flowering time might influence the evolutionary fate of weedy sunflower populations sympatric to their crop relative. PMID:25667603

  7. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.

    PubMed

    Olesen, J E; Børgesen, C D; Elsgaard, L; Palosuo, T; Rötter, R P; Skjelvåg, A O; Peltonen-Sainio, P; Börjesson, T; Trnka, M; Ewert, F; Siebert, S; Brisson, N; Eitzinger, J; van Asselt, E D; Oberforster, M; van der Fels-Klerx, H J

    2012-01-01

    The phenological development of cereal crops from emergence through flowering to maturity is largely controlled by temperature, but also affected by day length and potential physiological stresses. Responses may vary between species and varieties. Climate change will affect the timing of cereal crop development, but exact changes will also depend on changes in varieties as affected by plant breeding and variety choices. This study aimed to assess changes in timing of major phenological stages of cereal crops in Northern and Central Europe under climate change. Records on dates of sowing, flowering, and maturity of wheat, oats and maize were collected from field experiments conducted during the period 1985-2009. Data for spring wheat and spring oats covered latitudes from 46 to 64°N, winter wheat from 46 to 61°N, and maize from 47 to 58°N. The number of observations (site-year-variety combinations) varied with phenological phase, but exceeded 2190, 227, 2076 and 1506 for winter wheat, spring wheat, spring oats and maize, respectively. The data were used to fit simple crop development models, assuming that the duration of the period until flowering depends on temperature and day length for wheat and oats, and on temperature for maize, and that the duration of the period from flowering to maturity in all species depends on temperature only. Species-specific base temperatures were used. Sowing date of spring cereals was estimated using a threshold temperature for the mean air temperature during 10 days prior to sowing. The mean estimated temperature thresholds for sowing were 6.1, 7.1 and 10.1°C for oats, wheat and maize, respectively. For spring oats and wheat the temperature threshold increased with latitude. The effective temperature sums required for both flowering and maturity increased with increasing mean annual temperature of the location, indicating that varieties are well adapted to given conditions. The responses of wheat and oats were largest for the

  8. Altered expression of CmNRRa changes flowering time of Chrysanthemum morifolium.

    PubMed

    Zhang, Yuman; Lian, Lijuan; Liu, Qing; Xiao, Na; Fang, Rongxiang; Liu, Qinglin; Chen, Xiaoying

    2013-04-01

    Flowering time is an important ornamental trait for chrysanthemum (Chrysanthemum morifolium, Dendranthema x grandiflorum) floricultural production. In this study, CmNRRa, an orthologous gene of OsNRRa that regulates root growth in response to nutrient stress in rice, was identified from Chrysanthemum and its role in flowering time was studied. The entire CmNRRa cDNA sequence was determined using a combinatorial PCR approach along with 5' and 3' RACE methods. CmNRRa expression levels in various tissues were monitored by real-time RT-PCR. CmNRRa was strongly expressed in flower buds and peduncles, suggesting that CmNRRa plays a regulatory role in floral development. To investigate the biological function of CmNRRa in chrysanthemums, overexpression and knockdown of CmNRRa were carried out using transgenic Chrysanthemum plants generated through Agrobacterium-mediated transformation. CmNRRa expression levels in the transgenic plants were assayed by real-time RT-PCR and Northern blot analysis. The transgenic plants showed altered flowering times compared with nontransgenic plants. CmNRRa-RNAi transgenic plants flowered 40-64 days earlier, while CmNRRa-overexpressing plants exhibited a delayed flowering phenotype. These results revealed a negative effect of CmNRRa on flowering time modulation. Alteration of CmNRRa expression levels might be an effective means of controlling flowering time in Chrysanthemum. These results possess potential application in molecular breeding of chrysanthemums that production year-round, and may improve commercial chrysanthemum production in the flower industry. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  9. The link between flowering time and stress tolerance.

    PubMed

    Kazan, Kemal; Lyons, Rebecca

    2016-01-01

    Evolutionary success in plants is largely dependent on the successful transition from vegetative to reproductive growth. In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. Exposure to stress during this period can cause substantial yield losses in seed-producing plants. However, it is becoming increasingly evident that altering flowering time is an evolutionary strategy adopted by plants to maximize the chances of reproduction under diverse stress conditions, ranging from pathogen infection to heat, salinity, and drought. Here, recent studies that have revealed new insights into how biotic and abiotic stress signals can be integrated into floral pathways are reviewed. A better understanding of how complex environmental variables affect plant phenology is important for future genetic manipulation of crops to increase productivity under the changing climate. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.

    PubMed

    Meir, Michal; Ransbotyn, Vanessa; Raveh, Eran; Barak, Simon; Tel-Zur, Noemi; Zaccai, Michele

    2016-03-15

    In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis

    PubMed Central

    Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  12. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis.

    PubMed

    Sun, Peiguang; Miao, Hongxia; Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants.

  13. Flowering in space

    NASA Astrophysics Data System (ADS)

    Zheng, Hui Qiong

    2018-05-01

    The reproductive success of plants is often dependent on their flowering time being adapted to the terrestrial environment, in which gravity remain constant. Whether plants can follow the same rule to determine their flowering time under microgravity in space is unknown. Although numerous attempts have been made to grow a plant through a complete life cycle in space, apparently no published information exists concerning the flowering control of plants under microgravity in space. Here, we focused on two aspects. Firstly the environmental and intrinsic factors under microgravity related to flowering control. Secondly, the plant-derived regulators are involved in flowering control under microgravity condition. The potential environmental and intrinsic factors affect plant flowering under microgravity may include light, biological circadian clock as well as long-distance signaling, while the plant-derived flowering regulators in response to microgravity could include gibberellic acid, ethylene, microRNA and sugar. The results we have obtained from the space experiments on board the Chinese recoverable satellites (the SJ-8 and the SJ-10) and the experiment on the Chinese space lab TG-2 are also introduced. We conclude by suggesting that long-term space experiments from successive generations and a systematic analysis of regulatory networks at the molecular level is needed to understand the mechanism of plant flowering control under microgravity conditions in space.

  14. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.

    PubMed

    Wheeler, Helen C; Høye, Toke T; Schmidt, Niels Martin; Svenning, Jens-Christian; Forchhammer, Mads C

    2015-03-01

    Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long-term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre-flowering exposure to freezing temperatures and to the temperatures-experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing 'damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results

  15. Population genomics of the Arabidopsis thaliana flowering time gene network.

    PubMed

    Flowers, Jonathan M; Hanzawa, Yoshie; Hall, Megan C; Moore, Richard C; Purugganan, Michael D

    2009-11-01

    The time to flowering is a key component of the life-history strategy of the model plant Arabidopsis thaliana that varies quantitatively among genotypes. A significant problem for evolutionary and ecological genetics is to understand how natural selection may operate on this ecologically significant trait. Here, we conduct a population genomic study of resequencing data from 52 genes in the flowering time network. McDonald-Kreitman tests of neutrality suggested a strong excess of amino acid polymorphism when pooling across loci. This excess of replacement polymorphism across the flowering time network and a skewed derived frequency spectrum toward rare alleles for both replacement and noncoding polymorphisms relative to synonymous changes is consistent with a large class of deleterious polymorphisms segregating in these genes. Assuming selective neutrality of synonymous changes, we estimate that approximately 30% of amino acid polymorphisms are deleterious. Evidence of adaptive substitution is less prominent in our analysis. The photoperiod regulatory gene, CO, and a gibberellic acid transcription factor, AtMYB33, show evidence of adaptive fixation of amino acid mutations. A test for extended haplotypes revealed no examples of flowering time alleles with haplotypes comparable in length to those associated with the null fri(Col) allele reported previously. This suggests that the FRI gene likely has a uniquely intense or recent history of selection among the flowering time genes considered here. Although there is some evidence for adaptive evolution in these life-history genes, it appears that slightly deleterious polymorphisms are a major component of natural molecular variation in the flowering time network of A. thaliana.

  16. Synchronous flowering despite differences in snowmelt timing among habitats of Empetrum hermaphroditum

    NASA Astrophysics Data System (ADS)

    Bienau, Miriam J.; Kröncke, Michael; Eiserhardt, Wolf L.; Otte, Annette; Graae, Bente J.; Hagen, Dagmar; Milbau, Ann; Durka, Walter; Eckstein, R. Lutz

    2015-11-01

    The topography within arctic-alpine landscapes is very heterogeneous, resulting in diverse snow distribution patterns, with different snowmelt timing in spring. This may influence the phenological development of arctic and alpine plant species and asynchronous flowering may promote adaptation of plants to their local environments. We studied how flowering phenology of the dominant dwarf shrub Empetrum hermaphroditum varied among three habitats (exposed ridges, sheltered depressions and birch forest) differing in winter snow depth and thus snowmelt timing in spring, and whether the observed patterns were consistent across three different study areas. Despite significant differences in snowmelt timing between habitats, full flowering of E. hermaphroditum was nearly synchronous between the habitats, and implies a high flowering overlap. Our data show that exposed ridges, which had a long lag phase between snowmelt and flowering, experienced different temperature and light conditions than the two late melting habitats between snowmelt and flowering. Our study demonstrates that small scale variation seems matter less to flowering of Empetrum than interannual differences in snowmelt timing.

  17. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea.

    PubMed

    Foucher, Fabrice; Morin, Julie; Courtiade, Juliette; Cadioux, Sandrine; Ellis, Noel; Banfield, Mark J; Rameau, Catherine

    2003-11-01

    Genes in the TERMINAL FLOWER1 (TFL1)/CENTRORADIALIS family are important key regulatory genes involved in the control of flowering time and floral architecture in several different plant species. To understand the functions of TFL1 homologs in pea, we isolated three TFL1 homologs, which we have designated PsTFL1a, PsTFL1b, and PsTFL1c. By genetic mapping and sequencing of mutant alleles, we demonstrate that PsTFL1a corresponds to the DETERMINATE (DET) gene and PsTFL1c corresponds to the LATE FLOWERING (LF) gene. DET acts to maintain the indeterminacy of the apical meristem during flowering, and consistent with this role, DET expression is limited to the shoot apex after floral initiation. LF delays the induction of flowering by lengthening the vegetative phase, and allelic variation at the LF locus is an important component of natural variation for flowering time in pea. The most severe class of alleles flowers early and carries either a deletion of the entire PsTFL1c gene or an amino acid substitution. Other natural and induced alleles for LF, with an intermediate flowering time phenotype, present no changes in the PsTFL1c amino acid sequence but affect LF transcript level in the shoot apex: low LF transcript levels are correlated with early flowering, and high LF transcript levels are correlated with late flowering. Thus, different TFL1 homologs control two distinct aspects of plant development in pea, whereas a single gene, TFL1, performs both functions in Arabidopsis. These results show that different species have evolved different strategies to control key developmental transitions and also that the genetic basis for natural variation in flowering time may differ among plant species.

  18. Genetic control of flowering and biomass in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Early flowering can negatively affect biomass yield of switchgrass. In temperate regions of the USA, flowering occurs in switchgrass around the time of peak biomass yield (about 5 to 8 weeks prior to killing frost), effectively reducing the length of the growing season. The use of late-flowering swi...

  19. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities.

    PubMed

    Bloch, Guy; Bar-Shai, Noam; Cytter, Yotam; Green, Rachel

    2017-11-19

    The interactions between flowering plants and insect pollinators shape ecological communities and provide one of the best examples of coevolution. Although these interactions have received much attention in both ecology and evolution, their temporal aspects are little explored. Here we review studies on the circadian organization of pollination-related traits in bees and flowers. Research, mostly with the honeybee, Apis mellifera , has implicated the circadian clock in key aspects of their foraging for flower rewards. These include anticipation, timing of visits to flowers at specified locations and time-compensated sun-compass orientation. Floral rhythms in traits such as petal opening, scent release and reward availability also show robust daily rhythms. However, in only few studies was it possible to adequately determine whether these oscillations are driven by external time givers such as light and temperature cycles, or endogenous circadian clocks. The interplay between the timing of flower and pollinator rhythms may be ecologically significant. Circadian regulation of pollination-related traits in only few species may influence the entire pollination network and thus affect community structure and local biodiversity. We speculate that these intricate chronobiological interactions may be vulnerable to anthropogenic effects such as the introduction of alien invasive species, pesticides or environmental pollutants.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).

  20. Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time.

    PubMed

    Dombrowski, Nina; Schlaeppi, Klaus; Agler, Matthew T; Hacquard, Stéphane; Kemen, Eric; Garrido-Oter, Ruben; Wunder, Jörg; Coupland, George; Schulze-Lefert, Paul

    2017-01-01

    Recent field and laboratory experiments with perennial Boechera stricta and annual Arabidopsis thaliana suggest that the root microbiota influences flowering time. Here we examined in long-term time-course experiments the bacterial root microbiota of the arctic-alpine perennial Arabis alpina in natural and controlled environments by 16S rRNA gene profiling. We identified soil type and residence time of plants in soil as major determinants explaining up to 15% of root microbiota variation, whereas environmental conditions and host genotype explain maximally 11% of variation. When grown in the same soil, the root microbiota composition of perennial A. alpina is largely similar to those of its annual relatives A. thaliana and Cardamine hirsuta. Non-flowering wild-type A. alpina and flowering pep1 mutant plants assemble an essentially indistinguishable root microbiota, thereby uncoupling flowering time from plant residence time-dependent microbiota changes. This reveals the robustness of the root microbiota against the onset and perpetual flowering of A. alpina. Together with previous studies, this implies a model in which parts of the root microbiota modulate flowering time, whereas, after microbiota acquisition during vegetative growth, the established root-associated bacterial assemblage is structurally robust to perturbations caused by flowering and drastic changes in plant stature.

  1. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction.

    PubMed

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects.

  2. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction

    PubMed Central

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M.; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects. PMID:26034991

  3. Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae).

    PubMed

    Mauro-Herrera, Margarita; Wang, Xuewen; Barbier, Hugues; Brutnell, Thomas P; Devos, Katrien M; Doust, Andrew N

    2013-02-01

    We report the first study on the genetic control of flowering in Setaria, a panicoid grass closely related to switchgrass, and in the same subfamily as maize and sorghum. A recombinant inbred line mapping population derived from a cross between domesticated Setaria italica (foxtail millet) and its wild relative Setaria viridis (green millet), was grown in eight trials with varying environmental conditions to identify a small number of quantitative trait loci (QTL) that control differences in flowering time. Many of the QTL across trials colocalize, suggesting that the genetic control of flowering in Setaria is robust across a range of photoperiod and other environmental factors. A detailed comparison of QTL for flowering in Setaria, sorghum, and maize indicates that several of the major QTL regions identified in maize and sorghum are syntenic orthologs with Setaria QTL, although the maize large effect QTL on chromosome 10 is not. Several Setaria QTL intervals had multiple LOD peaks and were composed of multiple syntenic blocks, suggesting that observed QTL represent multiple tightly linked loci. Candidate genes from flowering time pathways identified in rice and Arabidopsis were identified in Setaria QTL intervals, including those involved in the CONSTANS photoperiod pathway. However, only three of the approximately seven genes cloned for flowering time in maize colocalized with Setaria QTL. This suggests that variation in flowering time in separate grass lineages is controlled by a combination of conserved and lineage specific genes.

  4. Genetic Control and Comparative Genomic Analysis of Flowering Time in Setaria (Poaceae)

    PubMed Central

    Mauro-Herrera, Margarita; Wang, Xuewen; Barbier, Hugues; Brutnell, Thomas P.; Devos, Katrien M.; Doust, Andrew N.

    2013-01-01

    We report the first study on the genetic control of flowering in Setaria, a panicoid grass closely related to switchgrass, and in the same subfamily as maize and sorghum. A recombinant inbred line mapping population derived from a cross between domesticated Setaria italica (foxtail millet) and its wild relative Setaria viridis (green millet), was grown in eight trials with varying environmental conditions to identify a small number of quantitative trait loci (QTL) that control differences in flowering time. Many of the QTL across trials colocalize, suggesting that the genetic control of flowering in Setaria is robust across a range of photoperiod and other environmental factors. A detailed comparison of QTL for flowering in Setaria, sorghum, and maize indicates that several of the major QTL regions identified in maize and sorghum are syntenic orthologs with Setaria QTL, although the maize large effect QTL on chromosome 10 is not. Several Setaria QTL intervals had multiple LOD peaks and were composed of multiple syntenic blocks, suggesting that observed QTL represent multiple tightly linked loci. Candidate genes from flowering time pathways identified in rice and Arabidopsis were identified in Setaria QTL intervals, including those involved in the CONSTANS photoperiod pathway. However, only three of the approximately seven genes cloned for flowering time in maize colocalized with Setaria QTL. This suggests that variation in flowering time in separate grass lineages is controlled by a combination of conserved and lineage specific genes. PMID:23390604

  5. QTL mapping for flowering-time and photoperiod insensitivity of cotton Gossypium darwinii Watt.

    PubMed

    Kushanov, Fakhriddin N; Buriev, Zabardast T; Shermatov, Shukhrat E; Turaev, Ozod S; Norov, Tokhir M; Pepper, Alan E; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Jenkins, Johnie N; Abdukarimov, Abdusattor; Abdurakhmonov, Ibrokhim Y

    2017-01-01

    Most wild and semi-wild species of the genus Gossypium are exhibit photoperiod-sensitive flowering. The wild germplasm cotton is a valuable source of genes for genetic improvement of modern cotton cultivars. A bi-parental cotton population segregating for photoperiodic flowering was developed by crossing a photoperiod insensitive irradiation mutant line with its pre-mutagenesis photoperiodic wild-type G. darwinii Watt genotype. Individuals from the F2 and F3 generations were grown with their parental lines and F1 hybrid progeny in the long day and short night summer condition (natural day-length) of Uzbekistan to evaluate photoperiod sensitivity, i.e., flowering-time during the seasons 2008-2009. Through genotyping the individuals of this bi-parental population segregating for flowering-time, linkage maps were constructed using 212 simple-sequence repeat (SSR) and three cleaved amplified polymorphic sequence (CAPS) markers. Six QTLs directly associated with flowering-time and photoperiodic flowering were discovered in the F2 population, whereas eight QTLs were identified in the F3 population. Two QTLs controlling photoperiodic flowering and duration of flowering were common in both populations. In silico annotations of the flanking DNA sequences of mapped SSRs from sequenced cotton (G. hirsutum L.) genome database has identified several potential 'candidate' genes that are known to be associated with regulation of flowering characteristics of plants. The outcome of this research will expand our understanding of the genetic and molecular mechanisms of photoperiodic flowering. Identified markers should be useful for marker-assisted selection in cotton breeding to improve early flowering characteristics.

  6. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate.

    PubMed

    Akter, Asma; Biella, Paolo; Klecka, Jan

    2017-01-01

    Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction.

  7. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate

    PubMed Central

    2017-01-01

    Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction. PMID:29136042

  8. A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction.

    PubMed

    Haberman, Amnon; Bakhshian, Ortal; Cerezo-Medina, Sergio; Paltiel, Judith; Adler, Chen; Ben-Ari, Giora; Mercado, Jose Angel; Pliego-Alfaro, Fernando; Lavee, Shimon; Samach, Alon

    2017-08-01

    Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors. © 2017 John Wiley & Sons Ltd.

  9. The evolution of flowering strategies in US weedy rice.

    PubMed

    Thurber, Carrie S; Reagon, Michael; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L

    2014-10-01

    • Local adaptation in plants often involves changes in flowering time in response to day length and temperature. Many crops have been selected for uniformity in flowering time. In contrast, variable flowering may be important for increased competitiveness in weed species invading the agricultural environment. Given the shared species designation of cultivated rice (Oryza sativa) and its the invasive conspecific weed, weedy rice, we assessed the extent to which flowering time differed between these groups. We further assessed whether genes affecting flowering time variation in rice could play a role in the evolution of weedy rice in the United States.• We quantified flowering time under day-neutral conditions in weedy, cultivated, and wild Oryza groups. We also sequenced two candidate gene regions: Hd1, a locus involved in promotion of flowering under short days, and the promoter of Hd3a, a locus encoding the mobile signal that induces flowering.• We found that flowering time has diverged between two distinct weedy rice groups, such that straw-hull weeds tend to flower earlier and black-hull awned weeds tend to flower later than cultivated rice. These differences are consistent with weed Hd1 alleles. At both loci, weeds share haplotypes with their cultivated progenitors, despite significantly different flowering times.• Our phenotypic data indicate the existence of multiple flowering strategies in weedy rice. Flowering differences between weeds and ancestors suggest this trait has evolved rapidly. From a weed management standpoint, there is the potential for overlap in flowering of black-hull awned weeds and crops in the United States, permitting hybridization and the potential escape of genes from crops. © 2014 Botanical Society of America, Inc.

  10. Flowering time control and applications in plant breeding.

    PubMed

    Jung, Christian; Müller, Andreas E

    2009-10-01

    Shifting the seasonal timing of reproduction is a major goal of plant breeding efforts to produce novel varieties that are better adapted to local environments and changing climatic conditions. The key regulators of floral transition have been studied extensively in model species, and in recent years a growing number of related genes have been identified in crop species, with some notable exceptions. These sequences and variants thereof, as well as several major genes which were only identified in crop species, can now be used by breeders as molecular markers and for targeted genetic modification of flowering time. This article reviews the major floral regulatory pathways and discusses current and novel strategies for altering bolting and flowering behavior in crop plants.

  11. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5

    PubMed Central

    Thines, Bryan C.; Duarte, Maritza I.; Harmon, Frank G.

    2014-01-01

    Warm temperature promotes flowering in Arabidopsis thaliana and this response involves multiple signalling pathways. To understand the temporal dynamics of temperature perception, tests were carried out to determine if there was a daily window of enhanced sensitivity to warm temperature (28 °C). Warm temperature applied during daytime, night-time, or continuously elicited earlier flowering, but the effects of each treatment were unequal. Plants exposed to warm night (WN) conditions flowered nearly as early as those in constant warm (CW) conditions, while treatment with warm days (WD) caused later flowering than either WN or CW. Flowering in each condition relied to varying degrees on the activity of CO , FT , PIF4 , and PIF5 , as well as the action of unknown genes. The combination of signalling pathways involved in flowering depended on the time of the temperature cue. WN treatments caused a significant advance in the rhythmic expression waveform of CO, which correlated with pronounced up-regulation of FT expression, while WD caused limited changes in CO expression and no stimulation of FT expression. WN- and WD-induced flowering was partially CO independent and, unexpectedly, dependent on PIF4 and PIF5 . pif4-2, pif5-3, and pif4-2 pif5-3 mutants had delayed flowering under all three warm conditions. The double mutant was also late flowering in control conditions. In addition, WN conditions alone imposed selective changes to PIF4 and PIF5 expression. Thus, the PIF4 and PIF5 transcription factors promote flowering by at least two means: inducing FT expression in WN and acting outside of FT by an unknown mechanism in WD. PMID:24574484

  12. Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar.

    PubMed

    Chen, Zhong; Ye, Meixia; Su, Xiaoxing; Liao, Weihua; Ma, Huandi; Gao, Kai; Lei, Bingqi; An, Xinmin

    2015-08-01

    APETALA1 plays a crucial role in the transition from vegetative to reproductive phase and in floral development. In this study, to determine the effect of AP1 expression on flowering time and floral organ development, transgenic Arabidopsis and poplar overexpressing of AtAP1M3 (Arabidopsis AP1 mutant by dominant negative mutation) were generated. Transgenic Arabidopsis with e35Spro::AtAP1M3 displayed phenotypes with delayed-flowering compared to wild-type and flowers with abnormal sepals, petals and stamens. In addition, transgenic Arabidopsis plants exhibited reduced growth vigor compared to the wild-type plants. Ectopic expression of AtAP1M3 in poplar resulted in up- or down-regulation of some endogenous key flowering-related genes, including floral meristems identity gene LFY, B-class floral organ identity genes AP3 and PI, flowering pathway integrator FT1 and flower repressors TFL1 and SVP. These results suggest that AtAP1M3 regulates flowering time and floral development in plants.

  13. CaAP2 transcription factor is a candidate gene for a flowering repressor and a candidate for controlling natural variation of flowering time in Capsicum annuum.

    PubMed

    Borovsky, Yelena; Sharma, Vinod K; Verbakel, Henk; Paran, Ilan

    2015-06-01

    The APETALA2 transcription factor homolog CaAP2 is a candidate gene for a flowering repressor in pepper, as revealed by induced-mutation phenotype, and a candidate underlying a major QTL controlling natural variation in flowering time. To decipher the genetic control of transition to flowering in pepper (Capsicum spp.) and determine the extent of gene function conservation compared to model species, we isolated and characterized several ethyl methanesulfonate (EMS)-induced mutants that vary in their flowering time compared to the wild type. In the present study, we report on the isolation of an early-flowering mutant that flowers after four leaves on the primary stem compared to nine leaves in the wild-type 'Maor'. By genetic mapping and sequencing of putative candidate genes linked to the mutant phenotype, we identified a member of the APETALA2 (AP2) transcription factor family, CaAP2, which was disrupted in the early-flowering mutant. CaAP2 is a likely ortholog of AP2 that functions as a repressor of flowering in Arabidopsis. To test whether CaAP2 has an effect on controlling natural variation in the transition to flowering in pepper, we performed QTL mapping for flowering time in a cross between early and late-flowering C. annuum accessions. We identified a major QTL in a region of chromosome 2 in which CaAP2 was the most significant marker, explaining 52 % of the phenotypic variation of the trait. Sequence comparison of the CaAP2 open reading frames in the two parents used for QTL mapping did not reveal significant variation. In contrast, significant differences in expression level of CaAP2 were detected between near-isogenic lines that differ for the flowering time QTL, supporting the putative function of CaAP2 as a major repressor of flowering in pepper.

  14. Genome-wide association mapping of flowering time and maturity dates in early mature soybean germplasm

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max L. Merr.) is a photoperiod-sensitive and short-day major crop grown worldwide. Days to flowering (DTF) and maturity (DTM) are two traits affecting soybean adaptability and yield. Some genes conditioning soybean flowering and maturity have been recently characterized. However, ...

  15. Ectopic Expression of a WRKY Homolog from Glycine soja Alters Flowering Time in Arabidopsis

    PubMed Central

    Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming

    2013-01-01

    Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time. PMID:23991184

  16. Longitudinal trends in climate drive flowering time clines in North American Arabidopsis thaliana.

    PubMed

    Samis, Karen E; Murren, Courtney J; Bossdorf, Oliver; Donohue, Kathleen; Fenster, Charles B; Malmberg, Russell L; Purugganan, Michael D; Stinchcombe, John R

    2012-06-01

    Introduced species frequently show geographic differentiation, and when differentiation mirrors the ancestral range, it is often taken as evidence of adaptive evolution. The mouse-ear cress (Arabidopsis thaliana) was introduced to North America from Eurasia 150-200 years ago, providing an opportunity to study parallel adaptation in a genetic model organism. Here, we test for clinal variation in flowering time using 199 North American (NA) accessions of A. thaliana, and evaluate the contributions of major flowering time genes FRI, FLC, and PHYC as well as potential ecological mechanisms underlying differentiation. We find evidence for substantial within population genetic variation in quantitative traits and flowering time, and putatively adaptive longitudinal differentiation, despite low levels of variation at FRI, FLC, and PHYC and genome-wide reductions in population structure relative to Eurasian (EA) samples. The observed longitudinal cline in flowering time in North America is parallel to an EA cline, robust to the effects of population structure, and associated with geographic variation in winter precipitation and temperature. We detected major effects of FRI on quantitative traits associated with reproductive fitness, although the haplotype associated with higher fitness remains rare in North America. Collectively, our results suggest the evolution of parallel flowering time clines through novel genetic mechanisms.

  17. Development and Seed Number in Indeterminate Soybean as Affected by Timing and Duration of Exposure to Long Photoperiods after Flowering

    PubMed Central

    Kantolic, Adriana G.; Slafer, Gustavo A.

    2007-01-01

    Background and Aims Long photoperiods from flowering to maturity have been found to delay reproductive development in soybean (Glycine max) and to increase the number of seeds per unit land area. This study was aimed to evaluate whether sensitivity to photoperiod after flowering (a) is quantitatively related to the length of exposure to long days and (b) persists throughout the whole pod-setting period. It was also evaluated whether seed number was related to changes in the duration of post-flowering phenophases. Methods Two field experiments were conducted with an indeterminate cultivar of soybean of maturity group V. In expt 1, photoperiods 2 h longer than natural daylength were applied during different numbers of days from the beginning pod stage (R3) onwards, while in expt 2 these photoperiod extensions were imposed during 9 consecutive days starting at different times between R3 and R6 (full seed) stages. Key Results There was a quantitative response of development to the number of cycles with a long photoperiod. The exposure to long photoperiods from R3 to R5 (beginning of seed growth) increased the duration of R3–R6 regardless of the timing of exposure. The stages of development comprised in the R3–R6 phase were delayed by current as well as by previous exposure to long days. A positive relationship was found between seed number and the duration of R3–R6, irrespective of the timing and length of exposure to the long photoperiod. Conclusions Sensitivity to photoperiod remained high during the reproductive period and was highly and positively coupled with the processes of generation of yield. PMID:17452381

  18. Major Contribution of Flowering Time and Vegetative Growth to Plant Production in Common Bean As Deduced from a Comparative Genetic Mapping.

    PubMed

    González, Ana M; Yuste-Lisbona, Fernando J; Saburido, Soledad; Bretones, Sandra; De Ron, Antonio M; Lozano, Rafael; Santalla, Marta

    2016-01-01

    Determinacy growth habit and accelerated flowering traits were selected during or after domestication in common bean. Both processes affect several presumed adaptive traits such as the rate of plant production. There is a close association between flowering initiation and vegetative growth; however, interactions among these two crucial developmental processes and their genetic bases remain unexplored. In this study, with the aim to establish the genetic relationships between these complex processes, a multi-environment quantitative trait locus (QTL) mapping approach was performed in two recombinant inbred line populations derived from inter-gene pool crosses between determinate and indeterminate genotypes. Additive and epistatic QTLs were found to regulate flowering time, vegetative growth, and rate of plant production. Moreover, the pleiotropic patterns of the identified QTLs evidenced that regions controlling time to flowering traits, directly or indirectly, are also involved in the regulation of plant production traits. Further QTL analysis highlighted one QTL, on the lower arm of the linkage group Pv01, harboring the Phvul.001G189200 gene, homologous to the Arabidopsis thaliana TERMINAL FLOWER1 ( TFL1 ) gene, which explained up to 32% of phenotypic variation for time to flowering, 66% for vegetative growth, and 19% for rate of plant production. This finding was consistent with previous results, which have also suggested Phvul.001G189200 (PvTFL1y ) as a candidate gene for determinacy locus. The information here reported can also be applied in breeding programs seeking to optimize key agronomic traits, such as time to flowering, plant height and an improved reproductive biomass, pods, and seed size, as well as yield.

  19. Major Contribution of Flowering Time and Vegetative Growth to Plant Production in Common Bean As Deduced from a Comparative Genetic Mapping

    PubMed Central

    González, Ana M.; Yuste-Lisbona, Fernando J.; Saburido, Soledad; Bretones, Sandra; De Ron, Antonio M.; Lozano, Rafael; Santalla, Marta

    2016-01-01

    Determinacy growth habit and accelerated flowering traits were selected during or after domestication in common bean. Both processes affect several presumed adaptive traits such as the rate of plant production. There is a close association between flowering initiation and vegetative growth; however, interactions among these two crucial developmental processes and their genetic bases remain unexplored. In this study, with the aim to establish the genetic relationships between these complex processes, a multi-environment quantitative trait locus (QTL) mapping approach was performed in two recombinant inbred line populations derived from inter-gene pool crosses between determinate and indeterminate genotypes. Additive and epistatic QTLs were found to regulate flowering time, vegetative growth, and rate of plant production. Moreover, the pleiotropic patterns of the identified QTLs evidenced that regions controlling time to flowering traits, directly or indirectly, are also involved in the regulation of plant production traits. Further QTL analysis highlighted one QTL, on the lower arm of the linkage group Pv01, harboring the Phvul.001G189200 gene, homologous to the Arabidopsis thaliana TERMINAL FLOWER1 (TFL1) gene, which explained up to 32% of phenotypic variation for time to flowering, 66% for vegetative growth, and 19% for rate of plant production. This finding was consistent with previous results, which have also suggested Phvul.001G189200 (PvTFL1y) as a candidate gene for determinacy locus. The information here reported can also be applied in breeding programs seeking to optimize key agronomic traits, such as time to flowering, plant height and an improved reproductive biomass, pods, and seed size, as well as yield. PMID:28082996

  20. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time.

    PubMed

    Johanson, U; West, J; Lister, C; Michaels, S; Amasino, R; Dean, C

    2000-10-13

    Vernalization, the acceleration of flowering by a long period of cold temperature, ensures that many plants overwinter vegetatively and flower in spring. In Arabidopsis, allelic variation at the FRIGIDA (FRI) locus is a major determinant of natural variation in flowering time. Dominant alleles of FRI confer late flowering, which is reversed to earliness by vernalization. We cloned FRI and analyzed the molecular basis of the allelic variation. Most of the early-flowering ecotypes analyzed carry FRI alleles containing one of two different deletions that disrupt the open reading frame. Loss-of-function mutations at FRI have thus provided the basis for the evolution of many early-flowering ecotypes.

  1. Nitrogen Recycling and Flowering Time in Perennial Bioenergy Crops

    PubMed Central

    Schwartz, Christopher; Amasino, Richard

    2013-01-01

    Perennials have a number of traits important for profitability and sustainability of a biofuel crop. Perennialism is generally defined as the ability to grow and reproduce in multiple years. In temperate climates, many perennial plants enter dormancy during winter and recycle nutrients, such as nitrogen, to below ground structures for the next growing season. Nitrogen is expensive to produce and application of nitrogen increases the potent greenhouse gas NOx. Perennial bioenergy crops have been evaluated for biomass yields with nitrogen fertilization, location, year, and genotype as variables. Flowering time and dormancy are closely related to the N recycling program. Substantial variation for flowering time and dormancy has been identified in the switchgrass (Panicum virgatum L.) species, which provides a source to identify the genetic components of N recycling, and for use in breeding programs. Some studies have addressed recycling specifically, but flowering time and developmental differences were largely ignored, complicating interpretation of the results. Future studies on recycling need to appreciate plant developmental stage to allow comparison between experiments. A perennial/annual model(s) and more environmentally controlled experiments would be useful to determine the genetic components of nitrogen recycling. Increasing biomass yield per unit of nitrogen by maximizing recycling might mean the difference for profitability of a biofuel crop and has the added benefit of minimizing negative environmental effects from agriculture. PMID:23626592

  2. Flowering phenology shifts in response to biodiversity loss

    USGS Publications Warehouse

    Wolf, Amelia A.; Zavaleta, Erika S; Selmants, Paul C.

    2017-01-01

    Observational studies and experimental evidence agree that rising global temperatures have altered plant phenology—the timing of life events, such as flowering, germination, and leaf-out. Other large-scale global environmental changes, such as nitrogen deposition and altered precipitation regimes, have also been linked to changes in flowering times. Despite our increased understanding of how abiotic factors influence plant phenology, we know very little about how biotic interactions can affect flowering times, a significant knowledge gap given ongoing human-caused alteration of biodiversity and plant community structure at the global scale. We experimentally manipulated plant diversity in a California serpentine grassland and found that many plant species flowered earlier in response to reductions in diversity, with peak flowering date advancing an average of 0.6 days per species lost. These changes in phenology were mediated by the effects of plant diversity on soil surface temperature, available soil N, and soil moisture. Peak flowering dates were also more dispersed among species in high-diversity plots than expected based on monocultures. Our findings illustrate that shifts in plant species composition and diversity can alter the timing and distribution of flowering events, and that these changes to phenology are similar in magnitude to effects induced by climate change. Declining diversity could thus contribute to or exacerbate phenological changes attributed to rising global temperatures.

  3. Flowering phenology shifts in response to biodiversity loss.

    PubMed

    Wolf, Amelia A; Zavaleta, Erika S; Selmants, Paul C

    2017-03-28

    Observational studies and experimental evidence agree that rising global temperatures have altered plant phenology-the timing of life events, such as flowering, germination, and leaf-out. Other large-scale global environmental changes, such as nitrogen deposition and altered precipitation regimes, have also been linked to changes in flowering times. Despite our increased understanding of how abiotic factors influence plant phenology, we know very little about how biotic interactions can affect flowering times, a significant knowledge gap given ongoing human-caused alteration of biodiversity and plant community structure at the global scale. We experimentally manipulated plant diversity in a California serpentine grassland and found that many plant species flowered earlier in response to reductions in diversity, with peak flowering date advancing an average of 0.6 days per species lost. These changes in phenology were mediated by the effects of plant diversity on soil surface temperature, available soil N, and soil moisture. Peak flowering dates were also more dispersed among species in high-diversity plots than expected based on monocultures. Our findings illustrate that shifts in plant species composition and diversity can alter the timing and distribution of flowering events, and that these changes to phenology are similar in magnitude to effects induced by climate change. Declining diversity could thus contribute to or exacerbate phenological changes attributed to rising global temperatures.

  4. Co-adaptation of seed dormancy and flowering time in the arable weed Capsella bursa-pastoris (shepherd's purse)

    PubMed Central

    Toorop, Peter E.; Campos Cuerva, Rafael; Begg, Graham S.; Locardi, Bruna; Squire, Geoff R.; Iannetta, Pietro P. M.

    2012-01-01

    Background and Aims The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd's purse. Methods Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy. Key Results Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds. Conclusions In shepherd's purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering

  5. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees

    PubMed Central

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-01-01

    Background and Aims Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Methods Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Key Results Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Conclusions Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in

  6. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees.

    PubMed

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-06-01

    Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.

  7. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time.

    PubMed

    van Dijk, Aalt D J; Molenaar, Jaap

    2017-01-01

    The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, intricate genetic networks integrate various environmental and endogenous cues such as temperature or hormonal statues. These signals integrate into a network of floral pathway integrator genes. At a quantitative level, it is currently unclear how the impact of genetic variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in upstream signalling components with the expression levels of floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that flowering time depends in a quite linear way on expression levels of floral pathway integrator genes. This gradual, proportional response of flowering time to upstream changes enables a gradual adaptation to changing environmental factors such as temperature and light.

  8. Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS.

    PubMed

    Campoli, Chiara; Drosse, Benedikt; Searle, Iain; Coupland, George; von Korff, Maria

    2012-03-01

    Variation in photoperiod response is a major factor determining plant development and the agronomic performance of crops. The genetic control of photoperiodic flowering has been elucidated in the model plant Arabidopsis, and many of the identified genes are structurally conserved in the grasses. In this study, HvCO1, the closest barley ortholog of the key photoperiod response gene CONSTANS in Arabidopsis, was over-expressed in the spring barley Golden Promise. Over-expression of HvCO1 accelerated time to flowering in long- and short-day conditions and caused up-regulation of HvFT1 mRNA under long-day conditions. However, the transgenic plants retained a response to photoperiod, suggesting the presence of photoperiod response factors acting downstream of HvCO1 transcription. Analysis of a population segregating for HvCO1 over-expression and natural genetic variation at Ppd-H1 demonstrated that Ppd-H1 acts downstream of HvCO1 transcription on HvFT1 expression and flowering. Furthermore, variation at Ppd-H1 did not affect diurnal expression of HvCO1 or HvCO2. Over-expression of HvCO1 increased transcription of the spring allele of Vrn-H1 in long- and short-day conditions, while genetic variation at Ppd-H1 did not affect Vrn-H1 expression. Over-expression of HvCO1 and natural genetic variation at Ppd-H1 accelerated inflorescence development and stem elongation. Thus, HvCO1 probably induces flowering by activating HvFT1 whilst Ppd-H1 regulates HvFT1 independently of HvCO1 mRNA, and all three genes also appear to have a strong effect in promoting inflorescence development. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  9. Adaptation to climate through flowering phenology: a case study in Medicago truncatula.

    PubMed

    Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle

    2016-07-01

    Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset. © 2016 John Wiley & Sons Ltd.

  10. FlowerMorphology: fully automatic flower morphometry software.

    PubMed

    Rozov, Sergey M; Deineko, Elena V; Deyneko, Igor V

    2018-05-01

    The software FlowerMorphology is designed for automatic morphometry of actinomorphic flowers. The novel complex parameters of flowers calculated by FlowerMorphology allowed us to quantitatively characterize a polyploid series of tobacco. Morphological differences of plants representing closely related lineages or mutants are mostly quantitative. Very often, there are only very fine variations in plant morphology. Therefore, accurate and high-throughput methods are needed for their quantification. In addition, new characteristics are necessary for reliable detection of subtle changes in morphology. FlowerMorphology is an all-in-one software package to automatically image and analyze five-petal actinomorphic flowers of the dicotyledonous plants. Sixteen directly measured parameters and ten calculated complex parameters of a flower allow us to characterize variations with high accuracy. The program was developed for the needs of automatic characterization of Nicotiana tabacum flowers, but is applicable to many other plants with five-petal actinomorphic flowers and can be adopted for flowers of other merosity. A genetically similar polyploid series of N. tabacum plants was used to investigate differences in flower morphology. For the first time, we could quantify the dependence between ploidy and size and form of the tobacco flowers. We found that the radius of inner petal incisions shows a persistent positive correlation with the chromosome number. In contrast, a commonly used parameter-radius of outer corolla-does not discriminate 2n and 4n plants. Other parameters show that polyploidy leads to significant aberrations in flower symmetry and are also positively correlated with chromosome number. Executables of FlowerMorphology, source code, documentation, and examples are available at the program website: https://github.com/Deyneko/FlowerMorphology .

  11. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus.

    PubMed

    Schiessl, Sarah; Iniguez-Luy, Federico; Qian, Wei; Snowdon, Rod J

    2015-09-29

    Flowering time, plant height and seed yield are strongly influenced by climatic and day-length adaptation in crop plants. To investigate these traits under highly diverse field conditions in the important oilseed crop Brassica napus, we performed a genome-wide association study using data from diverse agroecological environments spanning three continents. A total of 158 European winter-type B.napus inbred lines were genotyped with 21,623 unique, single-locus single-nucleotide polymorphism (SNP) markers using the Brassica 60 K-SNP Illumina® Infinium consortium array. Phenotypic associations were calculated in the panel over the years 2010-2012 for flowering time, plant height and seed yield in 5 highly diverse locations in Germany, China and Chile, adding up to 11 diverse environments in total. We identified 101 genome regions associating with the onset of flowering, 69 with plant height, 36 with seed yield and 68 cross-trait regions with potential adaptive value. Within these regions, B.napus orthologs for a number of candidate adaptation genes were detected, including central circadian clock components like CIRCADIAN CLOCK- ASSOCIATED 1 (Bna.CCA1) and the important flowering-time regulators FLOWERING LOCUS T (Bna.FT) and FRUITFUL (Bna.FUL). Gene ontology (GO) enrichment analysis of candidate regions suggested that selection of genes involved in post-transcriptional and epigenetic regulation of flowering time may play a potential role in adaptation of B. napus to highly divergent environments. The classical flowering time regulators Bna.FLC and Bna.CO were not found among the candidate regions, although both show functional variation. Allelic effects were additive for plant height and yield, but not for flowering time. The scarcity of positive minor alleles for yield in this breeding pool points to a lack of diversity for adaptation that could restrict yield gain in the face of environmental change. Our study provides a valuable framework to further improve the

  12. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus.

    PubMed

    Fletcher, Richard S; Mullen, Jack L; Heiliger, Annie; McKay, John K

    2015-01-01

    Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Water availability as an agent of selection in introduced populations of Arabidopsis thaliana: impacts on flowering time evolution

    PubMed Central

    Stock, Amanda J.; McGoey, Brechann V.

    2015-01-01

    Flowering is one of the most influential events in the life history of a plant and one of the main determinants of reproductive investment and lifetime fitness. It is also a highly complex trait controlled by dozens of genes. Understanding the selective pressures influencing time to flowering, and being able to reliably predict how it will evolve in novel environments, are unsolved challenges for plant evolutionary geneticists. Using the model plant species, Arabidopsis thaliana, we examined the impact of simulated high and low winter precipitation levels on the flowering time of naturalized lines from across the eastern portion of the introduced North American range, and the fitness consequences of early versus late flowering. Flowering time order was significantly correlated across two environments—in a previous common garden experiment and in environmental chambers set to mimic mid-range photoperiod and temperature conditions. Plants in low water flowered earlier, had fewer basal branches and produced fewer fruits. Selection in both treatments favored earlier flowering and more basal branches. Our analyses revealed an interaction between flowering time and water treatment for fitness, where flowering later was more deleterious for fitness in the low water treatment. Our results are consistent with the hypothesis that differences in winter precipitation levels are one of the selective agents underlying a flowering time cline in introduced A. thaliana populations. PMID:25909038

  14. Flowering time and seed dormancy control use external coincidence to generate life history strategy.

    PubMed

    Springthorpe, Vicki; Penfield, Steven

    2015-03-31

    Climate change is accelerating plant developmental transitions coordinated with the seasons in temperate environments. To understand the importance of these timing advances for a stable life history strategy, we constructed a full life cycle model of Arabidopsis thaliana. Modelling and field data reveal that a cryptic function of flowering time control is to limit seed set of winter annuals to an ambient temperature window which coincides with a temperature-sensitive switch in seed dormancy state. This coincidence is predicted to be conserved independent of climate at the expense of flowering date, suggesting that temperature control of flowering time has evolved to constrain seed set environment and therefore frequency of dormant and non-dormant seed states. We show that late flowering can disrupt this bet-hedging germination strategy. Our analysis shows that life history modelling can reveal hidden fitness constraints and identify non-obvious selection pressures as emergent features.

  15. Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus

    PubMed Central

    Schiessl, Sarah; Samans, Birgit; Hüttel, Bruno; Reinhard, Richard; Snowdon, Rod J.

    2014-01-01

    Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC), homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus) and a swede (B. napus ssp. napobrassica), which show extreme differences in winter-hardiness, vernalization requirement and flowering behavior. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalization, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species. PMID:25202314

  16. Say it with flowers: flowering acceleration by root communication.

    PubMed

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings.

  17. Say it with flowers: Flowering acceleration by root communication.

    PubMed

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings.

  18. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis.

    PubMed

    Coelho, Carla P; Minow, Mark A A; Chalfun-Júnior, Antonio; Colasanti, Joseph

    2014-01-01

    Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.

  19. Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering.

    PubMed

    Higuchi, Yohei; Sumitomo, Katsuhiko; Oda, Atsushi; Shimizu, Hiroshi; Hisamatsu, Tamotsu

    2012-12-15

    Chrysanthemum (Chrysanthemum morifolium) is a short-day plant, which flowers when the night length is longer than a critical minimum. Flowering is effectively inhibited when the required long-night phase is interrupted by a short period of exposure to red light (night break; NB). The reversal of this inhibition by subsequent exposure to far-red (FR) light indicates the involvement of phytochromes in the flowering response. Here, we elucidated the role of light quality in photoperiodic regulation of chrysanthemum flowering, by applying a range of different conditions. Flowering was consistently observed under short days with white light (W-SD), SD with monochromatic red light (R-SD), or SD with monochromatic blue light (B-SD). For W-SD, NB with monochromatic red light (NB-R) was most effective in inhibiting flowering, while NB with monochromatic blue light (NB-B) and NB with far-red light (NB-FR) caused little inhibition. In contrast, for B-SD, flowering was strongly inhibited by NB-B and NB-FR. However, when B-SD was supplemented with monochromatic red light (B+R-SD), no inhibition by NB-B and NB-FR was observed. Furthermore, the inhibitory effect of NB-B following B-SD was partially reversed by subsequent exposure to a FR light pulse. The conditions B-SD/NB-B (no flowering) and B+R-SD/NB-B (flowering) similarly affected the expression of circadian clock-related genes. However, only the former combination suppressed expression of the chrysanthemum orthologue of FLOWERING LOCUS T (CmFTL3). Our results suggest the involvement of at least 2 distinct phytochrome responses in the flowering response of chrysanthemum. Furthermore, it appears that the light quality supplied during the daily photoperiod affects the light quality required for effective NB. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage.

    PubMed

    Shu, Jinshuai; Liu, Yumei; Zhang, Lili; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2018-04-01

    A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis. Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC 1 P1, BC 1 P2, F 2 , and F 2:3 populations derived from a cross between two inbred lines "195" (late-flowering) and "93219" (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F 2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F 2 and F 2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.

  1. Associations with flowering time, latitude, and climate in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Switchgrass is a North American perennial grass and emerging bioenergy feedstock, and increasing biomass yields will improve the economic viability of switchgrass as a bioenergy crop. Flowering time is an important determinant of biomass yields in switchgrass because the majority of biomass accumula...

  2. Flower litters of alpine plants affect soil nitrogen and phosphorus rapidly in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jinniu; Xu, Bo; Wu, Yan; Gao, Jing; Shi, Fusun

    2016-10-01

    Litters of reproductive organs have rarely been studied despite their role in allocating nutrients for offspring reproduction. This study determines the mechanism through which flower litters efficiently increase the available soil nutrient pool. Field experiments were conducted to collect plant litters and calculate biomass production in an alpine meadow of the eastern Tibetan Plateau. C, N, P, lignin, cellulose content, and their relevant ratios of litters were analyzed to identify their decomposition features. A pot experiment was performed to determine the effects of litter addition on the soil nutrition pool by comparing the treated and control samples. The litter-bag method was used to verify decomposition rates. The flower litters of phanerophyte plants were comparable with non-flower litters. Biomass partitioning of other herbaceous species accounted for 10-40 % of the aboveground biomass. Flower litter possessed significantly higher N and P levels but less C / N, N / P, lignin / N, and lignin and cellulose concentrations than leaf litter. The litter-bag experiment confirmed that the flower litters of Rhododendron przewalskii and Meconopsis integrifolia decompose approximately 3 times faster than mixed litters within 50 days. Pot experiment findings indicated that flower litter addition significantly increased the available nutrient pool and soil microbial productivity. The time of litter fall significantly influenced soil available N and P, and soil microbial biomass. Flower litters fed the soil nutrition pool and influenced nutrition cycling in alpine ecosystems more efficiently because of their non-ignorable production, faster decomposition rate, and higher nutrient contents compared with non-flower litters. The underlying mechanism can enrich nutrients, which return to the soil, and non-structural carbohydrates, which feed and enhance the transitions of soil microorganisms.

  3. Flowering time and seed dormancy control use external coincidence to generate life history strategy

    PubMed Central

    Springthorpe, Vicki; Penfield, Steven

    2015-01-01

    Climate change is accelerating plant developmental transitions coordinated with the seasons in temperate environments. To understand the importance of these timing advances for a stable life history strategy, we constructed a full life cycle model of Arabidopsis thaliana. Modelling and field data reveal that a cryptic function of flowering time control is to limit seed set of winter annuals to an ambient temperature window which coincides with a temperature-sensitive switch in seed dormancy state. This coincidence is predicted to be conserved independent of climate at the expense of flowering date, suggesting that temperature control of flowering time has evolved to constrain seed set environment and therefore frequency of dormant and non-dormant seed states. We show that late flowering can disrupt this bet-hedging germination strategy. Our analysis shows that life history modelling can reveal hidden fitness constraints and identify non-obvious selection pressures as emergent features. DOI: http://dx.doi.org/10.7554/eLife.05557.001 PMID:25824056

  4. Characterization of two rice MADS box genes that control flowering time.

    PubMed

    Kang, H G; Jang, S; Chung, J E; Cho, Y G; An, G

    1997-08-31

    Plants contain a variety of the MADS box genes that encode regulatory proteins and play important roles in both the formation of flower meristem and the determination of floral organ identity. We have characterized two flower-specific cDNAs from rice, designated OsMADS7 and OsMADS8. The cDNAs displayed the structure of a typical plant MADS box gene, which consists of the MADS domain, I region, K domain, and C-terminal region. These genes were classified as members of the AGL2 gene family based on sequence homology. The OsMADS7 and 8 proteins were most homologous to OM1 and FBP2, respectively. The OsMADS7 and 8 transcripts were detectable primarily in carpels and also weakly in anthers. During flower development, the OsMADS genes started to express at the young flower stage and the expression continued to the late stage of flower development. The OsMADS7 and 8 genes were mapped on the long arms of the chromosome 8 and 9, respectively. To study the functions of the genes, the cDNA clones were expressed ectopically using the CaMV 35S promoter in a heterologous tobacco plant system. Transgenic plants expressing the OsMADS genes exhibited the phenotype of early flowering and dwarfism. The strength of the phenotypes was proportional to the levels of transgene expression and the phenotypes were co-inherited with the kanamycin resistant gene to the next generation. These results indicate that OsMADS7 and 8 are structurally related to the AGL2 family and are involved in controlling flowering time.

  5. SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana.

    PubMed

    Gras, Diana E; Vidal, Elena A; Undurraga, Soledad F; Riveras, Eleodoro; Moreno, Sebastián; Dominguez-Figueroa, José; Alabadi, David; Blázquez, Miguel A; Medina, Joaquín; Gutiérrez, Rodrigo A

    2018-01-23

    The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time. We found that nitrate signaling interacts with the age-related and gibberellic acid pathways to control flowering time in Arabidopsis thaliana. We revealed that repressors of flowering time belonging to the AP2-type transcription factor family including SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ) are important regulators of flowering time in response to nitrate. Our results support a model whereby nitrate activates SMZ and SNZ via the gibberellin pathway to repress flowering time in Arabidopsis thaliana. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Genetic variation of flowering time and biomass in switchgrass

    USDA-ARS?s Scientific Manuscript database

    The timing of phase change from juvenile (vegetative) to adult with reproductive competence is a key factor influencing biomass yield of switchgrass. A decline in biomass yield is typically observed in switchgrass immediately following completion of flowering. In temperate regions of the USA, if flo...

  7. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?

    Treesearch

    Bryce A. Richardson; Linsay Chaney; Nancy L. Shaw; Shannon M. Still

    2016-01-01

    Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In...

  8. Tulipa gesneriana and Lilium longiflorum PEBP Genes and Their Putative Roles in Flowering Time Control.

    PubMed

    Leeggangers, Hendrika A C F; Rosilio-Brami, Tamar; Bigas-Nadal, Judit; Rubin, Noam; van Dijk, Aalt D J; Nunez de Caceres Gonzalez, Francisco F; Saadon-Shitrit, Shani; Nijveen, Harm; Hilhorst, Henk W M; Immink, Richard G H; Zaccai, Michele

    2018-01-01

    Floral induction in Tulipa gesneriana and Lilium longiflorum is triggered by contrasting temperature conditions, high and low temperature, respectively. In Arabidopsis, the floral integrator FLOWERING LOCUS T (FT), a member of the PEBP (phosphatidyl ethanolamine-binding protein) gene family, is a key player in flowering time control. In this study, one PEBP gene was identified and characterized in lily (LlFT) and three PEBP genes were isolated from tulip (TgFT1, TgFT2 and TgFT3). Overexpression of these genes in Arabidopsis thaliana resulted in an early flowering phenotype for LlFT and TgFT2, but a late flowering phenotype for TgFT1 and TgFT3. Overexpression of LlFT in L. longiflorum also resulted in an early flowering phenotype, confirming its proposed role as a flowering time-controlling gene. The tulip PEBP genes TgFT2 and TgFT3 have a similar expression pattern in tulip, but show opposite effects on the timing of flowering in Arabidopsis. Therefore, the difference between these two proteins was further investigated by interchanging amino acids thought to be important for the FT function. This resulted in the conversion of phenotypes in Arabidopsis upon overexpressing the substituted TgFT2 and TgFT3 genes, revealing the importance of these interchanged amino acid residues. Based on all obtained results, we hypothesize that LlFT is involved in creating meristem competence to flowering-related cues in lily, and TgFT2 is considered to act as a florigen involved in the floral induction in tulip. The function of TgFT3 remains unclear, but, based on our observations and phylogenetic analysis, we propose a bulb-specific function for this gene. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Earlier flowering did not alter pollen limitation in an early flowering shrub under short-term experimental warming.

    PubMed

    Pan, Cheng-Chen; Feng, Qi; Zhao, Ha-Lin; Liu, Lin-De; Li, Yu-Lin; Li, Yu-Qiang; Zhang, Tong-Hui; Yu, Xiao-Ya

    2017-06-05

    In animal pollinated plants, phenological shifts caused by climate change may have important ecological consequences. However, no empirical evidence exists at present on the consequences that flowering phenology shifts have on the strength of pollen limitation under experimental warming. Here, we investigated the effects of experimental warming on flowering phenology, flower density, reproductive success, and pollen limitation intensity in Caragana microphylla and evaluated whether earlier flowering phenology affected plant reproduction and the level of pollen limitation using warmed and unwarmed open top chambers in the Horqin Sandy Land of Inner Mongolia, northern China. The results of this study indicated that artificial warming markedly advanced flower phenology rather than extending the duration of the flowering. Additionally, warming was found to significantly reduce flower density which led to seed production reduction, since there were insignificant effects observed on fruit set and seed number per fruit. Experimental floral manipulations showed that warming did not affect pollen limitation. These results revealed the negative effects of advanced phenology induced by warming on flower density and reproductive output, as well as the neutral effects on reproductive success and pollen limitation intensity of long surviving plants.

  10. Method for production of sorghum hybrids with selected flowering times

    DOEpatents

    Mullet, John E.; Rooney, William L.

    2016-08-30

    Methods and composition for the production of sorghum hybrids with selected and different flowering times are provided. In accordance with the invention, a substantially continual and high-yield harvest of sorghum is provided. Improved methods of seed production are also provided.

  11. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time.

    PubMed

    Wang, Yan; Gu, Yongzhe; Gao, Huihui; Qiu, Lijuan; Chang, Ruzhen; Chen, Shouyi; He, Chaoying

    2016-04-12

    Flowering time is a domestication trait of Glycine max and varies in soybeans, yet, a gene for flowering time variation has not been associated with soybean domestication. GIGANTEA (GI) is a major gene involved in the control of flowering time in Arabidopsis, although three GI homologs complicate this model in the soybean genome. In the present work, we revealed that the geographic evolution of the GIGANTEAa (GIa) haplotypes in G. max (GmGIa) and Glycine soja (GsGIa). Three GIa haplotypes (H1, H2, and H3) were found among cultivated soybeans and their wild relatives, yet an additional 44 diverse haplotypes were observed in wild soybeans. H1 had a premature stop codon in the 10(th) exon, whereas the other haplotypes encoded full-length GIa protein isoforms. In both wild-type and cultivated soybeans, H2 was present in the Southern region of China, and H3 was restricted to areas near the Northeast region of China. H1 was genetically derived from H2, and it was dominant and widely distributed among cultivated soybeans, whereas in wild populations, the ortholog of this domesticated haplotype H1 was only found in Yellow River basin with a low frequency. Moreover, this mutated GIa haplotype significantly correlated with early flowering. We further determined that the differences in gene expression of the three GmGIa haplotypes were not correlated to flowering time variations in cultivated soybeans. However, only the truncated GmGIa H1 could partially rescue gi-2 Arabidopsis from delayed flowering in transgenic plants, whereas both GmGIa H2 and H3 haplotypes could significantly repress flowering in transgenic Arabidopsis with a wild-type background. Thus, GmGIa haplotype diversification may have contributed to flowering time adaptation that facilitated the radiation of domesticated soybeans. In light of the evolution of the GIa gene, soybean domestication history for an early flowering phenotype is discussed.

  12. FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce.

    PubMed

    Karlgren, Anna; Gyllenstrand, Niclas; Clapham, David; Lagercrantz, Ulf

    2013-10-01

    The timing of bud set, as one determinant of the annual growth rhythm, is critical for local adaptation of the conifer Norway spruce (Picea abies). Previous gene expression and population genetic studies have suggested a role for P. abies FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (PaFTL2) in the control of growth cessation and bud set in Norway spruce as well as in local adaptation resulting in clinal variation for timing of bud set. Using transgenic plants with PaFTL2 driven by an inducible promoter, we found that PaFTL2 indeed induces bud set and most probably also growth cessation. PaFTL2 shows high expression around the procambium and vascular tissue and in the crown region in buds of both seedlings and older trees. Furthermore, PaFTL2 expression is induced in vegetative shoots and all bud types in late summer, when growth cessation occurs. This supports the notion that PaFTL2 is involved in growth cessation. A close paralog to PaFTL2, PaFTL1, is strongly expressed in meristems during the summer, possibly to repress meristem activity and the formation of needle primordia during this period. The temporal and spatial expression of PaFTL1 and PaFTL2 largely complement each other, which suggests that they act in concert to control perennial growth in Norway spruce.

  13. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis.

    PubMed

    Liu, Jie; Cheng, Xiliu; Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-05-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis.

  14. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis

    PubMed Central

    Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-01-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis. PMID:28558040

  15. The timing of flowering in Douglas-fir is determined by cool-season temperatures and genetic variation

    Treesearch

    Janet S. Prevey; Constance A. Harrington; J. Bradley St. Clair

    2018-01-01

    Trees have evolved to time flowering to maximize outcrossing, minimize exposure to damaging frosts, and synchronize development with soil moisture and nutrient availability. Understanding the environmental cues that influence the timing of reproductive budburst will be important for predicting how flowering phenology of trees will change with a changing climate, and...

  16. Haplotype Variation of Flowering Time Genes of Sugar Beet and Its Wild Relatives and the Impact on Life Cycle Regimes.

    PubMed

    Höft, Nadine; Dally, Nadine; Hasler, Mario; Jung, Christian

    2017-01-01

    The species Beta vulgaris encompasses wild and cultivated members with a broad range of phenological development. The annual life cycle is commonly found in sea beets (ssp. maritima ) from Mediterranean environments which germinate, bolt, and flower within one season under long day conditions. Biennials such as the cultivated sugar beet ( B. vulgaris ssp. vulgaris ) as well as sea beets from northern latitudes require prolonged exposure to cold temperature over winter to acquire floral competence. Sugar beet is mainly cultivated for sugar production in Europe and is likely to have originated from sea beet. Flowering time strongly affects seed yield and yield potential and is thus a trait of high agronomic relevance. Besides environmental cues, there are complex genetic networks known to impact life cycle switch in flowering plants. In sugar beet, BTC1, BvBBX19, BvFT1 , and BvFT2 are major flowering time regulators. In this study, we phenotyped plants from a diversity Beta panel encompassing cultivated and wild species from different geographical origin. Plants were grown under different day length regimes with and without vernalization. Haplotype analysis of BTC1, BvBBX19, BvFT1 , and BvFT2 was performed to identify natural diversity of these genes and their impact on flowering. We found that accessions from northern latitudes flowered significantly later than those from southern latitudes. Some plants did not flower at all, indicating a strong impact of latitude of origin on life cycle. Haplotype analysis revealed a high conservation of the CCT-, REC-, BBX-, and PEBP-domains with regard to SNP occurrence. We identified sequence variation which may impact life cycle adaptation in beet. Our data endorse the importance of BTC1 in the domestication process of cultivated beets and contribute to the understanding of distribution and adaption of Beta species to different life cycle regimes in response to different environments. Moreover, our data provide a resource for

  17. New methods for regulating flowering time in short-day strawberry

    USDA-ARS?s Scientific Manuscript database

    Higher percentages of transplants of short-day cultivars 'Chandler', 'Carmine', 'Strawberry Festival', and 'Sweet Charlie' from runner tips plugged in early July rather than the standard time (early August) bloomed in the fall. Nearly 100% of the transplants produced in early July flowered in the f...

  18. Molecular Mapping of Flowering Time Major Genes and QTLs in Chickpea (Cicer arietinum L.)

    PubMed Central

    Mallikarjuna, Bingi P.; Samineni, Srinivasan; Thudi, Mahendar; Sajja, Sobhan B.; Khan, Aamir W.; Patil, Ayyanagowda; Viswanatha, Kannalli P.; Varshney, Rajeev K.; Gaur, Pooran M.

    2017-01-01

    Flowering time is an important trait for adaptation and productivity of chickpea in the arid and the semi-arid environments. This study was conducted for molecular mapping of genes/quantitative trait loci (QTLs) controlling flowering time in chickpea using F2 populations derived from four crosses (ICCV 96029 × CDC Frontier, ICC 5810 × CDC Frontier, BGD 132 × CDC Frontier and ICC 16641 × CDC Frontier). Genetic studies revealed monogenic control of flowering time in the crosses ICCV 96029 × CDC Frontier, BGD 132 × CDC Frontier and ICC 16641 × CDC Frontier, while digenic control with complementary gene action in ICC 5810 × CDC Frontier. The intraspecific genetic maps developed from these crosses consisted 75, 75, 68 and 67 markers spanning 248.8 cM, 331.4 cM, 311.1 cM and 385.1 cM, respectively. A consensus map spanning 363.8 cM with 109 loci was constructed by integrating four genetic maps. Major QTLs corresponding to flowering time genes efl-1 from ICCV 96029, efl-3 from BGD 132 and efl-4 from ICC 16641 were mapped on CaLG04, CaLG08 and CaLG06, respectively. The QTLs and linked markers identified in this study can be used in marker-assisted breeding for developing early maturing chickpea. PMID:28729871

  19. Temperatures during flower bud development affect pollen germination, self-incompatibility reaction and early fruit development of clementine (Citrus clementina Hort. ex Tan.).

    PubMed

    Distefano, G; Gentile, A; Hedhly, A; La Malfa, S

    2018-03-01

    One of the key environmental factors affecting plant reproductive systems is temperature. Characterising such effects is especially relevant for some commercially important genera such as Citrus. In this genus, failure of fertilisation results in parthenocarpic fruit development and seedlessness, which is a much-prized character. Here, we characterise the effects of temperature on flower and ovary development, and on pollen-pistil interactions in 'Comune' clementine (Citrus clementina Hort. ex Tan.). We examine flower bud development, in vitro pollen germination and pollen-pistil interaction at different temperatures (15, 20, 25 or 30 °C). These temperatures span the range from 'cold' to 'hot' weather during the flowering season in many citrus-growing regions. Temperature had a strong effect on flower and ovary development, pollen germination, and pollen tube growth kinetics. In particular, parthenocarpic fruit development (indicated by juice vesicle growth) was initiated early if flowers were exposed to warmer temperatures during anthesis. Exposure to different temperatures during flower bud development also alters expression of the self-incompatibility reaction. This affects the point in the pistil at which pollen tube growth is arrested and confirms the role of sub- and supra-optimal temperatures in determining the numbers of pollen tubes reaching the ovary. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  20. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops

    PubMed Central

    Grab, Heather; Blitzer, Eleanor J.; Danforth, Bryan; Loeb, Greg; Poveda, Katja

    2017-01-01

    One of the greatest challenges in sustainable agricultural production is managing ecosystem services, such as pollination, in ways that maximize crop yields. Most efforts to increase services by wild pollinators focus on management of natural habitats surrounding farms or non-crop habitats within farms. However, mass flowering crops create resource pulses that may be important determinants of pollinator dynamics. Mass bloom attracts pollinators and it is unclear how this affects the pollination and yields of other co-blooming crops. We investigated the effects of mass flowering apple on the pollinator community and yield of co-blooming strawberry on farms spanning a gradient in cover of apple orchards in the landscape. The effect of mass flowering apple on strawberry was dependent on the stage of apple bloom. During early and peak apple bloom, pollinator abundance and yield were reduced in landscapes with high cover of apple orchards. Following peak apple bloom, pollinator abundance was greater on farms with high apple cover and corresponded with increased yields on these farms. Spatial and temporal overlap between mass flowering and co-blooming crops alters the strength and direction of these dynamics and suggests that yields can be optimized by designing agricultural systems that avoid competition while maximizing facilitation. PMID:28345653

  1. Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae.

    PubMed

    McKeown, Meghan; Schubert, Marian; Preston, Jill C; Fjellheim, Siri

    2017-09-01

    Flowering time is a carefully regulated trait controlled primarily through the action of the central genetic regulator, FLOWERING LOCUS T (FT). Recently it was demonstrated that a microRNA, miR5200, targets the end of the second exon of FT under short-day photoperiods in the grass subfamily Pooideae, thus preventing FT transcripts from reaching threshold levels under non-inductive conditions. Pooideae are an interesting group in that they rapidly diversified from the tropics into the northern temperate region during a major global cooling event spanning the Eocene-Oligocene transition. We hypothesize that miR5200 photoperiod-sensitive regulation of Pooideae flowering time networks assisted their transition into northern seasonal environments. Here, we test predictions derived from this hypothesis that miR5200, originally found in bread wheat and later identified in Brachypodium distachyon, (1) was present in the genome of the Pooideae common ancestor, (2) is transcriptionally regulated by photoperiod, and (3) is negatively correlated with FT transcript abundance, indicative of miR5200 regulating FT. Our results demonstrate that miR5200 did evolve at or around the base of Pooideae, but only acquired photoperiod-regulated transcription within the Brachypodium lineage. Based on expression profiles and previous data, we posit that the progenitor of miR5200 was co-regulated with FT by an unknown mechanism. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Genetic Mapping of the Leaf Number above the Primary Ear and Its Relationship with Plant Height and Flowering Time in Maize.

    PubMed

    Cui, Min; Jia, Bo; Liu, Huanhuan; Kan, Xin; Zhang, Yu; Zhou, Ronghua; Li, Zhipeng; Yang, Liang; Deng, Dexiang; Yin, Zhitong

    2017-01-01

    The leaf number above the primary ear (LA) is a major contributing factor to plant architecture in maize. The yield of leafy maize, which has extra LA compared to normal maize, is higher than normal maize in some regions. One major concern is that increasing LA may be accompanied by increased plant height and/or flowering time. Using an F 2:3 population comprising 192 families derived from a leafy maize line and a normal maize line, an association population comprising 437 inbred maize lines, and a pair of near-isogenic maize lines, we mapped the quantitative trait loci (QTL) associated with LA and assessed its genetic relationship with flowering time and plant height. Ten QTL with an additive and dominant effect, 18 pairs of interacting QTL in the F 2:3 population and seventeen significant SNPs in the association population were detected for LA. Two major QTL, qLA3-4 and qLA7-1 , were repeatedly detected and explained a large proportion of the phenotypic variation. The qLA3-4 was centered on lfy1 , which is a dominant gene underlying extra leaves above the ear in leafy maize. Four LA QTL were found to overlap with flowering time and/or plant height, which suggested that these QTL might have a pleiotropic effect. The pleiotropy of the lfy1 locus on LA, flowering time and plant height were validated by near-isogenic line analysis. These results enhance our understanding of the genetic architecture affecting maize LA and the development of maize hybrids with increased LA.

  3. Multiple loci and genetic interactions involving flowering time genes regulate stem branching among natural variants of Arabidopsis.

    PubMed

    Huang, Xueqing; Ding, Jia; Effgen, Sigi; Turck, Franziska; Koornneef, Maarten

    2013-08-01

    Shoot branching is a major determinant of plant architecture. Genetic variants for reduced stem branching in the axils of cauline leaves of Arabidopsis were found in some natural accessions and also at low frequency in the progeny of multiparent crosses. Detailed genetic analysis using segregating populations derived from backcrosses with the parental lines and bulked segregant analysis was used to identify the allelic variation controlling reduced stem branching. Eight quantitative trait loci (QTLs) contributing to natural variation for reduced stem branching were identified (REDUCED STEM BRANCHING 1-8 (RSB1-8)). Genetic analysis showed that RSB6 and RSB7, corresponding to flowering time genes FLOWERING LOCUS C (FLC) and FRIGIDA (FRI), epistatically regulate stem branching. Furthermore, FLOWERING LOCUS T (FT), which corresponds to RSB8 as demonstrated by fine-mapping, transgenic complementation and expression analysis, caused pleiotropic effects not only on flowering time, but, in the specific background of active FRI and FLC alleles, also on the RSB trait. The consequence of allelic variation only expressed in late-flowering genotypes revealed novel and thus far unsuspected roles of several genes well characterized for their roles in flowering time control. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Impacts of climate change on spring flower tourism in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Huanjiong

    2016-04-01

    The beauty of blooming flowers causes spring to be one of the most picturesque and pleasant seasons in which to travel. However, the blooming time of plant species are very sensitive to small changes in climate. Therefore, recent climate change may shift flowering time and, as a result, may affect timing of spring tourism for tourists. In order to prove this assumption, we gathered data of first flowering date and end of flowering date (1963-2014) for 49 common ornamental plants in Beijing, China. In addition, we used the number of messages (2010-2014) posted on Sina Weibo (one of the most popular microblogs sites in China, in use by well over 30% of internet users, with a market penetration similar to the United States' Twitter) to indicate the tourist numbers of five scenic spots in Beijing. These spots are most famous places for seeing spring flowers, including the Summer Palace, Yuyuantan Park, Beijing Botanical Garden, Jingshan Park, Dadu City Wall Relics Park. The results showed that the number of species in flower starts to increase in early spring and peaks in middle spring, and then begins to decrease from late spring. The date when the number of species in flower peaks can be defined as best date of spring flower tourism, because on this day people can see blooming flowers of most plant species. The best date of spring flower tourism varied from March 31 to May 1 among years with a mean of April 20. At above scenic spots characterized by the beauty of blooming flowers, tourist numbers also had a peak value during spring. Furthermore, peak time of tourist numbers derived from Weibo varied among different years and was related to best date of spring flower tour derived from phenological data. This suggests that the time of spring outing for tourists is remarkably attracted by flowering phenology. From 1963 to 2014, the best date of spring flower tour became earlier at a rate of 1.6 days decade-1, but the duration for spring flower tour (defined as width at

  5. Cold Tolerance of the Male Gametophyte during Germination and Tube Growth Depends on the Flowering Time

    PubMed Central

    Wagner, Johanna; Gastl, Evelyn; Kogler, Martin; Scheiber, Michaela

    2016-01-01

    In temperate climates, most plants flower during the warmer season of the year to avoid negative effects of low temperatures on reproduction. Nevertheless, few species bloom in midwinter and early spring despite severe and frequent frosts at that time. This raises the question of adaption of sensible progamic processes such as pollen germination and pollen tube growth to low temperatures. The performance of the male gametophyte of 12 herbaceous lowland species flowering in different seasons was examined in vitro at different test temperatures using an easy to handle testing system. Additionally, the capacity to recover after the exposure to cold was checked. We found a clear relationship between cold tolerance of the activated male gametophyte and the flowering time. In most summer-flowering species, pollen germination stopped between 1 and 5 °C, whereas pollen of winter and early spring flowering species germinated even at temperatures below zero. Furthermore, germinating pollen was exceptionally frost tolerant in cold adapted plants, but suffered irreversible damage already from mild sub-zero temperatures in summer-flowering species. In conclusion, male gametophytes show a high adaptation potential to cold which might exceed that of female tissues. For an overall assessment of temperature limits for sexual reproduction it is therefore important to consider female functions as well. PMID:28036058

  6. Functional homogenization of flower visitor communities with urbanization.

    PubMed

    Deguines, Nicolas; Julliard, Romain; de Flores, Mathieu; Fontaine, Colin

    2016-04-01

    Land-use intensification and resulting habitat loss are put forward as the main causes of flower visitor decline. However, the impact of urbanization, the prime driver of land-use intensification in Europe, is poorly studied. In particular, our understanding of whether and how it affects the composition and functioning of flower visitor assemblages is scant, yet required to cope with increasing urbanization worldwide. Here, we use a nation-wide dataset of plant-flower visitor (Coleoptera, Diptera, Hymenoptera, Lepidoptera) interactions sampled by citizen scientists following a standardized protocol to assess macroecological changes in richness and composition of flower visitor communities with urbanization. We measured the community composition by quantifying the relative occurrence of generalist and specialist flower visitors based on their specialisation on flowering plant families. We show that urbanization is associated with reduced flower visitor richness and a shift in community composition toward generalist insects, indicating a modification of the functional composition of communities. These results suggest that urbanization affects not only the richness of flower visitor assemblages but may also cause their large-scale functional homogenization. Future research should focus on designing measures to reconcile urban development with flower visitor conservation.

  7. Model of white oak flower survival and maturation

    Treesearch

    David R. Larsen; Robert A. Cecich

    1997-01-01

    A stochastic model of oak flower dynamics is presented that integrates a number of factors which appear to affect the oak pistillate flower development process. The factors are modeled such that the distribution of the predicted flower populations could have come from the same distribution as the observed flower populations. Factors included in the model are; the range...

  8. The impact of plant and flower age on mating patterns

    PubMed Central

    Marshall, Diane L.; Avritt, Joy J.; Maliakal-Witt, Satya; Medeiros, Juliana S.; Shaner, Marieken G. M.

    2010-01-01

    Background Over a season, plant condition, amount of ongoing reproduction and biotic and abiotic environmental factors vary. As flowers age, flower condition and amount of pollen donated and received also vary. These internal and external changes are significant for fitness if they result in changes in reproduction and mating. Scope Literature from several fields was reviewed to provide a picture of the changes that occur in plants and flowers that can affect mating over a season. As flowers age, both the entire flower and individual floral whorls show changes in appearance and function. Over a season, changes in mating often appear as alteration in seed production vs. pollen donation. In several species, older, unpollinated flowers are more likely to self. If flowers are receiving pollen, staying open longer may increase the number of mates. In wild radish, for which there is considerable information on seed paternity, older flowers produce fewer seeds and appear to discriminate less among pollen donors. Pollen donor performance can also be linked to maternal plant age. Different pollinators and mates are available across the season. Also in wild radish, maternal plants appear to exert the most control over paternity when they are of intermediate age. Conclusions Although much is known about the characters of plants and flowers that can change over a season, there is less information on the effects of age on mating. Several studies document changes in self-pollination over time, but very few, other than those on wild radish, consider more subtle aspects of differential success of pollen donors over time. PMID:19875519

  9. A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa.

    PubMed

    Wu, Jian; Wei, Keyun; Cheng, Feng; Li, Shikai; Wang, Qian; Zhao, Jianjun; Bonnema, Guusje; Wang, Xiaowu

    2012-08-28

    Flowering time is an important trait in Brassica rapa crops. FLOWERING LOCUS C (FLC) is a MADS-box transcription factor that acts as a potent repressor of flowering. Expression of FLC is silenced when plants are exposed to low temperature, which activates flowering. There are four copies of FLC in B. rapa. Analyses of different segregating populations have suggested that BraA.FLC.a (BrFLC1) and BraA.FLC.b (BrFLC2) play major roles in controlling flowering time in B. rapa. We analyzed the BrFLC2 sequence in nine B. rapa accessions, and identified a 57-bp insertion/deletion (InDel) across exon 4 and intron 4 resulting in a non-functional allele. In total, three types of transcripts were identified for this mutated BrFLC2 allele. The InDel was used to develop a PCR-based marker, which was used to screen a collection of 159 B. rapa accessions. The deletion genotype was present only in oil-type B. rapa, including ssp. oleifera and ssp. tricolaris, and not in other subspecies. The deletion genotype was significantly correlated with variation in flowering time. In contrast, the reported splicing site variation in BrFLC1, which also leads to a non-functional locus, was detected but not correlated with variation in flowering time in oil-type B. rapa, although it was correlated with variation in flowering time in vegetable-type B. rapa. Our results suggest that the naturally occurring deletion mutation across exon 4 and intron 4 in BrFLC2 gene contributes greatly to variation in flowering time in oil-type B. rapa. The observed different relationship between BrFLC1 or BrFLC2 and flowering time variation indicates that the control of flowering time has evolved separately between oil-type and vegetable-type B. rapa groups.

  10. Genetic architecture of the circadian clock and flowering time in Brassica rapa.

    PubMed

    Lou, P; Xie, Q; Xu, X; Edwards, C E; Brock, M T; Weinig, C; McClung, C R

    2011-08-01

    The circadian clock serves to coordinate physiology and behavior with the diurnal cycles derived from the daily rotation of the earth. In plants, circadian rhythms contribute to growth and yield and, hence, to both agricultural productivity and evolutionary fitness. Arabidopsis thaliana has served as a tractable model species in which to dissect clock mechanism and function, but it now becomes important to define the extent to which the Arabidopsis model can be extrapolated to other species, including crops. Accordingly, we have extended our studies to the close Arabidopsis relative and crop species, Brassica rapa. We have investigated natural variation in circadian function and flowering time among multiple B. rapa collections. There is wide variation in clock function, based on a robust rhythm in cotyledon movement, within a collection of B. rapa accessions, wild populations and recombinant inbred lines (RILs) derived from a cross between parents from two distinct subspecies, a rapid cycling Chinese cabbage (ssp. pekinensis) and a Yellow Sarson oilseed (ssp. trilocularis). We further analyzed the RILs to identify the quantitative trait loci (QTL) responsible for this natural variation in clock period and temperature compensation, as well as for flowering time under different temperature and day length settings. Most clock and flowering-time QTL mapped to overlapping chromosomal loci. We have exploited micro-synteny between the Arabidopsis and B. rapa genomes to identify candidate genes for these QTL.

  11. Comparative Study of the Volatile Components of Fresh and Fermented Flowers of Alnus sieboldiana (Betulaceae).

    PubMed

    Ab Ghani, Nurunajah; Ismail, Nor Hadiani; Asakawa, Yoshinori

    2016-02-01

    Analysis of the volatile components present in the fresh male and female flowers and young leaves shows that 2-phenylethanol is the major component in all these three organs, which play a significant role in the strong resinous aromatic odor. The male flowers contained styrene as a second major compound. The level of styrene does not affect the male flowers odor concentration. The level of β-phenylethyl cinnamate and trans-methyl cinnamate in the fermented male flowers decreased as the fermentation time increased. This was due to the Penicillium enzymatic action on the fermented male flowers.

  12. Say it with flowers

    PubMed Central

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings. PMID:24598343

  13. A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic.

    PubMed

    Lessard-Therrien, Malie; Davies, T Jonathan; Bolmgren, Kjell

    2014-05-01

    Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54°90'N, 67°16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.

  14. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues.

    PubMed

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts.

  15. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues

    PubMed Central

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts. PMID:26445216

  16. The role of cold cues at different life stages on germination and flowering phenology.

    PubMed

    Rubin, Matthew J; Friedman, Jannice

    2018-04-23

    The timing of major phenological transitions is critical to lifetime fitness, and life history theory predicts differences for annual and perennial plants. To correctly time these transitions, many plants rely on environmental cues such as exposure to extended periods of cold, which may occur at different stages throughout their lifetime. We studied the role of cold at different life stages, by jointly exposing seed (stratification) and rosettes (vernalization) to cold. We used 23 populations of Mimulus guttatus, which vary from annuals to perennials, and investigated how cold at one or both stages affected germination, flowering, growth, and biomass. We found that stratification and vernalization interact to affect life cycle transitions, and that cold at either stage could synchronize flowering phenology. For perennials, either stratification or vernalization is necessary for maximum flowering. We also found that germination timing covaried with later traits. Moreover, plants from environments with dissimilar climates displayed different phenological responses to stratification or vernalization. In general, cold is more important for seed germination in annuals and plants from environments with warm temperatures and variable precipitation. In contrast, cold is more important for flowering in perennials: it accelerates flowering in plants from lower precipitation environments, and it increases flowering proportion in plants from cooler, more stable precipitation environments. We discuss our findings in the context of the variable environments plants experience within a population and the variation encountered across the biogeographic native range of the species. © 2018 Botanical Society of America.

  17. Flowers, Beautiful Flowers

    ERIC Educational Resources Information Center

    School Arts: The Art Education Magazine for Teachers, 2005

    2005-01-01

    In the lesson described, the middle school students had been studying the artist Georgia O'Keeffe and the history of her work. Students enhanced their flower portraits by adding a matching border and connecting the lesson to other subject areas. Students dissected a flower and drew a small diagram of the flower and labeled the parts. This is an…

  18. Tropical flowering phenologies

    NASA Astrophysics Data System (ADS)

    Wright, S. J.

    2016-12-01

    Most tropical plants flower synchronously at species-specific times. This holds at the geographic equator where day length is constant and at the meteorological equator where temperature is virtually aseasonal. Thus, the well-studied environmental cues for flowering at higher latitudes can be irrelevant in the tropics where they are replaced by an abundance of hypotheses. Low and high temperatures, drought and rain, day length, daily solar irradiance, and seasonal changes in solar insolation at the forest canopy or at the top of the atmosphere have all been hypothesized to act as environmental cues for tropical flowering. This abundance of hypotheses has been confronted by a paucity of data, precluding rejection of even one hypothesis. I will use new long-term data sets from Barro Colorado Island (BCI), Panama (9°N, 79°W) and a model selection framework to begin the winnowing. The data extend from 1987 to the present and include more than 250,000 flower records obtained in 1,515 weekly censuses of 200 passive traps and standard meteorological variables obtained just above the forest canopy. The model selection framework was used to evaluate every proximate cue hypothesized to control tropical flowering times for the 55 tree and liana species best represented in the data. Hypotheses concerning seasonal variation in day length, temperature, rainfall and photosynthetically active radiation (PAR) best matched the data for five, zero, seven and 32 species, respectively. Many species previously believed to respond to seasonal changes in moisture availability are actually sensitive to seasonal variation in cloud cover and PAR. BCI lies on the meteorological equator, thus it is unsurprising that temperature variation is not a viable proximate cue. The flowering phenology of the remaining 11 species could not be explained by any of the hypothesized proximate cues. Solutions to the environmental control of tropical flowering times remain to be discovered.

  19. Co-variation between seed dormancy, growth rate and flowering time changes with latitude in Arabidopsis thaliana.

    PubMed

    Debieu, Marilyne; Tang, Chunlao; Stich, Benjamin; Sikosek, Tobias; Effgen, Sigi; Josephs, Emily; Schmitt, Johanna; Nordborg, Magnus; Koornneef, Maarten; de Meaux, Juliette

    2013-01-01

    Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.

  20. Trithorax Group Protein Oryza sativa Trithorax1 Controls Flowering Time in Rice via Interaction with Early heading date31[W][OPEN

    PubMed Central

    Choi, Sang Chul; Lee, Shinyoung; Kim, Sung-Ryul; Lee, Yang-Seok; Liu, Chunyan; Cao, Xiaofeng; An, Gynheung

    2014-01-01

    Trithorax group proteins are chromatin-remodeling factors that activate target gene expression by antagonistically functioning against the Polycomb group. In Arabidopsis (Arabidopsis thaliana), Arabidopsis Trithorax protein1 (ATX1) regulates flowering time and floral organ identity. Here, we observed that suppression of Oryza sativa Trithorax1 (OsTrx1), an ortholog of ATX1, delayed flowering time in rice (Oryza sativa). Because the delay occurred only under long-day conditions, we evaluated the flowering signal pathways that specifically function under long-day conditions. Among them, the OsMADS50 and Heading date1 pathways were not affected by the mutation. However, the Grain number, plant height, and heading date7 (Ghd7) pathway was altered in ostrx1. Transcript levels of OsGI, phytochrome genes, and Early heading date3 (Ehd3), which function upstream of Ghd7, were unchanged in the mutant. Because Trx group proteins form a complex with other proteins to modify the chromatin structure of target genes, we investigated whether OsTrx1 interacts with a previously identified protein that functions upstream of Ghd7. We demonstrated that the plant homeodomain motif of OsTrx1 binds to native histone H3 from the calf thymus and that OsTrx1 binds to Ehd3 through the region between the plant homeodomain and SET domains. Finally, we showed that the SET domain at the C-terminal end of OsTrx1 has histone H3 methyltransferase activity when incubated with oligonucleosomes. Our results suggest that OsTrx1 plays an important role in regulating flowering time in rice by modulating chromatin structure. PMID:24420930

  1. Constitutive expression of two apple (Malus x domestica Borkh.) homolog genes of LIKE HETEROCHROMATIN PROTEIN1 affects flowering time and whole-plant growth in transgenic Arabidopsis.

    PubMed

    Mimida, Naozumi; Kidou, Shin-Ichiro; Kotoda, Nobuhiro

    2007-09-01

    Fruit trees, such as apple (Malus x domestica Borkh.), are woody perennial plants with a long juvenile phase. The biological analysis for the regulation of flowering time provides insights into the reduction of juvenile phase and the acceleration of breeding in fruit trees. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is involved in epigenetic silencing of the target genes such as flowering genes. We isolated and characterized twin apple LHP1 homolog genes, MdLHP1a and MdLHP1b. These genes may have been generated as a result of ancient genome duplication. Although the putative MdLHP1 proteins showed lower similarity to any other known plant LHP1 homologs, a chromo domain, a chromo shadow domain, and the nuclear localization signal motifs were highly conserved among them. RT-PCR analysis showed that MdLHP1a and MdLHP1b were expressed constantly in developing shoot apices of apple trees throughout the growing season. Constitutive expression of MdLHP1a or MdLHP1b could compensate for the pleiotropic phenotype of lhp1/tfl2 mutant, suggesting that apple LHP1 homolog genes are involved in the regulation of flowering time and whole-plant growth. Based on these results, LHP1 homolog genes might have rapidly evolved among plant species, but the protein functions were conserved, at least between Arabidopsis and apple.

  2. Estimating selection through male fitness: three complementary methods illuminate the nature and causes of selection on flowering time

    PubMed Central

    Austen, Emily J.; Weis, Arthur E.

    2016-01-01

    Our understanding of selection through male fitness is limited by the resource demands and indirect nature of the best available genetic techniques. Applying complementary, independent approaches to this problem can help clarify evolution through male function. We applied three methods to estimate selection on flowering time through male fitness in experimental populations of the annual plant Brassica rapa: (i) an analysis of mating opportunity based on flower production schedules, (ii) genetic paternity analysis, and (iii) a novel approach based on principles of experimental evolution. Selection differentials estimated by the first method disagreed with those estimated by the other two, indicating that mating opportunity was not the principal driver of selection on flowering time. The genetic and experimental evolution methods exhibited striking agreement overall, but a slight discrepancy between the two suggested that negative environmental covariance between age at flowering and male fitness may have contributed to phenotypic selection. Together, the three methods enriched our understanding of selection on flowering time, from mating opportunity to phenotypic selection to evolutionary response. The novel experimental evolution method may provide a means of examining selection through male fitness when genetic paternity analysis is not possible. PMID:26911957

  3. Biology of flower-infecting fungi.

    PubMed

    Ngugi, Henry K; Scherm, Harald

    2006-01-01

    The ability to infect host flowers offers important ecological benefits to plant-parasitic fungi; not surprisingly, therefore, numerous fungal species from a wide range of taxonomic groups have adopted a life style that involves flower infection. Although flower-infecting fungi are very diverse, they can be classified readily into three major groups: opportunistic, unspecialized pathogens causing necrotic symptoms such as blossom blights (group 1), and specialist flower pathogens which infect inflorescences either through the gynoecium (group 2) or systemically through the apical meristem (group 3). This three-tier system is supported by life history attributes such as host range, mode of spore transmission, degree of host sterilization as a result of infection, and whether or not the fungus undergoes an obligate sexual cycle, produces resting spores in affected inflorescences, and is r- or K-selected. Across the three groups, the flower as an infection court poses important challenges for disease management. Ecologically and evolutionarily, terms and concepts borrowed from the study of venereal (sexually transmitted) diseases of animals do not adequately capture the range of strategies employed by fungi that infect flowers.

  4. dsRNA silencing of an R2R3-MYB transcription factor affects flower cell shape in a Dendrobium hybrid.

    PubMed

    Lau, Su-Ee; Schwarzacher, Trude; Othman, Rofina Yasmin; Harikrishna, Jennifer Ann

    2015-08-11

    The R2R3-MYB genes regulate pigmentation and morphogenesis of flowers, including flower and cell shape, and therefore have importance in the development of new varieties of orchids. However, new variety development is limited by the long breeding time required in orchids. In this study, we identified a cDNA, DhMYB1, that is expressed during flower development in a hybrid orchid, Dendrobium hybrida (Dendrobium bobby messina X Dendrobium chao phraya) then used the direct application of dsRNA to observe the effect of gene silencing on flower phenotype and floral epidermal cell shape. Flower bud development in the Dendrobium hybrid was characterised into seven stages and the time of meiosis was determined as between stages 3 to 5 when the bud is approximately half of the mature size. Scanning electron microscopy characterisation of adaxial epidermal cells of the flower perianth, showed that the petals and sepals each are divided into two distinct domains based on cell shape and size, while the labellum comprises seven domains. Thirty-two partial cDNA fragments representing R2R3-MYB gene sequences were isolated from D. hybrida. Phylogenetic analysis revealed that nine of the translated sequences were clustered with MYB sequences that are known to be involved in cell shape development and from these, DhMYB1 was selected for full length cDNA cloning and functional study. Direct application of a 430 bp dsRNA from the 3' region of DhMYB1 to emerging orchid flower buds reduced expression of DhMYB1 RNA compared with untreated control. Scanning electron microscopy of adaxial epidermal cells within domain one of the labellum of flowers treated with DhMYB1 dsRNA showed flattened epidermal cells whilst those of control flowers were conical. DhMYB1 is expressed throughout flower bud development and is involved in the development of the conical cell shape of the epidermal cells of the Dendrobium hybrida flower labellum. The direct application of dsRNA changed the phenotype of

  5. [Investigation of potential toxic factors for fleece-flower root: from perspective of processing methods evolution].

    PubMed

    Cui, He-Rong; Bai, Zhao-Fang; Song, Hai-Bo; Jia, Tian-Zhu; Wang, Jia-Bo; Xiao, Xiao-He

    2016-01-01

    In recent years, the rapid growth of reports on fleece-flower root-caused liver damages has drawn wide attention of both at home and abroad, however, there were rare literature on toxicology of fleece-flower root in ancient Chinese medicine. But why there are so many reports on toxicology of fleece-flower root now compared with the ancient literature? As a typical tonic medicine, the clinical utility of fleece-flower root was largely limited by its standardization and reliability of processing methods in ancient Chinese medicine. The ancient processing methods of fleece-flower root emphasized nine times of steaming and nine times of drying, while the modern processes have been simplified into one time of steaming. Whether the differences between ancient and modern processing methods are the potential cause of the increased events of fleece-flower root-caused liver damages. We will make deep analysis and provide new clues and perspectives for the research on its toxicity. This article, therefore, would discuss the affecting factors and key problems in toxicity attenuation of fleece-flower root on the basis of sorting out the processing methods of fleece-flower root in ancient medical books and modern standards, in order to provide the reference for establishing specification for toxicity attenuation of fleece-flower root. Copyright© by the Chinese Pharmaceutical Association.

  6. Flower Development and Sex Determination between Male and Female Flowers in Vernicia fordii

    PubMed Central

    Mao, Yingji; Liu, Wenbo; Chen, Xue; Xu, Yang; Lu, Weili; Hou, Jinyan; Ni, Jun; Wang, Yuting; Wu, Lifang

    2017-01-01

    Vernicia fordii is a monoecious and diclinous species with male and female flowers on the same inflorescence. Low female to male flower ratio is one of the main reasons for low yield in this species. However, little is known of its floral development and sex determination. Here, according to the results of scanning electron microscopy and histological analysis, the floral development of V. fordii was divided into 12 stages and the first morphological divergence between the male and female flowers was found to occur at stage 7. The male flowers are always unisexual, but the female flowers present bisexual characteristics, with sterile stamen (staminode) restricted to pre-meiosis of mother sporogenous cells and cell death occurring at later development stages. To further elucidate the molecular mechanism underling sex determination at the divergence stage for male and female flowers, comparative transcriptome analysis was performed. In total, 56,065 unigenes were generated and 608 genes were differentially expressed between male and female flowers, among which 310 and 298 DEGs (differentially expressed genes) showed high expression levels in males and females, respectively. The transcriptome data showed that the sexual dimorphism of female flowers was affected by jasmonic acid, transcription factors, and some genes related to the floral meristem activity. Ten candidate genes showed consistent expression in the qRT-PCR validation and DEGs data. In this study, we provide developmental characterization and transcriptomic information for better understanding of the development of unisexual flowers and the regulatory networks underlying the mechanism of sex determination in V. fordii, which would be helpful in the molecular breeding of V. fordii to improve the yield output. PMID:28775735

  7. Flower Development and Sex Determination between Male and Female Flowers in Vernicia fordii.

    PubMed

    Mao, Yingji; Liu, Wenbo; Chen, Xue; Xu, Yang; Lu, Weili; Hou, Jinyan; Ni, Jun; Wang, Yuting; Wu, Lifang

    2017-01-01

    Vernicia fordii is a monoecious and diclinous species with male and female flowers on the same inflorescence. Low female to male flower ratio is one of the main reasons for low yield in this species. However, little is known of its floral development and sex determination. Here, according to the results of scanning electron microscopy and histological analysis, the floral development of V. fordii was divided into 12 stages and the first morphological divergence between the male and female flowers was found to occur at stage 7. The male flowers are always unisexual, but the female flowers present bisexual characteristics, with sterile stamen (staminode) restricted to pre-meiosis of mother sporogenous cells and cell death occurring at later development stages. To further elucidate the molecular mechanism underling sex determination at the divergence stage for male and female flowers, comparative transcriptome analysis was performed. In total, 56,065 unigenes were generated and 608 genes were differentially expressed between male and female flowers, among which 310 and 298 DEGs (differentially expressed genes) showed high expression levels in males and females, respectively. The transcriptome data showed that the sexual dimorphism of female flowers was affected by jasmonic acid, transcription factors, and some genes related to the floral meristem activity. Ten candidate genes showed consistent expression in the qRT-PCR validation and DEGs data. In this study, we provide developmental characterization and transcriptomic information for better understanding of the development of unisexual flowers and the regulatory networks underlying the mechanism of sex determination in V. fordii , which would be helpful in the molecular breeding of V. fordii to improve the yield output.

  8. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 Module Regulates Ambient Temperature-Responsive Flowering via FLOWERING LOCUS T in Arabidopsis1[C][W][OA

    PubMed Central

    Kim, Jae Joon; Lee, Jeong Hwan; Kim, Wanhui; Jung, Hye Seung; Huijser, Peter; Ahn, Ji Hoon

    2012-01-01

    The flowering time of plants is affected by modest changes in ambient temperature. However, little is known about the regulation of ambient temperature-responsive flowering by small RNAs. In this study, we show that the microRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) module directly regulates FLOWERING LOCUS T (FT) expression in the leaf to control ambient temperature-responsive flowering. Overexpression of miR156 led to more delayed flowering at a lower ambient temperature (16°C), which was associated with down-regulation of FT and FRUITFULL expression. Among miR156 target genes, SPL3 mRNA levels were mainly reduced, probably because miR156-mediated cleavage of SPL3 mRNA was higher at 16°C. Overexpression of miR156-resistant SPL3 [SPL3(−)] caused early flowering, regardless of the ambient temperature, which was associated with up-regulation of FT and FRUITFULL expression. Reduction of miR156 activity by target mimicry led to a phenotype similar to that of SUC2::rSPL3 plants. FT up-regulation was observed after dexamethasone treatment in GVG-rSPL3 plants. Misexpression and artificial microRNA-mediated suppression of FT in the leaf dramatically altered the ambient temperature-responsive flowering of plants overexpressing miR156 and SPL3(−). Chromatin immunoprecipitation assay showed that the SPL3 protein directly binds to GTAC motifs within the FT promoter. Lesions in TERMINAL FLOWER1, SHORT VEGETATIVE PHASE, and EARLY FLOWERING3 did not alter the expression of miR156 and SPL3. Taken together, our data suggest that the interaction between the miR156-SPL3 module and FT is part of the regulatory mechanism controlling flowering time in response to ambient temperature. PMID:22427344

  9. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time.

    PubMed

    Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh

    2017-09-01

    Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ 13C), and WUE plasticity to drought in Arabidopsis thaliana

    PubMed Central

    Kenney, Amanda M; McKay, John K; Richards, James H; Juenger, Thomas E

    2014-01-01

    Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought. PMID:25512847

  11. Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time

    PubMed Central

    Celesnik, Helena; Ali, Gul S.; Robison, Faith M.; Reddy, Anireddy S. N.

    2013-01-01

    Summary Transition to flowering in plants is tightly controlled by environmental cues, which regulate the photoperiod and vernalization pathways, and endogenous signals, which mediate the autonomous and gibberellin pathways. In this work, we investigated the role of two Zn2+-finger transcription factors, the paralogues AtVOZ1 and AtVOZ2, in Arabidopsis thaliana flowering. Single atvoz1-1 and atvoz2-1 mutants showed no significant phenotypes as compared to wild type. However, atvoz1-1 atvoz2-1 double mutant plants exhibited several phenotypes characteristic of flowering-time mutants. The double mutant displayed a severe delay in flowering, together with additional pleiotropic phenotypes. Late flowering correlated with elevated expression of FLOWERING LOCUS C (FLC), which encodes a potent floral repressor, and decreased expression of its target, the floral promoter FD. Vernalization rescued delayed flowering of atvoz1-1 atvoz2-1 and reversed elevated FLC levels. Accumulation of FLC transcripts in atvoz1-1 atvoz2-1 correlated with increased expression of several FLC activators, including components of the PAF1 and SWR1 chromatin-modifying complexes. Additionally, AtVOZs were shown to bind the promoter of MOS3/SAR3 and directly regulate expression of this nuclear pore protein, which is known to participate in the regulation of flowering time, suggesting that AtVOZs exert at least some of their flowering regulation by influencing the nuclear pore function. Complementation of atvoz1-1 atvoz2-1 with AtVOZ2 reversed all double mutant phenotypes, confirming that the observed morphological and molecular changes arise from the absence of functional AtVOZ proteins, and validating the functional redundancy between AtVOZ1 and AtVOZ2. PMID:23616927

  12. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.

    PubMed

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-11-21

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.

  13. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development

    PubMed Central

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-01-01

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis. PMID:27869146

  14. FLOWERING LOCUS T/TERMINAL FLOWER1-Like Genes Affect Growth Rhythm and Bud Set in Norway Spruce1[W][OPEN

    PubMed Central

    Karlgren, Anna; Gyllenstrand, Niclas; Clapham, David; Lagercrantz, Ulf

    2013-01-01

    The timing of bud set, as one determinant of the annual growth rhythm, is critical for local adaptation of the conifer Norway spruce (Picea abies). Previous gene expression and population genetic studies have suggested a role for P. abies FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (PaFTL2) in the control of growth cessation and bud set in Norway spruce as well as in local adaptation resulting in clinal variation for timing of bud set. Using transgenic plants with PaFTL2 driven by an inducible promoter, we found that PaFTL2 indeed induces bud set and most probably also growth cessation. PaFTL2 shows high expression around the procambium and vascular tissue and in the crown region in buds of both seedlings and older trees. Furthermore, PaFTL2 expression is induced in vegetative shoots and all bud types in late summer, when growth cessation occurs. This supports the notion that PaFTL2 is involved in growth cessation. A close paralog to PaFTL2, PaFTL1, is strongly expressed in meristems during the summer, possibly to repress meristem activity and the formation of needle primordia during this period. The temporal and spatial expression of PaFTL1 and PaFTL2 largely complement each other, which suggests that they act in concert to control perennial growth in Norway spruce. PMID:23958861

  15. Expression of the poplar Flowering Locus T1 (FT1) gene reduces the generation time in plum (Prunus domestica L.)

    USDA-ARS?s Scientific Manuscript database

    Plums normally begin to flower and fruit three to seven years from seed. To shorten this generation time, early flowering plum genotypes were produced by transforming plum hypocotyls with the poplar (Populus trichocarpa) Flowering Locus T1 (PtFT1) gene. Ectopic expression of 35S::PtFT1 induced ear...

  16. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae.

    PubMed

    Ivaničová, Zuzana; Jakobson, Irena; Reis, Diana; Šafář, Jan; Milec, Zbyněk; Abrouk, Michael; Doležel, Jaroslav; Järve, Kadri; Valárik, Miroslav

    2016-09-25

    Flowering time variation was identified within a mapping population of doubled haploid lines developed from a cross between the introgressive line 8.1 and spring bread wheat cv. Tähti. The line 8.1 carried introgressions from tetraploid Triticum militinae in the cv. Tähti genetic background on chromosomes 1A, 2A, 4A, 5A, 7A, 1B and 5B. The most significant QTL for the flowering time variation was identified within the introgressed region on chromosome 5A and its largest effect was associated with the VRN-A1 locus, accounting for up to 70% of phenotypic variance. The allele of T. militinae origin was designated as VRN-A1f-like. The effect of the VRN-A1f-like allele was verified in two other mapping populations. QTL analysis identified that in cv. Tähti and cv. Mooni genetic background, VRN-A1f-like allele incurred a delay of 1.9-18.6 days in flowering time, depending on growing conditions. Sequence comparison of the VRN-A1f-like and VRN-A1a alleles from the parental lines of the mapping populations revealed major mutations in the promoter region as well as in the first intron, including insertion of a MITE element and a large deletion. The sequence variation allowed construction of specific diagnostic PCR markers for VRN-A1f-like allele determination. Identification and quantification of the effect of the VRN-A1f-like allele offers a useful tool for wheat breeding and for studying fine-scale regulation of flowering pathways in wheat. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway.

    PubMed

    Liu, Hao; Gu, Fengwei; Dong, Shuangyu; Liu, Wei; Wang, Hui; Chen, Zhiqiang; Wang, Jiafeng

    2016-10-14

    Flowering or heading is one of most important agronomic traits in rice. It has been characterized that CONSTANS (CO) and CONSTANS-like (COL) proteins are critical flowering regulators in response to photoperiodic stress in plants. We have previously identified that the COL family member OsCOL9 can positively enhance the rice blast resistance. In the present study, we aimed to explore the functional role of OsCOL9 in modulating the photoperiodic flowering. Our data showed that overexpression of OsCOL9 delayed the flowering time under both short-day (SD) and long-day (LD) conditions, leading to suppressed expressions of EHd1, RFT and Hd3a at the mRNA Level. OsCOL9 expression exhibited two types of circadian patterns under different daylight conditions, and it could delay the heading date by suppressing the Ehd1 photoperiodic flowering pathway. In contrast, the expressions of previously reported flowering regulators were not significantly changed in OsCOL9 transgenic plants, indicating that OsCOL9 functioned independently of other flowering pathways. In addition, OsCOL9 served as a potential yield gene, and its deficiency reduced the grain number of main panicle in plants. Furthermore, yeast two-hybrid assay indicated that OsCOL9 physically interacted with Receptor for Activated C-kinase 1 (OsRACK1). Rhythmic pattern analysis suggested that OsRACK1 responded to the change of daylight, which was regulated by the circadian clock. Taken together, our results revealed that OsCOL9 could delay the flowering time in rice by repressing the Ehd1 pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Growth and Flowering Responses of Cut Chrysanthemum Grown under Restricted Root Volume to Irrigation Frequency

    PubMed Central

    Taweesak, Viyachai; Lee Abdullah, Thohirah; Hassan, Siti Aishah; Kamarulzaman, Nitty Hirawaty; Wan Yusoff, Wan Abdullah

    2014-01-01

    Influences of irrigation frequency on the growth and flowering of chrysanthemum grown under restricted root volume were tested. Chrysanthemum cuttings (Chrysanthemum morifolium “Reagan White”) were grown in seedling tray which contained coconut peat in volumes of 73 and 140 cm3. Plants were irrigated with drip irrigation at irrigation frequencies of 4 (266 mL), 6 (400 mL), and 8 (533 mL) times/day to observe their growth and flowering performances. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. Plants grown in 140 cm3 substrates and irrigated 6 times/day produced the tallest plant of 109.25 cm. Plants irrigated 6 and 8 times/day had significantly higher level of phosphorus content in their leaves than those plants irrigated 4 times/day. The total leaf area, number of internodes, leaf length, and leaf width of chrysanthemums grown in 140 cm3 substrate were significantly higher than those grown in 73 cm3 substrate. The numbers of flowers were affected by both irrigation frequencies and substrate volumes. Chrysanthemums irrigated 8 times/day had an average of 19.56 flowers while those irrigated 4 times/day had an average of 16.63 flowers. Increasing irrigation frequency can improve the growth and flowering of chrysanthemums in small substrate volumes. PMID:25478586

  19. Flowering responses of insect-pollinated plants to elevated CO{sub 2} levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushman, J.H.; Koch, G.W.; Chiariello, N.R.

    1995-06-01

    Elevated atmospheric CO{sub 2} concentrations have been predicted or shown to substantially influence plants, communities and ecosystems in a variety of ways. Here, we examined the effects of elevated CO{sub 2} levels on the timing and magnitude of flowering for two insect-pollinated annual plant species in a serpentine grassland. We focused on Lasthenia californica and Linanthus parviflorus and addressed three questions: (1) Do elevated CO{sub 2} levels influence flowering phenologies and is this species specific? (2) Do elevated CO{sub 2} levels affect flower production and is this due to altered numbers of individuals, flowers per plant, or both? and (3)more » Are effects on flowering due to elevated CO{sub 2} levels per se or changes in environmental conditions associated with methods used to manipulate CO{sub 2} levels? To address these questions, we used the ecosystem experiment at Stanford University`s Jasper Ridge Biological Preserve (San Mateo Co., CA). This system consists of 20 open-topped chambers - half receiving ambient CO{sub 2} (360 ppm) and half receiving elevated CO{sub 2} (720 ppm) - and 10 untreated plots serving as chamber controls. Results from the 1994 season demonstrated that there were species-specific responses to elevated CO{sub 2} levels and the field chambers. For Lasthenia californica, elevated CO{sub 2} per se did not affect relative abundance, inflorescence production, or phenology, but chambers did significantly increase inflorescence production and extend the duration of flowering. For Linanthus parviflorus, elevated CO{sub 2} levels significantly increased relative abundance and flower production, and extended the flowering period slightly, while the chambers significantly decreased flower production early in the season and increased it later in the season.« less

  20. Flowering phenological changes in relation to climate change in Hungary

    NASA Astrophysics Data System (ADS)

    Szabó, Barbara; Vincze, Enikő; Czúcz, Bálint

    2016-09-01

    The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species ( Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9-4.4 days per decade. We found that it was the mean temperature of the 2-3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January-March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February-April) has some effect on Tilia flowering.

  1. Flowering phenological changes in relation to climate change in Hungary.

    PubMed

    Szabó, Barbara; Vincze, Enikő; Czúcz, Bálint

    2016-09-01

    The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species (Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9-4.4 days per decade. We found that it was the mean temperature of the 2-3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January-March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February-April) has some effect on Tilia flowering.

  2. Identification of successive flowering phases highlights a new genetic control of the flowering pattern in strawberry

    PubMed Central

    Perrotte, Justine; Guédon, Yann; Gaston, Amèlia; Denoyes, Béatrice

    2016-01-01

    The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years. PMID:27664957

  3. Explaining the apparent paradox of persistent selection for early flowering.

    PubMed

    Austen, Emily J; Rowe, Locke; Stinchcombe, John R; Forrest, Jessica R K

    2017-08-01

    Decades of observation in natural plant populations have revealed pervasive phenotypic selection for early flowering onset. This consistent pattern seems at odds with life-history theory, which predicts stabilizing selection on age and size at reproduction. Why is selection for later flowering rare? Moreover, extensive evidence demonstrates that flowering time can and does evolve. What maintains ongoing directional selection for early flowering? Several non-mutually exclusive processes can help to reconcile the apparent paradox of selection for early flowering. We outline four: selection through other fitness components may counter observed fecundity selection for early flowering; asymmetry in the flowering-time-fitness function may make selection for later flowering hard to detect; flowering time and fitness may be condition-dependent; and selection on flowering duration is largely unaccounted for. In this Viewpoint, we develop these four mechanisms, and highlight areas where further study will improve our understanding of flowering-time evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. Flower color preferences of insects and livestock: effects on Gentiana lutea reproductive success.

    PubMed

    Sobral, Mar; Losada, María; Veiga, Tania; Guitián, Javier; Guitián, José; Guitián, Pablo

    2016-01-01

    Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i) Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii) Do mutualists (pollinators) and antagonists (seed predators, insect herbivores and livestock) jointly affect G. lutea reproductive success? Insect herbivores fed more often on yellow flowering individuals but they did not affect seed production, whereas livestock affected seed production but did not show clear color preferences. Our data indicate that flower color variation of G. lutea is not affected by insect herbivores or grazing livestock.

  5. A Virus-Induced Assay for Functional Dissection and Analysis of Monocot and Dicot Flowering Time Genes.

    PubMed

    Qin, Cheng; Chen, Weiwei; Shen, Jiajia; Cheng, Linming; Akande, Femi; Zhang, Ke; Yuan, Chen; Li, Chunyang; Zhang, Pengcheng; Shi, Nongnong; Cheng, Qi; Liu, Yule; Jackson, Stephen; Hong, Yiguo

    2017-06-01

    Virus-induced flowering (VIF) uses virus vectors to express Flowering Locus T ( FT ) to induce flowering in plants. This approach has recently attracted wide interest for its practical applications in accelerating breeding in crops and woody fruit trees. However, the insight into VIF and its potential as a powerful tool for dissecting florigenic proteins remained to be elucidated. Here, we describe the mechanism and further applications of Potato virus X (PVX)-based VIF in the short-day Nicotiana tabacum cultivar Maryland Mammoth. Ectopic delivery of Arabidopsis ( Arabidopsis thaliana ) AtFT by PVX/AtFT did not induce the expression of the endogenous FT ortholog NtFT4 ; however, it was sufficient to trigger flowering in Maryland Mammoth plants grown under noninductive long-day conditions. Infected tobacco plants developed no systemic symptoms, and the PVX-based VIF did not cause transgenerational flowering. We showed that the PVX-based VIF is a much more rapid method to examine the impacts of single amino acid mutations on AtFT for floral induction than making individual transgenic Arabidopsis lines for each mutation. We also used the PVX-based VIF to demonstrate that adding a His- or FLAG-tag to the N or C terminus of AtFT could affect its florigenic activity and that this system can be applied to assay the function of FT genes from heterologous species, including tomato ( Solanum lycopersicum ) SFT and rice ( Oryza sativa ) Hd3a Thus, the PVX-based VIF represents a simple and efficient system to identify individual amino acids that are essential for FT-mediated floral induction and to test the ability of mono- and dicotyledonous FT genes and FT fusion proteins to induce flowering. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Bumble-bee learning selects for both early and long flowering in food-deceptive plants

    PubMed Central

    Internicola, Antonina I.; Harder, Lawrence D.

    2012-01-01

    Most rewardless orchids engage in generalized food-deception, exhibiting floral traits typical of rewarding species and exploiting the instinctive foraging of pollinators. Generalized food-deceptive (GFD) orchids compete poorly with rewarding species for pollinator services, which may be overcome by flowering early in the growing season when relatively more pollinators are naive and fewer competing plant species are flowering, and/or flowering for extended periods to enhance the chance of pollinator visits. We tested these hypotheses by manipulating flowering time and duration in a natural population of Calypso bulbosa and quantifying pollinator visitation based on pollen removal. Both early and long flowering increased bumble-bee visitation compared with late and brief flowering, respectively. To identify the cause of reduced visitation during late flowering, we tested whether negative experience with C. bulbosa (avoidance learning) and positive experience with a rewarding species, Arctostaphylos uva-ursi, (associative learning) by captive bumble-bees could reduce C. bulbosa's competitiveness. Avoidance learning explained the higher visitation of early- compared with late-flowering C. bulbosa. The resulting pollinator-mediated selection for early flowering may commonly affect GFD orchids, explaining their tendency to flower earlier than rewarding orchids. For dissimilar deceptive and rewarding sympatric species, associative learning may additionally favour early flowering by GFD species. PMID:22090384

  7. Bumble-bee learning selects for both early and long flowering in food-deceptive plants.

    PubMed

    Internicola, Antonina I; Harder, Lawrence D

    2012-04-22

    Most rewardless orchids engage in generalized food-deception, exhibiting floral traits typical of rewarding species and exploiting the instinctive foraging of pollinators. Generalized food-deceptive (GFD) orchids compete poorly with rewarding species for pollinator services, which may be overcome by flowering early in the growing season when relatively more pollinators are naive and fewer competing plant species are flowering, and/or flowering for extended periods to enhance the chance of pollinator visits. We tested these hypotheses by manipulating flowering time and duration in a natural population of Calypso bulbosa and quantifying pollinator visitation based on pollen removal. Both early and long flowering increased bumble-bee visitation compared with late and brief flowering, respectively. To identify the cause of reduced visitation during late flowering, we tested whether negative experience with C. bulbosa (avoidance learning) and positive experience with a rewarding species, Arctostaphylos uva-ursi, (associative learning) by captive bumble-bees could reduce C. bulbosa's competitiveness. Avoidance learning explained the higher visitation of early- compared with late-flowering C. bulbosa. The resulting pollinator-mediated selection for early flowering may commonly affect GFD orchids, explaining their tendency to flower earlier than rewarding orchids. For dissimilar deceptive and rewarding sympatric species, associative learning may additionally favour early flowering by GFD species.

  8. Molecular cloning and characterization of a gene regulating flowering time from Alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Tiejun; Chao, Yuehui; Kang, Junmei; Ding, Wang; Yang, Qingchuan

    2013-07-01

    Genes that regulate flowering time play crucial roles in plant development and biomass formation. Based on the cDNA sequence of Medicago truncatula (accession no. AY690425), the LFY gene of alfalfa was cloned. Sequence similarity analysis revealed high homology with FLO/LFY family genes of other plants. When fused to the green fluorescent protein, MsLFY protein was localized in the nucleus of onion (Allium cepa L.) epidermal cells. The RT-qPCR analysis of MsLFY expression patterns showed that the expression of MsLFY gene was at a low level in roots, stems, leaves and pods, and the expression level in floral buds was the highest. The expression of MsLFY was induced by GA3 and long photoperiod. Plant expression vector was constructed and transformed into Arabidopsis by the agrobacterium-mediated methods. PCR amplification with the transgenic Arabidopsis genome DNA indicated that MsLFY gene had integrated in Arabidopsis genome. Overexpression of MsLFY specifically caused early flowering under long day conditions compared with non-transgenic plants. These results indicated MsLFY played roles in promoting flowering time.

  9. Record-Breaking Early Flowering in the Eastern United States

    PubMed Central

    Ellwood, Elizabeth R.; Temple, Stanley A.; Primack, Richard B.; Davis, Charles C.

    2013-01-01

    Flowering times are well-documented indicators of the ecological effects of climate change and are linked to numerous ecosystem processes and trophic interactions. Dozens of studies have shown that flowering times for many spring-flowering plants have become earlier as a result of recent climate change, but it is uncertain if flowering times will continue to advance as temperatures rise. Here, we used long-term flowering records initiated by Henry David Thoreau in 1852 and Aldo Leopold in 1935 to investigate this question. Our analyses demonstrate that record-breaking spring temperatures in 2010 and 2012 in Massachusetts, USA, and 2012 in Wisconsin, USA, resulted in the earliest flowering times in recorded history for dozens of spring-flowering plants of the eastern United States. These dramatic advances in spring flowering were successfully predicted by historical relationships between flowering and spring temperature spanning up to 161 years of ecological change. These results demonstrate that numerous temperate plant species have yet to show obvious signs of physiological constraints on phenological advancement in the face of climate change. PMID:23342001

  10. Flower color preferences of insects and livestock: effects on Gentiana lutea reproductive success

    PubMed Central

    Losada, María; Veiga, Tania; Guitián, Javier; Guitián, José; Guitián, Pablo

    2016-01-01

    Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i) Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii) Do mutualists (pollinators) and antagonists (seed predators, insect herbivores and livestock) jointly affect G. lutea reproductive success? Insect herbivores fed more often on yellow flowering individuals but they did not affect seed production, whereas livestock affected seed production but did not show clear color preferences. Our data indicate that flower color variation of G. lutea is not affected by insect herbivores or grazing livestock. PMID:27014509

  11. Endogenous ethylene does not regulate opening of unstressed Iris flowers but strongly inhibits it in water-stressed flowers.

    PubMed

    Çelikel, Fisun G; van Doorn, Wouter G

    2012-09-15

    The floral buds of Iris flowers (Iris x hollandica) are enclosed by two sheath leaves. Flower opening depends on lifting the flower up to a position whereby the tepals can move laterally. This upward movement is carried out by elongation of the subtending pedicel and ovary. In the pedicels and ovaries of unstressed control flowers, the concentration of ACC (1-aminocyclopropane-1-carboxylic acid) and the rate of ethylene production increased during d 0-1 of flower opening, and then decreased. Exposure to ≥200 nL L(-1) ethylene for 24 h at 20°C inhibited elongation of the pedicel+ovary, and inhibited flower opening. However, pulsing of unstressed flowers with solutions containing inhibitors of ethylene synthesis (AOA, AVG), or an inhibitor of ethylene action (STS), did not affect pedicel+ovary elongation or flower opening. When the flowers were dehydrated for 2 d at 20°C and 60% RH, they did not open when subsequently placed in water, and showed inhibited elongation in the pedicel+ovary. This dehydration treatment resulted in elevated pedicel+ovary ACC levels and in increased ethylene production. Treatment with STS prevented the increase in ACC levels and ethylene production, overcame the effect of dehydration on elongation of the pedicel+ovary, and resulted in full flower opening. It is concluded that flower opening in unstressed Iris flowers is not regulated by endogenous ethylene. An increase in endogenous ethylene above normal levels during stress, by contrast, strongly inhibited flower opening, due to its inhibitory effect on elongation of the pedicel+ovary. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering

    PubMed Central

    Del Cueto, Jorge; Ionescu, Irina A.; Pičmanová, Martina; Gericke, Oliver; Motawia, Mohammed S.; Olsen, Carl E.; Campoy, José A.; Dicenta, Federico; Møller, Birger L.; Sánchez-Pérez, Raquel

    2017-01-01

    Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars – differing from very early to extra-late in flowering time – and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and β-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species. PMID:28579996

  13. Large and abundant flowers increase indirect costs of corollas: a study of coflowering sympatric Mediterranean species of contrasting flower size.

    PubMed

    Teixido, Alberto L; Valladares, Fernando

    2013-09-01

    Large floral displays receive more pollinator visits but involve higher production and maintenance costs. This can result in indirect costs which may negatively affect functions like reproductive output. In this study, we explored the relationship between floral display and indirect costs in two pairs of coflowering sympatric Mediterranean Cistus of contrasting flower size. We hypothesized that: (1) corolla production entails direct costs in dry mass, N and P, (2) corollas entail significant indirect costs in terms of fruit set and seed production, (3) indirect costs increase with floral display, (4) indirect costs are greater in larger-flowered sympatric species, and (5) local climatic conditions influence indirect costs. We compared fruit set and seed production of petal-removed flowers and unmanipulated control flowers and evaluated the influence of mean flower number and mean flower size on relative fruit and seed gain of petal-removed and control flowers. Fruit set and seed production were significantly higher in petal-removed flowers in all the studied species. A positive relationship was found between relative fruit gain and mean individual flower size within species. In one pair of species, fruit gain was higher in the large-flowered species, as was the correlation between fruit gain and mean number of open flowers. In the other pair, the correlation between fruit gain and mean flower size was also higher in the large-flowered species. These results reveal that Mediterranean environments impose significant constraints on floral display, counteracting advantages of large flowers from the pollination point of view with increased indirect costs of such flowers.

  14. A large scale joint analysis of flowering time reveals independent temperate adaptations in maize

    USDA-ARS?s Scientific Manuscript database

    Modulating days to flowering is a key mechanism in plants for adapting to new environments, and variation in days to flowering drives population structure by limiting mating. To elucidate the genetic architecture of flowering across maize, a quantitative trait, we mapped flowering in five global pop...

  15. Nonrandom Composition of Flower Colors in a Plant Community: Mutually Different Co-Flowering Natives and Disturbance by Aliens

    PubMed Central

    Makino, Takashi T.; Yokoyama, Jun

    2015-01-01

    When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies), and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant–pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly. PMID:26650121

  16. Pollinator-mediated selection on flower color, flower scent and flower morphology of Hemerocallis: evidence from genotyping individual pollen grains on the stigma.

    PubMed

    Hirota, Shun K; Nitta, Kozue; Suyama, Yoshihisa; Kawakubo, Nobumitsu; Yasumoto, Akiko A; Yahara, Tetsukazu

    2013-01-01

    To trace the fate of individual pollen grains through pollination processes, we determined genotypes of single pollen grains deposited on Hemerocallis stigmas in an experimental mixed-species array. Hemerocallis fulva, pollinated by butterflies, has diurnal, reddish and unscented flowers, and H. citrina, pollinated by hawkmoths, has nocturnal, yellowish and sweet scent flowers. We observed pollinator visits to an experimental array of 24 H. fulva and 12 F2 hybrids between the two species (H. fulva and H. citrina) and collected stigmas after every trip bout of swallowtail butterflies or hawkmoths. We then measured selection by swallowtail butterflies or hawkmoths through male and female components of pollination success as determined by single pollen genotyping. As expected, swallowtail butterflies imposed selection on reddish color and weak scent: the number of outcross pollen grains acquired is a quadratic function of flower color with the maximum at reddish color, and the combined pollination success was maximal at weak scent (almost unrecognizable for human). This explains why H. fulva, with reddish flowers and no recognizable scent, is mainly pollinated by swallowtail butterflies. However, we found no evidence of hawkmoths-mediated selection on flower color or scent. Our findings do not support a hypothesis that yellow flower color and strong scent intensity, the distinctive floral characteristics of H. citrina, having evolved in adaptations to hawkmoths. We suggest that the key trait that triggers the evolution of nocturnal flowers is flowering time rather than flower color and scent.

  17. Pollinator-Mediated Selection on Flower Color, Flower Scent and Flower Morphology of Hemerocallis: Evidence from Genotyping Individual Pollen Grains On the Stigma

    PubMed Central

    Hirota, Shun K.; Nitta, Kozue; Suyama, Yoshihisa; Kawakubo, Nobumitsu; Yasumoto, Akiko A.; Yahara, Tetsukazu

    2013-01-01

    To trace the fate of individual pollen grains through pollination processes, we determined genotypes of single pollen grains deposited on Hemerocallis stigmas in an experimental mixed-species array. Hemerocallis fulva, pollinated by butterflies, has diurnal, reddish and unscented flowers, and H. citrina, pollinated by hawkmoths, has nocturnal, yellowish and sweet scent flowers. We observed pollinator visits to an experimental array of 24 H. fulva and 12 F2 hybrids between the two species (H. fulva and H. citrina) and collected stigmas after every trip bout of swallowtail butterflies or hawkmoths. We then measured selection by swallowtail butterflies or hawkmoths through male and female components of pollination success as determined by single pollen genotyping. As expected, swallowtail butterflies imposed selection on reddish color and weak scent: the number of outcross pollen grains acquired is a quadratic function of flower color with the maximum at reddish color, and the combined pollination success was maximal at weak scent (almost unrecognizable for human). This explains why H. fulva, with reddish flowers and no recognizable scent, is mainly pollinated by swallowtail butterflies. However, we found no evidence of hawkmoths-mediated selection on flower color or scent. Our findings do not support a hypothesis that yellow flower color and strong scent intensity, the distinctive floral characteristics of H. citrina, having evolved in adaptations to hawkmoths. We suggest that the key trait that triggers the evolution of nocturnal flowers is flowering time rather than flower color and scent. PMID:24376890

  18. Flower scents from the Pacific.

    PubMed

    Joulain, Daniel

    2008-06-01

    For a long time, exotic scents from the islands of the South Pacific have universally been appreciated. Most frequently, fragrant flowers (e.g., frangipani, jasmine sambac, tiaré, pua kenikeni) are used locally for ornamental purposes such as flower garlands (leis). Despite their powerful and delightful fragrance, very few of these flowers have been commercially employed in this part of the world for perfume manufacturing. Creative perfumers are nevertheless strongly interested to better understand these fragrances and to use them, either genuine or artificially reconstituted. Analytical results on the fragrance of these flowers are reported, together with some economical considerations.

  19. [Nutritional content, functional properties and conservation of edible flowers. Review].

    PubMed

    Lara-Cortés, Estrella; Osorio-Díaz, Perla; Jiménez-Aparicio, Antonio; Bautista-Bañios, Silvia

    2013-09-01

    The floriphagia that is the consumption of flowers as a food, is an old practice not widespread among consumers until some decades ago. Edible flowers contribute to increasing the appearance of food. They can provide biologically active substances including vitamin A, C, riboflavins, niacin, minerals such as calcium, phosphorous, iron and potassium that are eventually beneficial to consumers' health. This review includes some examples of edible flowers including roses, violets and nasturtium among others, uses and applications, sensorial characteristics and nutritional values that lead them to be considered as functional food: An important factor that affects the quality of edible flowers is the form in which they are preserved since it may affect their sensorial and nutritional characteristics. However, not all flowers can be eaten as food since there are some of them that can be toxic or even mortal. Finally, although the consumption of flowers is an ancient practice, there is little regulation in this regard. Of the review on edible flowers, it is concluded that there are still numerous aspects about them to evaluate such as nutritional and functional characteristics, conservation and regulation with the aim to extend its consumption.

  20. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin

    PubMed Central

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; Carmen González-Mas, M.; Primo-Millo, Eduardo; Agustí, Manuel; Iglesias, Domingo J.

    2011-01-01

    Background and Aims The presence of fruit has been widely reported to act as an inhibitor of flowering in fruit trees. This study is an investigation into the effect of fruit load on flowering of ‘Moncada’ mandarin and on the expression of putative orthologues of genes involved in flowering pathways to provide insight into the molecular mechanisms underlying alternate bearing in citrus. Methods The relationship between fruit load and flowering intensity was examined first. Defruiting experiments were further conducted to demonstrate the causal effect of fruit removal upon flowering. Finally, the activity of flowering-related genes was investigated to determine the extent to which their seasonal expression is affected by fruit yield. Key Results First observations and defruiting experiments indicated a significant inverse relationship between preceding fruit load and flowering intensity. Moreover, data indicated that when fruit remained on the tree from November onwards, a dramatic inhibition of flowering occurred the following spring. The study of the expression pattern of flowering-genes of on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (FT), SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), APETALA1 (AP1) and LEAFY (LFY) were negatively affected by fruit load. Thus, CiFT expression showed a progressive increase in leaves from off trees through the study period, the highest differences found from December onwards (10-fold). Whereas differences in the relative expression of SOC1 only reached significance from September to mid-December, CsAP1 expression was constantly higher in those trees through the whole study period. Significant variations in CsLFY expression only were found in late February (close to 20 %). On the other hand, the expression of the homologues of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS C (FLC) did not appear to be related to fruit load. Conclusions These results suggest for the first time

  1. Insects on flowers

    PubMed Central

    Wardhaugh, Carl W.; Stork, Nigel E.; Edwards, Will; Grimbacher, Peter S.

    2013-01-01

    Insect biodiversity peaks in tropical rainforest environments where a large but as yet unknown proportion of species are found in the canopy. While there has been a proliferation of insect biodiversity research undertaken in the rainforest canopy, most studies focus solely on insects that inhabit the foliage. In a recent paper, we examined the distribution of canopy insects across five microhabitats (mature leaves, new leaves, flowers, fruit and suspended dead wood) in an Australian tropical rainforest, showing that the density (per dry weight gram of microhabitat) of insects on flowers were ten to ten thousand times higher than on the leaves. Flowers also supported a much higher number of species than expected based on their contribution to total forest biomass. Elsewhere we show that most of these beetle species were specialized to flowers with little overlap in species composition between different canopy microhabitats. Here we expand our discussion of the implications of our results with respect to specialization and the generation of insect biodiversity in the rainforest canopy. Lastly, we identify future directions for research into the biodiversity and specialization of flower-visitors in complex tropical rainforests. PMID:23802039

  2. Current progress in orchid flowering/flower development research

    PubMed Central

    Wang, Hsin-Mei; Tong, Chii-Gong

    2017-01-01

    ABSTRACT Genetic pathways relevant to flowering of Arabidopsis are under the control of environmental cues such as day length and temperatures, and endogenous signals including phytohormones and developmental aging. However, genes and even regulatory pathways for flowering identified in crops show divergence from those of Arabidopsis and often do not have functional equivalents to Arabidopsis and/or existing species- or genus-specific regulators and show modified or novel pathways. Orchids are the largest, most highly evolved flowering plants, and form an extremely peculiar group of plants. Here, we briefly summarize the flowering pathways of Arabidopsis, rice and wheat and present them alongside recent discoveries/progress in orchid flowering and flower developmental processes including our transgenic Phalaenopsis orchids for LEAFY overexpression. Potential biotechnological applications in flowering/flower development of orchids with potential target genes are also discussed from an interactional and/or comparative viewpoint. PMID:28448202

  3. Sublethal imidacloprid effects on honey bee flower choices when foraging.

    PubMed

    Karahan, Ahmed; Çakmak, Ibrahim; Hranitz, John M; Karaca, Ismail; Wells, Harrington

    2015-11-01

    Neonicotinoids, systemic neuro-active pesticides similar to nicotine, are widely used in agriculture and are being investigated for a role in honey bee colony losses. We examined one neonicotinoid pesticide, imidacloprid, for its effects on the foraging behavior of free-flying honey bees (Apis mellifera anatoliaca) visiting artificial blue and white flowers. Imidacloprid doses, ranging from 1/5 to 1/50 of the reported LD50, were fed to bees orally. The study consisted of three experimental parts performed sequentially without interruption. In Part 1, both flower colors contained a 4 μL 1 M sucrose solution reward. Part 2 offered bees 4 μL of 1.5 M sucrose solution in blue flowers and a 4 μL 0.5 M sucrose solution reward in white flowers. In Part 3 we reversed the sugar solution rewards, while keeping the flower color consistent. Each experiment began 30 min after administration of the pesticide. We recorded the percentage of experimental bees that returned to forage after treatment. We also recorded the visitation rate, number of flowers visited, and floral reward choices of the bees that foraged after treatment. The forager return rate declined linearly with increasing imidacloprid dose. The number of foraging trips by returning bees was also affected adversely. However, flower fidelity was not affected by imidacloprid dose. Foragers visited both blue and white flowers extensively in Part 1, and showed greater fidelity for the flower color offering the higher sugar solution reward in Parts 2 and 3. Although larger samples sizes are needed, our study suggests that imidacloprid may not affect the ability to select the higher nectar reward when rewards were reversed. We observed acute, mild effects on foraging by honey bees, so mild that storage of imidacloprid tainted-honey is very plausible and likely to be found in honey bee colonies.

  4. Flowering and biomass allocation in U.S. Atlantic coast Spartina alterniflora.

    PubMed

    Crosby, Sarah C; Ivens-Duran, Morgan; Bertness, Mark D; Davey, Earl; Deegan, Linda A; Leslie, Heather M

    2015-05-01

    Salt marshes are highly productive and valuable ecosystems, providing many services on which people depend. Spartina alterniflora Loisel (Poaceae) is a foundation species that builds and maintains salt marshes. Despite this species' importance, much of its basic reproductive biology is not well understood, including flowering phenology, seed production, and the effects of flowering on growth and biomass allocation. We sought to better understand these life history traits and use that knowledge to consider how this species may be affected by climate change. We examined temporal and spatial patterns in flowering and seed production in S. alterniflora at a latitudinal scale (along the U.S. Atlantic coast), regional scale (within New England), and local scale (among subhabitats within marshes) and determined the impact of flowering on growth allocation using field and greenhouse studies. Flowering stem density did not vary along a latitudinal gradient, while at the local scale plants in the less submerged panne subhabitats produced fewer flowers and seeds than those in more frequently submerged subhabitats. We also found that a shift in biomass allocation from above to belowground was temporally related to flowering phenology. We expect that environmental change will affect seed production and that the phenological relationship with flowering will result in limitations to belowground production and thus affect marsh elevation gain. Salt marshes provide an excellent model system for exploring the interactions between plant ecology and ecosystem functioning, enabling better predictions of climate change impacts. © 2015 Botanical Society of America, Inc.

  5. Flowering in Xanthium strumarium

    PubMed Central

    Leonard, Maggy; Kinet, Jean-Marie; Bodson, Monique; Havelange, Andrée; Jacqmard, Annie; Bernier, Georges

    1981-01-01

    Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences. Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus. Images PMID:16661844

  6. Irreversible commitment to flowering in two mango cultivars

    USDA-ARS?s Scientific Manuscript database

    In recent years, the state of Nayarit, Mexico has experienced variations in rainfall distribution and warmer temperatures during the autumn-winter season which have caused erratic flowering of mango. The early-flowering cultivars, such as ‘Ataulfo’, have been less affected than tardy ones such as ‘T...

  7. Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca).

    PubMed

    Karolyi, Florian; Morawetz, Linde; Colville, Jonathan F; Handschuh, Stephan; Metscher, Brian D; Krenn, Harald W

    2013-11-01

    A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts.

  8. Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca)

    NASA Astrophysics Data System (ADS)

    Karolyi, Florian; Morawetz, Linde; Colville, Jonathan F.; Handschuh, Stephan; Metscher, Brian D.; Krenn, Harald W.

    2013-11-01

    A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts.

  9. 'Anti-bee' and 'pro-bird' changes during the evolution of hummingbird pollination in Penstemon flowers.

    PubMed

    Castellanos, M C; Wilson, P; Thomson, J D

    2004-07-01

    Floral phenotypes may be as much the result of selection for avoidance of some animal visitors as selection for improving the interaction with better pollinators. When specializing on hummingbird-pollination, Penstemon flowers may have evolved to improve the morphological fit between bird and flower, or to exclude less-efficient bees, or both. We hypothesized how such selection might work on four floral characters that affect the mechanics of pollen transfer: anther/stigma exsertion, presence of a lower corolla lip, width of the corolla tube, and angle of flower inclination. We surgically modified bee-pollinated P. strictus flowers changing one trait at a time to make them resemble hummingbird-pollinated P. barbatus flowers, and measured pollen transfer by bumblebees and hummingbirds. Results suggest that, apart from 'pro-bird' adaptations, specific 'anti-bee' adaptations have been important in shaping hummingbird-flowers. Moreover, some trait changes may have been selected for only if changing in concert with other traits. Copyright 2004 Blackwell Publishing Ltd

  10. Anthocyanin Profiles in Flowers of Grape Hyacinth.

    PubMed

    Lou, Qian; Wang, Lin; Liu, Hongli; Liu, Yali

    2017-04-26

    Grape hyacinth ( Muscari spp.) is a popular ornamental bulbous perennial famous for its blue flowers. To understand the chemical basis of the rich blue colors in this plant, anthocyanin profiles of six blue flowering grape hyacinths as well as one pink and one white cultivar were determined using high-performance liquid chromatography and mass spectrometry. Along with two known compounds, eight putative anthocyanins were identified in the tepals of grape hyacinth for the first time. The accumulation and distribution of anthocyanins in the plant showed significant cultivar and flower development specificity. Violet-blue flowers mainly contained simple delphinidin-type anthocyanins bearing one or two methyl-groups but no acyl groups, whereas white and pink flowers synthesised more complex pelargonidin/cyanidin-derivatives with acyl-moieties but no methyl-groups. The results partially reveal why solid blue, orange or red flowers are rare in this plant in nature. In addition, pelargonidin-type anthocyanins were found for the first time in the genus, bringing more opportunities in terms of breeding of flower color in grape hyacinth.

  11. Effect of Moringa oleifera flower extract on larval trypsin and acetylcholinesterase activities in Aedes aegypti.

    PubMed

    Pontual, Emmanuel Viana; Napoleão, Thiago Henrique; Dias de Assis, Caio Rodrigo; de Souza Bezerra, Ranilson; Xavier, Haroudo Satiro; Navarro, Daniela Maria do Amaral Ferraz; Coelho, Luana Cassandra Breitenbach Barroso; Paiva, Patrícia Maria Guedes

    2012-03-01

    Aedes aegypti control is crucial to reducing dengue fever. Aedes aegypti larvae have developed resistance to organophosporous insecticides and the use of natural larvicides may help manage larval resistance by increasing elements in insecticide rotation programs. Here, we report on larvicidal activity of Moringa oleifera flower extract against A. aegypti L(1), L(2), L(3), and L(4) as well as the effect of flower extract on gut trypsin and whole-larval acetylcholinesterase from L(4.) In addition, the heated flower extract was investigated for larvicidal activity against L(4) and effect on larval gut trypsin. Moringa oleifera flower extract contains a proteinaceous trypsin inhibitor (M. oleifera flower trypsin inhibitor, MoFTI), triterpene (β-amyrin), sterol (β-sitosterol) as well as flavonoids (kaempferol and quercetin). Larvicidal activity was detected against L(2), L(3), and L(4) (LC(50) of 1.72%, 1.67%, and 0.92%, respectively). Flower extract inhibited L(4) gut trypsin (MoFTI K(i) = 0.6 nM) and did not affect acetylcholinesterase activity. In vivo assay showed that gut trypsin activity from L(4) treated with M. oleifera flower extract decreased over time (0-1,440 min) and was strongly inhibited (98.6%) after 310 min incubation; acetylcholinesterase activity was not affected. Thermal treatment resulted in a loss of trypsin inhibitor and larvicidal activities, supporting the hypothesis that flower extract contains a proteinaceous trypsin inhibitor that may be responsible for the deleterious effects on larval mortality. © 2012 Wiley Periodicals, Inc.

  12. Flower orientation enhances pollen transfer in bilaterally symmetrical flowers.

    PubMed

    Ushimaru, Atushi; Dohzono, Ikumi; Takami, Yasuoki; Hyodo, Fujio

    2009-07-01

    Zygomorphic flowers are usually more complex than actinomorphic flowers and are more likely to be visited by specialized pollinators. Complex zygomorphic flowers tend to be oriented horizontally. It is hypothesized that a horizontal flower orientation ensures effective pollen transfer by facilitating pollinator recognition (the recognition-facilitation hypothesis) and/or pollinator landing (the landing-control hypothesis). To examine these two hypotheses, we altered the angle of Commelina communis flowers and examined the efficiency of pollen transfer, as well as the behavior of their visitors. We exposed unmanipulated (horizontal-), upward-, and downward-facing flowers to syrphid flies (mostly Episyrphus balteatus), which are natural visitors to C. communis. The frequency of pollinator approaches and landings, as well as the amount of pollen deposited by E. balteatus, decreased for the downward-facing flowers, supporting both hypotheses. The upward-facing flowers received the same numbers of approaches and landings as the unmanipulated flowers, but experienced more illegitimate landings. In addition, the visitors failed to touch the stigmas or anthers on the upward-facing flowers, leading to reduced pollen export and receipt, and supporting the landing-control hypothesis. Collectively, our data suggested that the horizontal orientation of zygomorphic flowers enhances pollen transfer by both facilitating pollinator recognition and controlling pollinator landing position. These findings suggest that zygomorphic flowers which deviate from a horizontal orientation may have lower fitness because of decreased pollen transfer.

  13. Foraging behavior of three bee species in a natural mimicry system: female flowers which mimic male flowers in Ecballium elaterium (Cucurbitaceae).

    PubMed

    Dukas, Reuyen

    1987-12-01

    The behavior of Apis mellifera and two species of solitary bees which forage in the flowers of monoecious Ecballium elaterium (L.) A. Rich (Cucurbitaceae) were compared. The female flowers of E. elaterium resemble male flowers visually but are nectarless, and their number is relatively smaller. Apis mellifera was found to discriminate between the two genders and to pay relatively fewer visits to female flowers (mean of 30% relative to male flowers) from the beginning of their activity in the morning. The time spent by honeybees in female flowers is very short compared to that spent in male flowers. It is surmised that the bees remember the differences between the flowers where they foraged on the previous days. In contrast, the two species of solitary bees Lasioglossum politum (Morawitz) (Halictidae) and Ceratina mandibularis Fiese (Anthophoridae) visit the female flowers with nearly equal frequencies at the beginning of each foraging day and stay longer in these flowers. Over the day there is a decline in the relative frequency of visits to female flowers and also in the mean time spent in them. The study shows that bees can collect rewards at high efficiency from the flowers of Ecballium elaterium because of their partial discrimination ability and the scarcity of the mimic flowers. It is suggested that the memory pattern of some solitary bees may be different from that of Apis mellifera. It seems that the limited memory and discrimination ability of bees can lead to a high frequency of visits to the mimic flowers during a long flowering season.

  14. Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper (Capsicum spp.).

    PubMed

    Tan, Shu; Cheng, Jiao-Wen; Zhang, Li; Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin

    2015-01-01

    Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper.

  15. The evolution of flowering strategies in US weedy rice

    USDA-ARS?s Scientific Manuscript database

    Local adaptation in plants often involves changes in flowering time in response to day length and temperature differences. Many crop varieties have been selected for uniformity in flowering time. In contrast, variable flowering may be important for increased competitiveness in weed species invading ...

  16. Bacillus thuringiensis variety kurstaki x aizawai applied to spruce flowers reduced Dioryctria abietella (Lepidoptera: Pyralidae) infestation without affecting seed quality.

    PubMed

    Glynn, Carolyn; Weslien, Jan

    2004-12-01

    We investigated the effects of Bacillus thuringiensis variety kurstaki x aizawai (Bt) on infestation levels of two lepidopteran insects as well as on seed quality in Norway spruce, Picea abies L. (Karst.) in central Sweden. Spruce flowers (female strobili) were sprayed with a 0.2% suspension (wt:wt) of the Bt preparation Turex 50 WP, 25,000 IU/mg in water. To expose even those lepidopteran larvae that feed exclusively embedded within the cone tissue, the Bt treatment was applied to open flowers, before they closed and developed into cones. The experimental design included three main factors: treatment (untreated control, water, or Bt), spruce genotype (three clones), and spraying time (spraying before, during, and after the phase of highest pollen receptivity). The Bt treatment reduced the proportion of cones infested by the cone worm Dioryctria abietella Den. et Schiff. (Lepidoptera: Pyralidae) from approximately 30 to 15%. There was no statistically significant treatment effect on the infestation rate of Cydia strobilella (L.) (Lepidoptera: Tortricidae). The Bt variety kurstaki x aizawai treatment caused no reduction in seed quality as measured by seed weight or percentage of nonfilled seeds. There was no difference in number of seeds per cone between the Bt-treated and untreated control cones. There was a significant effect of genotype on insect infestation rates, as well as on number of seeds per cone and seed weight. Neither level of insect damage nor any seed quality parameters were affected by time of application of the treatments.

  17. Flower-like heads from flower-like meristems: pseudanthium development in Davidia involucrata (Nyssaceae).

    PubMed

    Claßen-Bockhoff, Regine; Arndt, Melanie

    2018-05-01

    Flower-like inflorescences (pseudanthia) have fascinated botanists for a long time. They are explained as condensed inflorescences implying that the pseudanthium develops from an inflorescence meristem (IM). However, recent developmental studies identified a new form of reproductive meristem, the floral unit meristem (FUM). It differs from IMs by lacking acropetal growth and shares fractionation, expansion and autonomous space filling with flower meristems (FM). The similarity among FUMs and FMs raises the question how far flower-like heads originate from flower-like meristems. In the present paper, pseudanthium development in Davidia involucrata is investigated using scanning electron microscopy. D. involucrata has pincushion-shaped heads composed of densely aggregated, perianthless flowers and associated with two large showy bracts. Early developmental stages show a huge naked FUM. The FMs appear almost simultaneously and lack subtending bracts. With ongoing FUM expansion new space is generated which is immediately used by further FM fractionation. The heads have only staminate flowers or are andromonoecious with staminate and a single perfect flower in oblique position. All FMs lack perianth structures and fractionate a variable number of stamen primordia. The perfect FM is much larger than the staminate FMs and forms a syncarpous gynoecium with inferior ovary. Pseudanthium development in D. involucrata confirms the morphogenetic similarity to FMs as to acropetal growth limitation, meristem expansion and fractionation. It thus should not be interpreted as a condensed inflorescence, but as a flower equivalent. Furthermore as the FUM develops inside a bud, its development is considered to be influenced by mechanical pressure. The oblique position of the perfect flower, the developmental delay of the proximal flowers, and the variable number of stamens which were observed in the pseudanthium development, can be caused by mechanical pressure. Next to the Asteraceae

  18. Recent advances in flower color variation and patterning of Japanese morning glory and petunia

    PubMed Central

    Morita, Yasumasa; Hoshino, Atsushi

    2018-01-01

    The Japanese morning glory (Ipomoea nil) and petunia (Petunia hybrida), locally called “Asagao” and “Tsukubane-asagao”, respectively, are popular garden plants. They have been utilized as model plants for studying the genetic basis of floricultural traits, especially anthocyanin pigmentation in flower petals. In their long history of genetic studies, many mutations affecting flower pigmentation have been characterized, and both structural and regulatory genes for the anthocyanin biosynthesis pathway have been identified. In this review, we will summarize recent advances in the understanding of flower pigmentation in the two species with respect to flower hue and color patterning. Regarding flower hue, we will describe a novel enhancer of flavonoid production that controls the intensity of flower pigmentation, new aspects related to a flavonoid glucosyltransferase that has been known for a long time, and the regulatory mechanisms of vacuolar pH being a key determinant of red and blue coloration. On color patterning, we describe particular flower patterns regulated by epigenetic and RNA-silencing mechanisms. As high-quality whole genome sequences of the Japanese morning glory and petunia wild parents (P. axillaris and P. inflata, respectively) were published in 2016, further study on flower pigmentation will be accelerated. PMID:29681755

  19. WEREWOLF, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability.

    PubMed

    Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha

    2011-08-01

    A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous.

  20. Overexpression of AtLOV1 in Switchgrass alters plant architecture, lignin content, and flowering time.

    PubMed

    Xu, Bin; Sathitsuksanoh, Noppadon; Tang, Yuhong; Udvardi, Michael K; Zhang, Ji-Yi; Shen, Zhengxing; Balota, Maria; Harich, Kim; Zhang, Percival Y-H; Zhao, Bingyu

    2012-01-01

    Switchgrass (Panicum virgatum L.) is a prime candidate crop for biofuel feedstock production in the United States. As it is a self-incompatible polyploid perennial species, breeding elite and stable switchgrass cultivars with traditional breeding methods is very challenging. Translational genomics may contribute significantly to the genetic improvement of switchgrass, especially for the incorporation of elite traits that are absent in natural switchgrass populations. In this study, we constitutively expressed an Arabidopsis NAC transcriptional factor gene, LONG VEGETATIVE PHASE ONE (AtLOV1), in switchgrass. Overexpression of AtLOV1 in switchgrass caused the plants to have a smaller leaf angle by changing the morphology and organization of epidermal cells in the leaf collar region. Also, overexpression of AtLOV1 altered the lignin content and the monolignol composition of cell walls, and caused delayed flowering time. Global gene-expression analysis of the transgenic plants revealed an array of responding genes with predicted functions in plant development, cell wall biosynthesis, and flowering. To our knowledge, this is the first report of a single ectopically expressed transcription factor altering the leaf angle, cell wall composition, and flowering time of switchgrass, therefore demonstrating the potential advantage of translational genomics for the genetic improvement of this crop.

  1. Fruit load modulates flowering-related gene expression in buds of alternate-bearing ‘Moncada’ mandarin

    PubMed Central

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; González-Mas, M. Carmen; Primo-Millo, Eduardo; Agustí, Manuel; Iglesias, Domingo J.

    2012-01-01

    Background and Aims Gene determination of flowering is the result of complex interactions involving both promoters and inhibitors. In this study, the expression of flowering-related genes at the meristem level in alternate-bearing citrus trees is analysed, together with the interplay between buds and leaves in the determination of flowering. Methods First defruiting experiments were performed to manipulate blossoming intensity in ‘Moncada’ mandarin, Citrus clementina. Further defoliation was performed to elucidate the role leaves play in the flowering process. In both cases, the activity of flowering-related genes was investigated at the flower induction (November) and differentiation (February) stages. Key Results Study of the expression pattern of flowering-genes in buds from on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (CiFT), TWIN SISTER OF FT (TSF), APETALA1 (CsAP1) and LEAFY (CsLFY) were negatively affected by fruit load. CiFT and TSF activities showed a marked increase in buds from off trees through the study period (ten-fold in November). By contrast, expression of the homologues of the flowering inhibitors of TERMINAL FLOWER 1 (CsTFL), TERMINAL FLOWER 2 (TFL2) and FLOWERING LOCUS C (FLC) was generally lower in off trees. Regarding floral identity genes, the increase in CsAP1 expression in off trees was much greater in buds than in leaves, and significant variations in CsLFY expression (approx. 20 %) were found only in February. Defoliation experiments further revealed that the absence of leaves completely abolished blossoming and severely affected the expression of most of the flowering-related genes, particularly decreasing the activity of floral promoters and of CsAP1 at the induction stage. Conclusions These results suggest that the presence of fruit affects flowering by greatly altering gene-expression not only at the leaf but also at the meristem level. Although leaves are required for flowering to

  2. EARLY FLOWERING3 Redundancy Fine-Tunes Photoperiod Sensitivity1[OPEN

    PubMed Central

    Rubenach, Andrew J.S.; Vander Schoor, Jacqueline K.; Aubert, Gregoire; Burstin, Judith

    2017-01-01

    Three pea (Pisum sativum) loci controlling photoperiod sensitivity, HIGH RESPONSE (HR), DIE NEUTRALIS (DNE), and STERILE NODES (SN), have recently been shown to correspond to orthologs of Arabidopsis (Arabidopsis thaliana) circadian clock genes EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO, respectively. A fourth pea locus, PHOTOPERIOD (PPD), also contributes to the photoperiod response in a similar manner to SN and DNE, and recessive ppd mutants on a spring-flowering hr mutant background show early, photoperiod-insensitive flowering. However, the molecular identity of PPD has so far remained elusive. Here, we show that the PPD locus also has a role in maintenance of diurnal and circadian gene expression rhythms and identify PPD as an ELF3 co-ortholog, termed ELF3b. Genetic interactions between pea ELF3 genes suggest that loss of PPD function does not affect flowering time in the presence of functional HR, whereas PPD can compensate only partially for the lack of HR. These results provide an illustration of how gene duplication and divergence can generate potential for the emergence of more subtle variations in phenotype that may be adaptively significant. PMID:28202598

  3. Allelic Variations at Four Major Maturity E Genes and Transcriptional Abundance of the E1 Gene Are Associated with Flowering Time and Maturity of Soybean Cultivars

    PubMed Central

    Wang, Yueqiang; Chen, Xin; Ren, Haixiang; Yang, Jiayin; Cheng, Wen; Zong, Chunmei; Gu, Heping; Qiu, Hongmei; Wu, Hongyan; Zhang, Xingzheng; Cui, Tingting; Xia, Zhengjun

    2014-01-01

    The time to flowering and maturity are ecologically and agronomically important traits for soybean landrace and cultivar adaptation. As a typical short-day crop, long day conditions in the high-latitude regions require soybean cultivars with photoperiod insensitivity that can mature before frost. Although the molecular basis of four major E loci (E1 to E4) have been deciphered, it is not quite clear whether, or to what degree, genetic variation and the expression level of the four E genes are associated with the time to flowering and maturity of soybean cultivars. In this study, we genotyped 180 cultivars at E1 to E4 genes, meanwhile, the time to flowering and maturity of those cultivars were investigated at six geographic locations in China from 2011 to 2012 and further confirmed in 2013. The percentages of recessive alleles at E1, E2, E3 and E4 loci were 38.34%, 84.45%, 36.33%, and 7.20%, respectively. Statistical analysis showed that allelic variations at each of four loci had a significant effect on flowering time as well as maturity. We classified the 180 cultivars into eight genotypic groups based on allelic variations of the four major E loci. The genetic group of e1-nf representing dysfunctional alleles at the E1 locus flowered earliest in all the geographic locations. In contrast, cultivars in the E1E2E3E4 group originated from the southern areas flowered very late or did not flower before frost at high latitude locations. The transcriptional abundance of functional E1 gene was significantly associated with flowering time. However, the ranges of time to flowering and maturity were quite large within some genotypic groups, implying the presence of some other unknown genetic factors that are involved in control of flowering time or maturity. Known genes (e.g. E3 and E4) and other unknown factors may function, at least partially, through regulation of the expression of the E1 gene. PMID:24830458

  4. Developmental stages of cultivated strawberry flowers in relation to chilling sensitivity

    PubMed Central

    Ariza, Maria Teresa; Soria, Carmen; Martínez-Ferri, Elsa

    2015-01-01

    Environmental factors affecting flower development may limit the yields of fruiting crops worldwide. In temperate regions, chilling temperatures during flower development can compromise fruit production, but their negative effects vary depending on the differing susceptibilities of each developmental stage. The cultivated strawberry (Fragaria× ananassa Duch.) is widely grown worldwide but financial returns are influenced by sudden shifts to chilling temperatures occurring during the cropping cycle. Despite this important limitation, knowledge of F.× ananassa flower development is lacking, in contrast to the diploid wild-type strawberry (F. vesca). In this study we describe steps in floral development of cultivated strawberry and define their vulnerability to chilling temperatures. To achieve this, flower buds from strawberry plants of cv. ‘Camarosa’ were labelled and monitored from bud initiation until anthesis. Description of morphological and functional changes during flower development was based on histological sections and scanning electron microscopy. To determine the impact of low temperatures at different developmental stages, plants carrying buds of different sizes were chilled at 2 °C for 24 h. Several parameters related to male and female gametophyte development were later evaluated in flowers as they approached anthesis. Fragaria× ananassa flower development was divided into 16 stages according to landmark events. These stages were similar to those documented for F. vesca but three new additional intermediate stages were described. Timing of developmental processes was achieved by correlating developmental staging with specific bud sizes and days before anthesis. Time to reach anthesis from early bud stages was 17–18 days. During this period, we detected four critical periods vulnerable to low temperatures. These were mostly related to male gametophyte development but also to injury to female organs at late developmental stages. These results

  5. Sexual dimorphism of staminate- and pistillate-phase flowers of Saponaria officinalis (bouncing bet) affects pollinator behavior and seed set.

    PubMed

    Davis, Sandra L; Dudle, Dana A; Nawrocki, Jenna R; Freestone, Leah M; Konieczny, Peter; Tobin, Michael B; Britton, Michael M

    2014-01-01

    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual

  6. Sexual Dimorphism of Staminate- and Pistillate-Phase Flowers of Saponaria officinalis (Bouncing Bet) Affects Pollinator Behavior and Seed Set

    PubMed Central

    Davis, Sandra L.; Dudle, Dana A.; Nawrocki, Jenna R.; Freestone, Leah M.; Konieczny, Peter; Tobin, Michael B.; Britton, Michael M.

    2014-01-01

    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual

  7. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways

    PubMed Central

    Huo, Heqiang; Wei, Shouhui; Bradford, Kent J.

    2016-01-01

    Seed germination and flowering, two critical developmental transitions in plant life cycles, are coordinately regulated by genetic and environmental factors to match plant establishment and reproduction to seasonal cues. The DELAY OF GERMINATION1 (DOG1) gene is involved in regulating seed dormancy in response to temperature and has also been associated genetically with pleiotropic flowering phenotypes across diverse Arabidopsis thaliana accessions and locations. Here we show that DOG1 can regulate seed dormancy and flowering times in lettuce (Lactuca sativa, Ls) and Arabidopsis through an influence on levels of microRNAs (miRNAs) miR156 and miR172. In lettuce, suppression of LsDOG1 expression enabled seed germination at high temperature and promoted early flowering in association with reduced miR156 and increased miR172 levels. In Arabidopsis, higher miR156 levels resulting from overexpression of the MIR156 gene enhanced seed dormancy and delayed flowering. These phenotypic effects, as well as conversion of MIR156 transcripts to miR156, were compromised in DOG1 loss-of-function mutant plants, especially in seeds. Overexpression of MIR172 reduced seed dormancy and promoted early flowering in Arabidopsis, and the effect on flowering required functional DOG1. Transcript levels of several genes associated with miRNA processing were consistently lower in dry seeds of Arabidopsis and lettuce when DOG1 was mutated or its expression was reduced; in contrast, transcript levels of these genes were elevated in a DOG1 gain-of-function mutant. Our results reveal a previously unknown linkage between two critical developmental phase transitions in the plant life cycle through a DOG1–miR156–miR172 interaction. PMID:27035986

  8. A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits

    PubMed Central

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-01-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits. PMID:19884167

  9. Testing the influence of gravity on flower symmetry in five Saxifraga species.

    PubMed

    Koethe, Sebastian; Bloemer, Judith; Lunau, Klaus

    2017-04-01

    Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species-Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa-concerning six flower parameters-angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.

  10. Testing the influence of gravity on flower symmetry in five Saxifraga species

    NASA Astrophysics Data System (ADS)

    Koethe, Sebastian; Bloemer, Judith; Lunau, Klaus

    2017-04-01

    Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species— Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa—concerning six flower parameters—angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.

  11. Geometric morphometrics reveals shifts in flower shape symmetry and size following gene knockdown of CYCLOIDEA and ANTHOCYANIDIN SYNTHASE.

    PubMed

    Berger, Brent A; Ricigliano, Vincent A; Savriama, Yoland; Lim, Aedric; Thompson, Veronica; Howarth, Dianella G

    2017-11-17

    While floral symmetry has traditionally been assessed qualitatively, recent advances in geometric morphometrics have opened up new avenues to specifically quantify flower shape and size using robust multivariate statistical methods. In this study, we examine, for the first time, the ability of geometric morphometrics to detect morphological differences in floral dorsoventral asymmetry following virus-induced gene silencing (VIGS). Using Fedia graciliflora Fisch. & Meyer (Valerianaceae) as a model, corolla shape of untreated flowers was compared using canonical variate analysis to knockdown phenotypes of CYCLOIDEA2A (FgCYC2A), ANTHOCYANIDIN SYNTHASE (FgANS), and empty vector controls. Untreated flowers and all VIGS treatments were morphologically distinct from each other, suggesting that VIGS may cause subtle shifts in floral shape. Knockdowns of FgCYC2A were the most dramatic, affecting the position of dorsal petals in relation to lateral petals, thereby resulting in more actinomorphic-like flowers. Additionally, FgANS knockdowns developed larger flowers with wider corolla tube openings. These results provide a method to quantify the role that specific genes play in the developmental pathway affecting the dorsoventral axis of symmetry in zygomorphic flowers. Additionally, they suggest that ANS may have an unintended effect on floral size and shape.

  12. Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida.

    PubMed

    Oliva, Moran; Ovadia, Rinat; Perl, Avichai; Bar, Einat; Lewinsohn, Efraim; Galili, Gad; Oren-Shamir, Michal

    2015-01-01

    Purple Petunia × hybrida V26 plants accumulate fragrant benzenoid-phenylpropanoid molecules and anthocyanin pigments in their petals. These specialized metabolites are synthesized mainly from the aromatic amino acids phenylalanine. Here, we studied the profile of secondary metabolites of petunia plants, expressing a feedback-insensitive bacterial form of 3-deoxy-di-arabino-heptulosonate 7-phosphate synthase enzyme (AroG*) of the shikimate pathway, as a tool to stimulate the conversion of primary to secondary metabolism via the aromatic amino acids. We focused on specialized metabolites contributing to flower showy traits. The presence of AroG* protein led to increased aromatic amino acid levels in the leaves and high phenylalanine levels in the petals. In addition, the AroG* petals accumulated significantly higher levels of fragrant benzenoid-phenylpropanoid volatiles, without affecting the flowers' lifetime. In contrast, AroG* abundance had no effect on flavonoids and anthocyanins levels. The metabolic profile of all five AroG* lines was comparable, even though two lines produced the transgene in the leaves, but not in the petals. This implies that phenylalanine produced in leaves can be transported through the stem to the flowers and serve as a precursor for formation of fragrant metabolites. Dipping cut petunia stems in labelled phenylalanine solution resulted in production of labelled fragrant volatiles in the flowers. This study emphasizes further the potential of this metabolic engineering approach to stimulate the production of specialized metabolites and enhance the quality of various plant organs. Furthermore, transformation of vegetative tissues with AroG* is sufficient for induced production of specialized metabolites in organs such as the flowers. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    PubMed

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  14. Overexpression of PvPin1, a Bamboo Homolog of PIN1-Type Parvulin 1, Delays Flowering Time in Transgenic Arabidopsis and Rice

    PubMed Central

    Zheng, Zhigang; Yang, Xiaoming; Fu, Yaping; Zhu, Longfei; Wei, Hantian; Lin, Xinchun

    2017-01-01

    Because of the long and unpredictable flowering period in bamboo, the molecular mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis PIN1-type parvulin 1 (Pin1At) is an important floral activator and regulates floral transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1) and agamous-like 24 (AGL24). Whether bamboo has a Pin1 homolog and whether it works in bamboo flowering are still unknown. In this study, we cloned PvPin1, a homolog of Pin1At, from Phyllostachys violascens (Bambusoideae). Bioinformatics analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1 was widely expressed in all tested bamboo tissues, with the highest expression in young leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before bamboo flowering then declined during flower development. Overexpression of PvPin1 significantly delayed flowering time by downregulating SOC1 and AGL24 expression in Arabidopsis under greenhouse conditions and conferred a significantly late flowering phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence of the PvPin1 promoter was cloned, and cis-acting element prediction showed that ABRE and TGACG-motif elements, which responded to abscisic acid (ABA) and methyl jasmonate (MeJA), respectively, were characteristic of P. violascens in comparison with Arabidopsis. On promoter activity analysis, exogenous ABA and MeJA could significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be a repressor in flowering, and its delay of flowering time could be regulated by ABA and MeJA in bamboo. PMID:28951734

  15. Overexpression of PvPin1, a Bamboo Homolog of PIN1-Type Parvulin 1, Delays Flowering Time in Transgenic Arabidopsis and Rice.

    PubMed

    Zheng, Zhigang; Yang, Xiaoming; Fu, Yaping; Zhu, Longfei; Wei, Hantian; Lin, Xinchun

    2017-01-01

    Because of the long and unpredictable flowering period in bamboo, the molecular mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis PIN1-type parvulin 1 (Pin1At) is an important floral activator and regulates floral transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1) and agamous-like 24 (AGL24). Whether bamboo has a Pin1 homolog and whether it works in bamboo flowering are still unknown. In this study, we cloned PvPin1 , a homolog of Pin1At , from Phyllostachys violascens (Bambusoideae). Bioinformatics analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1 was widely expressed in all tested bamboo tissues, with the highest expression in young leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before bamboo flowering then declined during flower development. Overexpression of PvPin1 significantly delayed flowering time by downregulating SOC1 and AGL24 expression in Arabidopsis under greenhouse conditions and conferred a significantly late flowering phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence of the PvPin1 promoter was cloned, and cis -acting element prediction showed that ABRE and TGACG-motif elements, which responded to abscisic acid (ABA) and methyl jasmonate (MeJA), respectively, were characteristic of P. violascens in comparison with Arabidopsis . On promoter activity analysis, exogenous ABA and MeJA could significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be a repressor in flowering, and its delay of flowering time could be regulated by ABA and MeJA in bamboo.

  16. Flower Development

    PubMed Central

    Alvarez-Buylla, Elena R.; Benítez, Mariana; Corvera-Poiré, Adriana; Chaos Cador, Álvaro; de Folter, Stefan; Gamboa de Buen, Alicia; Garay-Arroyo, Adriana; García-Ponce, Berenice; Jaimes-Miranda, Fabiola; Pérez-Ruiz, Rigoberto V.; Piñeyro-Nelson, Alma; Sánchez-Corrales, Yara E.

    2010-01-01

    Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies. PMID:22303253

  17. Clipping affects flowering of California poppy at two growth stages

    Treesearch

    Raymond D. Ratliff; Richard L. Hubbard

    1975-01-01

    The effects of clipping California-poppy (Eschscholzia californica Cham.) at various growth stages on plant survival, flowering, herbage yield, and root production were studied at the San Joaquin Experimental Range, in central California. Plants were clipped once to a 2-cm stubble at one of six stages. Through the early reproductive stage, a single...

  18. Blob Flowers.

    ERIC Educational Resources Information Center

    Canfield, Elaine

    2003-01-01

    Describes an art project called blob flowers in which fifth-grade students created pictures of flowers using watercolor and markers. Explains that the lesson incorporates ideas from art and science. Discusses in detail how the students created their flowers. (CMK)

  19. Eating flowers? Exploring attitudes and consumers' representation of edible flowers.

    PubMed

    Rodrigues, H; Cielo, D P; Goméz-Corona, C; Silveira, A A S; Marchesan, T A; Galmarini, M V; Richards, N S P S

    2017-10-01

    Edible flowers have gained more attention in recent years thanks to their perceived health benefits. Despite this attention, it seems that edible flowers are not popularized for consumption in South America, being considered unfamiliar for some cultures from this continent. In this context, the general goal of the present study was to investigate the three dimensions of social representation theory, the representational field, the information and the attitude of the two conditions of edible flowers: a more general "food made with flowers" and more directional product "yoghurt made with flowers", using Brazilian consumers. To achieve this goal, a free word association task was applied. A total of 549 consumers participated in this study. Participants were divided into two conditions, in which the inductor expressions for the free word association task changed: (a) food products made with flowers and (b) yoghurt made with flowers. Results showed a very positive attitude to both situations, and consumers associated Food products made with flowers to "health care" while the central core of yoghurt made with flowers reflected the innovative condition of this product, supported here by their unpredictable character (information generated). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Morphogenetic lability of reproductive structures in Ruppia maritima (Ruppiaceae, Alismatales): from two lateral flowers to a terminal flower].

    PubMed

    Lokk, I É; Sokolov, D D; Remizova, M V

    2011-01-01

    Flowers of Ruppia are normally arranged into an open two-flowered spike, but sometimes the two lateral flowers are congenitally united with each other and form a terminal flower-like structure. This developmental abnormality resembles those described in well-investigated mutants of model organisms of developmental genetics such as Arabidopsis Antirrhinum. A study of Ruppia allows investigating morphogenetic lability of this feature in natural populations. These data will be important for understanding evolutionary transitions between open and closed inflorescences. This paper presents first data on frequencies ofterminal flower-like structures in natural populations of Ruppia maritima and first observations of their development. Vascular supply of inflorescences with free and united flowers is compared for the first time. Strong differences in frequencies of occurrence of terminal flower-like structures among examined natural populations are revealed. Data on variation of organ numbers in flowers of plants from different populations allow hypothesizing that increased size of floral primordia is a factor that plays a role in their amalgamation into ajoint primordium of a terminal structure. Vascular system of inflorescences of R. maritima with united flowers is quite similar to the vascular system of a flower and nothing contradicts a hypothesis on terminal position ofthis structure. Transversally inserted stamens in inflorescences with united flowers are usually of inverted polarity. This appears to be the first documented example of an inversion of relative polarity of stamens and carpels in angiosperms.

  1. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant

    PubMed Central

    2010-01-01

    Background Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). Results We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. Conclusions This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites. PMID:20482889

  2. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant.

    PubMed

    Zhao, Zhi-Gang; Du, Guo-Zhen; Huang, Shuang-Quan

    2010-05-20

    Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.

  3. An allelic series reveals essential roles for FY in plant development in addition to flowering-time control.

    PubMed

    Henderson, Ian R; Liu, Fuquan; Drea, Sinead; Simpson, Gordon G; Dean, Caroline

    2005-08-01

    The autonomous pathway functions to promote flowering in Arabidopsis by limiting the accumulation of the floral repressor FLOWERING LOCUS C (FLC). Within this pathway FCA is a plant-specific, nuclear RNA-binding protein, which interacts with FY, a highly conserved eukaryotic polyadenylation factor. FCA and FY function to control polyadenylation site choice during processing of the FCA transcript. Null mutations in the yeast FY homologue Pfs2p are lethal. This raises the question as to whether these essential RNA processing functions are conserved in plants. Characterisation of an allelic series of fy mutations reveals that null alleles are embryo lethal. Furthermore, silencing of FY, but not FCA, is deleterious to growth in Nicotiana. The late-flowering fy alleles are hypomorphic and indicate a requirement for both intact FY WD repeats and the C-terminal domain in repression of FLC. The FY C-terminal domain binds FCA and in vitro assays demonstrate a requirement for both C-terminal FY-PPLPP repeats during this interaction. The expression domain of FY supports its roles in essential and flowering-time functions. Hence, FY may mediate both regulated and constitutive RNA 3'-end processing.

  4. JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Jun; Li, Chunhua; Xu, Shujuan; Xing, Lijing; Xu, Yunyuan; Chong, Kang

    2015-01-01

    Lectins selectively recognize sugars or glycans for defense in living cells, but less is known about their roles in the development process and the functional network with other factors. Here, we show that Arabidopsis (Arabidopsis thaliana) JACALIN-LECTIN LIKE1 (AtJAC1) functions in flowering time control. Loss of function of AtJAC1 leads to precocious flowering, whereas overexpression of AtJAC1 causes delayed flowering. AtJAC1 influences flowering through regulation of the key flowering repressor gene FLOWERING LOCUS C (FLC). Genetic analysis revealed that AtJAC1’s function is mostly dependent on GLYCINE-RICH RNA-BINDING PROTEIN7 (GRP7), an upstream regulator of FLC. Biochemical and cell biological data indicated that AtJAC1 interacted physically with GRP7 specifically in the cytoplasm. AtJAC1 influences the nucleocytoplasmic distribution of GRP7, with predominant nuclear localization of GRP7 when AtJAC1 function is lost but retention of GRP7 in the cytoplasm when AtJAC1 is overexpressed. A temporal inducible assay suggested that AtJAC1’s regulation of flowering could be compromised by the nuclear accumulation of GRP7. In addition, GRP7 binds to the antisense precursor messenger RNA of FLC through a conserved RNA motif. Loss of GRP7 function leads to the elevation of total FLC antisense transcripts and reduced proximal-distal polyadenylation ratio, as well as histone methylation changes in the FLC gene body region and increased total functional sense FLC transcript. Attenuating the direct binding of GRP7 with competing artificial RNAs leads to changes of FLC antisense precursor messenger RNA processing and flowering transition. Taken together, our study indicates that AtJAC1 coordinates with GRP7 in shaping plant development through the regulation of RNA processing in Arabidopsis. PMID:26392261

  5. High Arctic flowering phenology and plant-pollinator interactions in response to delayed snow melt and simulated warming

    NASA Astrophysics Data System (ADS)

    Gillespie, Mark A. K.; Baggesen, Nanna; Cooper, Elisabeth J.

    2016-11-01

    The projected alterations to climate in the High Arctic are likely to result in changes to the short growing season, particularly with varying predicted effects on winter snowfall, the timing of summer snowmelt and air temperatures. These changes are likely to affect the phenology of interacting species in a variety of ways, but few studies have investigated the effects of combined climate drivers on plant-pollinator interactions in the High Arctic. In this study, we alter the timing of flowering phenology using a field manipulation experiment in which snow depth is increased using snow fences and temperatures are enhanced by open-top chambers (OTCs). We used this experiment to quantify the combined effects of treatments on the flowering phenology of six dominant plant species (Dryas octopetala, Cassiope tetragona, Bistorta vivipara, Saxifraga oppositifolia, Stellaria crassipes and Pedicularis hirsuita), and to simulate differing responses to climate between plants and pollinators in a subset of plots. Flowers were counted regularly throughout the growing season of 2015, and insect visitors were caught on flowers during standardised observation sessions. As expected, deep snow plots had delayed snow melt timing and this in turn delayed the first and peak flowering dates of the plants and shortened the prefloration period overall. The OTCs counteracted the delay in first and peak flowering to some extent. There was no effect of treatment on length of flowering season, although for all variables there were species-specific responses. The insect flower-visitor community was species poor, and although evidence of disruption to phenological overlaps was not found, the results do highlight the vulnerability of the plant-pollinator network in this system with differing phenological shifts between insects and plants and reduced visitation rates to flowers in plots with deep snow.

  6. Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids.

    PubMed

    Bonnafous, Fanny; Fievet, Ghislain; Blanchet, Nicolas; Boniface, Marie-Claude; Carrère, Sébastien; Gouzy, Jérôme; Legrand, Ludovic; Marage, Gwenola; Bret-Mestries, Emmanuelle; Munos, Stéphane; Pouilly, Nicolas; Vincourt, Patrick; Langlade, Nicolas; Mangin, Brigitte

    2018-02-01

    This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.

  7. Effect of cytokinins on delaying petunia flower senescence: a transcriptome study approach.

    PubMed

    Trivellini, Alice; Cocetta, Giacomo; Vernieri, Paolo; Mensuali-Sodi, Anna; Ferrante, Antonio

    2015-01-01

    Flower senescence is a fascinating natural process that represents the final developmental stage in the life of a flower. Plant hormones play an important role in regulating the timing of flower senescence. Ethylene is a trigger and usually accelerates the senescence rate, while cytokinins are known to delay it. The aim of this work was to study the effect of 6-benzylaminopurine (BA) on petal senescence by transcript profile comparison after 3 or 6 h using a cross-species method by hybridizing petunia samples to a 4 × 44 K Agilent tomato array. The relative content of ethylene, abscisic acid, anthocyanins, total carotenoids and total phenols that determine the physiological behaviours of the petal tissue were measured. BA treatment prolonged the flower life and increased the concentrations of phenols and anthocyanins, while total carotenoids did not increase and were lower than the control. The ethylene biosynthetic and perception gene expressions were studied immediately after treatment until 24 h and all genes were repressed, while ethylene production was strongly induced after 4 days. The microarray analyses highlighted that BA strongly affected gene regulation after 3 h, but only 14% of genes remained differentially expressed after 6 h. The most affected pathways and genes were those related to stress, such as heat shock proteins, abscisic acid (ABA) catabolism and its signalling pathway, lipid metabolism and antioxidant defence systems. A gene annotation enrichment analysis using DAVID showed that the most important gene clusters were involved in energy generation and conservation processes. In addition to the ethylene pathway, cytokinins seem to be strongly involved the regulation of the ABA response in flower tissues.

  8. Sucrose accelerates flower opening and delays senescence through a hormonal effect in cut lily flowers.

    PubMed

    Arrom, Laia; Munné-Bosch, Sergi

    2012-06-01

    Sugars are generally used to extend the vase life of cut flowers. Such beneficial effects have been associated with an improvement of water relations and an increase in available energy for respiration by floral tissues. In this study we aimed at evaluating to what extent (i) endogenous levels of sugars in outer and inner tepals, androecium and gynoecium are altered during opening and senescence of lily flowers; (ii) sugar levels increase in various floral tissues after sucrose addition to the vase solution; and (iii) sucrose addition alters the hormonal balance of floral tissues. Results showed that endogenous glucose levels increased during flower opening and decreased during senescence in all floral organs, while sucrose levels increased in outer and inner tepals and the androecium during senescence. Sucrose treatment accelerated flower opening, and delayed senescence, but did not affect tepal abscission. Such effects appeared to be exerted through a specific increase in the endogenous levels of sucrose in the gynoecium and of glucose in all floral tissues. The hormonal balance was altered in the gynoecium as well as in other floral tissues. Aside from cytokinin and auxin increases in the gynoecium; cytokinins, gibberellins, abscisic acid and salicylic acid levels increased in the androecium, while abscisic acid decreased in outer tepals. It is concluded that sucrose addition to the vase solution exerts an effect on flower opening and senescence by, among other factors, altering the hormonal balance of several floral tissues. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.)

    PubMed Central

    Hoenicka, Hans; Lehnhardt, Denise; Briones, Valentina; Nilsson, Ove; Fladung, Matthias

    2016-01-01

    Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to ‘pollen development genes’ from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7–10 years, can now be shortened to 6–10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research. PMID:27052434

  10. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.).

    PubMed

    Hoenicka, Hans; Lehnhardt, Denise; Briones, Valentina; Nilsson, Ove; Fladung, Matthias

    2016-05-01

    Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to 'pollen development genes' from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7-10 years, can now be shortened to 6-10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Unexpected diversity during community succession in the apple flower microbiome.

    PubMed

    Shade, Ashley; McManus, Patricia S; Handelsman, Jo

    2013-02-26

    Despite its importance to the host, the flower microbiome is poorly understood. We report a culture-independent, community-level assessment of apple flower microbial diversity and dynamics. We collected flowers from six apple trees at five time points, starting before flowers opened and ending at petal fall. We applied streptomycin to half of the trees when flowers opened. Assessment of microbial diversity using tag pyrosequencing of 16S rRNA genes revealed that the apple flower communities were rich and diverse and dominated by members of TM7 and Deinococcus-Thermus, phyla about which relatively little is known. From thousands of taxa, we identified six successional groups with coherent dynamics whose abundances peaked at different times before and after bud opening. We designated the groups Pioneer, Early, Mid, Late, Climax, and Generalist communities. The successional pattern was attributed to a set of prevalent taxa that were persistent and gradually changing in abundance. These taxa had significant associations with other community members, as demonstrated with a cooccurrence network based on local similarity analysis. We also detected a set of less-abundant, transient taxa that contributed to general tree-to-tree variability but not to the successional pattern. Communities on trees sprayed with streptomycin had slightly lower phylogenetic diversity than those on unsprayed trees but did not differ in structure or succession. Our results suggest that changes in apple flower microbial community structure are predictable over the life of the flower, providing a basis for ecological understanding and disease management. Flowering plants (angiosperms) represent a diverse group of an estimated 400,000 species, and their successful cultivation is essential to agriculture. Yet fundamental knowledge of flower-associated microbiotas remains largely unknown. Even less well understood are the changes that flower microbial communities experience through time. Flowers are

  12. SPL13 regulates shoot branching and flowering time in Medicago sativa.

    PubMed

    Gao, Ruimin; Gruber, Margaret Y; Amyot, Lisa; Hannoufa, Abdelali

    2018-01-01

    Our results show SPL13 plays a crucial role in regulating vegetative and reproductive development in Medicago sativa L. (alfalfa), and that MYB112 is targeted and downregulated by SPL13 in alfalfa. We previously showed that transgenic Medicago sativa (alfalfa) plants overexpressing microRNA156 (miR156) show a bushy phenotype, reduced internodal length, delayed flowering time, and enhanced biomass yield. In alfalfa, transcripts of seven SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, including SPL13, are targeted for cleavage by miR156. Thus, association of each target SPL gene to a trait or set of traits is essential for developing molecular markers for alfalfa breeding. In this study, we investigated SPL13 function using SPL13 overexpression and silenced alfalfa plants. Severe growth retardation, distorted branches and up-curled leaves were observed in miR156-impervious 35S::SPL13m over-expression plants. In contrast, more lateral branches and delayed flowering time were observed in SPL13 silenced plants. SPL13 transcripts were predominantly present in the plant meristems, indicating that SPL13 is involved in regulating shoot branch development. Accordingly, the shoot branching-related CAROTENOID CLEAVAGE DIOXYGENASE 8 gene was found to be significantly downregulated in SPL13 RNAi silencing plants. A R2R3-MYB gene MYB112 was also identified as being directly silenced by SPL13 based on Next Generation Sequencing-mediated transcriptome analysis and chromatin immunoprecipitation assays, suggesting that MYB112 may be involved in regulating alfalfa vegetative growth.

  13. 'Who's who' in two different flower types of Calluna vulgaris (Ericaceae): morphological and molecular analyses of flower organ identity

    PubMed Central

    2009-01-01

    Background The ornamental crop Calluna vulgaris is of increasing importance to the horticultural industry in the northern hemisphere due to a flower organ mutation: the flowers of the 'bud-flowering' phenotype remain closed i.e. as buds throughout the total flowering period and thereby maintain more colorful flowers for a longer period of time than the wild-type. This feature is accompanied and presumably caused by the complete lack of stamens. Descriptions of this botanical particularity are inconsistent and partially conflicting. In order to clarify basic questions of flower organ identity in general and stamen loss in detail, a study of the wild-type and the 'bud-flowering' flower type of C. vulgaris was initiated. Results Flowers were examined by macro- and microscopic techniques. Organ development was investigated comparatively in both the wild-type and the 'bud-flowering' type by histological analyses. Analysis of epidermal cell surface structure of vegetative tissues and perianth organs using scanning electron microscopy revealed that in wild-type flowers the outer whorls of colored organs may be identified as sepals, while the inner ones may be identified as petals. In the 'bud-flowering' type, two whorls of sepals are directly followed by the gynoecium. Both, petals and stamens, are completely missing in this flower type. The uppermost whorl of green leaves represents bracts in both flower types. In addition, two MADS-box genes (homologs of AP3/DEF and SEP1/2) were identified in C. vulgaris using RACE-PCR. Expression analysis by qRT-PCR was conducted for both genes in leaves, bracts, sepals and petals. These experiments revealed an expression pattern supporting the organ classification based on morphological characteristics. Conclusions Organ identity in both wild-type and 'bud-flowering' C. vulgaris was clarified using a combination of microscopic and molecular methods. Our results for bract, sepal and petal organ identity are supported by the 'ABCDE

  14. Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental Arabidopsis thaliana populations over multiple generations in the field.

    PubMed

    Taylor, Mark A; Cooper, Martha D; Sellamuthu, Reena; Braun, Peter; Migneault, Andrew; Browning, Alyssa; Perry, Emily; Schmitt, Johanna

    2017-10-01

    Major alleles for seed dormancy and flowering time are well studied, and can interact to influence seasonal timing and fitness within generations. However, little is known about how this interaction controls phenology, life history, and population fitness across multiple generations in natural seasonal environments. To examine how seed dormancy and flowering time shape annual plant life cycles over multiple generations, we established naturally dispersing populations of recombinant inbred lines of Arabidopsis thaliana segregating early and late alleles for seed dormancy and flowering time in a field experiment. We recorded seasonal phenology and fitness of each genotype over 2 yr and several generations. Strong seed dormancy suppressed mid-summer germination in both early- and late-flowering genetic backgrounds. Strong dormancy and late-flowering genotypes were both necessary to confer a winter annual life history; other genotypes were rapid-cycling. Strong dormancy increased within-season fecundity in an early-flowering background, but decreased it in a late-flowering background. However, there were no detectable differences among genotypes in population growth rates. Seasonal phenology, life history, and cohort fitness over multiple generations depend strongly upon interacting genetic variation for dormancy and flowering. However, similar population growth rates across generations suggest that different life cycle genotypes can coexist in natural populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. A perfect flower from the Jurassic of China

    PubMed Central

    Liu, Zhong-Jian; Wang, Xin

    2016-01-01

    Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus panii gen. et sp. nov., from the Middle–Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers. PMID:27134345

  16. A perfect flower from the Jurassic of China.

    PubMed

    Liu, Zhong-Jian; Wang, Xin

    2016-07-03

    Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus panii gen. et sp. nov. , from the Middle-Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers.

  17. Using daily temperature to predict phenology trends in spring flowers

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hee; Kim, Soo-Ock; Kim, Dae-Jun; Moon, Kyung Hwan; Yun, Jin I.

    2015-05-01

    The spring season in Korea features a dynamic landscape with a variety of flowers blooming sequentially one after another. This enables local governments to earn substantial sightseeing revenues by hosting festivals featuring spring flowers. Furthermore, beekeepers move from the southern tip of the Korean Peninsula all the way northward in a quest to secure spring flowers as nectar sources for a sustained period of time. However, areal differences in flowering dates of flower species are narrowing, which has economic consequences. Analysis of data on flowering dates of forsythia ( Forsythia koreana) and cherry blossom ( Prunus serrulata), two typical spring flower species, as observed for the past 60 years at six weather stations of the Korea Meteorological Administration (KMA) indicated that the difference between the flowering date of forsythia, the earliest blooming flower in spring, and cherry blossom, which flowers later than forsythia, was 14 days on average in the climatological normal year for the period 1951-1980, compared with 11 days for the period 1981-2010. In 2014, the gap narrowed further to 7 days, making it possible in some locations to see forsythias and cherry blossoms blooming at the same time. Synchronized flowering of these two flower species is due to acceleration of flowering due to an abnormally high spring temperature, and this was more pronounced in the later-blooming cherry blossom than forsythia. While cherry blossom flowering dates across the nation ranged from March 31 to April 19 (an areal difference of 20 days) for the 1951-1980 normal year, the difference ranged from March 29 to April 12 (an areal difference of 16 days) for the 1981-2010 normal year, and in 2014, the flowering dates spanned March 25 and March 30 (an areal difference of 6 days). In the case of forsythia, the gap was narrower than in cherry blossoms. Climate change in the Korean Peninsula, reflected by rapid temperature hikes in late spring in contrast to a slow

  18. [Literature study on species of honeysuckle flower].

    PubMed

    Zhang, Wei; Huang, Lu-Qi; Li, Chao-Xia; Li, Jian; Zhang, Rui-Xian

    2014-06-01

    Honeysuckle flower is a traditional herbal medicine in China Through systemically sorting and studying literature of Chinese medicine, this article pointed out that leech used by the traditional Chinese medicine in ancient time has the features of twist vine, slight purple stem with clothing hair; opposite growing leaves, ovule shape with clothing hair on both side; two flowers growing from one pedicel, labiate corolla with 3.2 cm longth, flower grows from white color to yellow color, each branch axil grows only one pedicel, the involucre is ovoid shape, and the flower season is from mid-March to mid-May. Among all species of caprifoliaceae, only Lonicera japonica Thunb. meets these botanic features. Therefore, L. japonica Thunb. should be used as the orthodox species of herbal honeysuckle flower.

  19. Increasing frost risk associated with advanced citrus flowering dates in Kerman and Shiraz, Iran: 1960-2010.

    PubMed

    Fitchett, Jennifer M; Grab, Stefan W; Thompson, Dave I; Roshan, Gholamreza

    2014-10-01

    Flowering dates and the timing of late season frost are both driven by local ambient temperatures. However, under climatic warming observed over the past century, it remains uncertain how such impacts affect frost risk associated with plant phenophase shifts. Any increase in frost frequency or severity has the potential to damage flowers and their resultant yields and, in more extreme cases, the survival of the plant. An accurate assessment of the relationship between the timing of last frost events and phenological shifts associated with warmer climate is thus imperative. We investigate spring advances in citrus flowering dates (orange, tangerine, sweet lemon, sour lemon and sour orange) for Kerman and Shiraz, Iran from 1960 to 2010. These cities have experienced increases in both T max and T min, advances in peak flowering dates and changes in last frost dates over the study period. Based on daily instrumental climate records, the last frost dates for each year are compared with the peak flowering dates. For both cities, the rate of last frost advance lags behind the phenological advance, thus increasing frost risk. Increased frost risk will likely have considerable direct impacts on crop yields and on the associated capacity to adapt, given future climatic uncertainty.

  20. Flowers in Their Variety.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2002-01-01

    Describes the diversity of flowers with regard to the flower paintings of Pierre-Joseph Redoute, books about flowers, and research in genetic studies. Discusses gardening flowers and flowering strategies and criticizes the fact that biology education has moved steadily away from plants. (KHR)

  1. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns.

    PubMed

    Papiorek, S; Junker, R R; Alves-Dos-Santos, I; Melo, G A R; Amaral-Neto, L P; Sazima, M; Wolowski, M; Freitas, L; Lunau, K

    2016-01-01

    Colour is one of the most obvious advertisements of flowers, and occurs in a huge diversity among the angiosperms. Flower colour is responsible for attraction from a distance, whereas contrasting colour patterns within flowers aid orientation of flower visitors after approaching the flowers. Due to the striking differences in colour vision systems and neural processing across animal taxa, flower colours evoke specific behavioural responses by different flower visitors. We tested whether and how yellow flowers differ in their spectral reflectance depending on the main pollinator. We focused on bees and birds and examined whether the presence or absence of the widespread UV reflectance pattern of yellow flowers predicts the main pollinator. Most bee-pollinated flowers displayed a pattern with UV-absorbing centres and UV-reflecting peripheries, whereas the majority of bird-pollinated flowers are entirely UV- absorbing. In choice experiments we found that bees did not show consistent preferences for any colour or pattern types. However, all tested bee species made their first antennal contact preferably at the UV-absorbing area of the artificial flower, irrespective of its spatial position within the flower. The appearance of UV patterns within flowers is the main difference in spectral reflectance between yellow bee- and bird-pollinated flowers, and affects the foraging behaviour of flower visitors. The results support the hypothesis that flower colours and the visual capabilities of their efficient pollinators are adapted to each other. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Short-term effects of burn season on flowering phenology of savanna plants

    USGS Publications Warehouse

    Pavlovic, N.B.; Leicht-Young, S. A.; Grundel, R.

    2011-01-01

    We examined the effect of season of burn on flowering phenology of groundlayer species, in the year following burns, in a mesic-sand Midwestern oak savanna. Burn treatments were fall, early-season, growing-season, late-season, and 1 or 5 years after a prior early-season wildfire. For these treatments, we compared the number of flowering stems and of flowers for species overall, for the 20 most prolifically flowering species, as well as for species grouped by flowering phenoperiods, and by growth form. Growing-season burn had a significant negative effect on number of flowering stems and total number of flowers. This effect occurred when either the burn occurred during the flowering season or during the season prior to the flowering phenoperiod. Tradescantia ohiensis showed expedited flowering and Phlox pilosa showed delayed flowering in response to early-season burning. Flowering of early shrubs was reduced by the previous fall and early-spring fires, while flowering of mid-season blooming shrubs was reduced by the early- and growing-season burns. Vaccinium and Gaylussacia, early-flowering shrubs, produced fewer flowers 1 year after than 5 years after an early-season burn. Arabis lyrata showed reduced flowering from the early-season burn. We also found four instances where the early-spring burn effect on flowering was more severe than the fall burn effect, suggesting that many frequent early-season burns may be deleterious to flowering and reproduction of some species. Burns occurring too frequently in the same season could negatively affect future flowering and reproduction of these plant species.

  3. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae) from northeastern Mexico.

    PubMed

    Martínez-Adriano, Cristian Adrian; Jurado, Enrique; Flores, Joel; González-Rodríguez, Humberto; Cuéllar-Rodríguez, Gerardo

    2016-01-01

    We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1-4 styles; 2-9 stamens; 6.5-41.5 mm long corolla; sepals from 4.5-29.5 mm in length; a total length from 15.5-59 mm; a corolla diameter from 10.5-77 mm. The nectar guide had a diameter from 5-30.5 mm; 4-9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants.

  4. Evolutionary radiation of "stone plants" in the genus Argyroderma (Aizoaceae): unraveling the effects of landscape, habitat, and flowering time.

    PubMed

    Ellis, Allan G; Weis, Arthur E; Gaut, Brandon S

    2006-01-01

    Recent phylogenetic evidence suggests that the extraordinary diversity of the Cape Floristic Kingdom in South Africa may be the result of widespread evolutionary radiation. Our understanding of the role of adaptive versus neutral processes in these radiations remains largely speculative. In this study we investigated factors involved in the diversification of Argyroderma, a genus within the most spectacular of the Cape radiations, that of the Ruschioid subfamily of the Aizoaceae. We used amplified fragment length polymorphisms and a suite of morphological traits to elucidate patterns of differentiation within and between species of Argyroderma across the range of the genus. We then used a matrix correlation approach to assess the influence of landscape structure, edaphic gradients, and flowering phenology on phenotypic and neutral genetic divergence in the system. We found evidence for strong spatial genetic isolation at all taxonomic levels. In addition, genetic differentiation occurs along a temporal axis, between sympatric species with divergent flowering times. Morphological differentiation, which previous studies suggest is adaptive, occurs along a habitat axis, between populations occupying different edaphic microenvironments. Morphological differentiation is in turn significantly associated with flowering time shifts. Thus we propose that diversification within Argyroderma has occurred through a process of adaptive speciation in allopatry. Spatially isolated populations diverge phenotypically in response to divergent habitat selection, which in turn leads to the evolution of reproductive isolation through divergence of flowering phenologies, perhaps as a correlated response to morphological divergence. Evidence suggests that diversification of the group has proceeded in two phases: the first involving divergence of allopatric taxa on varied microhabitats within a novel habitat type (the quartz gravel plains), and the second involving range expansion of an

  5. Seed after-ripening and dormancy determine adult life history independently of germination timing.

    PubMed

    de Casas, Rafael Rubio; Kovach, Katherine; Dittmar, Emily; Barua, Deepak; Barco, Brenden; Donohue, Kathleen

    2012-05-01

    • Seed dormancy can affect life history through its effects on germination time. Here, we investigate its influence on life history beyond the timing of germination. • We used the response of Arabidopsis thaliana to chilling at the germination and flowering stages to test the following: how seed dormancy affects germination responses to the environment; whether variation in dormancy affects adult phenology independently of germination time; and whether environmental cues experienced by dormant seeds have an effect on adult life history. • Dormancy conditioned the germination response to low temperatures, such that prolonged periods of chilling induced dormancy in nondormant seeds, but stimulated germination in dormant seeds. The alleviation of dormancy through after-ripening was associated with earlier flowering, independent of germination date. Experimental dormancy manipulations showed that prolonged chilling at the seed stage always induced earlier flowering, regardless of seed dormancy. Surprisingly, this effect of seed chilling on flowering time was observed even when low temperatures did not induce germination. • In summary, seed dormancy influences flowering time and hence life history independent of its effects on germination timing. We conclude that the seed stage has a pronounced effect on life history, the influence of which goes well beyond the timing of germination. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. Flower opening and closure: an update.

    PubMed

    van Doorn, Wouter G; Kamdee, Chanattika

    2014-11-01

    This review is an update of a 2003 review (Journal of Experimental Botany 54,1801-1812) by the same corresponding author. Many examples of flower opening have been recorded using time-lapse photography, showing its velocity and the required elongation growth. Ethylene regulates flower opening, together with at least gibberellins and auxin. Ethylene and gibberellic acid often promote and inhibit, respectively, the expression of DELLA genes and the stability of DELLA proteins. DELLA results in growth inhibition. Both hormones also inhibited and promoted, respectively, the expression of aquaporin genes required for cell elongation. Arabidopsis miRNA319a mutants exhibited narrow and short petals, whereby miRNA319a indirectly regulates auxin effects. Flower opening in roses was controlled by a NAC transcription factor, acting through miRNA164. The regulatory role of light and temperature, in interaction with the circadian clock, has been further elucidated. The end of the life span in many flowers is determined by floral closure. In some species pollination resulted in earlier closure of turgid flowers, compared with unpollinated flowers. It is hypothesized that this pollination-induced effect is only found in flowers in which closure is regulated by ethylene. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Flower diversity and bee reproduction in an arid ecosystem.

    PubMed

    Dorado, Jimena; Vázquez, Diego P

    2016-01-01

    Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on

  8. Flower diversity and bee reproduction in an arid ecosystem

    PubMed Central

    Vázquez, Diego P.

    2016-01-01

    Background: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Materials and Methods: Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Results: Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Discussion: Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity

  9. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae) from northeastern Mexico

    PubMed Central

    Martínez-Adriano, Cristian Adrian; Flores, Joel; González-Rodríguez, Humberto; Cuéllar-Rodríguez, Gerardo

    2016-01-01

    We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1–4 styles; 2–9 stamens; 6.5–41.5 mm long corolla; sepals from 4.5–29.5 mm in length; a total length from 15.5–59 mm; a corolla diameter from 10.5–77 mm. The nectar guide had a diameter from 5–30.5 mm; 4–9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants. PMID:27231656

  10. Studies on flower initiation of Super-Dwarf wheat under stress conditions simulating those on the Space Station, Mir

    NASA Technical Reports Server (NTRS)

    Jiang, L.; Salisbury, F. B.; Campbell, W. F.; Carman, J. G.; Nan, R.

    1998-01-01

    Super-Dwarf wheat plants were grown in growth chambers under 12 treatments with three photoperiods (18 h, 21 h, 24 h) and four carbon dioxide (CO2) levels (360, 1,200, 3,000 and 7,000 micromoles mol-1). Carbon dioxide concentrations affected flower initiation rates of Super-Dwarf wheat. The optimum CO2 level for flower initiation and development was 1,200 micromoles mol-1. Super-optimum CO2 levels delayed flower initiation, but did not decrease final flower bud number per head. Longer photoperiods not only accelerated flower initiation rates, but also decreased deleterious effects of super-optimum CO2. Flower bud size and head length at the same developmental stage were larger under longer photoperiods, but final flower bud number was not affected by photoperiod.

  11. Local Populations of Arabidopsis thaliana Show Clear Relationship between Photoperiodic Sensitivity of Flowering Time and Altitude

    PubMed Central

    Lewandowska-Sabat, Anna M.; Fjellheim, Siri; Olsen, Jorunn E.; Rognli, Odd A.

    2017-01-01

    Adaptation of plants to local conditions that vary substantially within their geographic range is essential for seasonal timing of flowering, a major determinant of plant reproductive success. This study investigates photoperiodic responses in natural populations of Arabidopsis thaliana from high northern latitudes and their significance for local adaptation. Thirty lineages from ten local A. thaliana populations, representing different locations across an altitudinal gradient (2–850 m a.s.l.) in Norway, were grown under uniform controlled conditions, and used to screen for responses to five different photoperiods. We studied relationships between variation in photoperiodic sensitivity of flowering time, altitude, and climatic factors associated with the sites of origin. We found that variation in response to photoperiod is significantly correlated with altitude and climatic variables associated with the sites of origin of the populations. Populations originating from lower altitudes showed stronger photoperiodic sensitivity than populations from higher altitudes. Our results indicate that the altitudinal climatic gradient generates clinal variation in adaptive traits in A. thaliana. PMID:28659966

  12. Molecular aspects of flower senescence and strategies to improve flower longevity

    PubMed Central

    Shibuya, Kenichi

    2018-01-01

    Flower longevity is one of the most important traits for ornamental plants. Ethylene plays a crucial role in flower senescence in some plant species. In several species that show ethylene-dependent flower senescence, genetic modification targeting genes for ethylene biosynthesis or signaling has improved flower longevity. Although little is known about regulatory mechanisms of petal senescence in flowers that show ethylene-independent senescence, a recent study of Japanese morning glory revealed that a NAC transcription factor, EPHEMERAL1 (EPH1), is a key regulator in ethylene-independent petal senescence. EPH1 is induced in an age-dependent manner irrespective of ethylene signal, and suppression of EPH1 expression dramatically delays petal senescence. In ethylene-dependent petal senescence, comprehensive transcriptome analyses revealed the involvement of transcription factors, a basic helix-loop-helix protein and a homeodomain-leucine zipper protein, in the transcriptional regulation of the ethylene biosynthesis enzymes. This review summarizes molecular aspects of flower senescence and discusses strategies to improve flower longevity by molecular breeding. PMID:29681752

  13. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea

    PubMed Central

    Thairu, Margaret W.; Brunet, Johanne

    2015-01-01

    Background and Aims Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Methods Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Key Results Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Conclusions Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. PMID:25808657

  14. EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression[C][W

    PubMed Central

    Boden, Scott A.; Weiss, David; Ross, John J.; Davies, Noel W.; Trevaskis, Ben; Chandler, Peter M.; Swain, Steve M.

    2014-01-01

    EARLY FLOWERING3 (ELF3) is a circadian clock gene that contributes to photoperiod-dependent flowering in plants, with loss-of-function mutants in barley (Hordeum vulgare), legumes, and Arabidopsis thaliana flowering early under noninductive short-day (SD) photoperiods. The barley elf3 mutant displays increased expression of FLOWERING LOCUS T1 (FT1); however, it remains unclear whether this is the only factor responsible for the early flowering phenotype. We show that the early flowering and vegetative growth phenotypes of the barley elf3 mutant are strongly dependent on gibberellin (GA) biosynthesis. Expression of the central GA biosynthesis gene, GA20oxidase2, and production of the bioactive GA, GA1, were significantly increased in elf3 leaves under SDs, relative to the wild type. Inhibition of GA biosynthesis suppressed the early flowering of elf3 under SDs independently of FT1 and was associated with altered expression of floral identity genes at the developing apex. GA is also required for normal flowering of spring barley under inductive photoperiods, with chemical and genetic attenuation of the GA biosynthesis and signaling pathways suppressing inflorescence development under long-day conditions. These findings illustrate that GA is an important floral promoting signal in barley and that ELF3 suppresses flowering under noninductive photoperiods by blocking GA production and FT1 expression. PMID:24781117

  15. Why background colour matters to bees and flowers.

    PubMed

    Bukovac, Zoë; Shrestha, Mani; Garcia, Jair E; Burd, Martin; Dorin, Alan; Dyer, Adrian G

    2017-05-01

    Flowers are often viewed by bee pollinators against a variety of different backgrounds. On the Australian continent, backgrounds are very diverse and include surface examples of all major geological stages of the Earth's history, which have been present during the entire evolutionary period of Angiosperms. Flower signals in Australia are also representative of typical worldwide evolutionary spectral adaptations that enable successful pollination. We measured the spectral properties of 581 natural surfaces, including rocks, sand, green leaves, and dry plant materials, sampled from tropical Cairns through to the southern tip of mainland Australia. We modelled in a hexagon colour space, how interactions between background spectra and flower-like colour stimuli affect reliable discrimination and detection in bee pollinators. We calculated the extent to which a given locus would be conflated with the loci of a different flower-colour stimulus using empirically determined colour discrimination regions for bee vision. Our results reveal that whilst colour signals are robust in homogeneous background viewing conditions, there could be significant pressure on plant flowers to evolve saliently-different colours to overcome background spectral noise. We thus show that perceptual noise has a large influence on how colour information can be used in natural conditions.

  16. Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach.

    PubMed

    Silva, C; Garcia-Mas, J; Sánchez, A M; Arús, P; Oliveira, M M

    2005-03-01

    Blooming time is one of the most important agronomic traits in almond. Biochemical and molecular events underlying flowering regulation must be understood before methods to stimulate late flowering can be developed. Attempts to elucidate the genetic control of this process have led to the identification of a major gene (Lb) and quantitative trait loci (QTLs) linked to observed phenotypic differences, but although this gene and these QTLs have been placed on the Prunus reference genetic map, their sequences and specific functions remain unknown. The aim of our investigation was to associate these loci with known genes using a candidate gene approach. Two almond cDNAs and eight Prunus expressed sequence tags were selected as candidate genes (CGs) since their sequences were highly identical to those of flowering regulatory genes characterized in other species. The CGs were amplified from both parental lines of the mapping population using specific primers. Sequence comparison revealed DNA polymorphisms between the parental lines, mainly of the single nucleotide type. Polymorphisms were used to develop co-dominant cleaved amplified polymorphic sequence markers or length polymorphisms based on insertion/deletion events for mapping the candidate genes on the Prunus reference map. Ten candidate genes were assigned to six linkage groups in the Prunus genome. The positions of two of these were compatible with the regions where two QTLs for blooming time were detected. One additional candidate was localized close to the position of the Evergrowing gene, which determines a non-deciduous behaviour in peach.

  17. Quantitative trait loci mapping for flowering time in a switchgrass pseudo-F2 population

    USDA-ARS?s Scientific Manuscript database

    Flowering is an important developmental event in switchgrass (Panicum virgatum) because the onset of flowering causes the cessation of vegetative growth and biomass accumulation. The objective of this study was to generate a linkage map using single nucleotide polymorphism (SNP) markers to identify ...

  18. Combined linkage and association mapping of flowering time in Sunflower (Helianthus annuus L.).

    PubMed

    Cadic, Elena; Coque, Marie; Vear, Felicity; Grezes-Besset, Bruno; Pauquet, Jerôme; Piquemal, Joël; Lippi, Yannick; Blanchard, Philippe; Romestant, Michel; Pouilly, Nicolas; Rengel, David; Gouzy, Jerôme; Langlade, Nicolas; Mangin, Brigitte; Vincourt, Patrick

    2013-05-01

    Association mapping and linkage mapping were used to identify quantitative trait loci (QTL) and/or causative mutations involved in the control of flowering time in cultivated sunflower Helianthus annuus. A panel of 384 inbred lines was phenotyped through testcrosses with two tester inbred lines across 15 location × year combinations. A recombinant inbred line (RIL) population comprising 273 lines was phenotyped both per se and through testcrosses with one or two testers in 16 location × year combinations. In the association mapping approach, kinship estimation using 5,923 single nucleotide polymorphisms was found to be the best covariate to correct for effects of panel structure. Linkage disequilibrium decay ranged from 0.08 to 0.26 cM for a threshold of 0.20, after correcting for structure effects, depending on the linkage group (LG) and the ancestry of inbred lines. A possible hitchhiking effect is hypothesized for LG10 and LG08. A total of 11 regions across 10 LGs were found to be associated with flowering time, and QTLs were mapped on 11 LGs in the RIL population. Whereas eight regions were demonstrated to be common between the two approaches, the linkage disequilibrium approach did not detect a documented QTL that was confirmed using the linkage mapping approach.

  19. FLOWER IPv4/IPv6 Network Flow Summarization software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickless, Bill; Curtis, Darren; Christy, Jason

    FLOWER was written as a refactoring/reimplementation of the existing Flo software used by the Cooperative Protection Program (CPP) to provide network flow summaries for analysis by the Operational Analysis Center (OAC) and other US Department of Energy cyber security elements. FLOWER is designed and tested to operate at 10 gigabits/second, nearly 10 times faster than competing solutions. FLOWER output is optimized for importation into SQL databases for categorization and analysis. FLOWER is written in C++ using current best software engineering practices.

  20. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry.

    PubMed

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Jiang, Ning; Hancock, James F

    2013-11-01

    The blueberry FLOWERING LOCUS T ( FT )-like gene ( VcFT ) cloned from the cDNA of a tetraploid, northern highbush blueberry ( Vaccinium corymbosum L.) is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering. Blueberry is a woody perennial bush with a longer juvenile period than annual crops, requiring vernalization to flower normally. Few studies have been reported on the molecular mechanism of flowering in blueberry or other woody plants. Because FLOWERING LOCUS T (FT) from Arabidopsis thaliana plays a multifaceted role in generating mobile molecular signals to regulate plant flowering time, isolation and functional analysis of the blueberry (Vaccinium corymbosum L.) FT-like gene (VcFT) will facilitate the elucidation of molecular mechanisms of flowering in woody plants. Based on EST sequences, a 525-bpVcFT was identified and cloned from the cDNA of a tetraploid, northern highbush blueberry cultivar, Bluecrop. Ectopic expression of 35S:VcFT in tobacco induced flowering an average of 28 days earlier than wild-type plants. Expression of the 35S:VcFT in the blueberry cultivar Aurora resulted in an extremely early flowering phenotype, which flowered not only during in vitro culture, a growth stage when nontransgenic shoots had not yet flowered, but also in 6-10-week old, soil-grown transgenic plants, in contrast to the fact that at least 1 year and 800 chilling hours are required for the appearance of the first flower of both nontransgenic 'Aurora' and transgenic controls with the gusA. These results demonstrate that the VcFT is a functional floral activator and overexpression of the VcFT is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

  1. Low flower-size variation in bilaterally symmetrical flowers: Support for the pollination precision hypothesis.

    PubMed

    Nikkeshi, Aoi; Kurimoto, Daiki; Ushimaru, Atushi

    2015-12-01

    The evolutionary shift from radial to bilateral symmetry in flowers is generally associated with the evolution of low flower-size variation. This phenomenon supports the hypothesis that the lower size variation in bilateral flowers can be attributed to low pollinator diversity. In this study, we propose two other hypotheses to explain low flower-size variation in bilateral symmetrical flowers. To test the three hypotheses, we examined the relative importance of pollinator diversity, composition, and bilateral symmetry itself as selective forces on low flower-size variation. We examined pollinator diversity and composition and flower-size variation for 36 species in a seminatural ecosystem with high bee richness and frequent lepidopteran visitation. Bilateral flowers were more frequently visited than radial flowers by larger bees, but functional-group diversity of the pollinators did not differ between symmetry types. Although bilateral flowers had significantly lower flower-size variation than radial flowers, flower-size variation did not vary with pollinator diversity and composition but was instead related to bilateral symmetry. Our results suggest that the lower size variation in bilateral flowers might have evolved under selection favoring the control of pollinator behavior on flowers to enhance the accurate placement of pollen on the body of the pollinator, independent of pollinator type. Because of the limited research on this issue, future work should be conducted in various types of plant-pollinator communities worldwide to further clarify the issue. © 2015 Botanical Society of America.

  2. The movement and distribution of Helicoverpa armigera (Hübner) larvae on pea plants is affected by egg placement and flowering.

    PubMed

    Perkins, L E; Cribb, B W; Hanan, J; Zalucki, M P

    2010-10-01

    The distribution and movement of 1st instar Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae on whole garden pea (Pisum sativum L.) plants were determined in glasshouse trials. This economically-important herbivore attacks a wide variety of agricultural, horticultural and indigenous plants. To investigate the mechanisms underlying larval intra-plant movement, we used early-flowering and wild-type plant genotypes and placed eggs at different vertical heights within the plants, one egg per plant. Leaf water and nitrogen content and cuticle hardness were measured at the different plant heights. Of 92 individual larvae, 41% did not move from the node of eclosion, 49% moved upwards and 10% moved downwards with the distance moved being between zero and ten plant nodes. Larvae from eggs placed on the lower third of the plant left the natal leaf more often and moved further than larvae from eggs placed in the middle or upper thirds. The low nutritive value of leaves was the most likely explanation for more movement away from lower plant regions. Although larvae on flowering plants did not move further up or down than larvae on non-flowering plants, they more often departed the leaflet (within a leaf) where they eclosed. The final distribution of larvae was affected by plant genotype, with larvae on flowering plants found less often on leaflets and more often on stipules, tendrils and reproductive structures. Understanding intra-plant movement by herbivorous insects under natural conditions is important because such movement determines the value of economic loss to host crops. Knowing the behaviour underlying the spatial distribution of herbivores on plants will assist us to interpret field data and should lead to better informed pest management decisions.

  3. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines.

    PubMed

    Kiseleva, Antonina A; Potokina, Elena K; Salina, Elena A

    2017-11-14

    Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, "Ppd-m" and "Ppd-w" with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the "Ppd-m" line, which flowered four days earlier than "Ppd-w", was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in "Ppd-m". Microsatellite genotyping demonstrated that in the line "Ppd-m", there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the "Ppd-w" does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the "Ppd-m" line than in "Ppd-w", suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of "Ppd-m" as compared to "Ppd-w". We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a

  4. Insects on flowers: The unexpectedly high biodiversity of flower-visiting beetles in a tropical rainforest canopy.

    PubMed

    Wardhaugh, Carl W; Stork, Nigel E; Edwards, Will; Grimbacher, Peter S

    2013-01-01

    Insect biodiversity peaks in tropical rainforest environments where a large but as yet unknown proportion of species are found in the canopy. While there has been a proliferation of insect biodiversity research undertaken in the rainforest canopy, most studies focus solely on insects that inhabit the foliage. In a recent paper, we examined the distribution of canopy insects across five microhabitats (mature leaves, new leaves, flowers, fruit and suspended dead wood) in an Australian tropical rainforest, showing that the density (per dry weight gram of microhabitat) of insects on flowers were ten to ten thousand times higher than on the leaves. Flowers also supported a much higher number of species than expected based on their contribution to total forest biomass. Elsewhere we show that most of these beetle species were specialized to flowers with little overlap in species composition between different canopy microhabitats. Here we expand our discussion of the implications of our results with respect to specialization and the generation of insect biodiversity in the rainforest canopy. Lastly, we identify future directions for research into the biodiversity and specialization of flower-visitors in complex tropical rainforests.

  5. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance.

    PubMed

    Sun, Hongbo; Jia, Zhen; Cao, Dong; Jiang, Bingjun; Wu, Cunxiang; Hou, Wensheng; Liu, Yike; Fei, Zhihong; Zhao, Dazhong; Han, Tianfu

    2011-01-01

    Flowering reversion can be induced in soybean (Glycine max L. Merr.), a typical short-day (SD) dicot, by switching from SD to long-day (LD) photoperiods. This process may involve florigen, putatively encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana. However, little is known about the potential function of soybean FT homologs in flowering reversion. A photoperiod-responsive FT homologue GmFT (renamed as GmFT2a hereafter) was cloned from the photoperiod-sensitive cultivar Zigongdongdou. GmFT2a gene expression under different photoperiods was analyzed by real-time quantitative PCR. In situ hybridization showed direct evidence for its expression during flowering-related processes. GmFT2a was shown to promote flowering using transgenic studies in Arabidopsis and soybean. The effects of photoperiod and temperature on GmFT2a expression were also analyzed in two cultivars with different photoperiod-sensitivities. GmFT2a expression is regulated by photoperiod. Analyses of GmFT2a transcripts revealed a strong correlation between GmFT2a expression and flowering maintenance. GmFT2a transcripts were observed continuously within the vascular tissue up to the shoot apex during flowering. By contrast, transcripts decreased to undetectable levels during flowering reversion. In grafting experiments, the early-flowering, photoperiod-insensitive stock Heihe27 promotes the appearance of GmFT2a transcripts in the shoot apex of scion Zigongdongdou under noninductive LD conditions. The photothermal effects of GmFT2a expression diversity in cultivars with different photoperiod-sensitivities and a hypothesis is proposed. GmFT2a expression is associated with flowering induction and maintenance. Therefore, GmFT2a is a potential target gene for soybean breeding, with the aim of increasing geographic adaptation of this crop.

  6. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage.

    PubMed

    Klintenäs, Maria; Pin, Pierre A; Benlloch, Reyes; Ingvarsson, Pär K; Nilsson, Ove

    2012-12-01

    In flowering plants, homologs of the Arabidopsis phosphatidylethanolamine-binding protein (PEBP) FLOWERING LOCUS T (FT) are key components in controlling flowering time. We show here that, although FT homologs are found in all angiosperms with completed genome sequences, there is no evidence to date that FT-like genes exist in other groups of plants. Through phylogeny reconstructions and heterologous expression, we examined the biochemical function of the Picea (spruces) and Pinus (pines) PEBP families - two gymnosperm taxa phylogenetically distant from the angiosperms. We have defined a lineage of gymnosperm PEBP genes, termed the FT/TERMINAL FLOWER1 (TFL1)-like genes, that share sequence characteristics with both the angiosperm FT- and TFL1-like clades. When expressed in Arabidopsis, FT/TFL1-like genes repressed flowering, indicating that the proteins are biochemically more similar to the angiosperm TFL1-like proteins than to the FT-like proteins. This suggests that the regulation of the vegetative-to-reproductive switch might differ in gymnosperms compared with angiosperms. Molecular evolution studies suggest that plasticity at exon 4 contributes to the divergence of FT-like function in floral promotion. In addition, the presence of FT-like genes in basal angiosperms indicates that the FT-like function emerged at an early stage during the evolution of flowering plants as a means to regulate flowering time. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  7. Seasonal importance of flowers to Costa Rican capuchins (Cebus capucinus imitator): Implications for plant and primate.

    PubMed

    Hogan, Jeremy D; Melin, Amanda D; Mosdossy, Krisztina N; Fedigan, Linda M

    2016-12-01

    Our goal is to investigate flower foraging by capuchin monkeys, a behavior rarely studied in wild primates. We ask what drives seasonal variation in florivory rates: flower quality and abundance or fluctuations in fruit and invertebrate abundances. We explore how capuchins affect the reproductive success of flower food species by quantifying the potential pollination rate. We followed capuchin groups from dawn to dusk and recorded all flower foraging bouts. Flower food nutritional composition was compared to fruit and invertebrate foods. We recorded overall flower, fruit, and invertebrate abundances and compared the rate of flower foraging to these. We estimated the likelihood of pollination from the proportion of flower patch visits to each plant species that satisfied minimum behavioral requirements. Flower eating was highly seasonal, and was significantly negatively related to overall fruit and invertebrate abundance but not flower abundance. Although smaller than most fruits, flowers were nutritionally comparable to fruit foods by dry mass and contained higher average concentrations of protein. Capuchins are likely pollinators for Luehea speciosa; most foraging visits to this species occurred in a manner that makes outcrossing or geitonogamous pollination likely. Flowers are an important seasonal resource for capuchins. Flowers likely act as fallback foods during periods of reduced fruit and invertebrate abundance, and may exert evolutionary pressure disproportionate to their consumption. Capuchin florivory likely affects the reproductive success of some plants, potentially shaping forest structure. Our study illustrates the value of assessing the importance of rare foods in the primate diet. © 2016 Wiley Periodicals, Inc.

  8. Flower-level developmental plasticity to nutrient availability in Datura stramonium: implications for the mating system.

    PubMed

    Camargo, Iván Darío; Nattero, Julieta; Careaga, Sonia A; Núñez-Farfán, Juan

    2017-10-17

    Studies of phenotypic plasticity in plants have mainly focused on (1) the effect of environmental variation on whole-plant traits related to the number of modules rather than on (2) the phenotypic consequences of environmental variation in traits of individual modules. Since environmental and developmental factors can produce changes in traits related to the mating system, this study used the second approach to investigate whether within-individual variation in herkogamy-related traits is affected by the environment during plant development in two populations of Datura stramonium , an annual herb with a hypothesized persistent mixed mating system, and to determine which morphological traits may promote self-fertilization. Full-sib families of two Mexican populations of D. stramonium , with contrasting ecological histories, were grown under low, mid and high nutrient availability to investigate the effects of genetic, environmental and within-plant flower position on flower size, corolla, stamen and pistil lengths, and herkogamy. Populations showed differences in familial variation, plasticity and familial differences in plasticity in most floral traits analysed. In one population (Ticumán), the effect of flower position on trait variation varied among families, whereas in the other (Pedregal) the effect of flower position interacted with the nutrient environment. Flower size varied with the position of flowers, but in the opposite direction between populations in low nutrients; a systematic within-plant trend of reduction in flower size, pistil length and herkogamy with flower position increased the probability of self-fertilization in the Pedregal population. Besides genetic variation in floral traits between and within populations, environmental variation affects phenotypic floral trait values at the whole-plant level, as well as among flower positions. The interaction between flower position and nutrient environment can affect the plant's mating system, and

  9. Flowers regulate the growth and vascular development of the inflorescence rachis in Vitis vinifera L.

    PubMed

    Gourieroux, Aude M; McCully, Margaret E; Holzapfel, Bruno P; Scollary, Geoffrey R; Rogiers, Suzy Y

    2016-11-01

    The rachis, the structural framework of the grapevine (Vitis vinifera L.) inflorescence (and subsequent bunch), consists of a main axis and one or more orders of lateral branches with the flower-bearing pedicels at their fine tips. The rachis is crucial both for support, and transport from the shoot. Earlier suggestions that the flowers per se affect normal rachis development are investigated further in this study. Different percentages (0, 25, 50, 75 or 100) of flowers were removed manually one week before anthesis on field-grown vines. Treatment effects on subsequent rachis development (curvature, vitality, anatomy, starch deposit) were assessed. Sections, both fixed and embedded, and fresh hand-cut were observed by fluorescence and bright-field optics after appropriate staining. Emphasis was on measurement of changes in cross-sectional area of secondary xylem and phloem, and on maturation of fibres and periderm. Specific defects in rachis development were dependent on the percent and location of flower removal one week prior to anthesis. The rachises curved inwards where most of the flowers were removed. When fully de-flowered, they became progressively necrotic from the laterals back to the primary axes and from the distal to the proximal end of those axes, with a concurrent disorganisation of their anatomy. A few remaining groups of flowers prevented desiccation and abscission of the rachis axes proximal to the group, but not distally. Flower removal (50%) reduced rachis elongation, while 75% removal reduced xylem and phloem area and delayed phloem fibre and periderm development. 75% flower removal did not affect starch present in the rachis during berry development. Developing flowers affect the growth and vitality of the rachis and the development of its vascular and support structures. The extent of these effects depends on the cultivar and the number and position of flowers remaining after some are removed one week before anthesis. Copyright © 2016

  10. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants

    PubMed Central

    Walworth, Aaron E.; Chai, Benli; Song, Guo-qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora (‘VcFT-Aurora’), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in ‘VcFT-Aurora’. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all

  11. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    PubMed

    Walworth, Aaron E; Chai, Benli; Song, Guo-Qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora'), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these

  12. Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra

    PubMed Central

    Brito, Vinícius L. G.; Weynans, Kevin; Sazima, Marlies; Lunau, Klaus

    2015-01-01

    Floral color changes and retention of old flowers are frequently combined phenomena restricted to the floral guide or single flowers in few-flowered inflorescences. They are thought to increase the attractiveness over long distances and to direct nearby pollinators toward the rewarding flowers. In Tibouchina pulchra, a massively flowering tree, the whole flower changes its color during anthesis. On the first day, the flowers are white and on the next 3 days, they change to pink. This creates a new large-scale color pattern in which the white pre-changed flowers contrast against the pink post-changed ones over the entire tree. We describe the spectral characteristics of floral colors of T. pulchra and test bumblebees’ response to this color pattern when viewed at different angles (simulating long and short distances). The results indicated the role of different color components in bumblebee attraction and the possible scenario in which this flower color pattern has evolved. We tested bumblebees’ preference for simulated trees with 75% pink and 25% white flowers resembling the color patterns of T. pulchra, and trees with green leaves and pink flowers (control) in long-distance approach. We also compared an artificial setting with three pink flowers and one white flower (T. pulchra model) against four pink flowers with white floral guides (control) in short-distance approach. Bumblebees spontaneously preferred the simulated T. pulchra patterns in both approaches despite similar reward. Moreover, in short distances, pollinator visits to peripheral, non-rewarding flowers occurred only half as frequently in the simulated T. pulchra when compared to the control. Thefore, this exceptional floral color change and the retention of old flowers in T. pulchra favors the attraction of pollinators over long distances in a deception process while it honestly directs them toward the rewarding flowers at short distances possibly exploring their innate color preferences. PMID

  13. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Hao, HongFei

    2018-05-01

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  14. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change.

    PubMed

    Huang, Jian; Hao, HongFei

    2018-05-11

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  15. [Effects of flower bud removal and artificial pollination on growth and yield of Tulipa edulis].

    PubMed

    Miao, Yuan-Yuan; Zhu, Zai-Biao; Guo, Qiao-Sheng; Ma, Hong-Liang; Yang, Ying; Zhu, Li-Fang

    2014-06-01

    The study was conducted to explore the response of growth and yield of Tulipa edulis to flower bud removal and artificial pollination. And flower bud removal and artificial pollination were carried out in the squaring period and bloom stage respectively. The morphological index and biomass indicators were determined and the yield was counted in harvest time. Result showed that flower bud removal was beneficial to the growth of T. edulis, resulting in increasing growth index, biomass as well as the yield of bulb. The diameter and dry weight of T. edulis fruit by artificial pollination were increased significantly compared with the control. Seed setting percentage increased to 100%, and the number of seed as well as the single grain weight increased by 69.03% and 16.48%, respectively, which did not significantly affect the bulb production. In conclusion, Flower bud removal treatment accelerates bulb biomass increase, so as to improve its yield. Artificial pollination raised significantly seed setting percentage, seed number as well as the single grain weight.

  16. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination

    PubMed Central

    Holzschuh, Andrea; Dormann, Carsten F.; Tscharntke, Teja; Steffan-Dewenter, Ingolf

    2011-01-01

    Agricultural land use results in direct biodiversity decline through loss of natural habitat, but may also cause indirect cross-habitat effects on conservation areas. We conducted three landscape-scale field studies on 67 sites to test the hypothesis that mass flowering of oilseed rape (Brassica napus) results in a transient dilution of bees in crop fields, and in increased competition between crop plants and grassland plants for pollinators. Abundances of bumble-bees, which are the main pollinators of the grassland plant Primula veris, but also pollinate oilseed rape (OSR), decreased with increasing amount of OSR. This landscape-scale dilution affected bumble-bee abundances strongly in OSR fields and marginally in grasslands, where bumble-bee abundances were generally low at the time of Primula flowering. Seed set of Primula veris, which flowers during OSR bloom, was reduced by 20 per cent when the amount of OSR within 1 km radius increased from 0 to 15 per cent. Hence, the current expansion of bee-attractive biofuel crops results in transient dilution of crop pollinators, which means an increased competition for pollinators between crops and wild plants. In conclusion, mass-flowering crops potentially threaten fitness of concurrently flowering wild plants in conservation areas, despite the fact that, in the long run, mass-flowering crops can enhance abundances of generalist pollinators and their pollination service. PMID:21471115

  17. Poplar FT2 Shortens the Juvenile Phase and Promotes Seasonal Flowering[W

    PubMed Central

    Hsu, Chuan-Yu; Liu, Yunxia; Luthe, Dawn S.; Yuceer, Cetin

    2006-01-01

    Many woody perennials, such as poplar (Populus deltoides), are not able to form flower buds during the first several years of their life cycle. They must undergo a transition from the juvenile phase to the reproductive phase to be competent to produce flower buds. After this transition, trees begin to form flower buds in the spring of each growing season. The genetic factors that control flower initiation, ending the juvenile phase, are unknown in poplar. The factors that regulate seasonal flower bud formation are also unknown. Here, we report that poplar FLOWERING LOCUS T2 (FT2), a relative of the Arabidopsis thaliana flowering-time gene FT, controls first-time and seasonal flowering in poplar. The FT2 transcript is rare during the juvenile phase of poplar. When juvenile poplar is transformed with FT2 and transcript levels are increased, flowering is induced within 1 year. During the transition between vegetative and reproductive growth in mature trees, FT2 transcripts are abundant during reproductive growth under long days. Subsequently, floral meristems emerge on flanks of the axillary inflorescence shoots. These findings suggest that FT2 is part of the flower initiation pathway in poplar and plays an additional role in regulating seasonal flower initiation that is integrated with the poplar perennial growth habit. PMID:16844908

  18. Bamboo Flowering from the Perspective of Comparative Genomics and Transcriptomics

    PubMed Central

    Biswas, Prasun; Chakraborty, Sukanya; Dutta, Smritikana; Pal, Amita; Das, Malay

    2016-01-01

    Bamboos are an important member of the subfamily Bambusoideae, family Poaceae. The plant group exhibits wide variation with respect to the timing (1–120 years) and nature (sporadic vs. gregarious) of flowering among species. Usually flowering in woody bamboos is synchronous across culms growing over a large area, known as gregarious flowering. In many monocarpic bamboos this is followed by mass death and seed setting. While in sporadic flowering an isolated wild clump may flower, set little or no seed and remain alive. Such wide variation in flowering time and extent means that the plant group serves as repositories for genes and expression patterns that are unique to bamboo. Due to the dearth of available genomic and transcriptomic resources, limited studies have been undertaken to identify the potential molecular players in bamboo flowering. The public release of the first bamboo genome sequence Phyllostachys heterocycla, availability of related genomes Brachypodium distachyon and Oryza sativa provide us the opportunity to study this long-standing biological problem in a comparative and functional genomics framework. We identified bamboo genes homologous to those of Oryza and Brachypodium that are involved in established pathways such as vernalization, photoperiod, autonomous, and hormonal regulation of flowering. Additionally, we investigated triggers like stress (drought), physiological maturity and micro RNAs that may play crucial roles in flowering. We also analyzed available transcriptome datasets of different bamboo species to identify genes and their involvement in bamboo flowering. Finally, we summarize potential research hurdles that need to be addressed in future research. PMID:28018419

  19. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea.

    PubMed

    Thairu, Margaret W; Brunet, Johanne

    2015-05-01

    Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government

  20. Overexpression of a MADS-box gene from birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco.

    PubMed

    Qu, Guan-Zheng; Zheng, Tangchun; Liu, Guifeng; Wang, Wenjie; Zang, Lina; Liu, Huanzhen; Yang, Chuanping

    2013-01-01

    In this study, a MADS-box gene (BpMADS), which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla). Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS). In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco.

  1. Mineral and metabolic profiles in tea leaves and flowers during flower development.

    PubMed

    Jia, Sisi; Wang, Yu; Hu, Jianhui; Ding, Zhaotang; Liang, Qing; Zhang, Yinfei; Wang, Hui

    2016-09-01

    Tea [Camellia sinensis (L.) O. Kuntze] is one of the most popular non-alcoholic beverage crops in the world, and the physiological processes and gene regulations involved in development in tea plants have been well characterized. However, relatively little is known about the metabolic changes combined with mineral distributions that occur during flower development. Here we detected the contents of 11 elements in tea leaves and flowers and found that, some of them, especially phosphorus, sulfur and copper, showed significant changes during tea flowering. We also detected 122 metabolites in tea leaves and flowers and found that, 72 of them showed significant differences between flowers and leaves, of which sugars, organic acids, and flavonoids dominated. The sugars, such as trehalose and galactose, all accumulated in tea flowers, and the organic acids, such as malic acid, citric acid and fumaric acid involved in TCA cycle. The flavonoids, like epicatechin, catechin gallate and epigallocatechin, were more abundant in leaves. Furthermore, we found that the contents of 33 metabolites changed during the development of flowers. Especially, citric acid, phenylalanine and most flavonoids decreased while fructose and galactose increased during flowering stages in flowers. We also analyzed the correlations between the ions and metabolites and found that, some mineral nutrients including phosphorus, sulfur, manganese and zinc had close relations to organic acids, flavonoids, sugars and several amino acids during flowering. We mapped the metabolic pathway according to the KEGG database. This work will serve as the foundation for a systems biology approach to the understanding of mineral metabolism. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Grass flower development.

    PubMed

    Hirano, Hiro-Yuki; Tanaka, Wakana; Toriba, Taiyo

    2014-01-01

    Grasses bear unique flowers lacking obvious petals and sepals in special inflorescence units, the florets and the spikelet. Despite this, grass floral organs such as stamens and lodicules (petal homologs) are specified by ABC homeotic genes encoding MADS domain transcription factors, suggesting that the ABC model of eudicot flower development is largely applicable to grass flowers. However, some modifications need to be made for the model to fit grasses well: for example, a YABBY gene plays an important role in carpel specification. In addition, a number of genes are involved in the development of the lateral organs that constitute the spikelet. In this review, we discuss recent progress in elucidating the genes required for flower and spikelet development in grasses, together with those involved in fate determination of the spikelet and flower meristems.

  3. Climatic variability leads to later seasonal flowering of Floridian plants.

    PubMed

    Von Holle, Betsy; Wei, Yun; Nickerson, David

    2010-07-21

    Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses.

  4. Climatic Variability Leads to Later Seasonal Flowering of Floridian Plants

    PubMed Central

    Von Holle, Betsy; Wei, Yun; Nickerson, David

    2010-01-01

    Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses. PMID:20657765

  5. Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana.

    PubMed

    Vidigal, Deborah S; Marques, Alexandre C S S; Willems, Leo A J; Buijs, Gonda; Méndez-Vigo, Belén; Hilhorst, Henk W M; Bentsink, Leónie; Picó, F Xavier; Alonso-Blanco, Carlos

    2016-08-01

    The temporal control or timing of the life cycle of annual plants is presumed to provide adaptive strategies to escape harsh environments for survival and reproduction. This is mainly determined by the timing of germination, which is controlled by the level of seed dormancy, and of flowering initiation. However, the environmental factors driving the evolution of plant life cycles remain largely unknown. To address this question we have analysed nine quantitative life history traits, in a native regional collection of 300 wild accessions of Arabidopsis thaliana. Seed dormancy and flowering time were negatively correlated, indicating that these traits have coevolved. In addition, environmental-phenotypic analyses detected strong altitudinal and climatic clines for most life history traits. Overall, accessions showing life cycles with early flowering, small seeds, high seed dormancy and slow germination rate were associated with locations exposed to high temperature, low summer precipitation and high radiation. Furthermore, we analysed the expression level of the positive regulator of seed dormancy DELAY OF GERMINATION 1 (DOG1), finding similar but weaker altitudinal and climatic patterns than seed dormancy. Therefore, DOG1 regulatory mutations are likely to provide a quantitative molecular mechanism for the adaptation of A. thaliana life cycle to altitude and climate. © 2016 John Wiley & Sons Ltd.

  6. Biosynthetic and functional color-scent associations in flowers of Papaver nudicaule and its impact on pollinators.

    PubMed

    Martinez-Harms, Jaime; Warskulat, Anne-Christin; Dudek, Bettina; Kunert, Grit; Lorenz, Sybille; Hansson, Bill S; Schneider, Bernd

    2018-04-26

    Despite the increasing evidence for biosynthetic connections between flower pigments and volatiles, examples of such relationships in polymorphic plant species remains limited. Here, we investigated color-scent associations in flowers from Papaver nudicaule (Papaveraceae). We determined the spectral reflectance and the scent composition of flowers of four color cultivars. We found that pigments and volatiles occur in specific combinations in flowers of P. nudicaule. The presence of indole in the bouquets is strongly associated with the occurrence of yellow pigments called nudicaulins, for which indole is one of the final biosynthetic precursors. While yellow flowers emit an excess of indole, orange flowers consume it during nudicaulin production and lack the substance in their bouquet. Using the honeybee, Apis mellifera, we evaluated how color and scent affect the discrimination of these flowers by pollinators. Honeybees were able to discriminate artificial odor mixtures resembling the natural flower odors. Bees trained with stimuli combining colors and odors showed an improved discrimination performance. Our results indicate that the indole moiety of nudicaulins and emitted indole might be products of the same biochemical pathway. We propose that conserved pathways account for the evolution of color-scent associations in P. nudicaule and that these associations positively affect flower constancy of pollinators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of exogenously applied abscisic acid on carotenoid content and water uptake in flowers of the tea plant (Camellia sinensis).

    PubMed

    Baldermann, Susanne; Yang, Ziyin; Sakai, Miwa; Fleischmann, Peter; Morita, Akio; Todoroki, Yasushi; Watanabe, Naoharu

    2013-05-01

    Carotenoids are a major class of plant pigments and fulfill many functions in different organisms that either produce or consume them. Although the color of the stamina of tea (Camellia sinensis) flowers is clearly due to the presence of carotenoids, the carotenoid profile and content remain to be discovered. We investigated the carotenoid profile of tea flowers and determined changes in concentrations over the floral development. The flowers contained oxygenated xanthophylls such as neoxanthin, lutein and zeaxanthin, as well as the hydrocarbons β-carotene and α-carotene. Flowers of the tea plant contain to vegetables comparable amounts of carotenoids. The content of 9'-cis-epoxycarotenoids, which serve as abscisic acid precursors, as well as changes in concentration of abscisic acid were studied. The concentrations of carotenoids decreased whereas the abscisic acid content increased over the floral development. Exogenously applied S-abscisic acid affected water uptake, flower opening and carotenoid accumulation. In summary, this paper reports, for the first time, the carotenoid profile and content of tea flowers. The study revealed that carotenoids in tea flowers are an interesting target in respect of possible applications of tea flower extracts as well as biological functions of abscisic acid during floral development. © 2012 Society of Chemical Industry.

  8. Has climatic warming altered spring flowering date of Sonoran Desert shrubs?

    USGS Publications Warehouse

    Bowers, Janice E.

    2007-01-01

    With global warming, flowering at many locations has shifted toward earlier dates of bloom. A steady increase in average annual temperature since the late 1890s makes it likely that flowering also has advanced in the northern Sonoran Desert of the southwestern United States and northwestern Mexico. In this study, phenological models were used to predict annual date of spring bloom in the northern Sonoran Desert from 1894 to 2004; then, herbarium specimens were assessed for objective evidence of the predicted shift in flowering time. The phenological models were derived from known flowering requirements (triggers and heat sums) of Sonoran Desert shrubs. According to the models, flowering might have advanced by 20-41 d from 1894 to 2004. Analysis of herbarium specimens collected during the 20th century supported the model predictions. Over time, there was a significant increase in the proportion of shrub specimens collected in flower in March and a significant decrease in the proportion collected in May. Thus, the flowering curve - the proportion of individuals in flower in each spring month - shifted toward the start of the calendar year between 1900 and 1999. This shift could not be explained by collection activity: collectors showed no tendency to be active earlier in the year as time went on, nor did activity toward the end of spring decline in recent decades. Earlier bloom eventually could have substantial impacts on plant and animal communities in the Sonoran Desert, especially on migratory hummingbirds and population dynamics of shrubs.

  9. Plastic Responses Contribute to Explaining Altitudinal and Temporal Variation in Potential Flower Longevity in High Andean Rhodolirion montanum.

    PubMed

    Pacheco, Diego Andrés; Dudley, Leah S; Cabezas, Josefina; Cavieres, Lohengrin A; Arroyo, Mary T K

    2016-01-01

    The tendency for flower longevity to increase with altitude is believed by many alpine ecologists to play an important role in compensating for low pollination rates at high altitudes due to cold and variable weather conditions. However, current studies documenting an altitudinal increase in flower longevity in the alpine habitat derive principally from studies on open-pollinated flowers where lower pollinator visitation rates at higher altitudes will tend to lead to flower senescence later in the life-span of a flower in comparison with lower altitudes, and thus could confound the real altitudinal pattern in a species´ potential flower longevity. In a two-year study we tested the hypothesis that a plastic effect of temperature on flower longevity could contribute to an altitudinal increase in potential flower longevity measured in pollinator-excluded flowers in high Andean Rhodolirium montanum Phil. (Amaryllidaceae). Using supplemental warming we investigated whether temperature around flowers plastically affects potential flower longevity. We determined tightly temperature-controlled potential flower longevity and flower height for natural populations on three alpine sites spread over an altitudinal transect from 2350 and 3075 m a.s.l. An experimental increase of 3.1°C around flowers significantly decreased flower longevity indicating a plastic response of flowers to temperature. Flower height in natural populations decreased significantly with altitude. Although temperature negatively affects flower longevity under experimental conditions, we found no evidence that temperature around flowers explains site variation in flower longevity over the altitudinal gradient. In a wetter year, despite a 3.5°C temperature difference around flowers at the extremes of the altitudinal range, flower longevity showed no increase with altitude. However, in a drier year, flower longevity increased significantly with altitude. The emerging picture suggests an increase in flower

  10. Plastic Responses Contribute to Explaining Altitudinal and Temporal Variation in Potential Flower Longevity in High Andean Rhodolirion montanum

    PubMed Central

    Cavieres, Lohengrin A.

    2016-01-01

    The tendency for flower longevity to increase with altitude is believed by many alpine ecologists to play an important role in compensating for low pollination rates at high altitudes due to cold and variable weather conditions. However, current studies documenting an altitudinal increase in flower longevity in the alpine habitat derive principally from studies on open-pollinated flowers where lower pollinator visitation rates at higher altitudes will tend to lead to flower senescence later in the life-span of a flower in comparison with lower altitudes, and thus could confound the real altitudinal pattern in a species´ potential flower longevity. In a two-year study we tested the hypothesis that a plastic effect of temperature on flower longevity could contribute to an altitudinal increase in potential flower longevity measured in pollinator-excluded flowers in high Andean Rhodolirium montanum Phil. (Amaryllidaceae). Using supplemental warming we investigated whether temperature around flowers plastically affects potential flower longevity. We determined tightly temperature-controlled potential flower longevity and flower height for natural populations on three alpine sites spread over an altitudinal transect from 2350 and 3075 m a.s.l. An experimental increase of 3.1°C around flowers significantly decreased flower longevity indicating a plastic response of flowers to temperature. Flower height in natural populations decreased significantly with altitude. Although temperature negatively affects flower longevity under experimental conditions, we found no evidence that temperature around flowers explains site variation in flower longevity over the altitudinal gradient. In a wetter year, despite a 3.5°C temperature difference around flowers at the extremes of the altitudinal range, flower longevity showed no increase with altitude. However, in a drier year, flower longevity increased significantly with altitude. The emerging picture suggests an increase in flower

  11. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

    PubMed

    Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu

    2015-10-01

    Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  12. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.).

    PubMed

    Ding, Feng; Zhang, Shuwei; Chen, Houbin; Su, Zuanxian; Zhang, Rong; Xiao, Qiusheng; Li, Hongli

    2015-12-01

    Litchi (Litchi chinensis) is an important subtropical evergreen fruit crop with high commercial value due to its high nutritional values and favorable tastes. However, irregular bearing attributed to unstable flowering is a major ongoing problem for litchi producers. There is a need to better understand the genetic and molecular mechanisms underlying the reproductive process in litchi. In a previous study, our laboratory had analyzed the transcriptome of litchi leaves before and after low-temperature treatment with RNA-seq technology. Herein, we demonstrated that litchi flowering was induced by low-temperature and identified two FLOWERING LOCUS T (FT) homologue genes named LcFT1 and LcFT2, respectively. We found that low-temperature could only induce LcFT1 expression in leaves, but could not induce LcFT2 expression. Heterologous expression of LcFT1 in transgenic tobacco and Arabidopsis plants induced their precocious flowering. These results indicate that LcFT1 plays a pivotal role in litchi floral induction by low-temperature. In addition, we found that two types of LcFT1 promoter existed in different litchi cultivars. The LcFT1 promoters in the early-flowering cultivars belonged to one type whereas LcFT1 promoters in the late-flowering belonged to another one. LcFT1 promoter in the early-flowering cultivars was more sensitive to low-temperature than that of the late-flowering cultivars was, which may be caused by the different cis-acting elements, including MYC, MYB, ABRE, and WRKY cis-acting elements, which were found to be present in the LcFT1 promoter sequences of the early-flowering cultivars. This difference may be responsible for the different requirements of low-temperature for floral induction in the early- and late-flowering cultivars of litchi. Taken together, the difference in LcFT1 promoter sequences may be one of the leading cause for the natural variation of flowering timing in different litchi cultivars. Our study has provided valuable genetic

  13. WEREWOLF, a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of FT mRNA Stability1[C][W][OA

    PubMed Central

    Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha

    2011-01-01

    A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous. PMID:21653190

  14. Repellency of Lantana camara (Verbenaceae) flowers against Aedes mosquitoes.

    PubMed

    Dua, V K; Gupta, N C; Pandey, A C; Sharma, V P

    1996-09-01

    The repellent effect of Lantana camara flowers was evaluated against Aedes mosquitoes. Lantana flower extract in coconut oil provided 94.5% protection from Aedes albopictus and Ae. aegypti. The mean protection time was 1.9 h. One application of Lantana flower can provide more than 50% protection up to 4 h against the possible bites of Aedes mosquitoes. No adverse effects of the human volunteers were observed through 3 months after the application.

  15. Warming Contracts Flowering Phenology in an Alpine Ecosystem

    NASA Astrophysics Data System (ADS)

    Jabis, M. D.; Winkler, D. E.; Kueppers, L. M.

    2015-12-01

    In alpine ecosystems where temperature increases associated with anthropogenic climate change are likely to be amplified, the flowering phenology of plants may be particularly sensitive to changes in environmental signals. For example, earlier snowmelt and higher temperature have been found to be important factors driving plant emergence and onset of flowering. However, few studies have examined the interactive role of soil moisture in response to warming. Using infrared heating to actively warm plots crossed with manual watering over the growing season in a moist alpine meadow at Niwot Ridge, Colorado, our preliminary results indicate that community-level phenology (length of flowering time across all species) was contracted with heating but was unaffected by watering. At the species level, additional water extended the length of the flowering season by one week for almost half (43%) of species. Heating, which raised plant and surface soil temperatures (+1.5 C) advanced snowmelt by ~7.6 days days and reduced soil moisture by ~2%, advanced flowering phenology for 86% of species. The response of flowering phenology to combined heating and watering was predominantly a heating effect. However, watering did appear to mitigate advances in end of flowering for 22% of species. The length of flowering season, for some species, appears to be tied, in part, to moisture availability as alleviating ambient soil moisture stress delayed phenology in unheated plots. Therefore, we conclude that both temperature and moisture appear to be important factors driving flowering phenology in this alpine ecosystem. The relationship between flowering phenology and species- or community-level productivity is not well established, but heating advanced community peak productivity by 5.4 days, and also reduced peak productivity unless additional water was provided, indicating some consistency between drivers of productivity and drivers of flowering phenology.

  16. A Regulatory Network for Coordinated Flower Maturation

    PubMed Central

    Ploense, Sara E.; Wu, Miin-Feng; Yadav, Vandana; Tholl, Dorothea; Chételat, Aurore; Haupt, Ina; Kennerley, Brian J.; Hodgens, Charles; Farmer, Edward E.; Nagpal, Punita; Reed, Jason W.

    2012-01-01

    For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs. PMID:22346763

  17. DOFT and DOFTIP1 affect reproductive development in the orchid Dendrobium Chao Praya Smile.

    PubMed

    Wang, Yanwen; Liu, Lu; Song, Shiyong; Li, Yan; Shen, Lisha; Yu, Hao

    2017-12-16

    FLOWERING LOCUS T (FT) in Arabidopsis encodes the florigen that moves from leaves to the shoot apical meristem to induce flowering, and this is partly mediated by FT-INTERACTING PROTEIN 1 (FTIP1). Although FT orthologs have been identified in some flowering plants, their endogenous roles in Orchidaceae, which is one of the largest families of flowering plants, are still largely unknown. In this study, we show that DOFT and DOFTIP1, the orchid orthologs of FT and FTIP1, respectively, play important roles in promoting flowering in the orchid Dendrobium Chao Praya Smile. Expression of DOFT and DOFTIP1 increases in whole plantlets during the transition from vegetative to reproductive development. Both transcripts are present in significant levels in reproductive organs, including inflorescence apices, stems, floral buds, and open flowers. Through successful generation of transgenic orchids, we have revealed that overexpression or down-regulation of DOFT accelerates or delays flowering, respectively, while alteration of DOFT expression also greatly affects pseudobulb formation and flower development. In common with their counterparts in Arabidopsis and rice, DOFTIP1 interacts with DOFT and affects flowering time in orchids. Our results suggest that while DOFT and DOFTIP1 play evolutionarily conserved roles in promoting flowering, DOFT may have evolved with hitherto unknown functions pertaining to the regulation of storage organs and flower development in the Orchidaceae family. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Overexpression of a MADS-Box Gene from Birch (Betula platyphylla) Promotes Flowering and Enhances Chloroplast Development in Transgenic Tobacco

    PubMed Central

    Qu, Guan-Zheng; Zheng, Tangchun; Liu, Guifeng; Wang, Wenjie; Zang, Lina; Liu, Huanzhen; Yang, Chuanping

    2013-01-01

    In this study, a MADS-box gene (BpMADS), which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla). Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS). In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco. PMID:23691043

  19. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana.

    PubMed

    Sawa, Mariko; Kay, Steve A

    2011-07-12

    Plants perceive environmental signals such as day length and temperature to determine optimal timing for the transition from vegetative to floral stages. Arabidopsis flowers under long-day conditions through the CONSTANS (CO)-FLOWERING LOCUS T (FT) regulatory module. It is thought that the environmental cues for photoperiodic control of flowering are initially perceived in the leaves. We have previously shown that GIGANTEA (GI) regulates the timing of CO expression, together with FLAVIN-BINDING, KELCH REPEAT, F BOX protein 1. Normally, CO and FT are expressed exclusively in vascular bundles, whereas GI is expressed in various tissues. To better elucidate the role of tissue-specific expression of GI in the flowering pathway, we established transgenic lines in which GI is expressed exclusively in mesophyll, vascular bundles, epidermis, shoot apical meristem, or root. We found that GI expressed in either mesophyll or vascular bundles rescues the late-flowering phenotype of the gi-2 loss-of-function mutant under both short-day and long-day conditions. Interestingly, GI expressed in mesophyll or vascular tissues increases FT expression without up-regulating CO expression under short-day conditions. Furthermore, we examined the interaction between GI and FT repressors in mesophyll. We found that GI can bind to three FT repressors: SHORT VEGETATIVE PHASE (SVP), TEMPRANILLO (TEM)1, and TEM2. Finally, our chromatin immunoprecipitation experiments showed that GI binds to FT promoter regions that are near the SVP binding sites. Taken together, our data further elucidate the multiple roles of GI in the regulation of flowering time.

  20. Flower Constancy, Insect Psychology, and Plant Evolution

    NASA Astrophysics Data System (ADS)

    Chittka, Lars; Thomson, James D.; Waser, Nickolas M.

    Individuals of some species of pollinating insects tend to restrict their visits to only a few of the available plant species, in the process bypassing valuable food sources. The question of why this flower constancy exists is a rich and important one with implications for the organization of natural communities of plants, floral evolution, and our understanding of the learning processes involved in finding food. Some scientists have assumed that flower constancy is adaptive per se. Others argued that constancy occurs because memory capacity for floral features in insects is limited, but attempts to identify the limitations often remained rather simplistic. We elucidate now different sensory and motor memories from natural foraging tasks are stored and retrieved, using concepts from modern learning science and visual search, and conclude that flower constancy is likely to have multiple causes. Possible constraints favoring constancy are interference sensitivity of short-term memory, and temporal limitations on retrieving information from long-term memory as rapidly as from short-term memory, but further empirical evidence is needed to substantiate these possibilities. In addition, retrieving memories may be slower and more prone to errors when there are several options than when an insect copes with only a single task. In addition to memory limitations, we also point out alternative explanations for flower constancy. We then consider the way in which floral parameters, such as interplant distances, nectar rewards, flower morphology, and floral color (as seen through bees' eyes) affect constancy. Finally, we discuss the implications of pollinator constancy for plant evolution. To date there is no evidence that flowers have diverged to favor constancy, although the appropriate tests may not have yet been conducted. However, there is good evidence against the notion that pollinator constancy is involved in speciation or maintenance of plant species integrity.

  1. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.

    PubMed

    Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F

    2017-11-01

    In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Are flowers vulnerable to xylem cavitation during drought?

    PubMed

    Zhang, Feng-Ping; Brodribb, Timothy J

    2017-05-17

    Water stress is known to cause xylem cavitation in the leaves, roots and stems of plants, but little is known about the vulnerability of flowers to xylem damage during drought. This is an important gap in our understanding of how and when plants become damaged by water stress. Here we address fundamental questions about if and when flowers suffer cavitation damage, using a new technique of cavitation imaging to resolve the timing of cavitation in water-stressed flower petals compared with neighbouring leaves. Leaves and flowers from a sample of two herbaceous and two woody eudicots were exposed to a severe water stress while the spatial and temporal propagation of embolism through veins was recorded. Although in most cases water potentials inducing 50% embolism of herbaceous flower veins were more negative than neighbouring leaves, there was no significant difference between the average vulnerability of leaves and petals of herbaceous species. In both woody species, petals were more vulnerable to cavitation than leaves, in one case by more than 3 MPa. Early cavitation and subsequent damage of flowers in the two woody species would thus be expected to precede leaf damage during drought. Similar cavitation thresholds of flowers and leaves in the herb sample suggest that cavitation during water shortage in these species will occur simultaneously among aerial tissues. Species-specific differences in the cavitation thresholds of petals provide a new axis of variation that may explain contrasting flowering ecology among plant species. © 2017 The Author(s).

  3. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod.

    PubMed

    Hecht, Valérie; Laurie, Rebecca E; Vander Schoor, Jacqueline K; Ridge, Stephen; Knowles, Claire L; Liew, Lim Chee; Sussmilch, Frances C; Murfet, Ian C; Macknight, Richard C; Weller, James L

    2011-01-01

    Garden pea (Pisum sativum) was prominent in early studies investigating the genetic control of flowering and the role of mobile flowering signals. In view of recent evidence that genes in the FLOWERING LOCUS T (FT) family play an important role in generating mobile flowering signals, we isolated the FT gene family in pea and examined the regulation and function of its members. Comparison with Medicago truncatula and soybean (Glycine max) provides evidence of three ancient subclades (FTa, FTb, and FTc) likely to be common to most crop and model legumes. Pea FT genes show distinctly different expression patterns with respect to developmental timing, tissue specificity, and response to photoperiod and differ in their activity in transgenic Arabidopsis thaliana, suggesting they may have different functions. We show that the pea FTa1 gene corresponds to the GIGAS locus, which is essential for flowering under long-day conditions and promotes flowering under short-day conditions but is not required for photoperiod responsiveness. Grafting, expression, and double mutant analyses show that GIGAS/FTa1 regulates a mobile flowering stimulus but also provide clear evidence for a second mobile flowering stimulus that is correlated with expression of FTb2 in leaf tissue. These results suggest that induction of flowering by photoperiod in pea results from interactions among several members of a diversified FT family.

  4. Design a Hummingbird Flower.

    ERIC Educational Resources Information Center

    Bailey, Kim

    2002-01-01

    Presents an activity that engages students in designing and making an artificial flower adapted for pollination by hummingbirds. Students work in teams to design flowers that maximize the benefit from attracting hummingbirds. Examines characteristics of real flowers adapted to pollination by hummingbirds. (DLH)

  5. Flowering and floral visitation predict changes in community structure provided that mycorrhizas remain intact.

    PubMed

    Bennett, Jonathan A; Cahill, James F

    2018-06-01

    Pollination is critical for plant fitness and population dynamics, yet little attention is paid to the role of flowering and plant-pollinator interactions in structuring plant communities, including community responses to environmental change. Changes in arbuscular mycorrhizal fungi (AMF), nutrient abundances, and plant litter all affect plant access to different resources, and are known regulators of community structure. Each factor can also affect flowering and plant-pollinator interactions, potentially contributing to changes in community structure. To test whether AMF, nutrients, and litter influenced the relationship between pollination and community structure, we conducted a 5-yr field experiment applying fungicide, adding fertilizer, and removing plant litter in native grassland. We measured the distribution of flowers and floral visits among species in year three and linked these measures to changes in plant composition and species richness between years three and five. We hypothesized that an uneven distribution of flowers and visits among species would lead to greater community change, but that the treatments would disrupt this relationship by altering sexual allocation and recruitment. Consistent with our hypothesis, communities with uneven flower distributions exhibited greater changes in community composition and richness under ambient conditions. However, AMF suppression neutralized this relationship and regulated the other treatment effects, highlighting the potential importance of AMF for stabilizing recruitment dynamics. Combined, AMF suppression and nutrient addition caused species losses when few species flowered, likely by compounding stresses for those species. The treatment effects on the relationship between flowering and community composition were more nuanced, but were likely driven by increased competition and altered flowering among species. By contrast, community composition was more stable when visitation rates were uneven among species

  6. Evolvability of flower geometry: Convergence in pollinator-driven morphological evolution of flowers.

    PubMed

    Woźniak, Natalia Joanna; Sicard, Adrien

    2018-07-01

    Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biphasic effect of Syzygium aromaticum flower bud on reproductive physiology of male mice.

    PubMed

    Mishra, R K; Singh, S K

    2016-11-01

    The flower buds of Syzygium aromaticum (clove) have been used for the treatment of male sexual disorders in indigenous medicines of Indian subcontinent. Therefore to evaluate the efficacy of Syzygium aromaticum on the male reproductive health, chronic oral exposure of aqueous extract of flower buds of Syzygium in three doses (15 mg, 30 mg and 60 mg kg -1 BW) were studied for a single spermatogenic cycle (35 days) in Parkes (P) strain mice. Lower dose (15 mg) of Syzygium aromaticum flower buds increased serum testosterone level and testicular hydroxysteroid dehydrogenase (HSD) activities and improved sperm motility, sperm morphology, secretory activity of epididymis and seminal vesicle, and number of litters per female. On the other hand, higher doses (30 and 60 mg) of the treatment adversely affected above parameters. Further, higher doses of the extract also had adverse effects on daily sperm production, 1C cell population and on histology of testis. In conclusion, Syzygium aromaticum flower buds extract exhibits biphasic effect on reproductive physiology of male mice. Lower dose of Syzygium aromaticum flower bud extract is androgenic in nature and may have a viable future as an indigenous sexual rejuvenator, while higher doses adversely affected functional physiology of reproductive organs. © 2016 Blackwell Verlag GmbH.

  8. Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco.

    PubMed

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Hildebrandt, Britton; Leasia, Michael

    2013-11-01

    The K-domain of a blueberry-derived SOC1 -like gene promotes flowering in tobacco without negatively impacting yield, demonstrating potential for manipulation of flowering time in horticultural crops. The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and SOC1-likes, belonging to the MIKC(c) (type II) MADS-box gene subfamily, are major floral activators and integrators of plant flowering. Both MADS-domains and K (Keratin)-domains are highly conserved in MIKC(c)-type MADS proteins. While there are many reports on overexpression of intact MIKC(c)-type MADS-box genes, few studies have been conducted to investigate the effects of the K-domains. In this report, a 474-bp K-domain of Vaccinium SOC1-like (VcSOC1-K) was cloned from the cDNA library of the northern highbush blueberry (Vaccinium corymbosum L.). Functional analysis of the VcSOC1-K was conducted by ectopically expressing of 35S:VcSOC1-K in tobacco. Reverse transcription PCR confirmed expression of the VcSOC1-K in T0 plants. Phenotypically, T1 transgenic plants (10 T1 plants/event) flowered sooner after seeding, and were shorter with fewer leaves at the time of flowering, than nontransgenic plants; but seed pod production of transgenic plants was not significantly affected. These results demonstrate that overexpression of the K-domain of a MIKC(c)-type MADS-box gene alone is sufficient to promote early flowering and more importantly without affecting seed production.

  9. Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering.

    PubMed

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Dörmann, Peter; Coupland, George

    2014-04-04

    Arabidopsis FT protein is a component of florigen, which transmits photoperiodic flowering signals from leaf companion cells to the shoot apex. Here, we show that FT specifically binds phosphatidylcholine (PC) in vitro. A transgenic approach to increase PC levels in vivo in the shoot meristem accelerates flowering whereas reduced PC levels delay flowering, demonstrating that PC levels are correlated with flowering time. The early flowering is related to FT activity, because expression of FT-effector genes is increased in these plants. Simultaneous increase of FT and PC in the shoot apical meristem further stimulates flowering, whereas a loss of FT function leads to an attenuation of the effect of increased PC. Specific molecular species of PC oscillate diurnally, and night-dominant species are not the preferred ligands of FT. Elevating night-dominant species during the day delays flowering. We suggest that FT binds to diurnally changing molecular species of PC to promote flowering.

  10. Flower constancy in insect pollinators

    PubMed Central

    Ratnieks, Francis L.W.

    2011-01-01

    As first noted by Aristotle in honeybee workers, many insect pollinators show a preference to visit flowers of just one species during a foraging trip. This “flower constancy” probably benefits plants, because pollen is more likely to be deposited on conspecific stigmas. But it is less clear why insects should ignore rewarding alternative flowers. Many researchers have argued that flower constancy is caused by constraints imposed by insect nervous systems rather than because flower constancy is itself an efficient foraging method. We argue that this view is unsatisfactory because it both fails to explain why foragers flexibly adjust the degree of flower constancy and does not explain why foragers of closely related species show different degrees of constancy. While limitations of the nervous system exist and are likely to influence flower constancy to some degree, the observed behavioural flexibility suggests that flower constancy is a successful foraging strategy given the insect’s own information about different foraging options. PMID:22446521

  11. Unexpected Diversity during Community Succession in the Apple Flower Microbiome

    PubMed Central

    Shade, Ashley; McManus, Patricia S.; Handelsman, Jo

    2013-01-01

    ABSTRACT Despite its importance to the host, the flower microbiome is poorly understood. We report a culture-independent, community-level assessment of apple flower microbial diversity and dynamics. We collected flowers from six apple trees at five time points, starting before flowers opened and ending at petal fall. We applied streptomycin to half of the trees when flowers opened. Assessment of microbial diversity using tag pyrosequencing of 16S rRNA genes revealed that the apple flower communities were rich and diverse and dominated by members of TM7 and Deinococcus-Thermus, phyla about which relatively little is known. From thousands of taxa, we identified six successional groups with coherent dynamics whose abundances peaked at different times before and after bud opening. We designated the groups Pioneer, Early, Mid, Late, Climax, and Generalist communities. The successional pattern was attributed to a set of prevalent taxa that were persistent and gradually changing in abundance. These taxa had significant associations with other community members, as demonstrated with a cooccurrence network based on local similarity analysis. We also detected a set of less-abundant, transient taxa that contributed to general tree-to-tree variability but not to the successional pattern. Communities on trees sprayed with streptomycin had slightly lower phylogenetic diversity than those on unsprayed trees but did not differ in structure or succession. Our results suggest that changes in apple flower microbial community structure are predictable over the life of the flower, providing a basis for ecological understanding and disease management. PMID:23443006

  12. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta.

    PubMed

    Fenske, Myles P; Nguyen, LeAnn P; Horn, Erin K; Riffell, Jeffrey A; Imaizumi, Takato

    2018-02-12

    Most plant-pollinator interactions occur during specific periods during the day. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission and petal opening, in a daily rhythmic fashion. However, less is known about how the internal timing mechanisms (the circadian clocks) of plants and animals influence their daily interactions. We examine the role of the circadian clock in modulating the interaction between Petunia and one of its pollinators, the hawkmoth Manduca sexta. We find that desynchronization of the Petunia circadian clock affects moth visitation preference for Petunia flowers. Similarly, moths with circadian time aligned to plants show stronger flower-foraging activities than moths that lack this alignment. Moth locomotor activity is circadian clock-regulated, although it is also strongly repressed by light. Moths show a time-dependent burst increase in flight activity during subjective night. In addition, moth antennal responsiveness to the floral scent compounds exhibits a 24-hour rhythm in both continuous light and dark conditions. This study highlights the importance of the circadian clocks in both plants and animals as a crucial factor in initiating specialized plant-pollinator relationships.

  13. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae.

    PubMed

    Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Bailey, Paul C; O'Sullivan, Donal M

    2012-01-01

    Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ∼200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken.

  14. Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactions

    PubMed Central

    Riffell, Jeffrey A.; Alarcón, Ruben; Abrell, Leif; Davidowitz, Goggy; Bronstein, Judith L.; Hildebrand, John G.

    2008-01-01

    Spatiotemporal variability in floral resources can have ecological and evolutionary consequences for both plants and the pollinators on which they depend. Seldom, however, can patterns of flower abundance and visitation in the field be linked with the behavioral mechanisms that allow floral visitors to persist when a preferred resource is scarce. To explore these mechanisms better, we examined factors controlling floral preference in the hawkmoth Manduca sexta in the semiarid grassland of Arizona. Here, hawkmoths forage primarily on flowers of the bat-adapted agave, Agave palmeri, but shift to the moth-adapted flowers of their larval host plant, Datura wrightii, when these become abundant. Both plants emit similar concentrations of floral odor, but scent composition, nectar, and flower reflectance are distinct between the two species, and A. palmeri flowers provide six times as much chemical energy as flowers of D. wrightii. Behavioral experiments with both naïve and experienced moths revealed that hawkmoths learn to feed from agave flowers through olfactory conditioning but readily switch to D. wrightii flowers, for which they are the primary pollinator, based on an innate odor preference. Behavioral flexibility and the olfactory contrast between flowers permit the hawkmoths to persist within a dynamic environment, while at the same time to function as the major pollinator of one plant species. PMID:18305169

  15. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris.

    PubMed

    Li, Weiguo; Zhang, Lihui; Ding, Zhan; Wang, Guodong; Zhang, Yandi; Gong, Hongmei; Chang, Tianjun; Zhang, Yanwen

    2017-02-28

    Taihangia rupestris, an andromonoecious plant species, bears both male and hermaphroditic flowers within the same individual. However, the establishment and development of male and hermaphroditic flowers in andromonoecious Taihangia remain poorly understood, due to the limited genetic and sequence information. To investigate the potential molecular mechanism in the regulation of Taihangia flower formation, we used de novo RNA sequencing to compare the transcriptome profiles of male and hermaphroditic flowers at early and late developmental stages. Four cDNA libraries, including male floral bud, hermaphroditic floral bud, male flower, and hermaphroditic flower, were constructed and sequenced by using the Illumina RNA-Seq method. Totally, 84,596,426 qualified Illumina reads were obtained and then assembled into 59,064 unigenes, of which 24,753 unigenes were annotated in the NCBI non-redundant protein database. In addition, 12,214, 7,153, and 8,115 unigenes were assigned into 53 Gene Ontology (GO) functional groups, 25 Clusters of Orthologous Group (COG) categories, and 126 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. By pairwise comparison of unigene abundance between the samples, we identified 1,668 differential expressed genes (DEGs), including 176 transcription factors (TFs) between the male and hermaphroditic flowers. At the early developmental stage, we found 263 up-regulated genes and 436 down-regulated genes expressed in hermaphroditic floral buds, while 844 up-regulated genes and 314 down-regulated genes were detected in hermaphroditic flowers at the late developmental stage. GO and KEGG enrichment analyses showed that a large number of DEGs were associated with a wide range of functions, including cell cycle, epigenetic processes, flower development, and biosynthesis of unsaturated fatty acid pathway. Finally, real-time quantitative PCR was conducted to validate the DEGs identified in the present study. In this study, transcriptome

  16. Apple dwarfing rootstocks and interstocks affect the type of growth units produced during the annual growth cycle: precocious transition to flowering affects the composition and vigour of annual shoots.

    PubMed

    Seleznyova, Alla N; Tustin, D Stuart; Thorp, T Grant

    2008-04-01

    Precocious flowering in apple trees is often associated with a smaller tree size. The hypothesis was tested that floral evocation in axillary buds, induced by dwarfing rootstocks, reduces the vigour of annual shoots developing from these buds compared with shoots developing from vegetative buds. The experimental system provided a wide range of possible tree vigour using 'Royal Gala' scions and M.9 (dwarfing) and MM.106 (non-dwarfing) as rootstocks and interstocks. Second-year annual shoots were divided into growth units corresponding to periods (flushes) of growth namely, vegetative spur, extension growth unit, uninterrupted growth unit, floral growth unit (bourse) and extended bourse. The differences between the floral and vegetative shoots were quantified by the constituent growth units produced. The dwarfing influence was expressed, firstly, in reduced proportions of shoots that contained at least one extension growth unit and secondly, in reduced proportions of bicyclic shoots (containing two extension growth units) and shoots with an uninterrupted growth unit. In treatments where floral shoots were present, they were markedly less vigorous than vegetative shoots with respect to both measures. In treatments with M.9 rootstock, vegetative and floral shoots produced on average 0.52 and 0.17 extension growth units, compared with 0.77 extension growth units per shoot in the MM.106 rootstock treatment. Remarkably, the number of nodes per extension growth unit was not affected by the rootstock/interstock treatments. These results showed that rootstocks/interstocks affect the type of growth units produced during the annual growth cycle, reducing the number of extension growth units, thus affecting the composition and vigour of annual shoots. This effect is particularly amplified by the transition to flowering induced by dwarfing rootstocks. The division of annual shoot into growth units will also be useful for measuring and modelling effects of age on apple tree

  17. Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.

    PubMed

    Shi, Y; Zhang, X; Xu, Z-Y; Li, L; Zhang, C; Schläppi, M; Xu, Z-Q

    2011-09-01

    EARLI1 encodes a 14.7 kDa protein in the cell wall, is a member of the PRP (proline-rich protein) family and has multiple functions, including resistance to low temperature and fungal infection. RNA gel blot analyses in the present work indicated that expression of EARLI1-like genes, EARLI1, At4G12470 and At4G12490, was down-regulated in Col-FRI-Sf2 RNAi plants derived from transformation with Agrobacterium strain ABI, which contains a construct encoding a double-strand RNA targeting 8CM of EARLI1. Phenotype analyses revealed that Col-FRI-Sf2 RNAi plants of EARLI1 flowered earlier than Col-FRI-Sf2 wild-type plants. The average bolting time of Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants was 39.7 and 19.4 days, respectively, under a long-day photoperiod. In addition, there were significant differences in main stem length, internode number and rosette leaf number between Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants. RT-PCR showed that EARLI1-like genes might delay flowering time through the autonomous and long-day photoperiod pathways by maintaining the abundance of FLC transcripts. In Col-FRI-Sf2 RNAi plants, transcription of FLC was repressed, while expression of SOC1 and FT was activated. Microscopy observations showed that EARLI1-like genes were also associated with morphogenesis of leaf cells in Arabidopsis. Using histochemical staining, EARLI1-like genes were found to be involved in regulation of lignin synthesis in inflorescence stems, and Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants had 9.67% and 8.76% dry weight lignin, respectively. Expression analysis revealed that cinnamoyl-CoA reductase, a key enzyme in lignin synthesis, was influenced by EARLI1-like genes. These data all suggest that EARLI1-like genes could control the flowering process and lignin synthesis in Arabidopsis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model

    PubMed Central

    Settele, Josef; Dormann, Carsten F.

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio

  19. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.

    PubMed

    Everaars, Jeroen; Settele, Josef; Dormann, Carsten F

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio

  20. Enhancing Flower Color through Simultaneous Expression of the B-peru and mPAP1 Transcription Factors under Control of a Flower-Specific Promoter

    PubMed Central

    Kim, Da-Hye; Park, Sangkyu; Lee, Jong-Yeol; Ha, Sun-Hwa; Lim, Sun-Hyung

    2018-01-01

    Flower color is a main target for flower breeding. A transgenic approach for flower color modification requires a transgene and a flower-specific promoter. Here, we expressed the B-peru gene encoding a basic helix loop helix (bHLH) transcription factor (TF) together with the mPAP1 gene encoding an R2R3 MYB TF to enhance flower color in tobacco (Nicotiana tabacum L.), using the tobacco anthocyanidin synthase (ANS) promoter (PANS) to drive flower-specific expression. The transgenic tobacco plants grew normally and produced either dark pink (PANSBP_DP) or dark red (PANSBP_DR) flowers. Quantitative real time polymerase chain reaction (qPCR) revealed that the expression of five structural genes in the flavonoid biosynthetic pathway increased significantly in both PANSBP_DP and PANSBP_DR lines, compared with the non-transformed (NT) control. Interestingly, the expression of two regulatory genes constituting the active MYB-bHLH-WD40 repeat (WDR) (MBW) complex decreased significantly in the PANSBP_DR plants but not in the PANSBP_DP plants. Total flavonol and anthocyanin abundance correlated with flower color, with an increase of 1.6–43.2 fold in the PANSBP_DP plants and 2.0–124.2 fold in the PANSBP_DR plants. Our results indicate that combinatorial expression of B-peru and mPAP1 genes under control of the ANS promoter can be a useful strategy for intensifying flower color without growth retardation. PMID:29361688

  1. Delay of iris flower senescence by cytokinins and jasmonates.

    PubMed

    van Doorn, Wouter G; Çelikel, Fisun G; Pak, Caroline; Harkema, Harmannus

    2013-05-01

    It is not known whether tepal senescence in Iris flowers is regulated by hormones. We applied hormones and hormone inhibitors to cut flowers and isolated tepals of Iris × hollandica cv. Blue Magic. Treatments with ethylene or ethylene antagonists indicated lack of ethylene involvement. Auxins or auxin inhibitors also did not change the time to senescence. Abscisic acid (ABA) hastened senescence, but an inhibitor of ABA synthesis (norflurazon) had no effect. Gibberellic acid (GA3 ) slightly delayed senescence in some experiments, but in other experiments it was without effect, and gibberellin inhibitors [ancymidol or 4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate (AMO-1618)] were ineffective as well. Salicylic acid (SA) also had no effect. Ethylene, auxins, GA3 and SA affected flower opening, therefore did reach the flower cells. Jasmonates delayed senescence by about 2.0 days. Similarly, cytokinins delayed senescence by about 1.5-2.0 days. Antagonists of the phosphatidylinositol signal transduction pathway (lithium), calcium channels (niguldipine and verapamil), calmodulin action [fluphenazine, trifluoroperazine, phenoxybenzamide and N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide hydrochloride (W-7)] or protein kinase activity [1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride (H-7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-8) and N-(2-aminoethyl)-5-isoquinolinesulfonamide dihydrochloride (H-9)] had no effect on senescence, indicating no role of a few common signal transduction pathways relating to hormone effects on senescence. The results indicate that tepal senescence in Iris cv. Blue Magic is not regulated by endogenous ethylene, auxin, gibberellins or SA. A role of ABA can at present not be excluded. The data suggest the hypothesis that cytokinins and jasmonates are among the natural regulators. Copyright © Physiologia Plantarum 2012.

  2. Phylogenetic analysis of IDD gene family and characterization of its expression in response to flower induction in Malus.

    PubMed

    Fan, Sheng; Zhang, Dong; Xing, Libo; Qi, Siyan; Du, Lisha; Wu, Haiqin; Shao, Hongxia; Li, Youmei; Ma, Juanjuan; Han, Mingyu

    2017-08-01

    Although INDETERMINATE DOMAIN (IDD) genes encoding specific plant transcription factors have important roles in plant growth and development, little is known about apple IDD (MdIDD) genes and their potential functions in the flower induction. In this study, we identified 20 putative IDD genes in apple and named them according to their chromosomal locations. All identified MdIDD genes shared a conserved IDD domain. A phylogenetic analysis separated MdIDDs and other plant IDD genes into four groups. Bioinformatic analysis of chemical characteristics, gene structure, and prediction of protein-protein interactions demonstrated the functional and structural diversity of MdIDD genes. To further uncover their potential functions, we performed analysis of tandem, synteny, and gene duplications, which indicated several paired homologs of IDD genes between apple and Arabidopsis. Additionally, genome duplications also promoted the expansion and evolution of the MdIDD genes. Quantitative real-time PCR revealed that all the MdIDD genes showed distinct expression levels in five different tissues (stems, leaves, buds, flowers, and fruits). Furthermore, the expression levels of candidate MdIDD genes were also investigated in response to various circumstances, including GA treatment (decreased the flowering rate), sugar treatment (increased the flowering rate), alternate-bearing conditions, and two varieties with different-flowering intensities. Parts of them were affected by exogenous treatments and showed different expression patterns. Additionally, changes in response to alternate-bearing and different-flowering varieties of apple trees indicated that they were also responsive to flower induction. Taken together, our comprehensive analysis provided valuable information for further analysis of IDD genes aiming at flower induction.

  3. What flowers do we like? The influence of shape and color on the rating of flower beauty.

    PubMed

    Hůla, Martin; Flegr, Jaroslav

    2016-01-01

    There is no doubt that people find flowers beautiful. Surprisingly, we know very little about the actual properties which make flowers so appealing to humans. Although the evolutionary aesthetics provides some theories concerning generally preferred flower traits, empirical evidence is largely missing. In this study, we used an online survey in which residents of the Czech Republic (n = 2006) rated the perceived beauty of 52 flower stimuli of diverse shapes and colors. Colored flowers were preferred over their uncolored versions. When controlling for flower shape, we found an unequal preference for different flower colors, blue being the most and yellow the least preferred. In the overall assessment of beauty, shape was more important than color. Prototypical flowers, i.e., radially symmetrical flowers with low complexity, were rated as the most beautiful. We also found a positive effect of sharp flower contours and blue color on the overall rating of flower beauty. The results may serve as a basis for further studies in some areas of the people-plant interaction research.

  4. What flowers do we like? The influence of shape and color on the rating of flower beauty

    PubMed Central

    Flegr, Jaroslav

    2016-01-01

    There is no doubt that people find flowers beautiful. Surprisingly, we know very little about the actual properties which make flowers so appealing to humans. Although the evolutionary aesthetics provides some theories concerning generally preferred flower traits, empirical evidence is largely missing. In this study, we used an online survey in which residents of the Czech Republic (n = 2006) rated the perceived beauty of 52 flower stimuli of diverse shapes and colors. Colored flowers were preferred over their uncolored versions. When controlling for flower shape, we found an unequal preference for different flower colors, blue being the most and yellow the least preferred. In the overall assessment of beauty, shape was more important than color. Prototypical flowers, i.e., radially symmetrical flowers with low complexity, were rated as the most beautiful. We also found a positive effect of sharp flower contours and blue color on the overall rating of flower beauty. The results may serve as a basis for further studies in some areas of the people-plant interaction research. PMID:27330863

  5. Refuges, flower strips, biodiversity and agronomic interest.

    PubMed

    Roy, Grégory; Wateau, Karine; Legrand, Mickaël; Oste, Sandrine

    2008-01-01

    Several arthropods are natural predators of pests, and they are able to reduce and control their population development. FREDON Nord Pas-de-Calais (Federation Regionate de Defense contre les Organismes Nuisibles = Regional Federation for Pest Control) has begun for a long time to form farmers to the recognition of beneficial arthropods and to show them their usefulness. These beneficial insects or arachnids are present everywhere, in orchards and even in fields which are areas relatively poor in biodiversity. Adults feed in the flower strips instead larvae and some adults feed on preys such as aphids or caterpillars. Most of the time, beneficial insects can regulate pest but sometimes, in agricultural area, they can't make it early enough and efficiently. Their action begin too late and there biodiversity and number are too low. It's possible to enhance their action by manipulating the ecological infrastructures, like sewing flower strips or installing refuges. Flower strips increase the density of natural enemies and make them be present earlier in the field in order to control pests. Refuges permit beneficial's to spend winter on the spot. So they're able to be active and to grow in number earlier. From 2004 to 2007, on the one hand, FREDON Nord Pas-de-Calais has developed a research program. Its purpose was to inventory practices and also tools and means available and to judge the advisability of using such or such beneficial refuge in orchards. On the second hand, it studied the impact in orchard of refuges on population of beneficial's and the difference there were between manufactured refuges and homemade refuges. Interesting prospects were obtained with some of them. Otherwise, since 2003, FREDON has studied flower strips influence on beneficial population and their impact on pest control. In cabbage fields, results of trials have shown that flower strips lead to a reduction of aphid number under acceptable economic level, up to 50 meters from flower strips

  6. Questions of time and affect: a person's affectivity profile, time perspective, and well-being.

    PubMed

    Garcia, Danilo; Sailer, Uta; Nima, Ali Al; Archer, Trevor

    2016-01-01

    Background. A "balanced" time perspective has been suggested to have a positive influence on well-being: a sentimental and positive view of the past (high Past Positive), a less pessimistic attitude toward the past (low Past Negative), the desire of experiencing pleasure with slight concern for future consequences (high Present Hedonistic), a less fatalistic and hopeless view of the future (low Present Fatalistic), and the ability to find reward in achieving specific long-term goals (high Future). We used the affective profiles model (i.e., combinations of individuals' experience of high/low positive/negative affectivity) to investigate differences between individuals in time perspective dimensions and to investigate if the influence of time perspective dimensions on well-being was moderated by the individual's type of profile. Method. Participants (N = 720) answered to the Positive Affect Negative Affect Schedule, the Zimbardo Time Perspective Inventory and two measures of well-being: the Temporal Satisfaction with Life Scale and Ryff's Scales of Psychological Well-Being-short version. A Multivariate Analysis of Variance (MANOVA) was conducted to identify differences in time perspective dimensions and well-being among individuals with distinct affective profiles. Four structural equation models (SEM) were used to investigate which time perspective dimensions predicted well-being for individuals in each profile. Results. Comparisons between individuals at the extreme of the affective profiles model suggested that individuals with a self-fulfilling profile (high positive/low negative affect) were characterized by a "balanced" time perspective and higher well-being compared to individuals with a self-destructive profile (low positive/high negative affect). However, a different pattern emerged when individuals who differed in one affect dimension but matched in the other were compared to each other. For instance, decreases in the past negative time perspective

  7. How Do Trees Know When to Flower? Predicting Reproductive Phenology of Douglas-fir with Changing Winter and Spring Temperatures

    NASA Astrophysics Data System (ADS)

    Prevey, J.; St Clair, B.; Harrington, C.

    2016-12-01

    Flowering at the right time is one of the primary ways that plants are adapted to their environment. Trees that flower too early risk cold damage to vulnerable new tissues and those that flower too late miss peak resources or may mistime flowering to coincide with other trees, altering outcrossing rates and gene flow. Past observations indicate that temperature cues over winter and spring influence the timing of flowering in many tree species. Understanding these cues is important for predicting how flowering phenology of trees will change with a changing climate.We developed predictive models of flowering for Douglas-fir, an abundant and commercially important tree in the Pacific Northwest. We assembled over 10,000 flowering observations of trees from 11 sites across western Oregon and Washington. We modeled the dates of flowering using hourly temperature data; our models of flowering were adapted from previous models of vegetative budburst and height growth initiation developed for Douglas-fir. Preliminary results show that both chilling (cold) and forcing (warm) temperatures over winter and spring are important determinants of flowering time for Douglas-fir. This suggests that as spring temperatures warm in the future, Douglas-fir across the Pacific Northwest will flower earlier, unless plants experience insufficient chilling over winter, in which case it is possible that Douglas-fir may flower later than in the past, or not flower at all. At one site, Douglas-fir genotypes from different geographic regions flowered in the same order from year to year, indicating that both temperature and heredity influence flowering. Knowledge of the environmental and genetic cues that drive the timing of flowering can help predict how changes in temperature under various climate models could change flowering time across sites. These models may also indicate the geographic areas where future climate could enhance or reduce flowering of Douglas-fir in the future.

  8. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    PubMed Central

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-01-01

    Abstract The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often

  9. Flower power: tree flowering phenology as a settlement cue for migrating birds.

    PubMed

    McGrath, Laura J; van Riper, Charles; Fontaine, Joseph J

    2009-01-01

    1. Neotropical migrant birds show a clear preference for stopover habitats with ample food supplies; yet, the proximate cues underlying these decisions remain unclear. 2. For insectivorous migrants, cues associated with vegetative phenology (e.g. flowering, leaf flush, and leaf loss) may reliably predict the availability of herbivorous arthropods. Here we examined whether migrants use the phenology of five tree species to choose stopover locations, and whether phenology accurately predicts food availability. 3. Using a combination of experimental and observational evidence, we show migrant populations closely track tree phenology, particularly the flowering phenology of honey mesquite (Prosopis glandulosa), and preferentially forage in trees with more flowers. Furthermore, the flowering phenology of honey mesquite reliably predicts overall arthropod abundance as well as the arthropods preferred by migrants for food. 4. Together, these results suggest that honey mesquite flowering phenology is an important cue used by migrants to assess food availability quickly and reliably, while in transit during spring migration.

  10. Flower power: Tree flowering phenology as a settlement cue for migrating birds

    USGS Publications Warehouse

    McGrath, L.J.; van Riper, Charles; Fontaine, J.J.

    2009-01-01

    1. Neotropical migrant birds show a clear preference for stopover habitats with ample food supplies; yet, the proximate cues underlying these decisions remain unclear. 2. For insectivorous migrants, cues associated with vegetative phenology (e.g. flowering, leaf flush, and leaf loss) may reliably predict the availability of herbivorous arthropods. Here we examined whether migrants use the phenology of five tree species to choose stopover locations, and whether phenology accurately predicts food availability. 3. Using a combination of experimental and observational evidence, we show migrant populations closely track tree phenology, particularly the flowering phenology of honey mesquite (Prosopis glandulosa), and preferentially forage in trees with more flowers. Furthermore, the flowering phenology of honey mesquite reliably predicts overall arthropod abundance as well as the arthropods preferred by migrants for food. 4. Together, these results suggest that honey mesquite flowering phenology is an important cue used by migrants to assess food availability quickly and reliably, while in transit during spring migration. ?? 2008 The Authors.

  11. A plant-based chemical genomics screen for the identification of flowering inducers.

    PubMed

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1) , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.

  12. Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities

    PubMed Central

    Cao, YuSong; Xiao, Yian; Huang, Haiqun; Xu, Jiancheng; Hu, Wenhai; Wang, Ning

    2016-01-01

    Climate warming can shift the reproductive phenology of plant, and hence dramatically reduced the reproductive capacity both of density-dependent and -independent plant species. But it is still unclear how climate warming affects flowering phenology and reproductive allocation of plant under different planting densities. Here, we assessed the impact of simulated warming on flowering phenology and sexual reproduction in the ephemeral herb Cardamine hirsuta under four densities. We found that simulated warming delayed the onset of flowering averagely for 3.6 days but preceded the end of flowering for about 1 day, which indicated climate warming shortened the duration of the flowering. And the flowering amplitude in the peak flowering day also dramatically increased in the simulated warming treatment, which caused a mass-flowering pattern. Climate warming significantly increased the weights of the fruits, seeds and seed, but reduced fruit length and sexual reproductive allocation under all the four densities. The duration of flowering was shortened and the weights of the fruits, seeds and seed, and sexual reproductive allocation were reduced under The highest density. PMID:27296893

  13. Genome Dynamics Explain the Evolution of Flowering Time CCT Domain Gene Families in the Poaceae

    PubMed Central

    Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Bailey, Paul C.; O'Sullivan, Donal M.

    2012-01-01

    Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ∼200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken. PMID:23028921

  14. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox).

    PubMed

    Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang

    2014-01-01

    Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data

  15. Transcriptomic Analysis of Flower Development in Wintersweet (Chimonanthus praecox)

    PubMed Central

    Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang

    2014-01-01

    Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data

  16. Can Mass Trapping Reduce Thrips Damage and Is It Economically Viable? Management of the Western Flower Thrips in Strawberry

    PubMed Central

    Sampson, Clare; Kirk, William D. J.

    2013-01-01

    The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a cosmopolitan, polyphagous insect pest that causes bronzing to fruit of strawberry (Fragaria x ananassa). The main aim of this study was to test whether mass trapping could reduce damage and to predict whether this approach would be economically viable. In semi-protected strawberry crops, mass trapping of F. occidentalis using blue sticky roller traps reduced adult thrips numbers per flower by 61% and fruit bronzing by 55%. The addition of the F. occidentalis aggregation pheromone, neryl (S)-2-methylbutanoate, to the traps doubled the trap catch, reduced adult thrips numbers per flower by 73% and fruit bronzing by 68%. The factors affecting trapping efficiency through the season are discussed. Damage that would result in downgrading of fruit to a cheaper price occurred when bronzing affected about 10% of the red fruit surface. Cost-benefit analysis using this threshold showed that mass trapping of thrips using blue sticky roller traps can be cost-effective in high-value crops. The addition of blue sticky roller traps to an integrated pest management programme maintained thrips numbers below the damage threshold and increased grower returns by a conservative estimate of £2.2k per hectare. Further work is required to develop the F. occidentalis aggregation pheromone for mass trapping and to determine the best timing for trap deployment. Mass trapping of thrips is likely to be cost-effective in other countries and other high-value crops affected by F. occidentalis damage, such as cucumber and cut flowers. PMID:24282554

  17. [Natural history of flowers and gravity].

    PubMed

    Yamashita, Masamichi; Tomita-Yokotani, Kaori; Nakamura, Teruko

    2004-06-01

    Many flowers have coevolved with their pollinator animals. Gravity has been one of selection pressure for the evolution of flowers. Gravity rules morphology and other features of flowers in many aspects. Pair matching between the flower and its specific pollinator is one of factors that determine the fitness of both sides. Evolution of flower morphology and its molecular basis are reviewed briefly. Anemophilous flowers are also under the influence of gravity. Shape and other features of entomophilous flowers have been highly diversed. Gravitropic response and its mechanism are summarized. Recent findings on gravitropism and phototropism of pistils and stamens are presented in this article.

  18. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis

    PubMed Central

    Trivellini, Alice; Cocetta, Giacomo; Hunter, Donald A.; Vernieri, Paolo; Ferrante, Antonio

    2016-01-01

    Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues. PMID:27591432

  19. A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control.

    PubMed

    Coelho, C P; Costa Netto, A P; Colasanti, J; Chalfun-Júnior, A

    2013-04-25

    Molecular analysis of floral induction in Arabidopsis has identified several flowering time genes related to 4 response networks defined by the autonomous, gibberellin, photoperiod, and vernalization pathways. Although grass flowering processes include ancestral functions shared by both mono- and dicots, they have developed their own mechanisms to transmit floral induction signals. Despite its high production capacity and its important role in biofuel production, almost no information is available about the flowering process in sugarcane. We searched the Sugarcane Expressed Sequence Tags database to look for elements of the flowering signaling pathway under photoperiodic control. Sequences showing significant similarity to flowering time genes of other species were clustered, annotated, and analyzed for conserved domains. Multiple alignments comparing the sequences found in the sugarcane database and those from other species were performed and their phylogenetic relationship assessed using the MEGA 4.0 software. Electronic Northerns were run with Cluster and TreeView programs, allowing us to identify putative members of the photoperiod-controlled flowering pathway of sugarcane.

  20. Central role of the flowering repressor ZCCT2 in the redox control of freezing tolerance and the initial development of flower primordia in wheat

    PubMed Central

    2014-01-01

    Background As both abiotic stress response and development are under redox control, it was hypothesised that the pharmacological modification of the redox environment would affect the initial development of flower primordia and freezing tolerance in wheat (Triticum aestivum L.). Results Pharmacologically induced redox changes were monitored in winter (T. ae. ssp. aestivum cv. Cheyenne, Ch) and spring (T. ae. ssp. spelta; Tsp) wheat genotypes grown after germination at 20/17°C for 9 d (chemical treatment: last 3 d), then at 5°C for 21 d (chemical treatment: first 4 d) and subsequently at 20/17°C for 21 d (recovery period). Thiols and their disulphide forms were measured and based on these data reduction potentials were calculated. In the freezing-tolerant Ch the chemical treatments generally increased both the amount of thiol disulphides and the reduction potential after 3 days at 20/17°C. In the freezing-sensitive Tsp a similar effect of the chemicals on these parameters was only observed after the continuation of the treatments for 4 days at 5°C. The applied chemicals slightly decreased root fresh weight and increased freezing tolerance in Ch, whereas they increased shoot fresh weight in Tsp after 4 days at 5°C. As shown after the 3-week recovery at 20/17°C, the initial development of flower primordia was accelerated in Tsp, whereas it was not affected by the treatments in Ch. The chemicals differently affected the expression of ZCCT2 and that of several other genes related to freezing tolerance and initial development of flower primordia in Ch and Tsp after 4 d at 5°C. Conclusions Various redox-altering compounds and osmotica had differential effects on glutathione disulphide content and reduction potential, and consequently on the expression of the flowering repressor ZCCT2 in the winter wheat Ch and the spring wheat Tsp. We propose that the higher expression of ZCCT2 in Ch may be associated with activation of genes of cold acclimation and its lower

  1. Central role of the flowering repressor ZCCT2 in the redox control of freezing tolerance and the initial development of flower primordia in wheat.

    PubMed

    Gulyás, Zsolt; Boldizsár, Akos; Novák, Aliz; Szalai, Gabriella; Pál, Magda; Galiba, Gábor; Kocsy, Gábor

    2014-04-07

    As both abiotic stress response and development are under redox control, it was hypothesised that the pharmacological modification of the redox environment would affect the initial development of flower primordia and freezing tolerance in wheat (Triticum aestivum L.). Pharmacologically induced redox changes were monitored in winter (T. ae. ssp. aestivum cv. Cheyenne, Ch) and spring (T. ae. ssp. spelta; Tsp) wheat genotypes grown after germination at 20/17°C for 9 d (chemical treatment: last 3 d), then at 5°C for 21 d (chemical treatment: first 4 d) and subsequently at 20/17°C for 21 d (recovery period). Thiols and their disulphide forms were measured and based on these data reduction potentials were calculated. In the freezing-tolerant Ch the chemical treatments generally increased both the amount of thiol disulphides and the reduction potential after 3 days at 20/17°C. In the freezing-sensitive Tsp a similar effect of the chemicals on these parameters was only observed after the continuation of the treatments for 4 days at 5°C. The applied chemicals slightly decreased root fresh weight and increased freezing tolerance in Ch, whereas they increased shoot fresh weight in Tsp after 4 days at 5°C. As shown after the 3-week recovery at 20/17°C, the initial development of flower primordia was accelerated in Tsp, whereas it was not affected by the treatments in Ch. The chemicals differently affected the expression of ZCCT2 and that of several other genes related to freezing tolerance and initial development of flower primordia in Ch and Tsp after 4 d at 5°C. Various redox-altering compounds and osmotica had differential effects on glutathione disulphide content and reduction potential, and consequently on the expression of the flowering repressor ZCCT2 in the winter wheat Ch and the spring wheat Tsp. We propose that the higher expression of ZCCT2 in Ch may be associated with activation of genes of cold acclimation and its lower expression in Tsp with the

  2. Dynamic Pulse-Driven Flowering Phenology in a Semiarid Shrubland

    NASA Astrophysics Data System (ADS)

    Krell, N.; Papuga, S. A.; Kipnis, E. L.; Nelson, K.

    2014-12-01

    Elevated springtime temperature has been convincingly linked to an increasingly earlier onset of phenological activity. Studies highlighting this phenomenon have generally been conducted in ecosystems where energy is the primary limiting factor. Importantly, phenological studies in semiarid ecosystems where water is the major limiting factor are rare. In semiarid ecosystems, the timing of phenological activity is also highly sensitive to discrete moisture pulses from infrequent precipitation events. The objective of this study is to identify the triggers of flowering phenology in a semiarid creosotebush-dominated ecosystem. Creosotebush (Larrea tridentata) is a repeat-flowering evergreen shrub that is the dominant species in three of the North American deserts. We present results from six years of daily meteorological and phenological data collected within the Santa Rita Experimental Range in southern Arizona. Our site is equipped with an eddy covariance tower providing estimates of water and carbon fluxes and associated meteorological variables including precipitation and soil moisture at multiple depths. Additionally, three digital cameras distributed within the footprint of the eddy provide daily images of phenological activity. Our results highlight substantial interannual variability in flowering phenology, both in spring and summer flowering. We show that spring flowering activity tends to be associated with energy triggers (e.g. temperature, growing degree days), whereas summer flowering activity tends to be associated with moisture triggers (e.g. large precipitation events, deep soil moisture). Our study suggests that changes in frequency and duration of precipitation events will impact timing of phenological activity resulting in important consequences for vegetation dynamics and pollinator behavior.

  3. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    PubMed

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  4. Balanced cell proliferation and expansion is essential for flowering stem growth control.

    PubMed

    Ferjani, Ali; Hanai, Kenya; Gunji, Shizuka; Maeda, Saori; Sawa, Shinichiro; Tsukaya, Hirokazu

    2015-01-01

    The postembryonic development of aboveground plant organs relies on a continuous supply of cells from the shoot apical meristem. Previous studies of developmental regulation in leaves and flowers have revealed the crucial role of coordinated cell proliferation and differentiation during organogenesis. However, the importance of this coordination has not been examined in flowering stems. Very recently, we attempted to identify regulatory factors that maintain flowering stem integrity. We found that the increased cell number in clavata (clv) mutants and the decreased cell size in de-etiolated (det)3-1 resulted in flowering stems that were thicker and thinner, respectively, than in wild-type (WT) plants. Interestingly, in the cell proliferation- and cell expansion-defective double mutant clv det3-1, the flowering stems often exhibited severe cracking, resulting in exposure of their inner tissues. In this study, further quantification of the cellular phenotypes in the cotyledons and leaves revealed no differences between det3-1 and clv3 det3-1. Together, the above findings suggest that the clv3 mutation in a det3-1 background primarily affects flowering stems, while its effect on other organs is likely negligible. We propose that the coordination between cell proliferation and differentiation is not only important during leaf development, but also plays a role in the growth control of Arabidopsis flowering stems.

  5. Spatial variation in the community of insects associated with the flowers of Pachycereus weberi (Caryophyllales: Cactaceae).

    PubMed

    Figueroa-Castro, Dulce María; Valverde, Pedro Luis; Vite, Fernando; Carrillo-Ruiz, Hortensia

    2014-08-01

    The positive relationship between productivity and species diversity is well-known. Insect communities associated with the flowers of Cactaceae species represent an interesting system to explore the productivity-diversity relationship because branches facing the equator receive more photosynthetically active radiation and have higher productivity. Thus, flowers with contrasting orientations within an individual, and even within a single branch, might differ in productivity. Therefore, higher abundance, species richness, and diversity are expected for the insect communities associated with south-facing flowers. This hypothesis was tested in Pachycereus weberi (J.M. Coulter) Backeberg (Cactaceae). Insects within flowers with contrasting orientations were collected and its abundance, richness, and diversity were estimated. We also asked if insects prefer big flowers. Thus, flower volume was estimated and regression analyses were conducted to test if there is a positive relationship between flower size and insect abundance. Flower orientation did not affect species richness. However, species abundance and diversity were different in flowers with contrasting orientations. In general, species abundance was higher in flowers facing southwards than in north-facing flowers. On the contrary, species diversity was higher in north-facing flowers. Abundance of Coleoptera was explained by flower volume in south-facing flowers. Contrary to our hypothesis, total diversity was greater in the less productive oriented flowers. Three possible explanations are discussed to explain the low diversity found in the highly productive, south-facing flowers. Our study provides evidence for the effects of productivity on the structure of insect communities at a very small-scale.

  6. Variation in Time of Flowering and Seed Dispersal of Eastern Cottonwood In the Lower Mississippi Valley

    Treesearch

    Robert E. Farmer

    1966-01-01

    Flowering of Populus deItoides Bartr. occurred from early March to early April; differences between trees within stands accounted for 98 percent of the significant variation in dates. High correlation (r = .91 to .96) between 1963 and 1964 dates of individual trees indicated that trees within stands flower in a predictable sequence. Seed dispersal...

  7. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    PubMed

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  8. Identification of flowering genes in strawberry, a perennial SD plant

    PubMed Central

    Mouhu, Katriina; Hytönen, Timo; Folta, Kevin; Rantanen, Marja; Paulin, Lars; Auvinen, Petri; Elomaa, Paula

    2009-01-01

    Background We are studying the regulation of flowering in perennial plants by using diploid wild strawberry (Fragaria vesca L.) as a model. Wild strawberry is a facultative short-day plant with an obligatory short-day requirement at temperatures above 15°C. At lower temperatures, however, flowering induction occurs irrespective of photoperiod. In addition to short-day genotypes, everbearing forms of wild strawberry are known. In 'Baron Solemacher' recessive alleles of an unknown repressor, SEASONAL FLOWERING LOCUS (SFL), are responsible for continuous flowering habit. Although flower induction has a central effect on the cropping potential, the molecular control of flowering in strawberries has not been studied and the genetic flowering pathways are still poorly understood. The comparison of everbearing and short-day genotypes of wild strawberry could facilitate our understanding of fundamental molecular mechanisms regulating perennial growth cycle in plants. Results We have searched homologs for 118 Arabidopsis flowering time genes from Fragaria by EST sequencing and bioinformatics analysis and identified 66 gene homologs that by sequence similarity, putatively correspond to genes of all known genetic flowering pathways. The expression analysis of 25 selected genes representing various flowering pathways did not reveal large differences between the everbearing and the short-day genotypes. However, putative floral identity and floral integrator genes AP1 and LFY were co-regulated during early floral development. AP1 mRNA was specifically accumulating in the shoot apices of the everbearing genotype, indicating its usability as a marker for floral initiation. Moreover, we showed that flowering induction in everbearing 'Baron Solemacher' and 'Hawaii-4' was inhibited by short-day and low temperature, in contrast to short-day genotypes. Conclusion We have shown that many central genetic components of the flowering pathways in Arabidopsis can be identified from

  9. Questions of time and affect: a person’s affectivity profile, time perspective, and well-being

    PubMed Central

    Sailer, Uta; Nima, Ali Al; Archer, Trevor

    2016-01-01

    Background. A “balanced” time perspective has been suggested to have a positive influence on well-being: a sentimental and positive view of the past (high Past Positive), a less pessimistic attitude toward the past (low Past Negative), the desire of experiencing pleasure with slight concern for future consequences (high Present Hedonistic), a less fatalistic and hopeless view of the future (low Present Fatalistic), and the ability to find reward in achieving specific long-term goals (high Future). We used the affective profiles model (i.e., combinations of individuals’ experience of high/low positive/negative affectivity) to investigate differences between individuals in time perspective dimensions and to investigate if the influence of time perspective dimensions on well-being was moderated by the individual’s type of profile. Method. Participants (N = 720) answered to the Positive Affect Negative Affect Schedule, the Zimbardo Time Perspective Inventory and two measures of well-being: the Temporal Satisfaction with Life Scale and Ryff’s Scales of Psychological Well-Being-short version. A Multivariate Analysis of Variance (MANOVA) was conducted to identify differences in time perspective dimensions and well-being among individuals with distinct affective profiles. Four structural equation models (SEM) were used to investigate which time perspective dimensions predicted well-being for individuals in each profile. Results. Comparisons between individuals at the extreme of the affective profiles model suggested that individuals with a self-fulfilling profile (high positive/low negative affect) were characterized by a “balanced” time perspective and higher well-being compared to individuals with a self-destructive profile (low positive/high negative affect). However, a different pattern emerged when individuals who differed in one affect dimension but matched in the other were compared to each other. For instance, decreases in the past negative time

  10. Perpetual flowering in strawberry species

    USDA-ARS?s Scientific Manuscript database

    Studies have revealed genetic control of flowering patterns for seasonal flowering (SF) and perpetual flowering (PF) genotypes in the common garden strawberry, with associated links to gene homeologs in diploid alpine strawberry, F. vesca L. Within the genus Fragaria, 22 species and multiple subspec...

  11. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis.

    PubMed

    Trivellini, Alice; Cocetta, Giacomo; Hunter, Donald A; Vernieri, Paolo; Ferrante, Antonio

    2016-10-01

    Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Flower tracking in hawkmoths: behavior and energetics.

    PubMed

    Sprayberry, Jordanna D H; Daniel, Thomas L

    2007-01-01

    As hovering feeders, hawkmoths cope with flower motions by tracking those motions to maintain contact with the nectary. This study examined the tracking, feeding and energetic performance of Manduca sexta feeding from flowers moving at varied frequencies and in different directions. In general we found that tracking performance decreased as frequency increased; M. sexta tracked flowers moving at 1 Hz best. While feeding rates were highest for stationary flowers, they remained relatively constant for all tested frequencies of flower motion. Calculations of net energy gain showed that energy expenditure to track flowers is minimal compared to energy intake; therefore, patterns of net energy gain mimicked patterns of feeding rate. The direction effects of flower motion were greater than the frequency effects. While M. sexta appeared equally capable of tracking flowers moving in the horizontal and vertical motion axes, they demonstrated poor ability to track flowers moving in the looming axis. Additionally, both feeding rates and net energy gain were lower for looming axis flower motions.

  13. Plant hormone signaling in flowering: An epigenetic point of view.

    PubMed

    Campos-Rivero, Gerardo; Osorio-Montalvo, Pedro; Sánchez-Borges, Rafael; Us-Camas, Rosa; Duarte-Aké, Fátima; De-la-Peña, Clelia

    2017-07-01

    Reproduction is one of the most important phases in an organism's lifecycle. In the case of angiosperm plants, flowering provides the major developmental transition from the vegetative to the reproductive stage, and requires genetic and epigenetic reprogramming to ensure the success of seed production. Flowering is regulated by a complex network of genes that integrate multiple environmental cues and endogenous signals so that flowering occurs at the right time; hormone regulation, signaling and homeostasis are very important in this process. Working alone or in combination, hormones are able to promote flowering by epigenetic regulation. Some plant hormones, such as gibberellins, jasmonic acid, abscisic acid and auxins, have important effects on chromatin compaction mediated by DNA methylation and histone posttranslational modifications, which hints at the role that epigenetic regulation may play in flowering through hormone action. miRNAs have been viewed as acting independently from DNA methylation and histone modification, ignoring their potential to interact with hormone signaling - including the signaling of auxins, gibberellins, ethylene, jasmonic acid, salicylic acid and others - to regulate flowering. Therefore, in this review we examine new findings about interactions between epigenetic mechanisms and key players in hormone signaling to coordinate flowering. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Identification of Regulatory Genes Implicated in Continuous Flowering of Longan (Dimocarpus longan L.)

    PubMed Central

    Jia, Tianqi; Wei, Danfeng; Meng, Shan; Allan, Andrew C.; Zeng, Lihui

    2014-01-01

    Longan (Dimocarpus longan L.) is a tropical/subtropical fruit tree of significant economic importance in Southeast Asia. However, a lack of transcriptomic and genomic information hinders research on longan traits, such as the control of flowering. In this study, high-throughput RNA sequencing (RNA-Seq) was used to investigate differentially expressed genes between a unique longan cultivar ‘Sijimi’(S) which flowers throughout the year and a more typical cultivar ‘Lidongben’(L) which flowers only once in the season, with the aim of identifying candidate genes associated with continuous flowering. 36,527 and 40,982 unigenes were obtained by de novo assembly of the clean reads from cDNA libraries of L and S cultivars. Additionally 40,513 unigenes were assembled from combined reads of these libraries. A total of 32,475 unigenes were annotated by BLAST search to NCBI non-redundant protein (NR), Swiss-Prot, Clusters of Orthologous Groups (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Of these, almost fifteen thousand unigenes were identified as significantly differentially expressed genes (DEGs) by using Reads Per kb per Million reads (RPKM) method. A total of 6,415 DEGs were mapped to 128 KEGG pathways, and 8,743 DEGs were assigned to 54 Gene Ontology categories. After blasting the DEGs to public sequence databases, 539 potential flowering-related DEGs were identified. In addition, 107 flowering-time genes were identified in longan, their expression levels between two longan samples were compared by RPKM method, of which the expression levels of 15 were confirmed by real-time quantitative PCR. Our results suggest longan homologues of SHORT VEGETATIVE PHASE (SVP), GIGANTEA (GI), F-BOX 1 (FKF1) and EARLY FLOWERING 4 (ELF4) may be involved this flowering trait and ELF4 may be a key gene. The identification of candidate genes related to continuous flowering will provide new insight into the molecular process of regulating flowering time in woody

  15. Phenological patterns of flowering across biogeographical regions of Europe

    NASA Astrophysics Data System (ADS)

    Templ, Barbara; Templ, Matthias; Filzmoser, Peter; Lehoczky, Annamária; Bakšienè, Eugenija; Fleck, Stefan; Gregow, Hilppa; Hodzic, Sabina; Kalvane, Gunta; Kubin, Eero; Palm, Vello; Romanovskaja, Danuta; Vucˇ´, Višnja; žust, Ana; Czúcz, Bálint

    2017-07-01

    Long-term changes of plant phenological phases determined by complex interactions of environmental factors are in the focus of recent climate impact research. There is a lack of studies on the comparison of biogeographical regions in Europe in terms of plant responses to climate. We examined the flowering phenology of plant species to identify the spatio-temporal patterns in their responses to environmental variables over the period 1970-2010. Data were collected from 12 countries along a 3000-km-long, North-South transect from northern to eastern Central Europe. Biogeographical regions of Europe were covered from Finland to Macedonia. Robust statistical methods were used to determine the most influential factors driving the changes of the beginning of flowering dates. Significant species-specific advancements in plant flowering onsets within the Continental (3 to 8.3 days), Alpine (2 to 3.8 days) and by highest magnitude in the Boreal biogeographical regions (2.2 to 9.6 days per decades) were found, while less pronounced responses were detected in the Pannonian and Mediterranean regions. While most of the other studies only use mean temperature in the models, we show that also the distribution of minimum and maximum temperatures are reasonable to consider as explanatory variable. Not just local (e.g. temperature) but large scale (e.g. North Atlantic Oscillation) climate factors, as well as altitude and latitude play significant role in the timing of flowering across biogeographical regions of Europe. Our analysis gave evidences that species show a delay in the timing of flowering with an increase in latitude (between the geographical coordinates of 40.9 and 67.9), and an advance with changing climate. The woody species (black locust and small-leaved lime) showed stronger advancements in their timing of flowering than the herbaceous species (dandelion, lily of the valley). In later decades (1991-2010), more pronounced phenological change was detected than during

  16. Studies on the growth and flowering of a short-day plant, Wolffia microscopica : II. Role of metal ions and chelates.

    PubMed

    Seth, P N; Venkataraman, R; Maheshwari, S C

    1970-12-01

    As found earlier, supply of EDTA was obligatory for both flowering and satisfactory vegetative growth in Wolffia microscopica. It is now shown that the metal affecting growth and flowering is most probably iron. Omission of Fe but not of Cu, Zn, Mn and B from the medium markedly affects vegetative growth. There exists also a strong interaction between EDTA and Fe, one being largely inactive in the absence of the other. When Fe-EDDHA is substituted for Fe-citrate and EDTA in the medium, no great effect is seen in vegetative growth, but flowering takes place even under continuous light. Studies with (59)Fe show that, in the medium containing Fe-EDDHA, Fe uptake is stimulated several-fold; this is apparently associated with the flowering condition.

  17. The innate responses of bumble bees to flower patterns: separating the nectar guide from the nectary changes bee movements and search time

    NASA Astrophysics Data System (ADS)

    Goodale, Eben; Kim, Edward; Nabors, Annika; Henrichon, Sara; Nieh, James C.

    2014-06-01

    Nectar guides can enhance pollinator efficiency and plant fitness by allowing pollinators to more rapidly find and remember the location of floral nectar. We tested if a radiating nectar guide around a nectary would enhance the ability of naïve bumble bee foragers to find nectar. Most experiments that test nectar guide efficacy, specifically radiating linear guides, have used guides positioned around the center of a radially symmetric flower, where nectaries are often found. However, the flower center may be intrinsically attractive. We therefore used an off-center guide and nectary and compared "conjunct" feeders with a nectar guide surrounding the nectary to "disjunct" feeders with a nectar guide separated from the nectary. We focused on the innate response of novice bee foragers that had never previously visited such feeders. We hypothesized that a disjunct nectar guide would conflict with the visual information provided by the nectary and negatively affect foraging. Approximately, equal numbers of bumble bees ( Bombus impatiens) found nectar on both feeder types. On disjunct feeders, however, unsuccessful foragers spent significantly more time (on average 1.6-fold longer) searching for nectar than any other forager group. Successful foragers on disjunct feeders approached these feeders from random directions unlike successful foragers on conjunct feeders, which preferentially approached the combined nectary and nectar guide. Thus, the nectary and a surrounding nectar guide can be considered a combination of two signals that attract naïve foragers even when not in the floral center.

  18. The innate responses of bumble bees to flower patterns: separating the nectar guide from the nectary changes bee movements and search time.

    PubMed

    Goodale, Eben; Kim, Edward; Nabors, Annika; Henrichon, Sara; Nieh, James C

    2014-06-01

    Nectar guides can enhance pollinator efficiency and plant fitness by allowing pollinators to more rapidly find and remember the location of floral nectar. We tested if a radiating nectar guide around a nectary would enhance the ability of naïve bumble bee foragers to find nectar. Most experiments that test nectar guide efficacy, specifically radiating linear guides, have used guides positioned around the center of a radially symmetric flower, where nectaries are often found. However, the flower center may be intrinsically attractive. We therefore used an off-center guide and nectary and compared "conjunct" feeders with a nectar guide surrounding the nectary to "disjunct" feeders with a nectar guide separated from the nectary. We focused on the innate response of novice bee foragers that had never previously visited such feeders. We hypothesized that a disjunct nectar guide would conflict with the visual information provided by the nectary and negatively affect foraging. Approximately, equal numbers of bumble bees (Bombus impatiens) found nectar on both feeder types. On disjunct feeders, however, unsuccessful foragers spent significantly more time (on average 1.6-fold longer) searching for nectar than any other forager group. Successful foragers on disjunct feeders approached these feeders from random directions unlike successful foragers on conjunct feeders, which preferentially approached the combined nectary and nectar guide. Thus, the nectary and a surrounding nectar guide can be considered a combination of two signals that attract naïve foragers even when not in the floral center.

  19. Stigma receptivity over the lifetime of the hermaphroditic flower of Elsholtzia rugulosa was negatively correlated with pollen viability.

    PubMed

    Zhang, Xin-Min; Wolfe, Lorne M

    2016-12-01

    Dichogamy is generally thought to be a mechanism that prevents self-fertilization in flowering plants. This study aims to investigate the relationships between floral age and stigma receptivity, style length and pollen viability, and define how floral characters avoid self-pollination in a gynodioecious Chinese plant, Elsholtzia rugulosa. We assessed the relationships between flower age and style length, stigma receptivity, and pollen viability in E. rugulosa. This species produces 2 forms with plants bearing either hermaphrodite flowers (H) or female flowers (F). Corolla length in F flowers was shorter than the corolla length of H flowers and produced no pollen. H flowers were protandrous, pollen release of H flowers occurred before stigma receptivity. Stigma receptivity was significantly positively correlated with style length in both F flowers and H flowers. Pollen viability in H flowers declined significantly with floral age. Our results suggest that self-pollination in H flowers is likely reduced by dichogamy because stigma receptivity and pollen viability were effectively separated in time. However, because H inflorescences typically have multiple flowers open at the same time means that geitonogamous selfing is not avoided.

  20. Arabidopsis WRKY Transcription Factors WRKY12 and WRKY13 Oppositely Regulate Flowering under Short-Day Conditions.

    PubMed

    Li, Wei; Wang, Houping; Yu, Diqiu

    2016-11-07

    In plants, photoperiod is an important cue for determining flowering. The floral transition in Arabidopsis thaliana is earlier under long-day (LD) than under short-day (SD) conditions. Flowering of Arabidopsis plants under SD conditions is mainly regulated by the plant hormone gibberellin (GA). Here, we report two WRKY transcription factors function oppositely in controlling flowering time under SD conditions. Phenotypic analysis showed that disruption of WRKY12 caused a delay in flowering, while loss of WRKY13 function promoted flowering. WRKY12 and WRKY13 displayed negatively correlated expression profiles and function successively to regulate flowering. Molecular and genetic analyses demonstrated that FRUITFULL (FUL) is a direct downstream target gene of WRKY12 and WRKY13. Interestingly, we found that DELLA proteins GIBBERELLIN INSENSITIVE (GAI) and RGA-LIKE1 (RGL1) interacted with WRKY12 and WRKY13, and their interactions interfered with the transcriptional activity of the WRKY12 and WRKY13. Further studies suggested thatWRKY12 and WRKY13 partly mediated the effect of GA 3 on controlling flowering time. Taken together, our results indicate that WRKY12 and WRKY13 oppositely modulate flowering time under SD conditions, which at least partially involves the action of GA. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  1. Stars and Flowers, Flowers and Stars

    NASA Astrophysics Data System (ADS)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  2. Effects of plant size, temperature, and light intensity on flowering of Phalaenopsis hybrids in Mediterranean greenhouses.

    PubMed

    Paradiso, Roberta; De Pascale, Stefania

    2014-01-01

    Mediterranean greenhouses for cultivation of Phalaenopsis orchids reproduce the warm, humid, and shaded environment of tropical underbrush. Heating represents the highest production cost, due to the high thermal requirements and the long unproductive phase of juvenility, in which plants attain the critical size for flowering. Our researches aimed to investigate the effect of plant size, temperature, and light intensity, during the phase of flower induction, on flowering of modern genotypes selected for Mediterranean greenhouses. Three experiments were carried out to compare (i) plant size: reduced size versus size considered optimal for flowering (hybrids "Sogo Yukidian," "Chain Xen Diamond," and "Pinlong"); (ii) temperature: moderate reduction of temperature versus standard thermal regime (hybrid "Premium"); (iii) light intensity: supplemental lighting versus reference light intensity (hybrid "Premium"). The premature exposure of plants to the inductive treatment delayed the beginning of flowering and reduced the flower stem quality, in all the tested hybrids. In "Premium," the lower temperature did not affect flowering earliness and commercial quality of flower stems compared to the standard regime, whereas it promoted stem branching. In the same hybrid, supplemental lighting anticipated flowering and promoted the emission of the second stem and the stem branching, compared to the reference light regime.

  3. FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment

    PubMed Central

    2012-01-01

    Background This experiment was conducted to evaluate the effect of different amounts of fertilizers on the polysaccharides of Aloe vera plant. There were four different treatments, viz. T1 = 150% N, T2 = 150% P, T3 = 150% K, and T4 = 150% NPK (50% N + 50% P + 50% K) soil. Crude water-soluble polysaccharides were isolated from the gel juice, skin juice, and flowers of A. vera planted in these soils. Results Result indicates that skin juice contained 2.4 times the level of polysaccharides in gel juice from one plant, suggesting the potential industrial application of A. vera skin rather than discarding it. After anion-exchange chromatography, neutral polysaccharides accounted for 58.1% and 78.5% of the total recovered neutral and acidic polysaccharide preparations from the gel juice and skin juice, respectively, whereas the crude flower polysaccharides were largely composed of weakly acidic polysaccharides (84.2%). Sugar analysis of the polysaccharides after gel permeation chromatography revealed that glucose and galactose were the most abundant monosaccharide in the neutral polysaccharides from the gel juice and skin juice, respectively. The acidic polysaccharides from the two juices consisted of glucuronic acid, galactose, glucose, mannose, and xylose with variable proportions. Conclusions Except glucuronic acid (15.4%) in flower acidic polysaccharide, the flower neutral and acidic polysaccharides contained galactose, glucose, and mannose as the main sugar components. Glucuronic acid was the major uronic acid in all acidic polysaccharides from different tissues. PMID:23095284

  4. Striped Cucumber Beetle (Coleoptera: Chrysomelidae) Aggregation in Response to Cultivar and Flowering.

    PubMed

    Gardner, Jeffrey; Hoffmann, Michael P; Mazourek, Michael

    2015-04-01

    The striped cucumber beetle [Acalymma vittatum (F.)] is a specialist pest of cucurbits throughout its range in the United States and Canada. Improved integrated pest management options are needed across the pest's range, especially on organic farms where there are few effective controls. Trap cropping in cucurbits is an option, but there are significant challenges to the technique. Because cucurbit flowers are highly attractive to the beetles, four field experiments tested whether cultivar and phenology interact to preferentially aggregate beetles. The first experiment tested the hypothesis that cucurbit flowers were more attractive to striped cucumber beetles than was foliage. The second experiment tested whether there were differences in beetle aggregation between two relatively attractive cultivars. The third and fourth experiments were factorial designs with two plant cultivars and two levels of flowering to specifically test for an interaction of cultivar and flowering. Results indicated that flowers were more attractive than foliage, beetle aggregation was affected by plant cultivar, and that there was an interaction of cultivar with flowering. We conclude that a single cultivar may be sufficient to serve as a generic trap crop to protect a wide variety of cucurbits. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Testing hypotheses for excess flower production and low fruit-to-flower ratios in a pollinating seed-consuming mutualism

    USGS Publications Warehouse

    Holland, J. Nathaniel; Bronstein, Judith L.; DeAngelis, Donald L.

    2004-01-01

    Pollinator attraction, pollen limitation, resource limitation, pollen donation and selective fruit abortion have all been proposed as processes explaining why hermaphroditic plants commonly produce many more flowers than mature fruit. We conducted a series of experiments in Arizona to investigate low fruit-to-flower ratios in senita cacti, which rely exclusively on pollinating seed-consumers. Selective abortion of fruit based on seed predators is of particular interest in this case because plants relying on pollinating seed-consumers are predicted to have such a mechanism to minimize seed loss. Pollinator attraction and pollen dispersal increased with flower number, but fruit set did not, refuting the hypothesis that excess flowers increase fruit set by attracting more pollinators. Fruit set of natural- and hand-pollinated flowers were not different, supporting the resource, rather than pollen, limitation hypothesis. Senita did abort fruit, but not selectively based on pollen quantity, pollen donors, or seed predators. Collectively, these results are consistent with sex allocation theory in that resource allocation to excess flower production can increase pollen dispersal and the male fitness function of flowers, but consequently results in reduced resources available for fruit set. Inconsistent with sex allocation theory, however, fruit production and the female fitness function of flowers may actually increase with flower production. This is because excess flower production lowers pollinator-to-flower ratios and results in fruit abortion, both of which limit the abundance and hence oviposition rates, of pre-dispersal seed predators.

  6. The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation

    PubMed Central

    Lázaro, A.; Totland, Ø.

    2014-01-01

    Background and Aims The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation. Methods Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators. Key Results Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation. Conclusions The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators. PMID:24838838

  7. A Matter of Contrast: Yellow Flower Colour Constrains Style Length in Crocus species.

    PubMed

    Lunau, Klaus; Konzmann, Sabine; Bossems, Jessica; Harpke, Doerte

    2016-01-01

    Most flowers display distinct colour patterns comprising two different areas. The peripheral large-area component of floral colour patterns attracts flower visitors from some distance and the central small-area component guides flower visitors towards landing sites. Whereas the peripheral colour is largely variable among species, the central colour, produced mostly by anthers and pollen or pollen mimicking floral guides, is predominantly yellow and UV-absorbing. This holds also for yellow flowers that regularly display a UV bull's eye pattern. Here we show that yellow-flowering Crocus species are a noticeable exception, since yellow-flowering Crocus species-being entirely UV-absorbing-exhibit low colour contrast between yellow reproductive organs and yellow tepals. The elongated yellow or orange-yellow style of Crocus flowers is a stamen-mimicking structure promoting cross-pollination by facilitating flower visitors' contact with the apical stigma before the flower visitors are touching the anthers. Since Crocus species possess either yellow, violet or white tepals, the colour contrast between the stamen-mimicking style and the tepals varies among species. In this study comprising 106 Crocus species, it was tested whether the style length of Crocus flowers is dependent on the corolla colour. The results show that members of the genus Crocus with yellow tepals have evolved independently up to twelve times in the genus Crocus and that yellow-flowering Crocus species possess shorter styles as compared to violet- and white-flowering ones. The manipulation of flower visitors by anther-mimicking elongated styles in Crocus flowers is discussed.

  8. Overexpression of a novel chrysanthemum SUPERMAN-like gene in tobacco affects lateral bud outgrowth and flower organ development.

    PubMed

    Liu, Qing-Lin; Xu, Ke-Dong; Ma, Nan; Zhao, Liang-Jun; Xi, Lin

    2014-04-01

    Previous studies have shown that the SUP genes play important roles in flower development and plant growth and morphogenesis. In this study, we isolated and characterized a SUPERMAN-like gene DgSZFP from chrysanthemum. DgSZFP contains one conserved Cys2/His2-type zinc finger motifs in the N-terminal region and an EAR-box in C-terminus. Its expression was significantly higher in nodes, flower buds, disc stamens, and petals than in the other tissues. Overexpression of DgSZFP in tobacco resulted in enhanced branching, reduced plant height, increased the width of petal tubes, produced the staminoid petals and petaloid stamens in flowers, and enhanced the seed weight and size. In addition, DgSZFP-overexpression tobacco plants accumulated high concentrations of cytokinin and chlorophyll. These results suggest that DgSZFP may be the candidate gene for regulating branching and floral organ development in chrysanthemum. Crown Copyright © 2014. Published by Elsevier Masson SAS. All rights reserved.

  9. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability.

    PubMed

    Flo, Víctor; Bosch, Jordi; Arnan, Xavier; Primante, Clara; Martín González, Ana M; Barril-Graells, Helena; Rodrigo, Anselm

    2018-01-01

    Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change.

  10. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability

    PubMed Central

    Primante, Clara; Martín González, Ana M.; Barril-Graells, Helena

    2018-01-01

    Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change. PMID:29346453

  11. Cytotoxic and bioactive properties of different color tulip flowers and degradation kinetic of tulip flower anthocyanins.

    PubMed

    Sagdic, Osman; Ekici, Lutfiye; Ozturk, Ismet; Tekinay, Turgay; Polat, Busra; Tastemur, Bilge; Bayram, Okan; Senturk, Berna

    2013-08-01

    This study was conducted to determine the potential use of anthocyanin-based extracts (ABEs) of wasted tulip flowers as food/drug colorants. For this aim, wasted tulip flowers were samples and analyzed for their bioactive properties and cytotoxicity. Total phenolic contents of the extracts of the claret red (126.55 mg of gallic acid equivalent (GAE)/g dry extract) and orange-red (113.76 mg GAE/g dry extract) flowers were the higher than those of the other tulip flowers. Total anthocyanin levels of the violet, orange-red, claret red and pink tulip flower extracts were determined as 265.04, 236.49, 839.08 and 404.45 mg pelargonidin 3-glucoside/kg dry extract, respectively and these levels were higher than those of the other flowers. The extracts were more effective for the inhibition of Listeria monocytogenes, Staphylococcus aureus and Yersinia enterocolitica compared to other tested bacteria. Additionally, the cytotoxic effects of five different tulip flower extracts on human breast adenocarcinoma (MCF-7) cell line were investigated. The results showed that the orange red, pink and violet extracts had no cytotoxic activity against MCF-7 cell lines while yellow and claret red extracts appeared to be toxic for the cells. Overall, the extracts of tulip flowers with different colors possess remarkable bioactive and cytotoxic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Volatile Organic Compounds Emissions from Luculia pinceana Flower and Its Changes at Different Stages of Flower Development.

    PubMed

    Li, Yuying; Ma, Hong; Wan, Youming; Li, Taiqiang; Liu, Xiuxian; Sun, Zhenghai; Li, Zhenghong

    2016-04-22

    Luculia plants are famed ornamental plants with sweetly fragrant flowers, of which L. pinceana Hooker, found primarily in Yunnan Province, China, has the widest distribution. Solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) was employed to identify the volatile organic compounds (VOCs) emitted from different flower development stages of L. pinceana for the evaluation of floral volatile polymorphism. Peak areas were normalized as percentages and used to determine the relative amounts of the volatiles. The results showed that a total of 39 compounds were identified at four different stages of L. pinceana flower development, including 26 at the bud stage, 26 at the initial-flowering stage, 32 at the full-flowering stage, and 32 at the end-flowering stage. The most abundant compound was paeonol (51%-83%) followed by (E,E)-α-farnesene, cyclosativene, and δ-cadinene. All these volatile compounds create the unique fragrance of L. pinceana flower. Floral scent emission offered tendency of ascending first and descending in succession, meeting its peak level at the initial-flowering stage. The richest diversity of floral volatile was detected at the third and later periods of flower development. Principal component analysis (PCA) indicated that the composition and its relative content of floral scent differed throughout the whole flower development. The result has important implications for future floral fragrance breeding of Luculia. L. pinceana would be adequate for a beneficial houseplant and has a promising prospect for development as essential oil besides for a fragrant ornamental owing to the main compounds of floral scent with many medicinal properties.

  13. Temporal and intraclonal variation of flowering and pseudovivipary in Poa bulbosa

    PubMed Central

    Ofir, Micha; Kigel, Jaime

    2014-01-01

    Background and Aims Versatility in the reproductive development of pseudoviviparous grasses in response to growth conditions is an intriguing reproduction strategy. To better understand this strategy, this study examined variation in flowering and pseudovivipary among populations, co-occurring clones within populations, and among tillers in individual clones of Poa bulbosa, a summer-dormant geophytic grass that reproduces sexually by seed, and asexually by basal tiller bulbs and bulbils formed in proliferated panicles. Methods Clones were collected from 17 populations across a rainfall gradient. Patterns of reproduction were monitored for 11 years in a common garden experiment and related to interannual differences in climatic conditions. Intraclonal variation in flowering and pseudovivipary was studied in a phytotron, under daylengths marginal for flowering induction. Key Results Clones showed large temporal variability in their reproductive behaviour. They flowered in some years but not in others, produced normal or proliferated panicles in different years, or became dormant without flowering. Proliferating clones did not show a distinct time sequence of flowering and proliferation across years. Populations differed in incidence of flowering and proliferation. The proportion of flowering clones increased with decreasing rainfall at the site of population origin, but no consistent relationship was found between flowering and precipitation in the common garden experiment across years. In contrast, flowering decreased at higher temperatures during early growth stages after bulb sprouting. Pulses of soil fertilization greatly increased the proportion of flowering clones and panicle production. High intraclonal tiller heterogeneity was observed, as shown by the divergent developmental fates of daughter plants arising from bulbs from the same parent clone and grown under similar conditions. Panicle proliferation was enhanced by non-inductive 8 h short days, while

  14. "Say it...near the flower shop": further evidence of the effect of flowers on mating.

    PubMed

    Guéguen, Nicolas

    2012-01-01

    For millennia, flowers have been used to convey romance. In this study, 18-25-year-old women (N = 600) walking alone in a shopping mall were approached by an attractive 20-year-old male-confederate who solicited them for their phone number. The women were solicited as they were walking in the area of a flower shop, a cake shop, or a women's shoes shop. It was found that women agreed more favorably to the confederate's courtship solicitation when solicited in the area of the flower shop. Positive mood induced by exposure to flowers was used to explain these results.

  15. Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon[C][W

    PubMed Central

    Wu, Liang; Liu, Dongfeng; Wu, Jiajie; Zhang, Rongzhi; Qin, Zhengrui; Liu, Danmei; Li, Aili; Fu, Daolin; Zhai, Wenxue; Mao, Long

    2013-01-01

    The highly conserved florigen gene FLOWERING LOCUS T (FT) functions at the core of the flowering pathways. Extensive studies have examined the transcriptional regulation of FT; however, other layers of FT regulation remain unclear. Here, we identified miR5200 a Pooideae-specific microRNA that is expressed in leaves and targets Brachypodium distachyon FT orthologs for mRNA cleavage. miR5200 was abundantly expressed in plants grown under short-day (SD) conditions but was dramatically repressed in plants transferred to long-day (LD) conditions. We also found that the epigenetic chromatin status, specifically the levels of histone methylation marks, at miR5200 precursor loci changed in response to daylength. Moreover, artificial interruption of miR5200 activity by target mimicry in B. distachyon altered flowering time in SD but not in LD conditions, suggesting that miR5200 functions in photoperiod-mediated flowering time regulation. Together, these findings illustrate a posttranscriptional regulation mechanism of FT and provide insights into understanding of the multiple concerted pathways for flowering time control in plants. PMID:24285787

  16. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators

    PubMed Central

    Reverté, Sara; Retana, Javier; Gómez, José M.; Bosch, Jordi

    2016-01-01

    Background and aims Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. Methods We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant–pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. Key Results We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. Conclusions The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant–pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant–pollinator associations. PMID:27325897

  17. EFFECT OF RADIOACTIVE ISOTOPE ON THE FLOWERING BEHAVIOUR OF JUTE (CORCHORUS OLITORIUS LINN.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, A.; Choudhury, A.K.R.

    1962-03-01

    Following irradiation with S/sup 35/, the dispersion of the flowering time of jute was increased in the first generation. The genetic variability of the treated population in the second generation was found to be greater than that of control population by two and a half times. But owing to the largeness of environmental variation, poor heritability of the flowering time was noticed. (auth)

  18. Mutant Alleles of Photoperiod-1 in Wheat (Triticum aestivum L.) That Confer a Late Flowering Phenotype in Long Days

    PubMed Central

    Shaw, Lindsay M.; Turner, Adrian S.; Herry, Laurence; Griffiths, Simon; Laurie, David A.

    2013-01-01

    Flowering time in wheat and barley is known to be modified by mutations in the Photoperiod-1 (Ppd-1) gene. Semi-dominant Ppd-1a mutations conferring an early flowering phenotype are well documented in wheat but gene sequencing has also identified candidate loss of function mutations for Ppd-A1 and Ppd-D1. By analogy to the recessive ppd-H1 mutation in barley, loss of function mutations in wheat are predicted to delay flowering under long day conditions. To test this experimentally, introgression lines were developed in the spring wheat variety ‘Paragon’. Plants lacking a Ppd-B1 gene were identified from a gamma irradiated ‘Paragon’ population. These were crossed with the other introgression lines to generate plants with candidate loss of function mutations on one, two or three genomes. Lines lacking Ppd-B1 flowered 10 to 15 days later than controls under long days. Candidate loss of function Ppd-A1 alleles delayed flowering by 1 to 5 days while candidate loss of function Ppd-D1 alleles did not affect flowering time. Loss of Ppd-A1 gave an enhanced effect, and loss of Ppd-D1 became detectable in lines where Ppd-B1 was absent, indicating effects may be buffered by functional Ppd-1 alleles on other genomes. Expression analysis revealed that delayed flowering was associated with reduced expression of the TaFT1 gene and increased expression of TaCO1. A survey of the GEDIFLUX wheat collection grown in the UK and North Western Europe between the 1940s and 1980s and the A.E. Watkins global collection of landraces from the 1920s and 1930s showed that the identified candidate loss of function mutations for Ppd-D1 were common and widespread, while the identified candidate Ppd-A1 loss of function mutation was rare in countries around the Mediterranean and in the Far East but was common in North Western Europe. This may reflect a possible benefit of the latter in northern locations. PMID:24244507

  19. Latitudinal variation in sensitivity of flower bud formation to high temperature in Japanese Taraxacum officinale.

    PubMed

    Yoshie, Fumio

    2014-05-01

    Control of flowering time plays a key role in the successful range expansion of plants. Taraxacum officinale has expanded throughout Japan during the 110 years after it was introduced into a cool temperate region. The present study tested a hypothesis that there is a genetic difference in the bud formation time in relation to temperature along latitudinal gradient of T. officinale populations. In Experiment 1, plants from three populations at different latitudes (26, 36, and 43°N) were grown at three temperatures. Time to flower bud appearance did not significantly differ among the three populations when plants were grown at 14 °C, whereas it increased with increasing latitude when grown at 19 and 24 °C. Rosette diameter was not different among the populations, indicating that the variation in bud formation time reflected a difference in genetic control rather than size variation. The latitudinal variation in bud appearance time was confirmed by Experiment 2 in which plants from 17 population were used. In Experiment 3, the size of plants that exhibited late-flowering was studied to test a hypothesis that the variation in flowering time reflects dormancy of vegetative growth, but the late-flowering plants were found to continue growth, indicating that vegetative dormancy was not the cause of the variation. The results clearly indicate that the degree of suppression of flower bud formation at high temperature decreases with latitude from north to south, which is under genetic control.

  20. Flowering times in genetically modified Brassica hybrids in the absence of selection

    EPA Science Inventory

    Changes in days to flowering (DTF) were observed among reciprocal F1 progeny of Brassica napus ‘RaideRR’ with other B. napus and also with weedy B. rapa. Changes in DTF are presented as factors to consider in evaluating the potential of crop to weed gene flow in different geograp...

  1. Genetic regulation of maize flower development and sex determination.

    PubMed

    Li, Qinglin; Liu, Baoshen

    2017-01-01

    The determining process of pistil fate are central to maize sex determination, mainly regulated by a genetic network in which the sex-determining genes SILKLESS 1 , TASSEL SEED 1 , TASSEL SEED 2 and the paramutagenic locus Required to maintain repression 6 play pivotal roles. Maize silks, which emerge from the ear shoot and derived from the pistil, are the functional stigmas of female flowers and play a pivotal role in pollination. Previous studies on sex-related mutants have revealed that sex-determining genes and phytohormones play an important role in the regulation of flower organogenesis. The processes determining pistil fate are central to flower development, where a silk identified gene SILKLESS 1 (SK1) is required to protect pistil primordia from a cell death signal produced by two commonly known genes, TASSEL SEED 1 (TS1) and TASSEL SEED 2 (TS2). In this review, maize flower developmental process is presented together with a focus on important sex-determining mutants and hormonal signaling affecting pistil development. The role of sex-determining genes, microRNAs, phytohormones, and the paramutagenic locus Required to maintain repression 6 (Rmr6), in forming a regulatory network that determines pistil fate, is discussed. Cloning SK1 and clarifying its function were crucial in understanding the regulation network of sex determination. The signaling mechanisms of phytohormones in sex determination are also an important research focus.

  2. TERMINAL FLOWER1 is a breeding target for a novel everbearing trait and tailored flowering responses in cultivated strawberry (Fragaria × ananassa Duch.).

    PubMed

    Koskela, Elli Aurora; Sønsteby, Anita; Flachowsky, Henryk; Heide, Ola Mikal; Hanke, Magda-Viola; Elomaa, Paula; Hytönen, Timo

    2016-09-01

    The effects of daylength and temperature on flowering of the cultivated octoploid strawberry (Fragaria × ananassa Duch.) have been studied extensively at the physiological level, but information on the molecular pathways controlling flowering in the species is scarce. The flowering pathway has been studied at the molecular level in the diploid short-day woodland strawberry (F. vesca L.), in which the FLOWERING LOCUS T1 (FvFT1)-SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (FvSOC1)-TERMINAL FLOWER1 (FvTFL1) pathway is essential for the correct timing of flowering. In this work, we show by transgenic approach that the silencing of the floral repressor FaTFL1 in the octoploid short-day cultivar 'Elsanta' is sufficient to induce perpetual flowering under long days without direct changes in vegetative reproduction. We also demonstrate that although the genes FaFT1 and FaSOC1 show similar expression patterns in different cultivars, the regulation of FaTFL1 varies widely from cultivar to cultivar and is correlated with floral induction, indicating that the transcription of FaTFL1 occurs at least partially independently of the FaFT1-FaSOC1 module. Our results indicate that changing the expression patterns of FaTFL1 through biotechnological or conventional breeding approaches could result in strawberries with specific flowering and runnering characteristics including new types of everbearing cultivars. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine

    PubMed Central

    Huang, K. S.; Lee, S. E.; Yeh, Y.; Shen, G. S.; Mei, E.; Chang, C. M.

    2010-01-01

    Western flower thrip (Frankliniella occidentalis) is a major global pest of agricultural products. It directly damages crops through feeding, oviposition activity or transmission of several plant viruses. We describe a Taqman real-time quantitative PCR detection system, which can rapidly identify F. occidentalis from thrips larvae to complement the traditional morphological identification. The data showed that our detection system targeted on the ribosomal RNA gene regions of F. occidentalis has high sensitivity and specificity. The rapid method can be used for on-site testing of samples at ports-of-entry in the future. PMID:20129946

  4. Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine.

    PubMed

    Huang, K S; Lee, S E; Yeh, Y; Shen, G S; Mei, E; Chang, C M

    2010-08-23

    Western flower thrip (Frankliniella occidentalis) is a major global pest of agricultural products. It directly damages crops through feeding, oviposition activity or transmission of several plant viruses. We describe a Taqman real-time quantitative PCR detection system, which can rapidly identify F. occidentalis from thrips larvae to complement the traditional morphological identification. The data showed that our detection system targeted on the ribosomal RNA gene regions of F. occidentalis has high sensitivity and specificity. The rapid method can be used for on-site testing of samples at ports-of-entry in the future.

  5. Hydraulic conductance and the maintenance of water balance in flowers.

    PubMed

    Roddy, Adam B; Brodersen, Craig R; Dawson, Todd E

    2016-10-01

    Flowers face desiccating conditions, yet little is known about their ability to transport water. We quantified variability in floral hydraulic conductance (Kflower ) for 20 species from 10 families and related it to traits hypothesized to be associated with liquid and vapour phase water transport. Basal angiosperm flowers had trait values associated with higher water and carbon costs than monocot and eudicot flowers. Kflower was coordinated with water supply (vein length per area, VLA) and loss (minimum epidermal conductance, gmin ) traits among the magnoliids, but was insensitive to variation in these traits among the monocots and eudicots. Phylogenetic independent contrast (PIC) correlations revealed that few traits had undergone coordinated evolution. However, VLA and the desiccation time (Tdes ), the quotient of water content and gmin , had significant trait and PIC correlations. The near absence of stomata from monocot and eudicot flowers may have been critical in minimizing water loss rates among these clades. Early divergent, basal angiosperm flowers maintain higher Kflower because of traits associated with high rates water loss and water supply, while monocot and eudicot flowers employ a more conservative strategy of limiting water loss and may rely on stored water to maintain turgor and delay desiccation. © 2016 John Wiley & Sons Ltd.

  6. Methylation controls the low temperature induction of flowering in Arabidopsis.

    PubMed

    Dennis, E S; Bilodeau, P; Burn, J; Finnegan, E J; Genger, R; Helliwell, C; Kang, B J; Sheldon, C C; Peacock, W J

    1998-01-01

    Control of the transition to flowering is critical for reproductive success of a plant. Studies in Arabidopsis have led us to suggest how this species has harnessed the environmental cue of a period of low temperature to ensure flowering occurs at an appropriate time. We propose that Arabidopsis has both vernalization-independent and vernalization-dependent pathways for the initiation of inflorescence development in the shoot apex. The vernalization-independent pathway may be concerned with the supply of carbohydrate to the shoot apex. In late flowering ecotypes which respond to vernalization the vernalization-independent pathway is blocked by the action of two dominant repressors of flowering, FRI and FLC, which interact to produce very late flowering plants which respond strongly to vernalization. We have isolated a gene which may correspond to FLC. We suggest the vernalization-dependent pathway, which may be concerned with apical GA biosynthesis, is blocked by methylation of a gene critical for flowering. This gene may correspond to that encoding kaurenoic acid hydroxylase (KAH), an enzyme catalysing a step in the GA biosynthetic pathway. Under this scheme vernalization causes unblocking of this pathway by demethylation possibly of the KAH gene and consequent biosynthesis of active GAs in the apex.

  7. The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation.

    PubMed

    Lázaro, A; Totland, O

    2014-07-01

    The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation. Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators. Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation. The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators. © The Author 2014. Published by Oxford University Press on behalf of the Annals of

  8. A flower's nano-powers

    NASA Astrophysics Data System (ADS)

    Wenzel, Tobias; Vignolini, Silvia

    2018-04-01

    When it comes to shapes and colours, flowers are one of nature’s most praised objects – but there is more to them than meets the eye. Tobias Wenzel and Silvia Vignolini reveal an ingenious strategy flowers use to become coloured and attract pollinators

  9. De novo transcriptome analysis in Dendrobium and identification of critical genes associated with flowering.

    PubMed

    Chen, Yue; Shen, Qi; Lin, Renan; Zhao, Zhuangliu; Shen, Chenjia; Sun, Chongbo

    2017-10-01

    Artificial control of flowering time is pivotal for the ornamental value of orchids including the genus Dendrobium. Although various flowering pathways have been revealed in model plants, little information is available on the genetic regualtion of flowering in Dendrobium. To identify the critical genes associated with flowering, transcriptomes from four organs (leaf, root, stem and flower) of D. officinale were analyzed in our study. In total, 2645 flower-specific transcripts were identified. Functional annotation and classification suggested that several metabolic pathways, including four sugar-related pathways and two fatty acid-related pathways, were enriched. A total of 24 flowering-related transcripts were identified in D. officinale according to the similarities to their homologous genes from Arabidopsis, suggesting that most classical flowering pathways existed in D. officinale. Furthermore, phylogenetic analysis suggested that the FLOWERING LOCUS T homologs in orchids are highly conserved during evolution process. In addition, expression changes in nine randomly-selected critical flowering-related transcripts between the vegetative stage and reproductive stage were quantified by qRT-PCR analysis. Our study provided a number of candidate genes and sequence resources for investigating the mechanisms underlying the flowering process of the Dendrobium genus. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture

    PubMed Central

    Baumann, Kim; Venail, Julien; Berbel, Ana; Domenech, Maria Jose; Money, Tracy; Conti, Lucio; Hanzawa, Yoshie; Madueno, Francisco; Bradley, Desmond

    2015-01-01

    Models for the control of above-ground plant architectures show how meristems can be programmed to be either shoots or flowers. Molecular, genetic, transgenic, and mathematical studies have greatly refined these models, suggesting that the phase of the shoot reflects different genes contributing to its repression of flowering, its vegetativeness (‘veg’), before activators promote flower development. Key elements of how the repressor of flowering and shoot meristem gene TFL1 acts have now been tested, by changing its spatiotemporal pattern. It is shown that TFL1 can act outside of its normal expression domain in leaf primordia or floral meristems to repress flower identity. These data show how the timing and spatial pattern of TFL1 expression affect overall plant architecture. This reveals that the underlying pattern of TFL1 interactors is complex and that they may be spatially more widespread than TFL1 itself, which is confined to shoots. However, the data show that while TFL1 and floral genes can both act and compete in the same meristem, it appears that the main shoot meristem is more sensitive to TFL1 rather than floral genes. This spatial analysis therefore reveals how a difference in response helps maintain the ‘veg’ state of the shoot meristem. PMID:26019254

  11. FLC expression is down-regulated by cold treatment in Diplotaxis tenuifolia (wild rocket), but flowering time is unaffected.

    PubMed

    Taylor, Jemma L; Massiah, Andrea; Kennedy, Sue; Hong, Yiguo; Jackson, Stephen D

    2017-07-01

    Wild rocket (Diplotaxis tenuifolia) has become a very popular salad leaf due to its peppery taste. It is part of the Brassicaceae family and thus has a high level of homology at the DNA level to other Brassica species including Arabidopsis thaliana. The vernalization and photoperiodic requirements of wild rocket have not been reported to date. Photoperiodic experiments described here demonstrate that rocket is a facultative long day plant. To investigate the vernalization requirement, both seed and young plants were given vernalization treatments at 4°C for different lengths of time. A rocket homologue of FLOWERING LOCUS C (DtFLC) was isolated and shown to functionally complement the Arabidopsis FRI + flc3 null mutant. Whilst the expression of DtFLC was significantly reduced after just one week of cold treatment, cold treatments of two to eight weeks had no significant effect on bolting time of wild rocket indicating that rocket does not have a vernalization requirement. These findings illustrate that important fundamental differences can exist between model and crop plant species, such as in this case where down-regulation of DtFLC expression does not enable earlier flowering in wild rocket as it does in Arabidopsis and many other Brassica species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators.

    PubMed

    Reverté, Sara; Retana, Javier; Gómez, José M; Bosch, Jordi

    2016-08-01

    Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant-pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant-pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant-pollinator associations. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Flower-Visiting Butterflies Avoid Predatory Stimuli and Larger Resident Butterflies: Testing in a Butterfly Pavilion.

    PubMed

    Fukano, Yuya; Tanaka, Yosuke; Farkhary, Sayed Ibrahim; Kurachi, Takuma

    2016-01-01

    The flower-visiting behaviors of pollinator species are affected not only by flower traits but also by cues of predators and resident pollinators. There is extensive research into the effects of predator cues and resident pollinators on the flower-visiting behaviors of bee pollinators. However, there is relatively little research into their effects on butterfly pollinators probably because of the difficulty in observing a large number of butterfly pollination events. We conducted a dual choice experiment using artificial flowers under semi-natural conditions in the butterfly pavilion at Tama Zoological Park to examine the effects of the presence of a dead mantis and resident butterflies have on the flower-visiting behavior of several butterfly species. From 173 hours of recorded video, we observed 3235 visitations by 16 butterfly species. Statistical analysis showed that (1) butterflies avoided visiting flowers occupied by a dead mantis, (2) butterflies avoided resident butterflies that were larger than the visitor, and (3) butterflies showed greater avoidance of a predator when the predator was present together with the resident butterfly than when the predator was located on the opposite flower of the resident. Finally, we discuss the similarities and differences in behavioral responses of butterfly pollinators and bees.

  14. Flower-Visiting Butterflies Avoid Predatory Stimuli and Larger Resident Butterflies: Testing in a Butterfly Pavilion

    PubMed Central

    Fukano, Yuya; Tanaka, Yosuke; Farkhary, Sayed Ibrahim; Kurachi, Takuma

    2016-01-01

    The flower-visiting behaviors of pollinator species are affected not only by flower traits but also by cues of predators and resident pollinators. There is extensive research into the effects of predator cues and resident pollinators on the flower-visiting behaviors of bee pollinators. However, there is relatively little research into their effects on butterfly pollinators probably because of the difficulty in observing a large number of butterfly pollination events. We conducted a dual choice experiment using artificial flowers under semi-natural conditions in the butterfly pavilion at Tama Zoological Park to examine the effects of the presence of a dead mantis and resident butterflies have on the flower-visiting behavior of several butterfly species. From 173 hours of recorded video, we observed 3235 visitations by 16 butterfly species. Statistical analysis showed that (1) butterflies avoided visiting flowers occupied by a dead mantis, (2) butterflies avoided resident butterflies that were larger than the visitor, and (3) butterflies showed greater avoidance of a predator when the predator was present together with the resident butterfly than when the predator was located on the opposite flower of the resident. Finally, we discuss the similarities and differences in behavioral responses of butterfly pollinators and bees. PMID:27846252

  15. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers

    PubMed Central

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T.; Kim, Sang-Gyu

    2016-01-01

    Summary The rhythmic opening/closing and volatile emissions of flowers is known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach led to the identification of core circadian clock components in Arabidopsis thaliana, involvement of these clock components for floral rhythms remained untested likely due to weak diurnal rhythms in A. thaliana flowers.Here we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents, and move vertically through a 140° arc.We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission, and pedicel movement, but not flower closing.We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known as a core clock component. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. PMID:26439540

  16. Subalpine bumble bee foraging distances and densities in relation to flower availability.

    PubMed

    Elliott, Susan E

    2009-06-01

    Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.

  17. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance.

    PubMed

    Diallo, Amadou; Kane, Ndjido; Agharbaoui, Zahra; Badawi, Mohamed; Sarhan, Fathey

    2010-01-13

    The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.

  18. Potent Odorants of Characteristic Floral/Sweet Odor in Chinese Chrysanthemum Flower Tea Infusion.

    PubMed

    Kaneko, Shu; Chen, Jingxiu; Wu, Jieming; Suzuki, Yuto; Ma, Lin; Kumazawa, Kenji

    2017-11-22

    An investigation using the aroma extract dilution analysis (AEDA) technique applied to the aroma concentrates prepared from the tea infusions of two different types of Chinese chrysanthemum flowers (flower buds, blooming flowers) revealed that 29 aroma peaks were detected in the aroma concentrates, and 17 compounds were newly identified or tentatively identified in the chrysanthemum flower tea. AEDA also revealed that the aroma peaks having high flavor dilution factors mainly consisted of a floral/sweet note in addition to metallic and phenol-like/spicy notes. Among them, four aroma peaks having a floral/sweet were identified as verbenone, ethyl 3-phenylpropanoate, propyl 3-phenylpropanoate, and ethyl cinnamate, and a semiquantitative analysis revealed that the flower buds were rich in these compounds. Furthermore, a chiral analysis revealed that (-)-verbenone existed in both flowers at a 3 times higher concentration than (+)-verbenone. Additionally, because the detection threshold of (-)-verbenone was lower than that of the (+)-verbenone, it is concluded that the (-)-isomer was a main contributor of the aroma peak of verbenone in the chrysanthemum flower tea.

  19. Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice

    PubMed Central

    Matsubara, Kazuki; Hori, Kiyosumi; Ogiso-Tanaka, Eri; Yano, Masahiro

    2014-01-01

    Flowering time in rice (Oryza sativa L.) is determined primarily by daylength (photoperiod), and natural variation in flowering time is due to quantitative trait loci involved in photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs), including our recently cloned QTGs, Hd17, and Hd16. The QTGs have been assigned to specific photoperiodic flowering pathways. Among them, 9 have homologs in the Arabidopsis genome, whereas it was evident that there are differences in the pathways between rice and Arabidopsis, such that the rice Ghd7–Ehd1–Hd3a/RFT1 pathway modulated by Hd16 is not present in Arabidopsis. In this review, we describe QTGs underlying natural variation in rice flowering time. Additionally, we discuss the implications of the variation in adaptive divergence and its importance in rice breeding. PMID:24860584

  20. Flowers and Wild Megachilid Bees Share Microbes.

    PubMed

    McFrederick, Quinn S; Thomas, Jason M; Neff, John L; Vuong, Hoang Q; Russell, Kaleigh A; Hale, Amanda R; Mueller, Ulrich G

    2017-01-01

    Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.

  1. Unusual positional effects on flower sex in an andromonoecious tree: Resource competition, architectural constraints, or inhibition by the apical flower?

    PubMed

    Granado-Yela, Carlos; Balaguer, Luis; Cayuela, Luis; Méndez, Marcos

    2017-04-01

    Two, nonmutually exclusive, mechanisms-competition for resources and architectural constraints-have been proposed to explain the proximal to distal decline in flower size, mass, and/or femaleness in indeterminate, elongate inflorescences. Whether these mechanisms also explain unusual positional effects such as distal to proximal declines of floral performance in determinate inflorescences, is understudied. We tested the relative influence of these mechanisms in the andromonoecious wild olive tree, where hermaphroditic flowers occur mainly on apical and the most proximal positions in determinate inflorescences. We experimentally increased the availability of resources for the inflorescences by removing half of the inflorescences per twig or reduced resource availability by removing leaves. We also removed the apical flower to test its inhibitory effect on subapical flowers. The apical flower had the highest probability of being hermaphroditic. Further down, however, the probability of finding a hermaphroditic flower decreased from the base to the tip of the inflorescences. An experimental increase of resources increased the probability of finding hermaphroditic flowers at each position, and vice versa. Removal of the apical flower increased the probability of producing hermaphroditic flowers in proximal positions but not in subapical positions. These results indicate an interaction between resource competition and architectural constraints in influencing the arrangement of the hermaphroditic and male flowers within the inflorescences of the wild olive tree. Subapical flowers did not seem to be hormonally suppressed by apical flowers. The study of these unusual positional effects is needed for a general understanding about the functional implications of inflorescence architecture. © 2017 Botanical Society of America.

  2. Mapping QTL Associated with Photoperiod Sensitivity and Assessing the Importance of QTL×Environment Interaction for Flowering Time in Maize

    PubMed Central

    Wang, Cuiling; Chen, Yanhui; Ku, Lixia; Wang, Tiegu; Sun, Zhaohui; Cheng, Fangfang; Wu, Liancheng

    2010-01-01

    Background An understanding of the genetic determinism of photoperiod response of flowering is a prerequisite for the successful exchange of germplasm across different latitudes. In order to contribute to resolve the genetic basis of photoperiod sensitivity in maize, a set of 201 recombinant inbred lines (RIL), derived from a temperate and tropical inbred line cross were evaluated in 5 field trials spread in short- and long-day environments. Methodology/Principal Findings Firstly, QTL analyses for flowering time and photoperiod sensitivity in maize were conducted in individual photoperiod environments separately, and then, the total genetic effect was partitioned into additive effect (A) and additive-by-environment interaction effect (AE) by using a mixed-model-based composite interval mapping (MCIM) method. Conclusions/Significance Seven putative QTL were found associated with DPS thermal time based on the data estimated in individual environments. Nine putative QTL were found associated with DPS thermal time across environments and six of them showed significant QTL×enviroment (QE) interactions. Three QTL for photoperiod sensitivity were identified on chromosome 4, 9 and 10, which had the similar position to QTL for DPS thermal time in the two long-day environment. The major photoperiod sensitive loci qDPS10 responded to both short and long-day photoperiod environments and had opposite effects in different photoperiod environment. The QTL qDPS3, which had the greatest additive effect exclusively in the short-day environment, were photoperiod independent and should be classified in autonomous promotion pathway. PMID:21124912

  3. Flower development and sex specification in wild grapevine.

    PubMed

    Ramos, Miguel Jesus Nunes; Coito, João Lucas; Silva, Helena Gomes; Cunha, Jorge; Costa, Maria Manuela Ribeiro; Rocheta, Margarida

    2014-12-12

    Wild plants of Vitis closely related to the cultivated grapevine (V. v. vinifera) are believed to have been first domesticated 10,000 years BC around the Caspian Sea. V. v. vinifera is hermaphrodite whereas V. v. sylvestris is a dioecious species. Male flowers show a reduced pistil without style or stigma and female flowers present reflexed stamens with infertile pollen. V. vinifera produce perfect flowers with all functional structures. The mechanism for flower sex determination and specification in grapevine is still unknown. To understand which genes are involved during the establishment of male, female and complete flowers, we analysed and compared the transcription profiles of four developmental stages of the three genders. We showed that sex determination is a late event during flower development and that the expression of genes from the ABCDE model is not directly correlated with the establishment of sexual dimorphism. We propose a temporal comprehensive model in which two mutations in two linked genes could be players in sex determination and indirectly establish the Vitis domestication process. Additionally, we also found clusters of genes differentially expressed between genders and between developmental stages that suggest a role involved in sex differentiation. Also, the detection of differentially transcribed regions that extended existing gene models (intergenic regions) between sexes suggests that they may account for some of the variation between the subspecies. There is no evidence of differences of expression levels in genes from the ABCDE model that could explain the shift from hermaphroditism to dioecy. We propose that sex specification occurs after floral organ identity has been established and therefore, sex determination genes might be having an effect downstream of the ABCDE model genes.For the first time a full transcriptomic analysis was performed in different flower developmental stages in the same individual. Our experimental approach

  4. Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus.

    PubMed

    Zhang, Huanling; Harry, David E; Ma, Cathleen; Yuceer, Cetin; Hsu, Chuan-Yu; Vikram, Vikas; Shevchenko, Olga; Etherington, Elizabeth; Strauss, Steven H

    2010-06-01

    Expression of FLOWERING LOCUS T (FT) and its homologues has been shown to accelerate the onset of flowering in a number of plant species, including poplar (Populus spp.). The application of FT should be of particular use in forest trees, as it could greatly accelerate and enable new kinds of breeding and research. Recent evidence showing the extent to which FT is effective in promoting flowering in trees is discussed, and its effectiveness in poplar is reported. Results using one FT gene from Arabidopsis and two from poplar, all driven by a heat-inducible promoter, transformed into two poplar genotypes are also described. Substantial variation in flowering response was observed depending on the FT gene and genetic background. Heat-induced plants shorter than 30 cm failed to flower as well as taller plants. Plants exposed to daily heat treatments lasting 3 weeks tended to produce fewer abnormal flowers than those in heat treatments of shorter durations; increasing the inductive temperature from 37 degrees C to 40 degrees C produced similar benefits. Using optimal induction conditions, approximately 90% of transgenic plants could be induced to flower. When induced FT rootstocks were grafted with scions that lacked FT, flowering was only observed in rootstocks. The results suggest that a considerable amount of species- or genotype-specific adaptation will be required to develop FT into a reliable means for shortening the generation cycle for breeding in poplar.

  5. Survey of insect visitation of ornamental flowers in Southover Grange garden, Lewes, UK.

    PubMed

    Garbuzov, Mihail; Samuelson, Elizabeth E W; Ratnieks, Francis L W

    2015-10-01

    Ornamental flowers commonly grown in urban gardens and parks can be of value to flower-visiting insects. However, there is huge variation in the number of insects attracted among plant varieties. In this study, we quantified the insect attractiveness of 79 varieties in full bloom being grown in a public urban garden that is popular due to its beautiful flowers and other attractions. The results showed very clearly that most varieties (77%, n = 61) were either poorly attractive or completely unattractive to insect flower visitors. Several varieties (19%, n = 15) were moderately attractive, but very few (4%, n = 3) were highly attractive. Closer examination of Dahlia varieties showed that "open" flowered forms were approximately 20 times more attractive than "closed" flowered forms. These results strongly suggest that there is a great potential for making urban parks and gardens considerably more bee- and insect-friendly by selecting appropriate varieties. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  6. In vitro flowering ofDendrobium candidum.

    PubMed

    Wang, G; Xu, Z; Chia, T F; Chua, N H

    1997-02-01

    Dendrobium candidum, a wild orchid species from China, normally requires three to four years of cultivation before it can produce flowers. The effects of plant hormones and polyamines on flower initiation of this species in tissue culture were investigated. The addition of spermidine, or BA, or the combination of NAA and BA to the culture medium can induce protocorms or shoots to flower within three to six months with a frequency of 31.6%-45.8%. The flowering frequency can be further increased to 82.8 % on the average by pre-treatment of protocorms in an ABA-containing medium followed by transfer onto MS medium with BA. The induction of precocious flowering depends on the developmental stage of the experimental materials (protocorms, shoots and plantlets) used, and usually occurs only when mt formation is inhibited.

  7. Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards

    PubMed Central

    Wilby, Andrew; Sutton, Peter; Wäckers, Felix

    2017-01-01

    Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators (‘concealed-nectar plants’); (2) natural enemies (‘open-nectar plants’); or (3) both groups concurrently (i.e., ‘multi-functional’ mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that ‘multi-functional’ flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards. PMID:28930157

  8. Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards.

    PubMed

    Campbell, Alistair John; Wilby, Andrew; Sutton, Peter; Wäckers, Felix

    2017-09-20

    Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators ('concealed-nectar plants'); (2) natural enemies ('open-nectar plants'); or (3) both groups concurrently (i.e., 'multi-functional' mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that 'multi-functional' flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards.

  9. Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages

    PubMed Central

    Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong

    2013-01-01

    Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled. PMID:24232454

  10. Comparative analysis of flower volatiles from nine citrus at three blooming stages.

    PubMed

    Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong

    2013-11-13

    Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled.

  11. Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines

    PubMed Central

    Wang, Gongwei; Schmalenbach, Inga; von Korff, Maria; Léon, Jens; Kilian, Benjamin; Rode, Jeannette

    2010-01-01

    The control of flowering time has important impacts on crop yield. The variation in response to day length (photoperiod) and low temperature (vernalization) has been selected in barley to provide adaptation to different environments and farming practices. As a further step towards unraveling the genetic mechanisms underlying flowering time control in barley, we investigated the allelic variation of ten known or putative photoperiod and vernalization pathway genes between two genotypes, the spring barley elite cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare) and the wild barley accession ‘ISR42-8’ (Hordeum vulgare ssp. spontaneum). The genes studied are Ppd-H1, VRN-H1, VRN-H2, VRN-H3, HvCO1, HvCO2, HvGI, HvFT2, HvFT3 and HvFT4. ‘Scarlett’ and ‘ISR42-8’ are the parents of the BC2DH advanced backcross population S42 and a set of wild barley introgression lines (S42ILs). The latter are derived from S42 after backcrossing and marker-assisted selection. The genotypes and phenotypes in S42 and S42ILs were utilized to determine the genetic map location of the candidate genes and to test if these genes may exert quantitative trait locus (QTL) effects on flowering time, yield and yield-related traits in the two populations studied. By sequencing the characteristic regions of the genes and genotyping with diagnostic markers, the contrasting allelic constitutions of four known flowering regulation genes were identified as ppd-H1, Vrn-H1, vrn-H2 and vrn-H3 in ‘Scarlett’ and as Ppd-H1, vrn-H1, Vrn-H2 and a novel allele of VRN-H3 in ‘ISR42-8’. All candidate genes could be placed on a barley simple sequence repeat (SSR) map. Seven candidate genes (Ppd-H1, VRN-H2, VRN-H3, HvGI, HvFT2, HvFT3 and HvFT4) were associated with flowering time QTLs in population S42. Four exotic alleles (Ppd-H1, Vrn-H2, vrn-H3 and HvCO1) possibly exhibited significant effects on flowering time in S42ILs. In both populations, the QTL showing the strongest effect corresponded to

  12. Pollination Services of Mango Flower Pollinators

    PubMed Central

    Huda, A. Nurul; Salmah, M. R. Che; Hassan, A. Abu; Hamdan, A.; Razak, M. N. Abdul

    2015-01-01

    Measuring wild pollinator services in agricultural production is very important in the context of sustainable management. In this study, we estimated the contribution of native pollinators to mango fruit set production of two mango cultivars Mangifera indica (L). cv. ‘Sala’ and ‘Chok Anan’. Visitation rates of pollinators on mango flowers and number of pollen grains adhering to their bodies determined pollinator efficiency for reproductive success of the crop. Chok Anan failed to produce any fruit set in the absence of pollinators. In natural condition, we found that Sala produced 4.8% fruit set per hermaphrodite flower while Chok Anan produced 3.1% per flower. Hand pollination tremendously increased fruit set of naturally pollinated flower for Sala (>100%), but only 33% for Chok Anan. Pollinator contribution to mango fruit set was estimated at 53% of total fruit set production. Our results highlighted the importance of insect pollinations in mango production. Large size flies Eristalinus spp. and Chrysomya spp. were found to be effective pollen carriers and visited more mango flowers compared with other flower visitors. PMID:26246439

  13. Cultural techniques for altering the flowering time and double-cropping short-day varieties

    USDA-ARS?s Scientific Manuscript database

    July-plugged transplants of short-day cv. Strawberry Festival (Fragaria x ananassa), flowered in October and November even though they were grown under long photoperiods and warm temperatures (greater than 21 degrees C) in July and August. These unexpected results were attributed to a high plant de...

  14. Where have all the blue flowers gone: pollinator responses and selection on flower colour in New Zealand Wahlenbergia albomarginata.

    PubMed

    Campbell, D R; Bischoff, M; Lord, J M; Robertson, A W

    2012-02-01

    Although pollinators are thought to select on flower colour, few studies have experimentally decoupled effects of colour from correlated traits on pollinator visitation and pollen transfer. We combined selection analysis and phenotypic manipulations to measure the effect of petal colour on visitation and pollen export at two spatial scales in Wahlenbergia albomarginata. This species is representative of many New Zealand alpine herbs that have secondarily evolved white or pale flowers. The major pollinators, solitary bees, exerted phenotypic selection on flower size but not colour, quantified by bee vision. When presented with manipulated flowers, bees visited flowers painted blue to resemble a congener over white flowers in large, but not small, experimental arrays. Pollen export was higher for blue flowers in large arrays. Pollinator preference does not explain the pale colouration of W. albomarginata, as commonly hypothesized. Absence of bright blue could be driven instead by indirect selection of correlated characters. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  15. Effects of Passion Flower Extract, as an Add-On Treatment to Sertraline, on Reaction Time in Patients ‎with Generalized Anxiety Disorder: A Double-Blind Placebo-Controlled Study

    PubMed Central

    Nojoumi, Mandana; Ghaeli, Padideh; Salimi, Samrand; Sharifi, Ali; Raisi, Firoozeh

    2016-01-01

    Objective: Because of functional impairment caused by generalized anxiety disorder and due to cognitive side ‎effects of many anti-anxiety agents, in this study we aimed to evaluate the influence of Passion ‎flower standardized extract on reaction time in patients with generalized anxiety disorder.‎ Method: Thirty patients aged 18 to 50 years of age, who were diagnosed with generalized anxiety disorder and ‎fulfilled the study criteria, entered this double-blind placebo-controlled study. Reaction time was ‎measured at baseline and after one month of treatment using computerized software. Correct ‎responses, omission and substitution errors and the mean time of correct responses (reaction time) in ‎both visual and auditory tests were collected. The analysis was performed between the two groups ‎and within each group utilizing SPSS PASW- statics, Version 18. P-value less than 0.05 was ‎considered statistically significant.‎ Results: All the participants were initiated on Sertraline 50 mg/day, and the dosage was increased to 100 ‎mg / day after two weeks. Fourteen patients received Pasipy (Passion Flower) 15 drops three times ‎daily and 16 received placebo concurrently. Inter-group comparison proved no significant difference ‎in any of the test items between assortments while a significant decline was observed in auditory ‎omission errors in passion flower group after on month of treatment using intra-group analysis.‎‎ Conclusion: This study noted that passion flower might be suitable as an add-on in the treatment of generalized ‎anxiety disorder with low side effects. Further studies with longer duration are recommended to ‎confirm the results of this study.‎ PMID:27928252

  16. Effects of Passion Flower Extract, as an Add-On Treatment to Sertraline, on Reaction Time in Patients ‎with Generalized Anxiety Disorder: A Double-Blind Placebo-Controlled Study.

    PubMed

    Nojoumi, Mandana; Ghaeli, Padideh; Salimi, Samrand; Sharifi, Ali; Raisi, Firoozeh

    2016-07-01

    Objective: Because of functional impairment caused by generalized anxiety disorder and due to cognitive side ‎effects of many anti-anxiety agents, in this study we aimed to evaluate the influence of Passion ‎flower standardized extract on reaction time in patients with generalized anxiety disorder.‎ Method: Thirty patients aged 18 to 50 years of age, who were diagnosed with generalized anxiety disorder and ‎fulfilled the study criteria, entered this double-blind placebo-controlled study. Reaction time was ‎measured at baseline and after one month of treatment using computerized software. Correct ‎responses, omission and substitution errors and the mean time of correct responses (reaction time) in ‎both visual and auditory tests were collected. The analysis was performed between the two groups ‎and within each group utilizing SPSS PASW- statics, Version 18. P-value less than 0.05 was ‎considered statistically significant.‎ Results: All the participants were initiated on Sertraline 50 mg/day, and the dosage was increased to 100 ‎mg / day after two weeks. Fourteen patients received Pasipy (Passion Flower) 15 drops three times ‎daily and 16 received placebo concurrently. Inter-group comparison proved no significant difference ‎in any of the test items between assortments while a significant decline was observed in auditory ‎omission errors in passion flower group after on month of treatment using intra-group analysis.‎‎ Conclusion: This study noted that passion flower might be suitable as an add-on in the treatment of generalized ‎anxiety disorder with low side effects. Further studies with longer duration are recommended to ‎confirm the results of this study.‎.

  17. Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum).

    PubMed

    Cohen, Oded; Borovsky, Yelena; David-Schwartz, Rakefet; Paran, Ilan

    2014-05-01

    The genetic control of the transition to flowering has mainly been studied in model species, while few data are available in crop species such as pepper (Capsicum spp.). To elucidate the genetic control of the transition to flowering in pepper, mutants that lack flowers were isolated and characterized. Genetic mapping and sequencing allowed the identification of the gene disrupted in the mutants. Double mutants and expression analyses were used to characterize the relationships between the mutated gene and other genes controlling the transition to flowering and flower differentiation. The mutants were characterized by a delay in the initiation of sympodial growth, a delay in the termination of sympodial meristems and complete inhibition of flower formation. Capsicum annuum S (CaS), the pepper (Capsicum annuum) ortholog of tomato (Solanum lycopersicum) COMPOUND INFLORESCENCE and petunia (Petunia hybrida) EVERGREEN, was found to govern the mutant phenotype. CaS is required for the activity of the flower meristem identity gene Ca-ANANTHA and does not affect the expression of CaLEAFY. CaS is epistatic over other genes controlling the transition to flowering with respect to flower formation. Comparative homologous mutants in the Solanaceae indicate that CaS has uniquely evolved to have a critical role in flower formation, while its role in meristem maturation is conserved in pepper, tomato and petunia. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. Expression profiling of FLOWERING LOCUS T-like gene in alternate bearing 'Hass' avocado trees suggests a role for PaFT in avocado flower induction.

    PubMed

    Ziv, Dafna; Zviran, Tali; Zezak, Oshrat; Samach, Alon; Irihimovitch, Vered

    2014-01-01

    In many perennials, heavy fruit load on a shoot decreases the ability of the plant to undergo floral induction in the following spring, resulting in a pattern of crop production known as alternate bearing. Here, we studied the effects of fruit load on floral determination in 'Hass' avocado (Persea americana). De-fruiting experiments initially confirmed the negative effects of fruit load on return to flowering. Next, we isolated a FLOWERING LOCUS T-like gene, PaFT, hypothesized to act as a phloem-mobile florigen signal and examined its expression profile in shoot tissues of on (fully loaded) and off (fruit-lacking) trees. Expression analyses revealed a strong peak in PaFT transcript levels in leaves of off trees from the end of October through November, followed by a return to starting levels. Moreover and concomitant with inflorescence development, only off buds displayed up-regulation of the floral identity transcripts PaAP1 and PaLFY, with significant variation being detected from October and November, respectively. Furthermore, a parallel microscopic study of off apical buds revealed the presence of secondary inflorescence axis structures that only appeared towards the end of November. Finally, ectopic expression of PaFT in Arabidopsis resulted in early flowering transition. Together, our data suggests a link between increased PaFT expression observed during late autumn and avocado flower induction. Furthermore, our results also imply that, as in the case of other crop trees, fruit-load might affect flowering by repressing the expression of PaFT in the leaves. Possible mechanism(s) by which fruit crop might repress PaFT expression, are discussed.

  19. Pleiotropy, redundancy and the evolution of flowers.

    PubMed

    Albert, Victor A; Oppenheimer, David G; Lindqvist, Charlotte

    2002-07-01

    Most angiosperm flowers are tightly integrated, functionally bisexual shoots that have carpels with enclosed ovules. Flowering plants evolved from within the gymnosperms, which lack this combination of innovations. Paradoxically, phylogenetic reconstructions suggest that the flowering plant lineage substantially pre-dates the evolution of flowers themselves. We provide a model based on known gene regulatory networks whereby positive selection on a single, partially redundant gene duplicate 'trapped' the ancestors of flower-bearing plants into the condensed, bisexual state approximately 130 million years ago. The LEAFY (LFY) gene of Arabidopsis encodes a master regulator that functions as the main conduit of environmental signals to the reproductive developmental program. We directly link the elimination of one LFY paralog, pleiotropically maintained in gymnosperms, to the sudden appearance of flowers in the fossil record.

  20. Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population

    PubMed Central

    Allard, Alix; Bink, Marco C.A.M.; Martinez, Sébastien; Kelner, Jean-Jacques; Legave, Jean-Michel; di Guardo, Mario; Di Pierro, Erica A.; Laurens, François; van de Weg, Eric W.; Costes, Evelyne

    2016-01-01

    In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6–21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase. PMID:27034326

  1. ASYMMETRIC LEAVES1 regulates abscission zone placement in Arabidopsis flowers

    PubMed Central

    2014-01-01

    Background The sepals, petals and stamens of Arabidopsis flowers detach via abscission zones formed at their boundaries with the underlying receptacle. The ASYMMETRIC LEAVES1 (AS1) MYB transcription factor plays a critical role in setting boundaries between newly formed leaf primordia and the shoot meristem. By repressing expression of a set of KNOTTED1-LIKE HOMEODOMAIN (KNOX) genes from developing leaf primordia, AS1 and its partner ASYMMETRIC LEAVES2 allow the patterning and differentiation of leaves to proceed. Here we show a unique role for AS1 in establishing the positions of the sepal and petal abscission zones in Arabidopsis flowers. Results In as1 mutant flowers, the sepal abscission zones are displaced into inverted V-shaped positions, leaving behind triangular stubs of tissue when the organs abscise. Movement of the petal abscission zones is also apparent. Abscission of the medial sepals is delayed in as1 flowers; loss of chlorophyll in the senescing sepals contrasts with proximal zones that remain green. AS1 has previously been shown to restrict expression of the KNOX gene, BREVIPEDICELLUS (BP), from the sepals. We show here that loss of BP activity in as1 flowers is sufficient to restore the positions of the sepal and petal abscission zones, the sepal-receptacle boundary of the medial sepals and the timing of their abscission. Conclusions Our results indicate that AS1 activity is critical for the proper placement of the floral organ abscission zones, and influences the timing of organ shedding. PMID:25038814

  2. Many to flower, few to fruit: the reproductive biology of Hamamelis virginiana (Hamamelidaceae).

    PubMed

    Anderson, Gregory J; Hill, James D

    2002-01-01

    Hamamelis virginiana flowers from late September to late November. In 1977, we began studying the reproductive biology of this eastern North American arborescent shrub by examining floral phenology and rewards, pollen-ovule ratios, breeding system, pollination, pollinator and resource limitation, and seed dispersal. The homogamous, self-incompatible flowers emit a faint odor, bear nectar with sucrose ratios typical of bee- and fly-pollinated flowers, and produce abundant sticky pollen. Flowers were visited infrequently by insects representing six orders. Flies were the most common floral visitors, specifically members of the genus Bradysia, but small bees also carried high percentages of Hamamelis pollen. Despite high pollen/ovule ratios (11 445 grains/ovule), bees and flies are likely pollinators, as experiments indicate wind pollination is less likely. Pollen quantity and resource availability did not appear to limit reproductive output, but pollen quality did. Tests of >40 000 flowers showed natural fruit set to be <1%. The flowering time, breeding system, and clumped distribution of plants, likely due in part to limited seed dispersal, combine to yield this remarkably low fruit set. Because all other species of Hamamelis flower from late winter to early summer, it may be that H. virginiana evolved a fall flowering phenology to avoid competition for pollinators with the closely related H. vernalis.

  3. Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat.

    PubMed

    Nguyen, Anh T; Iehisa, Julio C M; Mizuno, Nobuyuki; Nitta, Miyuki; Nasuda, Shuhei; Takumi, Shigeo

    2013-12-01

    Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5' upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times.

  4. Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat

    PubMed Central

    Nguyen, Anh T.; Iehisa, Julio C. M.; Mizuno, Nobuyuki; Nitta, Miyuki; Nasuda, Shuhei; Takumi, Shigeo

    2013-01-01

    Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5′ upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times. PMID:24399909

  5. Red-purple flower color and delphinidin-type pigments in the flowers of Pueraria lobata (Leguminosae).

    PubMed

    Tatsuzawa, Fumi; Tanikawa, Natsu; Nakayama, Masayoshi

    2017-05-01

    A previously undescribed acylated anthocyanin was extracted from the red-purple flowers of Pueraria lobata with 5% HOAc-H 2 O, and determined to be petunidin 3-O-(β-glucopyranoside)-5-O-[6-O-(malonyl)-β-glucopyranoside], by chemical and spectroscopic methods. In addition, two known acylated anthocyanins, delphinidin 3-O-(β-glucopyranoside)-5-O-[6-O-(malonyl)-β-glucopyranoside] and malvidin 3-O-(β-glucopyranoside)-5-O-[6-O-(malonyl)-β-glucopyranoside] were identified. Delphinidin 3,5-di-glucoside, petunidin 3,5-di-glucoside, and malvidin 3,5-di-glucoside, have been known as major components of P. lobata in the former study. However, malonyl esters amounts were detected over 10 times compared with non-malonyl esters amounts. In those anthocyanins the most abundant anthocyanin was petunidin 3-O-(β-glucopyranoside)-5-O-[6-O-(malonyl)-β-glucopyranoside] in total flowers. On the visible absorption spectral curve of fresh red-purple petals, one characteristic absorption maximum was observed at 520 nm, which is similar to those of flowers containing pelargonidin derivatives. In contrast, the absorption spectral curve of old violet petals was observed at 500(sh), 536, 564(sh), and 613(sh) nm, which are similar to those of violet flowers containing delphinidin-type pigments. Pressed juices of both fresh red-purple petals and old violet petals had pH5.2 and 5.5 respectively, and had the same flavonoid constitution. Crude fresh red-purple petal pigments extracted by pH 2.2 and pH 5.2 buffers exhibited the same color and spectral curves as fresh red-purple petals and old violet petals, respectively. Moreover, in a cross-TLC experiment of crude extracted pigments, red-purple color was exhibited by the anthocyanin region and the crossed region of anthocyanins and isoflavone. Thus, it may be assumed that the unusually low pH in the vacuole of fresh petals plays an important role to form red-purple flower color against weak acidic pH in the vacuole of old violet P

  6. Flowering pathway is regulated by bulb size in Lilium longiflorum (Easter lily).

    PubMed

    Lazare, S; Zaccai, M

    2016-07-01

    Lilium longiflorum (Easter lily) vegetative propagation occurs through production of underground bulbs containing apical and axillary meristems. In addition, sexual reproduction is achieved by flowering of elongated shoots above the bulb. It is generally accepted that L. longiflorum has an obligatory requirement for vernalisation and that long day (LD) regime hastens flowering. However, the effect of bulb size and origin, with respect to axillary or apical meristems on flowering, as well as the interactions between these meristems are largely unknown. The aim of this study was to explore the effect of bulb size, vernalisation and photoperiod on L. longiflorum flowering. To this end, we applied vernalisation and photoperiod treatments to the different bulb sizes and used a system of constant ambient temperature of 25 °C, above vernalisation spectrum, to avoid cold-dependent floral induction during plant growth. Vernalisation and LD hasten flowering in all bulbs. Large, non-vernalised bulbs invariably remained at a vegetative stage. However, small non-vernalised bulbs flowered under LD conditions. These results demonstrate for the first time that cold exposure is not an obligatory prerequisite for L. longiflorum flowering, and that an alternative flowering pathway can bypass vernalisation in small bulbs. We suggest that apical dominance interactions determine the distinct flowering pathways of the apical and axillary meristems. Similar floral induction is achieved in propagated bulblets from scaling. These innovative findings in the field of geophyte floral induction represent valuable applicative knowledge for lily production. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.

    PubMed

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2016-02-01

    The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Evolution of flowering strategies in Oenothera glazioviana: an integral projection model approach.

    PubMed Central

    Rees, Mark; Rose, Karen E

    2002-01-01

    The timing of reproduction is a key determinant of fitness. Here, we develop parameterized integral projection models of size-related flowering for the monocarpic perennial Oenothera glazioviana and use these to predict the evolutionarily stable strategy (ESS) for flowering. For the most part there is excellent agreement between the model predictions and the results of quantitative field studies. However, the model predicts a much steeper relationship between plant size and the probability of flowering than observed in the field, indicating selection for a 'threshold size' flowering function. Elasticity and sensitivity analysis of population growth rate lambda and net reproductive rate R(0) are used to identify the critical traits that determine fitness and control the ESS for flowering. Using the fitted model we calculate the fitness landscape for invading genotypes and show that this is characterized by a ridge of approximately equal fitness. The implications of these results for the maintenance of genetic variation are discussed. PMID:12137582

  9. Evolution of flowering strategies in Oenothera glazioviana: an integral projection model approach.

    PubMed

    Rees, Mark; Rose, Karen E

    2002-07-22

    The timing of reproduction is a key determinant of fitness. Here, we develop parameterized integral projection models of size-related flowering for the monocarpic perennial Oenothera glazioviana and use these to predict the evolutionarily stable strategy (ESS) for flowering. For the most part there is excellent agreement between the model predictions and the results of quantitative field studies. However, the model predicts a much steeper relationship between plant size and the probability of flowering than observed in the field, indicating selection for a 'threshold size' flowering function. Elasticity and sensitivity analysis of population growth rate lambda and net reproductive rate R(0) are used to identify the critical traits that determine fitness and control the ESS for flowering. Using the fitted model we calculate the fitness landscape for invading genotypes and show that this is characterized by a ridge of approximately equal fitness. The implications of these results for the maintenance of genetic variation are discussed.

  10. Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants.

    PubMed

    Srivastava, Suchi; Pandey, Richa; Kumar, Sushil; Nautiyal, Chandra Shekhar

    2014-11-01

    Several plants of Catharanthus roseus cv 'leafless inflorescence (lli)' showing phenotype of phytoplasma infection were observed for symptoms of early flowering, virescence, phyllody, and apical clustering of branches. Symptomatic plants were studied for the presence/absence and identity of phytoplasma in flowers. Transcription levels of several genes involved in plants' metabolism and development, accumulation of pharmaceutically important terpenoid indole alkaloids in flowers and leaves and variation in the root-associated microbial flora were examined. The expression profile of 12 genes studied was semi-quantitatively similar in control leaves and phytoplasma-infected leaves and flowers, in agreement with the symptoms of virescence and phyllody in phytoplasma-infected plants. The flowers of phytoplasma-infected plants possessed the TIA profile of leaves and accumulated catharanthine, vindoline, and vincristine and vinblastine in higher concentrations than leaves. The roots of the infected plants displayed lower microbial diversity than those of normal plants. In conclusion, phytoplasma affected the biology of C. roseus lli plants multifariously, it reduced the differences between the metabolite accumulates of the leaves and flowers and restrict the microbial diversity of rhizosphere.

  11. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time.

    PubMed

    Hwang, Yoon-Hyung; Kim, Soon-Kap; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-04-01

    Rice Os NF - YB and Os NF - YC complement the late flowering phenotype of Arabidopsis nf - yb double and nf - yc triple mutants, respectively. In addition, OsNF-YB and OsNF-YC interact with AtNF-YC and AtNF-YB, respectively. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein-protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  12. Pesticide exposure and subjective symptoms of cut-flower farmers

    PubMed Central

    Nagami, Hiroshi; Suenaga, Takajiro; Nakazaki, Mineko

    2017-01-01

    Sales of cut-flowers depend much on the outer appearance of the flowers. They are not intended to be used as foodstuffs; thus, pesticides are used more liberally for cut flower growing than for other agricultural products. Flower production is often carried out in greenhouses; therefore, pesticide exposure seems to reach not only the person spraying the pesticides, but also the non-spraying workers as well. In 2009, a special research project on pesticide poisoning, affiliated with the Japanese Association of Rural Medicine, developed a study that focused on cut-flower farmers’ exposure to pesticide, subsequent adverse symptoms experienced, and treatment modalities to relieve pesticide-related symptoms. In this group of farmers, the pesticide sprayers were almost entirely male, while the females did not do any spraying. The organophosphate metabolite level in the urine of the males was higher than that of the females. However, in the female group, a positive relation was found between average working times in the greenhouse, and urine concentration of dialkylphosphates. In 2 males of this group, the level of dimethylphosphate was detected at 1,000 times the median level. Their butyrylcholinesterase activity levels on the day of testing had declined to 64%, 72% of their average level of the proximate 4 years, respectively. Communication with these subjects regarding pesticide exposure and methods of prevention appeared to be an effective approach for reducing symptom severity. Among soil fumigants, chloropicrin and 1,3-dichloropropene were most often used. Difficulty breathing was one of the subjective symptoms associated with chloropicrin, as well as watery eyes, coughing, and runny nose. These symptoms were effectively suppressed by the preventative practice of wearing gas masks and goggles while using soil fumigants. It would be beneficial to strongly encourage use of suitable protective gear among farmers exposed to soil fumigants. PMID:28593011

  13. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).

    PubMed

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.

  14. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.)

    PubMed Central

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided. PMID:27077738

  15. A flower image retrieval method based on ROI feature.

    PubMed

    Hong, An-Xiang; Chen, Gang; Li, Jun-Li; Chi, Zhe-Ru; Zhang, Dan

    2004-07-01

    Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).

  16. The Overlooked Biodiversity of Flower-Visiting Invertebrates

    PubMed Central

    Wardhaugh, Carl W.; Stork, Nigel E.; Edwards, Will; Grimbacher, Peter S.

    2012-01-01

    Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the ‘diversity jigsaw puzzle’ than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness. PMID

  17. The overlooked biodiversity of flower-visiting invertebrates.

    PubMed

    Wardhaugh, Carl W; Stork, Nigel E; Edwards, Will; Grimbacher, Peter S

    2012-01-01

    Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the 'diversity jigsaw puzzle' than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness.

  18. Carbohydrate Status of Tulip Bulbs during Cold-Induced Flower Stalk Elongation and Flowering.

    PubMed Central

    Lambrechts, H.; Rook, F.; Kolloffel, C.

    1994-01-01

    The effect of a cold treatment on the carbohydrate status of the scales and flower stalk of Tulipa gesneriana L. cv Apeldoorn bulbs during growth after planting was studied and compared with bulbs not given cold treatment. Bulbs were stored dry for 12 weeks at 5[deg]C (precooled) or 17[deg]C (noncooled). Only the 5[deg]C treatment led to rapid flower stalk elongation and flowering following planting at higher temperatures. Precooling enhanced mobilization of starch, fructans, and sucrose in the scales. The cold-stimulated starch breakdown was initially accompanied by increased [alpha]-amylase activity per scale. In noncooled bulbs, [alpha]-amylase activity slightly decreased or remained more or less constant. Cold-induced flower stalk elongation was partially accompanied by a decrease in the sucrose content and an increase in the glucose content and invertase activity per g dry weight. The starch content in internodes initially decreased and subsequently increased; [alpha]-amylase activity per g dry weight of the lowermost internode showed a peak pattern during starch breakdown and increased thereafter. The internodes of noncooled bulbs, on the contrary, accumulated sucrose. Their glucose content and invertase activity per g dry weight remained low. Starch breakdown was not found and [alpha]-amylase activity per g dry weight of the lowermost internode remained at a low level. Precooling of tulip bulbs thus favors reserve mobilization in the scales and flower stalk and glucose accumulation in the elongating internodes. PMID:12232100

  19. Response of yellow flowering magnolia varieties to powdery mildew, 2015

    USDA-ARS?s Scientific Manuscript database

    Yellow flowering varieties of Magnolia spp. hybrids were planted in April 2008 in a field plot with Waynesboro loam soil at the Otis L. Floyd Nursery Research Center in McMinnville, TN. Severity of powdery mildew was determined on 14 Jul, 21 Aug and 15 Oct using a scale of 0-100% foliage affected. ...

  20. Sepal phenolic profile during Helleborus niger flower development.

    PubMed

    Schmitzer, Valentina; Mikulic-Petkovsek, Maja; Stampar, Franci

    2013-11-01

    Morphological changes and phenolic patterns of developing hellebore sepals and the effects of pistil removal on these parameters were studied by comparing six flower stages of Helleborus niger. Color changes were evaluated colorimetrically, chlorophyll content was measured spectrophotometrically, and anthocyanins and flavonols were identified and quantified with HPLC-MS. Pistil removal not only altered the morphological development of hellebore flower resulting in smaller flower and significant color changes but also lead to several biochemical modifications. Five cyanidin glycosides have been identified from the group of anthocyanins in hellebore. Individual and total anthocyanin content increased from bud to subsequent developmental stages. Moreover, significantly higher content levels of individual and total anthocyanins have been measured in non-pollinated flower sepals compared to sepals of pollinated flowers. From the group of flavonols eight quercetin and kaempferol compounds have been quantified in hellebore sepals. Flavonol content significantly decreased during flower development with lowest levels recorded in sepals of non-pollinated and senescent pollinated hellebore flowers. Sepals of pollinated flowers contained highest levels of chlorophyll and significantly lower amounts of chlorophyll were measured in non-pollinated flowers and in sepals of senescent stage. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Functional characterization of a putative glycine max ELF4 transgenic aradopsis and its role during flowering control

    USDA-ARS?s Scientific Manuscript database

    Flowering is an important trait in major crops like soybean due to its direct relation to grain production. The circadian clock mediates the perception of seasonal changes in day length and temperature to modulate flowering time. The circadian clock gene EARLY FLOWERING 4 (ELF4) was identified in Ar...

  2. Mycorrhizal colonization does not affect tolerance to defoliation of an annual herb in different light availability and soil fertility treatments but increases flower size in light-rich environments.

    PubMed

    Aguilar-Chama, Ana; Guevara, Roger

    2012-01-01

    Heterogeneous distribution of resources in most plant populations results in a mosaic of plant physiological responses tending to maximize plant fitness. This includes plant responses to trophic interactions such as herbivory and mycorrhizal symbiosis which are concurrent in most plants. We explored fitness costs of 50% manual defoliation and mycorrhizal inoculation in Datura stramonium at different light availability and soil fertility environments in a greenhouse experiment. Overall, we showed that non-inoculated and mycorrhiza-inoculated plants did not suffer from 50% manual defoliation in all the tested combinations of light availability and soil fertility treatments, while soil nutrients and light availability predominately affected plant responses to the mycorrhizal inoculation. Fifty percent defoliation had a direct negative effect on reproductive traits whereas mycorrhiza-inoculated plants produced larger flowers than non-inoculated plants when light was not a limiting factor. Although D. stramonium is a facultative selfing species, other investigations had shown clear advantages of cross-pollination in this species; therefore, the effects of mycorrhizal inoculation on flower size observed in this study open new lines of inquiry for our understanding of plant responses to trophic interactions. Also in this study, we detected shifts in the limiting resources affecting plant responses to trophic interactions.

  3. Expression Profiling of FLOWERING LOCUS T-Like Gene in Alternate Bearing ‘Hass' Avocado Trees Suggests a Role for PaFT in Avocado Flower Induction

    PubMed Central

    Ziv, Dafna; Zviran, Tali; Zezak, Oshrat; Samach, Alon; Irihimovitch, Vered

    2014-01-01

    In many perennials, heavy fruit load on a shoot decreases the ability of the plant to undergo floral induction in the following spring, resulting in a pattern of crop production known as alternate bearing. Here, we studied the effects of fruit load on floral determination in ‘Hass' avocado (Persea americana). De-fruiting experiments initially confirmed the negative effects of fruit load on return to flowering. Next, we isolated a FLOWERING LOCUS T-like gene, PaFT, hypothesized to act as a phloem-mobile florigen signal and examined its expression profile in shoot tissues of on (fully loaded) and off (fruit-lacking) trees. Expression analyses revealed a strong peak in PaFT transcript levels in leaves of off trees from the end of October through November, followed by a return to starting levels. Moreover and concomitant with inflorescence development, only off buds displayed up-regulation of the floral identity transcripts PaAP1 and PaLFY, with significant variation being detected from October and November, respectively. Furthermore, a parallel microscopic study of off apical buds revealed the presence of secondary inflorescence axis structures that only appeared towards the end of November. Finally, ectopic expression of PaFT in Arabidopsis resulted in early flowering transition. Together, our data suggests a link between increased PaFT expression observed during late autumn and avocado flower induction. Furthermore, our results also imply that, as in the case of other crop trees, fruit-load might affect flowering by repressing the expression of PaFT in the leaves. Possible mechanism(s) by which fruit crop might repress PaFT expression, are discussed. PMID:25330324

  4. Flowers from Kalanchoe pinnata are a rich source of T cell-suppressive flavonoids.

    PubMed

    Coutinho, Marcela A S; Muzitano, Michelle F; Cruz, Elaine A; Bergonzi, Maria C; Kaiser, Carlos R; Tinoco, Luzineide W; Bilia, Anna R; Vincieric, Franco F; Rossi-Bergmann, Bartira; Costa, Sônia S

    2012-02-01

    The chemical composition and immunosuppressive potential of the flowers from Kalanchoe pinnata (Crassulaceae) were investigated. We found that the aqueous flower extract was more active than the leaf extract in inhibiting murine T cell mitogenesis in vitro. Flavonoids isolated from the flower extract were identified and quantitated based on NMR and HPLC-DAD-MS analysis, respectively. Along with quercetin, four quercetin glycosyl conjugates were obtained, including quercetin 3-O-beta-D-glucuronopyranoside and quercetin 3-O-beta-D-glucopyranoside, which are described for the first time in K. pinnata. All flavonoids inhibited murine T cell mitogenesis and IL-2 and IL-4 production without cell toxicity. This is the first report on the pharmacological activity of flowers of a Kalanchoe species, which are not used for curative purposes. Our findings show that K. pinnata flowers are a rich source of T-suppressive flavonoids that may be therapeutically useful against inflammatory diseases.

  5. Pistil Starch Reserves at Anthesis Correlate with Final Flower Fate in Avocado (Persea americana)

    PubMed Central

    Alcaraz, María Librada; Hormaza, José Ignacio; Rodrigo, Javier

    2013-01-01

    A common observation in different plant species is a massive abscission of flowers and fruitlets even after adequate pollination, but little is known as to the reason for this drop. Previous research has shown the importance of nutritive reserves accumulated in the flower on fertilization success and initial fruit development but direct evidence has been elusive. Avocado (Persea americana) is an extreme case of a species with a very low fruit to flower ratio. In this work, the implications of starch content in the avocado flower on the subsequent fruit set are explored. Firstly, starch content in individual ovaries was analysed from two populations of flowers with a different fruit set capacity showing that the flowers from the population that resulted in a higher percentage of fruit set contained significantly more starch. Secondly, in a different set of flowers, the style of each flower was excised one day after pollination, once the pollen tubes had reached the base of the style, and individually fixed for starch content analysis under the microscope once the fate of its corresponding ovary (that remained in the tree) was known. A high variability in starch content in the style was found among flowers, with some flowers having starch content up to 1,000 times higher than others, and the flowers that successfully developed into fruits presented significantly higher starch content in the style at anthesis than those that abscised. The relationship between starch content in the ovary and the capacity of set of the flower together with the correlation found between the starch content in the style and the fate of the ovary support the hypothesis that the carbohydrate reserves accumulated in the flower at anthesis are related to subsequent abscission or retention of the developing fruit. PMID:24167627

  6. Pistil starch reserves at anthesis correlate with final flower fate in avocado (Persea americana).

    PubMed

    Alcaraz, María Librada; Hormaza, José Ignacio; Rodrigo, Javier

    2013-01-01

    A common observation in different plant species is a massive abscission of flowers and fruitlets even after adequate pollination, but little is known as to the reason for this drop. Previous research has shown the importance of nutritive reserves accumulated in the flower on fertilization success and initial fruit development but direct evidence has been elusive. Avocado (Persea americana) is an extreme case of a species with a very low fruit to flower ratio. In this work, the implications of starch content in the avocado flower on the subsequent fruit set are explored. Firstly, starch content in individual ovaries was analysed from two populations of flowers with a different fruit set capacity showing that the flowers from the population that resulted in a higher percentage of fruit set contained significantly more starch. Secondly, in a different set of flowers, the style of each flower was excised one day after pollination, once the pollen tubes had reached the base of the style, and individually fixed for starch content analysis under the microscope once the fate of its corresponding ovary (that remained in the tree) was known. A high variability in starch content in the style was found among flowers, with some flowers having starch content up to 1,000 times higher than others, and the flowers that successfully developed into fruits presented significantly higher starch content in the style at anthesis than those that abscised. The relationship between starch content in the ovary and the capacity of set of the flower together with the correlation found between the starch content in the style and the fate of the ovary support the hypothesis that the carbohydrate reserves accumulated in the flower at anthesis are related to subsequent abscission or retention of the developing fruit.

  7. Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR.

    PubMed

    Happyana, Nizar; Kayser, Oliver

    2016-08-01

    Cannabis sativa trichomes are glandular structures predominantly responsible for the biosynthesis of cannabinoids, the biologically active compounds unique to this plant. To the best of our knowledge, most metabolomic works on C. sativa that have been reported previously focused their investigations on the flowers and leaves of this plant. In this study, (1)H NMR-based metabolomics and real-time PCR analysis were applied for monitoring the metabolite profiles of C. sativa trichomes, variety Bediol, during the last 4 weeks of the flowering period. Partial least squares discriminant analysis models successfully classified metabolites of the trichomes based on the harvest time. Δ (9)-Tetrahydrocannabinolic acid (1) and cannabidiolic acid (2) constituted the vital differential components of the organic preparations, while asparagine, glutamine, fructose, and glucose proved to be their water-extracted counterparts. According to RT-PCR analysis, gene expression levels of olivetol synthase and olivetolic acid cyclase influenced the accumulation of cannabinoids in the Cannabis trichomes during the monitoring time. Moreover, quantitative (1)H NMR and RT-PCR analysis of the Cannabis trichomes suggested that the gene regulation of cannabinoid biosynthesis in the C. sativa variety Bediol is unique when compared with other C. sativa varieties. Georg Thieme Verlag KG Stuttgart · New York.

  8. Effect of Ethylene on Flower Abscission: a Survey

    PubMed Central

    VAN DOORN, WOUTER G.

    2002-01-01

    The effect of ethylene on flower abscission was investigated in monocotyledons and eudicotyledons, in about 300 species from 50 families. In all species studied except Cymbidium, flower abscission was highly sensitive to ethylene. Flower fall was not consistent among the species in any family studied. It also showed no relationship with petal senescence or abscission, nor with petal colour changes or flower closure. Results suggest that flower abscission is generally mediated by endogenous ethylene, but that some exceptional ethylene‐insensitive abscission occurs in the Orchidaceae. PMID:12102524

  9. Identification of microRNAs differentially expressed involved in male flower development.

    PubMed

    Wang, Zhengjia; Huang, Jianqin; Sun, Zhichao; Zheng, Bingsong

    2015-03-01

    Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.

  10. Pollinator-mediated competition between two co-flowering Neotropical mangrove species, Avicennia germinans (Avicenniaceae) and Laguncularia racemosa (Combretaceae)

    PubMed Central

    Landry, C. L.

    2013-01-01

    Background and Aims Three ecological relationships are possible between co-flowering plant species; they may have no effect on one another, compete for pollination services, or facilitate one another by attracting more pollinators to the area. In this study, the pollinator-mediated relationship between two mangrove species with overlapping flowering phenologies was investigated in one south Florida community. Methods Pollinator observations were recorded between 0900 h and 1700 h during June and July, 2008–2010. Insect visitation rates to Avicennia germinans and Laguncularia racemosa were estimated from 522 observation intervals of 10 min during three phenological time periods, when each species flowered alone and when they co-flowered. The number of timed intervals varied between years due to differences in flowering phenology, from four to 42 for A. germinans and from nine to 94 for L. racemosa. Key Results Avicennia germinans began flowering first in all years, and insect visitation rates were significantly greater to A. germinans than to L. racemosa (P<0·001). Flowers of both species received visits from bees, wasps, flies and butterflies; Apis mellifera was the most common floral visitor to both species. Visitation rates to L. racemosa increased significantly when A. germinans stopped flowering (P<0·001). However, there was no significant change in visitation rates to A. germinans after L. racemosa began flowering (P=0·628). Conclusions When they co-flowered, A. germinans outcompeted L. racemosa for pollinators. Laguncularia racemosa hermaphrodites self-pollinate autogamously when not visited by insects, so reduced visitation to L. racemosa flowers reduced the frequency of outcrossing and increased the frequency of selfing. Reduced outcrossing limits male reproductive success in this androdioecious species, which could lead to changes in the breeding system. The degree of overlap in flowering phenologies varied between years, so the effect on the mating

  11. Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population.

    PubMed

    Allard, Alix; Bink, Marco C A M; Martinez, Sébastien; Kelner, Jean-Jacques; Legave, Jean-Michel; di Guardo, Mario; Di Pierro, Erica A; Laurens, François; van de Weg, Eric W; Costes, Evelyne

    2016-04-01

    In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6-21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. For she that hath, to her shall be given…Implications of flowering in Anemone nemorosa L.

    PubMed

    Pontoppidan, M-B; Petersen, P M; Philipp, M

    2011-11-01

    We looked for life-history trade-offs between flowering, vegetative growth and somatic maintenance in the common woodland herb Anemone nemorosa. A. nemorosa forms a horizontal rhizome system consisting of previously formed annual segments and terminated by a flowering or non-flowering shoot. Resources acquired by the aboveground parts are used for flowering, seed production, storage and growth of the annual segments. Resources stored in the rhizome during the growing period are used for preformation of buds, somatic maintenance between two growing periods and development of aboveground parts in the following spring. We hypothesised that the decision to invest in flower buds depends on the amount of resources stored in the recently formed annual segment. We also hypothesised a trade-off between flowering and segment growth and, finally, as a consequence, we expected individual rhizomes to alternate between the flowering and the non-flowering state. We found that segments producing flower buds were significantly longer than non-flowering segments, indicating that resource level influences the function of the preformed buds. Contrary to our expectations, we found flowering rhizomes produced longer annual segments than non-flowering rhizomes. We suggest the larger leaf area of flowering rhizomes and occasional abortion of flowers or seeds as possible mechanisms behind this pattern. Our study shows that even though the decision to produce a flower bud is taken in another time-frame than that in which the actual flowering and fruiting takes place, an ostensibly inexpedient decision is changed to a neutral or even an advantageous incident. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Alternate Bearing in Citrus: Changes in the Expression of Flowering Control Genes and in Global Gene Expression in ON- versus OFF-Crop Trees

    PubMed Central

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Zemach, Hanita; Weissberg, Mira; Ophir, Ron; Blumwald, Eduardo; Sadka, Avi

    2012-01-01

    Alternate bearing (AB) is the process in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light yield (OFF crop) the next. Heavy yield usually reduces flowering intensity the following year. Despite its agricultural importance, how the developing crop influences the following year's return bloom and yield is not fully understood. It might be assumed that an ‘AB signal’ is generated in the fruit, or in another organ that senses fruit presence, and moves into the bud to determine its fate—flowering or vegetative growth. The bud then responds to fruit presence by altering regulatory and metabolic pathways. Determining these pathways, and when they are altered, might indicate the nature of this putative AB signal. We studied bud morphology, the expression of flowering control genes, and global gene expression in ON- and OFF-crop buds. In May, shortly after flowering and fruit set, OFF-crop buds were already significantly longer than ON-crop buds. The number of differentially expressed genes was higher in May than at the other tested time points. Processes differentially expressed between ON- and OFF-crop trees included key metabolic and regulatory pathways, such as photosynthesis and secondary metabolism. The expression of genes of trehalose metabolism and flavonoid metabolism was validated by nCounter technology, and the latter was confirmed by metabolomic analysis. Among genes induced in OFF-crop trees was one homologous to SQUAMOSA PROMOTER BINDING-LIKE (SPL), which controls juvenile-to-adult and annual phase transitions, regulated by miR156. The expression pattern of SPL-like, miR156 and other flowering control genes suggested that fruit load affects bud fate, and therefore development and metabolism, a relatively long time before the flowering induction period. Results shed light on some of the metabolic and regulatory processes that are altered in ON and OFF buds. PMID:23071667

  14. Alternate bearing in citrus: changes in the expression of flowering control genes and in global gene expression in ON- versus OFF-crop trees.

    PubMed

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Zemach, Hanita; Weissberg, Mira; Ophir, Ron; Blumwald, Eduardo; Sadka, Avi

    2012-01-01

    Alternate bearing (AB) is the process in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light yield (OFF crop) the next. Heavy yield usually reduces flowering intensity the following year. Despite its agricultural importance, how the developing crop influences the following year's return bloom and yield is not fully understood. It might be assumed that an 'AB signal' is generated in the fruit, or in another organ that senses fruit presence, and moves into the bud to determine its fate-flowering or vegetative growth. The bud then responds to fruit presence by altering regulatory and metabolic pathways. Determining these pathways, and when they are altered, might indicate the nature of this putative AB signal. We studied bud morphology, the expression of flowering control genes, and global gene expression in ON- and OFF-crop buds. In May, shortly after flowering and fruit set, OFF-crop buds were already significantly longer than ON-crop buds. The number of differentially expressed genes was higher in May than at the other tested time points. Processes differentially expressed between ON- and OFF-crop trees included key metabolic and regulatory pathways, such as photosynthesis and secondary metabolism. The expression of genes of trehalose metabolism and flavonoid metabolism was validated by nCounter technology, and the latter was confirmed by metabolomic analysis. Among genes induced in OFF-crop trees was one homologous to SQUAMOSA PROMOTER BINDING-LIKE (SPL), which controls juvenile-to-adult and annual phase transitions, regulated by miR156. The expression pattern of SPL-like, miR156 and other flowering control genes suggested that fruit load affects bud fate, and therefore development and metabolism, a relatively long time before the flowering induction period. Results shed light on some of the metabolic and regulatory processes that are altered in ON and OFF buds.

  15. Accelerated Growth and Initial Flowering of S2 Pinus Banksiana Selected for Precocious Flowering

    Treesearch

    Hyun Kang; Robert A. Cecich

    1999-01-01

    An accelerated growth protocol was applied in a greenhouse to hasten flowering in 13 S2 lines of jack pine (Pinus banksiana Lamb.) selected for precocious flowering. Seeds were sown on October 1. After the artificial "summer, fall, winter, and spring," seedlings were placed outdoors between June 20 and November 1. Ovulate strobili were...

  16. Molecular mechanisms underlying origin and diversification of the angiosperm flower.

    PubMed

    Theissen, Guenter; Melzer, Rainer

    2007-09-01

    Understanding the mode and mechanisms of the evolution of the angiosperm flower is a long-standing and central problem of evolutionary biology and botany. It has essentially remained unsolved, however. In contrast, considerable progress has recently been made in our understanding of the genetic basis of flower development in some extant model species. The knowledge that accumulated this way has been pulled together in two major hypotheses, termed the 'ABC model' and the 'floral quartet model'. These models explain how the identity of the different types of floral organs is specified during flower development by homeotic selector genes encoding transcription factors. We intend to explain how the 'ABC model' and the 'floral quartet model' are now guiding investigations that help to understand the origin and diversification of the angiosperm flower. Investigation of orthologues of class B and class C floral homeotic genes in gymnosperms suggest that bisexuality was one of the first innovations during the origin of the flower. The transition from dimer to tetramer formation of floral homeotic proteins after establishment of class E proteins may have increased cooperativity of DNA binding of the transcription factors controlling reproductive growth. That way, we hypothesize, better 'developmental switches' originated that facilitated the early evolution of the flower. Expression studies of ABC genes in basally diverging angiosperm lineages, monocots and basal eudicots suggest that the 'classical' ABC system known from core eudicots originated from a more fuzzy system with fading borders of gene expression and gradual transitions in organ identity, by sharpening of ABC gene expression domains and organ borders. Shifting boundaries of ABC gene expression may have contributed to the diversification of the angiosperm flower many times independently, as may have changes in interactions between ABC genes and their target genes.

  17. Molecular Mechanisms Underlying Origin and Diversification of the Angiosperm Flower

    PubMed Central

    Theissen, Guenter; Melzer, Rainer

    2007-01-01

    Background Understanding the mode and mechanisms of the evolution of the angiosperm flower is a long-standing and central problem of evolutionary biology and botany. It has essentially remained unsolved, however. In contrast, considerable progress has recently been made in our understanding of the genetic basis of flower development in some extant model species. The knowledge that accumulated this way has been pulled together in two major hypotheses, termed the ‘ABC model’ and the ‘floral quartet model’. These models explain how the identity of the different types of floral organs is specified during flower development by homeotic selector genes encoding transcription factors. Scope We intend to explain how the ‘ABC model’ and the ‘floral quartet model’ are now guiding investigations that help to understand the origin and diversification of the angiosperm flower. Conclusions Investigation of orthologues of class B and class C floral homeotic genes in gymnosperms suggest that bisexuality was one of the first innovations during the origin of the flower. The transition from dimer to tetramer formation of floral homeotic proteins after establishment of class E proteins may have increased cooperativity of DNA binding of the transcription factors controlling reproductive growth. That way, we hypothesize, better ‘developmental switches’ originated that facilitated the early evolution of the flower. Expression studies of ABC genes in basally diverging angiosperm lineages, monocots and basal eudicots suggest that the ‘classical’ ABC system known from core eudicots originated from a more fuzzy system with fading borders of gene expression and gradual transitions in organ identity, by sharpening of ABC gene expression domains and organ borders. Shifting boundaries of ABC gene expression may have contributed to the diversification of the angiosperm flower many times independently, as may have changes in interactions between ABC genes and their target

  18. Synthesis, characterization and photocatalytic performance of PbS/Ni2P flowers

    NASA Astrophysics Data System (ADS)

    Liu, Shuling; Han, Lefang; Liu, Hui

    2016-11-01

    Flower-like PbS/Ni2P composites were synthesized by a facile two-step chemical route. The morphology and structure of the resulting composites were investigated by SEM and TEM images and XRD spectra, respectively. The results showed that the as-obtained composites were composed of the cubic PbS flowers and hexagonal Ni2P nanoparticles, and Ni2P nanoparticles coated on the surfaces of flower-like PbS microstructure. It was found that changing the molar ratio to 3:1, flower-like PbS/Ni2P composites have been successfully synthesized by using cationic cetyltrimethylammonium bromide(CTAB) and anionic sodium dodecyl sulfate (SDS) as template. Furthermore, using methylene blue(MB) as a model organic pollutant, the photocatalytic degradation experiments indicated that the as-prepared composites showed enhanced photocatalytic degradation activity for methylene blue(75%) which is as higher as that of the only flower-like PbS (16.6%) and only Ni2P nanoparticles (44.8%) at the same time. This work may be expected to find its potential application in water pollution treatment.

  19. Spring Flowers: Harvest of a Sensitive Eye

    ERIC Educational Resources Information Center

    Clark, Eloise; Levin, Ted

    1978-01-01

    Defining and describing a number of spring flowers, this article includes illustrations and explanations that demonstrate "art and science are born of the same parents". The flowers discussed are skunk cabbage, bellwort, spring beauty, jack-in-the-pulpit, Solomon's seal, wild geranium, showy orchids, moccasin flower, bluets, apple, and Indian…

  20. Summer Flowering Cover Crops Support Wild Bees in Vineyards.

    PubMed

    Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A

    2018-02-08

    Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Flowering in Xanthium strumarium: INITIATION AND DEVELOPMENT OF FEMALE INFLORESCENCE AND SEX EXPRESSION.

    PubMed

    Leonard, M; Kinet, J M; Bodson, M; Havelange, A; Jacqmard, A; Bernier, G

    1981-06-01

    Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences.Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus.

  2. The Role of Staminate Flowers in the Breeding System of Olea europaea (Oleaceae): an Andromonoecious, Wind‐pollinated Taxon

    PubMed Central

    CUEVAS, JULIÁN; POLITO, VITO S.

    2004-01-01

    • Background and Aims Andromonoecy, as a breeding system, has generated a considerable body of theory in terms of sexual selection, but extended records comparing the performance of pollen grains from staminate versus hermaphrodite flowers are still sparse. The objective in this study was to elucidate the role of staminate flowers in the andromonoecious breeding system of olive (Olea europaea). • Methods To determine the meaning of staminate flowers, an evaluation was made of resource allocation to, and phenology of, staminate and hermaphrodite flowers in the cultivar ‘Mission’, and a comparison was made of the male function between both kinds of flowers. • Key Results Dry weight of hermaphrodite flowers was 19 % greater than dry weight of staminate flowers arising in comparable positions of the panicle. This difference was mainly due to pistil and petal weight; there were no significant differences in stamen weight. There were no significant differences between staminate and hermaphrodite flowers in either amount of pollen per anther, or pollen quality as determined by pollen viability, germinability or ability to fertilize other flowers. There was no significant link between gender and time of anthesis. However, position of the flower within the panicle correlated with time of anthesis and gender. Flowers at the apex and at primary pedicels tended to be hermaphrodite and open earlier, whereas flowers arising in secondary pedicels were mainly staminate and were commonly the last to reach anthesis. • Conclusions It is proposed that the main advantage provided by production of staminate flowers in olive is to enhance male fitness by increasing pollen output at the whole plant level, although a relict function of attracting pollinators cannot be completely discarded. PMID:15037451

  3. Effect of Ppd-1 on the expression of flowering-time genes in vegetative and reproductive growth stages of wheat.

    PubMed

    Kitagawa, Satoshi; Shimada, Sanae; Murai, Koji

    2012-01-01

    The photoperiod sensitivity gene Ppd-1 influences the timing of flowering in temperate cereals such as wheat and barley. The effect of Ppd-1 on the expression of flowering-time genes was assessed by examining the expression levels of the vernalization genes VRN1 and VRN3/WFT and of two CONSTANS-like genes, WCO1 and TaHd1, during vegetative and reproductive growth stages. Two near-isogenic lines (NILs) were used: the first carried a photoperiod-insensitive allele of Ppd-1 (Ppd-1a-NIL), the other, a photoperiod-sensitive allele (Ppd-1b-NIL). We found that the expression pattern of VRN1 was similar in Ppd-1a-NIL and Ppd-1b-NIL plants, suggesting that VRN1 is not regulated by Ppd-1. Under long day conditions, VRN3/WFT showed similar expression patterns in Ppd-1a-NIL and Ppd-1b-NIL plants. However, expression differed greatly under short day conditions: VRN3/WFT expression was detected in Ppd-1a-NIL plants at the 5-leaf stage when they transited from vegetative to reproductive growth; very low expression was present in Ppd-1b-NIL throughout all growth stages. Thus, the Ppd-1b allele acts to down-regulate VRN3/WFT under short day conditions. WCO1 showed high levels of expression at the vegetative stage, which decreased during the phase transition and reproductive growth stages in both Ppd-1a-NIL and Ppd-1b-NIL plants under short day conditions. By contrast to WCO1, TaHd1 was up-regulated during the reproductive stage. The level of TaHd1 expression was much higher in Ppd-1a-NIL than the Ppd-1b-NIL plants, suggesting that the Ppd-1b allele down-regulates TaHd1 under short day conditions. The present study indicates that down-regulation of VRN3/WFT together with TaHd1 is the cause of late flowering in the Ppd-1b-NIL plants under short day conditions.

  4. Ethnobotany, chemical constituents and biological activities of the flowers of Hydnora abyssinica A.Br. (Hydnoraceae).

    PubMed

    Al-Fatimi, M; Ali, N A A; Kilian, N; Franke, K; Arnold, N; Kuhnt, C; Schmidt, J; Lindequist, U

    2016-04-01

    Hydnora abyssinica A.Br. (Hydnoraceae), a holoparasitic herb, is for the first time recorded for Abyan governorate of South Yemen. Flowers of this species were studied for their ethnobotanical, biological and chemical properties for the first time. In South Yemen, they are traditionally used as wild food and to cure stomach diseases, gastric ulcer and cancer. Phytochemical analysis of the extracts showed the presence of terpenes, tannins, phenols, and flavonoids. The volatile components of the air-dried powdered flowers were identified using a static headspace GC/MS analysis as acetic acid, ethyl acetate, sabinene, α-terpinene, (+)-D-limonene and γ-terpinene. These volatile compounds that characterize the odor and taste of the flowers were detected for the first time in a species of the family Hydnoraceae. The flowers were extracted by n-hexane, dichlormethane, ethyl acetate, ethanol, methanol and water. With exception of the water extract all extracts demonstrated activities against Gram-positive bacteria as well as remarkable radical scavenging activities in DPPH assay. Ethyl acetate, methanol and water extracts exhibited good antifungal activities. The cytotoxic activity of the extracts against FL cells, measured in neutral red assay, was only weak (IC50 > 500 μg/mL). The results justify the traditional use of the flowers of Hydnora abyssinica in South Yemen.

  5. Dominus for cut flower production

    USDA-ARS?s Scientific Manuscript database

    Fumigation with methyl bromide was the principal method of soilborne pest control in cut flower production. Many cut flower growers in Florida have ceased production, but those that remain are restricted in the fumigants that they are able to utilize due to proximity to potable water sources and oc...

  6. Teaching Flowers: A Photo Essay

    ERIC Educational Resources Information Center

    Hewson, Federico

    2017-01-01

    "Teaching Flowers" reflects on humanity's deep connections to horticulture by gathering varied thoughts from seminal writers in the field. In addition, this visual article draws attention to labor issues within the U.S. floral industry by documenting the author's exploration of flowers as social sculpture in New York City.

  7. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides

    PubMed Central

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-01-01

    ABSTRACT Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral

  8. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides.

    PubMed

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-03-15

    Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect

  9. Deep roots delay flowering and relax the impact of floral traits and associated pollinators in steppe plants

    PubMed Central

    Berrached, Rachda; Kadik, Leila; Ait Mouheb, Hocine; Prinzing, Andreas

    2017-01-01

    Strong seasonality in abiotic harshness and pollinator availability shape the reproductive success of plants. Plant species can avoid or can tolerate harsh abiotic conditions and can attract different pollinators, but it remains unknown (i) which of these capacities is most important for flowering phenology, (ii) whether tolerance/avoidance of abiotic harshness reinforces or relaxes the phenological differentiation of species attracting different pollinators. We assembled possibly the first functional trait database for a North African steppe covering 104 species. We inferred avoidance of harshness (drought) from dormancy, i.e. annual life-span and seed size. We inferred tolerance or resistance to harshness from small specific leaf area, small stature, deep roots and high dry matter content. We inferred the type of pollinators attracted from floral colour, shape and depth. We found that avoidance traits did not affect flowering phenology, and among tolerance traits only deep roots had an effect by delaying flowering. Flower colour (red or purple), and occasionally flower depth, delayed flowering. Dish, gullet and flag shape accelerated flowering. Interactive effects however were at least as important, inversing the mentioned relationship between floral characters and flowering phenology. Specifically, among drought-tolerant deep-rooted species, flowering phenologies converged among floral types attracting different pollinators, without becoming less variable overall. Direct and interactive effects of root depth and floral traits explained at least 45% of the variance in flowering phenology. Also, conclusions on interactive effects were highly consistent with and without including information on family identity or outliers. Overall, roots and floral syndromes strongly control flowering phenology, while many other traits do not. Surprisingly, floral syndromes and the related pollinators appear to constrain phenology mainly in shallow-rooted, abiotically little

  10. Antioxidant activity and chemical composition of oleoresin from leaves and flowers of Brunfelsia uniflora.

    PubMed

    Jorge, L F; Meniqueti, A B; Silva, R F; Santos, K A; Da Silva, E A; Gonçalves, J E; De Rezende, C M; Colauto, N B; Gazim, Z C; Linde, G A

    2017-08-17

    In this study, the temperature and pressure of supercritical CO 2 extraction were evaluated to obtain oleoresin of Brunfelsia uniflora leaves and flowers. The oleoresin compounds were identified by gas chromatography-mass spectrometry. The antioxidant activity was evaluated by three different methods. The highest oleoresin yields were 3.32% at 40°C and 200 bar for the leaves, and 1.03% at 60°C and 200 bar for the flowers. The main extracted compounds from leaves were phytol varying from 11.95 to 36.42% and α-tocopherol from 15.53 to 43.10%, and from flowers were geranyl linalool from 11.05 to 21.42% and α-amyrin from 9.66 to 22.12%. Oleoresin obtained at 60°C and 150 bar from leaves presented high antioxidant activity by DPPH (IC 50 1.90 mg/mL) and by FRAP (1.8 µmol Fe 2+ /mg). β-carotene/linoleic acid co-oxidation oleoresin from leaves at 0.25 mg/mL presented higher antioxidant activity than Trolox. The total phenolic content of the oleoresin from leaves ranged from 66.20 to 83.33 µg/mg and from flowers it was just up to 12.46 µg/mg. The extraction conditions affected yield, chemical composition, and antioxidant activity of oleoresin from leaves and flowers. This is the first report on the antioxidant activity of B. uniflora oleoresin from leaves and flowers and provides subsidies for potential applications in chemical, pharmaceutical, and food industries.

  11. Flower development in Arabidopsis: there is more to it than learning your ABCs.

    PubMed

    Prunet, Nathanaël; Jack, Thomas P

    2014-01-01

    The field of Arabidopsis flower development began in the early 1980s with the initial description of several mutants including apetala1, apetala2, and agamous that altered floral organ identity (Koornneef and van der Veen, Theor Appl Genet 58:257-263, 1980; Koornneef et al., J Hered 74:265-272, 1983). By the end of the 1980s, these mutants were receiving more focused attention to determine precisely how they affected flower development (Komaki et al., Development 104:195-203, 1988; Bowman et al., Plant Cell 1:37-52, 1989). In the last quarter century, impressive progress has been made in characterizing the gene products and molecular mechanisms that control the key events in flower development. In this review, we briefly summarize the highlights of work from the past 25 years but focus on advances in the field in the last several years.

  12. Mid-Cretaceous charred fossil flowers reveal direct observation of arthropod feeding strategies

    PubMed Central

    Hartkopf-Fröder, Christoph; Rust, Jes; Wappler, Torsten; Friis, Else Marie; Viehofen, Agnes

    2012-01-01

    Although plant–arthropod relationships underpin the dramatic rise in diversity and ecological dominance of flowering plants and their associated arthropods, direct observations of such interactions in the fossil record are rare, as these ephemeral moments are difficult to preserve. Three-dimensionally preserved charred remains of Chloranthistemon flowers from the Late Albian to Early Cenomanian of Germany preserve scales of mosquitoes and an oribatid mite with mouthparts inserted into the pollen sac. Mosquitoes, which today are frequent nectar feeders, and the mite were feeding on pollen at the time wildfire consumed the flowers. These findings document directly arthropod feeding strategies and their role in decomposition. PMID:21900310

  13. Aspects of Clock Resetting in Flowering of Xanthium 1

    PubMed Central

    Papenfuss, Herbert D.; Salisbury, Frank B.

    1967-01-01

    Flowering is induced in Xanthium strumarium by a single dark period exceeding about 8.3 hours in length (the critical night). To study the mechanism which measures this dark period, plants were placed in growth chambers for about 2 days under constant light and temperature, given a phasing dark period terminated by an intervening light period (1 min to several hrs in duration), and finally a test dark period long enough normally to induce flowering. In some experiments, light interruptions during the test dark period were given to establish the time of maximum sensitivity. If the phasing dark period was less than 5 hours long, its termination by a light flash only broadened the subsequent time of maximum sensitivity to a light flash, but the critical night was delayed. In causing the delay, the end of the intervening light period was acting like the dusk signal which initiated time measurement at the beginning of the phasing dark period. If the phasing dark period was 6 hours or longer, time of maximum sensitivity during the subsequent test dark period was shifted by as much as 10 to 14 hours. In this case the light terminating the phasing dark period acted as a rephaser or a dawn signal. Following a 7.5-hour phasing dark period, intervening light periods of 1 minute to 5 hours did not shift the subsequent time of maximum sensitivity, but with intervening light periods longer than 5 hours, termination of the light acts clearly like a dusk signal. The clock appears to be suspended during intervening light periods longer than 5 to 15 hours. It is restarted by a dusk signal. There is an anomaly with intervening light periods of 10 to 13 hours, following which time of maximum sensitivity is actually less than the usual 8 hours after dusk. Ability of the clock in Xanthium to be rephased, suspended, restarted, or delayed, depending always upon conditions of the experiment, is characteristic of an oscillating timer and may confer upon this plant its ability to respond to

  14. Cut flowers: a potential pesticide hazard.

    PubMed Central

    Morse, D L; Baker, E L; Landrigan, P J

    1979-01-01

    Following reports of ten cases of possible organophosphate pesticide poisoning in florists exposed to pesticide residues on cut flowers, we conducted a prospective random-sample survey to determine residual pesticide levels on flowers imported into the United States via Miami, Florida. A sample of all flowers imported into Miami on three days in January 1977 showed that 18 (17.7 per cent) of 105 lots contained pesticide residue levels greater than 5 ppm, and that three lots had levels greater than 400 ppm. Azodrin (monocrotophos) was the most important contaminant with levels of 7.7--4,750 ppm detected in nine lots. We examined 20 quarantine workers in Miami and 12 commercial florists exposed to contaminated flowers. Occasional nonspecific symptoms compatible with possible organophosphate exposure were noted, but we found no abnormalities in plasma or red blood cell cholinesterase levels. This study documents a previously unrecognized potential source of occupational pesticide exposure and suggests that safety standards should be set for residue levels on cut flowers. PMID:420356

  15. Improved rheological properties of dimorphic magnetorheological gels based on flower-like carbonyl iron particles

    NASA Astrophysics Data System (ADS)

    Yang, Pingan; Yu, Miao; Luo, Hongping; Fu, Jie; Qu, Hang; Xie, Yuanpeng

    2017-09-01

    In this study, a new kind of dimorphic magnetorheological gels (MRGs) based on the conventional carbonyl iron particles (CIPs) and flower-like CIPs have been prepared for improving the yield stress and dynamic mechanical properties. The flower-like CIPs are synthesized by a simple and facile in situ reduction method. Characterization results indicate that the flower-like CIPs are synthesized successfully and a layer of uniform and continuous Fe nanosheets are grown on the surface of the raw microsphere CIPs. In addition, the flower-like CIPs exhibit excellent magnetic properties, which the saturated mass magnetization (Ms) can achieve 168.76 emu/g. In order to study the influence of mass fraction of flower-like CIPs on the rheological properties of this dimorphic MRGs, a series of polyurethane-based dimorphic MRGs are prepared by partial substitution of the CIPs with as-synthesized flower-like CIPs, and the MR properties of them are systematically investigated under both oscillatory and rotational shear modes. The experimental results indicate that, with 8 wt% flower-like CIPs, the maximum dynamic yield stresses and magneto-induced shear yield stress of dimorphic MRGs are 58.11 kPa and 54.53 kPa, ∼1.39 and ∼1.37 times of the MRG without flower-like CIPs at the same magnetic particle content. Moreover, the average loss factor and the loss factor under 1 T of the sample (flower-like CIPs weight content 8 wt%) are 0.36 and 0.07, which are approximately 1.71 and 2.71 times than that in the non-substitution sample. The increased loss factor is beneficial to improving the vibration reduction effect of MRGs of damping devices in the whole magnetic field region. Furthermore, the possible mechanism for the enhanced MR properties in dimorphic MRGs is proposed. In summary, this work is expected to promote the design and application of MRG devices.

  16. Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)).

    PubMed

    Liu, Feng; Wang, Yu; Ding, Zhaotang; Zhao, Lei; Xiao, Jun; Wang, Linjun; Ding, Shibo

    2017-10-05

    Flowering is a critical and complicated process in plant development, involving interactions of numerous endogenous and environmental factors, but little is known about the complex network regulating flower development in tea plants. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptomic analysis assembles gene-related information involved in reproductive growth of C. sinensis. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction were enriched among the DEGs. Furthermore, 207 flowering-associated unigenes were identified from our database. Some transcription factors, such as WRKY, ERF, bHLH, MYB and MADS-box were shown to be up-regulated in floral transition, which might play the role of progression of flowering. Furthermore, 14 genes were selected for confirmation of expression levels using quantitative real-time PCR (qRT-PCR). The comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in C. sinensis. Our data also provided a useful database for further research of tea and other species of plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The effect of hummingbird flower mites on nectar availability of two sympatric Heliconia species in a Brazilian Atlantic forest.

    PubMed

    Da Cruz, Denise Dias; Righetti De Abreu, Vanessa Holanda; Van Sluys, Monique

    2007-09-01

    Hummingbird flower mites feed and reproduce in flowers of host plants pollinated by hummingbirds, and use the nostrils and bill of the hummingbird to move from plant to plant. These mites compete with the pollinator for the nectar produced by flowers. An investigation was made of the relationship between the pattern of nectar production and the effects of hummingbird flower mites in the flowers of two sympatric species of Heliconia (Heliconiaceae). Nectar production was sampled by carrying out two experiments: 2-hour intervals and accumulated nectar. Flowers with and without mites were used in both experiments. Exclusion of mites increased nectar production, especially in accumulated daily production (a maximum of 49 % more nectar). Both Heliconia species had the same pattern of nectar production: a high concentration in the morning, which was progressively reduced as the day passed. This pattern of nectar production coincides with the behaviour of the pollinator, which makes more frequent visits in the morning, as observed in a previous study. The results suggest that the impact of mites on nectar availability of Heliconia is more important with regard to total volume of nectar produced irrespective of flower longevity. A high variation among individuals in nectar produced in the populations was also observed. Hummingbird flower mites strongly affect availability of nectar for hummingbirds.

  18. Buzz in Paris: flower production and plant-pollinator interactions in plants from contrasted urban and rural origins.

    PubMed

    Desaegher, James; Nadot, Sophie; Dajoz, Isabelle; Colas, Bruno

    2017-12-01

    Urbanisation, associated with habitat fragmentation, affects pollinator communities and insect foraging behaviour. These biotic changes are likely to select for modified traits in insect-pollinated plants from urban populations compared to rural populations. To test this hypothesis, we conducted an experiment involving four plant species commonly found in both urban and rural landscapes of the Île-de-France region (France): Cymbalaria muralis, Geranium robertianum, Geum urbanum and Prunella vulgaris. The four species were grown in four urban and four rural experimental sites in 2015. For each species and each experimental site, plants were grown from seeds collected in five urban and five rural locations. During flowering, we observed flower production and insect-flower interactions during 14 weeks and tested for the effects of experimental site location and plant origin on flower production and on the number of floral visits. The study species had various flower morphology and hence were visited by different floral visitors. The effect of experimental sites and seed origin also varied among study species. We found that (1) insect visits on P. vulgaris were more frequent in rural than in urban sites; (2) for C. muralis, the slope relating the number of pollinator visits to the number of flowers per individual was steeper in urban versus rural sites, suggesting a greater benefit in allocating resources to flower production in urban conditions; (3) as a likely consequence, C. muralis tended to produce more flowers in plants from urban versus rural origin.

  19. QTL mapping for flowering-time and photoperiod insensitivity of wild cotton Gossypium darwinii Watt

    USDA-ARS?s Scientific Manuscript database

    Most wild and semi-wild species of the genus Gossypium are sensitive to photoperiodism. The wild germplasm cotton collection is a valuable source of genes for genetic improvement of current cotton cultivars. For the purpose of identifying quantitative trait loci (QTLs) controlling flowering, a bi-pa...

  20. Flowering phenology and its implications for management of big-leaf mahogany Swietenia macrophylla in Brazilian Amazonia.

    PubMed

    Grogan, James; Loveless, Marilyn D

    2013-11-01

    Flowering phenology is a crucial determinant of reproductive success and offspring genetic diversity in plants. We measure the flowering phenology of big-leaf mahogany (Swietenia macrophylla, Meliaceae), a widely distributed neotropical tree, and explore how disturbance from logging impacts its reproductive biology. We use a crown scoring system to estimate the timing and duration of population-level flowering at three forest sites in the Brazilian Amazon over a five-year period. We combine this information with data on population structure and spatial distribution to consider the implications of logging for population flowering patterns and reproductive success. Mahogany trees as small as 14 cm diam flowered, but only trees > 30 cm diam flowered annually or supra-annually. Mean observed flowering periods by focal trees ranged from 18-34 d, and trees flowered sequentially during 3-4 mo beginning in the dry season. Focal trees demonstrated significant interannual correlation in flowering order. Estimated population-level flowering schedules resembled that of the focal trees, with temporal isolation between early and late flowering trees. At the principal study site, conventional logging practices eliminated 87% of mahogany trees > 30 cm diam and an estimated 94% of annual pre-logging floral effort. Consistent interannual patterns of sequential flowering among trees create incompletely isolated subpopulations, constraining pollen flow. After harvests, surviving subcommercial trees will have fewer, more distant, and smaller potential partners, with probable consequences for post-logging regeneration. These results have important implications for the sustainability of harvesting systems for tropical timber species.

  1. Overexpression of Jatropha Gibberellin 2-oxidase 6 (JcGA2ox6) Induces Dwarfism and Smaller Leaves, Flowers and Fruits in Arabidopsis and Jatropha

    PubMed Central

    Hu, Ying-Xiong; Tao, Yan-Bin; Xu, Zeng-Fu

    2017-01-01

    Gibberellins (GAs) are plant hormones that play fundamental roles in plant growth and development. Gibberellin 2-oxidase (GA2ox) plays a direct role in determining the levels of bioactive GAs by catalyzing bioactive GAs or their immediate precursors to inactive forms. In this study, a GA2ox gene, designated JcGA2ox6, was isolated from Jatropha curcas. JcGA2ox6 is expressed in all tissues of adult Jatropha, with the highest expression level in male flowers and the lowest expression level in young leaves. Overexpression of JcGA2ox6 in Arabidopsis resulted in a typical dwarf phenotype, along with late flowering, smaller leaves and flowers, shorter siliques and smaller seeds. Similarly, when JcGA2ox6 was overexpressed in Jatropha, the transgenic plants exhibited a dwarf phenotype with dark-green leaves and smaller inflorescences, flowers, fruits and seeds. However, the flowering time of Jatropha was not affected by overexpression of JcGA2ox6, unlike that in the transgenic Arabidopsis. Moreover, the number of flowers per inflorescence, the weight of 10 seeds and the seed oil content were significantly decreased in transgenic Jatropha. The results indicated that overexpression of JcGA2ox6 had a great impact on the vegetative and reproductive growth of transgenic Jatropha. Furthermore, we found that the dwarf phenotype of transgenic Jatropha was caused by a decrease in endogenous bioactive GA4, which was correlated with the degree of dwarfism. PMID:29312375

  2. Chilling and heat requirements for flowering in temperate fruit trees

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  3. Chilling and heat requirements for flowering in temperate fruit trees.

    PubMed

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  4. Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping.

    PubMed

    Otto, Lars-Gernot; Mondal, Prodyut; Brassac, Jonathan; Preiss, Susanne; Degenhardt, Jörg; He, Sang; Reif, Jochen Christoph; Sharbel, Timothy Francis

    2017-08-10

    Chamomile (Matricaria recutita L.) has a long history of use in herbal medicine with various applications, and the flower heads contain numerous secondary metabolites which are medicinally active. In the major crop plants, next generation sequencing (NGS) approaches are intensely applied to exploit genetic resources, to develop genomic resources and to enhance breeding. Here, genotyping-by-sequencing (GBS) has been used in the non-model medicinal plant chamomile to evaluate the genetic structure of the cultivated varieties/populations, and to perform genome wide association study (GWAS) focusing on genes with large effect on flowering time and the medicinally important alpha-bisabolol content. GBS analysis allowed the identification of 6495 high-quality SNP-markers in our panel of 91 M. recutita plants from 33 origins (2-4 genotypes each) and 4 M. discoidea plants as outgroup, grown in the greenhouse in Gatersleben, Germany. M. recutita proved to be clearly distinct from the outgroup, as was demonstrated by different cluster and principal coordinate analyses using the SNP-markers. Chamomile genotypes from the same origin were mostly genetically similar. Model-based cluster analysis revealed one large group of tetraploid genotypes with low genetic differentiation including 39 plants from 14 origins. Tetraploids tended to display lower genetic diversity than diploids, probably reflecting their origin by artificial polyploidisation from only a limited set of genetic backgrounds. Analyses of flowering time demonstrated that diploids generally flowered earlier than tetraploids, and the analysis of alpha-bisabolol identified several tetraploid genotypes with a high content. GWAS identified highly significant (P < 0.01) SNPs for flowering time (9) and alpha-bisabolol (71). One sequence harbouring SNPs associated with flowering time was described to play a role in self-pollination in Arabidopsis thaliana, whereas four sequences harbouring SNPs associated with alpha

  5. [HPLC fingerprint of Calendula officinalis flower].

    PubMed

    Xing, Zhan-Fen; Cheng, Hong-Da; Zhang, Ping-Ping; Gong, Lei; Ma, Li-Ya

    2014-07-01

    To establish an HPLC fingerprint of Calendula officinalis flower for its quality control. Hypersil ODS C18 column (250 mm x 4.6 mm, 5 μm) was used with acetonitrile and water as mobile phase in a gradient mode at the flow rate of 1.0 mL/min. The detection wavelength was 220 nm and the temperature of column was set at 35 degrees C. The similarity was analyzed with the Estimating System of Similarity on the Chinese Medicine Fingerprint Chromatogram. The HPLC fingerprint of Calendula officinalis flower containing eleven peaks was set up. The similarity of Calendula officinalis flower from different habitats was greater than 0.90. This method is easy and reliable, which can be used to judge the habitat and control the quality of Calendula officinalis flower.

  6. Changes in flowering phenology of woody plants in North China

    NASA Astrophysics Data System (ADS)

    Dai, Junhu

    2016-04-01

    Over the past several decades, abundant evidences proved that the first flowering date of plants in northern hemisphere became earlier in response to climate warming. However, the existing results about impact of climate change on flowering duration are controversial. In this study, we studied temporal trends in first flowering date (FFD), end of flowering date (EFD) and flowering duration (FD) of 94 woody plants from 1963 to 2014 at three stations (Harbin, Beijing and Xi'an) in North China. Meanwhile, we analyzed the relationship between length of flowering periods and temperature using two phenological models (including regression model and growing degree day model). At all stations, more than 90% of observed species showed earlier flowering over time from 1963 to 2014. The average trends in FFD were 1.33, 1.77 and 3.01 days decade-1 at Harbin, Beijing and Xi'an, respectively. During the same period, EFD also became earlier by a mean rate of 2.19, 1.39 and 2.00 days decade-1, respectively. Regarding FD, a significant shortening of FD was observed at Harbin (-0.86 days decade-1), but FD extended by 0.37 and 1.01 days decade-1 at Beijing and Xi'an, respectively. At interspecific level, the plant species with longer FD tend to have stronger trends of FD extension. Through regression analyses, we found more than 85% of time series revealed a significant negative relationship between FFD (or EFD) and preseason temperature. The regression model could simulate the interannual changes in FFD and EFD with the mean goodness of fit (R2) ranging from 0.38 to 0.67, but failed to simulate the FD accurately, as R2 ranging from 0.09 to 0.18. Regarding to FFD and EFD, the growing degree day model could improved R2 of simuation, but also could not simulate FD accurately. Therefore, we concluded that the FFD and EFD advanced notably in recent six decades as a result of climate warming, but the direction of FD changes depended on locations and the species involved. In addition, the

  7. Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance.

    PubMed

    Arroyo, Mary T K; Dudley, Leah S; Jespersen, Gus; Pacheco, Diego A; Cavieres, Lohengrin A

    2013-12-01

    How high-alpine plants confront stochastic conditions for animal pollination is a critical question. We investigated the effect of temperature on potential flower longevity (FL) measured in pollinator-excluded flowers and actual FL measured in pollinated flowers in self-incompatible Oxalis compacta and evaluated if plastically prolonged potential FL can ameliorate slow pollination under cool conditions. Pollinator-excluded and hand-pollinated flowers were experimentally warmed with open-top chambers (OTCs) on a site at 3470 m above sea level (asl). Flower-specific temperatures, and pollinator-excluded and open-pollination flower life-spans were measured at six alpine sites between 3100 and 3470 m asl. Fruit set was analyzed in relation to inferred pollination time. Warming reduced potential FL. Variable thermal conditions across the alpine landscape predicted potential and actual FL; flower senescence was pollination-regulated. Actual FL and potential FL were coupled. Prolonged potential FL generally increased fruit set under cooler conditions. Plastic responses permit virgin flowers of O. compacta to remain open longer under cooler temperatures, thereby ameliorating slow pollination, and to close earlier when pollination tends to be faster under warmer conditions. Plastic potential FL provides adaptive advantages in the cold, thermally variable alpine habitat, and has important implications for reproductive success in alpine plants in a warming world. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Models for forecasting the flowering of Cornicabra olive groves.

    PubMed

    Rojo, Jesús; Pérez-Badia, Rosa

    2015-11-01

    This study examined the impact of weather-related variables on flowering phenology in the Cornicabra olive tree and constructed models based on linear and Poisson regression to forecast the onset and length of the pre-flowering and flowering phenophases. Spain is the world's leading olive oil producer, and the Cornicabra variety is the second largest Spanish variety in terms of surface area. However, there has been little phenological research into this variety. Phenological observations were made over a 5-year period (2009-2013) at four sampling sites in the province of Toledo (central Spain). Results showed that the onset of the pre-flowering phase is governed largely by temperature, which displayed a positive correlation with the temperature in the start of dormancy (November) and a negative correlation during the months prior to budburst (January, February and March). A similar relationship was recorded for the onset of flowering. Other weather-related variables, including solar radiation and rainfall, also influenced the succession of olive flowering phenophases. Linear models proved the most suitable for forecasting the onset and length of the pre-flowering period and the onset of flowering. The onset and length of pre-flowering can be predicted up to 1 or 2 months prior to budburst, whilst the onset of flowering can be forecast up to 3 months beforehand. By contrast, a nonlinear model using Poisson regression was best suited to predict the length of the flowering period.

  9. Flowers & Weeds.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1996-01-01

    Describes the topics and teaching strategies employed in an Issues in Biology course. Discusses flowers, plant breeding, potatoes and tomatoes, the chocolate tree, weeds, Arabidopis, gene transfers, and plant genes/human genes. Contains 22 references. (JRH)

  10. Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry

    PubMed Central

    Dirlewanger, E; Quero-García, J; Le Dantec, L; Lambert, P; Ruiz, D; Dondini, L; Illa, E; Quilot-Turion, B; Audergon, J-M; Tartarini, S; Letourmy, P; Arús, P

    2012-01-01

    The present study investigates the genetic determinism of flowering and maturity dates, two traits highly affected by global climate change. Flowering and maturity dates were evaluated on five progenies from three Prunus species, peach, apricot and sweet cherry, during 3–8 years. Quantitative trait locus (QTL) detection was performed separately for each year and also by integrating data from all years together. High heritability estimates were obtained for flowering and maturity dates. Several QTLs for flowering and maturity dates were highly stable, detected each year of evaluation, suggesting that they were not affected by climatic variations. For flowering date, major QTLs were detected on linkage groups (LG) 4 for apricot and sweet cherry and on LG6 for peach. QTLs were identified on LG2, LG3, LG4 and LG7 for the three species. For maturity date, a major QTL was detected on LG4 in the three species. Using the peach genome sequence data, candidate genes underlying the major QTLs on LG4 and LG6 were investigated and key genes were identified. Our results provide a basis for the identification of genes involved in flowering and maturity dates that could be used to develop cultivar ideotypes adapted to future climatic conditions. PMID:22828898

  11. Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry.

    PubMed

    Dirlewanger, E; Quero-García, J; Le Dantec, L; Lambert, P; Ruiz, D; Dondini, L; Illa, E; Quilot-Turion, B; Audergon, J-M; Tartarini, S; Letourmy, P; Arús, P

    2012-11-01

    The present study investigates the genetic determinism of flowering and maturity dates, two traits highly affected by global climate change. Flowering and maturity dates were evaluated on five progenies from three Prunus species, peach, apricot and sweet cherry, during 3-8 years. Quantitative trait locus (QTL) detection was performed separately for each year and also by integrating data from all years together. High heritability estimates were obtained for flowering and maturity dates. Several QTLs for flowering and maturity dates were highly stable, detected each year of evaluation, suggesting that they were not affected by climatic variations. For flowering date, major QTLs were detected on linkage groups (LG) 4 for apricot and sweet cherry and on LG6 for peach. QTLs were identified on LG2, LG3, LG4 and LG7 for the three species. For maturity date, a major QTL was detected on LG4 in the three species. Using the peach genome sequence data, candidate genes underlying the major QTLs on LG4 and LG6 were investigated and key genes were identified. Our results provide a basis for the identification of genes involved in flowering and maturity dates that could be used to develop cultivar ideotypes adapted to future climatic conditions.

  12. Bilabiate Flowers: The Ultimate Response to Bees?

    PubMed Central

    Westerkamp, Christian; Claßen-Bockhoff, Regine

    2007-01-01

    Background and Aims Bilabiate flowers have evolved in many lineages of the angiosperms, thus representing a convincing example of parallel evolution. Similar to keel blossoms, they have obviously evolved in order to protect pollen against pollen-collecting bees. Although many examples are known, a comprehensive survey on floral diversity and functional constraints of bilabiate flowers is lacking. Here, the concept is widened and described as a general pattern. Methods The present paper is a conceptional review including personal observations of the authors. To form a survey on the diversity of bilabiate blossoms, a search was made for examples across the angiosperms and these were combined with personal observations collected during the last 25 years, coupled with knowledge from the literature. New functional terms are introduced that are independent of morphological and taxonomic associations. Key Results Bilabiate constructions occur in at least 38 angiosperm families. They are characterized by dorsiventral organization and dorsal pollen transfer. They are most often realised on the level of a single flower, but may also be present in an inflorescence or as part of a so-called ‘walk-around flower’. Interestingly, in functional terms all nototribic blossoms represent bilabiate constructions. The great majority of specialized bee-flowers can thus be included under bilabiate and keel blossoms. The syndrome introduced here, however, also paves the way for the inclusion of larger animals such as birds and bats. The most important evolutionary trends appear to be in the saving of pollen and the precision of its transfer. With special reference to the Lamiales, selected examples of bilabiate flowers are presented and their functional significance is discussed. Conclusions Bilabiate blossoms protect their pollen against pollen-collecting bees and at the same time render their pollination more precisely. The huge diversity of realised forms indicate the high selection

  13. Characterisation of phenolic compounds by HPLC-TOF/IT/MS in buds and open flowers of 'Chemlali' olive cultivar.

    PubMed

    Taamalli, Amani; Abaza, Leila; Arráez Román, David; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto; Zarrouk, Mokhtar; Nabil, Ben Youssef

    2013-01-01

    Plant phenolics are secondary metabolites that constitute one of the most widely occurring groups of phytochemicals that play several important functions in plants. In olive (Olea europaea L), there is not enough information about the occurrence of these compounds in buds and flowers. To conduct a comprehensive characterisation of buds and open flowers from the olive cultivar 'Chemlali'. The polar fraction of buds and open flowers was extracted using solid-liquid extraction with hydro-alcoholic solvent. Then extracts were analysed using high performance liquid chromatography (HPLC) coupled to electrospray ionisation time-of-flight mass spectrometry (ESI/TOF/MS) and electrospray ionisation ion-trap tandem mass spectrometry (ESI/IT/MS²) operating in negative ion mode. Phenolic compounds from different classes including secoiridoids, flavonoids, simple phenols, cinnamic acid derivatives and lignans were tentatively identified in both extracts. Qualitatively, no significant difference was observed between flower buds and open flowers extracts. However, quantitatively the secoiridoids presented higher percentage of total phenols in open flowers (41.7%) than in flower buds (30.5%) in contrast to flavonoids, which decreased slightly from 38.1 to 26.7%. Cinnamic acid derivatives and simple phenols did not show any change. Lignans presented the lowest percentage in both extracts with an increase during the development of the flower bud to open flower. The HPLC-TOF/IT/MS allowed the characterisation, for the first time, of the phenolic profile of extracts of 'Chemlali' olive buds and open flowers, proving to be a very useful technique for the characterisation and structure elucidation of phenolic compounds. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia).

    PubMed

    Ito, Akiko; Saito, Takanori; Nishijima, Takaaki; Moriguchi, Takaya

    2014-05-01

    To investigate the effects of light quality (wavelength) on shoot elongation and flower-bud formation in Japanese pear (Pyrus pyrifolia (Burm. f.) Nakai), we treated 1-year-old trees with the following: (i) 8 h sunlight + 16 h dark (SD); (ii) 8 h sunlight + 16 h red light (LD(SD + R)); or (iii) 8 h sunlight + 16 h far-red (FR) light (LD(SD + FR)) daily for 4 months from early April (before the spring flush) until early August in 2009 and 2010. In both years, shoot elongation stopped earlier in the LD(SD + FR) treatment than in the SD and LD(SD + R) treatments. After 4 months of treatments, 21% (2009) or 40% (2010) of LD(SD + FR)-treated trees formed flower buds in the shoot apices, whereas all the shoot apices from SD or LD(SD + R)-treated plants remained vegetative. With an additional experiment conducted in 2012, we confirmed that FR light at 730 nm was the most efficacious wavelength to induce flower-bud formation. Reverse transcription-quantitative polymerase chain reaction revealed that the expression of two floral meristem identity gene orthologues, LEAFY (PpLFY2a) and APETALA1 (PpMADS2-1a), were up-regulated in the shoot apex of LD(SD + FR). In contrast, the expression of a flowering repressor gene, TERMINAL FLOWER 1 (PpTFL1-1a, PpTFL1-2a), was down-regulated. In addition, expression of an orthologue of the flower-promoting gene FLOWERING LOCUS T (PpFT1a) was positively correlated with flower-bud formation, although the expression of another orthologue, PpFT2a, was negatively correlated with shoot growth. Biologically active cytokinin and gibberellic acid concentrations in shoot apices were reduced with LD(SD + FR) treatment. Taken together, our results indicate that pear plants are able to regulate flowering in response to the R : FR ratio. Furthermore, LD(SD + FR) treatment terminated shoot elongation and subsequent flower-bud formation in the shoot apex at an earlier time, possibly by influencing the expression of flowering-related genes and modifying

  15. Structural Characterization of Ginsenosides from Flower Buds of Panax ginseng by RRLC-Q-TOF MS.

    PubMed

    Wu, Wei; Lu, Ziyan; Teng, Yaran; Guo, Yingying; Liu, Shuying

    2016-02-01

    Ginseng flower bud as a part of Panax ginseng has received much attention as a valuable functional food with medicinal potential. A few studies focused on systematic and comprehensive studies on its major ingredients. This study aims to rapidly characterize ginsenosides in ginseng flower buds and provide scientific basis for developing functional food, exploiting pharmaceutical effects and making full use of ginseng resources. A rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) method was developed for rapid qualitative and quantitative analysis of ginsenosides in ginseng flower buds. The compounds were identified by comparing retention time of the reference standards, accurate mass measurement and the fragment ions obtained from RRLC-Q-TOF-MS/MS analyses. A total of 14 kinds of ginsenosides were identified and 5 kinds of malonyl-ginsenosides were first tentatively identified in ginseng flower buds. Ten kinds of main ginsenosides were quantitatively analyzed. The developed RRLC-Q-TOF-MS method was demonstrated as an effective analytical means for rapid characterization of the ginsenosides in flower buds of P. ginseng. The research result is valuable for quality control, assessment of authenticity and stability evaluation of ginseng flower buds. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Effects of shading on plant growth, flower quality and photosynthetic capacity of Rosa hybrida

    NASA Astrophysics Data System (ADS)

    Hou, Wei; Luo, Ya; Wang, Xiaorong; Chen, Qing; Sun, Bo; Wang, Yan; Liu, Zejing; Tang, Haoru; Zhang, Yong

    2018-04-01

    With the acceleration of the urbanization process, numbers of garden plants are grown in shaded environment. Rose (Rosa hybrida) is one of the most important ornamental plants used in urban green spaces. In the present study, effects of shading on plant growth, flower quality and photosynthetic capacity of R. hybrida were investigated. The results showed that shade not only delayed the initial flowering date, but also prolonged the flowering time. The physiological indices, including flower fresh weight, total anthocyanins and flavonoids contents, were lower in plants grown with shade compared with those grown in sun exposure. Overall, R. hybrida seemed to be a shade adapted plant which could be successfully grown in urban green spaces or understory with slight shade.

  17. Transcriptome and gene expression analysis during flower blooming in Rosa chinensis 'Pallida'.

    PubMed

    Yan, Huijun; Zhang, Hao; Chen, Min; Jian, Hongying; Baudino, Sylvie; Caissard, Jean-Claude; Bendahmane, Mohammed; Li, Shubin; Zhang, Ting; Zhou, Ningning; Qiu, Xianqin; Wang, Qigang; Tang, Kaixue

    2014-04-25

    Rosa chinensis 'Pallida' (Rosa L.) is one of the most important ancient rose cultivars originating from China. It contributed the 'tea scent' trait to modern roses. However, little information is available on the gene regulatory networks involved in scent biosynthesis and metabolism in Rosa. In this study, the transcriptome of R. chinensis 'Pallida' petals at different developmental stages, from flower buds to senescent flowers, was investigated using Illumina sequencing technology. De novo assembly generated 89,614 clusters with an average length of 428bp. Based on sequence similarity search with known proteins, 62.9% of total clusters were annotated. Out of these annotated transcripts, 25,705 and 37,159 sequences were assigned to gene ontology and clusters of orthologous groups, respectively. The dataset provides information on transcripts putatively associated with known scent metabolic pathways. Digital gene expression (DGE) was obtained using RNA samples from flower bud, open flower and senescent flower stages. Comparative DGE and quantitative real time PCR permitted the identification of five transcripts encoding proteins putatively associated with scent biosynthesis in roses. The study provides a foundation for scent-related gene discovery in roses. Copyright © 2014. Published by Elsevier B.V.

  18. Controllable preparation of flower-like brookite TiO{sub 2} nanostructures via one-step hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yunling; College of Science, Civil Aviation University of China, Tianjin 300300; Tan, Xin

    Highlights: • Flower-like brookite TiO{sub 2} structures were prepared by hydrothermal method. • PVP not only acted as a dispersant but also stabilized the layered structure. • The resulted brookite TiO{sub 2} showed high photocatalytic activity under UV irradiation. - Abstract: Flower-like brookite TiO{sub 2} nanostructures were controllable prepared by a one-step hydrothermal method by changing experimental conditions, such as hydrothermal temperature, reaction time and the amount of polyvinylpyrrolidone. The photocatalytic activities of the samples were investigated by degradation of methylene blue (MB) in aqueous solution under UV light irradiation. It was found that the formation of brookite TiO{sub 2}more » nanostructures with various morphologies could be well controlled by the adjustment of hydrothermal temperature, reaction time and the amount of surfactant, and the morphology of the products changed from spindle-like structures to flower-like structures with the increase of hydrothermal temperature, reaction time and the amount of surfactant. The photocatalytic tests indicate that the flower-like brookite TiO{sub 2} nanostructures shows high photocatalytic activity in degradation of methylene blue (MB) under UV light irradiation. The formation mechanism of flower-like brookite TiO{sub 2} nanostructures was also discussed in detail based on the above investigations.« less

  19. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    NASA Astrophysics Data System (ADS)

    Baghi, R.; Helmig, D.; Guenther, A.; Duhl, T.; Daly, R.

    2012-10-01

    order as isoprene emissions from oak trees, which are among the highest BVOC flowering period floral emissions observed from plants to date. These findings illustrate that during the relatively brief springtime flowering period, floral emissions constitute by far the most significant contribution to the BVOC flux from these tree species, some of which are leafless at this time. Experimental results were integrated into the MEGAN biogenic emission model and simulations were performed to estimate the contribution of floral BVOC emissions to the total urban BVOC flux during the spring flowering period. The floral BVOC emitted during this three-month simulation are equivalent to 11% of the integrated monoterpene flux for the Boulder urban area.

  20. Branch length mediates flower production and inflorescence architecture of Fouquieria splendens (ocotillo)

    USGS Publications Warehouse

    Bowers, Janice E.

    2006-01-01

    The capacity of individual branches to store water and fix carbon can have profound effects on inflorescence size and architecture, thus on floral display, pollination, and fecundity. Mixed regression was used to investigate the relation between branch length, a proxy for plant resources, and floral display of Fouquieria splendens (ocotillo), a woody, candelabraform shrub of wide distribution in arid North America. Long branches produced three times as many flowers as short branches, regardless of overall plant size. Long branches also had more complex panicles with more cymes and cyme types than short branches; thus, branch length also influenced inflorescence architecture. Within panicles, increasing the number of cymes by one unit added about two flowers, whereas increasing the number of cyme types by one unit added about 21 flowers. Because flower production is mediated by branch length, and because most plants have branches of various lengths, the floral display of individual plants necessarily encompasses a wide range of inflorescence size and structure. ?? Springer 2006.

  1. The Effect of Hummingbird Flower Mites on Nectar Availability of Two Sympatric Heliconia Species in a Brazilian Atlantic Forest

    PubMed Central

    Da Cruz, Denise Dias; Righetti De Abreu, Vanessa Holanda; Van Sluys, Monique

    2007-01-01

    Background and Aims Hummingbird flower mites feed and reproduce in flowers of host plants pollinated by hummingbirds, and use the nostrils and bill of the hummingbird to move from plant to plant. These mites compete with the pollinator for the nectar produced by flowers. An investigation was made of the relationship between the pattern of nectar production and the effects of hummingbird flower mites in the flowers of two sympatric species of Heliconia (Heliconiaceae). Methods Nectar production was sampled by carrying out two experiments: 2-hour intervals and accumulated nectar. Flowers with and without mites were used in both experiments. Key Results Exclusion of mites increased nectar production, especially in accumulated daily production (a maximum of 49 % more nectar). Both Heliconia species had the same pattern of nectar production: a high concentration in the morning, which was progressively reduced as the day passed. This pattern of nectar production coincides with the behaviour of the pollinator, which makes more frequent visits in the morning, as observed in a previous study. Conclusions The results suggest that the impact of mites on nectar availability of Heliconia is more important with regard to total volume of nectar producted irrespective of flower longevity. A high variation among individuals in nectar produced in the populations was also observed. Hummingbird flower mites strongly affect availability of nectar for hummingbirds. PMID:17638712

  2. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa).

    PubMed

    Liu, Bing; Wei, Gang; Shi, Jinlei; Jin, Jing; Shen, Ting; Ni, Ting; Shen, Wen-Hui; Yu, Yu; Dong, Aiwu

    2016-04-01

    As a key epigenetic modification, the methylation of histone H3 lysine 36 (H3K36) modulates chromatin structure and is involved in diverse biological processes. To better understand the language of H3K36 methylation in rice (Oryza sativa), we chose potential histone methylation enzymes for functional exploration. In particular, we characterized rice SET DOMAIN GROUP 708 (SDG708) as an H3K36-specific methyltransferase possessing the ability to deposit up to three methyl groups on H3K36. Compared with the wild-type, SDG708-knockdown rice mutants displayed a late-flowering phenotype under both long-day and short-day conditions because of the down-regulation of the key flowering regulatory genes Heading date 3a (Hd3a), RICE FLOWERING LOCUS T1 (RFT1), and Early heading date 1 (Ehd1). Chromatin immunoprecipitation experiments indicated that H3K36me1, H3K36me2, and H3K36me3 levels were reduced at these loci in SDG708-deficient plants. More importantly, SDG708 was able to directly target and effect H3K36 methylation on specific flowering genes. In fact, knockdown of SDG708 led to misexpression of a set of functional genes and a genome-wide decrease in H3K36me1/2/3 levels during the early growth stages of rice. SDG708 is a methyltransferase that catalyses genome-wide deposition of all three methyl groups on H3K36 and is involved in many biological processes in addition to flowering promotion. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Ozone and infection of geranium flowers by Botrytis cinerea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, W.J.; Feder, W.A.; Perkins, I.

    1970-01-01

    Flowering plants of geranium cultivars were exposed to 0.2, 0.35, and 0.55 ppm ozone for 4-hr periods at 20/sup 0/C in a greenhouse fumigation chamber. Three fully-opened flower heads were sprayed with a spore suspension of Botrytis cinerea at 2000, 1000, or 500 spores/ml immediately before exposure to ozone began. Sterile distilled water was sprayed on noninoculated flower heads. All flowers were examined for evidence of infection 24 hr after the end of the ozone-exposure periods. All flower heads were then removed and placed in wet, loosely tied plastic bags and incubated at 20/sup 0/C for 72 hr, with examinationmore » at 24-hr intervals for evidence of infection. Ozone at 0.2 ppm did not injure the plants or prevent or inhibit flower infection by B. cinerea at all inoculum levels. Natural infection also occurred on some noninoculated flowers. Ozone at 0.35 ppm did not injure the plants or prevent infection, but did inhibit pathogenesis at the 500-spore/ml inoculum level and on noninoculated flowers. Ozone at 0.55 ppm caused moderate injury on all plants. Ozone at this level did not prevent infection, but did restrict pathogenesis on all inoculated and noninoculated flowers.« less

  4. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?

    PubMed

    Iler, Amy M; Høye, Toke T; Inouye, David W; Schmidt, Niels M

    2013-08-19

    Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974-2011) and Zackenberg, Greenland (1996-2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions.

  5. [LEAFY, a master regulator of flower development].

    PubMed

    Vachon, Gilles; Tichtinsky, Gabrielle; Parcy, François

    2012-01-01

    Flowering plants or angiosperms constitute the vast majority of plant species. Their evolutionary success is largely due to the efficiency of the flower as reproductive structure. Work performed on model plant species in the last 20 years has identified the LEAFY gene as a key regulator of flower development. LEAFY is a unique plant transcription factor responsible for the formation of the earliest floral stage as well as for the induction of homeotic genes triggering floral organ determination. But LEAFY is also present in non-flowering plants such as mosses, ferns and gymnosperms. Recent studies suggest that LEAFY might play a role in cell division and meristem development in basal plants, a function that is probably more ancestral than the later acquired floral function. Analyzing the evolution of the role and the biochemical properties of this peculiar regulator starts to shade light on the mysterious origin of flowering plants. © Société de Biologie, 2012.

  6. Effect of Packaging on Shelf-life and Lutein Content of Marigold (Tagetes erecta L.) Flowers.

    PubMed

    Pal, Sayani; Ghosh, Probir Kumar; Bhattacharjee, Paramita

    2016-01-01

    African marigold (Tagetes erecta L.) flowers are highly valued for their ornamental appeal as well as medicinal properties. However, their short shelf lives cause high post-harvest loss and limit their export potential. The review of patents and research articles revealed that different types of packaging designs/materials have been successfully employed for extension of shelf lives of cut flowers. The current work focuses on designing of different packaging configurations and selection of best configuration for preservation of marigold cut flowers. Ten packaging configurations, composed of four different packaging materials i.e., low density polyethylene (LDPE), polyethylene terephthalate, glassine paper and cellophane paper, were designed. Each pack, consisting of 20 ± 1 g of marigold flowers along with non-packaged control set were stored at 23 ± 2°C, 80% R.H., in an environmental chamber and the flowers were evaluated for their sensory attributes, phytochemical characteristics and physicochemical parameters of senescence to determine their shelf lives. Flowers packed in LDPE bag showed highest shelf life of 8 days with a lead of 4 days compared to control (shelf life - 4 days). This study also established for the first time the phenomenon of carotenogenesis in marigold cut flowers with significantly (P<0.01) higher production of lutein in LDPE packaged flowers. LDPE pack was the best design among the ten package designs, in preserving lutein content of marigold flowers and extending their shelf lives. This economically viable packaging can not only boost the export potential of this ornamental flower, but also allow utilization of nutraceutical potency of lutein.

  7. [Functional saponins in tea flower (flower buds of Camellia sinensis): gastroprotective and hypoglycemic effects of floratheasaponins and qualitative and quantitative analysis using HPLC].

    PubMed

    Yoshikawa, Masayuki; Wang, Tao; Sugimoto, Sachiko; Nakamura, Seikou; Nagatomo, Akifumi; Matsuda, Hisashi; Harima, Shoichi

    2008-01-01

    As a part of our characterization studies on the bioactive saponin constituents of tea flowers (Camellia sinensis, flower buds), the methanolic extract and 1-butanol-soluble portion (the saponin fraction) from the flower buds were found to exhibit potent inhibitory effects on ethanol- and indomethacin-induced gastric mucosal lesions in rats and on serum glucose elevation in sucrose-loaded rats. Among the constituents of the 1-butanol-soluble portion, floratheasaponins A, B, and C showed gastroprotective and hypoglycemic activities. Furthermore, we have developed qualitative and quantitative methods using HPLC for the principle saponins, floratheasaponins A-F, in tea flowers, which were previously found to show antiallergic and antiobesity effects. Using those methods, the saponin composition of Indian tea flowers were found to be similar to those of Chinese (Anhui) but not of Japanese tea flowers. On the other hand, it was found that the floratheasaponin contents in tea flowers varied markedly during the blooming period, and they were abundant at half-bloom. Additionally, the contents of caffeine in the tea flowers were examined using HPLC.

  8. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean.

    PubMed

    Cai, Yupeng; Chen, Li; Liu, Xiujie; Guo, Chen; Sun, Shi; Wu, Cunxiang; Jiang, Bingjun; Han, Tianfu; Hou, Wensheng

    2018-01-01

    Flowering is an indication of the transition from vegetative growth to reproductive growth and has considerable effects on the life cycle of soya bean (Glycine max). In this study, we employed the CRISPR/Cas9 system to specifically induce targeted mutagenesis of GmFT2a, an integrator in the photoperiod flowering pathway in soya bean. The soya bean cultivar Jack was transformed with three sgRNA/Cas9 vectors targeting different sites of endogenous GmFT2a via Agrobacterium tumefaciens-mediated transformation. Site-directed mutations were observed at all targeted sites by DNA sequencing analysis. T1-generation soya bean plants homozygous for null alleles of GmFT2a frameshift mutated by a 1-bp insertion or short deletion exhibited late flowering under natural conditions (summer) in Beijing, China (N39°58', E116°20'). We also found that the targeted mutagenesis was stably heritable in the following T2 generation, and the homozygous GmFT2a mutants exhibited late flowering under both long-day and short-day conditions. We identified some 'transgene-clean' soya bean plants that were homozygous for null alleles of endogenous GmFT2a and without any transgenic element from the T1 and T2 generations. These 'transgene-clean' mutants of GmFT2a may provide materials for more in-depth research of GmFT2a functions and the molecular mechanism of photoperiod responses in soya bean. They will also contribute to soya bean breeding and regional introduction. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa

    PubMed Central

    Hirabayashi, Hideyuki; Sasaki, Kazuhiro; Kambe, Takashi; Gannaban, Ritchel B.; Miras, Monaliza A.; Mendioro, Merlyn S.; Simon, Eliza V.; Lumanglas, Patrick D.; Fujita, Daisuke; Takemoto-Kuno, Yoko; Takeuchi, Yoshinobu; Kaji, Ryota; Kondo, Motohiko; Kobayashi, Nobuya; Ogawa, Tsugufumi; Ando, Ikuo; Jagadish, Krishna S. V.; Ishimaru, Tsutomu

    2015-01-01

    A decline in rice (Oryza sativa L.) production caused by heat stress is one of the biggest concerns resulting from future climate change. Rice spikelets are most susceptible to heat stress at flowering. The early-morning flowering (EMF) trait mitigates heat-induced spikelet sterility at the flowering stage by escaping heat stress during the daytime. We attempted to develop near-isogenic lines (NILs) for EMF in the indica-type genetic background by exploiting the EMF locus from wild rice, O. officinalis (CC genome). A stable quantitative trait locus (QTL) for flower opening time (FOT) was detected on chromosome 3. A QTL was designated as qEMF3 and it shifted FOT by 1.5–2.0h earlier for cv. Nanjing 11 in temperate Japan and cv. IR64 in the Philippine tropics. NILs for EMF mitigated heat-induced spikelet sterility under elevated temperature conditions completing flower opening before reaching 35°C, a general threshold value leading to spikelet sterility. Quantification of FOT of cultivars popular in the tropics and subtropics did not reveal the EMF trait in any of the cultivars tested, suggesting that qEMF3 has the potential to advance FOT of currently popular cultivars to escape heat stress at flowering under future hotter climates. This is the first report to examine rice with the EMF trait through marker-assisted breeding using wild rice as a genetic resource. PMID:25534925

  10. Flower bud transcriptome analysis of Sapium sebiferum (Linn.) Roxb. and primary investigation of drought induced flowering: pathway construction and G-quadruplex prediction based on transcriptome.

    PubMed

    Yang, Minglei; Wu, Ying; Jin, Shan; Hou, Jinyan; Mao, Yingji; Liu, Wenbo; Shen, Yangcheng; Wu, Lifang

    2015-01-01

    Sapium sebiferum (Linn.) Roxb. (Chinese Tallow Tree) is a perennial woody tree and its seeds are rich in oil which hold great potential for biodiesel production. Despite a traditional woody oil plant, our understanding on S. sebiferum genetics and molecular biology remains scant. In this study, the first comprehensive transcriptome of S. sebiferum flower has been generated by sequencing and de novo assembly. A total of 149,342 unigenes were generated from raw reads, of which 24,289 unigenes were successfully matched to public database. A total of 61 MADS box genes and putative pathways involved in S. sebiferum flower development have been identified. Abiotic stress response network was also constructed in this work, where 2,686 unigenes are involved in the pathway. As for lipid biosynthesis, 161 unigenes have been identified in fatty acid (FA) and triacylglycerol (TAG) biosynthesis. Besides, the G-Quadruplexes in RNA of S. sebiferum also have been predicted. An interesting finding is that the stress-induced flowering was observed in S. sebiferum for the first time. According to the results of semi-quantitative PCR, expression tendencies of flowering-related genes, GA1, AP2 and CRY2, accorded with stress-related genes, such as GRX50435 and PRXⅡ39562. This transcriptome provides functional genomic information for further research of S. sebiferum, especially for the genetic engineering to shorten the juvenile period and improve yield by regulating flower development. It also offers a useful database for the research of other Euphorbiaceae family plants.

  11. The changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages.

    PubMed

    Yao, Xiaoqin; Chu, Jianzhou; He, Xueli; Ma, Chunhui; Han, Chao; Shen, Haiyu

    2015-05-01

    The paper mainly reported the changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages. The experiment included two levels of UV-B radiation (ambient UV-B, a 10% increase in ambient UV-B). Elevated UV-B radiation was carried out for 10-days during seedling, vigorous growth, bud and flower stages of Qi chrysanthemum, respectively. Elevated UV-B treatments applied during four development stages did not significantly affect flower yield, the rate of superoxide radical production and malondialdehyde concentration in flowers, while increased free amino acid concentration. The amino acid concentration induced by elevated UV-B radiation applied during bud stage was higher than that during the other stages. Elevated UV-B radiation applied during vigorous growth (except for flavone), bud and flower stages of chrysanthemum significantly increased hydrogen peroxide concentration, phenylalanine ammonia lyase enzyme activity, vitamin C, chlorogenic acid and flavone concentrations in flowers. These results suggested that active and nutritional ingredients in flowers of chrysanthemum could be increased by elevated UV-B radiation applied during the later growth stages of chrysanthemum. The paper supplied a simple and environmental-friendly method to improve quality of medicinal plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Flower power: its association with bee power and floral functional morphology in papilionate legumes

    PubMed Central

    Córdoba, Silvina A.; Cocucci, Andrea A.

    2011-01-01

    Background and Aims A test was made of the hypothesis that papilionate legume flowers filter pollinators according to their ability to exert strength to open flowers to access rewards. In addition, interactions with pollen vectors were expected to explain the structural complexity of the architecture of these flowers since operative flower strength may be determined by a combination of morphological traits which form part of an intrafloral functional module. Methods Six papilionate species were studied: Collaea argentina, Desmodium uncinatum, Galactia latisiliqua, Lathyrus odoratus, Spartium junceum and Tipuana tipu. Measurements were made of the strength needed to open keels and the strength that pollinators were capable of exerting. Morphological traits of all petals were also measured to determine which of them could be either mutually correlated or correlated with operative strength and moment of strength and participated in a functional module. Key Results It was observed that pollinators were capable in all cases of exerting forces higher and often several times higher than that needed to access floral rewards, and no association could be detected between floral operative strength and strength exerted by the corresponding pollinators. On the other hand, strong and significant correlations were found among morphometric traits and, of these, with operative strength and moment. This was particularly evident among traits of the keel and the wings, presumably involved in the functioning of the floral moveable mechanism. Conclusions Though visitors are often many times stronger than the operative strength of the flowers they pollinate, exceptionally weak bees such as Apis mellifera cannot open the strongest flowers. On the other hand, strong correlations among certain petal morphometric traits (particularly between the keel and wings) give support to the idea that an intrafloral module is associated with the functioning of the mechanism of these legume flowers. In

  13. Comparative evolution of flower and fruit morphology

    PubMed Central

    Whitney, Kenneth D.

    2009-01-01

    Angiosperm diversification has resulted in a vast array of plant morphologies. Only recently has it been appreciated that diversification might have proceeded quite differently for the two key diagnostic structures of this clade, flowers and fruits. These structures are hypothesized to have experienced different selective pressures via their interactions with animals in dispersal mutualisms, resulting in a greater amount of morphological diversification in animal-pollinated flowers than in animal-dispersed fruits. I tested this idea using size and colour traits for the flowers and fruits of 472 species occurring in three floras (St John, Hawaii and the Great Plains). Phylogenetically controlled analyses of nearest-neighbour distances in multidimensional trait space matched the predicted pattern: in each of the three floras, flowers were more divergent from one another than were fruits. In addition, the spacing of species clusters differed for flowers versus fruits in the flora of St John, with clusters in flower space more divergent than those in fruit space. The results are consistent with the idea that a major driver of angiosperm diversification has been stronger selection for divergent floral morphology than for divergent fruit morphology, although genetic, physiological and ecological constraints may also play a role. PMID:19474045

  14. Temporal responses of peak citrus flowering to climate change in Iran: 1960-2010

    NASA Astrophysics Data System (ADS)

    Fitchett, Jennifer; Grab, Stefan; Thompson, Dave; Roshan, GholamReza

    2014-05-01

    Recent studies investigating floral and faunal phenological responses to climate change have highlighted the extent to which these relationships are species and location specific. This study investigates temporal responses of citrus peak flowering to climate change in the cities of Kerman, Shiraz and Gorgan, Iran. Phenological data comprise peak flowering dates of five citrus types: orange (Citrus x sinensis), tangerine (Citrus x tangerine), sweet lemon (Citrus limetta), sour lemon (Citrus x limon) and sour orange (Citrus x aurantium). These were collected daily from government heritage gardens located within each of the three cities, and archived by a private Iranian company, for the period 1960-2010. For the same period, daily Tmax, Tmin, rainfall and sunshine hour data were acquired from the Iranian Meteorological Organization. Time trend analyses were undertaken for both the phenological and meteorological data, followed by linear regression to determine the nature and extent of any relationships between these variables. We find that the mean peak flowering dates, and their long-term trends over the 51-year period, are very similar amongst the five citrus types within each city, but demonstrate significant differences between cities. Flowering date advances of 0.12-0.17d/yr are recorded for Kerman, and more rapid advances of 0.56-0.65d/yr for Shiraz. Notable progressive delays in flowering dates occur in Gorgan (0.05-0.1d/yr). The peak flowering dates of citrus in the former two cities demonstrate strong relationships with mean annual Tmin, ranging from r = 0.46-0.61 (p = 0002; p < 0.0001) for Kerman to r = 0.53-0.67 (p = 0.0386; p < 0.0001) for Shiraz, and equating to peak flowering advances of 3.15-3.39d/°C and 4.34-5.47d/°C respectively. By contrast, the strongest relationships between peak flowering dates and climate in Gorgan are with rainfall (r = 0.02-0.3, p = 0.8874-0.0528), indicating a weak phenophase response of 0.1d/mm. Gorgan also provides a

  15. Multisensory integration in Lepidoptera: Insights into flower-visitor interactions.

    PubMed

    Kinoshita, Michiyo; Stewart, Finlay J; Ômura, Hisashi

    2017-04-01

    As most work on flower foraging focuses on bees, studying Lepidoptera can offer fresh perspectives on how sensory capabilities shape the interaction between flowers and insects. Through a combination of innate preferences and learning, many Lepidoptera persistently visit particular flower species. Butterflies tend to rely on their highly developed sense of colour to locate rewarding flowers, while moths have evolved sophisticated olfactory systems towards the same end. However, these modalities can interact in complex ways; for instance, butterflies' colour preference can shift depending on olfactory context. The mechanisms by which such cross-modal interaction occurs are poorly understood, but the mushroom bodies appear to play a central role. Because of the diversity seen within Lepidoptera in terms of their sensory capabilities and the nature of their relationships with flowers, they represent a fruitful avenue for comparative studies to shed light on the co-evolution of flowers and flower-visiting insects. © 2017 WILEY Periodicals, Inc.

  16. Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis

    PubMed Central

    2013-01-01

    Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts. PMID:24153176

  17. [Studies on the chemical constituents from the flowers of Ophiopogon japonicus].

    PubMed

    Zhu, Yu-Hong; Zhao, Min; Ren, Lu; Tian, Di; Dou, Fang; Wang, Jun-Xian

    2011-05-01

    To study the chemical constituents from the flowers of Ophiopogon japonicus. Column chromatography and spectral analysis were used to isolate and identify the constituents. Eleven compounds were obtained and identified as beta-sitosterol (I), diosgenin (II), daucosterol (III), ophiopogonin C' (IV), dioscin (V), 7-dihy-droxy-6-methyl-3-(4'-hydroxybenzyl) chroman-4-one(VI), luteolin (VII), kaempferol-3-O-beta-D-glucopyranosides (VIII), kaempferol-3-O-(6"-tigloyl) -beta-D-glucopyranosides (IX), kaempferol-3-O-(6"-acetyl) -beta-D-glucopyranosides (X), glucose (XI). Eleven compounds are obtained from the flowers of O. japonicus for the first time. Compond VI is isolated as a simple substance compound of O. japonicus for the first time. Componds VII, VIII, IX and X are isolated from this genus for the first time.

  18. Climatic niche and flowering and fruiting phenology of an epiphytic plant.

    PubMed

    Barve, Narayani; Martin, Craig E; Peterson, A Townsend

    2015-09-10

    Species have geographic distributions constrained by combinations of abiotic factors, biotic factors and dispersal-related factors. Abiotic requirements vary across the life stages for a species; for plant species, a particularly important life stage is when the plant flowers and develops seeds. A previous year-long experiment showed that ambient temperature of 5-35 °C, relative humidity of >50 % and ≤15 consecutive rainless days are crucial abiotic conditions for Spanish moss (Tillandsia usneoides L.). Here, we explore whether these optimal physiological intervals relate to the timing of the flowering and fruiting periods of Spanish moss across its range. As Spanish moss has a broad geographic range, we examined herbarium specimens to detect and characterize flowering/fruiting periods for the species across the Americas; we used high-temporal-resolution climatic data to assess the availability of optimal conditions for Spanish moss populations during each population's flowering period. We explored how long populations experience suboptimal conditions and found that most populations experience suboptimal conditions in at least one environmental dimension. Flowering and fruiting periods of Spanish moss populations are either being optimized for one or a few parameters or may be adjusted such that all parameters are suboptimal. Spanish moss populations appear to be constrained most closely by minimum temperature during this period. Published by Oxford University Press on behalf of the Annals of Botany Company.

  19. Climatic niche and flowering and fruiting phenology of an epiphytic plant

    PubMed Central

    Barve, Narayani; Martin, Craig E.; Peterson, A. Townsend

    2015-01-01

    Species have geographic distributions constrained by combinations of abiotic factors, biotic factors and dispersal-related factors. Abiotic requirements vary across the life stages for a species; for plant species, a particularly important life stage is when the plant flowers and develops seeds. A previous year-long experiment showed that ambient temperature of 5–35 °C, relative humidity of >50 % and ≤15 consecutive rainless days are crucial abiotic conditions for Spanish moss (Tillandsia usneoides L.). Here, we explore whether these optimal physiological intervals relate to the timing of the flowering and fruiting periods of Spanish moss across its range. As Spanish moss has a broad geographic range, we examined herbarium specimens to detect and characterize flowering/fruiting periods for the species across the Americas; we used high-temporal-resolution climatic data to assess the availability of optimal conditions for Spanish moss populations during each population's flowering period. We explored how long populations experience suboptimal conditions and found that most populations experience suboptimal conditions in at least one environmental dimension. Flowering and fruiting periods of Spanish moss populations are either being optimized for one or a few parameters or may be adjusted such that all parameters are suboptimal. Spanish moss populations appear to be constrained most closely by minimum temperature during this period. PMID:26359490

  20. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells

    PubMed Central

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L.; Meir, Shimon

    2015-01-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2’,7’-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H+-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. PMID:25504336